Curvas elípticas e integrales multiplicativas sobre campos no arquimedianos

Yamidt Bermúdez Tobón Centro Interdisciplinario de Cómputo Científico Universidad de Heidelberg e-mail: yamidt.bermudez-tobon@iwr.uni-heidelberg.de

> ALTENCOA6 San Juan de Pasto, 14.08.2014

Contenido

1 Algunas definiciones básicas

Contenido

1 Algunas definiciones básicas

2 Parametrización de curvas elípticas

Contenido

1 Algunas definiciones básicas

2 Parametrización de curvas elípticas

3 Curvas sobre $\mathbb{F}_q[T]$

Curvas elípticas y formas modulares

Una curva elíptica E sobre un campo K es una curva proyectiva suave cuya curva afín está dada por la ecuación

$$y^2 + a_1 xy + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6. (1)$$

Esta ecuación se llama forma de Weierstrass. Si la característica de K es diferente de 2,3 entonces se puede simplificar

$$y^2 = x^3 + Ax + B.$$

Una forma modular de peso k para el grupo modular $SL_2(\mathbb{Z})$ es una función analítica $f:\mathfrak{H}\longrightarrow\mathbb{C}$ de el semiplano superior $\mathfrak{H}:=\{z\in\mathbb{C}\mid \mathrm{Im}(z)>0\}$ tal que f satisface

Una forma modular de peso k para el grupo modular $SL_2(\mathbb{Z})$ es una función analítica $f:\mathfrak{H}\longrightarrow\mathbb{C}$ de el semiplano superior $\mathfrak{H}:=\{z\in\mathbb{C}\mid \mathrm{Im}(z)>0\}$ tal que f satisface

1) f es holomorfa en \mathfrak{H} .

Una forma modular de peso k para el grupo modular $SL_2(\mathbb{Z})$ es una función analítica $f: \mathfrak{H} \longrightarrow \mathbb{C}$ de el semiplano superior $\mathfrak{H} := \{z \in \mathbb{C} \mid \operatorname{Im}(z) > 0\}$ tal que f satisface

- 1) f es holomorfa en \mathfrak{H} .
- 2) $f(\frac{az+b}{cz+d}) = (cz+d)^k f(z)$ para todo $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z}).$

Una forma modular de peso k para el grupo modular $SL_2(\mathbb{Z})$ es una función analítica $f: \mathfrak{H} \longrightarrow \mathbb{C}$ de el semiplano superior $\mathfrak{H} := \{z \in \mathbb{C} \mid \operatorname{Im}(z) > 0\}$ tal que f satisface

- 1) f es holomorfa en \mathfrak{H} .
- 2) $f(\frac{az+b}{cz+d}) = (cz+d)^k f(z)$ para todo $\gamma = (\begin{smallmatrix} a & b \\ c & d \end{smallmatrix}) \in SL_2(\mathbb{Z}).$
- 3) f es holomorfa cuando z va a ∞ en el eje imaginario.

Una forma modular de peso k para el grupo modular $SL_2(\mathbb{Z})$ es una función analítica $f: \mathfrak{H} \longrightarrow \mathbb{C}$ de el semiplano superior $\mathfrak{H} := \{z \in \mathbb{C} \mid \operatorname{Im}(z) > 0\}$ tal que f satisface

- 1) f es holomorfa en \mathfrak{H} .
- 2) $f(\frac{az+b}{cz+d}) = (cz+d)^k f(z)$ para todo $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z}).$
- 3) f es holomorfa cuando z va a ∞ en el eje imaginario.
 - La condición 2) implica que f es períodica y por lo tanto tiene expansión en series de Fourier $f(z) = \sum_{n=-m}^{\infty} a_n q^n$ donde $q = 2\pi i z$.

• La ecuación funcional $z \mapsto \frac{az+b}{cz+d}$ se puede relajar considerando subgrupos de $SL_2(Z)$. En particular, estamos interesados en $\Gamma_0(N)$ (grupo de matrices en $SL_2(Z)$) las cuales son triangulares superiores modulo N.

- La ecuación funcional $z\mapsto \frac{az+b}{cz+d}$ se puede relajar considerando subgrupos de $SL_2(Z)$. En particular, estamos interesados en $\Gamma_0(N)$ (grupo de matrices en $SL_2(Z)$) las cuales son triangulares superiores modulo N.
- Si el coeficiente $a_0 = 0$ de f en la expansion de Fourier es 0, entonces f se es llamada una **forma cuspidal**.

