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We study ground and radial excitations of flavor singlet and flavored pseudoscalar mesons within
the framework of the rainbow-ladder truncation using an infrared massive and finite interaction
in agreement with recent results for the gluon-dressing function from lattice QCD and Dyson-
Schwinger equations. Whereas the ground-state masses and decay constants of the light mesons
as well as charmonia are well described, we confirm previous observations that this truncation is
inadequate to provide realistic predictions for the spectrum of excited and exotic states. Moreover,
we find a complex conjugate pair of eigenvalues for the excited D(s) mesons, which indicates a non-
Hermiticity of the interaction kernel in the case of heavy-light systems and the present truncation.
Nevertheless, limiting ourselves to the leading contributions of the Bethe-Salpeter amplitudes, we
find a reasonable description of the charmed ground states and their respective decay constants.
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I. INTRODUCTION

Bound states are a fascinating subject as they teach us
a great deal about the nature of interactions between con-
stituents of a given field theory. In the case of Quantum
Chromodynamics (QCD), this fascination is augmented
by the empirical fact that no asymptotically free states,
i.e. colored quarks and gluons, are observed. While stud-
ies of the analytic structure of colored Green functions are
very instructive and were indeed crucial to get insight on
their infrared behavior [1–27] and associated confinement
mechanisms, they do not offer direct access to experimen-
tal tests. Nonetheless, their precise form may be studied
indirectly via electromagnetic probes of the bound states
formed by the theory’s constituents [28–31] and many
dedicated experiments at existing and future accelerator
facilities will serve exactly this purpose.

In QCD, the simplest possible bound state is given
by the pion which plays a pivotal role in the under-
standing of the low-energy domain, being the lightest
strongly bound antiquark-quark state as well as the Gold-
stone bosons associated with chiral symmetry break-
ing. Model-independent properties of the Goldstone bo-
son were derived long ago [32] and express the intimate
connection between the pion’s Bethe-Salpeter amplitude
(BSA) and the quark propagator in the chiral limit.

Heavy mesons, on the other hand, provide a formidable
opportunity to study additional nonperturbative features
of QCD and can be used to test simultaneously all man-
ifestations of the Standard Model, namely the interplay
between electroweak and strong interactions. In the
infinite-heavy quark limit, the heavy-quark velocity be-
comes a conserved quantity and the momentum exchange
with surrounding light degrees of freedom is predomi-
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nantly soft. Since the heavy-quark spin decouples in this
limit, light quarks are blind to it. In essence, they do not
experience any different interactions with a much heav-
ier quark in a pseudoscalar or vector meson. In practice,
however, heavy-flavor and heavy-spin breaking effects are
important and while dynamical chiral symmetry break-
ing (DCSB) hardly plays a role in charmonium and botto-
nium states, it cannot be ignored in heavy-light systems,
such as in D and B mesons. A daunting challenge is
presented by the disparate energy scales and asymmet-
ric momentum distribution within these flavor nonsinglet
mesons, i.e. the simultaneous treatment of heavy-quark
symmetry breaking effects and DCSB, as the interactions
of a heavy with a light quark are governed by the non-
perturbative dynamics of the order ΛQCD. Incidentally,
this is also the heavy meson’s size scale.

Numerical solutions of the heavy meson’s BSA with
renormalization-group improved ladder truncation, fol-
lowing work on the kaon BSA [33, 34], proved to be un-
successful: the truncations do not yield the Dirac equa-
tion when one of the quark masses is much larger. To cir-
cumvent these problems, the Dyson-Schwinger equation
(DSE) for the heavy quark was solved for an infrared-
suppressed gluon momentum as described in Ref. [35];
no such infrared suppression was applied to the dressing
of the light quark and the binding kernel. This approach
reproduces well the masses for ground-state pseudoscalar
and vector heavy-light mesons, but overestimates exper-
imental weak decay constants by ∼ 20% in the case of
the D meson and ∼ 40% for the B meson. Alterna-
tively, in the heavy-quark propagation the mass func-
tion is approximated by a momentum-independent con-
stituent mass. This is justified for the b quark and rea-
sonable for the c quark given the modest variation in its
functional behavior over a wide momentum range and the
constituent-quark mass is fitted to the lightest meson, the
D andB mesons in the case of pseudoscalars [35, 36]. The
resulting BSA yields again ground-state pseudoscalar and
vector meson masses which compare very well with ex-
perimental values but strongly underestimate the lep-
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tonic decay constants. The situation improves when one
uses a complex conjugate pole representation (with three
poles) instead of a heavy-quark constituent propagator
to compute the normalization and weak decay constant,
though omitting a simultaneous application to the Bethe-
Salpeter kernel seems inconsistent [36]. Nevertheless, in
the latter case the decay constants are overestimated by
about 15% for the D, Ds and B mesons compared with
experimental averages.

Aside from an unfavorable comparison with exper-
imental data, one may object that the constituent-
quark approach neglects valuable information of the
quark’s dressed mass function, namely, its imaginary
part, ImM(p2) ∼ 0 [37–40]. Thus, in solving the Bethe-
Salpeter equation (BSE), one approximates the complex
mass function by a flat surface on the complex plane.
Our motivation is to verify whether a fully consistent,
simultaneous numerical solution of the heavy-quark DSE
and heavy-light pseudoscalar meson BSE can be obtained
with a modern approach to the rainbow-ladder (RL)
truncation based on the interaction proposed by Qin et
al. [41]. This Ansatz produces an infrared behavior of the
interaction, commonly described by a “dressing function”
G(k2) [32], congruent with the decoupling solution found
in DSE and lattice studies of the gluon propagator [7–
17, 21]. Indeed, the gluon propagator is found to be a
bounded and regular function of spacelike momenta with
a maximum value at k2 = 0.

