

Minimal Z' models for flavor anomalies

Eduardo Rojas

In collaboration with: W. Ponce, R. Benavides, L. Muñoz, O. Rodríguez

- Non-universal models and flavor physics
- Anomalies in B Meson decays
- General solutions for minimal Models
- Benchmark models
- LHC and low energy Constraints
- Conclusions

Non-universal models and flavor physics

- The theoretical motivation to study the non-universal models comes from top-bottom approaches, especially in string theory derived constructions, where the U(1)' charges are family dependent.
- Non-universal models have been also used to explain the number of families and the hierarchies in the fermion spectrum observed in nature (The flavor problem).
- The fits involving the recent LHCb anomalies prefer non-universal models

LHCb measurements

$$R_K = \frac{BR(B^+ \to K^+ \mu^+ \mu^-)}{BR(B^+ \to K^+ e^+ e^-)} = 0.745^{+0.09}_{-0.074} (\text{stat}) \pm 0.036 \text{ (syst)}; \qquad R_H$$

$$R_K = 1.0004(8)$$

$$R_{K^*} = \frac{BR(B \to K^* \mu^+ \mu^-)}{BR(B \to K^* e^+ e^-)} = \begin{cases} 0.660^{+0.110}_{-0.070} \pm 0.024, & q^2 \in [0.045, 1.1] \text{GeV}^2\\ 0.685^{+0.113}_{-0.069} \pm 0.047, & q^2 \in [1.1, 6] \text{GeV}^2 \end{cases}, \quad R_{K^*} = 0.920(7) \text{ y } R_{K^*} = 0.996(2),$$

Every one of these measurements deviate from the SM by around start with the first set of slides 2.5σ 's

$$\mathcal{H}_{\text{eff}} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \frac{e^2}{16\pi^2} \sum_i \left(C_i \mathcal{O}_i + C_i' \mathcal{O}_i' \right) + \text{h.c.}$$

 C_i : Wilson coefficients \mathcal{O}_i : Operators

${\cal O}_9 = (ar s \gamma_\mu P_L b) \left(ar \ell \gamma^\mu \ell ight)$	$\mathcal{O}_9' = (ar{s} \gamma_\mu P_R b) \left(ar{\ell} \gamma^\mu \ell ight)$
$\mathcal{O}_{10} = \left(\bar{s}\gamma_{\mu}P_{L}b\right)\left(\bar{\ell}\gamma^{\mu}\gamma_{5}\ell\right)$	${\cal O}_{10}^{\prime} = (ar{s}\gamma_{\mu}P_{R}b)\left(ar{\ell}\gamma^{\mu}\gamma_{5}\ell ight)$

Descotes-Genon, L. Hofer, J. Matias and J. Virto 2015

Coefficient	Best fit	1σ	3σ	$\mathrm{Pull}_{\mathrm{SM}}$	p-value (%)
C_7^{NP}	-0.02	$\left[-0.04,-0.00\right]$	[-0.07, 0.03]	1.2	17.0
$\mathcal{C}_9^{\mathrm{NP}}$	-1.09	$\left[-1.29,-0.87\right]$	$\left[-1.67,-0.39\right]$	4.5	63.0
$\mathcal{C}_{10}^{\mathrm{NP}}$	0.56	$\left[0.32, 0.81\right]$	$\left[-0.12, 1.36\right]$	2.5	25.0
$\mathcal{C}^{\mathrm{NP}}_{7'}$	0.02	$\left[-0.01, 0.04\right]$	$\left[-0.06, 0.09\right]$	0.6	15.0
$\mathcal{C}^{\mathrm{NP}}_{9'}$	0.46	$\left[0.18, 0.74\right]$	$\left[-0.36, 1.31\right]$	1.7	19.0
$\mathcal{C}^{\rm NP}_{10'}$	-0.25	[-0.44, -0.06]	$\left[-0.82, 0.31\right]$	1.3	17.0
$\mathcal{C}_9^{NP}=\mathcal{C}_{10}^{NP}$	-0.22	$\left[-0.40,-0.02\right]$	$\left[-0.74, 0.50\right]$	1.1	16.0
$\mathcal{C}_9^{\rm NP} = -\mathcal{C}_{10}^{\rm NP}$	-0.68	$\left[-0.85, -0.50\right]$	[-1.22, -0.18]	4.2	56.0
$\mathcal{C}^{\rm NP}_{9'}=\mathcal{C}^{\rm NP}_{10'}$	-0.07	$\left[-0.33, 0.19\right]$	$\left[-0.86, 0.68\right]$	0.3	14.0
$\mathcal{C}^{\rm NP}_{9'} = -\mathcal{C}^{\rm NP}_{10'}$	0.19	[0.07, 0.31]	$\left[-0.17, 0.55 ight]$	1.6	18.0
$\mathcal{C}_9^{\rm NP} = -\mathcal{C}_{9'}^{\rm NP}$	-1.06	$\left[-1.25, -0.86 ight]$	$\left[-1.60,-0.40\right]$	4.8	72.0
$ \begin{array}{l} \mathcal{C}_9^{\mathrm{NP}} = -\mathcal{C}_{10}^{\mathrm{NP}} \\ = -\mathcal{C}_{9'}^{\mathrm{NP}} = -\mathcal{C}_{10'}^{\mathrm{NP}} \end{array} $	-0.69	[-0.89, -0.51]	[-1.37, -0.16]	4.1	53.0
$ \begin{array}{l} \mathcal{C}_9^{\mathrm{NP}} = -\mathcal{C}_{10}^{\mathrm{NP}} \\ = \mathcal{C}_{9'}^{\mathrm{NP}} = -\mathcal{C}_{10'}^{\mathrm{NP}} \end{array} $	-0.19	[-0.30, -0.07]	$\left[-0.55, 0.15 ight]$	1.7	19.0

