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Abstract

This paper presents a two-dimensional model for dilute pyroclastic flow dynamics that uses the compressible Navier–Stokes

equation coupled with the Diffusion–Convection equation to take into account sedimentation. The model is applied to one of

the slopes of Galeras Volcano to show: (1) the temperature evolution with the time; (2) dynamic pressure change; and (3)

particle concentration along the computer domain from the eruption to the impact with a topographic barrier located more than

16 km from the source. Two initial solid volumetric fractions are modeled. For both cases, some of the structures located more

distant than 10 km could survive, but in all cases the flow remains deadly. This paper shows that a dynamical model of

pyroclastic flows can be implemented using personal computers.

D 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Galeras Volcano is regarded as one of the most

active volcanoes in the world. Due to its geological

characteristics, it is an explosive volcano with

vulcanian type eruptions (Calvache et al., 1997),

one of its hazards is the production of pyroclastic

flows (Hurtado and Cortés, 1997). Geological studies

performed by Calvache (1990), Calvache (1995) and

Calvache et al. (1997) showed several occurrences of
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this hazard within its influence area. Investigations

by Espinoza (1988) for historical activity of the last

500 years at Galeras Volcano from descriptions and

photographs allowed Espinoza (1988) to deduce that

pyroclastic flows occurred at least in five occasions,

all of them without geological records (Banks et al.,

1997). According to Banks et al. (1997), the volcano

showed very small dilute surge-like flows during its

active period of 1989. The fact that the historical

pyroclastic flows have not left a geological record is

evidence that such pyroclastic flows were composed

mainly of a dilute cloud with a negligible basal part.

The last version of the Galeras Volcano hazard map

(Hurtado and Cortés, 1997) establishes the run-out
al Research 139 (2005) 59–71
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distance of the pyroclastic flows based on geological

records. But from the risk assessment point of view, it

would also be useful to know some of the dynamical

parameters like temperature, particle concentration

and dynamical pressure due to flow evolution in space

and time. This would aide in estimating the devasta-

tion to structures or danger for people located in or

near the flow path (Blong, 1984; Baxter et al., 1995;

Valentine, 1998, e.g.).

Several analytical and numerical models based on

fluid dynamics have been developed in order to

describe the above parameter fields. These range from

simple models which assume a non-transient, homoge-

neous, one-dimensional or radial flow (Sheridan, 1980;

Bursik and Woods, 1991, 1996, e.g.) describing the

main physical processes that occur from the column

collapse to emplacement to the so-called supercom-

puter models (Valentine and Wohletz, 1989; Dobran

and Neri, 1993; Neri and Macedonio, 1996a,b, e.g.)

which model a tansient two-phase, compressible flow

and a multiparticle solid phase (Neri and Macedonio,
Fig. 1. Regional location of Galeras Volcano showing the Azufral River a

threat can be seen.
1996a; Neri et al., 2001). The current development of

personal computers enables the exploration of the

possibility that a fluid dynamics model of pyroclastic

flows can be implemented in a PC, including features

which were beyond the scope for this kind of

computers a few years ago. The proposed model

focuses on the dilute turbulent companion ash cloud

of a pyroclastic flow (see fig. 6.2 in Sparks et al., 1997)

which allows one tomake some assumptions in order to

reduce the number of the equations and variables

involved. This model could be considered as an

intermediate between the abovementioned models,

due to the fact that only one set of Navier–Stokes

equations is used.

This model is applied to the channelized slope of

the river basin of the Azufral River, which flows down

from the active cone (located in the same direction) to

the Guaitara River canyon, about 16 km away (Fig.

1). The main part of the Azufral river is confined

within deep and nearly vertical walls which allows us

to assume a 2D approach.
long which the proposed model is applied. Also, some towns under
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2. Mathematical model

From the point of view of physics, the dynamics

of a pyroclastic flow is controlled by the mass,

momentum and energy balance equations. It is a

multiphase and multicomponent mixture, which

carries gas (including water vapor), liquid drops of

water and magma, clasts and fine ash. The pyro-

clastic flows at Galeras Volcano that occurred in the

last 500 years were clearly dominated by fine ash as

was pointed out above. As demonstrated by Sparks

and Wilson (1976) and Neri and Macedonio (1996b),

fine ash carried by some pyroclastic flows could

comprise most of the flow in weight and volume.

