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We report the most general expression for the chiral charges of a nonuniversal Uð1Þ0 with identical
charges for the first two families but different charges for the third one. The model is minimal in the sense
that only standard model fermions plus right-handed neutrinos are required. By imposing anomaly
cancellation and constraints coming from Yukawa couplings, we obtain two different solutions. In one of
these solutions, the anomalies cancel between fermions in different families. These solutions depend on
four independent parameters which result very useful for model building. We build different benchmark
models in order to show the flexibility of the parametrization. We also report LHC and low energy
constraints for these benchmark models.
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I. INTRODUCTION

In the present work, we address the question: what is the
minimal electroweak extension of the standard model (SM)
with a minimal content of fermions? By itself, this question
is interesting and deserves a dedicated and systematic
study. The current literature on minimal models abounds
in examples [1–10], but a general parametrization of these
models is not present in the literature, as far as we know.
From a phenomenological point of view, owing to the
absence of exotic fermions at low energies, the minimal
models are useful to explain isolated anomalies at low
energy experiments (for a recent example of these kind of
anomalies, see [11–14]).
For universal models, that is models in which the

hypercharge quantum numbers are repeated for each family,
only a trivial solution with charges proportional to the SM
hypercharge is possible if exotic fermions are not considered
[1,4–6]. For nonuniversal models, as it is present in the
literature [2,3,7,8], the total number of parameters increases,
given rise to a large variety of solutions.
The theoretical motivation to study the nonuniversal

models comes from top-bottom approaches, especially in
string theory derived constructions, where theUð1Þ0 charges
are family dependent [6]. Nonuniversal models have been
also used to explain the number of families and the hierarchies
in the fermion spectrum observed in the nature [15–17].
For gauge structures with an extended electroweak (EW)

sector [6], the heavy vector bosons Z0 associated with new

Uð1Þ0 symmetries are generic predictions of physics
beyond the Standard Model (BSM). The detection of
one of these resonances at the LHC will shed light on
the underlying symmetries of the BSM physics. For the
high luminosity regime, the LHC will have sensitivity for
Z0 masses below 5 TeV [18,19]; thus, a systematic and
exhaustive study of the EW extensions of the SM with a
minimal content of exotic ingredients is convenient. By
imposing universality on the EW extensions of the SM
(as it happens in the SM), the possible EW extensions are
basically E6 subgroups [5,20–22]. It is well-known that
realistic scenarios for symmetry breaking in E6 require
large Higgs representations in order to explain the flavor
phenomenology [23]. By relaxing the universality con-
straints it is possible to have small Higgs and fermion
representations. In this case, the anomaly cancellation can
occur between fermions in different families; among the
most known models for three families are those related
to the local gauge structure SUð3Þc ⊗ SUð3ÞL ⊗ Uð1Þx
(3-3-1 for short) [15,16,24–32]. For flavor models without
electric exotic charges, i.e., by restricting the values for
the electric charges to those of the SM, the classification of
3-3-1 models was presented in [28]. By allowing any
rational value for the electric charge an infinite number of
models is allowed, as it was shown in [33,34].
Universality must not be taken for granted in models

with physics beyond the SM. In particular, under some
suitable assumptions many nonuniversal models are able
to evade the flavor changing neutral currents (FCNC)
constraints. In the present work, we want to make a
revision of the different Z0 models with a minimum content
of fermions and consistent with the SM phenomenology;
owing to the fact that these models are nonuniversal, the
result is very useful to explain some of the recent flavor
anomalies at the LHCb [12,35,36].
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The paper is organized as follows: in Sec. II, we derive
the general expressions for the chiral charges of the models
for two different scenarios, which correspond to two
different ways to cancel anomalies; in Sec. III, we define
several benchmark models, and it is pointed out which
coordinates in the parameter space correspond to models
previously studied in the literature. In Sec. IV, we derive
the 95%C.L. allowed limits on the model parameters by the
most recent LHC data and the corresponding limits by the
low energy electroweak data. Section V summarizes our
conclusions.

II. THE SUð2ÞL ⊗ Uð1Þ ⊗ Uð1Þ0
GAUGE SYMMETRY

The aim of the present work is to build the most general
parametrization for the minimal electroweak extension of
the SM, limiting ourselves to the SM fermions plus right-
handed neutrinos. In order to accomplish our purpose, it is
necessary to give up universality; with this in mind, let us
consider the gauge group SUð2Þ ⊗ Uð1Þ ⊗ Uð1Þ0 as a
nonuniversal anomaly free extension of the electroweak
sector of the Standard Model.
In what follows, T 1L, T 2L, and T 3L denote the gen-

erators of SUð2ÞL, while Y and X denote the generators of
Uð1Þ and Uð1Þ0, respectively. For this gauge structure, the
electric charge operator Q must be a linear combination in
the following way:

