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RESUMEN

Los flujos de escombros, lahares, avalanchas, 
deslizamientos y otros flujos de masa geofí-
sicos, pueden contener material del orden de 
O(106–1010) m3 o más. Estos flujos consisten 
comúnmente en una mezcla de sólidos y rocas, 
con una cantidad significativa de fluido inters-
ticial. Pueden tener decenas de metros de espesor 
y un alcance de muchos kilómetros. La reología 
complicada de esta mezcla desafía cualquier 
modelo constitutivo que pueda ser aplicado con 
solidez. El rango de longitudes y escalas de 
tiempo involucrados en estos flujos de masa desa-
fía también las capacidades computacionales 
de los modelos existentes. Este trabajo extiende 
esfuerzos recientes para desarrollar modelos de 
“capas delgadas”, integrados en profundidad, 
para flujos de masa que contienen una mezcla 
de material sólido y fluido. Se integran concep-
tos ingenieriles con hallazgos fenomenológicos 
en las geociencias, que resultan en una teoría 
que tiene en cuenta las principales fuerzas de 
partículas y fluidos, así como las interacciones 
entre las fases a través de un amplio rango de 
fracciones volumétricas de sólidos. La principal 
contribución aquí, es presentar términos para el 
arrastre y la interacción entre fases, los cuales 
concuerdan con la literatura de las geociencias. 
El programa Titan2F predice la evolución de la 
concentración y presión dinámica. La teoría es 
validada con datos de soluciones unidimensiona-
les para ruptura de presas y verificada con datos 
de experimentos de canales artificiales.

Palabras clave: lahar, modelado, 
profundidad promedio, flujo de 
dos fases, flujo de escombros, 
presión dinámica.

ABSTRACT

Debris flows, lahars, avalanches, land-
slides, and other geophysical mass flows 
can contain material in the order of  
O(106–1010) m3 or more. These flows com-
monly consist of  a mixture of  soil and 
rocks with a significant quantity of  inter-
stitial fluid. They can be tens of  meters 
deep, and their runouts can extend many 
kilometers. The complicated rheology of  
such a mixture challenges every constitu-
tive model that can reasonably be applied: 
The range of  length and timescales 
involved in such mass flows challenge 
the computational capabilities of  existing 
models. This paper extends recent efforts 
to develop a depth averaged “thin layer” 
model for geophysical mass flows that 
contain a mixture of  solid material and 
fluid. Concepts from the engineering 
community are integrated with phenome-
nological findings in geoscience, resulting 
in a theory that accounts for the principal 
solid and fluid forces as well as interac-
tions between the phases, across a wide 
range of  solid volume fractions. A prin-
cipal contribution here is to present drag 
and phase interaction terms that conform 
with the literature in geosciences. The 
Titan2F program predicts the evolution 
of  the volumetric concentration of  solids 
and dynamic pressure. The theory is 
validated with data from one-dimensional 
dam break solutions and with data from 
artificial channel experiments.

Keywords: lahar, modeling, depth 
averaging, two phase flow, debris 
flow, dynamic pressure.
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1. Introduction

Among debris flows, the most devastating phenom-
ena are volcanic flows known as lahars. The name 
comes from Indonesia and describes flows whose 
solid phase mostly consist of  material of  volcanic 
origin (Tilling, 1996). Lahars are regarded as the 
second largest destructive volcanic hazard (Baxter, 
1983; Blong, 1984; Tilling, 1989). During the past 
century, tens of  thousands of  people have been 
killed by volcanic flows and hundreds of  thousands 
forced from their homes (Tilling, 1996; National 
Research Council, 1991, 1994). These two-phase 
mass flows containing water and solid particles are 
common in volcanic regions. They can be initiated 
by several mechanisms. For example, a volcanic 
explosion can be accompanied by large plumes 
and pyroclastic flows consisting of  rock and gas 
that race along the surface of  the mountain at 
speeds as high as 100 m/s (Sheridan, 1979). The 
hot ash can melt snow, creating a muddy mixture 
that knocks down trees and entrains rocks and 
boulders into the flow. Cotopaxi volcano in Ecua-
dor is an example of  a volcano that has produced 
many large lahars by this process (Pistolesi et al., 
2013). Crater lakes on volcanoes can be another 
source of  lahars; a recent example is the 2007 
lahar of  Ruapehu in New Zealand (Procter et 
al., 2010). An additional   mechanism for initiat-
ing lahars is intense rainfall on hillsides that are 
devoid of  vegetation with material like clay soils 
or volcanic ash exposed. An example of  this type 
of  lahar is the 1998 mudflow at Casita Volcano in 
Nicaragua that occurred during Hurricane Mitch 
and caused hundreds of  deaths (Sheridan et al., 
1999). Lahars can carry constituent particles that 
typically range from clay to boulder size and can 
propagate tens of  kilometers before coming to rest 
(Procter et al., 2010). As the solid particle compo-
nent becomes deposited, the resulting deposits can 
be up to 100 m thick (Legros, 2002). However, the 
typical deposits left after a debris flow passes are 
on the scale of  meters.

