motivation

preliminaries

examples

characterizations

applications

Los complejos cúbicos CAT(0) en la robótica

(y en muchos otros lugares)

Federico Ardila M.

San Francisco State University, San Francisco, California. Universidad de Los Andes, Bogotá, Colombia.

> ALTENCOA 2014 Pasto, Nariño 11 de agosto de 2014

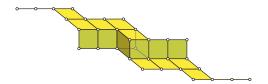
Trabajos con:

- Megan Owen (Waterloo), Seth Sullivant (NCSU)
- Rika Yatchak (SFSU/Linz), Tia Baker (SFSU)
- Diego Cifuentes (Los Andes/MIT), Steven Collazos (SFSU)

Las dos cosas que quiero decir hoy:

1. Hay muchos complejos cúbicos CAT(0) "en la naturaleza".

2. Los complejos cúbicos CAT(0) tienen una estructura muy elegante y muy útil.



examples

characterizations

applications

1. MOTIVATION.

Moving robots.

A robotic snake can move:

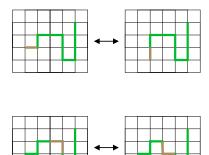
1. the head or tail or 2. a joint without self-intersecting.

Snake:



1:

2:

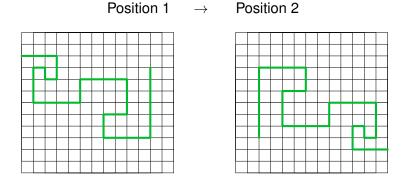


preliminaries

examples

One motivation: moving robots.

How do we move this robotic snake (optimally) using these moves from one position to another one?



preliminaries

examples

characterizations

applications

Motivación: una pregunta más fácil.

Cómo llego a la universidad?

Plaza de Nariño

\rightarrow Universidad de Nariño

motivation

preliminaries

examples

characterizations

applications

Motivación: una pregunta más fácil.

¿Cómo llego a la universidad, **de manera óptima**? ¡Con un mapa! (Ojo: ¿Óptima en qué sentido?)

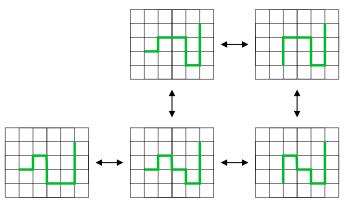
Hagamos lo mismo.

Constuyamos un mapa de las posibles posiciones del robot.

Motivation: back to moving robots.

Let's build a map of all possible positions of the robot.

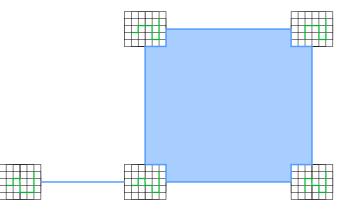
A small piece: (discrete model)



Motivation: moving robots.

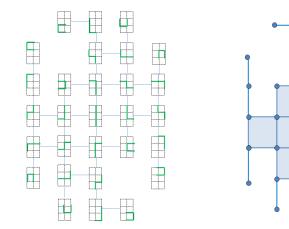
Let's build a map of all possible positions of the robot.

A small piece: (continuous model)



Motivation: moving robots.

Let's build a map of all possible positions. A complete example:

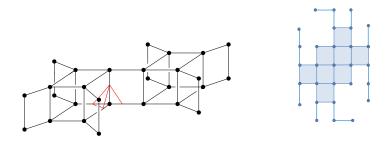


A CAT(0) cube complex! How can we understand them? Navigate them? examples

characterizations

applications

Motivation: moving robots.



How can we understand CAT(0) cube complexes? How should we navigate them?

Obstacles:

- High dimension.
- Complicated ramification.
- Too many vertices.

This is what we need to overcome.

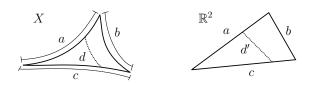
2. PRELIMINARIES. CAT(0) spaces

A metric space X is CAT(0) if it has non-positive curvature everywhere, in the sense that triangles in X are "thinner" than flat triangles. Roughly, it is "saddle shaped".