Q ¼ T 3L þ a
2
Y þ b

2
X ; ð1Þ

where

aY þ bX ¼ YSM; ð2Þ

being YSM the hypercharge of the SM, and a and b are real
parameters. Because YSM is known for every multiplet of
the SM, and we have not assumed the existence of exotic
particles, except the right-handed neutrino, from the above
equation, we can write X as a linear combination of YSM
and Y, in such a way that the free parameters of the model
are reduced to the Y values for the SM Fermions, the right-
handed neutrinos and the Higgs bosons. In what follows,
we can avoid any reference to the specific values of X .
The notation used for the Y values of the bosons and the
fermions of the first and third families are shown in Table I.
The covariant derivative for our model is given by

Dμ ¼ ∂μ − igT⃗ L · A⃗μ − i
gY
2
YBYμ − i

gX
2
XBXμ; ð3Þ

where g, gY , and gX are the gauge couplings associated to the
gauge groups SUð2ÞL, Uð1Þ, and Uð1Þ0, respectively, and
A⃗μ, BYμ, and BXμ stand for the corresponding gauge fields.
In order to avoid the strong constraints coming from

FCNC, the first and second families have the same quantum
numbers, but those of the third family are different see
Table I). Because of this, at least two Higgs doublets are
required in order to give masses to the three families,

hϕiiT ¼ ð0; vi=
ffiffiffi
2

p
Þ; i ¼ 1; 2: ð4Þ

In the next section, we shall establish the necessary
conditions to obtain an anomaly free model. To this end,
we shall consider the fermion content of the SM extended
with three right-handed neutrinos (one per family).

A. Anomaly cancellation

For the SUð2ÞL ⊗ Uð1Þ ⊗ Uð1Þ0 symmetry, the non-
trivial anomaly equations are

½SUð2Þ�2Uð1Þ∶ 2

�
Y1

qL þ
1

3
Y1

lL

�
þ Y3

qL þ
1

3
Y3

lL
¼ 0;

½SUð3Þ�2Uð1Þ∶ 2ð2Y1
qL − Y1

uR − Y1
dR
Þ þ 2Y3

qL − Y3
uR − Y3

dR
¼ 0;

½grav�2Uð1Þ∶ 2ð6Y1
qL − 3Y1

uR − 3Y1
dR

þ 2Y1
lL
− Y1

νR − Y1
eRÞ þ 6Y3

qL − 3Y3
uR − 3Y3

dR
þ 2Y3

lL
− Y3

νR − Y3
eR ¼ 0;

½Uð1Þ0�2Uð1Þ∶ 2ðY1
qL − 8Y1

uR − 2Y1
dR

þ 3Y1
lL
− 6Y1

eRÞ þ Y3
qL − 8Y3

uR − 2Y3
dR

þ 3Y3
lL
− 6Y3

eR ¼ 0;

Uð1Þ0½Uð1Þ�2∶ 2½ðY1
qLÞ2 − 2ðY1

uRÞ2 þ ðY1
dR
Þ2 − ðY1

lL
Þ2 þ ðY1

eRÞ2� þ ðY3
qLÞ2 − 2ðY3

uRÞ2 þ ðY3
dR
Þ2 − ðY3

lL
Þ2 þ ðY3

eRÞ2 ¼ 0;

½Uð1Þ�3∶ 2½6ðY1
qLÞ3 − 3ðY1

uRÞ3 − 3ðY1
dR
Þ3 þ 2ðY1

lL
Þ3 − ðY1

νRÞ3 − ðY1
eRÞ3�

þ 6ðY3
qLÞ3 − 3ðY3

uRÞ3 − 3ðY3
dR
Þ3 þ 2ðY3

lL
Þ3 − ðY3

νRÞ3 − ðY3
eRÞ3 ¼ 0: ð5Þ

From these equations and from Eq. (2), it can be shown that
the other possible equations; that is those corresponding to
½SUð2Þ�2Uð1Þ0, ½SUð3Þ�2Uð1Þ0, ½grav�2Uð1Þ0, and ½Uð1Þ0�3
cancel out trivially. We also take into account the con-
straints coming from Yukawa couplings,

LY ⊃ l̄1L
~ϕ1ν1R þ l̄1Lϕ1e1R þ q̄1L

~ϕ1u1R þ q̄1Lϕ1d1R

þ l̄3L
~ϕ2ν3R þ l̄3Lϕ2e3R þ q̄3L

~ϕ2u3R
þ q̄3Lϕ2d3R þ H:c: ð6Þ
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The corresponding terms of the second family generate
identical constraints as those of the first family, for this
reason, they have not been considered in the former
equation. The corresponding constraints coming from the
terms in the above Lagrangian are