Thus for the model it is assumed that the dilute flow

is composed of dry gas and a solid phase consisting

(for simplicity) of one size spherical particles of 1

mm diameter. First, this size lets us assume a thermal

equilibrium between particles and surrounding gas

(Woods and Bursik, 1991). Additionally, for small

particles, the Biot number, which relates the thermal

conductivity with the heat transfer coefficient (Fan

and Zhu, 1998), will be less than the unity, therefore

only one equation is needed for the energy balance.

Moreover, for Biot numbers less than 0.1, the

temperature distribution in the solid can be consid-

ered uniform with a maximum error of 5% (Fan and

Zhu, 1998).

Also, for very small particles, the two phases will

move nearly at equal velocities (Stewart and Wendr-

off, 1984). Thus it will be assumed that the velocity

of the solid phase will be the same as the gas phase

and the material can be treated as a continuum with

bulk flow properties (Freunt and Bursik, 1998) or the

so-called two phase flow model with equal velocities

(Stewart and Wendroff, 1984). In this way, only one

set of Navier–Stokes equations will be used. How-

ever, it is considered that the change in the

concentration of particles and its correspondent

change in bulk density are a consequence of

sedimentation by means of the Convection–Diffusion

equation.

2.1. Government equations

The following equation system includes mass,

momentum and energy conservation, coupled with

the diffusion–convection equation, all equations
expressed in the Einstein summation convention

(Lai et al., 1974).

2.1.1. Mass

Bb
Bt

þ BðbujÞ
Bxj

¼ � BðwshsqsÞ
Bxj

d2j ð1Þ

2.1.2. Momentum

BðbuiÞ
Bt

þ BðbuiujÞ
Bxj

¼ � Bp

Bxi
þ ðb � qgÞgi þ

Bsij
Bxj

� BðwshsqsuiÞ
Bxj

d2j ð2Þ

2.1.3. Energy

The energy equation expressed in its internal

energy form:

BðbeÞ
Bt

þ BðbeujÞ
Bxj

¼ B

Bxj
kT

BT

Bxj
� p

Buj

Bxj
þ Bsijuj

Bxi

ð3Þ

2.1.4. Convection–Diffusion equation

For small particles in a dilute suspension, and

neglecting cohesive forces, the concentration of

particles can be approximated by the convection–

diffusion equation (Larock and Schamber, 1981;

Chippada et al., 1993; Hermann et al., 1994):

Bbhs
Bt

þ Bbhsuj
Bxj

¼ B

Bxj
lt

Bhs
Bxj

� BðqswshsÞ
Bxj

d2j ð4Þ

where b =bulk density, u =velocity field, p =pressure,

lt= turbulent eddy viscosity, g =gravity force, hs =

volume fraction of solids, qs = density of solids,

qg = gas phase density, ws=characteristic settling

velocity, kT=bulk thermal conductivity, cp = specific

heat of the mixing, T =bulk temperature, dij =Kro-
neker’s delta and:

e ¼ cpT ð5Þ

2.2. Constitutive equations

The above equations system is closed by the

following constitutive equations.
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The Reynolds stress tensor sij is:

sij ¼ l

�
Bui

Bxj
þ Buj

Bxi
� 2

3

Buj

Bxj
dij

�
������

buiVujV ð6Þ

The fluctuating part of the tensor can be approxi-

mated using the Boussinesq analogy (Wilcox, 1998):

������
buiVujV ¼ � lt

�
Bui

Bxj
þ Buj

Bxi
� 2

3

Buj

Bxj
dij

�
: ð7Þ

For a dilute flow, and neglecting particle interactions,

the characteristic settling velocity can be approxi-

mated by (Sparks et al., 1997):

ws ¼
�
4

3

qsgs

Cdb

�1
2

ð8Þ

where: s=size of the pyroclasts and Cd is the Drag

coefficient given by (Dobran and Neri, 1993):

Cd ¼
( 24

Rep
½1:þ 0:15Re0:687p �; if Repb1000

0:44; if Repz1000

where Rep is the Reynolds number based on particle

diameter.

