The ϕ-dimension: A new homological measure

SÔNIA FERNANDES, MARCELO LANZILLOTTA, OCTAVIO MENDOZA
Universidade Federal de Viçosa, Brasil
Email: somari@ufv.br

ABSTRACT. In [5], K. Igusa and G. Todorov introduced two functions ϕ and ψ, which are natural and important homological measures generalising the notion of the projective dimension. These Igusa-Todorov functions have become into a powerful tool to understand better the finitistic dimension conjecture.

In this paper, for an artin R-algebra A and the Igusa-Todorov function ϕ, we characterise the ϕ-dimension of A in terms either of the bi-functors $\text{Ext}_A^i(\cdot, \cdot)$ or Tor’s bi-functors $\text{Tor}_1^A(\cdot, \cdot)$. Furthermore, by using the first characterisation of the ϕ-dimension, we show that the finiteness of the ϕ-dimension of an artin algebra is invariant under derived equivalences. As an application of this result, we generalise the classical Bongartz’s result [? Corollary 1] as follows: For an artin algebra A, a tilting A-module T and the endomorphism algebra $B = \text{End}_A(T)^{op}$, we have that $\phi \dim (A) – \text{pd} T \leq \phi \dim (B) \leq \phi \dim (A) + \text{pd} T$.

REFERENCES