Yϕ1
− Y1

νR þ Y1
lL
¼ 0;

Yϕ1
þ Y1

eR − Y1
lL
¼ 0;

Yϕ1
− Y1

uR þ Y1
qL ¼ 0;

Yϕ1
þ Y1

dR
− Y1

qL ¼ 0;

Yϕ2
− Y3

νR þ Y3
lL
¼ 0;

Yϕ2
þ Y3

eR − Y3
lL
¼ 0;

Yϕ2
− Y3

uR þ Y3
qL ¼ 0;

Yϕ2
þ Y3

dR
− Y3

qL ¼ 0: ð7Þ

By solving simultaneously the Eqs. (5) and (7), we find two
solutions (see Table II). One of them corresponds to what
we call scenario A, in which the anomaly cancellation

occurs in each family, while in another solution, the
anomaly cancellation takes place between fermions in
different families; from now on, we will call this solution
scenario B. In both cases, the Uð1Þ fermion charges can be
written in terms of four free parameters, which we choose
by convenience as fY1

νR ;Y
3
νR ;Y

1
qL ;Y

3
qLg. As a particular

feature, we observe that in scenario B, the Uð1Þ charges of
the two Higgs doublets turn out as a surprise to be equal.
For this reason, in this case, only one doublet is necessary
in order to provide mass to the fermion fields, although a
singlet is needed in order to properly break the gauge
symmetry.
As mentioned above, to break SUð2Þ ⊗ Uð1Þ ⊗ Uð1Þ0

down to Uð1ÞQ, a minimal set of one SUð2Þ doublet plus a
singlet is required. But to properly generate viable quark
masses and a CKMmixing matrix, at least a second doublet
must be introduced. The generation of lepton (neutrino)
masses is more involved and may require new scalars, but it
is a highly model dependent subject [37]. However, there
are two general cases of interest. The first one is the
canonical type I seesaw, where the νR charges are set to
zero. As we will see later, this condition is realized in the
Zmin model. An alternative way would be to forbid the
Dirac Yukawa coupling for the νR. This would be relevant
to models in which a Dirac mass is generated by higher-
dimensional operators and/or loops. A detailed study of
these extensions will be presented elsewhere.
In the next section, we will calculate the chiral couplings

of the SM fermions to the Z0 boson.

B. Chiral charges

The interaction between the fundamental fermions and
the EW fields is given by the Lagrangian,

LEW ¼
X
f

iðf̄LγμDμfL þ f̄RγμDμfRÞ; ð8Þ

where f runs over all fermions. By using Eq. (3) for the
covariant derivative and limiting ourselves to those terms
corresponding to the neutral gauge bosons, the above
expression can then be written as

LNC ¼ gJμ3LA3μ þ gYJ
μ
YBYμ þ gXJ

μ
XBXμ; ð9Þ

with

JμY ¼ 1

2

X
f

f̄ γμ½YðfLÞPL þ YðfRÞPR�f; and

JμX ¼ 1

2

X
f

f̄ γμ½XðfLÞPL þ XðfRÞPR�f: ð10Þ

The values of Y for the different chiral states can be read
off from Table I, and by using the relation (2), it is possible
to know the corresponding values for X.

TABLE II. Solutions to the anomally cancellation equations (5)
and the Yukawa constraints (7). The first solution (scenario A)
corresponds to a frameworkwhere the anomaly cancellationoccurs
in each family separately. For another solution (scenario B), the
anomaly cancellation takes place between fermions in different
families. Notice that all the solutions are presented as functions of
only the four parameters Y1

qL , Y
3
qL , Y

1
νR , and Y3

νR .

Scenario A Scenario B

Yϕ1
3Y1

qL þ Y1
νR 2Y1

qL þ Y3
qL þ 1

3
ð2Y1

νR þ Y3
νRÞ

Yϕ2
3Y3

qL þ Y3
νR 2Y1

qL þ Y3
qL þ 1

3
ð2Y1

νR þ Y3
νRÞ

Y1
lL

−3Y1
qL −2Y1

qL − Y3
qL þ 1

3
ðY1

νR − Y3
νRÞ

Y1
eR −6Y1

qL − Y1
νR −2ð2Y1

qL þ Y3
qLÞ − 1

3
ðY1

νR þ 2Y3
νRÞ

Y1
uR 4Y1

qL þ Y1
νR 3Y1

qL þ Y3
qL þ 1

3
ð2Y1

νR þ Y3
νRÞ

Y1
dR

−2Y1
qL − Y1

νR −Y1
qL − Y3

qL −
1
3
ð2Y1

νR þ Y3
νRÞ

Y3
lL

−3Y3
qL −2Y1

qL − Y3
qL −

2
3
ðY1

νR − Y3
νRÞ

Y3
eR −6Y3

qL − Y3
νR −2ð2Y1

qL þ Y3
qLÞ − 1

3
ð4Y1

νR − Y3
νRÞ

Y3
uR 4Y3

qL þ Y3
νR 2ðY1

qL þ Y3
qLÞ þ 1

3
ð2Y1

νR þ Y3
νRÞ

Y3
dR

−2Y3
qL − Y3

νR −2Y1
qL −

1
3
ð2Y1

νR þ Y3
νRÞ

TABLE I. Uð1Þ charges for the chiral fields of the first (third)
family and the two Higgs doublets. The charges for the second
family are the same as those of the first one. SM hypercharges are
also shown.