By combining the effect of the temperature on

viscosity through the Sutherland law (Zienkiewicz

and Taylor, 1994) with the collisional viscosity

(Wohletz, 1998), we arrive to the effective suspension

viscosity:

l ¼
�
1:45� 10�6T

3
2

T þ 110:

�
ð1:þMÞ2 ð9Þ

where M is the mass ratio:

M ¼ hsqs

ð1� hsÞqg

:

The effect of turbulence is modeled through a Subgrid

scale (SGS) effective viscosity (lt) using the Smagor-

insky eddy viscosity (Wilcox, 1998):

lt ¼ bðCshÞ2
ffiffiffiffiffiffiffiffiffi
sijsij

p ð10Þ
where h is the size of the grid element and Cs is a

constant related to the Kolmogorov constant, follow-

ing Hartel (1996) Cs ~ 0.17.
2.3. Equations of state

As usual in this kind of models, we assume an ideal

gas law:

p ¼ bRT ð11Þ

where R is the gas constant of the mixture, R ¼ R

Mg
, R

being the universal gas constant and the molecular

weigh of the gas is assumed as the same of the air

Mg=28.964 kg/kg mol.

A bulk thermal conductivity is proposed, which

relates the volumetric fractions of solids and gas with

their respective thermal conductivities, as:

kT ¼ hsks þ ð1:� hsÞkg: ð12Þ

The bulk density can be estimated in a similar manner

as (Stewart and Wendroff, 1984):

b ¼ hsqs þ ð1� hsÞqg ð13Þ

where the gas density is calculated using the

Boussinesq approach (Zienkiewicz and Taylor, 1994):

qg ¼
qa

1:þ hðT � TaÞ
ð14Þ

where qa is the density of air at ambient temperature

Ta, and h is the thermal expansion coefficient.

The specific heat of the mixing is assumed here as

the same as for the air and is related with temperature

(Dobran and Neri, 1993):

Cp ¼ ð6:þ 0:002T � 0:3� 10�6T2Þ 4:18� 103

Mg

ð15Þ

3. Solution procedure

3.1. Mass equation treatment

The mass equation is solved for pressure by

manipulating Eq. (11). Deriving with time the state

equation:

Bp

Bt
¼ RT

Bb
Bt

þ Rb
BT

Bt
ð16Þ



G. Córdoba / Journal of Volcanology and Geothermal Research 139 (2005) 59–71 63
Then:

Bb
Bt

¼ 1

RT

Bp

Bt
� b

T

BT

Bt
: ð17Þ

By assuming that the temporary change of the

temperature is very small compared to the temperature

itself, the last term in Eq. (17) can be eliminated and

we arrive at:

Bb
Bt

¼ 1

c2
Bp

Bt
: ð18Þ

Actually, the assumption in Eq. (18) implies that the

flow is subsonic, specially if the value of c is taken as

constant, and that no shock waves are present, which

might not be true in a pyroclastic flow.

However, in our case c is the speed of sound of

mixing which is defined by Dobran and Neri (1993)

as:

c ¼
�
RT

Y

�1
2
�
Y þ 1:� Yð Þ

qg

qs

�
ð19Þ

where Y is the mass fraction of gas in the two phase

mixture:

Y ¼ ð1:� hsÞ
qg

b
: ð20Þ

The use of Eq. (19) and the Boussinesq approach (Eq.

(14)) relaxes the approach outlined in Eq. (18), letting

us have weak shock waves. But the mode is still

limited to non-hypersonic velocities (Zienkiewicz and

Taylor, 1994) due to our assumptions and the fact that

we are solving the mass equation (Eq. (1)) for

pressure. The use of this variable as the unknown

does not work well in presence of strong shock waves

(Codina et al., 1997). The sound speed inside a

pyroclastic flow can be very slow and the flow could

become supersonic. We will see this effect in the next

part of this paper where the flow becomes supersonic

at the jet. This occurs just at the entrance of the flow

in the atmosphere, but with a maximum Mach number

close to unity; and after that, most of the flow remains

subsonic.