Obviously, the cause for the difficulties encountered in
solving the BSE for heavy-light mesons may not solely lie
in the infrared behavior of the interaction but also in the
truncation employed. In particular, hadron properties
are not much affected by the deep infrared of the inter-
action; rather, they seem to be sensitive to the support
and strength of the interaction at the scales of a few hun-
dred MeV [29, 42]. As known from a long series of BSE
studies, the RL truncation is successful for equal-mass
mesons, for instance light q̄q mesons, such as the pion,
kaon and ρ [32], but also for Q̄Q charmonia and botto-
nium [43–46] where subtle cancellations between contri-
butions from the quark-gluon and antiquark-gluon ver-
tices are in order. Due to the very different momentum
and energy-scale distributions, the dressing of the quark-
gluon vertex becomes important for heavy-light systems.
Progress to go beyond RL truncation has been made and
is under way [47–53] and the consistent inclusion of a
dressed quark-gluon vertex which satisfies the relevant
Ward-Takahashi identities (WTI) can be realized by a
general form of the BSE [54].

Nonetheless, we here focus on the interaction proposed
in Ref. [41] within the RL approximation to describe the
properties of the light, strange and charmed flavor sin-
glet and nonsinglet pseudoscalar mesons, such as their
mass spectrum, that of the first radial excitation and
related weak decay constants. As we demonstrate, re-
cent improved numerical techniques [55, 56] and a care-
ful numerical treatment of the flavored DSE and BSE
in conjunction with a particular infrared behavior of the

interaction is able to satisfactorily reproduce the afore-
mentioned observables. In particular, we compute the
decay constants of the radial excitations of the kaon, ηc
and a fictitious s̄s state. We recall that this was not pos-
sible for the heavy-light mesons within the conventional
RL framework of Ref. [35]. In the present work, solutions
for the D and Ds mesons are found, though the trunca-
tion leads to complex eigenvalues of their excited states if
higher moments of the Chebyshev expansion of the BSA
are included. We thus confirm that an a accurate and
veracious description of the heavy-light flavored mesons
requires BSE solutions beyond the RL approximation.

II. PSEUDOSCALAR BOUND STATES

A. Dyson-Schwinger equation

We work in a continuum approach of QCD based on
the RL truncation of the quark DSE and of the quark-
antiquark kernel of the meson’s BSE, which is the lead-
ing term in a systematic symmetry-preserving truncation
scheme. The quark’s gap equation is described by the fol-
lowing DSE,1

S−1(p) = Z2(i /p+mbm) + Σ(p2) , (1)

where the dressed-quark self-energy contribution is (q =
k − p),

Σ(p2) = Z1 g
2

∫ Λ

k

Dµν(q)
λa

2
γµ S(k) Γaν(k, p) . (2)

The mnemonic shorthand
∫ Λ

k
≡
∫ Λ

d4k/(2π)4 represents
a Poincaré-invariant regularization of the integral with
the regularization mass scale, Λ, and where Z1,2(µ,Λ) are
the vertex and quark wave-function renormalization con-
stants. The nonperturbative interactions contribute to
the self-energy, Σ(p2), which corrects the current-quark
bare mass, mbm(Λ). The integral is over the dressed
gluon propagator, Dµν(q), and the dressed quark-gluon
vertex, Γaν(k, p), and the color matrices λa are in the fun-
damental representation of SU(3). In Landau gauge the
gluon propagator is purely transversal,

Dab
µν(q) = δab

(
gµν −

kµkν
q2

)
∆(q2)

q2
, (3)

where ∆(k2) is the gluon-dressing function. The quark-
gluon vertex in this truncation is simply given by,

Γaµ(k, p) =
λa

2
γµ . (4)

1 We employ throughout a Euclidean metric in our notation:

{γµ, γν} = 2δµν ; γ†µ = γµ; γ5 = γ4γ1γ2γ3, tr[γ4γµγνγργσ ] =

−4 εµνρσ ; σµν = (i/2)[γµ, γν ]; a ·b =
∑4
i=1 aibi; and Pµ timelike

⇒ P 2 < 0.
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Following Ref. [41] and suppressing color indices, we
write

Z1g
2Dµν(q) Γµ(k, p) → Z2

2

G(q2)

q2
Tµν(q) γµ , (5)

with the transverse projection operator Tµν(q) := gµν −
qµqν/q

2 and the effective coupling is the sum of two
terms:

G(q2)

q2
=

8π2

ω4
D exp

(
− q

2

ω2

)
+

8π2γm F(q2)

ln

[
τ +

(
1 + q2/Λ2

QCD

)2
] .
(6)

In Eq. (6), γm = 12/(33 − 2Nf ), Nf = 4, ΛQCD =
0.234 GeV; τ = e2 − 1; and F(q2) = [1 −
exp(−q2/4m2

t )]/q
2, mt = 0.5 GeV. The parameters ω

and D, respectively, control the width and strength of
the interaction and appropriate values will be discussed
in Sec. IV. The second term is a bounded, monotonically
decreasing and regular continuation of the perturbative-
QCD (pQCD) running coupling for all spacelike values of
k2, whereas the first term is an Ansatz for the interaction
at infrared momenta. It is crucial that the form of this
Ansatz provides enough strength to realize DCSB and/or
confinement. For momenta k2 & 2 GeV2, the perturba-
tive contributions markedly dominate the interaction.

