DETERMINACIÓN DE LAS PROPIEDADES FISICO-MECANICAS DE LAS MADERAS PANDALA, CHANUL, GRANADILLO Y CUANGARE SEGÚN LA DENSIDAD BASICA TIPO A, B Y C

UNIVERSIDAD DE NARIÑO FACULTAD DE INGENIERIA PROGRAMA DE INGENIERIA CIVIL SAN JUAN DE PASTO 2012

DETERMINACIÓN DE LAS PROPIEDADES FISICO-MECANICAS DE LAS MADERAS PANDALA, CHANUL, GRANADILLO Y CUANGARE SEGÚN LA DENSIDAD BASICA TIPO A, B Y C

PEDRO LUIS LEYTON RUALES HARVIN DANILO CABRERA VILLOTA

TRABAJO DE GRADO PRESENTADO PARA COMO REQUISITO PARCIAL PARA OPTAR AL TITULO DE INGENIERO CIVIL

DIRECTOR:

ARMANDO MUÑOZ DAVID. IC.

UNIVERSIDAD DE NARIÑO FACULTAD DE INGENIERIA PROGRAMA DE INGENIERIA CIVIL SAN JUAN DE PASTO 2012

NOTA DE RESPONSABILIDAD

"La universidad de Nariño no se hace responsable de las opiniones o resultados obtenidos en el presente trabajo y para su publicación priman las normas sobre el derecho de autor"

Artículo 1 del acuerdo Nº 324 de octubre 11 de 1966, emanado del honorable Consejo Directivo de la Universidad de Nariño.

NOTA DE ACEPTACIÓN

Presidente del Jurado
Jurado
Jurado

AGRADECIMIENTOS

Los autores expresan su agradecimiento a:

ARMANDO MUÑOZ DAVID. Ingeniero civil. y director del trabajo de grado por su colaboración, asesoría, y atención.

GUSTAVO PONCE. Auxiliar de laboratorio de ingeniería. Por sus aportes y colaboración.

A Dios por ser siempre mi fortaleza en los momentos más difíciles, a mis padres y hermanos por ser mi apoyo incondicional en todo momento y estar ahí cuando más los necesito.

Pedro Luis LeytonRuales

A Dios por ser mi luz y mostrarme el camino indicado. A mis padres Francisco y Omaira por confiar en mí y por haberme apoyado en el momento en que lo necesite y es a quienes les dedico este triunfo en mi vida. A leydy por ser la fuente de inspiración para cada día ser mejor. A mi hermano Wilson por brindarme su respaldo incondicional. A mis profesores por dedicar su tiempo para construir una sociedad del mañana. A mis amigos y demás familiares por su colaboración.

Harvin Danilo Cabrera Villota.

RESUMEN

La presente investigación consisten en la determinación de las propiedades físico-mecánicas de las maderas: Granadillo, Chanul, Pandala y Cuangare, las cuales son procedentes del departamento de Nariño. Este estudio surge por la necesidad de complementar y concretar los estudios realizados por el PADT- REFORT y el ingeniero Guillermo Rondón Vesga, de los cuales el PADT-REFPRT determino su densidad básica en tres grupos A, B y C, y unos esfuerzos admisibles, mientras que el Ingeniero Rondón llego tan solo a clasificar algunas maderas de Nariño de acuerdo a su densidad básica. De aquí la importancia y la necesidad de conocer las características físico-mecánicas de las maderas más utilizadas en nuestra región.

Las propiedades mecánicas que se evalúan son: dureza brinell, resistencia a la flexión, resistencia a la compresión perpendicular y paralela a la fibra, resistencia al cizallamiento. Para cada ensayo se realzaron 10 probetas por cada madera es decir que por cada ensayo se usaran 40 probetas con un total de 200 probetas ensayadas al finalizar la investigación. Estos ensayos se realizan en los laboratorios de la facultad de ingeniería de la Universidad de Nariño en la ciudad de pasto.

Para la determinación de la densidad básica se utilizaron 10 probetas de cada tipo de madera en estado verde, diferentes a las utilizadas para los ensayos mecánicos, con un total de 40 probetas.

La madera para los ensayos es procesada en maderas San Andrés que se encuentra en la ciudad de Pasto, Nariño. Los ensayos se realizan según las normas colombianas vigentes para dichas pruebas por lo que las probetas tienen medidas estándar así como el procedimiento para cada ensayo realizado.

