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This paper describes a new methodology to quantify the variation in the output of a
computational fluid dynamics model for block and ash flows, when the digital elevation
model (DEM) of the terrain and other inputs are given as a range of possible values with
a prescribed uncertainty. Integrating these variations in the possible flows as a function
of input uncertainties provides well-defined hazard probabilities at specific locations,
i.e. a hazard map. Earlier work provided a methodology for assessing hazards based on
variations in flow initiation and friction parameters. This paper extends this approach to
include the effect of terrain error and uncertainty. The results are based on potential flows
at Mammoth Mountain, CA, and Galeras Volcano, Colombia. The analysis establishes
the soundness of the approach and the effect of including the uncertainty in DEMs in
the construction of probabilistic hazard maps.
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1. Introduction

Perhaps, the most fundamental product created by field volcanologists to
characterize the potential for destruction of a volcano is the hazards map. Often a
reasonable hazards map can be made when the distribution of deposits of a given
type are well exposed, and easily dated and mapped. In general, however, difficult
logistics or a paucity of previous work may render understanding of a volcano’s
history quite incomplete. Moreover, the depositional record on the flanks of a
volcano cannot often be assumed to be very complete.

Several studies have explored the use of computational fluid dynamics (CFD)
models to produce volcanic hazard maps for a variety of phenomena at a number
of volcanoes (Hooper et al. 2003; Stinton et al. 2006; Murcia et al. 2010; Procter
et al. 2010; Sheridan et al. 2010). Hazard maps for ground-hugging flows that are
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constrained by the terrain, such as pyroclastic density currents and lava flows,
are often constructed using a digital representation of the terrain (Takahashi &
Tsujimoto 2000; Dalbey et al. 2008). Usually, these terrain representations
are digital elevation models (DEMs). For this type of study, terrain elevation
is rightly recognized as the most essential and fundamental of variables in
geographical analysis (Mitasova et al. 1996; Atkinson 2002; Wechsler & Kroll
2006; Stefanescu et al., in press). Dalbey et al. (2008) introduced procedures
for constructing hazard maps using ensembles of CFD model simulations (the
TITAN2D code; Patra et al. (2005)) of such flows constructed by establishing
probability distributions of input uncertainties in flow initiation (location and
volumes) and by sampling them. The important contribution of DEM uncertainty
to the variability of the flow outcomes was not included in that work as
there were no procedures readily available. This work is focused on addressing
this lacuna.

A digital representation of a terrain surface is an approximation of reality
and is often subject to significant error (Mitasova et al. 1996). The error is
usually not known in terms of both magnitude and spatial distribution. There are
in fact large uncertainties associated with the construction of DEMs. Wechsler
& Kroll (2006) showed that DEMs contain errors derived from a variety of
sources, such as sampling, measurement and interpolation, and these errors
cannot always be well estimated. When such DEMs with errors are used in a
posteriori analysis, such as in simulations of flows, the errors propagate to the
predicted flow.

The most important part of DEM error propagation analysis is the appropriate
characterization of the error within the DEM itself, including information about
its distribution and spatial structure (Shortridge 2001). DEM vendors generally
provide users with a measure of vertical accuracy in the form of the root mean
squared error (r.m.s.e.) statistic. However, many papers have reported on the
limitations of a single value of accuracy, stressing that DEM error is spatially
variable and highly correlated (Wechsler & Kroll 2006; Darnell et al. 2008). Also
the magnitude of the DEM error is closely related to the characteristics of the
terrain surface. For example, slope will influence interpolation procedures.

DEM error propagation analysis was introduced to the geographic information
system (GIS) community in the early 1990s. In the work of Heuvelink et al. (1990),
error propagation in calculating slope and aspect was represented using Monte
Carlo simulation. It was shown that standard deviations of slope and aspect were
higher than expected. The effect of error in the DEMs on the erosion models was
emphasized. A method used by Weng (2002) in quantification of the uncertainty
of DEMs was to create various DEMs using different interpolation methods and
to examine the r.m.s.e. from the source map, sampling and measurement error,
and the interpolation process. It was concluded that the r.m.s.e. can be used as
a general indicator of DEM uncertainty. In the literature, DEM error without
spatial autocorrelation was considered to be a worst case scenario (Heuvelink
et al. 1989; Van Niel et al. 2004; Oksanen 2006), but no analysis based on terrain
morphology and the effect of different DEMs was done. Wechsler & Kroll (2006)
developed four different methods for representing the spatial dependence of error
through random fields to assess the effect on topographic parameters of the DEM
uncertainty. The study showed that uncertainty in the DEM is manifested at
higher elevations in locally steeper slopes, on both slope and elevation maps.
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Florinsky (1998) showed that the effect of DEM uncertainty on the accuracy of
slope and aspect estimation cannot be determined by using data from topographic
maps or field surveys, because accurate derivatives cannot be determined.

One key feature of spatial data is the autocorrelation of observations in space.
Generally, spatial autocorrelation refers to the correlation between the same
attribute at two locations. Observations in close spatial proximity tend to be
more related than are observations at larger distance or separation. Errors in
spatial data (such as incorrect elevation values assigned to a point) are spatially
autocorrelated. The effect of correlated DEM error has been investigated in the
literature (Fisher 1991; Goodchild et al. 1992). It was shown that not only is
error spatially variable throughout a DEM, but, within the elevation model, the
error value of an individual grid cell is related to the error in neighbouring cells.
Unfortunately, DEM providers do not include information regarding the spatial
dependence or spatial relationship of errors.

Stochastic modelling uses stochastic conditional simulation to generate
multiple equally likely representations of an actual terrain surface. Ehlschlaeger &
Shortridge (1996) and Hunter & Goodchild (1997) computed a normal
distribution of maps or realizations to reproduce the spatial autocorrelation
encountered in the original error surface, filtered using a Gaussian convolution
filter, with kernel sizes derived from autocorrelation analysis of the original
error surfaces.

Various researchers have applied stochastic techniques to evaluate uncertainty
in DEM data. Ehlschlaeger & Shortridge (1996) stochastically simulated error
in a DEM to evaluate the impact of DEM uncertainty on a least-cost-path
application. Hunter & Goodchild (1997) investigated the effect of simulated
changes in elevation at different levels of spatial autocorrelation on slope and
aspect calculations. Hebeler & Purves (2008) produced uncertainty surfaces to
show the impact of DEM uncertainty on an ice sheet model. Darnell et al. (2008)
developed a fuzzy framework to examine the probable and possible uncertainties
in classifying landslide hazard.