With this, the solutions for spacelike momenta, p2 > 0,
to the gap equation (1) for a given flavor, f , are generally,

Sf (p) =
[
i /p Af (p2) + ID Bf (p2)

]−1
, (7)

where one imposes the renormalization condition,

Zf (p2) = 1/Af (p2)
∣∣
p2=µ2 = 1 , (8)

at large spacelike µ2 � Λ2
QCD. The mass function,

Mf (p2) = Bf (p2, µ2)/Af (p2, µ2), is independent of the
renormalization point µ. In order to make quantita-
tive matching with pQCD, another renormalization con-
dition,

S−1
f (p)

∣∣∣
p2=µ2

= i /p +mf (µ) ID , (9)

is imposed, where mf (µ) is the renormalized running
quark mass,

Zfm(µ,Λ)mf (µ) = mbm
f (Λ) , (10)

where Zfm(µ,Λ) = Zf4 (µ,Λ)/Zf2 (µ,Λ) is the flavor de-

pendent mass-renormalization constant and Zf4 (µ,Λ) is
the renormalization constant associated with the La-
grangian’s mass term. In particular, mf (µ) is nothing
else but the dressed-quark mass function evaluated at
one particular deep spacelike point, p2 = µ2, namely:

mf (µ) = Mf (µ) . (11)

The renormalization-group invariant current-quark mass
can be inferred via,

m̂f = lim
p2→∞

Mf (p2)

[
1

2
ln

(
p2

Λ2
QCD

)]γm
. (12)

B. Bethe-Salpeter equation

The homogeneous BSE for a q̄q bound state with rela-
tive momentum p and total momentum P can be written
as,

Γfgmn(p, P ) =

∫ Λ

k

Kklmn(p, k, P )
[
Sf (k+)Γfg(k, P )Sg(k−)

]
lk
,

(13)
where m,n, k, l collect Dirac and color indices; f, g are
flavor indices; and k+ = k+η+P, k− = k−η−P ; η++η− =
1. Since we work within the RL truncation, the BSE
kernel is given by

Kklmn(p, k, P ) = −Z
2
2 G(q2)

q2

(
λa

2
γµ

)
kn

Tµν(q)

(
λa

2
γν

)
ml

,

(14)
which satisfies the axial-vector WTI [32] and therefore
ensures a massless pion in the chiral limit. Eqs. (13) and
(14) define an eigenvalue problem with physical solutions
at the mass-shell points, P 2 = −M2, where M is the
bound-state mass.

In the following, we consider the spectrum of fla-
vor singlet and nonsinglet pseudoscalar mesons, which
are exhibited as a pole contribution to the axial-vector
and pseudoscalar vertices (omitting regular terms in the
neighborhood of the poles),

Γfg5µ(p, P )
∣∣
P 2+M2

n'0
=

fPnPµ
P 2 +M2

n

ΓfgPn
(p, P ) , (15)

iΓfg5 (p, P )
∣∣
P 2+M2

n'0
=

ρPn

P 2 +M2
n

ΓfgPn
(p, P ) , (16)

where ΓfgPn
(p, P ) ≡

[
Γfgmn(p, P )

]
Pn

is the bound state’s

BSA. The principal quantum number is n = 0 for the
ground state and n ≥ 1 for the radial excitations with
bound-state mass, Mn. In Eqs. (15) and (16), the ex-
pressions for ρPn

and fPn
are defined in Eqs. (A4) and

(A5), respectively. The properties of the excited states
are expected to be sensitive to details of the long-range
component of the interaction in Eq. (6), which provides
more support at large interquark separation than, e.g.,
the Maris-Tandy model [34]. The present study thus al-
lows for a test of the interaction of strange- and charm-
flavored 0− mesons and their excited states, in addition
to those considered in Ref. [41], via comparison with ex-
perimental values where available.

As mentioned in Sec. I, it is most likely that beyond-
RL contributions are important in heavy-light mesons.
In fact, the RL truncation with the interaction in Eq. (6)
should work best for heavy-heavy (Q̄Q) systems. Con-
sider for instance the Ball-Chiu Ansatz to the nonpertur-
bative quark-gluon vertex, Γµ(k, p), which is fully deter-
mined with the knowledge of A(p2) and B(p2) [57, 58]:
for heavier flavors, f = c, b, the scalar function Bc(p

2)
and even more so Bb(p

2) remain constant over a wide mo-
mentum range, while for the vector functions Ac,b(k

2) '
Ac,b(p

2) ' 1. The heavy-quark gluon vertex can there-
fore reasonably be approximated by a bare vertex.
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Thus, the RL approximation ought to work better
for heavy mesons such as the charmonia and botto-
nium, which is indeed confirmed in numerical stud-
ies [29, 44, 46]. The effects of DSCB and the impor-
tance of other tensor structures in the quark-gluon vertex
become increasingly more important for lighter quarks,
where, for example, mass splittings between parity part-
ners are only satisfactorily described by including the ten-
sor structure which corresponds to the chromomagnetic
moment [59]. Nonetheless, a hallmark of the RL is the
successful description of the pion, the key point being
that the axial-vector WTI be preserved and likewise the
Goldstone-boson character of the pion.

III. NUMERICAL IMPLEMENTATION

A. DSE on the complex plane

We follow Refs. [50, 55, 56] and choose the gluon mo-
mentum, q, to be real. This implies that when the ex-
ternal DSE momentum (1) is complex, so is the inter-
nal quark’s momentum. It is the case in Eq. (13) which
requires DSE solutions for S(p±) in the complex plane
with,

p2
± = p2 − η2

±M
2
n ± 2i

√
p2η±Mn , (17)

where p is collinear with P = (~0, iMn) in the meson’s
rest frame and in the quark’s DSE we employ η± = 1/2.
As we add P to the quark’s external momentum, p, the
internal quark momentum becomes k± = k ± η±P , k ∈
R+, and it follows that q = k± − p± = k− p is real. The
internal quark’s squared momentum is given by,

k2
± = k2 − η2

±M
2
n ± 2i

√
k2η±Mnz , (18)

with the angle, −1 ≤ z ≤ +1, and is also bounded
by a parabola whose vertex is (0,−η2

±M
2
n). Within the

parabola, the real integration variable, k, is limited by Λ
as follows.

