Some results in the theory of formations of finite groups

Adolfo Ballester-Bolinches¹

¹Universitat de València, València, Spain

To Leonid Shemetkov, in memoriam. San Juan de Pasto, August, 2014

Introduction

- A formation is a class of groups
 which is closed under taking homomorphic images and subdirect products. In particular, every finite group G has a smallest normal subgroup with quotient in
 called the
 residual of G and denoted by G
 .
- ② \mathfrak{F} is subgroup-closed if it is closed under taking subgroups, that is, $U^{\mathfrak{F}} \leq G^{\mathfrak{F}}$ for all subgroups U of G.
- **3** A Fitting class is a class of groups \mathfrak{F} which is closed under taking subnormal subgroups and such that the subgroup $G_{\mathfrak{F}}$, generated by the subnormal \mathfrak{F} -subgroups of a group G, is itself an \mathfrak{F} -group. This subgroup is called the \mathfrak{F} -radical of G.
- **3** A formation \mathfrak{F} is saturated (respectively solubly saturated) if a group G belongs to \mathfrak{F} if the Frattini factor group $G/\Phi(G)$ (respectively $G/\Phi(G_{\mathfrak{S}})$) belongs to \mathfrak{F} .

Introduction

Let \mathfrak{F} be a formation. A maximal subgroup M of a group G is said to be \mathfrak{F} -normal in G if the primitive group $G/\operatorname{Core}_G(M)$ belongs to \mathfrak{F} . It is clear that M is \mathfrak{F} -normal in G if and only if M contains $G^{\mathfrak{F}}$.

Introduction

Definition

Let \mathfrak{F} be a formation. A subgroup U of a group G is called an \mathfrak{F} -subnormal subgroup of G if either U = G or there is a chain of subgroups

$$U = U_0 < U_1 < \cdots < U_n = G$$

such that U_{i-1} is a maximal \mathfrak{F} -normal subgroup of U_i , for i = 1, 2, ..., n.

It is rather clear that the $\mathfrak N$ -subnormal subgroups of a group G for the formation $\mathfrak N$ of all nilpotent groups are subnormal, and they coincide in the soluble universe.

Theorem (Wielandt's join theorem)

The subgroup generated by two subnormal subgroups of a group G is itself subnormal in G.

As a result, the set sn(G) of all subnormal subgroups of a group G is a sublattice of the subgroup lattice of G.

Let \mathfrak{F} be a formation. One might wonder whether the set of \mathfrak{F} -subnormal subgroups of a group forms a sublattice of the subgroup lattice. The answer is in general negative. The formation of all 2-nilpotent groups and the group G = [V]X, where X is the symmetric group of degree 4 and V is an irreducible and faithful module over the field of 3-elements provide a counterexample.

The classification problem of the lattice formations, that is, formations \mathfrak{F} for which the set of \mathfrak{F} -subnormal subgroups is a sublattice of the subgroup lattice was proposed by Shemetkov in 1978 and it appeared in the Kourovka Notebook in 1984 as Problem 9.75.

- A. F. Vasil'ev, S. F. Kamornikov, V. Semenchuk. On lattices of subgroups of finite groups. Infinite groups and related algebraic structures, Institut Matematiki AN Ukrainy, Kiev, (1993), 27–54.

Theorem

Let \mathfrak{F} be a saturated formation. Then \mathfrak{F} is a lattice formation if and only if $\mathfrak{F}=\mathfrak{M}\times\mathfrak{H}$ for some subgroup-closed saturated formations \mathfrak{M} and \mathfrak{H} satisfying the following conditions:

- **2** There exists a set of prime numbers π^* and a partition $\{\pi_i : i \in \mathcal{I}\}$ of π^* such that $\mathfrak{H} = \times_{i \in \mathcal{I}} \mathfrak{S}_{\pi_i}$.
- **1** $\mathfrak{M} = \mathfrak{S}_p \mathfrak{M}$ for all $p \in \pi(\mathfrak{M})$ and \mathfrak{M} is an \mathfrak{M}^2 -normal Fitting class.
- **1** Every non-cyclic \mathfrak{M} -critical group G with $\Phi(G) = 1$ is a primitive group of type 2 such that $G/\operatorname{Soc}(G)$ is a cyclic group of prime power order.