Models that assume one phase, like pure fluid  
(Chow, 1959) or pure frictional models (Savage 
and Hutter, 1989), cannot represent the complex 
behavior of  these kinds of  flows (Iverson et al., 
2010; Iverson, 2014). In order to develop a com-
plete mathematical model of  debris flows, two 
principal challenges must be overcome: rheology 
and scale. First, relations among granular material 
must be developed to describe granular material 
including clays, sands, pebbles and rocks, with 
interstitial water. Second, a computational method 
must be developed that extends over six orders of  
magnitude, as clay diameters are of  the order of  
O(10-6) m and boulders are O(1) m. Neither of  
these challenges can be fully met at this time. This 
paper tries to strike a balance between fidelity to 
the physics of  mass flows and computational fea-
sibility. We describe a modeling effort that draws 
on innovation from engineering and geoscience, 
which postulate constitutive theory and fluid-solid 
interaction effects, and, through a depth averaging 
process, results in a system of  equations that is 
computationally tractable.
The modeling effort here has its origins in the 
pioneering work of  Savage and Hutter (1989). 
They began with mass and momentum balance 
laws based on a Coulomb constitutive description 
of  dry granular material. By scaling and depth 
averaging, they developed a “thin layer” model for 
granular flows down inclines. Flow over general 
topography was addressed in Gray et al. (1999), 
Patra et al. (2005), and Pudasaini and Hutter 
(2003). Comparison of  thin-layer model results 
to historic flows was presented for example in 
Sheridan et al. (2005), Charbonnier and Gertisser 
(2009), and Sulpizio et al. (2010). In Hutter et al. 
(2005), the appropriateness of  these thin layer 
models was considered for several different types 
of  geophysical flows. Much of  the modeling effort 
in this direction was summarized in Pudasaini and 
Hutter (2007).
Iverson (1997) and Iverson and Denlinger (2001) 
argued that the presence of  interstitial fluid funda-
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mentally alters the behavior of  geophysical flows, 
and fluid effects should be included in the consti-
tutive behavior of  the flowing material. Starting 
with equations of  mixture theory (Bedford and 
Drumheller, 1983) and through a careful exam-
ination of  experiments, past studies developed a 
system of  mass and momentum balance laws for 
the mixture. Unfortunately, in this development 
a balance equation for the motion of  pore fluid 
was not readily available. Instead, based on exper-
imental data, a transport equation for the fluid was 
postulated.
A different approach, based on a fully three-di-
mensional model of  two-phase flows, can be found 
in Dartevelle (2004) and Meruane et al. (2010). 
Another approach to modeling mud flows employs  
visco-plastic constitutive assumptions (Coussot, 
1997; Balmforth and Craster, 1999; Mei et al., 
2001; Ancey, 2007). The choice of  a visco-plas-
tic flow model drives the subsequent derivation, 
as well as the parameter fitting necessary for the 
constitutive relationship. The process of  depth 
averaging a visco-plastic flow is always difficult. 
The interface between yielding and non-yielding 
material is itself  a free surface that must be deter-
mined. This attribute requires the use of  multiple 
layers in the model system, with all the resulting 
complexity.
Pitman and Le (2005) developed a two-phase 
thin-layer model of  fluid and granular material. 
They began with a fully three-dimensional model 
of  two-phase flows, based on model equations in 
engineering (Jackson, 2000). The model equations 
are scaled and depth averaged. The resulting 
system of  equations is not complete, and closure 
assumptions are required. With these assumptions, 
the mathematical system is shown to be hyperbolic 
under common conditions, and thus well posed 
(Pelanti et al., 2008). The model of  Pitman and 
Le (2005) includes a drag term, which is the only 
term describing the interaction of  the two phases; 
this coefficient must then be fitted to experiments. 
That model assumes the fluid is not viscous, and 
that there is no frictional dissipation in the fluid 
phase at the basal surface. Both of  these assump-

tions, which are reasonable in bench-scale fluid-
ized bed experiments, are difficult to determine for 
large mass flows. The Pitman and Le (2005) model 
over-simplifies the physics of  the fluid phase. 
When applied to real-scale topographies it only 
works for constant solid-particle concentrations 
well above the dilute flow limit, where the physics 
of  two phase flows are mainly governed by pure 
fluid dynamics. Particle-particle interactions are 
unimportant for volumetric particle concentra-
tions less than 10% (Bagnold, 1962; Winterwerp, 
1999; Dartevelle, 2003). In order to address some 
of  the shortcomings of  the Pitman and Le (2005) 
model, this paper reconsiders the model equations 
proposed by them and proposes a revision of  the 
model equations that better represents two-phase 
geophysical flows. For example, the proposed 
model accounts for the friction at the wall of  the 
fluid phase and no longer assumes a constant 
volumetric fraction of  solids, as in Valentine and 
Wohletz (1989) and Dobran (1991).

2. Model derivation

The Titan2F model uses a similar framework to 
that developed in Pitman and Le (2005). However, 
a complete set of  model equations for a granular 
phase and for a fluid phase is written. Phase inter-
action terms are modeled, and scaling of  all terms 
suggests simplifications that can be made. Depth 
averaging and closure assumptions complete the 
derivation.
A note on sign convention: in soil mechanics it is 
common to consider compressive stresses as posi-
tive; by contrast, in fluid mechanics, as an increase 
in pressure results in a reduction of  the volume, 
compression is negative. We caution the reader 
to observe the sign convention in the equations 
below.