It is worth noting that by assuming a constant value

for c in Eq. (19), which decouples the energy Eq. (3),

the model is quite similar to those used in modeling

powder snow avalanches (Hermann et al., 1994;
Keller, 1996, e.g.). In the same way, the model could

be used for modeling cool pyroclastic flows.

3.2. Biot number checking

Due to the fact that a single particle size has been

assumed, the Biot number (Fan and Zhu, 1998) can be

approached from:

Bi ¼
hT

kp=s
ð21Þ

where: Bi =Biot number, hT=heat transfer coefficient

between particles and surrounding gas, kp = particle

thermal conductivity, s =particle diameter, assumed

here as 1 mm.

The heat transfer coefficient hT can be related to

the Nusslet number:

Nu ¼
hTs

kg
ð22Þ

where kg is the gas thermal conductivity.

The Nusslet number is also related to the Prandtl

number and Reynolds number based on particle

diameter and the velocity difference between par-

ticles and gas (Regp). According to Gunn (1978), this

number can be approached as Nu= (2+5hs
2) due to an

equal velocity model that has been assumed. For

both cases of hs, Nu~2.0, and with the proposed

initial conditions, from Eq. (22), we arrive at hT =100

and thus from Eq. (21), Bi =0.045b0.1. Thus the

assumption of one equation for energy balance is

justified.

3.3. Numerical approach

Once the partial differential equation system has

been re-written in this way, it is then discretized and

solved using the Finite Element Method (Taylor and

Hughes, 1981; Zienkiewicz and Taylor, 1994) and

implemented using the trademark FASTFLO, a tool

for finite element method users developed by the

Numerical Algorithm Group (NAG).

Due to the strong non-linearity and the anticipated

instabilities (Betts and Sayma, 1993; Chippada et al.,

1993) we use the Operator Splitting Algorithm

(Glowinski and Pironnean, 1992) and two types of

artificial viscosities at the same time, in order to avoid
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the negative diffusivity induced by an Euler approach:

a Lapidus like diffusivity (Zienkiewicz and Taylor,

1994):

kij ¼ CLaph
2 jjuiujjj

jjujj ð23Þ

where CLap is the Lapidus coefficient, and the

balancing tensor diffusivity (BTD) (Eguchi and

Yagawa, 1988):

kij ¼
Dt

2
uiui ð24Þ

where the time increment Dt is computed, each time

step is followed to ensure stability, obtaining the

minimum (Zienkiewicz and Codina, 1993; Zienkie-

wicz and Taylor, 1994):

Dt ¼ h

juj þ c

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Pe2
þ 1

3

r
� 1

Pe

�
ð25Þ

where Pe is the Peclet number, a Reynolds-like

number based on size of the grid element (h):

Pe ¼ hjuj
2l

ð26Þ

3.3.1. The mesh

Because the model is applied to the Azufral River

basin which is within a channelized slope, a two-

dimensional approach is chosen. The 2D domain was
Fig. 2. Finite element mesh which has about 30.000 six node isoparamet

change in slope. The minimum size of the element, shown at the upper part

left corner.
discretized using a six node isoparametric triangle as

the basic element (Fig. 2). The total mesh has about

30.000 triangles with a concentration of cells at

interesting points like the crater borders or strong

changes in slope. The minimum size of the element

was chosen according to a sensitivity test, performed

below, and was taken as 11 m. Fig. 2 shows the

Azufral River at the bottom (ground), and the crater at

the lower left corner. The lowest part to the right hand

side is the point at which the Azufral River reaches the

Guaitara River canyon, this river flows down in a

direction toward the reader. The wall of the Guaitara

River canyon follows to the right reaching the

numerical boundaries. The top of the mesh is located

6.1 km above sea level.