More precisely, we require:

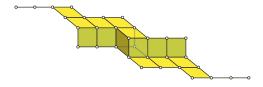
- There is a unique geodesic path between any two points of *X*.
- (CAT(0) inequality) Consider any triangle T in X and a *comparison triangle* T' of the same sidelengths in the Euclidean plane \mathbb{R}^2 . Consider any chord (of length d) in T and the corresponding chord (of length d') in T'. Then

 $d \leq d'$.



PRELIMINARIES. Cube complexes

A cube complex is a space obtained by gluing cubes (of possibly different dimensions) along their faces.

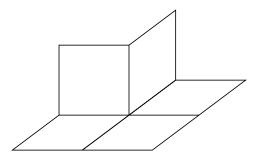


(Like a simplicial complex, but the building blocks are cubes.)

Metric: Euclidean inside each cube.

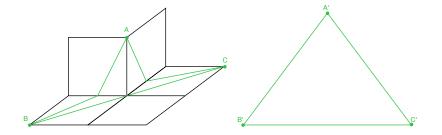
We are interested in cube complexes which are CAT(0).

Example. Five squares glued around a corner.



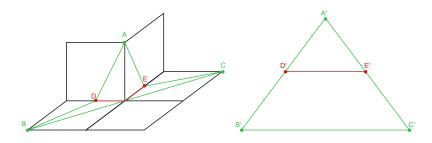
examples

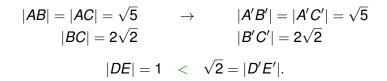
Example. Five squares glued around a corner.



$$\begin{aligned} |AB| &= |AC| = \sqrt{5} \qquad \rightarrow \qquad |A'B'| = |A'C'| = \sqrt{5} \\ |BC| &= 2\sqrt{2} \qquad \qquad |B'C'| = 2\sqrt{2} \end{aligned}$$

Example. Five squares glued around a corner.





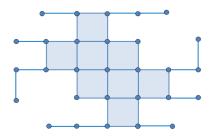
This triangle is thin. (But: I still need to test many chords.) This space is CAT(0). (But: I still need to test many triangles.)

Not so practical!

3. EXAMPLES.

Example 1. Robot motion planning

State complex. vertices = positions. edges = moves. cubes = "physically independent" moves.



Theorem (GP) This is often a CAT(0) cube complex.

This works **very** generally for many reconfiguration systems, where we change vertex labels on a graph using local moves.

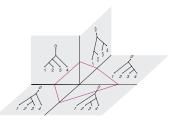
examples

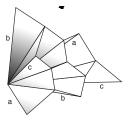
Example 2. Phylogenetic trees (Billera, Holmes, Vogtmann):

Goal: Predict the evolutionary tree of *n* current-day species/languages/....

Approach:

- Build a space T_n of all possible trees.
- Study it, navigate it.





Thm. (BHV)	Cor. \mathbf{T}_n has unique geodesics.
\mathbf{T}_n is a CAT(0) cube complex.	Cor. "Average" trees exist.

Example 3. Geometric Group Theory.

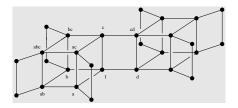
A right-angled Coxeter group is a group of the form

$$W(G) = \langle v \in V \mid v^2 = 1 \text{ for } v \in V, (uv)^2 = 1 \text{ for } uv \in E \rangle$$

Example:
$$a^2 = b^2 = c^2 = d^2 = 1$$

 $(ab)^2 = (ac)^2 = (bc)^2 = (cd)^2 = 1$

Thm. (Davis) Right-angled Coxeter groups are CAT(0): W(G) acts "very nicely" on a CAT(0) cube complex X(G).



Use the geometry of X(G) to study the group W(G); *e.g.*, • If a group G is CAT(0), the "word problem" is easy for G. preliminaries

examples

characterizations

applications

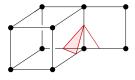
4. CHARACTERIZATIONS.

Which cube complexes are CAT(0)?

In general, CAT(0) is a subtle condition; but for cube complexes:

1. Gromov's characterization.

Theorem. (Gromov, 1987) A cube complex is CAT(0) if and only if it is simply connected and the link of every vertex is a flag simplicial complex.



 Δ flag: if the 1-skeleton of a simplex T is in Δ , then T is in Δ .

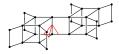
examples

characterizations

applications

Characterizations: Which cube complexes are CAT(0)?