The aim of this paper is to quantify the variation in the output of a
computational flow model for block and ash flows, when the model inputs,
including the elevation values represented in the DEM, are uncertain or given
as a range of possible values. Integrating these variations in the possible flows as
a function of input uncertainties provides well-defined data on the probability of
hazard at specific locations, i.e. a hazard map (Dalbey et al. 2008). In particular,
the focus here is on assessing the influence of DEM uncertainties (along with
uncertainties in initial size and location of the avalanche, and the internal and
bed friction angles). There is uncertainty in all of these inputs, which can be
represented using either field data or stochastic methods. The distribution or the
range of the parameters can be obtained from laboratory and field instruments
for friction angles, and historical records of flow frequency and magnitude for size
of the initial failure. Stochastic methods are used to assess the uncertainties in
the DEMs: the first method consists of a perturbation of the elevation based on
the measured error model, while the second method represents an unconditional
stochastic simulation (Ehlschlaeger & Shortridge 1996). Both methods generate
multiple likely representations of the actual terrain, while the second one accounts
for the spatial autocorrelation between elevation points. The effect of DEM
uncertainty and its impact on the model output is analysed by constructing
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a hazard map and performing a ‘probability analysis’ for two volcanoes with
different morphology: Galeras Volcano, Colombia, and Mammoth Mountain, CA.
The second approach adapted here is based largely on the method of Ehlschlaeger
& Shortridge (1996), which uses the difference between two independent DEMs
to train a Gaussian model of error.

The next section presents the basic methodology for generating ensembles
of DEMs representative of the true DEM. Subsequent sections summarize the
TITAN2D flow simulation tool and its use in a systematic hazard analysis. The
hazard analysis tool itself uses ensembles of TITAN2D simulations to construct
statistical surrogate models of flow outcomes at different locations as a function
of model inputs, such as flow volume and resistance to flow as modelled by a
Coulomb frictional law. Sampling of these surrogates leads to the construction of
effective hazard maps that reflect the range of uncertainty in the model inputs.

2. Methodology

In previous work (Stefanescu et al., in press), the effect of DEM variability on
the output of TITAN2D was investigated by comparing an output variable—
maximum flow depth over the entire time of simulation—from different DEMs of
the same site. These DEMs were obtained from different techniques at different
resolution. Two types of analysis were performed: a qualitative analysis and a
statistical analysis. The qualitative analysis consisted of a comparison of the
footprint of the flow, extended to a pixel-based classification. The pixels were
classified into inundated and non-inundated classes. For the statistical analysis,
a Kolmogrov–Smirnov test was performed to assess whether the two output
datasets differed significantly. The conclusion was that, for moderate and small-
scale flows, use of different DEMs affects computation of accurate footprints of
the flow.

This conclusion motivated the present study to examine the effect of DEM
uncertainty by creating a model of the error and sampling it to create an
ensemble of possible terrains. The flow simulation is then run on every member
of this ensemble.

Naive, cell-by-cell approaches to treating DEM uncertainty quickly lead
to the use of thousands if not millions of random variables, resulting in
a computationally infeasible problem. On the other hand, the error model
described above can be parametrized with one or two random variables. The
parametrization methods are based on the assumption that the available DEM
is a representation of the terrain to which errors have been added because of
instrumental uncertainty. Therefore, the DEM can be assumed to be one of an
infinite number of elevation realizations.

(a) Method 1

In this paper, two ‘types’ of DEMs are available of each mountain, which
are used in creating DEM-to-DEM difference maps. Different realizations of the
terrain were constructed by adding to one DEM—considered to represent
the ‘true’ elevation—a ‘random’ perturbation. Since any two types of DEMs
are obtained using different techniques, the difference between them can be added
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to that which is assumed to be the ‘true’ DEM to give a set of possible DEMs.
Thus, the resulting realizations are consistent with the available set of DEMs.
Randomness in the perturbations is created by multiplying the difference map
with a scalar random variable x, which is normally distributed between 0 and 1,

R = M + x · Diff, (2.1)

where R is a realization of the terrain, M is the DEM that best represents the
terrain (the ‘true’ DEM) and Diff is the difference map. In this way, we can define
a set of DEM realizations using only one random variable.

(b) Method 2

For elevation, data at any grid point in a DEM tends to be related to data
from the nearby points. This is the principal motivation of method 2, based on
the work of Ehlschlaeger & Goodchild (1994). Difference maps can be constructed
if more than one DEM exists for the same location. Such maps are termed error
maps and are generated by subtracting the lower quality DEM from the higher
quality DEM (i.e. the ‘true’ DEM). These maps are spatially autocorrelated.
Random fields can be used to represent these spatially autocorrelated data points.
Let Z (U) be a continuous random field used to characterize unknown elevation
errors (differences). The random field function is implemented in the function
r.random.surface (Ehlschlaeger & Goodchild 1994) of the Geographic Resources
Analysis Support System (GRASS) GIS (Mitasova et al. 1996), and generates
fields obtained using a normal distribution (mean of 0.0 and variance of 1.0).
The random field function derives its spatial dependence from the use of a
distance-based decay filter function. The following equation is used to generate
the random field:

Z (U) =
∑

v wu,vev√∑
v w2

u,v

, u ∈ U , v ∈ V (2.2)

and

wu,v =

⎧⎪⎪⎨
⎪⎪⎩

1 du,v ≤ F(
1 − du,v − F

D − F

)E

F < du,v ≤ D, u ∈ U , v ∈ V

0 du,v > D,

(2.3)

where V is the set of potentially influencing points in a given area, U , wu,v is the
spatial autocorrelative effect between points u ∈ U and v ∈ V, ev is a Gaussian
random variable with a mean of 0 and variance of 1, du,v is the distance between
u and v, D is the minimum distance of spatial independence, E is the distance
decay exponent and F is the distance at which errors are completely correlated.

A set of random fields is calibrated to the spatial variation of the field being
simulated using a correlogram function. This is done by fitting the correlogram
and choosing the best descriptive parameters of the random field (the minimum
distance of spatial independence, the correlated distance decay exponent and the
filter parameter) in a weighted least-squares estimator implemented in GRASS’s
r.lags.difference. After running hundreds of tests with multiple combinations
of D, E and F , the best random field was found by fitting the error map
characteristics, such that the sum of least-squares difference between an error

Proc. R. Soc. A (2012)

 on January 20, 2015http://rspa.royalsocietypublishing.org/Downloaded from 

http://rspa.royalsocietypublishing.org/


1548 E. R. Stefanescu et al.

0 500 1000 1500 2000 2500 3000
–0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

lags (m)

co
rr

el
at

io
n 

co
ef

fi
ci

en
t

Figure 1. Error map correlogram (solid line) and various random fields fitted to this by choosing
different values for the parameters D, E and F representing the distances of perfect correlation,
decay exponent and spatial independence in equation (2.2).

field’s correlogram and the target correlogram is minimized. Figure 1 shows a
sample error map correlogram and several trial correlograms closely fitting it.
From equation (2.3), it can be seen that the parameters D, E and F influence the
shape/look of the correlogram. It was noted that the main impact of the exponent
value is to characterize the roughness of the texture of the random surface.
Surface roughness decreases as the exponent value gets closer to 1.0. Once the
parameters are set to a certain value as determined above, one is able to sample
from a normal distribution value for ev as given in equation (2.2) to generate a
possible perturbation of the provided DEMs. In this way, a normal distribution of
possible terrain maps is produced, where the mean of the distribution represents
the original DEM used as the ‘true’ surface.