3.3.2. Boundary conditions

As in all numerical approaches, it is necessary to

define proper boundary conditions at the borders of

the grid. This is a critical matter because choosing

wrong boundary conditions could cause the problem

to be ill-posed. At present there are clear techniques to

improve proper bc’s either for incompressible flows or

for compressible flows, according to the Mach

number (M) of the flow (Vazquez et al., 1999):

! If M b1: two conditions at inlet (u, T), one

condition at the outlet (q or p);

! If M N1: three conditions at inlet (u, T, q or p),

none at outlet.
ric triangles. The mesh is refined at areas and points with a strong

of the figure, is 11 m. The inflow is located in the crater at the lower
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The modeling of pyroclastic flows from the be-

ginning of the eruption to its emplacement, implying

that the model is located just in the middle of the

above conditions: part of the flow could be supersonic

and part of it will be subsonic, as in our case. At

present, intensive research is being done in order to

handle both compressible and incompressible cases

(see for example Zienkiewicz and Codina, 1993;

Codina et al., 1997; Vazquez et al., 1999).

In the proposed model, the next conditions are

imposed according to Fig. 2: At the ground, a

Dirichlet condition for velocity is imposed with a

value of zero, which means a non-slip condition. For

the other variables, Newman conditions are imposed

(zero flux). Additionally, neither mass nor heat trans-

fer is allowed.

At the outlet there is a zero stress condition

(rxy=0.0). At the top, a zero stress condition and a

free vertical velocity. At the axis of the eruption, a free

vertical velocity. At the crater, the inlet conditions (see

next section). In addition to the above conditions it

was necessary to impose two points with known

pressure and temperature (defined with its ambient

values) at upper left and right corners of the mesh in

order to reach convergence and avoid some non-

physical reflexions.

3.3.3. Initial conditions

By neglecting particle segregation, which could

play an important role in a collapsing fountain

(R.S.J. Sparks, 2002, personal comm.), two constant

volumetric solid fractions of hs= 0.005 and hs= 0.01
at inflow are used. This means from Eq. (13) an

initial bulk density of 12.7 kg/m3 is determined in the

first case. This initial density is within the range of

most collapsing columns, which is between 8 and 18

kg/m3 according to Sparks et al. (1997). For the

second case, an initial bulk density of 24.2 kg/m3 is

obtained. The chosen values for hs correspond to

eruptions A (approximately) and B in Dobran and

Neri (1993). Finally, the initial conditions at the vent

and in the inner part of the grid (ambient conditions)

are as follows:

Vv = Turbulent profile with mean velocity V̄=100

m/s

Tv = 1200 K

Ta = 288 K
hsv = 0.01 and 0.005

Rv = 150 m

qa = 1.22 kg/m3

qs = 2.300 kg/m3

kg = 0.05 W/m K

ks = 2.2 W/m K

s = 1 mm

ṁ = 8.2�107 kg/s for hs=0.01
ṁ = 4.2�107 kg/s for hs=0.005.

Subscripts v and a represent respectively condi-

tions at vent and ambient (Rv is the vent radius).

The turbulent profile was defined according to

hydraulics:

v ¼ V

� ffiffiffi
f

p �
2log10

y

Rv

þ 1:32

�
þ 1:

�
ð27Þ

where f = friction factor of the conduit and y=distance

from wall of the conduit.

The friction factor is calculated from the Colebrook

and White formula:

1ffiffiffi
f

p ¼ � 2log10

�
ks

3:7d
þ 2:51

Rev
ffiffiffi
f

p
�

ð28Þ

where Ks= roughness of the wall assumed as 0.5 m,

Rev = Reynolds number at inlet based on vent

diameter and mean velocity, and d = conduit diameter.

From the above initial conditions and using Eqs. 13,

14, 17 and 19 the Mach number for each volumetric

fraction of solids is calculated as: M =1.3 for hs = 0.01

and M =0.92 for hs= 0.005. Then, according to these

initial conditions, in some cases the flow reaches the

supersonic field but it always remains non-hypersonic.
4. Results

Basically two eruptions were simulated, with the

above initial conditions, and three more were done as

a sensitivity test with different grid sizes.

The model was implemented in a PC using an

Intelk PentiumIV processor with 1.6 GHz running

under Linux OS. The CPU time was about 10 days,

which might be acceptable computing time for the

PC’s.