- La ecuación funcional $z\mapsto \frac{az+b}{cz+d}$ se puede relajar considerando subgrupos de $SL_2(Z)$. En particular, estamos interesados en $\Gamma_0(N)$ (grupo de matrices en $SL_2(Z)$) las cuales son triangulares superiores modulo N.
- Si el coeficiente $a_0 = 0$ de f en la expansion de Fourier es 0, entonces f se es llamada una **forma cuspidal**.
- El conjunto de formas modulares es un espacio vectorial complejo finito dimensional.

- La ecuación funcional $z \mapsto \frac{az+b}{cz+d}$ se puede relajar considerando subgrupos de $SL_2(Z)$. En particular, estamos interesados en $\Gamma_0(N)$ (grupo de matrices en $SL_2(Z)$) las cuales son triangulares superiores modulo N.
- Si el coeficiente $a_0 = 0$ de f en la expansion de Fourier es 0, entonces f se es llamada una **forma cuspidal**.
- El conjunto de formas modulares es un espacio vectorial complejo finito dimensional.
- El espacio vectorial de formas modulares esta dotado de un operador (**Operador de Hecke**) que conserva formas cuspidales.

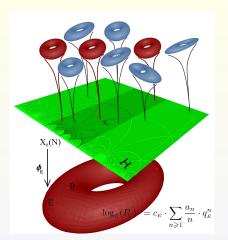
Definición

Una curva modular para el subgrupo de congruencia $\Gamma_0(N)$ es la superficie de Riemmann, o la correspondiente curva algebraica, construida como el cociente del semiplano superior complejo \mathfrak{H} por la accion de $\Gamma_0(N)$.

Definición

Una curva modular para el subgrupo de congruencia $\Gamma_0(N)$ es la superficie de Riemmann, o la correspondiente curva algebraica, construida como el cociente del semiplano superior complejo \mathfrak{H} por la accion de $\Gamma_0(N)$.

Como espacio moduli los puntos de una curva modular parametrizan clases de isomorfismos de curvas elípticas junto con una estructura adicional que depende del grupo $\Gamma_0(N)$.



La conjetura de Taniyama-Shimura y parametrizaciones de curvas elípticas

Teorema (Breuil, Conrad, Diamond, Taylor, (Wiles), 2000)

La conjetura de Taniyama-Shimura es cierta para curvas definidas sobre \mathbb{Q} : Toda curva elíptica definida sobre \mathbb{Q} de conductor N es factor (modulo isogenia) de la Jacobiana de la curva modular $X_0(N)$ de nivel N.

La conjetura de Taniyama-Shimura y parametrizaciones de curvas elípticas

Teorema (Breuil, Conrad, Diamond, Taylor, (Wiles), 2000)

La conjetura de Taniyama-Shimura es cierta para curvas definidas sobre \mathbb{Q} : Toda curva elíptica definida sobre \mathbb{Q} de conductor N es factor (modulo isogenia) de la Jacobiana de la curva modular $X_0(N)$ de nivel N.

Dada una forma modular f de nivel N y peso 2 que es una autoforma para el operador de Hecke a uno le gustaría tener un procedimiento para construir una curva elíptica en la clase de isogenia que corresponda con f.

Sea E/\mathbb{Q} una curva modular de conductor N.

Teorema (Shimura 1950's)

Existe una uniformización modular explícita $X_0(N) \longrightarrow E_f$ sobre \mathbb{C} .

Sea E/\mathbb{Q} una curva modular de conductor N.

Teorema (Shimura 1950's)

Existe una uniformización modular explícita $X_0(N) \longrightarrow E_f$ sobre \mathbb{C} .

El siguiente diagama es commutativo

$$\Gamma \setminus \mathcal{H}^* \xrightarrow{z_0 \mapsto \int_{\infty}^{z_0} f_E(z) dz} \mathbb{C}/\Lambda_E \qquad (2)$$

$$\downarrow^j \qquad \qquad \downarrow^{\eta}$$

$$X_0(N)(\mathbb{C}) \xrightarrow{\Phi_N} E(\mathbb{C}).$$

Donde $\eta: \mathbb{C}/\Lambda \longrightarrow E(\mathbb{C})$ es el isomorfismo complejo descrito por la fórmula $\eta = (\wp_{\Lambda}: \wp_{\Lambda}': 1)$ donde \wp_{Λ} es la función de Weierstrass \wp asociada a Λ_E .