En los análisis se encontró que la madera Cuangare más conocida como ordinaria y la más utilizada en la construcción obtuvo una densidad menor a la madera Pandala pero resistencia mayor a esta, por lo tanto afirma que la densidad no es un indicador de las resistencias de las maderas ya que la madera puede ser fuerte en determinados parámetros o menos débil en otros conduciendo al diseñador y constructor a cometer errores.

Por otro lado se demostró que la madera Granadillo tiene las mejores resistencias a los diferentes ensayo que fue sometido, demostrando que las maderas son un material noble y económico para trabajar con respecto a los demás materiales utilizados en la construcción como el concreto y el acero.

ABSTRACT

This research consists in the determination of the physical-mechanical properties of wood: Granadillo, Chanul, Pandala and Cuangare, originating in the department of Nariño, this study arises from the need to supplement and clarify the studies carried out by the PADT- REFORT and the engineer Guillermo RondonVesga which reached only to classify the wood to sane to its density in three groups A, B and C.

The mechanical properties that are evaluated are: Brinell hardness, flexural strength, resistance to compression perpendicular and parallel to the fiber, shear strength, for each test were enhanced 10 pieces for each wood that is to say that for each test will be used 40 pieces with a total of 200 specimens tested at the end of the investigation. These trials are conducted in the laboratories of the Faculty of Engineering of the Universidad de Nariño in the city of Pasto.

For the determination of basic density were used 10 pieces of each type of wood in the green state, different to the ones used for mechanical tests, with a total of 40 pieces.

The wood for the trials is processed in the locksmith San Andres wood which is located in the city of Pasto, Nariño. The tests were carried out according to the prevailing Colombian regulations for these tests so that the pieces have standard measurements as well as the procedure for each test conducted.

In the analysis it was found that the wood Cuangare more commonly known as ordinary and most used in the construction not classified in any of the 3 structural groups due to its low density, but still obtained high levels of resistance that the Pandala, which due to its density if it is part of the group mentioned.

in the other hand it was demonstrated that the Granadillo wood has the best resistance to the different test that he was subjected, demonstrating that the woods are a noble material and economic to work with respect to the other materials used in construction and the concrete and steel.

INDICE DE CONTENIDO

	Pág.
INTRODUCCION	20
1 MARCO TEORICO	24
1.1GENERALIDADES	25
1.2 ESTRUCTURA DE LA MADERA	25
1.2.1 Madera	25
1.3 ESPECIES MADERABLES	29
1.3.1 Granadillo	29
1.3.2 Chanul	29
1.3.3 Pandala	30
1.3.4 Cuangare	30
1.4 PROPIEDADES FISICAS	30
1.4.1 Humedad	30
1.4.2 Densidad básica	31
1.4.3 Densidad nominal	32

1.4.4 Contracción	32
1.5 PROPIEDADES MECANICAS	.32
1.5.1 Historia	32
1.5.2 Factores que inciden sobre las propiedades mecánicas	35
1.5.3 Carga y esfuerzo	37
1.5.4 Diagrama esfuerzo-deformación	38
1.6 ENSAYOS PARA DETERMINAR LAS PROPIEDADES MECANIAS DE MADERA	
1.6.1 Resistencia a la flexión	.40
1.6.2 Resistencia a la compresión paralela a la fibra	.42
1.6.3 Resistencia a la compresión perpendicular a la fibra	.44
1.6.4 Resistencia a la cizalladura	46
1.6.5 Dureza brinell	47
2.METODOLOGIA	.48
2.1 NUMERO DE PROBETAS	.48
2.2 OBTENCION DE PROBETAS	.49
2.3 REALIZACION DE LOS ENSAYO	.51
2.3.1 Propiedades físicas	51
2.3.1.1 Densidad básica	51
2.3.1.2 Contenido de humedad	52
2.3.2 Ensayos de resistencia mecánicos	52
2.3.2.1 Ensavo de flexión	55

2.3.2.2 Ensayo compresión paralela a la fibra	58
2.3.2.3 Ensayo compresión perpendicular a la fibra	60
2.3.2.4 Ensayo resistencia a la cizalladura	63
2.3.2.5 Dureza Brinell	65
3. RESULTADOS Y ANALISIS	67
3.1 NUMERO DE PROBETAS	67
3.2 PROPIEDADES FÍSICAS	68
3.2.1 Densidad Básica	68
3.2.2 Contenido de Humedad de las probetas en los ensayos	70
3.3 Propiedades mecánicas	71
3.3.1 Resistencia a la flexión	71
3.3.2 Resistencia a la compresión paralela al grano	72
3.3.3 Resistencia a la compresión perpendicular al grano	74
3.3.4 Resistencia a la cizalladura	75
3.3.5 Dureza brinell	75
3.2 ANALISIS DE RESULTADOS	79
4. CONCLUSIONES	83
BIBLIOGRAFIA	85