The correlogram model was used with sequential Gaussian simulation to
generate a set of error map realizations. Each error realization was added to
the ‘true’ DEM indicated as m(U), to generate equally probable realizations of
the topography for the error structure of a DEM under consideration,

R(U) = m(U) + m(m(T )) + (m(s2(T )) · e) · Z (U), (2.4)

where R(U) is a realization of the elevation dataset m(U), T is a group of sets of
spatially uncorrelated sample points in m(U) and e is a Gaussian random variable
with mean 0.0 and variance 1.0. m(m(T )) and variance m(s2(T )) are mean and
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variance, respectively, of all sets in T . Z (U) specifies the random field as defined
in equation (2.2). Hence, this methodology parametrizes the DEM using only two
Gaussian random variables, ev and e.

(c) Digital elevation model realizations

Many DEM users are aware that DEM uncertainty affects the results of
their application; however, in most cases, the DEM is accepted as the true
representation of the Earth’s surface. In this section, two methods for generating
multiple realizations of the terrain are presented for both Galeras Volcano and
Mammoth Mountain, to test whether it is safe to assume that the representation
of topography is acceptable as it is.

The motivation for creating a process to generate realizations of the DEM
was to incorporate the DEM as one of a host of uncertain input parameters for
TITAN2D simulations and consequent hazard map calculations. One working
hypothesis is that the DEM contributes a significant proportion of the variance
to simulated flow, and hence the hazard map output. For sampling the input
parameter space, a Latin hypercube sampling (LHS) was implemented. LHS is
commonly used in computer sampling experiments (McKay et al. 1979; Sacks
et al. 1989) mainly because it is computationally cheap to generate and can cope
with many input variables. This sampling can also have relative small variance
when measuring output variance.

For Galeras Volcano, two test DEMs at 30 m spacing were considered for
the analysis. The Shuttle Radar Topography Mission (SRTM) 30 m DEM was
derived by spline interpolation from a 90 m DEM of southern Colombia using
radar data collected in 2000, while the Advanced Spaceborne Thermal Emission
and Reflection Radiometer (ASTER) DEM was calculated at the Jet Propulsion
Laboratory (JPL) using orthorectified imagery from 12 January 2010 (figure 2a).
The ASTER dataset was used as a surrogate for the ‘true’ elevation while the
SRTM dataset was used in creating the error model.

Two 30 m resolution DEMs derived from independent techniques were used
for Mammoth Mountain. A topographic synthetic aperture radar (TOPSAR)
dataset was considered to be the ‘true’ elevation, while an SRTM dataset was
used in creating the error map. A rectangular area of approximately 42 km2 was
defined within the TOPSAR and SRTM DEMs (figure 2b).

For method 1, 64 DEM realizations were created and used as input parameters
for the TITAN2D simulator along with uncertain parameters presented in §3c.
The input space is defined by seven parameters.

As described above for method 2, realizations of the terrain surface were
created by taking into consideration the spatial autocorrelation of the error.
The error map was obtained by subtracting the elevation of a given DEM from
the ‘true’ elevation at each location. The correlogram for the difference map
was calculated to determine the range of spatial dependence of elevation points.
It was found that spatial dependence persisted above a threshold value of the
correlogram cross-correlation coefficient of 0.4 to a distance of 2.5 km for Galeras
and 2.1 km for Mammoth. To determine the probability distribution function for
the stochastic simulation, 91 sets of spot locations were selected from the map,
each set containing 91 points; all pairs of points were separated by more than
2.5 km or 2.1 km, respectively. For each DEM, probability distribution function
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Figure 2. (a) The Galeras ASTER 30 m DEM terrain surface (easting, northing and elevation
coordinates). (b) The Mammoth TOPSAR 30 m DEM terrain surface (easting, northing and
elevation coordinates). (c) Galeras Volcano ASTER DEM correlogram. (d) Mamouth Mountain
TOPSAR DEM correlogram.

statistics were derived. The random field parameters were chosen after testing
more than 400 random field parameters for the smallest difference between the
error model correlogram and the random field. This occurs when the minimum
distance of spatial independence D = 2500, the distance decay E = 0.8 and the
filter parameter F = 400 for Galeras and D = 2100, E = 0.7 and F = 350 for
Mammoth. A total of 64 equally probable potential elevation surfaces of the area
having a 30 m resolution were generated.

(d) Hazard map construction

There are numerous ways to create a volcanic hazard map based on CFD
modelling. The traditional Monte Carlo method can be used if it is assumed that
uncertainty in model input parameters is the main restriction to the knowledge of
future events at a given volcano. This is the case, for example, if it is known that
block and ash flows are common at a given volcano, but it is difficult to know
the size or volume of potential future events. Although Monte Carlo is relatively
simple to implement, it converges slowly and is unaffordable computationally
because of the number of time-consuming simulations. A single TITAN2D run
might take 20 min on a single processor. To obtain three-digit accuracy in the
expected value of a specified function would require a million runs. One million
runs of 20 min calculations running non-stop on a 64 processor would take 217
days (Dalbey et al. 2008).

Proc. R. Soc. A (2012)

 on January 20, 2015http://rspa.royalsocietypublishing.org/Downloaded from 

http://rspa.royalsocietypublishing.org/


DEM uncertainty 1551

Here, a brief description of the use of a hierarchical emulator that significantly
reduces computational cost is presented; a detailed discussion of the methodology
can be found in Dalbey (2009) and Dalbey et al. (2008). An emulator can be
thought of as a fast statistical surrogate for a single numerical model simulation
(a simulator). The process of computing a hazard map for block and ash flows
with uncertain model inputs introduced by Dalbey (2009) is described. Two-level
construction of a group or ensemble of emulators is used to include a separation of
uncertain inputs and geographical coordinates. The process starts by identifying
the model inputs whose uncertainties will drive the process. In this case, the
uncertain flow inputs used are volume and shape, starting location, basal and
internal friction angles, and finally topography, as given by the DEM. For the
resulting eight-dimensional parameter input space, an LHS was performed to
determine parameter values at which simulations were to be run. As priors for
the emulator, simulation outputs for each of these input parameter vectors were
stored at 64 grid points. The sample size is consistent with other numerical
experiments of this type existing in the literature (McKay et al. 1979; Sacks
et al. 1989; Mitasova et al. 1996).

The output variable of interest for application in this paper is the field
of maximum flow depth over time for each spatial position, at each of the
downsampled input parameter grid points. Tesselations of the geographical
coordinate space and the parameter input space are constructed (a Delaunay
triangulation was used). At a designated location, x∗, of the input parameter
plus spatial coordinate space at which the hazard is to be computed, the covering
simplex S∗

x of the parameter space is identified, and all nodes of that simplex are
enumerated, as are all nodes within a neighbourhood (two hops in the tesselation)
of the covering simplex nodes. For each such two-hop node, the tesselation was
performed in the spatial coordinates followed by an evaluation of all emulators
constructed over these nodes. These coordinate space emulators to (the coordinate
components of) x∗ by barycentric weighting were averaged; notice that there
will be an emulator for each parameter input sample point. Now in the input
parameter space, construct a tessellation of the two-hop nodes and average the
emulators to x∗ by barycentric weighting of the fine-scale emulator. The emulator
is now readily and quickly evaluated for each evaluation. The hazard map
construction can now proceed by treating the emulator as a surrogate for the
simulator in the classical Monte Carlo procedure. For any point in the domain,
it can now be exercised like the simulator to get potential flows and hence
exceedance probabilities.