2.1 FUNDAMENTAL ASSUMPTIONS
All symbols used in this paper are described in 
Table 1, Appendix A. The fundamental theory of  
two-phase flows used here can be found in Dobran 
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(1991) and Jackson (2000). In two-space dimen-
sions we consider a thin layer of  granular material 
(s) and interstitial fluid (f), each of  constant spe-
cific density ps and p f, respectively, flowing over a 
smooth basal surface, b. Erosion and deposition 
are neglected. Along the basal surface, we define 
a Cartesian coordinate system Oxyz, with origin O 
defined so the Oxy is tangent to the basal surface, 
with x in the downstream direction, and Oz in the 
normal direction. Writing   ,  for the velocities 
of  the solid and fluid constituents, respectively, φ   
for the solid volume fraction and  f for the fluid 
volume fraction. We assume the mass is fully sat-
urated, so the sum of  the solid and fluid volume 
fractions adds to one (   f  = 1 -  ). When writing 
equations in component form, we use subscripts to 
denote the component of  the vectors, and super-
scripts the phase of  the flow (either solids or fluid).
Mass conservation for the two constituent phases 
may be written as in Anderson and Jackson (1967):

(1)

(2)

The momentum equations are:

(3)

(4)

Here T s and T f are the stress tensors for the solid 
and fluid, respectively, and f  s and f  f are the inter-
action forces between the solid and fluid phases, 
respectively. We must postulate constitutive rela-
tions and an equation for the interphase force 
to close the system. Jackson (2000) presented an 
argument for separating buoyancy from other 
interphase force terms (such as drag or virtual 
mass), and for properly accounting for buoyancy 
in a field with fluid pressure variations. Similar 
modeling can be found in Valentine and Wohletz 
(1989), Dobran et al. (1993), Dobran (2001), and 
Neri et al. (2003, 2007).

 

 

 

 

Pitman and Le (2005) accounted only for the drag 
in evaluating the interaction force, unlike them, 
from Dobran (1991), (neglecting capillarity, virtual 
mass, and lift) we account for the total fluid stress 
as well:

(5)

Here, the total fluid stress is T f= -P f+τ f  f, where 
P f is the fluid pressure and τ f is the viscous contri-
bution to the fluid stress. The drag term exchanges 
momentum between the phases, with a coefficient 
D that is phenomenological. Ergun (1952), Wallis 
(1969), Gidaspow (1994), Fan and Zhu (1998), 
Dobran (2001), Mazzei and Lettieri (2007) and 
Panneerselvam et al. (2007), among other sources, 
suggested values. When    0, the drag vanishes. 
Following Mazzei and Lettieri (2007), we set

(6)

where d is the mean particle diameter and β is a 
constant related to the constant n in the Richard-
son–Zaki equation (Khan and Richardson, 1989). 
According to Mazzei and Lettieri (2007), this con-
stant equals 2.80 either when R0 or ∞, thus we 
use β = 2.80 in Equation 6. Finally, by assuming 
smooth spherical particles on the inertial regime, 
the drag coefficient is approached as constant  
Cd = 1, which holds for particle Reynolds number 
up to 500 (Sparks et al., 1997).

2.2 SCALING

The characteristic thickness of  the flowing gran-
ular material is H and the characteristic length is 
L. We scale x and y by L, and z by H, the time by 
the free fall time √Lg. And we scale the x, y and z 
velocities by √Lg and (H/L)√(Lg), respectively. The 
stresses are scaled by psgH for the solids phase and 
p fgH for the fluid phase. After scaling, the mass 
balance equations are unchanged. Several terms 
in the momentum equations contain the factor  
ε = H/L, which is small; values of  ε from 0.01 
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to 0.001 are not uncommon (Iverson and Den-
linger, 2001). Writing x, y, z for x1, x2, x3, the solid 
momentum balance equations become (showing 
here just the x momentum),

(7)

Note that components of  gravity have been scaled 
by the magnitude |g|, so (gx, gy, gz) is a unit vector.
With the same scaling, the fluid momentum bal-
ance equations become

(8)

Equation 8 shows an important advance in mod-
eling the physics of  the flow related to Pitman and 
Le (2005) as we do not neglect the effect of  the 
volumetric fraction of  fluids.
In summary, the proposed equation system con-
sists of  the solid volume fraction φ  , the three solid 
velocities  , and three fluid velocities  . These 
variables evolve according to the six momentum 
balance laws for the species, and the mass conser-
vation relations for each species.

2.3 CONSTITUTIVE ASSUMPTIONS AND BOUNDARY 
CONDITIONS

The upper surface of  the flowing mass at Fh(x, 
y, t) = 0 is assumed to be a material surface and 
stress free. At the base of  the mass, material is 
assumed to flow tangent to the basal surface, and 
to satisfy a sliding friction law. For the solid constit-
uent, this friction relation specifies that the shear 
traction and the normal stress are proportional: 

 

=  

 

 

 

 

 

 

 , where  bed is the 
basal friction angle and the −sgn(v) specifies that 
the shear traction opposes motion.
We now will discuss constitutive relations. A 
Coulomb constitutive relation (Coulomb, 1776) 
is postulated for the material. The Coulomb law 
is a nonlinear relation among the components 
of  Ts, and stipulated that material deforms 
when the total stress reaches yield, which means 

 , where dev(Ts) = Ts− ½ tr 
(Ts)I is the stress deviator, tr (Ts) is the trace of  the 
stress (the sum of  the diagonal components), I is 
the identity tensor, and κ is a material parameter, 
and that as deformation occurs, the stress and 
strain-rate tensors are aligned. That is, the align-
ment condition specifies dev(T s) = λ dev(V), where 
the strain-rate V = −1/2 ( + )  and tr denotes 
the transpose. To avoid a switching between plas-
tic and non-plastic behavior, we assume the solid 
material is everywhere in plastic yield.
The full Coulomb relations are too complex to 
be used here. Two simplifications are proposed. 
First, at the basal surface, the boundary condition 
ensures proportionality and alignment of  the tan-
gential and normal forces. We assume the same 
proportionality and alignment holds throughout 
the thin flowing layer of  material. Written in 
components ij, this implies Tij s = νijTzz

s, where the 
proportionality constant ν is a function of   bed. 
Second, following Rankine (1857) and Terzaghi 
(1936), an earth pressure relation is assumed for 
the diagonal stress components, νii = kap, or Txx

s = 
kapTzz

s, where

(9)