Sea E/\mathbb{Q} una curva modular de conductor N.

Teorema (Shimura 1950's)

Existe una uniformización modular explícita $X_0(N) \longrightarrow E_f$ sobre \mathbb{C} .

El siguiente diagama es commutativo

$$\Gamma \setminus \mathcal{H}^* \xrightarrow{z_0 \mapsto \int_{\infty}^{z_0} f_E(z) dz} \mathbb{C}/\Lambda_E \qquad (2)$$

$$\downarrow^j \qquad \qquad \downarrow^\eta$$

$$X_0(N)(\mathbb{C}) \xrightarrow{\Phi_N} E(\mathbb{C}).$$

Donde $\eta: \mathbb{C}/\Lambda \longrightarrow E(\mathbb{C})$ es el isomorfismo complejo descrito por la fórmula $\eta = (\wp_{\Lambda}: \wp'_{\Lambda}: 1)$ donde \wp_{Λ} es la función de Weierstrass \wp asociada a Λ_E . Aquí $\Lambda_E = \{\int_{-\infty}^{\gamma_{\infty}} | \gamma \in \Gamma_0(N) \}$.

Efectividad Definamos la serie de Eisenstein como

$$G_k(\Lambda) = \sum_{\omega \in \Lambda, \, \omega \neq 0} w^{-k}$$

para k un enero par. Sea

$$g_2(\Lambda) = 60 G_4(\Lambda)$$
 and $g_3(\Lambda) = 140 G_6(\Lambda)$.

Teorema (Edixhoven)

Para $y^2 = 4x^3 - c_4x - c_6$ la ecuación de la curva fuerte de Weil $E = E_f$ para el lattice Λ_E uno tiene

$$c_4 := g_2(\Lambda_E), \ c_6 := g_3(\Lambda_E) \in Z.$$

Esto permite a Cremona encontrar ecuaciones para todas las curvas elípticas hasta conductor 130,000. (Los cálculos de f, Λ_E y \wp_E son muy efectivos).

Sobre campos de funciones tenemos las siguientes correspondencias

$$\mathbb{Z} \rightsquigarrow \mathbb{F}_q[T]$$
 (3)

$$\mathbb{Q} \quad \rightsquigarrow \quad \mathbb{F}_q(T) \tag{4}$$

$$\mathbb{R} \rightsquigarrow K_{\infty} = \mathbb{F}_q((\pi)), \ \pi = 1/T$$
 (5)

$$\mathbb{C} \rightsquigarrow \mathbb{C}_{\infty}$$
 (6)

donde \mathbb{C}_{∞} es la completación de una clausura algebráica de $\mathbb{F}_q((\pi))$.

El semiplano superior complejo se reemplaza por el **semiplano superior de Drinfeld**

$$\Omega := \mathbb{P}^1(\mathbb{C}_\infty) \setminus \mathbb{P}^1(K_\infty).$$

• Sea \mathfrak{n} un ideal de $\mathbb{F}_q[T]$ considere $\Gamma_0(\mathfrak{n})$ el subgrupo de $GL_2(\mathbb{F}_q[T])$ consistente de matrices triangulares superiores modulo \mathfrak{n} .

- Sea \mathfrak{n} un ideal de $\mathbb{F}_q[T]$ considere $\Gamma_0(\mathfrak{n})$ el subgrupo de $GL_2(\mathbb{F}_q[T])$ consistente de matrices triangulares superiores modulo \mathfrak{n} .
- En lugar de formas modulares consideramos formas analíticas rígidas $f: \Omega \longrightarrow \mathbb{C}_{\infty}$ con la acción de $\Gamma_0(\mathfrak{n})$ definida como en el caso clásico.

