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Abstract.
Non-abelian gauge theories are super-renormalizable in 2+1 dimensions and suffer from infrared

divergences. These divergences can be avoided by adding a Chern-Simons term, i.e. , building a
Topologically Massive Theory. In this sense, we are interested in the study of the Topologically
Massive Yang-Mills theory on the Null-Plane. Since this is a gauge theory, we need to analyze
its constraint structure which is done with the Hamilton-Jacobi formalism. We are able to find the
complete set of Hamiltonian densities, and build the Generalized Brackets of the theory. With the
GB we obtain a set of involutive Hamiltonian densities, generators of the evolution of the system.

Keywords: Hamilton-Jacobi formalism, Topologically Massive Yang-Mills
PACS: 11.15.Wx

INTRODUCTION

Since the work of Witten [1], Topological Quantum Field Theories (TQFT) have been
used in different branches of modern physics, from condensed matter to string theory.
Chern-Simons (CS) gauge theory is a Schwarz type TQFT defined in odd dimensions,
i.e., its Lagrangian density does not have an explicit dependence on the metric of space-
time. Along with the gauge invariance, its classical action is invariant under the change
of the background metric.

Topologically Massive (TM) theories were introduced by Deser [2]. These theories
are built adding a CS term to a three dimensional kinetic action. Thus we have the
Maxwell-Chern-Simons Theory (MCS), the Topologically Massive Yang-Mills theory
(TMYM) and Topologically Massive Gravity (TMG). As a result of adding the CS term,
it is provided mass for the gauge fields. Another important feature of TM gauge theories
is that at quantum level the topological mass provides an infrared cut-off.

TM theories, as any other gauge theories, have a local invariance which leads to
constraints [3]. The Dirac’s canonical formalism [4] is used extensively to analyze
constrained systems. This formalism has been used to study the TMYM theory in [5].

Güller [6] has developed the Hamilton-Jacobi (HJ) formalism as an alternative
method for study constrained systems. This method is a generalization of the work of
Caratheodory [7]. Since this work several improvements have been done [8]. The HJ
formalism is characterized by a set of Hamilton-Jacobi Partial Differential Equations
(HJPDE) also known as Hamiltonian densities. The integrability of this system is
achieved if the Frobenius’ Integrability Condition (IC) is satisfied.
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In this work we apply the HJ formalism to analyze the constraint structure of the
TMYM theory on the null-plane. We build its Generalized Brackets (GB) and obtain the
characteristic equations.

THE TMYM THEORY ON THE NULL-PLANE

The TMYM theory is described by the following gauge invariant action

I =
∫

d3x L =
∫

d3x
{
−1

4
FaµνFa

µν −
µ

4
ε

αβγ

[
Fa

αβ
Aa

γ −
g
3

f abcAa
αAb

β
Ac

γ

]}
, (1)

where µ is the mass parameter, and Fa
αβ

≡ ∂αAa
β
−∂β Aa

α +g f abcAb
αAc

β
.

We proceed to describe the dynamical evolution of the system with the time variable
τ ≡ x+, which is a light-cone coordinate defined in (2+1) dimensions as

x+ ≡ 1√
2
(x0 + x2), x− ≡ 1√

2
(x0− x2), x1 = x1 . (2)

In the Light-Cone coordinates, some of the conjugated momenta are given by

π
+
a = 0 , π

1
a = Fa

−1 +
µ

2
Aa
− . (3)

These are constraints of the theory. The momentum π− gives the dynamical relation

∂+Aa
− = π

−
a +∂−Aa

+−g f abcAb
+Ac

−+
µ

2
Aa

1 . (4)

With the presence of constraints, we build the canonical Hamiltonian density

Hτ =
1
2

[
π
−
a +

µ

2
Aa

1

]2
−Aa

+

[
D−π

−
a +D1π

1
a +

µ

2
(∂1Aa

−−∂−Aa
1)

]
, (5)

where we define the covariant derivative DµXa = ∂µXa−g f abcXbAc
µ .