2. Our characterization.



Theorem. (A-Owen-Sullivant 08) (Pointed) CAT(0) cube complexes are in bijection with posets with inconsistent pairs.

PIP: A poset *P* and a set of "inconsistent pairs" $\{x, y\}$, with *x*, *y* inconsistent, $y < z \rightarrow x, z$ inconsistent. Theorem. (A-Owen-Sullivant 08)

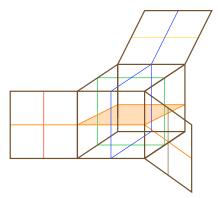
(Pointed) CAT(0) cube complexes are in

bijection with posets with inconsistent pairs.

Sketch of proof.

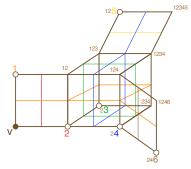
Idea: CAT(0) cube complexes "look like" distributive lattices. So imitate Birkhoff's bijection: distributive lattices \leftrightarrow posets

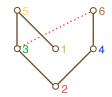
" \rightarrow ": X has hyperplanes which split cubes in half. (Sageev)



Theorem. (A. - Owen - Sullivant 08) (Pointed) CAT(0) cube complexes are in bijection with posets with inconsistent pairs.

Bijection. " \rightarrow ": Fix a "home" vertex v.





If i, j are hyperplanes, declare:

i < j if one needs to cross *i* before crossing *j i*, *j* inconsistent if it is impossible to cross them both. motivation

Remark.

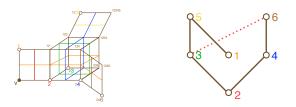
Sageev (95) and Roller (98) obtained a different combinatorial description. Which one is more useful depends on the context.

Let's see some applications.

examples

Application 1. Embeddability conjecture.

Conjecture. (Niblo, Sageev, Wise) Any *d*-dimensional interval in a CAT(0) cube complex can be embedded in the cubing \mathbb{Z}^d .



Proof. (AOS 08)

Dilworth already showed (in 1950!) how to embed J(Q) in \mathbb{Z}^d :

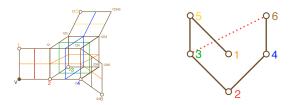
- Write *Q* as a union of *d* disjoint chains. (Example: 246, 35, 1)
- "Straighten" the cube complex along each chain.

(Proof also by Brodzki, Campbell, Guentner, Niblo, Wright (08).)

examples

Application 1. Embeddability conjecture.

Conjecture. (Niblo, Sageev, Wise) Any *d*-dimensional interval in a CAT(0) cube complex can be embedded in the cubing \mathbb{Z}^d .



Proof. (AOS 08)

Dilworth already showed (in 1950!) how to embed J(Q) in \mathbb{Z}^d :

- Write Q as a union of d disjoint chains. (Example: 246, 35, 1)
- "Straighten" the cube complex along each chain.

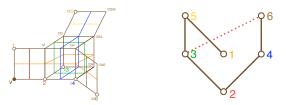
(Proof also by Brodzki, Campbell, Guentner, Niblo, Wright (08).)

Application 2. All CAT(0) cube complexes are "robotic".

Theorem. (Ghrist-Peterson 07)

Every CAT(0) cube complex can be realized as a state complex.

Their proof is indirect.



Alternative proof. (AOS 10)

Root $X \rightarrow$ poset with inconsistent pairs *P*.

A "virus robot" takes over the poset P. It can take over a new cell σ if and only if:

o it already took over all elements p < q, and

o it hasn't taken over any elements inconsistent with q.

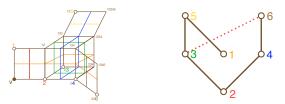
Then X is the state complex for this robot. \Box

Application 2. All CAT(0) cube complexes are "robotic".

Theorem. (Ghrist-Peterson 07)

Every CAT(0) cube complex can be realized as a state complex.

Their proof is indirect.



Alternative proof. (AOS 10)

Root $X \rightarrow$ poset with inconsistent pairs *P*.

A "virus robot" takes over the poset *P*.

