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Las dos cosas que quiero decir hoy:

1. Hay muchos complejos cúbicos CAT(0) “en la naturaleza".

2. Los complejos cúbicos CAT(0) tienen una estructura muy
elegante y muy útil.
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FIGURE 4. A positive articulated robot arm example [left] with fixed
endpoint. One generator [center] flips corners and has as its trace
the central four edges. The other generator [right] rotates the end of
the arm, and has trace equal to the two activated edges.

FIGURE 5. The state complex of a 5-link positive arm has one cell of
dimension three, along with several cells of lower dimension.

systems is a discrete type of configuration space for these systems. Such spaces
were considered independently by Abrams [1] and also by Swiatkowski [38].

For example, if the graph is K5 (the complete graph on five vertices), N = 2, and
A = {0, 1, 2}, it is straightforward to show that each vertex has a neighborhood
with six edges incident and six 2-cells patched cyclically about the vertex. There-
fore, S is a closed surface. One can (as in [2]) count that there are 20 vertices, 60
edges, and 30 faces in the state complex. The Euler characteristic of this surface is
therefore −10. This surface can be given an orientation; thus, the state complex has
genus six.

Example 3.4 (digital microfluidics). An even better physical instantiation of the pre-
vious system arises in digital microfluidics [17, 18]. In this setting, small (e.g., 1mm
diameter) droplets of fluid can be quickly and accurately manipulated on a plate
covering a network of current-controlled wires by an electrowetting process that
exploits surface tension effects to propel a droplet. Applying a current drives the
droplet a discrete distance along the wire. In this setting, one desires a “laboratory
on a chip” in which droplets of various chemicals can be positioned, mixed, and
then directed to the appropriate outputs.

Representing system states as marked vertices on a graph is appropriate given the
discrete nature of the motion by electrophoresis on a graph of wires. This adds a
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1. MOTIVATION.

Moving robots.

A robotic snake can move:
1. the head or tail or 2. a joint

without self-intersecting.

Snake: Moves:

  1:

  2:
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One motivation: moving robots.

How do we move this robotic snake (optimally) using these
moves from one position to another one?

Position 1 → Position 2
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Motivación: una pregunta más fácil.

Cómo llego a la universidad?

Plaza de Nariño → Universidad de Nariño
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Motivación: una pregunta más fácil.

¿Cómo llego a la universidad, de manera óptima?

¡Con un mapa! (Ojo: ¿Óptima en qué sentido?)

Hagamos lo mismo.
Constuyamos un mapa de las posibles posiciones del robot.
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Motivation: back to moving robots.

Let’s build a map of all possible positions of the robot.

A small piece: (discrete model)
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Motivation: moving robots.

Let’s build a map of all possible positions of the robot.

A small piece: (continuous model)
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Motivation: moving robots.

Let’s build a map of all possible positions. A complete example:

A CAT(0) cube complex!
How can we understand them? Navigate them?
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Motivation: moving robots.

Regular
CAT(0) Cube
Complexes

Rick Scott
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Examples

Remarks

Proof sketch

RACG vs. RAMRG

RACG:

RAMRG:
How can we understand CAT(0) cube complexes?
How should we navigate them?

Obstacles:
• High dimension.
• Complicated ramification.
• Too many vertices.

This is what we need to overcome.
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2. PRELIMINARIES. CAT(0) spaces

A metric space X is CAT(0) if it has non-positive curvature
everywhere, in the sense that triangles in X are “thinner" than
flat triangles. Roughly, it is “saddle shaped".

More precisely, we require:

• There is a unique geodesic path between any two points of X .

• (CAT(0) inequality) Consider any triangle T in X and a
comparison triangle T ′ of the same sidelengths in the
Euclidean plane R2. Consider any chord (of length d) in T and
the corresponding chord (of length d ′) in T ′. Then

d ≤ d ′.
RECONFIGURATION 13
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FIGURE 9. Comparison triangles measure curvature bounds.

4.2. The link condition. There is a well-known combinatorial approach to deter-
mining when a cubical complex is nonpositively curved due to Gromov.

Definition 4.3. Let X denote a cell complex and let v denote a vertex of X . The link
of v, !k[v], is defined to be the abstract simplicial complex whose k-dimensional
simplices are the (k + 1)-dimensional cells incident to v with the natural boundary
relationships.

Certain global topological features of a metric cubical complex are completely de-
termined by the local structure of the vertex links: a theorem of Gromov [26] asserts
that a finite dimensional Euclidean cubical complex is NPC if and only if the link
of every vertex is a flag complex without digons. Recall: a digon is a pair of ver-
tices connected by two edges, and a flag complex is a simplicial complex which
is maximal among all simplicial complexes with the same 1-dimensional skeleton.
Gromov’s theorem permits us an elementary proof of the following general result.

