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Semilattices of groups

Definition

A semigroup L is called a semilattice if

(i) L is commutative;

(ii) E (L) = L.

Definition

A semigroup A is called a semilattice of groups if A =
⊔

l∈L Al , where

(i) L is a semilattice;

(ii) Al is a group, l ∈ L;

(iii) AlAm ⊆ Alm, l ,m ∈ L.

All the semilattices of groups we consider contain identity.
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Inverse semigroups

Definition

A semigroup S is called inverse if for any s ∈ S there exists a unique
s−1 ∈ S (called the inverse of s) satisfying

(i) ss−1s = s;

(ii) s−1ss−1 = s−1.

Remark

If A is a semilattice of groups, then

(i) A is inverse;

(ii) L can be chosen to be E (A);

(iii) Ae = {a ∈ A | aa−1 = a−1a = e}, e ∈ E (A).

It follows that

(i) aa−1 = a−1a, a ∈ A;

(ii) E (A) ⊆ C (A).
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Twisted partial actions of groups on monoids

G is a group;

A is a monoid.

Definition (Dokuchaev-Exel-Simón, 2008 [1])

A twisted partial action of G on A is a pair Θ = (θ, f ), where

θ = {θx : 1x−1A
∼→ 1xA}x∈G with 1x ∈ E (C (A)), x ∈ G ;

f : G 2 → A with f (x , y) ∈ U(1x1xyA), x , y ∈ G ;

the following properties are fulfilled:

(i) θ1 = idA;
(ii) θx(1x−1 1yA) = 1x1xyA, x , y ∈ G ;
(iii) θx ◦ θy (a) = f (x , y)θxy (a)f (x , y)−1, x , y ∈ G , a ∈ 1y−1 1y−1x−1A;
(iv) f (1, x) = f (x , 1) = 1x , x ∈ G ;
(v) θx(1x−1 f (y , z))f (x , yz) = f (x , y)f (xy , z), x , y , z ∈ G .

If A is a semilattice of groups, then we assume that E (A) = 〈1x | x ∈ G 〉.
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Equivalent twisted partial actions of groups on monoids

Θ = (θ, f ) and Θ′ = (θ′, f ′) are twisted partial actions of G on A.

Definition (Dokuchaev-Exel-Simón, 2010 [2])

Θ and Θ′ are called equivalent if

1x = 1′x , x ∈ G ;

there exists a map g : G → A with g(x) ∈ U(1xA), satisfying

(i) θ′x(a) = g(x)θx(a)g(x)−1, x ∈ G , a ∈ 1x−1A;
(ii) f ′(x , y) = g(x)θx(1x−1g(y))f (x , y)g(xy)−1, x , y ∈ G .
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Twisted modules over inverse monoids

S is an inverse monoid.

Definition (see Lausch, 1975 [4])

By a twisted S-module we mean a semilattice of groups A together with a
triple Λ = (λ, α, f ), where

λ is a map S → EndA, s 7→ λs ;

α is an isomorphism E (S)→ E (A);

f : S2 → A is a map with f (s, t) ∈ Aα(stt−1s−1);

the following properties are fulfilled:

(i) λe(a) = α(e)a, e ∈ E (S), a ∈ A;
(ii) λs(α(e)) = α(ses−1), s ∈ S , e ∈ E (S);

(iii) λs ◦ λt(a) = f (s, t)λst(a)f (s, t)−1, s, t ∈ S , a ∈ A;
(iv) f (se, e) = α(ses−1), f (e, es) = α(ss−1e), s ∈ S , e ∈ E (S);
(v) λs(f (t, u))f (s, tu) = f (s, t)f (st, u), s, t, u ∈ S .
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Twisted modules over inverse monoids
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Partial homomorphisms

G is a group;

S is a monoid.