(e) TITAN2D and flow simulations

TITAN2D (Patra et al. 2005; Sheridan et al. 2005) was developed for modelling
dry geophysical granular flows, such as debris avalanches and block and ash
flows. Given a digital elevation map specifying the topography of a volcano
and the values of input parameters, including the initial volume of erupted
material and the friction angles, TITAN2D calculates the flow depth and velocity
at any location throughout the duration of an event. The TITAN2D code
combines numerical simulations of a natural granular flow with digital terrain
data. It is based on a depth-averaged model for an incompressible granular
material governed by Coulomb-type friction interactions (Savage & Hutter 1989).
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The governing equations are obtained by applying conservation laws to
the incompressible continuum, providing appropriate constitutive modelling
assumptions, and then taking advantage of the shallowness of the flows (flows
are much longer and wider than they are deep) to obtain simpler depth-averaged
representations (Bursik et al. 2005). The motion of the material is considered
to be gravitationally driven and resisted by both internal and bed friction.
The stress boundary conditions are: no stress at the upper free surface and a
Coulomb-like friction law imposed at the interface between the material and the
basal surface.

The primary factor driving the flow is the component of gravity tangential
to the surface, which depends on a local slope computed from the elevation
data, hence the criticality of the DEM to the flow computations. The resulting
hyperbolic system of equations was solved using a finite-volume scheme with
a second-order Godunov solver. Although many real geophysical flows—such
as debris flows—are fluidized, this study deals only with granular material
that has not been fluidized, such as dome-collapse block and ash flows or
rock avalanches initiated by slope instability. The program runs in parallel,
using the message passing interface to allow communication between multiple
processors, increasing computational power, decreasing computational time
and allowing use of large datasets. The algorithm uses local adaptive mesh
refinement for shock capturing, and dynamic load balancing for the efficient
use of computational resources. Topographic data are included in the simulation
through a preprocessing routine in which the digital elevation data are imported.
TITAN2D performs flow simulations on a DEM of a desired region, the simulation
accuracy being highly dependent on the level of the DEM resolution and quality.

Inputs to the code are the size and location of the initial volume, the internal
and bed friction and the DEM. Dalbey et al. (2008) presented several methods
for characterizing the effect of input data uncertainty on model output. At that
time, efficient methods for F representing the uncertainty associated with spatial
parameters like terrain elevation were not well understood.

(f ) Bayes linear method

The straightforward way to account for uncertain inputs and stochastic forcing
is a Monte Carlo approach—run many simulations and ‘average’ the results in
some fashion. If simulations are expensive to run, this approach is not feasible.
To circumvent this difficulty, the statistics community has developed the idea
of an emulator. In essence, the emulator is a regression surface based on a
representative sample of simulations at selected inputs, accompanied by statistical
error bounds. Equipped with this surface, output values at new (untested) input
values need not be run. Instead, output results can be determined by evaluating
the emulator. There are indeed many methods—kriging, metamodels, support
vector machines—by which such surrogates may be constructed and there exists
a body of literature on the topic (Simpson et al. 2001; Clarke et al. 2005). One
often used emulator is the GAuSsian Process (GASP) emulator, which assumes
the regression has the form of a trend plus a Gaussian (Kennedy & O’Hagan
2001; O’Hagan 2006; Bayarri et al. 2009; Conti & O’Hagan 2010). Rougier (2008)
in his construction of a multi-variate emulator called the outer product emulator
mapped the field output directly by including parametric regression terms on
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the output index. To construct a GASP emulator, the covariance structure
of the Gaussian must be assumed and parameters determined by Bayesian or
partially Bayesian methodology. A fully Bayesian determination of the emulator
can be costly, especially if the input data are high dimensional. Here, the Bayes
linear method (BLM) (Goldstein 1995) to construct an emulator was used.
Given prior beliefs (B) of mean and variance, the BLM updates these beliefs
conditioned on the data (D). Note that ‘data’ generally here refers to the output
of computationally expensive physics-based simulators. Because only the first two
moments of a distribution are determined, the BLM is exact only for Gaussian
distributions. As an emulator construction, the BLM update is simpler than a full
GASP construction, but the resulting emulator is comparable. Given the prior
expectation E[B] and variance var(B), the BLM updates are

ED(B) = E[B] + cov(B, D)(var(D))−1[D − E[D]]
and varD(B) = var(B) − cov(B, D)(var(D))−1 cov(D, B).

}
(2.5)

These update formulae can be derived by minimizing the mean square error (B −
aTD)2 between B and some linear combination of the data. Thus, the BLM update
can be viewed as the projection of the set of prior beliefs onto the span of the data.

3. Implementation

(a) Case study I: Galeras Volcano

Galeras Volcano (elevation 4276 m), located in southwestern Colombia
(1 ◦13.31′ N and 77 ◦21.68′ W), is one of the most active volcanoes in the world
(Hurtado & Cortes 1997). Nearly 400 000 people currently live near the volcano;
10 000 of them reside within the zone of high volcanic hazard. Pyroclastic flows
pose a major hazard for this population. The current period of activity that
began in 2004 (Global Volcanism Program 2012a) presents a serious problem
for all stakeholders: decision-makers, scientists, public safety officials and the
general population. Computational modelling has the potential to provide useful
information for hazard assessment and risk mitigation. However, there is a need
to evaluate the validity of the modelling and the quality of the DEMs available
for use in such modelling.

Galeras is an important volcano for computational flow modelling from both
risk management and scientific perspectives (Calvache et al. 1997). Forecasts of
volcanic explosions using various geophysical tools (Narvaez et al. 1997) have
occasionally brought public warnings to a high level of alert during the past 20
years. When the alert reaches the highest level, the public are urged to evacuate
some local areas; this occurred as recently as in January 2010 (Stefanescu et al.
2010a; Global Volcanism Program 2012a). The worst event at Galeras occurred in
1993, when an eruption killed nine scientists and journalists (Baxter & Gresham
1997).

The topography of the volcano presents a problem for the creation of a good
DEM. The irregular morphology on a small scale, with steep slopes, narrow
channels, deep gorges and abrupt cliffs, poses problems for the creation of
accurate topographic models (Ordoñez Villota & Jentzsch 2000). In addition,
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the current flow hazard map at Galeras is mainly based on the sparse geological
record (Calvache 1990). Dense vegetation, deep erosion, successive deposits of
lava and pyroclastic flows hinder the tracing of specific deposits in the field.
The diverse effects of this landscape, as reflected in DEMs created by different
processes and of different scales, must be examined and quantified to determine
the level of confidence that can be placed in model results. Galeras provides
a wide range of topographic features that challenge the use of computational
flow models.