Theorem 4.4. The state complex of any locally finite reconfigurable system is NPC.

PROOF: Gromov’s theorem is stated for finite dimensional Euclidean cubical com-
plexes with unit length cubes. It holds, however, for non-unit length cubes when
there are a finite number of isometry classes of cubes (the finite shapes condition) [6].
Locally finite reconfigurable systems possess locally finite and finite dimensional
state complexes, which automatically satisfy the finite shapes condition (locally).

Let u denote a vertex of S. Consider the link !k[u]. The 0-cells of the !k[u] corre-
spond to all edges in S(1) incident to u; that is, actions of generators based at u. A
k-cell of !k[u] is thus a commuting set of k + 1 of these generators based at u.

We argue first that there are no digons in !k[u] for any u ∈ S. Assume that φ1 and φ2

are admissible generators for the state u, and that these two generators correspond
to the vertices of a digon in !k[u]. Each edge of the digon in !k[u] corresponds to
a distinct 2-cell in S having a corner at u and edges at u corresponding to φ1 and
φ2. By Definition 2.7, each such 2-cell is the equivalence class [u; (φ1, φ2)]: the two
2-cells are therefore equivalent and not distinct.

To complete the proof, we must show that the link is a flag complex. The interpre-
tation of the flag condition for a state complex is as follows: if at u ∈ S, one has
a set of k generators φαi , of which each pair of generators commutes, then the full
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PRELIMINARIES. Cube complexes

A cube complex is a space obtained by gluing cubes (of
possibly different dimensions) along their faces.

8 R. GHRIST & V. PETERSON

FIGURE 4. A positive articulated robot arm example [left] with fixed
endpoint. One generator [center] flips corners and has as its trace
the central four edges. The other generator [right] rotates the end of
the arm, and has trace equal to the two activated edges.

FIGURE 5. The state complex of a 5-link positive arm has one cell of
dimension three, along with several cells of lower dimension.

systems is a discrete type of configuration space for these systems. Such spaces
were considered independently by Abrams [1] and also by Swiatkowski [38].

For example, if the graph is K5 (the complete graph on five vertices), N = 2, and
A = {0, 1, 2}, it is straightforward to show that each vertex has a neighborhood
with six edges incident and six 2-cells patched cyclically about the vertex. There-
fore, S is a closed surface. One can (as in [2]) count that there are 20 vertices, 60
edges, and 30 faces in the state complex. The Euler characteristic of this surface is
therefore −10. This surface can be given an orientation; thus, the state complex has
genus six.

Example 3.4 (digital microfluidics). An even better physical instantiation of the pre-
vious system arises in digital microfluidics [17, 18]. In this setting, small (e.g., 1mm
diameter) droplets of fluid can be quickly and accurately manipulated on a plate
covering a network of current-controlled wires by an electrowetting process that
exploits surface tension effects to propel a droplet. Applying a current drives the
droplet a discrete distance along the wire. In this setting, one desires a “laboratory
on a chip” in which droplets of various chemicals can be positioned, mixed, and
then directed to the appropriate outputs.

Representing system states as marked vertices on a graph is appropriate given the
discrete nature of the motion by electrophoresis on a graph of wires. This adds a

(Like a simplicial complex, but the building blocks are cubes.)

Metric: Euclidean inside each cube.

We are interested in cube complexes which are CAT(0).
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Example. Five squares glued around a corner.
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Example. Five squares glued around a corner.

A

B

C

B'  

A'  

C'  

|AB| = |AC| =
√

5 → |A′B′| = |A′C′| =
√

5
|BC| = 2

√
2 |B′C′| = 2

√
2
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Example. Five squares glued around a corner.

A

B

C

B'  

A'  

C'  

D' E'

D

E

|AB| = |AC| =
√

5 → |A′B′| = |A′C′| =
√

5
|BC| = 2

√
2 |B′C′| = 2

√
2

|DE | = 1 <
√

2 = |D′E ′|.

This triangle is thin. (But: I still need to test many chords.)
This space is CAT(0). (But: I still need to test many triangles.)

Not so practical!
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3. EXAMPLES.

Example 1. Robot motion planning

State complex. vertices = positions. edges = moves.
cubes = “physically independent" moves.

Theorem (GP) This is often a CAT(0) cube complex.

This works very generally for many reconfiguration systems,
where we change vertex labels on a graph using local moves.
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Example 2. Phylogenetic trees (Billera, Holmes, Vogtmann):

Goal: Predict the evolutionary tree of
n current-day species/languages/....

Approach:
• Build a space Tn of all possible trees.
• Study it, navigate it.

14 BILLERA, HOLMES AND VOGTMANN
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Figure 11: Constructing the link of the origin in T4

Figure 12 shows another portion of the link which forms a pentagon
embedded in its ambient quadrants.