- Sea \mathfrak{n} un ideal de $\mathbb{F}_q[T]$ considere $\Gamma_0(\mathfrak{n})$ el subgrupo de $GL_2(\mathbb{F}_q[T])$ consistente de matrices triangulares superiores modulo \mathfrak{n} .
- En lugar de formas modulares consideramos formas analíticas rígidas $f: \Omega \longrightarrow \mathbb{C}_{\infty}$ con la acción de $\Gamma_0(\mathfrak{n})$ definida como en el caso clásico.
- El cociente $\Gamma_0(\mathfrak{n}) \setminus \Omega$ es una curva algebráica sobre \mathbb{C}_{∞} .

- Sea \mathfrak{n} un ideal de $\mathbb{F}_q[T]$ considere $\Gamma_0(\mathfrak{n})$ el subgrupo de $GL_2(\mathbb{F}_q[T])$ consistente de matrices triangulares superiores modulo \mathfrak{n} .
- En lugar de formas modulares consideramos formas analíticas rígidas $f: \Omega \longrightarrow \mathbb{C}_{\infty}$ con la acción de $\Gamma_0(\mathfrak{n})$ definida como en el caso clásico.
- El cociente $\Gamma_0(\mathfrak{n}) \setminus \Omega$ es una curva algebráica sobre \mathbb{C}_{∞} .

Definamos el árbol de Bruhat-Tits \mathcal{T} para $PGL_2(K_{\infty})$ como el árbol regular de grado q+1, cuyos vértices y lados son

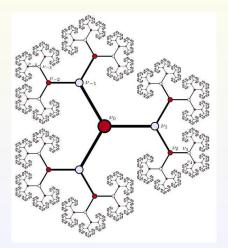
• Vértices: clases de homotecia [L] de O_{∞} -latices en K_{∞}^2 , donde O_{∞} es el anillo de enteros de K_{∞} .

- Sea \mathfrak{n} un ideal de $\mathbb{F}_q[T]$ considere $\Gamma_0(\mathfrak{n})$ el subgrupo de $GL_2(\mathbb{F}_q[T])$ consistente de matrices triangulares superiores modulo \mathfrak{n} .
- En lugar de formas modulares consideramos formas analíticas rígidas $f: \Omega \longrightarrow \mathbb{C}_{\infty}$ con la acción de $\Gamma_0(\mathfrak{n})$ definida como en el caso clásico.
- El cociente $\Gamma_0(\mathfrak{n}) \setminus \Omega$ es una curva algebráica sobre \mathbb{C}_{∞} .

Definamos el árbol de Bruhat-Tits \mathcal{T} para $PGL_2(K_{\infty})$ como el árbol regular de grado q+1, cuyos vértices y lados son

- Vértices: clases de homotecia [L] de O_{∞} -latices en K_{∞}^2 , donde O_{∞} es el anillo de enteros de K_{∞} .
- Lados orientados: pares $([L_1], [L_2])$ tal que $L_1 \supseteq L_2 \supseteq \pi L_1$.

Árbol de Bruhat-Tits para q = 2



Un cociclo armónico $\Gamma_0(\mathfrak{n})$ -invariante con valores en \mathbb{Z} , es una función $\varphi : \operatorname{lados}(\mathcal{T}) \longrightarrow \mathbb{Z}$ tal que para todo lado orientado e se tiene

Un cociclo armónico $\Gamma_0(\mathfrak{n})$ -invariante con valores en \mathbb{Z} , es una función $\varphi: \mathrm{lados}(\mathcal{T}) \longrightarrow \mathbb{Z}$ tal que para todo lado orientado e se tiene

1) $\varphi(\bar{e}) = -\varphi(e)$ donde \bar{e} es el lado opuesto a e.

Un cociclo armónico $\Gamma_0(\mathfrak{n})$ -invariante con valores en \mathbb{Z} , es una función $\varphi : \operatorname{lados}(\mathcal{T}) \longrightarrow \mathbb{Z}$ tal que para todo lado orientado e se tiene

- 1) $\varphi(\bar{e}) = -\varphi(e)$ donde \bar{e} es el lado opuesto a e.
- 2) $\sum_{t(e)=v} \varphi(e) = 0$, donde t(e) es el terminal de e.