The temporal evolution of the temperature for both

cases is shown in Fig. 3, at 150 s and at 400 s for



Fig. 3. Two stages of temperature evolution for each case modeled. After 150 s, the simulation shows several eddies, also the flow reaches the

middle of the path. For an initial solid volumetric fraction of hs= 0.005 the flow becomes more buoyant and plumes appear after 400 s. In despite

of the loss of material due to buoyancy, in both cases the flow reaches and surmounts the Guaitara River canyon but at different times, the case

hs= 0.01 is faster.
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hs= 0.005 and 300 s for hs= 0.01 after the beginning or
the eruption. Note that for hs= 0.005 the flow needs

more time to reach the topographical barrier because it

descends at a lower velocity than the more concen-

trated flow. The flow becomes more buoyant than in

the case of hs= 0.01 and consequently thermals form

at around 400 s after the eruption. The barrier is

reached by the flow with a temperature of about 650

K, which means that all types of life could become

totally extinct and buildings could be at least burned

along its path. Additionally, note that this model

successfully shows the pulsating behavior of the

collapsing column and the front of the pyroclastic

flow is reached by backward flow coming at greater

velocities as was noted by Neri and Macedonio

(1996b).

From a hazard point of view, it is also important to

understand at least two other fields: (1) particle

concentration, which can indicate the possibility of

motality (according to Baxter et al., 1995, a concen-

tration equal or grater than 0.1 kg/m3 could kill

people) or bury structures due to the high concen-

tration of solids carried by the flow; and (2) dynamic

overpressure ( p =1/2bu2). Fig. 4 shows the results of

the simulation for (a) particle concentration, (b)

dynamical pressure and (c) Mach number, for

hs= 0.005 and hs= 0.01, all of them derived at 240 s

after eruption. They show the field of interest versus

the altitude from the ground. Each graphic gives
results at three distances from vent, namely 2 km

(solid line), 6 km (long-dashed line) and 10 km (short

dashed line).

4.1. Particle concentration

For an initial volumetric fraction of solids of

hs= 0.005 the maximum concentration of particles is

around 12 kg/m3 at the base of the pyroclastic flow

and close to the vent (2 km), the threshold for human

survival (HST=0.1 kg/m3) is located at an altitude

more than 450 m from the ground. At 6 km away from

the crater the maximum concentration is about 5 kg/

m3 at ground level and the 0.1 kg/m3 is at about 1000

m altitude, which shows the expansion of the flow. At

10 km distance, the head of the flow has formed. It

has lost most of its density due to turbulent expansion,

sedimentation and thermal buoyancy. Here the max-

imum concentration is about 1 kg/m3 at ground level

and the HST is at more altitude than 1650 m. At this

stage (not shown in Fig. 4), the front of the flow is

located at 13 km from the vent with a concentration of

particles above the HST. The flow remains lethal

along the path and structures could be buried at a

distance of 6 km away from the crater. Buildings

could be at minimum impregnated by ash at even

further distances.

For hs= 0.01, the results at 2 km distance shows

that the maximum concentration is about 23 kg/m3 at



Fig. 4. Vertical distribution of (a) particle concentration, (b) dynamical pressure and (c) Mach number after 240 s from the eruption for hs= 0.01

and hs= 0.005. Curves correspond to distances of 2 km from the crater (solid line), 6 km distance (long dashed line) and 10 km from the crater

(short dashed line). The vertical axis shows the altitude above the ground level. Note the expansion of the flow in figures (b) and (c) by watching

the maximum peak in the dynamical pressure and the Mach number, which are placed at the highest altitude as flow advance.
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ground level and that the HST is located about 200 m

altitude. At 6 km, the maximum is about 10 kg/m3 at

ground level and the HST is at an altitude of more

than 300 m. Finally, at a distance of 10 km the

maximum concentration is about 5 kg/m3 at the base

of the flow and the HST is located at 500 m altitude.
The front of the flow just reaches the topographical

barrier with concentrations about 2 kg/m3 (not shown

in Fig. 4). Under this initial volumetric fraction of

solids the flow is also faster than the other one. Of

course, the flow is more dangerous, and it could bury

structures along all its path and also it remains lethal
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in the distance between the vent and the Guaitara

River canyon.