ψL ¼ ðν; eÞL νR eR ψ 0
L ¼ ðu; dÞL uR dR ϕ1;2

YSM −1 0 −2 1=3 4=3 −2=3 1

Y Y1ð3Þ
lL

Y1ð3Þ
νR Y1ð3Þ

eR Y1ð3Þ
qL Y1ð3Þ

uR Y1ð3Þ
dR

Yϕ1;2
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At this point, we carry out an orthogonal transformation
to write the original gauge fields ðBY ; BX Þ in terms of the
new gauge bosons ðB; Z0Þ, that is

BYμ ¼ cos θBμ − sin θZ0
μ;

BXμ ¼ sin θBμ þ cos θZ0
μ; ð11Þ

being θ the mixing angle and Bμ the gauge field associated
with the SM hypercharge. In this new basis, the neutral
current Lagrangian Eq. (9) is

LNC ¼ gJμ3LA3μ þ gYSM
JμYSM

Bμ þ gZ0JμZ0Z0
μ; ð12Þ

where

gYSM
JμYSM

¼ gYJ
μ
Y cos θ þ gXJ

μ
X sin θ;

gZ0JμZ0 ¼ −gYJ
μ
Y sin θ þ gXJ

μ
X cos θ;

¼ gZ0
X
f

f̄ γμ½ϵLðfÞPL þ ϵRðfÞPR�f: ð13Þ

In the last expression, we have defined

gZ0ϵLðfÞ ¼
1

2
½−gY sin θYðfLÞ þ gX cos θXðfLÞ�;

gZ0ϵRðfÞ ¼
1

2
½−gY sin θYðfRÞ þ gX cos θXðfRÞ�: ð14Þ

Since Eq. (2) implies the relation aJμY þ bJμX ¼ JμYSM
, the

Eq. (13) leads us to the following relations:

agYSM
¼ gY cos θ;

bgYSM
¼ gX sin θ: ð15Þ

By defining ĝY ≡ gY=a and ĝX ≡ gX=b, the above expres-
sions are equivalent to

ĝY
ĝX

¼ tan θ;

1

ðgYSM
Þ2 ¼

1

ðĝYÞ2
þ 1

ðĝX Þ2
: ð16Þ

As can be shown by an explicit calculation, the chiral
charges in Eq. (14) can all be written as linear combinations
of the following four new parameters:

Zl1 ≡ Y1
νRD;

Zl3 ≡ Y3
νRD;

Zq1 ≡ C − 3Y1
qLD;

Zq3 ≡ C − 3Y3
qLD; ð17Þ

where

D ¼ aðĝX Þ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðĝX Þ2 − g2YSM

q ;

C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðĝX Þ2 − g2YSM

q
: ð18Þ

By adopting these definitions in Table), Eq. (14) allowed us
to obtain the chiral charges in scenariosA andB, which are
shown in Tables III and IV, respectively.

III. BENCHMARK MODELS

The most general solution of the anomaly equations
which satisfy the constraints coming from the Yukawa
couplings depends on four parameters. In general, it is quite
difficult to put constraints on this four-dimensional space;
however, it is possible to put very conservative constraints
on some linear combinations of these parameters by using
benchmark models, some of them already discussed in
the literature. Let us see some examples (all the models
considered in this work are presented in Table V).
In order to cross-check our equations, it is convenient to

calculate the charges for the most general Z0 model with
vector charges ZA;B

V ; in our framework, these charges are
shown in Tables III and VI for the scenarios A and B,
respectively. By using these charges, it is possible to
reproduce the ZB−L model by taking Zl1 ¼ Zl3 in scenario
A, andZl1 ¼ Zq1 ¼ Zq3 in scenarioB. The ZB−L model is
the minimal universal model with right-handed neutrinos
with a vectorlike neutral current. Another model with a
vectorlike neutral current is the tauphilic model Zτ which
have zero couplings to the leptons of the first and the
second families, and nonzero couplings for the τ. In
Tables III and VI, this condition is met by setting
Zl1 ¼ 0. In this family, the model B − 3Lτ is the best-
known example in the literature [37–39]. Modulo a global
normalization, the charges of the Zτ reduce to those of
ZB−3Lτ

by requiring Zq1 ¼ Zq3 in Table VI. This model
was proposed to have radiative masses with acceptable