Here  int is the internal friction angle and the 
choice of  the plus or minus sign depends on 
whether flow is locally contracting (the pas-
sive state, with  , and the plus sign), or 
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expanding (the active state, with  , and 
the minus sign).
For the fluid, the stress terms in Equation 8 should 
be such that in case of   s  0 the equations agree 
with the pure fluid depth-averaged equations.
For pure water, the shear stress at wall can be 
approached by (Chow, 1959)

where Sf is the slope friction and Rh is the hydrau-
lic ratio. Note that for shallow-water problems, 
this assumption could be considered a rough 
approximation in case the shallow-water theory’s 
condition is not met. There are several approaches 
for approximating both the slope friction and the 
shear stress at wall. For example, Pan et al. (2006) 
use the empirical Manning approach, whereas 
Liu and Leendertse (1978) and Zhou and Stansby 
(1999) use the Chezy equation. Both the Manning 
and Chezy approaches pose numerical problems 
when h  0. Thus we use the Darcy equation 
(Zhou, 1995; Xu, 2006):

where

(10)

is the Chezy coefficient. The friction coefficient 
depends on the Reynolds number and the rough-
ness of  the channel (ks).

3. Depth averaging

The final step in the derivation is a depth averaging 
of  the mass and momentum balance equations. 
In this and the following sections we will use the 
same notation used by Savage and Hutter (1989). 
If  h(x, y, t) is the unsteady surface of  the flow and 
b(x, y) is the terrain surface, for some function f, we 
compute

 

 

 

Where h − b is the flow depth at a point (x, y) and 
time t. As the function f contains partial deriva-
tives, repeated use of  the Leibniz rule is made to 
interchange integration and differentiation, and 
boundary conditions are employed to evaluate 
terms at b and h. In addition, several approxima-
tions must be made during the depth averaging 
process. In what follows, we only briefly sketch the 
depth averaging process, noting as appropriate 
those places where approximations are made. Pit-
man and Le (2005) provided an estimation of  the 
errors typically made by these assumptions.
The terms of  order ε are assumed small and 
we hope to drop all such terms from the model. 
However, Savage and Hutter (1989) argued that 
diagonal contributions to the solid stress must 
be retained. Because there is no preferential 
downslope direction in our applications, and the 
flow direction may change during a flow, we retain 
the stress terms in both the x and y directions, 
dropping only O(ε) terms in the z direction. See 
the discussion in Iverson and Denlinger (2001).

3.1 MASS BALANCE EQUATION

As ρs and ρf  are constants, Equation 1 can be 
reduced to:

Which says that the volume-weighted mixture 
flow is divergence free. This equation is integrated 
from z = b to z = h:

(11)

The upper free surface Fh = 0 is a material surface 
for the mixture. So, following Savage and Hutter 
(1989) and Pitman and Le (2005), at z = h(x, y, t),

(12)
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At the basal surface Fb = 0, the flow is tangent to 
the fixed bed, and the bed is fixed in time. Thus, 
we can drop in Equation 12 the terms in ∂t, taking 
into account that at the surface z = b(x, y) (Pitman 
and Le, 2005):

(13)

Like in Pitman and Le (2005), at this point, we 
have ignored sedimentation, entrainment, and 
infiltration of  fluid into the bed.
Using Equation 13 and after algebraic manipu-
lation, the depth averaged equation for the total 
mass of  the solid and fluid can be written

(14)

In writing this equation, the depth averaged veloc-
ities are

with a similar expression for the volume fraction 
of  solids  ̅ and the other velocity components, 
and as in Savage and Hutter (1989), h ̀= h - b.
An additional equation is needed to solve  
for  . After depth averaging Equation 1, we 
arrive at the mass balance equations for the solid 
and fluid phases:

(15)

Where  ̅=  ̅ and  =  ̅. From the satura-
tion condition

(16)

 

 

 

 

 

 

 

 

 

3.2 z MOMENTUM

Note that as ε  0 in the fluid z momentum equa-
tion, the fluid tends to be hydrostatic:

(17)

Depth averaging Equation 17:

(18)

In the same manner, for the solid z momentum we 
find the equation for an effective stress:

(19)

Substituting Equation 17 in 18 and solving for  
∂zT

 s
zz,

Thus the normal solid stress in the z direction at 
any height is equal to the reduced gravity times the 
volumetric fraction of  solids.
In scaling these equations, the z velocities have 
been dropped. Of  course neglecting motion in 
the z direction is a central component of  a thin 
layer theory. Furthermore, any contribution to 
the z momentum from fluid shearing –terms such 
as T f

xz, T f
yz– are dropped due to scaling. Thus, 

only pressure contributions to the fluid stress are 
important, which is an assumption we will make 
below, albeit with a modification at the basal 
surface.