(b) Case study II : Mammoth Mountain

Mammoth Mountain is a large, geologically young, composite dome volcano
located on the southwestern rim of Long Valley Caldera, CA (Bailey 1989).
There are many active hazard issues for Mammoth Mountain, including snow
avalanches, rock avalanches and debris flows. In addition, it is intersected by the
Mono-Inyo Craters volcanic chain, which is the most active volcanic region in the
southwestern USA. If Mono-Inyo-type activity occurs on Mammoth Mountain,
then domes may form. These new domes would be growing atop a steep edifice,
and therefore could become gravitationally unstable (Hildreth 2004; Global
Volcanism Program 2012b). Given that block and ash flows occurred at Mammoth
Mountain during its older dome growth stage, there is reason to believe that
renewed dome formation would result in the activity of block and ash flow. If this
is so, then parts of Mammoth Lakes, CA, are at risk from block and ash flows.
Mammoth Mountain was used to test the hypothesis that different DEMs result
in different model outputs of block and ash flow inundation.

(c) Model set-up

In quantifying the DEM uncertainties using TITAN2D, a set of parameters was
drawn on which to set the bounds of the input domain: internal friction angle,
basal friction angle, flow volume, location and DEM. The numerical values for
these parameters were chosen to bracket the range of flow volumes and initial
locations, and to be representative of the friction angles that have been used by
other researchers in their computational models. For the sites used in the study,
the surface properties and the rheology are comparable, which is the main reason
why the same reasonable parameter values were used for both volcanoes. The
internal friction angle has little effect on the output of the flow models (Sheridan
et al. 2005; Dalbey et al. 2008). Many TITAN2D users have chosen values of
internal friction that range between 15◦ and 37◦ with values between 30◦ and
35◦ being the most frequently used (Patra et al. 2005; Murcia et al. 2010). For
the study, an internal friction angle uniformly distributed between 20◦ and 25◦
was used.

The value of the basal friction angle has a large effect on flow dynamics in the
TITAN2D simulations (Patra et al. 2005; Stinton et al. 2006). Factors that could
affect the choice of basal friction angle include the volume of the flow, the type
of pyroclastic flow, the nature of the substrate and the amount of channelization.
Murcia et al. (2010) listed the basal friction values chosen by TITAN2D users;
they range between 5◦ and 28◦, the mean value being about 15◦. A basal friction
angle uniformly distributed between 15◦ and 20◦ was used.
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Figure 3. (a) Probability that a flow will exceed 0.5 m in depth as a function of position on Galeras
Volcano, Columbia, given the uncertainties in DEM and input parameters using method 1 to create
DEM realizations. (b) Standard deviation in the estimate that the flow will exceed 0.5 m in depth
(method 1). (c) Probability that a flow will exceed 0.5 m in depth as a function of position on
Galeras Volcano, Columbia, given the uncertainties in DEM and input parameters using method 2
to create DEM realizations. (d) Standard deviation in the estimate that the flow will exceed 0.5 m
in depth (method 2).

Volumes of pyroclastic flows at stratovolcanoes typically cover a few orders
of magnitude. The volume values in this study bracket the range of possible
pyroclastic flows for both Mammoth and Galeras. According to Calvache (1990),
Galeras Volcano produced five large pyroclastic flow eruptive episodes; a historic
eruption in 1866, and prehistoric events in 1100, 2300, 2900 and 4500 yBP. The
total deposit volumes of these episodes are in the range O(106 − 9 × 106) m3.
Block and ash flows on Mammoth Mountain might contain O(105–107) m3

of material (Patra et al. 2005; Burkett 2007). Thus, the choice of volumes
ranges from 1.9 × 105 to 5 × 106 m3. The shape of the initial failure region is
approximated as a paraboloid of radii rmax, rmin and height hmax. The volume is
calculated as V = (p/2) · rmin · rmax · hmax. For a good match of the volume range,
the radius values were uniformly distributed between 25 and 500 m, while the
initial height followed the same distribution with values between 10 and 150 m.

Initiation locations were taken from previous mapping of vent sites (Bailey
1989), coupled with knowledge of known weak areas within the volcano as
indicated by hydrothermal alteration. Around the centres of the separate
initiation locations, different starting positions were uniformly distributed in a
circle of radius 200 m. A rectangular area of approximately 40 km2 was defined
around the vent within the available DEMs as the potential run-out area.
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Figure 4. (a) Probability that a flow will exceed 0.5 m in depth as a function of position on
Mammoth Mountain, CA, given the uncertainties in DEM and input parameters using method 1 to
create DEM realizations. (b) Standard deviation in the estimate that the flow will exceed 0.5 m in
depth (method 1). (c) Probability that a flow will exceed 0.5 m in depth as a function of position on
Mammoth Mountain, CA, given the uncertainties in DEM and input parameters using method 2
to create DEM realizations. (b) Standard deviation in the estimate that the flow will exceed 0.5 m
in depth (method 2).

4. Results

One of the goals of the analysis was to understand the effect of the spatial
structure of available DEMs on hazard maps. Figure 2c,d shows the correlograms
for the ASTER DEM and the TOPSAR DEM, which are the DEMs considered to
best represent the real topography for Galeras Volcano and Mammoth Mountain,
respectively. It is apparent that data processing resulted in a smoothing and
filtering of the TOPSAR DEM, which causes the correlation coefficient to vary
smoothly as a function of distance and any two elevation values. Using a distance
between two points of 2000 m for the ASTER DEM, the correlation coefficient is
0.6, whereas for the TOPSAR DEM the correlation coefficient is 0.4. This means
that elevation values within the ASTER DEM are more highly correlated.

Starting from these premises, the hazard map output for the cases when the
DEM is considered to be an input parameter for the TITAN2D model can
be explained. Figures 3a,c and 4a,c display maps of Galeras and Mammoth,
respectively, of the probability that the flow depth will exceed 0.5 m in the next
10 years using methods 1 and 2 to create the terrain realizations.

Figures 3b,d and 4b,d show maps at Galeras and Mammoth of the spatially
varying lack of confidence in the probability hazard map. The lack of confidence
is defined as the computed standard deviation of hazard probability sP divided
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Figure 7. Probability difference map (absolute value) between: (a) Mammoth TOPSAR hazard
map and the method 1 hazard map. (b) Mammoth TOPSAR hazard map and the method 2
hazard map. (c) Galeras ASTER hazard map and the method 1 hazard map. (d) Galeras ASTER
hazard map and the method 2 hazard map.

Mountain. From the lack of confidence figure, it is observed that in both cases
the error is concentrated at the flow margins.

For Mammoth Mountain, the differences are less pronounced, but with
important differences again concentrated at the edge of the flow. An illustration
of how the probabilities vary for method 1 compared with method 2 is shown in
figure 5. It was observed in comparing every point where there is a probability
of having a flow depth greater than 0.5 m that, the results for Galeras show
a greater dispersion than do those for Mammoth Mountain. When the flow is
deep, the probability is high and tends to cluster near unity for both mountains.
As the probability decreases, dispersion becomes greater for Galeras Volcano. It
can be concluded that, as the error map becomes more highly correlated, one
should use a more complex method for the creation of topographic realizations
such as stochastic method 2. It appears that the spatial autocorrelation of the
elevation points influences the hazard map output and a random perturbation of
the elevation such as that used in method 1 will not capture this effect.