TABLE III. In the second and third columns are shown the
chiral charges, which are obtained by requiring anomaly can-
cellation in each family (scenario A). By imposing that the left
chiral charges be equal to the right ones, we obtain the most
general model with vector charges in scenarioA.Zlα andZqα are
arbitrary real parameters as can be seen in Eq. (17). For
Zl1 ¼ Zl2 ¼ Zl3, we obtain the universal B − L model.
α ¼ 1, 2, 3 is a family index.

f gZ0ϵLðfÞ gZ0ϵRðfÞ gVϵVL;R

να − 1
2
Zqα − 1

2
Zlα − 1

2
Zlα

eα − 1
2
Zqα þ 1

2
ðZlα − 2ZqαÞ − 1

2
Zlα

uα þ 1
6
Zqα − 1

6
ð3Zlα − 4ZqαÞ þ 1

6
Zlα

dα þ 1
6
Zqα þ 1

6
ð3Zlα − 2ZqαÞ þ 1

6
Zlα
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phenomenological values for neutrino oscillations, by
allowing an extended scalar sector [37]. In Ref. [40], it
was pointed out that if there is a gauged B − 3Lτ symmetry
at low energy, it can prevent fast proton decay. This model
is also able to provide dark matter candidates as has been
studied in [41]. For the scenario A, a chiral tauphilic model
is also possible in a trivial way by making in Table III
Zqα ¼ Zlα ¼ 0 for the first and the second families (i.e.,
for α ¼ 1, 2) and Zq3 ≠ 0 and Zl3 ≠ 0. Another interesting

family of models is the Zt, which is defined to have zero
couplings to the quarks of the first and second families but
couplings different from zero for the top and the bottom
quarks. An special subset of models in Zt are the hadro-
phobic models ZB, which have zero couplings to the quarks
of the three families. Indeed, Z0 hadrophobic models
attracted a lot of interest in connection with the e� excess
in cosmic ray data observed by ATIC and PAMELA
experiments [7,42–44]. Another interesting model is the

ZðA;BÞ
min , which has zero couplings to the right-handed

neutrinos, allowing a Majorana mass term.
For dark matter interacting with the SM fermions

through a Z0, an isospin violating interaction constitutes
a possible solution to some challenges posed by some
experimental results [45–49]. A maximal isospin violation
is possible by requiring zero couplings to the proton but
different from zero for the neutron or in the other way
around. For a nucleus with Z protons and N neutrons, the
weak charge is given by

QWðN; ZÞ ¼ QWðpÞZ þQWðnÞN; ð19Þ

whereQWðpÞ¼−2ð2C1uþC1dÞ andQWðnÞ ¼ −2ð2C1d þ
C1uÞ are the proton and neutron weak charges, respectively.
Here (for the definitions see Refs. [50–52])

C1q ¼ 2gð1ÞA ðeÞgð1ÞV ðqÞ þ 2

�
g0MZ

gð1ÞMZ0

�
2

g0AðeÞg0VðqÞ;

C2q ¼ 2gð1ÞV ðeÞgð1ÞA ðqÞ þ 2

�
g0MZ

gð1ÞMZ0

�
2

g0VðeÞg0AðqÞ; ð20Þ

where gð1ÞV;AðfÞ and gð1Þ are the vector (axial) coupling and
the coupling strength, respectively, of the fermion f to the
SM Z boson, and g0V;AðfÞ and g0 are the corresponding
quantities for the interaction with the Z0. The shift in the
proton and neutron weak charges owing to the Z0 couplings
to the standard model fermions is

TABLE V. By imposing constraints on the chiral charges in
Tables III and IV, it is possible to define benchmark models which
result quite useful in the analysis of the experimental constraints.
The parameters Zlα and Zqα are arbitrary real numbers as can be
seen in Eq. (17). α ¼ 1, 2, 3 and β ¼ 1, 2. In scenario A, the
charges of some benchmark models are equal to zero; for this
reason, these possibilities are not shown here.