3.3 x AND y MOMENTUM

The nonlinearity of  these equations presents dif-
ficulties in formulating a depth averaged theory, 
and complicates the derivation, and in several 
places it is necessary to take the depth average of  
products of  terms. When necessary, we approxi-
mate the required closure relation; for example, as 
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��´ � �́�́  (Savage and Hutter, 1989; Pitman and 
Le, 2005).
Considering first the equation for the motion of  
the solid phase, the left-hand side of  the solids x 
momentum Equation 7 can be written

Depth averaging and using boundary conditions, 
we find

(20)

Now the depth average of  the right hand side of  
Equation 7 becomes:

(21)

In order to proceed, the following assumptions are 
made:

 

 

 

 

 

• This equation governs the motion of  the solid 
phase and we assume the upper free surface for the 
mixture is a free surface for both of  the individual 
phases.
• The drag term D is highly nonlinear and a cor-
rect depth average is all but impossible to calculate. 
We postulate that experiments could fit an aver-
aged phenomenological drag of  a similar form. As 
seen in Equation 6, we assume a drag coefficient 
Cd = 1. In addition, as the range of  particle sizes 
of  lahars is huge, at present, tracking all of  the 
particles or even a representative sample of  them, 
is intractable. Nevertheless, the lahar mean class 
size is about coarse sand (Pareschi, 1996), thus we 
use a typical mean particle diameter for lahars  
d = 1 mm (Schmid, 1981).
• The earth pressure relation for the solid phase 
is employed. That is, the basal shear stresses are 
assumed to be proportional to the normal stress

Where i can be either x or y, and the velocity ratio 
enforces that friction opposes motion in the desig-
nated direction (Savage and Hutter, 1989; Patra et 
al., 2005). The α notation will provide a convenient 
shorthand that we use in other places. Likewise the 
diagonal stresses are taken to be proportional to 
the normal solid stress

Finally, following Iverson and Denlinger (2001), 
xy shear stresses are determined by a Coulomb 
relation

Where the sgn function ensures that friction 
opposes straining in the (x, y) plane.
• For the fluid phase, the basal shear stresses are 
assumed to be proportional to the square of  the 
depth averaged velocities (Zhuo, 1995; Xu, 2006)

 

 

 

 

Figure 1   Effect on k
ap

 due to changes in φ
bed

 and  × φ
bed

 given a 

fix  . The black line shows the changes on k
ap

 related with φ
bed 

for any fixed  . The doted line shows the relation  × φ
bed

 with 

k
ap

, used within the program.
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Where Cf is the Chezy coefficient, which depends 
on the friction coefficient (see Equation 9). A phys-
ical approach for this coefficient is the Colebrook–
White equation (Colebrook and White, 1937), 
which for rough channels can be approximated as

(22)

Where ks is the roughness of  the channel and Rh 
is the hydraulic radius, which for shallow-water 
problems can be approached as the depth of  the 
flow (Rhh). Equation 22 is logarithmic, thus large 
uncertainties in ks result only in small variations in 
Cf (Swaffield and Bridge, 1983). In the Transport 
& Road Research Laboratory (1976) guide, values 
of  ks are proposed for different materials and chan-
nel types. From that guide, we choose ks=1 mm 
for channels in volcanic environments (as Titan2F 
is open source software, the user can modify this 
value). Therefore, here Cf will depend on the flow 
depth ĥ, ρ f, and the fluid velocity ui .Note that this 
is a physical approach for T f

iz, which does not 
depend on empirical approaches.

 

From Leibniz’s rule and the stress computations 
above, we find

(23)

Now using the fluid and solid stress relation

term (i) is approximated as

(24)

The upper free surface is stress free, so all terms 
involving ���� 	|���  vanish. The expression for (i) 
becomes

(25)

Note that the factor ( ‒ gz) originates in the eval-
uation and depth averaging of  the fluid stress; in 
typical flows, this factor is positive.
Combining all terms yields a solids x momentum 
equation

 

����́ � �� � ��
��� �́���

�́  

 

 

 

 

 

 

 

 

 

 

Figure 2   Dam-break 1-D problem. Evolution of the flow-front 

depth with distance. The figure shows the result of the theoretical 

solution and the results from the numerical model for two initial 

conditions (1.5 m and 3 m). The statistical t-test shows that there 

is no statistically significant difference between the analytical 

solution and the predictions of Titan2F.



T
it

a
n

2
F
 d

e
ri

v
a
ti

o
n

620 / Boletín de la Sociedad Geológica Mexicana / 2018620

D
E
P
T

H
 A

V
E
R

A
G

IN
G

(26)

The y solid momentum equation can be derived in 
a similar fashion.
For pure fluids, the diagonal stresses and shear 
stress are zero. Thus, depth averaging the equation 
for the fluid motion presents fewer difficulties.
The depth averaged x momentum equation takes 
the form

 (27)

 

 

 

 

 

 

 

 

 

 

Where  ̅. Again, the fluid y momen-
tum equation has a similar form. Note that unlike 
Pitman and Le (2005), if  ��´ → 1  Equation 27 
becomes the typical shallow-water approach of  
hydraulics (Chow, 1959). Kowalski (2008) describes 
how debris flows become reduced to a shallow-wa-
ter flow as solid volume fraction vanishes.
As noted above, we solve for volume fractions (  ), 
thus the bulk density can be calculated from

(28)

Then, we obtain the dynamic pressure p from

(29)

Where ��́   is the mixture averaged velocity of  the 
flow (Fan and Zhu, 1998)

(30)

where   and   are the 
speeds of  each phase.
The use of  the impacting dynamic pressure infor-
mation on structures and living beings allows us to 

 

 

 

 
Figure 3   Graphic comparison of the predictions of Titan2F with the experiments performed by Liu (1996). The results for several initial 

volumes compare (a) the width of the deposit and (b) the length of the deposit. The circles show data from the experiments, and the 

asterisks show the predictions of Titan2F.
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estimate levels of  damage, as in Valentine (1998), 
Valentine et al. (2011), and Jones (2013), which is 
useful for vulnerability analysis.