We denote the regularization mass scale in Eq. (13) by
ΛBSE and relate it to the one in Eq. (2) with,

Λ2
DSE = Λ2

BSE + 1
4 M

2
f = Λ2

BSE + η2
fM

2
P , (19)

for f = u, d, s, c. This procedure is best illustrated with
an example, e.g. for a meson with strangeness, ūs; we
determine ηs and ηu pushing in each case Mf=u,s to
the limit at which we encounter poles while solving the
DSE on the complex plane. From the latter equality in
Eq. (19), we obtain ηs and ηu and imposing ηs + ηu = 1
we find,

1
2Ms = ηsMP ; 1

2Mu = ηuMP ⇒
Ms +Mu

2
= MP , (20)

where MP is the “maximal meson mass” — not to be
confused with Mn — for which the DSE can be solved for

each flavor and respective parameters, ηs = Ms/(Mu +
Ms) and ηu = Mu/(Mu + Ms). The latter are used as
momentum partitioning parameters η± in the BSE. Of
course, this is done for computational convenience and we
have checked that our results are stable under variations
of η±, as expected from a Poincaré-invariant approach.
In solving the BSE, Eq. (20) imposes an upper boundary
on the mass of the meson and its excited states: Mn <
MP . For flavor singlet equal-mass q̄q mesons we simply
choose ηf = η+ = η− = 1/2.

The solution of Eq. (1) for a complex value of p2
± re-

quires the simultaneous iteration on a complex 2d grid
bounded by the parabola of Eq. (18). Alternatively,
we can exploit the information from the contour of the
parabola via the Cauchy theorem [56]. To proceed with
the integration, we parametrize the contour (counter-
clockwise) in the upper complex plane, C+ : p2

+, with
p := z+(t) = tpmin + (1 − t)ΛDSE; in the lower plane,
C− : p2

−, with p := z−(t) = tΛDSE + (1 − t)pmin;
and we close the parabola with the path Cy : p2

y :=

Λ2
DSE − y2(t) + 2i y(t)ΛDSE with y(t) = Mnt − η−Mn,

t ∈ [0, 1]. More precisely, we use a linear parametrization
given by:

dp2
+ = 2 (z+(t) + iη+Mn) dz+(t) ; 0 ≤ z+(t) < ΛDSE ,

dp2
y = 2 (−y(t) + iΛDSE) dy(t) ; −η−Mn ≤ y(t) ≤ η+Mm,

dp2
− = 2 (z+(t)− iη+Mn) dz−(t) ; 0 ≤ z−(t) < ΛDSE .

(21)

The DSE for the quark is solved for 128 complex mo-
menta, p±, on each contour section using 128 momenta,
k±, and 128 angles, z, in the interior of the parabola
parametrized by Eq. (21), where the values for A(k2

±)
and B(k2

±) are obtained via the Cauchy theorem and si-
multaneous iteration of their values on the contour. For
numerical precision, the points on the contour are skewed
towards the vertex of the parabola near k2

± ∼ −η2
±M

2
n.

We use a quadrature method for the integral evaluation
and cross-check the results with the numerical integration
library CUBA [60]. The BSE (13) is solved for 64 external
momenta, p, 64 internal momenta, k, and 20 angles.

The renormalization condition in Eqs. (8) and (9) are
imposed on the DSE solutions at the spacelike real-axis
point, µ = 19 GeV, a value chosen to match the bulk
of extant studies [43, 61]. The current-quark masses
are fixed by requiring that the pion and kaon BSEs
produce mπ ≈ 0.138 GeV and mK ≈ 0.493 GeV. We
thus use mu,d(µ) = 3.4 MeV, ms(µ) = 82 MeV [41]
and mc(µ) = 0.905 GeV [62]. However, in computing
the values of A(p2) and B(p2) for the momenta on the
parabola (17), we are numerically limited by the appear-
ance of conjugate poles and cannot use an arbitrarily
large cutoff Λ in Eq. (1). This implies that we impose the
renormalization conditions, Eqs. (8) and (9), at a lower
momentum value, ξ < µ, and thus obtain new renor-

malization constants, Zfm and Zf4 . The details of our
renormalization procedure are discussed in Appendix A
and our complex solutions for A(p2) and B(p2) with the
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interaction in Eq. (6) are plotted for the u quark in Fig. 3
of Ref. [63], where the real parts of A(p2) and B(p2) on
the parabola are described by equipotential lines with
decreasing magnitude for increasing values of spacelike
Re k2 > 0. The imaginary components of A(p2) and
B(p2) are negative valued and decreasing for Im k2 > 0
and positive and increasing for Im k2 < 0, while for real
momenta, Im k2 = 0 and Re k2 > 0, both functions are
naturally real.

Alternatively, we cross-checked our renormalization
procedure by setting A(µ2) = 1 for µ = 2 GeV and
imposing in the ultraviolet the condition (12) following
Refs. [41, 61]. We also reproduce our results using a
complex pole representation for the quarks with three
poles [64] to which we fit the DSE solutions on the real
axis renormalized at 19 GeV. The numerical differences
with the masses and decay constants obtained with the
solutions of the DSE on the complex plane are negligible.