The HJ formalism is characterized by the existence of a function S such that π
µ
a =

∂S/∂Aa
µ . Therefore, eqs. (3) are actually partial differential equations. Together with the

usual HJ equation, they form a set of HJ partial differential equations (HJPDE), also
called Hamiltonian densities, given by

H ′τ = π
τ +Hτ = 0 , (6)

H ′+
a = π

+
a = 0 , (7)

H ′1
a = π

1
a −Fa

−1−
µ

2
Aa
− = 0 , (8)

where we identify τ = x+, Aa
+ and Aa

1 as parameters of the theory, each one related
to a respective Hamiltonian H ′τ , H ′+

a and H ′1
a . Then, we write the fundamental

differential as

dF =
∫

dy2 [
{F,H ′τ(y)} dτ +{F,H ′+

a (y)} dAa
+(y)+{F,H ′1

a (y)} dAa
1(y)

]
. (9)
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When imposing the IC, we obtain a complete set of Hamiltonian densities. Since

dH ′+
a =

[
D−π

−
a +D1π

1
a +

µ

2
(∂1Aa

−−∂−Aa
1)

]
dx+ , (10)

we define a new Hamiltonian

Ca ≡ D−π
−
a +D1π

1
a +

µ

2
(∂1Aa

−−∂−Aa
1) . (11)

This new Hamiltonian, along with H ′1
a , satisfy the IC dC ′

a = 0 and dH ′1
a = 0 identi-

cally.
With the complete set of Hamiltonian densities we expand the phase space and

promote ωa as a variable of the theory. This parameter is related to the new Hamiltonian
density. Then, the extended fundamental differential is given by

dF =
∫

d2y
[
{F,H ′τ} dτ +{F,H ′+

a } dAa
+ +{F,H ′1

a } dAa
1 +{F,C ′a}dωa

]
. (12)

At this stage, we separate the Hamiltonian densities others than H ′τ as involutive or
non-involutive. This allows us to reduce the phase space of the theory. We notice that
H ′1

a are the non-involutive densities since

Mab(x,y)≡ {H ′1
a (x),H ′1

b (y)}=−2Dx
−δabδ (x− y) . (13)

The HJ formalism allows to eliminate the variables related to this constraints, Aa
1, as the

evolution parameter of the system. This can be done if we define the GB

{A(x),B(y)}∗ = {A(x),B(y)}

−
∫

dz
∫

dw {A(x),H ′1
r (z)}Grs(z,w){H ′1

s (w),B(y)} , (14)

where Grs(x,y) is the inverse matrix of Mab(x,y).
We obtain the following fundamental GB
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1
µδ

1
ν Gab(x,y) , (15)
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2
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[
δ

ν
1 Dy

−−δ
ν
−Dy

1−
µ
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][
δ
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1 Dx
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2
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−
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Gab(x,y) .(17)

Under the GB, the evolution of the system does not depend on the variables related to
the Hamiltonian with which the matrix Mab(x,y) is buildt, says Aa

1. The new fundamental
differential is given by

dF =
∫

dy2 [
{F,H ′τ(y)}∗ dτ +{F,H ′+

a (y)}∗ dAa
+(y)+{F,C ′a(y)}∗dωa(y)

]
. (18)
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From where we obtain the characteristic equations

∂+Aa
− = π

−
a +∂−Aa

+−g f abcAb
+Ac

−+
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2
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1−D−∂+ω
a , (19)

∂+π
+
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−
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1
a +
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2
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1) , (20)

∂+π
1
a = −1

2
D1Fa

+−+
µ

2
D−Aa

+−
µ

2
D−∂+ω

a , (21)

along with the indeterminacy of ∂+Aa
+.

FINAL REMARKS

In this work we presented the classical analysis of the constrained TMYM theory on the
Null-Plane. The IC allows us to find the complete set of Hamiltonian densities of the
theory and, after building the GB, we have reduced the phase space and identified the
independent parameters of the theory.

In a future work we intend to do a comparative study of TMYM theory, using
both the conventional x0 and also using x+ time parameter. We also intend to show
the relation between the involutive Hamiltonian densities and the generators of gauge
transformation. under the scope of the HJ formalism.
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