Model Definition Constraints on Zlα and Zqα

ZA
V ϵðfÞL ¼ ϵRðfÞ

Zqα ¼ Zlα

ZB
V Zl3 ¼ −2Zl1 þ 2Zq1 þ Zq3

ZA
τ

ϵL;RðeβÞ ¼ ϵL;RðνβÞ ¼ 0

Zlβ ¼ Zqβ ¼ 0

ZB
τ Zl3 ¼ 2Zq1 þ Zq3,

Zl1 ¼ 0

ZB
L ϵL;RðeαÞ ¼ ϵL;RðναÞ ¼ 0 Zl1 ¼ Zl3 ¼ 0,

Zq3 ¼ −2Zq1

ZA
p

2gVðuÞ þ gVðdÞ ¼ 0
3Zq1 ¼ Zl1

ZB
p Zl3 ¼ −2Zl1 þ 8Zq1 þ Zq3

ZA
n gVðuÞ þ 2gVðdÞ ¼ 0

Zq1 ¼ −Zl1

ZB
n Zl3 ¼ −2Zl1 − 4Zq1 þ Zq3

ZB
t ϵL;RðuβÞ ¼ ϵL;RðdβÞ ¼ 0 Zq1 ¼ 0,

Zq3 ¼ 2Zl1 þ Zl3

ZB
B

ϵL;RðuαÞ ¼ ϵL;RðdαÞ ¼ 0 Zq1 ¼ 0, Zq3 ¼ 0,
Zl3 ¼ −2Zl1

ZðA;BÞ
min

ϵRðναÞ ¼ 0 Zlα ¼ 0

TABLE IV. In the second and third columns are shown the chiral charges, which are obtained by requiring
anomaly cancellation between fermions in different families (scenarioB). Zlα and Zqα are arbitrary real parameters
as can be seen in Eq. (17).

f gZ0ϵLðfÞ gZ0ϵRðfÞ
ν1 − 1

6
ðZl1 − Zl3 þ 2Zq1 þ Zq3Þ − 1

2
Zl1

e1 − 1
6
ðZl1 − Zl3 þ 2Zq1 þ Zq3Þ þ 1

6
ðZl1 þ 2Zl3 − 4Zq1 − 2Zq3Þ

u1 þ 1
6
Zq1 − 1

6
ð2Zl1 þ Zl3 − 3Zq1 − Zq3Þ

d1 þ 1
6
Zq1 þ 1

6
ð2Zl1 þ Zl3 − Zq1 − Zq3Þ

ν3 þ 1
6
ð2Zl1 − 2Zl3 − 2Zq1 − Zq3Þ − 1

2
Zl3

e3 þ 1
6
ð2Zl1 − 2Zl3 − 2Zq1 − Zq3Þ þ 1

6
ð4Zl1 − Zl3 − 4Zq1 − 2Zq3Þ

u3 þ 1
6
Zq3 − 1

6
ð2Zl1 þ Zl3 − 2Zq1 − 2Zq3Þ

d3 þ 1
6
Zq3 þ 1

6
ð2Zl1 þ Zl3 − 2Zq1Þ
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ΔQWðpÞ ¼ −4
�

g0MZ

gð1ÞMZ0

�
2

g0AðeÞð2g0VðuÞ þ g0VðdÞÞ;

ΔQWðnÞ ¼ −4
�

g0MZ

gð1ÞMZ0

�
2

g0AðeÞð2g0VðdÞ þ g0VðuÞÞ: ð21Þ

By requiring thatΔQWðpÞ ¼ 0 [with gAðeÞ ≠ 0], we obtain
the protonphobic model1 ZA;B

p . The chiral charges for this
model are shown in Table VII. In an identical way, we
proceed to obtain the corresponding charges of the neu-
tronphobic model ZA;B

n .

IV. LHC AND LOW ENERGY CONSTRAINTS

In this section, we report the most recent constraints,
from colliders and low energy experiments, on the Z0
parameters for some benchmark models. For the time
being, the strongest constraints come from the proton-
proton collisions data, collected by the ATLAS experiment
at the LHC with an integrated luminosity of 13.3 fb−1 at a
center of mass energy of 13 TeV. In particular, we used the
upper limits at 95% C.L. on the total cross section of the
Z0 decaying into dileptons [54] (i.e., eþe− and μþμ−). In
Fig. 1, the colored green regions correspond to the allowed
regions for this data.
Even though the dilepton data put the strongest con-

straints on three of the four models in Fig. 1, this data do
not put limits on the parameters of the tauphilic model Zτ,
because this model has zero couplings to the electron and
the muon. For this model, we used instead the strongest
constraints on the total cross section pp → τþτ− channel,

TABLE VI. In the second column are shown the chiral charges for the most general model ZV with vector charges
in scenarioB, from this model, it is possible to get the chiral charges for the tauphilic Zτ, leptophobic ZL, and the Zt,
which are shown in the third, fourth, and fifth columns, respectively. Here, the charges depend on three parameters
ðZl1;Zq1;Zq3Þ, which are defined in Eq. (17).