B. Solving the BSE with Arnoldi factorization

The general Poincaré-invariant form of the solutions
of Eq. (13) for the pseudoscalar channel JP = 0− and
the trajectory, P 2 = −M2

n, in a nonorthogonal base with
respect to the Dirac trace, Aα(p, P ) = γ5

{
i ID, /P , /p(p ·

P ), σµνpµPν
}

, is given by,

ΓPn
(p, P ) = γ5

[
i IDEPn

(p, P ) + /PFPn
(p, P )

+ /p(p · P )GPn(p, P ) + σµνpµPν HPn(p,P )
]
, (22)

where we have suppressed color, Dirac and flavor indices
for the sake of visibility. The functions FαPn

(p, P ) ={
EPn(p, P ), FPn(p, P ), GPn(p, P ), HPn(p, P )

}
are

Lorentz-invariant scalar amplitudes. We solve the
BSE by projecting on the functions FαPn

(p, P ) with the
appropriate projectors,

Pα(p, P ) =

4∑
β=1

Pαβ(p, P )Aβ(p, P )

1
4

4∑
β=1

Pαβ(p, P ) TrD [Aα(p, P )Aγ(p, P )] = δαγ , (23)

which allows for an extraction of FαPn
(p, P ) from the

BSA,

FαPn
(p, P ) = 1

4 trCD

[
Pα(p, P ) ΓP (p, P )

]
. (24)

This leads to the eigenvalue equation (α, β = 1, ..., 4),

λn(P 2)FαPn
(p, P ) =

∫ Λ

k

Kαβ(p, k, P )FβPn
(k, P ) , (25)

where Kαβ(p, k, P ) is obtained using Eq. (14):

Kαβ(p, k, P ) = −Z
2
2

4

G(q2)

q2
Tµν(q) trCD

[
Pα(p, P )

× γµλaS(k+)Aβ(k, P )S(k−) γνλ
a
]
. (26)

The propagators and functions FαPn
(p, P ) in Eq. (25)

are expanded in Chebyshev polynomials of the 2nd
kind, Um(zk) and Um(zp), with the angles, zk = P ·
k/(
√
P 2√k2) and zp = P · p/(

√
P 2√p2), and the mo-

menta, k and p, are discretized, e.g.,

FαPn
(pi, P ) =

∞∑
m=0

FαPn,m(pi, P )Um(zp) (27)

where we define Fαmi ≡ FαPn,m
(pi, P ). We employ three

Chebyshev polynomials for the ground states and five
Chebyshev polynomials for the excited states.

We solve the eigenvalue problem posed in Eq. (25)
by means of Arnoldi factorization implemented in the
ARPACK library [65, 66] which computes the eigenvalue
spectrum for a given N × N matrix. Practical im-
plementation implies a transcription of the BSE kernel
Kαβ(p, k, P ) in Eq. (26) as

Fαmi =
(
Kαβ

)mi
nj
Fβnj , (28)

which depends on six indices. In order to cast Eq. (28)
as an N ×N matrix,

FI = KIJ FJ , I, J = 1, ..., N , (29)

we relate the two sets of indices, I, J and α, β,m, n, i, j,
with the condition,

I(α,m, i) = α(m+ 1)i , (30)

J(β, n, j) = β(n+ 1)j . (31)

To recover the components of the BSA, FαP (p, P ), one
simply identifies Fαmi = FI where I is given by Eq. (30).

As mentioned, the factorization with ARPACK yields the
eigenvalue spectrum, λn(P 2), of the kernel, KIJ , and
therefore we obtain eigenvectors, FI , or equivalently the
BSA, FαPn

(p, P ), for each λn(P 2 = −M2
n) = 1.2 These

numerical results are presented and discussed in Sec. IV.
For the sake of completeness, we mention that all BSA

are normalized canonically as

2Pµ =

∫ Λ

k

TrCD

[
Γ̄Pn

(k,−P )
∂S(k+)

∂Pµ
ΓPn

(k, P )S(k−)

+ Γ̄Pn
(k,−P )S(k+)ΓPn

(k, P )
∂S(k−)

∂Pµ

]
, (32)

where we have omitted a third term that stems from
the derivative of the kernel, ∂Kklmn(p, k, P )/∂Pµ, as it
does not contribute in the RL truncation of Eq. (14).3

2 To find the root Mn of the equation λn(P 2 = −M2
n) − 1 = 0,

we made use of the Numerical Recipe subroutines zbrent and
rtsec [67]. We cross-checked the ARPACK solutions for the ground
states of the pseudoscalar channel with the commonly used iter-
ative procedure and find excellent agreement of the order 10−16.

3 We verify the values obtained with Eq. (32) with the equiv-
alent normalization condition [50, 68]: (d lnλn/dP 2)−1 =

tr
∫ Λ
k 3Γ̄(k,−P )S(k+)Γ(k, P )S(k−).
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In Eq. (32), the charge-conjugated BSA is defined as
Γ̄(k,−P ) := C ΓT (−k,−P )CT , where C is the charge
conjugation operator. We shall discuss the peculiarities
of charge symmetry in the case of heavy-light mesons in
Sec. IV.

IV. DISCUSSION OF RESULTS

We summarize our results for the mass spectrum and
weak decay constants of the pseudoscalar flavor singlet
and nonsinglet mesons in Tables I, II and III, where
the DSE and BSE are solved for two parameter sets of
the interaction in Eq. (6), denoted by models 1 and 2
in all tables, also discussed in Ref. [61]. In Table I,
we list the masses and decay constants, adopting the
Particle Data Group (PDG) conventions [69], of the
π,K, π(1300),K(1460), ηc(1S) and ηc(2S). We also in-
clude the mass and decay constant of a pure s̄s state
which cannot be related to the η or η′ but whose study is
worthwhile to elucidate the trajectory of the weak decay
constants as a function of the current quark mass. We
remind that the ηc and s̄s are neutral particles which do
not undergo a purely leptonic decay as in Eq. (A5), yet
they are useful quantities to calculate [70].