Un cociclo armónico $\Gamma_0(\mathfrak{n})$ -invariante con valores en \mathbb{Z} , es una función $\varphi : \operatorname{lados}(\mathcal{T}) \longrightarrow \mathbb{Z}$ tal que para todo lado orientado e se tiene

- 1) $\varphi(\bar{e}) = -\varphi(e)$ donde \bar{e} es el lado opuesto a e.
- 2) $\sum_{t(e)=v} \varphi(e) = 0$, donde t(e) es el terminal de e.
- 3) $\varphi(\gamma e) = \varphi(e)$ para todo $\gamma \in \Gamma_0(\mathfrak{n})$.

Un cociclo armónico $\Gamma_0(\mathfrak{n})$ -invariante con valores en \mathbb{Z} , es una función $\varphi: \operatorname{lados}(\mathcal{T}) \longrightarrow \mathbb{Z}$ tal que para todo lado orientado e se tiene

- 1) $\varphi(\bar{e}) = -\varphi(e)$ donde \bar{e} es el lado opuesto a e.
- 2) $\sum_{t(e)=v} \varphi(e) = 0$, donde t(e) es el terminal de e.
- 3) $\varphi(\gamma e) = \varphi(e)$ para todo $\gamma \in \Gamma_0(\mathfrak{n})$.
 - Los cociclos armónicos están en correspondencia 1-1 con medidas en $\mathbb{P}^1(K_\infty)$.

Un cociclo armónico $\Gamma_0(\mathfrak{n})$ -invariante con valores en \mathbb{Z} , es una función $\varphi : \operatorname{lados}(\mathcal{T}) \longrightarrow \mathbb{Z}$ tal que para todo lado orientado e se tiene

- 1) $\varphi(\bar{e}) = -\varphi(e)$ donde \bar{e} es el lado opuesto a e.
- 2) $\sum_{t(e)=v} \varphi(e) = 0$, donde t(e) es el terminal de e.
- 3) $\varphi(\gamma e) = \varphi(e)$ para todo $\gamma \in \Gamma_0(\mathfrak{n})$.
 - Los cociclos armónicos están en correspondencia 1-1 con medidas en $\mathbb{P}^1(K_\infty)$.
 - Cada lado e del árbol $\mathcal T$ está en correspondencia con un abierto compacto de $\mathbb P^1(K_\infty)$.

Parametrizaciones modulares de curvas elípticas

Teorema (Drinfeld 1974)

La conjetura de Taniyama-Shimura es cierta para curvas elípticas definidas sobre $\mathbb{F}_q(T)$: Toda curva elíptica E definida sobre $\mathbb{F}_q(T)$ de conductor $\mathfrak{n}\infty$ es un factor (modulo una isogenia) de la Jacobiana J de la curva modular de Drinfeld $X(\mathfrak{n})$ de nivel \mathfrak{n} .

Sea $E/\mathbb{F}_q(T)$ con conductor $\mathfrak{n}\infty$ y correspondiente a una Hecke autoforma modular f de nivel \mathfrak{n}

Teorema (Gekeler-Reversat, 1996)

Existe una parametrización modular explícita $X_0(\mathfrak{n}) \longrightarrow E_f$ sobre \mathbb{C}_{∞} .

Integrales multiplicativas

Definición

Dada una función continua $f: \mathbb{P}^1(K_\infty) \to \mathbb{C}_\infty^\times$, su integral multiplicativa con respecto a una medida $\mu \in \mathcal{M}_0(\mathbb{P}^1(K_\infty), \mathbb{Z})$ es

$$\oint_{\mathbb{P}^1(K_{\infty})} f(t) \, d\mu(t) := \varinjlim_{\alpha} \prod_{U \in \mathcal{C}_{\alpha}} f(u)^{\mu(U)} \tag{7}$$

donde $\{C_{\alpha}\}_{\alpha}$ es el sistema directo de cubrimientos finitos de $\mathbb{P}^{1}(K_{\infty})$ por subconjuntos abiertos compactos U y u es un punto arbitrario en U.