- A miminal content of particles
- Anomaly free
- Must include Yukawa constraints
- Flavor changing neutral currents
- Consistent with LE, Collider constraints and the C₉ and c₁₀ Wilson Coefficients
- Zero couplings to the first generation

particles	spin	$SU(3)_C$	$SU(2)_L$	$U(1)_Y$	U(1)'
l_{Li}	1/2	1	2	-1/2	l_i
e_{Ri}	1/2	1	1	-1	e_i
$ u_{Ri}$	1/2	1	1	0	$ u_i$
q_{Li}	1/2	3	2	+1/6	q_i
u_{Ri}	1/2	3	1	+2/3	u_i
d_{Ri}	1/2	3	1	-1/3	d_i
ϕ_i	0	1	2	1/2	Y_{ϕ_i}

$$\begin{split} & [SU(2)]^2 U(1)': \ 0 = \Sigma q + \frac{1}{3} \Sigma l, \\ & [SU(3)]^2 U(1)': \ 0 = 2\Sigma q - \Sigma u - \Sigma d, \\ & [\text{grav}]^2 U(1)': \ 0 = 6\Sigma q - 3(\Sigma u + \Sigma d) + 2\Sigma l - \Sigma \nu - \Sigma e \\ & [U(1)]^2 U(1)': \ 0 = \frac{1}{3} \Sigma q - \frac{8}{3} \Sigma u - \frac{2}{3} \Sigma d + \Sigma l - 2\Sigma e \\ & U(1)[U(1)']^2: \ 0 = \Sigma q^2 - 2\Sigma u^2 + \Sigma d^2 - \Sigma l^2 + \Sigma e^2, \\ & [U(1)']^3: \ 0 = 6\Sigma q^3 - 3(\Sigma u^3 + \Sigma d^3) + 2\Sigma l^3 - \Sigma \nu^3 - \Sigma e^3 \end{split}$$

$$\Sigma f = f_1 + f_2 + f_3.$$

$$\mathcal{L}_{Y} \supset \bar{l}_{1_{L}} \tilde{\phi}_{1} \nu_{1_{R}} + \bar{l}_{1L} \phi_{1} e_{1_{R}} + \bar{q}_{1_{L}} \tilde{\phi}_{1} u_{1_{R}} + \bar{q}_{1_{L}} \phi_{1} d_{1_{R}} + \\ \bar{l}_{2_{L}} \tilde{\phi}_{2} \nu_{2_{R}} + \bar{l}_{2L} \phi_{2} e_{2_{R}} + \bar{q}_{2_{L}} \tilde{\phi}_{2} u_{2_{R}} + \bar{q}_{2_{L}} \phi_{2} d_{2_{R}} + \\ \bar{l}_{3_{L}} \tilde{\phi}_{3} \nu_{3_{R}} + \bar{l}_{3_{L}} \phi_{3} e_{3_{R}} + \bar{q}_{3_{L}} \tilde{\phi}_{3} u_{3_{R}} + \bar{q}_{3_{L}} \phi_{3} d_{3_{R}} + \text{h.c.}$$

Solution with anomaly cancellation between different families

$\int f$	ϵ^{B_I}
l_i	$-3q_i$
e_i	$-\nu_i - 6q_i$
u_i	$+\nu_i + 4q_i$
d_i	$-\nu_i - 2q_i$
l_j	$+\frac{1}{2}[\nu_j - \nu_k - 3(q_j + q_k)]$
e_j	$-\nu_k - 3(q_j + q_k)$
$ u_j $	$+\frac{1}{2}(\nu_j + \nu_k + 5q_j + 3q_k)$
d_j	$-\frac{1}{2}(\nu_j+\nu_k+q_j+3q_k)$
l_k	$+\frac{1}{2}[-\nu_j + \nu_k - 3(q_j + q_k)]$
e_k	$-\nu_j - 3(q_j + q_k)$
u_k	$+\frac{1}{2}(\nu_j + \nu_k + 3q_j + 5q_k)$
d_k	$-\frac{1}{2}(\nu_j+\nu_k+3q_j+q_k)$

S?