f gVϵVL;R gτϵτL;R gLϵLR gtϵtL;R

ν1 − 1
2
Zl1 0 0 − 1

2
Zl1

e1 − 1
2
Zl1 0 0 − 1

2
Zl1

u1 þ 1
6
Zq1 þ 1

6
Zq1 þ 1

6
Zq1

0

d1 þ 1
6
Zq1 þ 1

6
Zq1 þ 1

6
Zq1

0

ν3 − 1
2
ð2Zq1 þ Zq3 − 2Zl1Þ − 1

2
ð2Zq1 þ Zq3Þ 0 − 1

2
ðZq3 − 2Zl1Þ

e3 − 1
2
ð2Zq1 þ Zq3 − 2Zl1Þ − 1

2
ð2Zq1 þ Zq3Þ 0 − 1

2
ðZq3 − 2Zl1Þ

u3 þ 1
6
Zq3 þ 1

6
Zq3 − 1

3
Zq1 þ 1

6
Zq3

d3 þ 1
6
Zq3 þ 1

6
Zq3 − 1

3
Zq1 þ 1

6
Zq3

TABLE VII. In the second column, chiral charges for the minimal model ZB
min are presented, and in the

third column are the corresponding charges for the protonphobic model ZB
p . In both cases, the models belong to

scenario B. Here, the charges depend only on three real arbitrary parameters ðZl1;Zl3;Zq3Þ.

ZB
min ZB

p

f gminϵ
min
L gminϵ

min
R gpϵ

p
L gpϵ

p
R

ν1 − 1
6
ð2Zq1 þ Zq3Þ 0 − 1

2
ðZl1 − 2Zq1Þ − 1

2
Zl1

e1 − 1
6
ð2Zq1 þ Zq3Þ − 1

3
ð2Zq1 þ Zq3Þ − 1

2
ðZl1 − 2Zq1Þ − 1

2
ðZl1 − 4Zq1Þ

u1 þ 1
6
Zq1 þ 1

6
ð3Zq1 þ Zq3Þ þ 1

6
Zq1 − 5

6
Zq1

d1 þ 1
6
Zq1 − 1

6
ðZq1 þ Zq3Þ þ 1

6
Zq1 þ 7

6
Zq1

ν3 − 1
6
ð2Zq1 þ Zq3Þ 0 − 1

2
ð6Zq1 þ Zq3 − 2Zl1Þ − 1

2
ð8Zq1 þ Zq3 − 2Zl1Þ

e3 − 1
6
ð2Zq1 þ Zq3Þ − 1

3
ð2Zq1 þ Zq3Þ − 1

2
ð6Zq1 þ Zq3 − 2Zl1Þ − 1

2
ð4Zq1 þ Zq3 − 2Zl1Þ

u3 þ 1
6
Zq3 þ 1

3
ðZq1 þ Zq3Þ þ 1

6
Zq3 − 1

6
ð6Zq1 − Zq3Þ

d3 þ 1
6
Zq3 − 1

3
Zq1 þ 1

6
Zq3 þ 1

6
ð6Zq1 þ Zq3Þ

1Our definitions of protonphobic and neutronphobic refer to
bosons which do not couple—at vanishing momentum transfer
and at the tree level—to protons and neutrons, respectively. This
definition is different from the definition presented in Ref. [53].
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which come from the proton-proton collisions data, col-
lected by the ATLAS experiment, at a center of mass
energy of 8 TeV and an integrated luminosity of
19.5–20.3 fb−1 [56]. For this channel, the most recent
constraints, with a similar strength than those of ATLAS,
come from the data collected by the CMS experiment at a
center of mass energy of 13 TeV and an integrated
luminosity of 2.2 fb−1 [57,58].. In Fig. 1, the 95% C.L.
allowed regions by the ATLAS and CMS data, for the
tauphilic parameters are shown.
There is also a possibility to put constraints by using data

from low energy experiments. The low energy strongest

constraints come from atomic parity violation (APV), in
particular, from the cesium weak charge [59,60] and the
electron weak charge measurement by the SLAC-E158
Collaboration [61]. The experimental values and the
analytical expressions for these observables are shown in
Table VIII. The APV observables depend on the electron
axial coupling to the Z0 boson, which is zero in the vector
model ZV . In consequence, there are not APV limits on
this model in Fig. 1. An important constraint on ZV comes
from the limits on the violation of the first-row CKM
unitarity [62,63]. For this model, the constraints on the Zq1
parameter are dominated by the pp → lþl− channel;
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FIG. 1. Colored regions correspond to the allowed parameter space at the 95% C.L for a MZ0 ¼ 3 TeV. The orange region in the
left plot in the top panel corresponds to the 95% C.L. allowed by data from proton-proton collisions decaying to tau pairs in the ATLAS
detector with an integrated luminosity of 19.5–20.3 fb−1. Contours are also shown for the same channel at 13 TeV with a luminosity of
2.2 fb−1 from CMS data. In the remaining plots, the green region corresponds to the 95% C.L. allowed region by data proton-proton
collisions decaying to electrons and dimuons with an integrated luminosity of 13.3 fb−1, the magenta region corresponds to the
95% C.L. allowed region by the electron weak charge measurements in Moller scattering. The yellow region corresponds to the
95% C.L. allowed region by the cesium weak charge measurements. The cyan region corresponds to the allowed region by
the constraints on the violation of the first-row CKM unitarity [55]. By combining all the data, the 95% C.L. allowed parameter space
corresponds to the indigo region. The region inside the dashed magenta, yellow, cyan, and indigo correspond to the 95% allowed regions
for a MZ0 ¼ 5 TeV. The ZB