A direct comparison of the mass and decay constant
entries in both model columns reveals that the val-
ues obtained with model 1 are in much better agree-
ment with experimental values of the 0− ground states,
namely the π, K and ηc, whose ω dependence in the
range ω ∈ [0.4, 0.6] GeV is rather weak. Conversely,
model 2 reproduces well the masses of the radially excited
states, π(1300), K(1460) and ηc(2S), where for ωD =
(1.1 GeV)3 the ground states are no longer insensitive to
ω variations [61]. In order to obtain mπ = 0.138 GeV, ω
must increase beyond our reference value, ω = 0.6 GeV,
for the excited spectrum.

Nonetheless, the ground states are noticeably less de-
pendent on the ωD values than the radial excitations
where large mass differences are observed between both
columns. This agrees with the observations made in
Ref. [61] and extends them to the strange and charm
sector: the quantity rω := 1/ω is a length scale that
measures the range of the infrared component of the in-
teraction, G(q2), in Eq. (6). The radially excited states
or exotics are expected to be more sensitive to long-range
characteristics of G(q2) than ground states and we con-
firm that all radially excited states increase in mass if the
range, or strength, of the strong piece of the interaction
is reduced (N.B.: for ω = 0 the range is infinite).

In summary, we do not find a parameter set that de-
scribes equally well the entire mass spectrum of ground
and excited states which hints at the insufficiency of this
truncation. However, Model 2 uniformly overestimates
all masses by 6%−10 % in Table I, where the masses are
more “inflated” for the pion and the kaon. It is plausible
that radiative and hadronic corrections return them to
the observed values [48]. In the mass spectrum, we also

TABLE I: Mass spectrum and decay constants for flavor sin-
glet and nonsinglet JP = 0− mesons, where we follow Par-
ticle Data Group conventions [69]. Both models refer to
the interaction Ansatz in Ref. [41], where we use the val-
ues ω = 0.4 GeV and ωD = (0.8 GeV)3 for model 1 and
ω = 0.6 GeV and ωD = (1.1 GeV)3 for model 2. Dimen-
sioned quantities are reported in GeV and reference values
in the last column include experimental averages and lattice-
QCD predictions when known.

Model 1 Model 2 Reference

mπ 0.138 0.153 0.139 [69]

fπ 0.139 0.189 0.1304 [69]

mπ(1300) 0.990 1.414 1.30±0.10 [69]

fπ(1300) −1.1× 10−3 −8.3× 10−4

fGMOR
π(1300) −1.4× 10−3 −4.0× 10−4

mK 0.493 0.541 0.493 [69]

fK 0.164 0.214 0.156 [69]

fGMOR
K 0.162 0.214

mK(1460) 1.158 1.580 1.460 [69]

fK(1460) −0.018 −0.017

fGMOR
K(1460) −0.018 −0.017

ms̄s 1.287 1.702

fs̄s −0.0214 −0.0216

fGMOR
s̄s −0.0215 −0.0218

mηc(1S) 3.065 3.210 2.984 [69]

fηc(1S) 0.389 0.464 0.395 [70]

fGMOR
ηc(1S) 0.380 0.451

mηc(2S) 3.402 3.784 3.639 [69]

fηc(2S) 0.089 0.105

fGMOR
ηc(2S) 0.088 0.103

find states with unnatural time parity, J = 0−−, referred
to as exotics and presented in Table II. The mass differ-
ence pattern of these states parallels the ones observed
in Table I. However, as they are not experimentally ob-
served and expected to have masses above 2 GeV [69],
their appearance in the spectrum is likely an artifact of
the current truncation; see, e.g., discussion in Ref. [71].

The weak decay constants are obtained via Eq. (A5)
and verified by means of the Gell-Mann–Oakes–Renner
(GMOR) relation (A3), a relation valid for every 0− me-
son irrespective of the magnitude of the current-quark
mass, mf,g(µ). In the chiral limit,

ρ0
Pn

(µ) := lim
m̂→0

ρPn
(µ) <∞ , ∀n, (33)

owing to the ultraviolet behavior of the quark-antiquark
scattering kernel in QCD which guarantees that ρPn

(µ)
in Eq. (A4) is cutoff independent. A necessary corollary
is that in the chiral limit the decay constant of excited
states vanishes identically [62]:

f0
Pn

(µ) ≡ 0 , n ≥ 1 . (34)
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TABLE II: List of exotic states with “unnatural time parity”,
J = 0−−. In case of the ūs meson, C = −1, must be un-
derstood as approximate, since |ūs〉 is not an eigenstate of
charge conjugation. Models 1 and 2 are as in Table I and
dimensioned quantities are in GeV. The decay constants of
flavorless states are of the order 10−6 GeV.

