

Monitoring of Chemical Intermediates through the Methyl Orange's Catalytic Wet Peroxide Oxidation (CWPO) by HPLC-DAD and GC/MS

Luis Alejandro Galeano^{1*}, Viviana N. Aguilar¹, Miguel A. Vicente² and Antonio Gil³

¹ Research Group on Functional Materials and Catalysis (GIMFC), Department of Chemistry, University of Nariño. Calle 18 Cra. 50, Campus Torobajo, Pasto – Colombia.

² Department of Inorganic Chemistry, Chemical Sciences Faculty, Salamanca University. Plaza de la Merced, s/n, Salamanca, 37008. Spain.

³ Department of Applied Chemistry, Public University of Navarra. Edificio Los Acebos, Campus de Arrosadía, Pamplona, 31006. Spain.

(*) corresponding author: alejandrogaleano@udenar.edu.co

Introduction

AOP

The Catalytic Wet Peroxide Oxidation (CWPO) is one Advanced Oxidation Process (AOP) that allows highly efficient generation of hydroxyl radicals (HO•) even under pretty mild conditions of ambient temperature and pressure [1]. Methyl orange (MO) is a very toxic azo dye well known as a common reagent in basic labs of chemistry. CWPO decolourization of MO catalyzed by Al/Fe-pillared clays (Al/Fe-PILCs) has recently demonstrated to be very efficient.

Figure 1. Methyl orange (MO)

Technique

Table 1. Methyl orange by-products by some AOPs

enton [2]	GC/MS	4-dimethylamino aniline			
		N-Methylbenzenamine; 4-			
induced[3]	GC/MS	(dimethylamino)phenol; Aniline			
		4-Hydrazinyl N,N – dimethylbenzenamine			
m/z 304					
$^{\circ}O_{3}S$ \longrightarrow $N=N O_{CH_{3}}$ $O_{CH_{3}}$					
m/z 289					
$rac{156}{\text{CH}_3}$ $rac{156}{\text{CH}_3}$ $rac{156}{\text{CH}_3}$					
$rac{1}{1}$ $rac{1}$ $rac{1}{1}$ $rac{1}$ r					
m/z 224					
$rac{m/z 260}{N=N}$ $rac{m/z 260}{N=N}$ $rac{m/z 225}{N=N}$					
$^{\circ}$ O ₃ S \longrightarrow O					
	-induced[3]	-induced[3] GC/MS TO ₃ S TO ₃ S			

Figure 2. Proposed fragmentation for methyl orange [4]

Experimental

Figure 3. Catalytic experiments

The preparation of the catalyst was carried out by the procedure described in [1]. The catalyst was prepared from a bentonite modified with Al/Fe, AMR = 2.0 %.

Catalytic experiments:

By-products

pH= 3.5 [NM] = 50

[cat] = 0.5 g/L y 5.0 g/L

 $[H_2O_2]_0 = 0.0685 \text{ y } 1.0964 \text{ mol/L}$

Table 2. Analytic conditions by chromatographic techniques

HPLC: Waters Brezze	GC/MS: Shimadzu QP2010S	
Detector: PDA at 210 nm y 480 nm	Detector MS Interphase 300 °C, full scan mode.	
Column C18 (X-Terra Waters, 100 mm x	Capillar Column SHRXI-5MS	
4.6 mm)	(Shimadzu 30 m x 0,25 x 0,25 mm)	
Mobile phase: Phosphoric acid pH 3.0	Injector: split/splitless 280 °C	
Flow: 0.8 mL/min	Carrier gas: He UAP 1.0 mL/min.	
Analysis time per run: 15 min	Analysis time per run: 35 min.	

HPLC Compounds analyzed: Carboxylic acid: oxalic, malonic, succinic, butyric, propionic, acetic, formic y sulfanilic.

Results and Discussion

Figure 4. HPLC chromatograms in MO by-product identification at (a) 15 min of reaction (b) 4 hours of reaction. Conditions: pH=3.5; [MO]=50 mg/L; [cat]=0.5 g/L; $[H_2O_2]_0=1.0964$ mol/L.

Figure 5. GC/MS chromatograms in MO by-product identification at (a) 4 hours of reaction (b) 15 min of reaction (c) 0 min of reaction. Conditions: pH= 3.5; [MO]=50 mg/L; [cat]=5.0 g/L; $[H_2O_2]_0$ =0.0685 mol/L.

Table 3. MO oxidation by-products identified by HPLC

Signal	Compound	t _r (min)
2	Acetic Acid	1.448
3	Oxalic Acid	2.059
4	Sulfanilic Acid	2.397

Table 4. MO oxidation by-products identified by GC/MS

Compound	t _r (min)	m/z
1,2,3-trimethyl benzene	6.014	120
2-ethyl-2-hexenal	6.155	127
Ethyl, 2-ethyl hexanoate	7.485	127

Significance

CWPO treatment starts

the azo-dye very fast (15

taken throughout the

catalytic tests at different

reaction times (0, 15, 30,

60, 120, 180 and 240

min) the carboxylic acids

shown in Table 3 were

identified.

From samples

mineralization of

HPLC-DAD and GC/MS monitoring of the intermediates generated during the CWPO decomposition of methyl orange showed that acetic acid is formed even at very short times of reaction. Some targeted aromatic amines, the most dangerous potential by-products expected from the already known fragmentation pathways, have not been identified at all. It suggest CWPO as interesting AOP in the treatment of colored wastewaters from the textile industry, giving rise to products less toxic and hazardous for the environment.

Acknowledgment

The authors acknowledge EMPOPASTO S.A. E.S.P. and University of Nariño by funding of this research by means of Specific Agreement No 06/2010-2012.

References

[1] Galeano, L.A.; Gil, A.; Vicente, M.A.; Applied Catalysis B: Environmental 2010, 100,71.
[2] You-Peng, C.; Shao-Yang, L.; Han-Qing, Y.; Hao, Y.; Qian-Rong, L. Chemosphere 2008, 72, 532.
[3] Hao, O.J.; Kim, H.; Chiang, P. Critical Reviews in Environmental Science and Technology 2000, 30, 449.
[4] Baiocchi, C., Brussino, M.C., Pramauro, E., Prevot, A.B., Palmisano, L., Marci, G. Int. J. Mass Spectrom.
2002 214, 247.