Esta integral se puede usar para definir la parametrización explícita

$$\Gamma_0(\mathfrak{n}) \setminus \Omega \longrightarrow \mathbb{C}_{\infty}^{\times}/\mathbf{q}^{\mathbb{Z}}$$
 (8)

$$\Gamma_0(\mathfrak{n}) \setminus \Omega \longrightarrow \mathbb{C}_{\infty}^{\times}/\mathbf{q}^{\mathbb{Z}}$$

$$z \longmapsto \int_{\mathbb{P}^1(K_{\infty})} \frac{z_0 - t}{z_1 - t} d\mu(t)$$

$$(8)$$

donde

$$\mathbf{q}^{\mathbb{Z}} = \{ \oint_{\mathbb{P}^1(K_{\infty})} \frac{z_0 - t}{\gamma z_0 - t} \, d\mu(t) \mid \gamma \in \Gamma_0(\mathfrak{n}) \}$$

Esta integral se puede usar para definir la parametrización explícita

$$\Gamma_0(\mathfrak{n}) \setminus \Omega \longrightarrow \mathbb{C}_{\infty}^{\times}/\mathbf{q}^{\mathbb{Z}}$$
 (8)

$$z \longmapsto \oint_{\mathbb{P}^1(K_{\infty})} \frac{z_0 - t}{z_1 - t} d\mu(t) \tag{9}$$

donde

$$\mathbf{q}^{\mathbb{Z}} = \{ \oint_{\mathbb{P}^1(K_{\infty})} \frac{z_0 - t}{\gamma z_0 - t} \, d\mu(t) \mid \gamma \in \Gamma_0(\mathfrak{n}) \}$$

Problema

Cómo calcular la integral multiplicativa efectivamente?

• Sobre los *p*-ádicos Darmon y Greenberg encontraron un algoritmo que permite calcular con buena precisión una integral similar en tiempo polinomial.

- Sobre los p-ádicos Darmon y Greenberg encontraron un algoritmo que permite calcular con buena precisión una integral similar en tiempo polinomial.
- La clave en el cálculo de Darmon-Greenberg es la función logaritmo.

- Sobre los p-ádicos Darmon y Greenberg encontraron un algoritmo que permite calcular con buena precisión una integral similar en tiempo polinomial.
- La clave en el cálculo de Darmon-Greenberg es la función logaritmo.

En $\mathbb{F}_q(\mathit{T})$ no existe una función logaritmo

- Sobre los *p*-ádicos Darmon y Greenberg encontraron un algoritmo que permite calcular con buena precisión una integral similar en tiempo polinomial.
- La clave en el cálculo de Darmon-Greenberg es la función logaritmo.

En $\mathbb{F}_q(T)$ no existe una función logaritmo

Usando una modificación del algoritmo de Greenberg nosotros encontramos un algoritmo para calcular \mathbf{q} .

Teorema (B., Boeckle y Cervino)

El parámetro de Tate q se puede calcular en tiempo polinomial.

Ejemplos

•
$$p = 2$$
, $\mathfrak{n} = T^3 \leadsto \mathbf{q} = \pi^4 + \pi^{36} + \pi^{68} + \mathbf{O}(\pi^{69})$.

•
$$p = 2$$
, $\mathfrak{n} = T^4 + T^3 + T^2 + T + 1 \leadsto \mathbf{q} = \pi^8 + \pi^9 + ... + \pi^{30} + \mathbf{O}(\pi^{31})$.

•
$$p = 3$$
, $\mathfrak{n} = (T+2)(T^2 + T + 2) \leadsto$
 $\mathbf{q} = \pi^4 + \pi^5 + ... + \pi^{40} + \mathbf{O}(\pi^{41}).$

•
$$p = 5$$
, $\mathfrak{n} = T^2(T^2 - 1) \leadsto \mathbf{q} = \pi^2 + 2\pi^4 + .. + 2\pi^{50} + \mathbf{O}(\pi^{51})$.

•
$$p = 7$$
, $\mathfrak{n} = T^3 - 2 \rightsquigarrow \mathbf{q} = \mathbf{5}\pi^3 + \mathbf{4}\pi^6 + ... + \mathbf{5}\pi^{60} + \mathbf{O}(\pi^{61})$.