1 2 3 4
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Figure 12: A pentagon in the link

The entire link of the origin is shown in Figure 13, without the ambient
quadrants. The entire space T4 is an infinite cone on this graph, with cone
point the origin. It is interesting to note that the link of the origin in

SPACE OF PHYLOGENETIC TREES 15

this case is a well-known graph, called the Peterson graph. The Peterson
graph has no planar embedding, and the space T4 cannot be embedded in
3-dimensional space.

Figure 13: Link of the origin in T4

One can visualize T 4 as being obtained from the space pictured in Figure
14 by gluing together edges with the same label. We note that the figure
does not look metrically correct, since each triangle should be a right trian-
gle with right angle at the origin; also, each triangle should extend forever
in the direction away from the origin.

a

b

c
b

a

c

Figure 14: T4

3. COMBINATORICS OF THE SPACE OF TREES

In this section we consider certain combinatorial aspects of the space of
trees, and in particular relations to combinatorial structures which have
been studied in other contexts. The combinatorial properties of the link of

Thm. (BHV) Cor. Tn has unique geodesics.
Tn is a CAT(0) cube complex. Cor. “Average" trees exist.



motivation preliminaries examples characterizations applications

Example 3. Geometric Group Theory.

A right-angled Coxeter group is a group of the form

W (G) = 〈v ∈ V | v2 = 1 for v ∈ V , (uv)2 = 1 for uv ∈ E〉Regular
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Example: a2 = b2 = c2 = d2 = 1
(ab)2 = (ac)2 = (bc)2 = (cd)2 = 1

Thm. (Davis) Right-angled Coxeter groups are CAT(0):
W (G) acts “very nicely" on a CAT(0) cube complex X (G).
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Use the geometry of X (G) to study the group W (G); e.g.,
• If a group G is CAT(0), the “word problem" is easy for G.



motivation preliminaries examples characterizations applications

4. CHARACTERIZATIONS.

Which cube complexes are CAT(0)?

In general, CAT(0) is a subtle condition; but for cube complexes:

1. Gromov’s characterization.

Theorem. (Gromov, 1987)
A cube complex is CAT(0) if and only
if it is simply connected and the link of
every vertex is a flag simplicial complex.

∆ flag: if the 1-skeleton of a simplex T is in ∆, then T is in ∆.
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Vertex Links

In a cubical complex, the links
of vertices are simplicial complexes.

A simplicial complex L is a
flag complex if whenever the
1-skeleton of a simplex occurs
in L, so does the entire simplex.
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Characterizations: Which cube complexes are CAT(0)?

2. Our characterization.
Regular
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RACG vs. RAMRG

RACG:

RAMRG:

Theorem. (A-Owen-Sullivant 08)
(Pointed) CAT(0) cube complexes are in
bijection with posets with inconsistent pairs.

1

2

4

65

3

PIP: A poset P and a set of “inconsistent pairs" {x , y}, with
x , y inconsistent, y < z → x , z inconsistent.
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Theorem. (A-Owen-Sullivant 08)
(Pointed) CAT(0) cube complexes are in
bijection with posets with inconsistent pairs.

Sketch of proof.
Idea: CAT(0) cube complexes “look like" distributive lattices.
So imitate Birkhoff’s bijection: distributive lattices↔ posets

“→ ”: X has hyperplanes which split cubes in half. (Sageev)
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Theorem. (A. - Owen - Sullivant 08)
(Pointed) CAT(0) cube complexes are in
bijection with posets with inconsistent pairs.

Bijection. “→ ”: Fix a “home" vertex v .

v

1

2 4

6

3

5 12345

12

123

124

234 1246

24

1234

2

2

12

1

2

4

65

3

If i , j are hyperplanes, declare:

i < j if one needs to cross i before crossing j
i , j inconsistent if it is impossible to cross them both.
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Remark.

Sageev (95) and Roller (98) obtained a different combinatorial
description. Which one is more useful depends on the context.

Let’s see some applications.
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Application 1. Embeddability conjecture.

Conjecture. (Niblo, Sageev, Wise) Any d-dimensional interval in
a CAT(0) cube complex can be embedded in the cubing Zd .

v

1

2 4

6

3

5 12345

12

123

124

234 1246

24

1234

2

2

12

1

2

4

65

3

Proof. (AOS 08)

Dilworth already showed (in 1950!) how to embed J(Q) in Zd :
•Write Q as a union of d disjoint chains. (Example: 246, 35, 1)
• “Straighten" the cube complex along each chain.

(Proof also by Brodzki, Campbell, Guentner, Niblo, Wright (08).)
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•Write Q as a union of d disjoint chains. (Example: 246, 35, 1)
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Application 2. All CAT(0) cube complexes are “robotic".