Theorem (Wielandt's property for nilpotent residuals)

The nilpotent residual of the subgroup generated by two subgroups is the subgroup generated by the nilpotent residuals of the subgroups.

As a consequence F(K), the Fitting subgroup of a subnormal subgroup K of G, normalises the nilpotent residual of every subnormal subgroup of G.

For a group G and the lattice $S_n(G)$ of all subnormal subgroups of G, a map $\omega \colon S_n(G) \longrightarrow S_n(G)$ is called a Wielandt operator in G if, for any H, $K \in S_n(G)$, the following conditions are satisfied:

W1:
$$\langle H, K \rangle^{\omega} = \langle H^{\omega}, K^{\omega} \rangle$$
,
W2: if $H \triangleleft K$, then $H^{\omega} \triangleleft K$.

Here, of course, H^{ω} denotes the image of H under the map ω . Note that Condition W2 implies that H^{ω} is a normal subgroup of H.

Theorem (Wielandt)

Let φ and ψ be two Wielandt operators in a group G. Assume that two subnormal subgroups H and K of G are permutable if $H=H^{\varphi}=H^{\psi}$. Then $A^{\varphi}B^{\psi}=B^{\psi}A^{\varphi}$ for any pair (A,B) of subnormal subgroups of G.

Suppose that a Wielandt operator ω is defined in all groups G. If ω satisfies $(X^\omega)^\alpha=(X^\alpha)^\omega$ for any homomorphism α of a group X, then the class $\mathfrak{F}:=(X\mid X^\omega=1)$ is a Fitting formation and G^ω is the \mathfrak{F} -residual of G for every group G. Conversely if \mathfrak{F} is a Fitting formation, then the map $\delta\colon S_n(G)\longrightarrow S_n(G)$, $H^\delta=H^\mathfrak{F}$ for all $H\in S_n(G)$, defines a Wielandt operator in every group G, permuting with all homomorphisms provided that δ satisfies Condition W1.

Consequently, the problem of finding Wielandt operators which are permutable with homomorphisms is reduced to the description of Fitting formations \mathfrak{F} satisfying the following property:

If U and V are subnormal subgroups of a group G, then $\langle U, V \rangle^{\mathfrak{F}} = \langle U^{\mathfrak{F}}, V^{\mathfrak{F}} \rangle$.

Definition

Let \mathfrak{F} be a formation. We say that \mathfrak{F} satisfies the Wielandt property for residuals if whenever U and V are subnormal subgroups of $\langle U, V \rangle$ in a group G, then $\langle U, V \rangle^{\mathfrak{F}} = \langle U^{\mathfrak{F}}, V^{\mathfrak{F}} \rangle$.

- S. F. Kamornikov, L. A. Shemetkov. On coradicals of subnormal subgroups. Algebra i Logika, 34 (1995), 493–513.
- A. Ballester-Bolinches, John Cossey, L. M. Ezquerro. On formations of finite groups with the Wielandt property for residuals. J. Algebra, **243** (2001), 717–737.

- Every soluble subgroup-closed Fitting formation satisfies the Wielandt property for residuals.
- Some Fitting formations defined by a Fitting family of modules (in the sense of Cossey and Kanes) satisfies the Wielandt property for residuals.
- For solubly saturated Fitting formations, the problem can be reduced to the boundary.

Theorem

Let \mathfrak{F} be a Fitting formation. If U and V are subgroups of a group G such that U and V are subnormal in $\langle U, V \rangle$, it follows that $U_{\mathfrak{F}}$ normalises $V^{\mathfrak{F}}$. In particular, the \mathfrak{F} -radical of G normalises the \mathfrak{F} -residual of every subnormal subgroup of G.