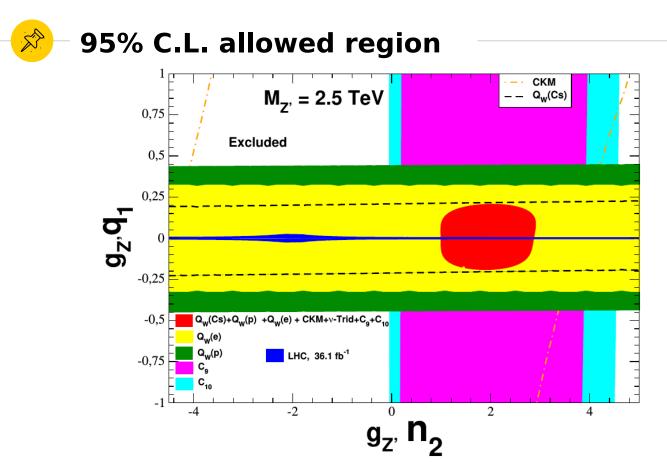
$$Y_{\phi_1} = \nu_i + 3q_i$$
 and $Y_{\phi_2} = Y_{\phi_3} = \frac{1}{2}[\nu_j + \nu_k + 3(q_j + q_k)],$

Low energy observables

Ø	Value [43, 50]	SM prediction \mathcal{O}_{SM} [43]	$\Delta \mathcal{O} = \mathcal{O} - \mathcal{O}_{\mathrm{SM}}$
$Q_W(p)$	0.064 ± 0.012	0.0708 ± 0.0003	$4\left(\frac{M_Z}{g_1M_{Z'}}\right)^2 \Delta_A^{ee} \left(2\Delta_V^{uu} + \Delta_V^{dd}\right)$
$Q_W(\mathrm{Cs})$	-72.62 ± 0.43	-73.25 ± 0.02	$Z\Delta Q_W(p) + N\Delta Q_W(n)$
$Q_W(e)$	-0.0403 ± 0.0053	-0.0473 ± 0.0003	$4\left(\frac{M_Z}{g_1M_{Z'}}\right)^2 \Delta_A^{ee} \Delta_V^{ee}$
$1 - \sum_{q=d,s,b} V_{uq} ^2$	1 - 0.9999(6)	0	$\frac{3}{4\pi^2} \frac{M_W^2}{M_{Z'}^2} \left(\ln \frac{M_{Z'}^2}{M_W^2} \right) \Delta_L^{\mu\mu} \left(\Delta_L^{\mu\mu} - \Delta_L^{dd} \right)$
$C_9^{ m NP}(\mu)$	$-1.29^{+0.21}_{-0.20}$	0	$-\frac{1}{g_1^2 M_{Z'}^2} \frac{\Delta_L^{sb} \Delta_V^{\mu\bar{\mu}}}{V_{ts}^* V_{tb} \sin^2 \theta_W}$
$C_{10}^{ m NP}(\mu)$	$+0.79^{+0.26}_{-0.24}$	0	$-rac{1}{g_1^2 M_{Z^\prime}^2} rac{\Delta_L^{sb} \Delta_A^{\muar\mu}}{V_{ts}^* V_{tb} \sin^2 heta_W}$
$\frac{\sigma^{\rm SM+Z'}}{\sigma_{SM}}$	0.83 ± 0.18	1	$\frac{1 + \left(1 + 4s_W^2 + \Delta_V^{\mu\mu} \Delta_L^{\nu\nu} v^2 / M_{Z'}^2\right)^2}{1 + (1 + 4s_W^2)^2} - 1$

		$\text{pull}^{i} = \frac{\mathcal{O}_{\text{exp}}^{i} - \mathcal{O}_{\text{th}}^{i}}{\sqrt{\sigma_{\text{exp}}^{i2} + \sigma_{\text{th}}^{i2}}}$							
C	\mathcal{O}^i	$Q_W(p)$	$Q_W(Cs)$	$Q_W(e)$	CKM	C_9	C_{10}	$\nu\text{-}\mathrm{Trident}$	$\chi^2_{\rm min}$
		-0.566	1.46	1.38	-0.733	-0.789	0.967	-0.985	7.4

$M_{Z'} = 2.5 \text{ TeV}$	i = 1	i = 2	i = 3	
$g_{Z'}l_i$	0	1	-3	
$g_{Z'}e_i$	0	0.3523	-3.648	
$g_{Z'}n_i$	0	1.648	-2.352	
$g_{Z'}q_i$	0	0	2/3	
$g_{Z'}u_i$	0	0.6477	1.314	
$g_{Z'}d_i$	0	-0.6477	0.01897	
$g_{Z'}Y_{\phi_i}$	0	0.03975		



 In this work we presented an anomaly-free non-universal Z' family of models, which only includes SM fermions plus right-handed neutrinos and two Higgs doublets.

• By means of an explicit example, we show that it is possible to build a model with zero couplings to the up and down quarks and in general to the fermions of the first family, in such a way that the model evades collider constraints and does not contribute to the corresponding the Wilson coefficients $C_9(e)$ and $C_{10}(e)$. Simultaneously, our solution is flexible enough to accommodate the flavor anomalies in the Wilson coefficients $C_9(mu)$ and $C_{10}(mu)$. By requiring that the left-handed couplings of the down and strange couplings be identical it is possible to avoid FCNC.