In previous work (Stefanescu et al., in press), it was concluded that, for
moderate and small-sized flows, different representations of the terrain more
profoundly affect computation of an accurate flow footprint. For the present
contribution, a new set of hazard maps for the case wherein the volume is low
was built, with a range between 104 and 5 × 104 m3 and for the high-volume case,
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‘original’ or ‘best’ deterministic DEM (Stefanescu et al. 2010b) is used as the
input parameter for the hierarchical emulator, the output of which is then
contrasted with the case, wherein the input is a set of terrain realizations. Hazard
maps produced when DEM uncertainty is not included were compared with maps
produced when DEM uncertainty is included. Figures 7 and 8 show that, for
Galeras, the probability that the flow was deeper than 0.5 m varies considerably
from the case of no DEM uncertainty. Hence, the DEM is an important input
parameter of which the errors need to be carefully considered in flow modelling,
and the effect of the DEM is not diminished by other uncertain parameters or
the methodology used. It can be observed that the uncertainty of having flow
greater than 0.5 m increases towards the flow edge. For Mammoth Mountain, the
DEM uncertainty results in more uncertainty in the flow outline when method 2
is used. One of the causes might be that the flow propagates a shorter distance
than that in the original DEM. At Galeras, where the autocorrelation is high, the
uncertainty in the flow outline increases when correlated DEM error is taken into
account. In this case, the uncertainty in flow outline increases, suggesting that
perturbing the DEM is more important as autocorrelation increases.

5. Conclusions

Computer models of hazardous phenomena, such as floods, hurricanes and
avalanches, are expensive to run, and each run produces an enormous amount of
data. For example, a flood model output may consist of water depth and velocity
at every point in a large grid, at every time step. Furthermore, these models often
require specification of several parameters that may not be well characterized, and
initial and boundary data that are likewise poorly specified. For the first time, in
this contribution, a process for computing a hazard map owing to a geophysical
flow with both uncertain model input parameters and an uncertain elevation
map has been described. Uncertainty in the elevation map has been addressed
using two methods for creating an ensemble of map realizations with the same
error structure as an original elevation model. In one method, the errors in the
model are assumed to be spatially uncorrelated, whereas, in the other method,
the autocorrelation structure of the error was used to produce the realizations.
Once the elevation realizations are produced, the computational model is run over
the ensemble of elevation surfaces and outputs are appropriately combined. The
results suggest that it is critical to consider the error autocorrelation structure in
the DEM to properly incorporate DEM error in the entire error model and the
resulting probabilistic hazards map.

For the two test sites used in this study, one of the main differences is
the texture of the terrain surface: the digital representation of the surface of
Galeras Volcano is quantifiably rougher than is the representation of Mammoth
Mountain. An important conclusion for researchers is that, based on the surface
roughness of the area of study, different methods to assess the uncertainty
caused by the DEM in the flow model can be implemented. In the case of a
smooth terrain, for a fast and less expensive computational implementation, a
simple ‘random’ perturbation method (method 1) yields results similar to those
using the stochastic method (method 2). For rough surfaces, the method for
creation of separate terrain realizations should include some characterization of
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the autocorrelation structure in the DEM error. A method based on the error
map and an unconditional stochastic simulation as presented in this paper is a
good option.

This work was supported by NASA grant NNX08AF75G. The work and opinions expressed herein
are those of the authors alone and do not reflect the opinion of NASA. We are grateful to JPL for
the construction and distribution of the TOPSAR dataset.

References

Atkinson, P. M. 2002 Surface modelling: what’s the point? Transactions in GIS 6, 1–4.
(doi:10.1111/1467-9671.00090)

Bailey, R. A. 1989 Geologic map of long valley caldera, Mono-Inyo craters volcanic chain and
vicinity, Eastern California. Reston, VA: Department of the Interior.

Baxter, P. J. & Gresham, A. 1997 Deaths and injuries in the eruption of Galeras Volcano, Colombia,
14 January 1993. J. Volcanol. Geotherm. Res. 77, 325–338. (doi:10.1016/S0377-0273(96)00103-5)

Bayarri, M. J., Berger, J. O., Calder, E. S., Dalbey, K., Lunagomez, S., Patra, A. K., Pitman,
E. B., Spiller, E. T. & Wolper, R. L. 2009 Using statistical and computer models to quantify
volcanic hazards. Technometrics 51, 402–413. (doi:10.1198/TECH.2009.08018)

Burkett, S. M. 2007 Geomorphic mapping and petrography of mammoth mountain, California.
Master’s thesis, State University of New York at Buffalo, NY, USA.

Bursik, M., Patra, A., Pitman, E. B., Nichita, C., Macias, J. L., Saucedo, R. & Girina, O. 2005
Advances in studies of dense volcanic granular flows. Rep. Prog. Phys. 68, 271–301. (doi:10.1088/
0034-4885/68/2/R01)

Calvache, M. 1990 Geology and volcanology of the recent evolution of Galeras Volcano, Colombia,
p. 171. MSc thesis, Louisiana State University, Baton Rouge, LA, USA.

Calvache, M., Cortes, G. P. & Williams, S. N. 1997 Stratigraphy and chronology of the Galeras
volcanic complex, Colombia. J. Volcanol. Geotherm. Res. 77, 5–19. (doi:10.1016/S0377-0273(96)
00083-2)

Clarke, S. M., Griebsch, J. H. & Simpson, T. W. 2005 Analysis of support vector regression for
approximation of complex engineering analyses. J. Mech. Design 127, 1077–1088. (doi:10.1115/
1.1897403).

Conti, S. & O’Hagan, A. 2010 Bayesian emulation of complex multi-output and dynamic computer
models. J. Stat. Plann. Inference 140, 640–651. (doi:10.1016/j.jspi.2009.08.006)

Dalbey, K., 2009 Predictive simulation and model based hazard maps of geophysical mass flows.
PhD thesis, Department of Mechanical and Aerospace Engineering, University at Buffalo, NY,
USA.

Dalbey, K., Patra, A. K., Pitman, E. B., Bursik, M. I. & Sheridan, M. F. 2008 Input uncertainty
propagation methods and hazard mapping of geophysical mass flow. J. Geophys. Res. 113,
5203–5219. (doi:10.1029/2006JB004471).

Darnell, A. R., Tate, N. J. & Brunsdon, C. 2008 Improving user assessment of error
implications in digital elevation models. Comp. Environ. Urban Syst. 32, 268–277. (doi:10.1016/
j.compenvurbsys.2008.02.003)

Ehlschlaeger, C. R. & Goodchild, M. F. 1994 Uncertainty in spatial data: defining, visualizing, and
managing data errors. In Proc. GIS/LIS’94, Phoenix, AZ, 25–27 October 1994, pp. 246–253.

Ehlschlaeger, C. R. & Shortridge, A. 1996 Modeling elevation uncertainty in geographical analysis.
In Proc. of the Int. Symp. on Spatial Data Handling, Delft, The Netherlands, 12–16 August 1996,
pp. 9B.159B.2.