It can take over a new cell q if and only if:

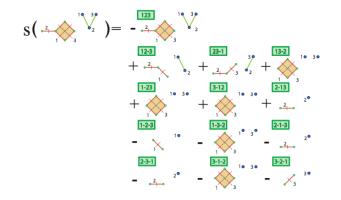
o it already took over all elements p < q, and

o it hasn't taken over any elements inconsistent with q.

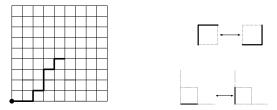
Then X is the state complex for this robot. \Box

Application 3. The Hopf algebra of CAT(0) cube complexes.

Theorem. (A. - Cifuentes - Collazos 12) CAT(0) cube complexes have the structure of a Hopf algebra. There is an elegant formula for the antipode.



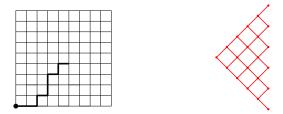
Application 4.1. Pinned-down robotic arm in a square grid.



Theorem. (A.-Baker-Yatchak, 2012) The state complex is a CAT(0) cubical complex. Its PIP ("remote control") is as shown.

Complex of 2^{*n*} states in $\frac{n}{2}$ dim. $\longrightarrow \sim \frac{1}{2}n^2$ "buttons".

Application 4.1. Pinned-down robotic arm in a square grid.



Corollary. (A.-Baker-Yatchak, 2012) Let $q_{n,d}$ be the number of *d*-cubes in the state complex for the robotic arm of length *n*. Then

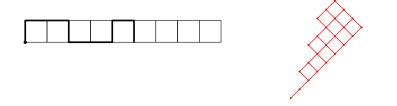
$$\sum_{n,d\geq 0} q_{n,d} x^n y^d = \frac{1+xy}{1-2x-x^2y}.$$

Application 4.2. Pinned-down robotic arm in a strip.

Theorem. (A.-Baker-Yatchak, 2012) The state complex is a CAT(0) cubical complex. Its PIP ("remote control") is as shown.

Complex of
$$F_n \sim \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2}\right)^n$$
 states in $\frac{n}{3}$ -dim $\longrightarrow \sim \frac{n^2}{4}$ buttons.

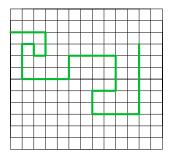
Application 4.2. Pinned-down robotic arm in a strip



Corollary. (A.-Baker-Yatchak, 2012) Let $s_{n,d}$ be the number of *d*-cubes in the state complex for the robotic arm of length *n*. Then

$$\sum_{n,d\geq 0} s_{n,d} x^n y^d = \frac{1+x+xy+x^2y}{1-x-x^2-x^3y}.$$

Application 4.3. Non-pinned-down robotic snake.



A negative result:

Theorem. (A. - Yatchak, 2012) If the snake in a grid is not pinned down, the state complex is not always CAT(0).

Open question. Which robots give CAT(0) cube complexes?

Application 5. Moving (some) robots efficiently.

Motivation:

Algorithm. (Owen-Provan 09) A polynomial-time algorithm to find the geodesic between trees T_1 and T_2 in the space of trees T_n .

 $(\sqrt{2}$ -approx.: Amenta 07, exp.: GeoMeTree 08, GeodeMaps 09)

This allows us to

- find distances between trees
- "average" trees.

Application 5. Moving (some) robots efficiently.

We use the PIP ("remote control") of *X* to get:

Algorithm. (A. - Owen - Sullivant 12, A - Baker - Yatchak 14) An algorithm to find the geodesic between points p and q in **any** CAT(0) cube complex X.

We do this for four metrics:

- Euclidean length
- Time
- Number of moves.
- Number of sets of simultaneous moves.

This allows us to

- navigate the state complex of any reconfiguration system
- find the optimal robot motion between two positions.

(Computer/robotic implementation?)

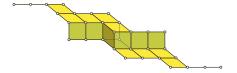
motivation

preliminaries

examples

characterizations

applications



much as gr acias

Los primeros dos artículos y esta presentación están en:

Advances in Applied Mathematics **48** (2012) 142-163. SIAM J. Discrete Math. **28-2** (2014), pp. 986-1007 http://arxiv.org/abs/1101.2428 http://arxiv.org/abs/1211.1442 http://math.sfsu.edu/federico