4. Numerical solution

This system of  equations (14, 15, 16, 26, 27) is 
then solved using the finite volume method, whose 
solution provides results of  the velocity field, flow 
depth, and the volumetric concentration of  solids 
at the center of  each finite volume computational 
grid.
To solve the balance laws, we use the Godunov 
solver developed by Davis (1988) already imple-
mented in Patra et al. (2005) and Pitman and Le 
(2005). The adaptive meshing is used as well, 
which allows us to have very fine grids where 
indicators show high gradients, and coarser grids 
where low gradients are detected. The time step is 
adjusted from the Courant condition (Courant et 
al., 1967). The complexity of  the equation system 

results in typical time steps of  the order of  10-4 s. 
As consequence of  this small time step, Titan2F 
becomes a computationally expensive tool.
The numerical solution of  the above set of  
equations presents strong numerical sensitivity 
to Digital Elevation Model (DEM) errors and 
the quality of  those maps. The DEMscan have 
regions where elevations are not well defined; they 
can have crossed contour levels or even infinite 
holes (Wechsler, 2007; Dalbey et al., 2008). Abrupt 
terrain changes, both actual or DEM artifacts, 
cause computations of  gradients and curvatures to 
become unstable. In order to avoid such numerical 
problems, patching and intelligent smoothing of  
the DEMs are needed.
Based on the hyperbolicity analysis done by Pit-
man and Le (2005), we try to ensure it , imposing 
a minimum �̂��� � ���� m , a maximum  max = 
 pc corresponding to a maximum packing con-

centration of  0.65, and a minimum  min = 10-8 
that ensured stability. This constraint makes the 
program stable if  a smooth DEM is used.
The needed initial conditions are the location of  
the pile of  material, its geometry, the volumetric 
solid concentration, and initial velocity. There 
is no inflow condition implemented yet. Inflow 
hydrograph can be approached using several piles, 
each one with different initial depths. The bed 
and internal friction are set internally to the fixed 
values of   bed = 40° and  int= 42° respectively. 
Those values correspond to the bed and internal 
friction of  dry smooth spheres moving on the 
assumed bed roughness size ks (see Kirchner et al., 
1990; Miller and Byne, 1966; Webb, 2004). Nev-
ertheless, both of  these parameters can affect kap. 
The doted line in Figure 1 shows how kap changes 
with φbed for any fixed value of   s (Note that 
Williams et al. (2008) shows that Titan2D results 
are not strongly affected by kap, see Equation 9). 
φbed is a function of  h, which is directly related  
to  s, as shown by Kowalski (2008). The black line 
in Figure 1 shows how kap evolves when the fixed 

Figure 4   Verification of the accuracy of the Titan2F predictions 

for the time evolution of the flow depth and arrival of the front 

at 32 m distance from the lock. The black line represents the 

Titan2F results. The gray shadowed interval represents the 

confidence interval of the experiments performed by Iverson and 

co-workers (Iverson et al., 2010).
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value of  φbed, is multiplied by 0 <   < 0.65. Thus, 
in the evaluation of  kap we use the result of  the 
multiplication   × φbed and

instead of  the user defined φbed and

used by Pitman and Le (2005). In this way, the 
range of  resulting values of  kap are within the 
ranges used for modeling lahars with Titan2D 
(Sheridan et al., 2005; Williams et al., 2008; Procter 
et al., 2010, 2012).

5. Differences with Pitman and Le 
model

There are six major differences between the pres-
ent paper and Pitman and Le (2005):
1. In Pitman and Le (2005), mass and momentum 
conservation laws are derived for the solid mate-

 

 

rial and for the phase averaged mixture of  solid 
and fluid, whereas here, the Titan2F model uses 
mass and momentum equations for both individ-
ual phases.
2. Any two-phase model system must incorpo-
rate several phenomenological functions, such 
as an interphase drag coefficient. In the present 
derivation these functions are better adapted to 
geophysical flows whose fluid phase corresponds 
to water and the solid phase are rounded solid par-
ticles. The drag is calculated from an expression 
valid for the whole range of  Reynolds numbers. It 
only needs the mean particle diameter of  the flow 
as a parameter. We use a typical mean particle 
diameter of  lahars. As Titan2F is open source, the 
user can modify the assumed value of  the mean 
particle diameter.
3. The volumetric particle concentration is no 
longer a fixed parameter, which in our approach is 
calculated for every time step and grid point. This 
means that instead of  having constant 𐐐 like in
Equations (3.2) in Pitman and Le (2005) or simply 
not accounted for, like in the depth averaged fluid 
mass and momentum balance equations (3.27) 
and (3.28) in Pitman and Le (2005), we include the 
variable 𐐐 within all derivatives and depth aver-
aged equations. Thus, in regions where the parti-
cle concentration vanishes, the solid phase role in 
the equation system vanishes as well. In that way, 
the equation system becomes the typical hydraulic 
shallow-water approach, which does not happen 
in Pitman and Le (2005).
4. We account for the fluid stresses at wall. We use 
a physical approach that only needs the roughness 
of  the channel and the flow depth. The last term 
is calculated by the program at every time step, 
whereas the former is set as a fixed value.
5. The interaction forces between the phases now 
depend on both the drag and the fluid stress. The 
pressure is no longer the only term in the fluid 
stress model. Instead, we use the physical Dar-
cy-Weisbach hydraulic approach that accounts for 
the full fluid stress. This approach allows us to have 
a more realistic model for the fluid phase than in 
Pitman and Le (2005).