Theorem. (Ghrist-Peterson 07)
Every CAT(0) cube complex can be realized as a state complex.

Their proof is indirect.
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Alternative proof. (AOS 10)
Root X → poset with inconsistent pairs P.

A “virus robot" takes over the poset P.
It can take over a new cell q if and only if:

o it already took over all elements p < q, and
o it hasn’t taken over any elements inconsistent with q.

Then X is the state complex for this robot.
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Application 3. The Hopf algebra of CAT(0) cube complexes.

Theorem. (A. - Cifuentes - Collazos 12)
CAT(0) cube complexes have the structure of a Hopf algebra.
There is an elegant formula for the antipode.
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Application 4.1. Pinned-down robotic arm in a square grid.
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Theorem. (A.-Baker-Yatchak, 2012) The state complex is a
CAT(0) cubical complex. Its PIP (“remote control") is as shown.

Complex of 2n states in n
2 dim. −→ ∼ 1

2n2 “buttons".
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Application 4.1. Pinned-down robotic arm in a square grid.

Corollary. (A.-Baker-Yatchak, 2012) Let qn,d be the number
of d-cubes in the state complex for the robotic arm of length n.
Then ∑

n,d≥0

qn,d xnyd =
1 + xy

1− 2x − x2y
.
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Application 4.2. Pinned-down robotic arm in a strip.

Theorem. (A.-Baker-Yatchak, 2012) The state complex is a
CAT(0) cubical complex. Its PIP (“remote control") is as shown.

Complex of Fn ∼ 1√
5

(
1+
√

5
2

)n
states in n

3 -dim −→ ∼ n2

4 buttons.
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Application 4.2. Pinned-down robotic arm in a strip

Corollary. (A.-Baker-Yatchak, 2012) Let sn,d be the number of
d-cubes in the state complex for the robotic arm of length n.
Then ∑

n,d≥0

sn,d xnyd =
1 + x + xy + x2y
1− x − x2 − x3y

.
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Application 4.3. Non-pinned-down robotic snake.

A negative result:

Theorem. (A. - Yatchak, 2012) If the snake in a grid is not
pinned down, the state complex is not always CAT(0).

Open question. Which robots give CAT(0) cube complexes?
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Application 5. Moving (some) robots efficiently.

Motivation:

Algorithm. (Owen-Provan 09) A polynomial-time algorithm to find
the geodesic between trees T1 and T2 in the space of trees Tn.

(
√

2-approx.: Amenta 07, exp.: GeoMeTree 08, GeodeMaps 09)
This allows us to
• find distances between trees
• “average" trees.
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Application 5. Moving (some) robots efficiently.

We use the PIP (“remote control") of X to get:

Algorithm. (A. - Owen - Sullivant 12, A - Baker - Yatchak 14)
An algorithm to find the geodesic between points p and q in any
CAT(0) cube complex X .

We do this for four metrics:
• Euclidean length
• Time
• Number of moves.
• Number of sets of simultaneous moves.

This allows us to
• navigate the state complex of any reconfiguration system
• find the optimal robot motion between two positions.

(Computer/robotic implementation?)
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FIGURE 4. A positive articulated robot arm example [left] with fixed
endpoint. One generator [center] flips corners and has as its trace
the central four edges. The other generator [right] rotates the end of
the arm, and has trace equal to the two activated edges.

FIGURE 5. The state complex of a 5-link positive arm has one cell of
dimension three, along with several cells of lower dimension.

systems is a discrete type of configuration space for these systems. Such spaces
were considered independently by Abrams [1] and also by Swiatkowski [38].

For example, if the graph is K5 (the complete graph on five vertices), N = 2, and
A = {0, 1, 2}, it is straightforward to show that each vertex has a neighborhood
with six edges incident and six 2-cells patched cyclically about the vertex. There-
fore, S is a closed surface. One can (as in [2]) count that there are 20 vertices, 60
edges, and 30 faces in the state complex. The Euler characteristic of this surface is
therefore −10. This surface can be given an orientation; thus, the state complex has
genus six.

Example 3.4 (digital microfluidics). An even better physical instantiation of the pre-
vious system arises in digital microfluidics [17, 18]. In this setting, small (e.g., 1mm
diameter) droplets of fluid can be quickly and accurately manipulated on a plate
covering a network of current-controlled wires by an electrowetting process that
exploits surface tension effects to propel a droplet. Applying a current drives the
droplet a discrete distance along the wire. In this setting, one desires a “laboratory
on a chip” in which droplets of various chemicals can be positioned, mixed, and
then directed to the appropriate outputs.

Representing system states as marked vertices on a graph is appropriate given the
discrete nature of the motion by electrophoresis on a graph of wires. This adds a
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