min model is basically excluded for a MZ0 ¼ 3 TeV; for this reason, this contour is not shown.
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however, this channel does not put limits on the Zl1
parameter for small values of Zq1; as can be seen in
Fig. 1. In this case, the CKM unitarity is able to put bounds
even for Zq1 ¼ 0. This plot shows the importance of the
low energy constraints in order to narrow the new physics
parameters.
In order to show the complementarity of some experi-

ments, the constraints on the parameter space for the
protonphobic and neutronphobic models are shown in
Fig. 1. For some models, the low-energy observables
can constrain one of the parameters in Eq. (17) independ-
ently of the values of the remaining ones. These results are
shown in Table IX.

V. CONCLUSIONS

In the present work, we presented the most general chiral
charges of the minimal universal and nonuniversal Z0
model with a minimal content of fermions. Even though
several minimal models have been reported before, the
complete solution as a function of a set of continuous
parameters and its corresponding collider and low energy
constraints, as far as we know, is a new result in the
literature.
In general, minimal models are of a great interest for the

beyond SM phenomenology [2,3,7,8,64–69]. In particle

physics, the nonuniversal models are well motivated,
especially in string theory derived constructions, where
the Uð1Þ0 charges are family nonuniversal [6].
Nonuniversal models have also been used to explain the
number of families and the hierarchies in the fermion
spectrum in the SM [15,16]. In our analysis, we rule out
some possibilities on phenomenological grounds, limiting
ourselves to a couple of scenarios to cancel the anomalies.
In the simplest case or scenario A, the anomalies cancel
between fermions in every family. It is fairly obvious that
from this scenario, it is possible to obtain, as a particular
case, the charges of the minimal universal models which, as
it is well-known [6], can be written as a linear combination
of the charges of the ZB−L model and the SM hypercharge.
In the second case or scenario B, the anomalies cancel

between fermions in different families. Although it is true
that some particular models in this scenario have been
reported before, to the best of our knowledge, the full
parametrization for this scenario is a new result in the
literature. To prevent FCNC constraints, the charges of the
first and second families were assumed to be identical, but
different to the charges of the third family. Constraints from
the SM Yukawa interactions were used to impose addi-
tional constraints in such a way that the number of free
parameters associated with the chiral charges was reduced
to four parameters. We also report the most recent LHC
constraints on the parameter space for some benchmark
models and compare them to those coming from experi-
ments at low energies. From our analysis, we showed that
the unitarity constraints on the CKM are able to exclude
some regions in the parameter space which are difficult to
exclude by using only LHC data.
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TABLE VIII. Experimental value and SM prediction of the Cesium and electron weak charges and the respective shift owed to the
interaction with the Z0. The third observable is the constraint on the violation of the first-row CKM unitarity [55], where

Δ0 ¼ 3
4π2

M2
W

M2

Z0
ln

M2

Z0
M2

W
g02.

Q Value [55] SM prediction [55] ΔQ

QWðCsÞ −72.62� 0.43 −73.25� 0.02 ZΔQWðpÞ þ NΔQWðnÞ
QWðeÞ −0.0403� 0.0053 −0.0473� 0.0003 −4ð g0MZ

gð1ÞMZ0
Þ2g0AðeÞg0VðeÞ

1 −
P

q¼d;s;bjVuqj2 1 − 0.9999ð6Þ 0 Δ0ϵLðμÞðϵLðμÞ − ϵLðdÞÞ

TABLE IX. Bounds on models for which the low-energy
observables can constrain one of the parameters in Eq. (17)
independently of the values of the remaining ones.

Model MZ0 ¼ 3 TeV MZ0 ¼ 5 TeV

ZA
V jZl1j ≤ 3.112 jZl1j ≤ 4.856

ZA
p jZl1j ≤ 3.558 jZl1j ≤ 5.927

ZA
n jZl1j ≤ 0.856 jZl1j ≤ 1.426

ZA
min jZq1j ≤ 1.180 jZq1j ≤ 1.964

ZB
t jZl1j ≤ 3.594 jZl1j ≤ 5.607

ZB
B

jZl1j ≤ 3.594 jZl1j ≤ 5.607
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