Definition (Exel, 1998 [3])

A map Γ : G → S is called a partial homomorphism if

(i) Γ(1G ) = 1S ;

(ii) Γ(x−1)Γ(x)Γ(y) = Γ(x−1)Γ(xy), x , y ∈ G ;

(iii) Γ(x)Γ(y)Γ(y−1) = Γ(xy)Γ(y−1), x , y ∈ G .
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Admissible partial homomorphisms

Definition

A partial homomorphism Γ : G → S is called admissible if

(i) 〈Γ(G )〉 = S ;

(ii) there exists a homomorphism η : S → G such that η ◦ Γ = idG .

Remark

If such a partial homomorphism Γ : G → S exists, then (i) guarantees that
S is inverse.
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Equivalent pairs

Γ : G → S and Γ′ : G → S ′ are admissible partial homomorphisms;

Λ = (λ, α, f ) and Λ′ = (λ′, α′, f ′) are twisted module structures on a
semilattice A over S and S ′, respectively.

Definition

The pairs (Γ,Λ) and (Γ′,Λ′) are called equivalent, if there are

an isomorphism φ : S → S ′;

a map g : S → A with g(s) ∈ Aα(ss−1), s ∈ S , such that

(i) Γ′ = φ ◦ Γ on G ;
(ii) α′ ◦ φ = α on E (S);

(iii) λ′φ(s)(a) = g(s)λs(a)g(s)−1, s ∈ S , a ∈ A;

(iv) f ′(φ(s), φ(t)) = g(s)λs(g(t))f (s, t)g(st)−1, s, t ∈ S .
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Correspondence

G is a group;

A is a semilattice of groups.

Theorem

There is a one-to-one correspondence between the sets of equivalence
classes

of twisted partial actions Θ of G on A;

of pairs (Γ,Λ), where

Γ is an admissible partial homomorphism from G to S,
Λ is a twisted S-module structure on A.
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Extensions of A by S

S is an inverse semigroup;
A is a semilattice of groups.

Definition (Lausch, 1975 [4])

An extension of A by S is an inverse semigroup U with

a monomorphism i : A→ U,

an idempotent-separating epimorphism j : U → S , such that

i(A) = {u ∈ U | j(u) ∈ E (S)}.
Two extensions U and U ′ of A by S are called equivalent if there is a
homomorphism µ : U → U ′ such that the following diagram commutes:

A U S

A U ′ S

i j

i ′ j ′
µ
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The crossed products by twisted partial actions

G is a group;

A is a monoid;

Θ = (θ, f ) is a twisted partial action of G on A.

Definition (Dokuchaev-Exel-Simón, 2008 [1])

The crossed product of A and G by Θ is the set A ∗Θ G of aδx , where
x ∈ G , a ∈ 1xA and δx is a symbol. It is a monoid under multiplication
aδx · bδy = aθx(1x−1b)f (x , y)δxy .

Remark

If A is inverse, then A ∗Θ G is inverse.
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The crossed products by Θ as extensions

G is a group;

A is a semilattice of groups;

Θ is a twisted partial action of G on A.

Proposition

There exist

an inverse monoid S,

an admissible partial homomorphism Γ : G → S

making A ∗Θ G to be an extension of A by S.
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Partial extensions of A by G

G is a group;

A is a semilattice of groups.

Definition

A partial extension of A by G is a pair (Γ,U), where

Γ is an admissible partial homomorphism G → S ;

U is an extension of A by S .
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Equivalent partial extensions of A by G

Definition

Two partial extensions (Γ : G → S ,A
i→ U

j→ S) and

(Γ′ : G → S ′,A
i ′→ U ′

j ′→ S ′) of A by G are called equivalent if there are
isomorphisms

µ : U → U ′,

ν : S → S ′,

such that the following diagrams commute:

G S

S ′

Γ

ν
Γ′

A U S

A U ′ S ′

i j

i ′ j ′
µ ν
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The classification of the partial extensions of A by G

G is a group;

A is a semilattice of groups.

Theorem

Any partial extension of A by G is equivalent to A ∗Θ G for some twisted
partial action Θ of G on A.
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THANK YOU!
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