Model 1 Model 2

mūu 0.733 1.049

ms̄s 0.856 1.351

mc̄c 3.243 3.515

mūs 0.917 1.225

fūs 0.0152 0.0098

fGMOR
ūs 0.0150 0.0097

We provide numerical verification of Eq. (34) in the case
of the first radial excitation of the pion, i.e. the parity
partner π(1300), in Table I from which it can also be read
that the decay constant of the parity partner of the kaon,
theK(1460), is strongly suppressed. Analogously, the de-
cay constant value of the s̄s state is very small. On the
other hand, we note that all weak decay constants of the
excited states but the ηc(2s) are negative with model 1,
slightly less so when using model 2, which is consistent
with the discussion in Ref. [61]. As it becomes clear from
Fig. 1, for ω ≥ 0.5 and p2 & 1 GeV2, the leading am-
plitude’s lowest Chebyshev projection, 0EP1

(p2), is nega-
tive definite in case of the first radial excitations, π(1300)
and s̄s, whereas it remains positive for the ground states,
which parallels the pattern of wave functions in quantum
mechanics. A necessary consequence is then fπ > 0 and
fπ(1300) < 0, also observed for the kaon and its first radial
excitation and for the η(1760). The negative value for
fπ(1300) is consistent with lattice-QCD simulations [72].
The equality in Eq. (34) is only valid in the chiral limit
and for increasing current-quark masses the excited pseu-
doscalar meson’s decay constant first remains negative,
but after a minimum, which occurs between the strange
and charm-quark mass, steadily increases and becomes
positive before reaching the charm quark mass. We there-
fore find for the ηc(2S) a positive decay constant for both
model parameters. We note that our turning point is be-
low that observed in Ref. [73], which is about the charm-
quark mass.

We now turn our attention to the charmed pseu-
doscalars, in particular the D and Ds mesons. Before
discussing the results, a few technical comments are in
order. Besides being bounded from above, the eigenvalue
spectrum of the BSE should be positive definite [74] ow-
ing to the Hermiticity requirement of physical operators.
However, this is not generally true for flavored mesons
with unequal masses, in particular heavy-light systems
in the rainbow-ladder truncation. For example, in solv-
ing the BSE for the D and Ds mesons, we find a complex

0 0,5 1 1,5 2 2,5 3 3,5 4

p
2
(GeV)

-0,2

0

0,2

0,4

0,6

0,8

1

E
P

1(p
2 )/

E
P

1(0
)

π(1300)
ss
η

c
(2S)

FIG. 1: Lowest Chebyshev moment, 0EP1(p2), associated
with the leading Dirac structure EP1(p2) of the meson’s
BSA (22) for the first radial excitations π(1300), η(1760)
and ηc(2S). The interaction parameters are ω = 0.6 and
ωD = (1.1 GeV)3.

conjugate pair of eigenvalues for the excited D(s) states
if we include contributions from higher Chebyshev poly-
nomials, Um>1(zp). This occurs for either parameter set
of the interaction and indicates a non-Hermiticity of the
Hamiltonian in the case of |c̄u〉 and |c̄s〉 bound states.4

We have verified that our solutions converge, i.e. they
are independent of the amount of Chebyshev moments
in the expansion and the ground state and excited D
meson masses do not vary for Um(zp),m ≥ 4.

We remind that nonequal mass mesons, such as the
K and D, are not eigenstates of the charge-conjugation
operator and thus Γ̄(k, P ) = λcΓ(k, P ) does not imply
λc = ±1 for the charge parity. On the other hand,
for equal-mass (ūu, d̄d, s̄s, c̄c) pseudoscalar mesons with
JPC = 0−+, the constraint that the Dirac base satis-
fies λc = +1 requires the dressing functions, FαPn

(p, P ),
to be even in the angular variable zp. In the case of
the D and Ds mesons, however, we do observe that also
odd Chebyshev moments contribute and they acquire an
imaginary part in the ground and excited states. The
ground-state eigenvalues of the D mesons remain real
and though the associated eigenstate is a solution of the
BSE, it cannot be interpreted as a physical solution for
the D mesons due to the non-Hermiticty invoked above.
If we limit the Chebyshev expansion to the lowest order,

4 A discussion of complex eigenvalues and their origin in the cross-
ing of normal and abnormal (which have vanishing binding en-
ergy) eigenstates can be found in Ref. [74]. Note that in quantum
mechanics even non-Hermitian operators yield real and positive
eigenvalues provided that PT symmetry is conserved, whereas if
it is broken the eigenvalue spectrum is complex [75]. Yet, an ana-
logical observation in Quantum Field Theory and more precisely
in nonperturbative QCD is not straightforward.
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TABLE III: Charmed meson observables computed in the
lowest-order Chebyshev moment approximation (see text for
explanations). Models 1 and 2 are as in Table I. Dimensioned
quantities are reported in GeV and experimental values are
averages from the Particle Data Group.

Model 1 Model 2 Experiment [69]

mD 2.115 2.255 1.869

fD 0.204 0.281 0.2067± 0.0085± 0.0025

mDs 2.130 2.284 1.968

fDs 0.249 0.320 0.260± 0.005

the BSA is independent of the angle, zp, and therefore re-
mains real in all cases as are the eigenvalues. Hence, it is
the angular-dependent higher-order terms of the Cheby-
shev expansion that lead to complex eigenvalues for the
charmed excited states within the RL truncation. On the
other hand, this does not occur for the kaon where flavor-
symmetry and charge-parity breaking are still negligible.

The mass and decay constant entries in Table III are
all obtained in the lowest-order Chebyshev approxima-
tion which is independent of the angle, zp. Incidentally,
this approximation bears similarity with common phe-
nomenological Ansätze to the BSA for D mesons [76–80]
and this is exactly what the values in Table III represent:
masses and decay constants obtained with a model based
on the lowest-order approximation for which the eigen-
values and BSA are real. The mass difference, ∆m ' 15–
30 MeV, between the D and Ds mesons is smaller than
experimentally observed, i.e. ∆m ∼ 100 MeV. On the
other hand, the weak decay constants are in good agree-
ment with experimental averages for model 1 which again
provides the preferred interaction for the ground states.
We also stress that the results in Table III were obtained
without any modification of the interaction (6) in the
RL truncation, such as suppression of the infrared do-
main [35] or use of a constituent-quark mass [36]. Nev-
ertheless, as has been realized previously [35], the RL
approximation is an inadequate truncation scheme for
heavy-light mesons.