Efectividad

Defina

$$s_k = \sum_{m>1} \frac{m^k \mathbf{q}^m}{1 - \mathbf{q}^m} \quad \text{para } k \in \mathbb{N}.$$
 (10)

Tome $a_4(\mathbf{q}) = -5s_3$ y $a_6(\mathbf{q}) = \frac{1}{12}(5s_3 + 7s_5)$ y asi la curva de Tate es

$$E_{\mathbf{q}}: y^2 + xy = x^3 + a_4(\mathbf{q})x + a_6(\mathbf{q}).$$

Efectividad

Defina

$$s_k = \sum_{m \ge 1} \frac{m^k \mathbf{q}^m}{1 - \mathbf{q}^m} \quad \text{para } k \in \mathbb{N}.$$
 (10)

Tome $a_4(\mathbf{q}) = -5s_3$ y $a_6(\mathbf{q}) = \frac{1}{12}(5s_3 + 7s_5)$ y asi la curva de Tate es

$$E_{\mathbf{q}}: y^2 + xy = x^3 + a_4(\mathbf{q})x + a_6(\mathbf{q}).$$

Para p=2 y $\mathfrak{n}=T^3$ con $\mathbf{q}=\pi^4+\pi^{36}+\pi^{68}+\mathbf{O}(\pi^{69})$ se obtuvo la curva

$$E: y^2 + xy = y^3 + \frac{1}{T^3}.$$

Efectividad

Defina

$$s_k = \sum_{m \ge 1} \frac{m^k \mathbf{q}^m}{1 - \mathbf{q}^m} \quad \text{para } k \in \mathbb{N}.$$
 (10)

Tome $a_4(\mathbf{q}) = -5s_3$ y $a_6(\mathbf{q}) = \frac{1}{12}(5s_3 + 7s_5)$ y asi la curva de Tate es

$$E_{\mathbf{q}}: y^2 + xy = x^3 + a_4(\mathbf{q})x + a_6(\mathbf{q}).$$

Para p=2 y $\mathfrak{n}=T^3$ con $\mathbf{q}=\pi^4+\pi^{36}+\pi^{68}+\mathbf{O}(\pi^{69})$ se obtuvo la curva

$$E: y^2 + xy = y^3 + \frac{1}{T^3}.$$

Para p = 3 y $\mathfrak{n} = (T - 1)(T^2 + T + 1)$ con $\mathbf{q} = \pi^4 + \pi^5 + ... + \pi^{40} + \mathbf{O}(\pi^{41})$ se obtuvo la curva.

$$E: y^{2} = x^{3} + (T^{2} + T)x^{2} - \frac{(T-1)^{4}(T^{2} + T - 1)}{(T^{2} + T)^{3}}.$$

Para p > 3 no es fácil encontrar un modelo sobre $\mathbb{F}_q(T)$.

Para p>3 no es fácil encontrar un modelo sobre $\mathbb{F}_q(T)$.

Sean $E_4 = 1 + 240s_3(\mathbf{q})$ y $E_6 = 1 - 504s_5(\mathbf{q})$ las series de Einsestein.

Serre y Swinnerton-Dyer probaron que existe un polinomio $A \in \mathbb{F}_q[X, Y]$ tal que $A(E_2, E_4) = 1 \mod p$.

Lo cual implica que existen $n, m \in \mathbb{N}$ tal que $g_2^n, g_3^m \in \mathbb{F}_q(T)$. Entonces usando la ecuación $y^2 = 4x^3 - g_2x - g_3$ se pueden encontrar las curvas con coefficientes recionales. Para p>3 no es fácil encontrar un modelo sobre $\mathbb{F}_q(T)$.

Sean $E_4 = 1 + 240s_3(\mathbf{q})$ y $E_6 = 1 - 504s_5(\mathbf{q})$ las series de Einsestein.

Serre y Swinnerton-Dyer probaron que existe un polinomio $A \in \mathbb{F}_q[X, Y]$ tal que $A(E_2, E_4) = 1 \mod p$.

Lo cual implica que existen $n, m \in \mathbb{N}$ tal que $g_2^n, g_3^m \in \mathbb{F}_q(T)$. Entonces usando la ecuación $y^2 = 4x^3 - g_2x - g_3$ se pueden encontrar las curvas con coefficientes recionales.

Para
$$p = 5$$
 y $\mathfrak{n} = T^2(T-1)$ con $\mathbf{q} = \pi^2 + 2\pi^4 + ... + 2\pi^{50} + \mathbf{O}(\pi^{51})$ se obtuvo
$$E: y^2 = x^3 + \frac{3T+4}{T}x + \frac{4T+3}{T}.$$

Curvas elípticas e integrales multiplicativas sobre campos no arquimedianos $\bigsqcup_{\mathbf{Curvas}}$ sobre $\mathbb{F}_q[T]$

GRACIAS POR SU ATENCIÓN!