Definition

Let \mathfrak{F} be a non-empty formation. We say that \mathfrak{F} has the generalised Wielandt property for residuals, \mathfrak{F} is a GWP-formation for short, if \mathfrak{F} enjoys the following property: If G is a group generated by two \mathfrak{F} -subnormal subgroups A and B, then $G^{\mathfrak{F}} = \langle A^{\mathfrak{F}}, B^{\mathfrak{F}} \rangle$.

- S. F. Kamornikov. Permutability of subgroups and \$\mathcal{F}\$-subnormality. Siberian Math. J., **37** (1996), 936–949.
- A. Ballester-Bolinches, M. C. Pedraza-Aguilera, M. D. Pérez-Ramos. On \mathfrak{F} -subnormal subgroups and \mathfrak{F} -residuals of finite groups. J. Algebra, **186** (1996), 314–322.
- A. Ballester-Bolinches. \mathfrak{F} -critical groups, \mathfrak{F} -subnormal subgroups, and the generalised Wielandt property for residuals. Ric. Mat., 186, (2006), 13–30.

Theorem

Every GWP-formation \mathfrak{F} is a subgroup-closed Fitting formation for which the set of all \mathfrak{F} -subnormal subgroups of every group G is a sublattice of the subgroup lattice of G, that is, \mathfrak{F} is a lattice formation.

Theorem (B-B, Ric. Mat., 2006)

Let \mathfrak{F} be a subgroup-closed saturated lattice formation. Then \mathfrak{F} is a GWP-formation if and only if there exists a subclass \mathfrak{Y} of $b_n(\mathfrak{F})$ such that the following condition is fulfilled by all groups $G \in \mathfrak{Y}$: If $G = \langle A, B \rangle$ with A and B \mathfrak{F} -subnormal subgroups of G, then $G^{\mathfrak{F}} = \langle A^{\mathfrak{F}}, B^{\mathfrak{F}} \rangle$.

A. Ballester-Bolinches, S. F. Kamornikov, V. Pérez-Calabuig. On formations of finite groups with the generalised Wielandt property for residuals. J. Algebra, **412** (2014), 173–178.

Theorem

Every GWP-formation is saturated

Definition

Let \mathfrak{X} be a class of groups. A group G is said to be \mathfrak{X} -critical (or critical for \mathfrak{X}) if $G \notin \mathfrak{X}$, but all proper subgroups of G belong to \mathfrak{X} .

Theorem

Let \mathfrak{F} be a GWP-formation, and G an \mathfrak{F} -critical group. Then $N/\Phi(G)=G^{\mathfrak{F}}\Phi(G)/\Phi(G)=\operatorname{Soc}(G/\Phi(G))$ is a minimal normal subgroup of $G/\Phi(G)$. If N is a proper subgroup of G, then G/N is a cyclic q-group for some prime $q\in\pi(\mathfrak{F})$ and $N/\Phi(G)$ is a q'-group if $N/\Phi(G)$ is abelian.

It follows that a GWP-formation must be solubly saturated. This is the first step to proof the saturation theorem.

Theorem (Kamornikov, B-B, submitted)

Let \mathfrak{M} be a subgroup-closed extensible formation and \mathfrak{X} be a class of simple non-abelian \mathfrak{M} -critical groups. Set \mathfrak{L} = \mathfrak{M} form(\mathfrak{X}). Assume that \mathfrak{H} is a formation such that $\pi(\mathfrak{L}) \cap \pi(\mathfrak{H}) = \emptyset$. If $\mathfrak{F} = \mathfrak{L} \times \mathfrak{H}$ and there exists a partition $\{\pi_i : i \in I\}$ of $\pi(\mathfrak{H})$ such that $\mathfrak{H} = \times_{i \in I} \mathfrak{S}_{\pi_i}$, then \mathfrak{F} is a GWP-formation.

As a consequence, every soluble formation is a GWP-formation if and only if it is a lattice formation.