V. CONCLUSION

We computed the BSAs for the ground and first ex-
cited states of the flavor singlet and flavored pseudoscalar
mesons with an interaction Ansatz that is massive and
finite in the infrared and massless in the ultraviolet do-
main. This interaction is qualitatively in accordance with
the so-called decoupling solutions of the gluon’s dress-
ing function and thus represents an improvement on the
Maris-Tandy model [34]. In conjunction with the RL
truncation, the latter proves to be a successful interac-
tion model for the light meson spectrum, M . 1 GeV,
but fares less well in applications to heavy-light systems

where infrared modifications of the interaction are re-
quired in order to obtain numerical results which are still
not satisfactory [35].

Motivated by the successful application of the inter-
action Ansatz of Eq. (6) to the mass spectrum of light
mesons as well as some of their excited states in Ref. [61],
we extend this study to the strange and charm sectors
and obtain the masses of ground states and resonances as
well as decay constants as presented in Table I. These nu-
merical results are in good agreement with experimental
averages for the ground states, yet we confirm the earlier
observation that no single parametrization of Eq (6) is
able to reproduce the mass spectrum of both, the ground
and excited states in the RL truncation. The case of
the D and Ds mesons remains equally unresolved and
clearly shows that the mass asymmetry and disparate
scales in heavy-light systems require corrections beyond
the leading truncation. We postpone the treatment of
heavy-flavored mesons with a BSE Ansatz valid for any
symmetry-preserving dressed quark-gluon vertex [54] to
a future publication. We stress that the merit of BSE
solutions for heavy-light systems goes beyond a success-
ful description of the heavy meson’s mass spectrum and
decay constants and that the light-front projection of the
meson’s Bethe-Salpeter wave function allows to extract
its light cone distribution amplitudes [64, 81]. The latter,
commonly expanded in Gegenbauer polynomials, encode
the relevant nonperturbative information in QCD factor-
ization of heavy-meson weak decays and their calcula-
tion represents a big step beyond the usually employed
asymptotic form, φ(x) ∝ 6x(1 − x). Indeed, in the case
of D and B mesons, very little is known about the non-
perturbative nature of these distribution amplitudes.
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Appendix A: Renormalization conditions

In order to eliminate the cutoff dependence, it is nec-
essary to impose renormalization conditions. The usual
procedure is to relate bare and renormalized masses as in
Eq. (10) and for the fermion fields one writes analogously,

qbm
f (p2) =

(
Zf2 (µ,Λ)

)1
2

qf (p2, µ) . (A1)

The renormalization constants Zm and Z2 are deter-
mined by imposing the conditions,

B(µ, µ) = mf (µ) and A(µ, µ) = 1. (A2)
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For arbitrary flavors and using Eqs. (10) and (A2), the
GMOR expression can be generally written as,

fPn
M2
Pn

=
(
mbm
f +mbm

g

)
ρbm
Pn

=−
(
mbm
f +mbm

g

)
〈0|q̄bm

g γ5q
bm
f |Pn〉

=−
(
Zfmmg(µ) + Zgmmf (µ)

)
(Zf2Z

g
2 )1/2〈0|q̄gγ5qf |Pn〉

=

√Zfm
Zgm

mg(µ) +

√
Zgm

Zfm
mf (µ)

 ρPn
(µ) ,

(A3)

where we have,

ρPn
(µ) = −(Zf4Z

g
4 )

1
2 〈0| q̄gγ5qf |Pn〉 (A4)

=− i (Zf4Z
g
4 )

1
2 TrCD

∫ Λ

k

γ5 Sf (k+)ΓfgPn
(k, P )Sg(k−) ,

with Zf4 (µ,Λ) = Zf2 (µ,Λ)Zfm(µ,Λ). The weak decay con-
stant can, of course, be directly inferred from,

fPn
Pµ = −i

〈
0
∣∣q̄bm
g γ5γµq

bm
f

∣∣Pn〉 (A5)

= (Zf2Z
g
2 )

1
2 TrCD

∫ Λ

k

γ5γµ Sf (k+)ΓfgPn
(k, P )Sg(k−) .

In solving the DSE within a complex parabola as dis-
cussed in Sec. III A, it is convenient to compute the renor-
malization constants at a momentum scale, ξ, different
from µ > ξ while still demanding that Eq. (A2) be sat-
isfied. Once we know the solutions of and A(p2) and
B(p2) renormalized at p2 = µ2, the values for B(ξ, µ)
and A(ξ, µ) are readily inferred. One may as well calcu-

late Zfm(µ,Λ) and Zf2 (µ,Λ) at a point, p2 = ξ2, using the
condition,

B(ξ, µ) = Z4(µ,Λ)mf (µ) + ΠB(ξ,Λ) ,

A(ξ, µ) = Z2(µ,Λ) + ΠA(ξ,Λ) , (A6)

where ΠB and ΠA are the expressions inferred from the
appropriate projections of the quark self-energy correc-
tion in Eq. (2). Solving the DSE starting by impos-
ing new renormalization conditions, namely B(p2, ξ) and
A(p2, ξ), in Eq. (A6), one verifies that the conditions in
Eq. (A2) are satisfied with high precision. We check the
stability of all results from Λ = 4 GeV up to Λ = 10 GeV,
in which case Z2(ξ,Λ) and Z4(ξ,Λ) are modified in or-
der to absorb the cutoff dependence; our results prove to
be stable and show no cutoff dependence. The GMOR
relation (A3) provides us with an additional cross-check.
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