4.2. Dynamical pressure

Despite the strong damage produced by the high

temperatures of most pyroclastic flows, the dynam-

ical overpressure might produce the most noticeable

destruction among all the effects of a pyroclastic flow

impact. A dynamical overpressure of 10 kPa is

considered as the human survival threshold (HST)

according to Taniguchi and Suzuki-Kamada (1993).

This overpressure is sufficient to bblow offQ the

human body. A detailed description of the effect of

the volcanic dynamical overpressure on structures has

been done by Valentine (1998), from which it is only

mentioned the case of little damage for dynamical

overpressures around 7–14 kPa and total demolition

for dynamical pressures of about 100 kPa.

As we can see in Fig. 4b, for an initial volumetric

fraction of solids of hs= 0.005, the maximum over-

pressure reached is around 14 kPa at a distance of 2

km away from the vent, and located more than 60 m

altitude from ground. However, at about 10 m altitude

the dynamical overpressure does not reach 7 kPa,

there is a small or reparable damage could be expected

in lower floors of high structures. Far away from the

vent (more than 6 km) the dynamical overpressure

does not reach 7 kPa. Thus, the HST is reached only at

closer distances from the vent.

For hs=0.01, the maximum dynamical overpressure

is about 80 kPa at 2 km and 30 m altitude (but 60 kPa

at 10 m). Six kilometers away, this maximum falls to

around 14 kPa at 50 m height. From this distance

(really 7 km) the highest dynamical overpressure

remains around 1.4 kPa.

In summary, strong damage or total destruction

could be expected for structures located at distances

up to 6 km, and little damage from 6 to 10 km

distance. Buildings located more than 10 km away

could survive without serious structural damage.

Note that for both of the simulated cases notice-

able structural damage affects buildings located as

close as 6 km from the vent. It is worth mentioning

that the dynamical overpressure at altitude close to

ground is lower than the damage threshold (7 kPa

according to Valentine, 1998) for hs= 0.005. This

could explain the reason why in some reported cases
the destruction was focused on the upper parts of

buildings, leaving the lower parts standing (Sparks et

al., 2002, e.g.): overpressure close to ground might

not be sufficient to demolish the structure in contrast

to the high dynamical overpressure at greater altitude,

combined with the shear produced by debris or

pumice impacts.

4.3. Mach number

Due to the mathematical model proposed that

assumes low Mach numbers, part c of Fig. 4 shows

the behavior of possible shocks. At the vent (not

shown in the figure) the Mach number is 1.2. After

the column collapse, the flow accelerates and at the

first strong change in slope, just before 2 km

distance, the maximum Mach number is around 1.0

for both cases, but at different altitudes. For

hs= 0.005 this maximum is at 70 m altitude and for

hs= 0.01 is at 100 m altitude. At the base of the flow,

where a non-slip condition was assumed as a

boundary condition, the Mach number falls to zero.

This shows that the weak shocks assumed by the

mathematical model have been conserved along the

path in both simulated cases.

4.4. Sensitivity test

In order to test the numerical accuracy of the

results, three trials with different minimum element

sizes were carried out: 11, 7 and 5 m. Due to time

constraints of the CPU, all of them were carried out

using a mesh which considers a 4 km distance using

the same initial and boundary conditions as the main

simulations. Fig. 5 shows the trials for (a) 11 m and

(b) 7 m. The advance in both cases are the same, but

as expected, more eddies are resolved in the finer grid.

Using 5 m as a minimum size of the element, no

convergence was reached. After about~20 s, a bhot
pointQ appeared and it led to divergence. Perhaps the

reason for this could be explained either by the

propagation of a rounding error added to a non-

physical location of shocks due to the use of a non-

conservative form of the energy equation (Codina et

al., 1997; Vazquez et al., 1999). Alternatively, it could

be due to the difficulty in improving proper boundary

conditions. The CPU time for the cases shown in Fig.