Fisher, P. F. 1991 Modeling soil map-unit inclusions by Monte Carlo simulation. Int. J. Geogr. Inf.
Syst. 5, 193–208. (doi:10.1080/02693799108927843)

Florinsky, I. V. 1998 Accuracy of local topographic variables derived from digital elevation models.
Int. J. Geogr. Inf. Sci. 12, 47–61. (doi:10.1080/136588198242003)

Global Volcanism Program. 2012a Galeras. See http://www.volcano.si.edu/world/volcano.cfm?
vnum=1501-08&volpage=weekly.

Proc. R. Soc. A (2012)

 on January 20, 2015http://rspa.royalsocietypublishing.org/Downloaded from 

http://dx.doi.org/doi:10.1111/1467-9671.00090
http://dx.doi.org/doi:10.1016/S0377-0273(96)00103-5
http://dx.doi.org/doi:10.1198/TECH.2009.08018
http://dx.doi.org/doi:10.1088/0034-4885/68/2/R01
http://dx.doi.org/doi:10.1088/0034-4885/68/2/R01
http://dx.doi.org/doi:10.1016/S0377-0273(96)00083-2
http://dx.doi.org/doi:10.1016/S0377-0273(96)00083-2
http://dx.doi.org/doi:10.1115/1.1897403
http://dx.doi.org/doi:10.1115/1.1897403
http://dx.doi.org/doi:10.1016/j.jspi.2009.08.006
http://dx.doi.org/doi:10.1029/2006JB004471
http://dx.doi.org/doi:10.1016/j.compenvurbsys.2008.02.003
http://dx.doi.org/doi:10.1016/j.compenvurbsys.2008.02.003
http://dx.doi.org/doi:10.1080/02693799108927843
http://dx.doi.org/doi:10.1080/136588198242003
http://www.volcano.si.edu/world/volcano.cfm?vnum=1501-08&volpage=weekly
http://www.volcano.si.edu/world/volcano.cfm?vnum=1501-08&volpage=weekly
http://rspa.royalsocietypublishing.org/


1562 E. R. Stefanescu et al.

Global Volcanism Program. 2012b Volcanoes of Canada and the Western USA. See
http://www.volcano.si.edu/world/region.cfm?rnum1203.

Goldstein, M. 1995 Bayes linear methods. I. Adjusting beliefs: concepts and properties. Technical
Report 1995/1, Department of Mathematical Sciences, University of Durham, UK.

Goodchild, M. F., Sun, G. & Yang, S. 1992 Development and test of an error model for categorical
data. Int. J. Geogr. Inf. Syst. 6, 87–104. (doi:10.1080/02693799208901898)

Hebeler, F. & Purves, R. S. 2008 Modelling DEM data uncertainties for Monte Carlo simulations
of ice sheet models. In Quality aspects in spatial data mining (eds A. Stein, J. Shi & W. Bijker),
pp. 175–196. Boca Raton, FL: CRC Press.

Heuvelink, G. B. M., Burrough, P. A. & Leenaers, H. 1989 Propagation of errors in spatial modelling
with GIS. Int. J. Geogr. Inf. Syst. 3, 303–322. (doi:10.1080/02693798908941518)

Heuvelink, G. B. M., Burrough, P. A. & Leenaers, H. 1990 Error propagation in spatial modelling
with GIS. In EGIS90 Proc. 1st European Conf. on Geographical Information Systems (EGIS
Foundation: Utrecht, The Netherlands), Amsterdam, The Netherlands, 10–13 April 1990 (eds J.
Harts, H. F. L. Ottens & H. J. Scholten), pp. 453–462.

Hildreth, W. 2004 Volcanological perspectives on Long Valley, Mammoth Mountain, and Mono
Craters: several contiguous but discrete systems. J. Volcanol. Geotherm. Res. 136, 169–198.
(doi:10.1016/j.jvolgeores.2004.05.019)

Hooper, D. M., Bursik, M. I. & Webb, F. H. 2003 Application of high-resolution, interferometric
DEMs to geomorphic studies of fault scarps, Fish Lake Valley, Nevada-California, USA. Remote
Sens. Environ. 84, 255–267. (doi:10.1016/S0034-4257(02)00110-4)

Hunter, G. J. & Goodchild, M. F. 1997 Modeling the uncertainty of slope and aspect estimates
derived from spatial databases. Geogr. Anal. 1, 35–49. (doi:10.1111/j.1538-4632.1997.tb00944.x)

Hurtado, A. & Cortes, G. P. 1997 Third version of the hazard map of Galeras Volcano, Colombia.
J. Volcanol. Geotherm. Res. 77, 89–100. (doi:10.1016/S0377-0273(96)00088-1)

Kennedy, M. C. & O’Hagan, A. 2001 Bayesian calibration of computer models. J. R. Stat. Soc. B
Stat. Methodol. 63, 425–464. (doi:10.1111/1467-9868.00294)

McKay, M. D., Beckman, R. J. & Conover, W. J. 1979 A comparison of three methods for selecting
values of input variables in the analysis of output from a computer code. Technometrics 21,
239–245. (doi:10.2307/1268522)

Mitasova, H., Hofierka, J., Zlocha, M. & Iverson, L. R. 1996 Modeling topographic potential
for errosion and deposition using GIS. Int. J. Geogr. Inf. Syst. 10, 629–641. (doi:10.1080/
02693799608902101)

Murcia, H. F., Sheridan, M. F., Macias, J. L. & Cortes, G. P. 2010 TITAN2D simulations of
pyroclastic flows at Cerro Machin Volcano, Colombia: Hazard implications. J. South Am. Earth
Sci. 29, 161–170. (doi:10.1016/j.jsames.2009.09.005)

Narvaez, L., Torres, R., Gomez, D., Cortes, G. P., Cepeda, H. & Stix, J. 1997 Tornillo-type seismic
signals at Galeras volcano, Colombia, 1992–1993. J. Volcanol. Geotherm. Res. 77, 159–171.
(doi:10.1016/S0377-0273(96)00092-3)

O’Hagan, A. 2006 Bayesian analysis of computer code outputs: a tutorial. Reliab. Eng. Syst. Safety
91, 1290–1300. (doi:10.1016/j.ress.2005.11.025)

Oksanen, J. 2006 Digital elevation model error in terrain analysis. PhD thesis, Faculty of Science,
University of Helsinki, Helsinki, Finland.

Ordoñez Villota, M. & Jentzsch, G. 2000 Mediciones GPS como topografia basica para el estudio de
microgravedad en el Volcán Galeras, Colombia. Internal Report, Ingeominas, Pasto, Columbia.
[In Spanish.]