 
Figure 5   Verification of the accuracy of the Titan2F predictions 

for the time evolution of the flow depth and arrival of the front 

at 66 m distance from the lock. The black line represents the 

Titan2F results. The gray shadowed interval represents the 

confidence interval of the experiments performed by Iverson et 

al. (2010).
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6. The only input parameters needed by the pro-
gram are the location of  the pile of  material, its 
volume, and the volumetric solids concentration. 
The friction coefficients are no longer needed as 
input as they are automatically adjusted according 
to the evolution of  the volumetric fraction of  solids 
across the grid and time. The bed and internal fric-
tion are set in such a way that when the volumetric 
fraction of  solids tends to an assumed maximum 
packing concentration (   = 0.65), both internal 
and bed frictions have a tendency to correspond 
to the values used in those cases in Titan2D. See 
Sheridan et al. (2005) and Williams et al. (2008) for 
ranges of  values.

6. Validation and verification

Validation of  the accuracy of  the code was done 
with analytical solutions of  the Dam Break prob-
lem and with several experimental results (e.g. 
Dressler, 1954; Ancey et al., 2008). Among them, 
we check the deposited pattern predicted by the 
program with the results shown by Liu (1996). The 
prediction of  the arrival time and the flow-depth 

profile was compared with the experimental results 
shown by Iverson et al. (2010) from his recent work 
done on his large-channel facility.
Analytical solutions for shallow-water problems 
are scarce. Only one-dimensional analytical 
approaches are available in the literature, espe-
cially for the well known Dam Break problem (e.g., 
Dressler, 1954; Mangeney et al., 2000; Fernan-
dez-Feria, 2006; Ancey et al., 2008). Unfortunately, 
analytical solutions for geo-mass flows are almost 
impossible to find due to the complexity of  the 
nonlinear partial differential equations (Pudasaini 
and Hutter, 2007). Such solutions can be obtained 
only in special cases like the similarity based solu-
tions proposed by Savage and Hutter (1989) for 
dry avalanches. In our test we use the solution 
proposed by Fernandez-Feria (2006) for the Dam 
Break problem on an incline for pure water. In our 
program we assume �� → 0 . Figure 2 shows a 
comparison of  the Titan2F prediction with this 
analytical solution. The statistical t-test shows 
that there is no statistical difference between the 
analytical solutions and the prediction of  Titan2F 
using the 1D version of  the equations. That 
test shows that about 70% of  the predictions of  
Titan2F can explain the analytical solution. At 
least for the one dimensional case, the program 
successfully reproduces analytical solutions for dif-
ferent initial conditions down to very low particle 
concentrations (less than 1%). However, as one 
dimensional approaches neglect lateral spreads, 
and at the initial parts of  the flow evolution H ⁄ L 
is not small, that version of  the program tends to 
over-estimate the front advance of  the flow, as can 
be seen in Figure 2.
Liu (1996) performed several experiments for geo-
mass flows in an inclined channel. He modified the 
initial volume, the channel slope, and the particle 
concentration to find the final size of  the debris 
flows measured by their resulting maximum width 
and length. We reproduced the experimental final 
width and length after the simulation reached the 
same time corresponding to the duration reported 
by Liu (1996). Figure 3 shows the correspondence 

 

Figure 6   Longitudinal distribution of the particle concentration 

(in %) after 14 s. The volumetric particle concentration at the 

upper part of the channel is very low, whereas at the end, the 

front of the flow becomes very concentrated, as noted by Iverson 

et al. (2010).



T
it

a
n

2
F
 d

e
ri

v
a
ti

o
n

624 / Boletín de la Sociedad Geológica Mexicana / 2018624

V
A

L
ID

A
T

IO
N

 A
N

D
 V

E
R

IF
IC

A
T

IO
N

of  the model with the experiments for (a) the 
width of  the deposit and (b) the length. A Pearson 
correlation shows that 90% of  the experimental 
data for the deposit length can be explained with 
the predictions of  Titan2F, whereas 80% of  the 
data for the deposit width can be explained by the 
predictions of  the program. This illustrates the 
high accuracy of  the program in predicting the 
deposit characteristics for different initial volumes 
(ranging from 2.7 m3 to 16 m3) and high initial 
solid concentrations (  = 0.53 ‒ 0.65). See Liu 
(1996) for details about initial conditions of  his 
experiments.
The experiments performed by Iverson et al. (2010) 
done on a 95 m long artificial channel were used 
to verify the accuracy of  the predictions of  the 
flow front arrival time and the temporal evolution 
of  the flow depth. These flows were unsteady and 
nonuniform. Iverson et al. (2010) show time-se-
ries data for several measured properties: flow 
thickness, pore pressure, basal normal stress, and 
arrival time of  the front. Raw data provided to us 
was used to test the Titan2F prediction concern-
ing time evolution of  the flow depth and arrival 
times at the check points located at 32 and 66 m 
distance from the lock. As shown in Figures 4 and 
5, the arrival time and the temporal evolution of  
the predicted depth fits well within the confidence 