5 was 5 days for a minimum element size of 11 m and



Fig. 5. Sensitivity test for (a) a minimum grid size of 11 m, and (b) a minimum size of 7 m showing the particle concentration contour lines.

Note that more eddies are resolved using a smaller size of grid. In both cases, 4 km length of the river is shown. The CPU time for 11 m was 5

days but 9 days for the second case, making unacceptable the computing time for the entire mesh, which takes into account the 16 km of

distance.
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9 days for a minimum size of 7 m. Due to the

principal simulations being carried over a distance of

16 km, it was decided to perform the simulations over

all the mesh by using a minimum size of 11 m that

allows an available computing time without losing too

much accuracy.
5. Conclusions and outlook

This paper proposes a model for pyroclastic

flows at Galeras Volcano. The model takes into

account the dynamic behavior of the dilute part of

the flow that has been implemented in a PC. The

pyroclastic flow modeled here could be regarded as

a pyroclastic flow of high speed whose front ad-

vances as an expanded turbulent head followed by a

highly concentrated body, as it has been described

by Sparks et al. (1997). Two main simulations have

been performed for initial volumetric fraction of

solids hs= 0.05 and hs= 0.01. In despite of all the

assumptions, the simulations produce some data that

can be used for hazard mapping such as the fields

of temperature, particle concentration and dynamical

overpressure.

From a human point of view, both of the simulated

flows remain deadly along their entire paths. Firstly,

because the temperature remains higher than 600 K,

and the solid concentration is always more than 0.1

kg/m3. Despite this, the dynamic overpressure prob-

ably is not deadly for approximately 10 km distance.
Other factors ensure that people reached by the flow

will be at least buried and burned (dead and im-

pregnated by ash?).

From the structural point of view, buildings located

as close as 6 km could be destroyed due to dynamic

over pressures above 5 Pa. Structures located farther

than 10 km might remain standing and reparable,

mainly those seismically designed. However, all

buildings might be burned or at least could suffer

fires.

The above reasons classify this hazard along the

Azufral River with a severity of 5 and a vulnerability

of 1 for all structures within a distance of 6 km, and a

severity of 4 at further distances.

In both simulated cases, the flows reach and

surmount the topographical barrier formed by the

Guaitara River canyon, seemingly threatening loca-

tions which at present have not been placed in the

current Galeras Volcano Hazard Map (Hurtado and

Cortés, 1997). Nevertheless, in this paper a friction

factor has not been implemented, therefore the

roughness and winding of the channel has been

neglected. Also, the two-dimensional approach lets

the flow maintain its energy for more time and the

impact on the topographical barrier would spread the

flow in a 3D feature. All the above considerations

indicate that it is necessary to be careful in prediction

of run-out distance because the model still is not

capable of stopping the flow, at least in its most dilute

part. An area for future study improvement is a

stopping mechanism to halt the flow. Finally, a very
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dilute flow could show hazardous behavior without

leaving a geological record.

The CPU time required (10 days) can be

considered acceptable for the magnitude of the

problem, taking into account that the model was

implemented on a home PC. Of course, parallel

computation could be the best computing tool to

simulate the dynamical behavior of a pyroclastic

flow, but this kind of computational machine is

beyond the scope of possibility for most places

threatened by explosive volcanism, at least within a

short-term future. At present, the model does not

take into account the dense suspension at the basal

part of the flow, the winding path of the river, and

friction. These deficiencies in the model and the 2D

approach could produce an excessive velocity

calculation along the path. Also, the fact that the

simulation diverged as the mesh was refined warns

us that extreme caution should be taken with the

results shown here.

In the near future, model improvements should:

ensure convergence and stability for all grid sizes,

circumvent the dilute flow constraint and account for

the basal avalanche. The inclusion of a friction factor,

the addition of the water vapor phase or multi-

component solid phase through the Diffusion–Con-

vection equation, and the development of features

which do not increment the CPU time by much will

allow the use of PCs in this type of flow analysis.

Also, it is necessary to include more realistic initial

conditions at the Galera Volcano vent from internal

physical properties. Such considerations have been

studied (see Calvache et al., 1997; Gil and Chouet,

1997) or are being researched.
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