Patra, A. K. et al. 2005 Parallel adaptive numerical simulation of dry avalanches over natural
terrain. J. Volcanol. Geotherm. Res. 139, 1–21. (doi:10.1016/j.jvolgeores.2004.06.014)

Procter, J. N., Cronin, S. J., Fuller, I. C., Sheridan, M. F. M., Neall, V. E. & Keys, H. 2010 Lahar
hazard assessment using TITAN2D for an alluvial fan with rapidly changing geomorphology:
Whangaehu river, Mt. Ruapehu. Geomorphology 116, 162–174. (doi:10.1016/j.geomorph.2009.
10.016)

Rougier, J. 2008 Efficient emulators for multivariate deterministic functions. J. Comp. Graph. Stat.
17, 827–843. (doi:10.1198/106186008X384032)

Proc. R. Soc. A (2012)

 on January 20, 2015http://rspa.royalsocietypublishing.org/Downloaded from 

http://www.volcano.si.edu/world/region.cfm?rnum1203
http://dx.doi.org/doi:10.1080/02693799208901898
http://dx.doi.org/doi:10.1080/02693798908941518
http://dx.doi.org/doi:10.1016/j.jvolgeores.2004.05.019
http://dx.doi.org/doi:10.1016/S0034-4257(02)00110-4
http://dx.doi.org/doi:10.1111/j.1538-4632.1997.tb00944.x
http://dx.doi.org/doi:10.1016/S0377-0273(96)00088-1
http://dx.doi.org/doi:10.1111/1467-9868.00294
http://dx.doi.org/doi:10.2307/1268522
http://dx.doi.org/doi:10.1080/02693799608902101
http://dx.doi.org/doi:10.1080/02693799608902101
http://dx.doi.org/doi:10.1016/j.jsames.2009.09.005
http://dx.doi.org/doi:10.1016/S0377-0273(96)00092-3
http://dx.doi.org/doi:10.1016/j.ress.2005.11.025
http://dx.doi.org/doi:10.1016/j.jvolgeores.2004.06.014
http://dx.doi.org/doi:10.1016/j.geomorph.2009.10.016
http://dx.doi.org/doi:10.1016/j.geomorph.2009.10.016
http://dx.doi.org/doi:10.1198/106186008X384032
http://rspa.royalsocietypublishing.org/


DEM uncertainty 1563

Sacks, J., Welch, W. J., Mitchell, T. J. & Wynn, H. P. 1989 Design and analysis of computer
experiments. Stat. Sci. 4, 409–435. (doi:10.1214/ss/1177012413)

Savage, S. B. & Hutter, K. 1989 The motion of a finite mass of granular material down a rough
incline. J. Fluid Mech. 199, 177–215. (doi:10.1017/S0022112089000340)

Sheridan, M. F., Stinton, A. J., Patra, A., Pitman, E. B., Bauer, A. & Nichita, C. C. 2005
Evaluating TITAN2D mass-flow model using the 1963 Little Tahoma Peak avalanches,
Mount Rainier, Washington. J. Volcanol. Geotherm. Res. 139, 275–308. (doi:10.1016/
j.jvolgeores.2004.06.011)

Sheridan, M. F., Patra, A. K., Dalbey, K. & Hubbard, B. 2010 Probabilistic digital hazard maps
for avalanches and massive pyroclastic flows using TITAN2D. In Stratigraphy and geology of
volcanic areas (eds G. Groppelli & L. Viereck-Goette), pp. 281–291. Geological Society of
America Special Papers, vol. 464. Boulder, CO: Geological Society of America.

Shortridge, A. 2001 Characterizing uncertainty in digital elevation models. In Spatial uncertainty
in ecology: implications for remote sensing and GIS applications (eds C. T. Hunsaker, M. F.
Goodchild, M. A. Friedl & T. J. Case), pp. 238–257. New York, NY: Springer.

Simpson, T. W., Poplinski, J. D., Koch, P. N. & Allen, J. K. 2001 Metamodels for computer-
based engineering design: survey and recommendations. Eng. Comp 17, 129–150. (doi:10.1007/
PL00007198)

Stefanescu, E. R., Bursik, M. I., Cordoba, G., Patra, A. K., Pieri, D. C. & Sheridan, M. F. 2010a
Impact of DEM uncertainty on TITAN2D flow model output, Galeras Volcano, Colombia. In
Proc. of the 2010 Int. Congress on Environmental Modelling and Software, Ottawa, Canada, 5–8
July 2010.

Stefanescu, E. R., Bursik, M., Dalbey, K., Jones, M., Patra, A. K. & Pitman, E. B. 2010b DEM
uncertainty and hazard analysis using a geophysical flow model. In Proc. of the 2010 Int.
Congress on Environmental Modelling and Software, Ottawa, Canada, 5–8 July 2010

Stefanescu, E. R., Bursik, M. & Patra, A. K. In press. Effect of digital elevation model on
geophysical flow model output. Nat. Hazards. (doi:10.1007/s11069-012-0103-y)

Stinton, A. J., Sheridan, M. F., Patra, A., Dalbey, K. & Namikawa, L. 2006 Incorporation of
variable bed friction into TITAN2D mass-flow model: application to Little Tahoma Peak
avalanche (Washington). Acta Vulcanol. 16, 153–163.

Takahashi, T. & Tsujimoto, H. 2000 A mechanical model for Merapi-type pyroclastic flow.
J. Volcanol. Geotherm. Res. 98, 91–115. (doi:10.1016/S0377-0273(99)00193-6)

Van Niel, K. P., Laffan, S. W. & Less, B. G. 2004 Effect of error in the DEM on environmental
variables for predictive vegetation modelling. J. Vegetation Sci. 15, 747–756. (doi:10.1111/
j.1654-1103.2004.tb02317.x)

Wechsler, S. & Kroll, C. 2006 Quantifying DEM uncertainty and its effects on topographic
parameters. Photogramm. Eng. Remote Sens. 72, 108–1090.

Weng, Q. 2002 Quantifying uncertainty of digital elevation models derived from topographic maps.
In Advances in spatial data handling (eds D. Richardson & P. van Oosterom), pp. 403–418. New
York, NY: Springer-Verlag.

Proc. R. Soc. A (2012)

 on January 20, 2015http://rspa.royalsocietypublishing.org/Downloaded from 

http://dx.doi.org/doi:10.1214/ss/1177012413
http://dx.doi.org/doi:10.1017/S0022112089000340
http://dx.doi.org/doi:10.1016/j.jvolgeores.2004.06.011
http://dx.doi.org/doi:10.1016/j.jvolgeores.2004.06.011
http://dx.doi.org/doi:10.1007/PL00007198
http://dx.doi.org/doi:10.1007/PL00007198
http://dx.doi.org/doi:10.1007/s11069-012-0103-y
http://dx.doi.org/doi:10.1016/S0377-0273(99)00193-6
http://dx.doi.org/doi:10.1111/j.1654-1103.2004.tb02317.x
http://dx.doi.org/doi:10.1111/j.1654-1103.2004.tb02317.x
http://rspa.royalsocietypublishing.org/

	Digital elevation model uncertainty and hazard analysis using a geophysical flow model
	Introduction
	Methodology
	Method 1
	Method 2
	Digital elevation model realizations
	Hazard map construction
	TITAN2D and flow simulations
	Bayes linear method

	Implementation
	Case study I: Galeras Volcano
	Case study II : Mammoth Mountain
	Model set-up

	Results
	Conclusions
	References