interval of  the experiments. In both of  the cases, 
Titan2F tends to over-estimate the flow depth just 
after the arrival of  the front. This is probably an 
effect of  the slight difference in the shape of  the 
initial pile, as the free surface of  the numerical pile 
follows the same slope of  the channel, whereas the 
actual free surface within the lock is horizontal. 
Nevertheless, a Pearson correlation shows that 
more than 90% of  this experimental data can be 
explained with the predictions of  Titan2F.
The range of  concentrations that the program can 
cope with are from  = 10-8 (almost pure water) 
to  = 0.65 (maximum packing concentration). 
Finally, as expected, the program predicts high 
particle concentrations at the front of  the flow and 
low particle concentrations at the tail of  the flow 
(in some cases, even near pure water concentra-
tions, or φ    0), as can be seen in Figure 6 where 
a longitudinal solids particle distribution predicted 
by Titan2F is shown. The predictions fit with the 
qualitative observation of  Iverson et al. (2010) that 
the tail of  the flow remains very watery. Using 
a predicted concentration of  solids, the density 
is assessed (Equation 28), and, together with the 
speed of  the flow, the dynamic pressure distribu-
tion is calculated as well (Equation 29). Despite that 
Iverson et al. (2010) do not show information about 
the dynamic pressure field, Titan2F does. Figure 
7 shows a longitudinal section of  the dynamic 
pressure after a 14 s simulation. Knowledge of  the 
dynamic pressure information is of  vital impor-
tance in risk analysis as structural damage and risk 
for human life can be assessed from it.
Verification with actual mud flows has been done 
as well, showing very good fit with field data. For 
example, Sheridan et al. (2011) shows that the 
Titan2F predictions are within 10% of  the data 
shown by Procter et al. (2010) for the highly chan-
neled mud flow at Ruapehu, New Zealand. In 
addition, the theory was tested against field data 
assessed by Williams et al. (2008) for the 2006 Vaz-
cun creek lahar at Tungurahua volcano, Ecuador, 
as shown by Córdoba et al. (2015), where Titan2F 
predictions about maximum velocity are within 
10% and within 15% for the measured super-el-

Figure 7   Longitudinal distribution of the predicted dynamic 

pressure at 14 s. The peak over-pressure occurs just at the end 

of the inclined part of the channel.
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evation. In addition, Rodríguez-Espinosa et al. 
(2017) verified the accuracy of  Titan2F predictions 
as well. They used the velocity measurements of  
the 2001 lahar in the Huiloac creek at Popocata-
petl volcano, Mexico, done by Muñoz-Salinas et al. 
(2007), to compare Titan2F predictions. Using the 
non-parametric Kolmogorov (1933) confidence 
test, Rodríguez-Espinosa et al. (2017) show a sig-
nificance level of  0.01.

7. Conclusions

We present a new computational two-phase tool 
for lahar hazard assessment that has no constraints 
on initial volumetric particle concentration other 
than the maximum packing concentration (  
≤ 0.65). The program computes space–time evo-
lution of  the particle concentration, flow depth, 
velocity field, and dynamic pressure at each point 
of  the computational grid.
The model is valid for two-phase flows whose 
phases consist of  solids and water. However, the 
phenomenological approach used for the inter-
phase drag model assumes an average diameter 
of  the solids, which means individual boulders 
or particles cannot be tracked. In addition, the 
model is depth averaged, assuming thin layer 
and shallow-water approaches. Thus, our model 
correctly predicts the dynamics of  gravity-driven 
flows providing the depth averaged values for the 
particle concentration, flow and phases velocities, 
and flow depth in a three dimensional topography. 
In order to model other kinds of  geophysical mass 
flows, adjustments to the code must be done. For 
example, pyroclastic flows could be modeled if  
the flow density of  the fluid phase is appropriately 
addressed (e.g., the effect  of  temperature on air 
density using ideal gas law and an additional equa-
tion for temperature).
The proposed mathematical approach allows 
for the simulation of  a range of  flow behaviors. 
Regions with almost pure fluid to regions of  fric-

tion-dominated flows are correctly described by 
the equations. Using this information, dynamic 
pressure is deduced, which becomes a useful tool 
for risk assessment.
The highly nonlinear coupled-equation system 
makes the time step very small. The use of  this 
new tool on natural terrains or detailed DEMs 
requires high computational power. The use of  a 
high performance work station with multiple cores 
is advised.
Important processes that are not addressed by this 
tool include the effect of  turbulence, incorpora-
tion of  solid material from the bed of  the channel, 
and incorporation of  water into the flow from 
existing water bodies. Nevertheless, this two-phase 
flow is an important step forward in forming an 
acceptable computational model for simulating 
hazardous natural phenomena.
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Appendix A

Table 1. Symbols used in this paper.

Symbol Description

i,j Subscripts to denote the coordinate directions x , y  or z ;
s,f Superscripts to denote the phase of the flow, either solid or fluid;
ρ s Density of the solid phase;

ρ f Density of the fluid phase;
ρ Density of the mixture;

Solids velocity vector;
Fluid velocity vector;

T Stress tensor;
τ Shear stress at wall;
f Interaction force;
φ Volumetric fraction of solids;
g Gravity;
D Drag;
C d Drag coefficient;
d Mean particle diameter;

β Experimental constant related to the constant n  in the Richardson-
Zaki equation;

Particle Reynolds number;
v i Solids velocity in direction i ;
u i Fluid velocity in direction i ;
k ap Constant of proportionality for the diagonal stress component;
ϕ int Internal friction angle;
ϕ bed Bed friction angle;
R h Hydraulic radius;
S f Slope friction;

h(x,y,t) Unsteady surface of the flow;
b(x,y) Bottom surface;
ĥ = h−b Flow depth;

ῡ Depth averaged solids velocity;
Depth averaged fluid velocity;

Depth averaged volumetric fraction of solids;
C f Chezy coefficient;
f r Friction coefficient for the fluid phase;
k s Roughness of the channel;
P f Fluid pressure;
p Dynamic pressure; and

Mixture averaged velocity of the flow.

 
 

 

 