LISTA DE FIGURAS

	Pág.
Figura 1.1 Probeta en ensayo a la flexión	41
Figura 1.2 Forma de aplicación de la carga	41
Figura 1.3 Montaje resistencia a la compresión paralela	43
Figura 1.4Ensayo a la compresión perpendicular a la fibra	45
Figura 1.5 Montaje Dureza brinell	47

LISTA DE GRAFICAS

	Pág
Grafico 1.1 Diagrama esfuerzo – deformación	38
Grafico 1.2 Diagrama del ensayo de compresión paralela	39
Grafico 3.1 Resultados de ensayos realizado para cada tipo de madera	79

LISTA DE FOTOGRAFIAS

	Pág.
Imagen 1.1 Partes del tronco	27
Imagen 2.1 Organización de a cuerdo al tipo de madera y ensayo a realizar.	27
Imagen 2.2 Maquina Universal	54
Imagen 2.3 Verificación de medidas a las probetas del ensayo a flexión	55
Imagen 2.4 Marcación del centro de las probetas y delimitación de sus extre	mos.
Imagen 2.5Montaje y realización del ensayo a flexión	57
Imagen 2.6 Falla de probeta ensayo a la flexión	57
Imagen 2.7 Verificación de las medidas de las probetas de compresión para	lela.58
Imagen 2.8 Montaje ensayo compresión paralela a la fibra	59
Imagen 2.9 Falla de probeta ensayada a la compresión paralela	59
Imagen 2.10Verificación de las medidas de las probetas de compresión	60
Imagen 2.11 Ensayo y montaje compresión perpendicular a la fibra	61
Imagen 2.12 Maquina de compresión de concretos	62
Imagen 2.13 Falla de probetas en el ensayo de compresión perpendicular	52
Imagen 2.14 Verificación de las medidas de las probetas de cizalladura	63
Imagen 2.15 montaje ensayo cizalladura	64
Imagen 2.16 Falla de probeta ensayo cizalladura	64
Imagen 6.17 verificación de las medidas de las probetas de dureza brinell	65
Imagen 6.18Montaje ensayo dureza brinell	66
Imagen 6.19 Resultado final ensavo dureza brinell	66

LISTA DE TABLAS

Pag.
Tabla 2.1 Dimensiones de probetas para ensayos físicos y mecánicos49
Tabla 2.2 Orden de ensayos y tipos de madera53
Tabla 3.1 Densidad básica madera cuangare68
Tabla 3.2 Densidad básica madera Pandala69
Tabla 3.3 Densidad básica madera Chanul69
Tabla 3.4 Densidad básica madera Granadillo70
Tabla 3.5 Contenido de humedad promedio de las probetas ensayadas70
Tabla 3.6 resultados para resistencia a la flexión y su valor promedio71
Tabla 3.7a. Resultados para resistencia a la compresión paralela a la fibra73
Tabla 3.7b. Resultados para resistencia a la compresión paralela a la fibra74
Tabla 3.7c. Resultados promedio para resistencia a la compresión paralela73
Tabla 3.8a. Resultados para resistencia a la compresión perpendicular a la fibra73
Tabla 3.8b. Resultados promedio para resistencia a la compresión perpendicular
Tabla 3.9. Resultados para resistencia a la cizalladura y su valor promedio74
Tabla 3.10a. Resultados para dureza brinell75
Tabla 3.10b. Resultados para dureza brinell
Tabla 3.10c. Resultados para dureza brinell
Tabla 3.10d. Resultados para dureza brinell

Tabla 3.10e. Resultados promedios de dureza brinell para cada tipo de madera
Tabla 3.11 Comparación entre densidades básicas encontradas y existentes77
Tabla 3.12 Clasificación de las maderas estudiadas en los grupos estructuras del PADT-REFORT
Tabla 3.13. Clasificación de las maderas estudiada en los grupos estructuras del PADT-REFORT78
Tabla 3.14. Comparación entre esfuerzo admisible a flexión según el PADT-REFORT y el esfuerzo ultimo investigado79
Tabla 3.15. Comparación entre esfuerzo admisible a compresión paralela según el PADT-REFORT y el esfuerzo admisible investigado80
Tabla 3.16.Comparación entre esfuerzo admisible a compresión perpendicular según el PADT-REFORT y el esfuerzo admisible investigado80

LISTA DE ANEXOS

	Pág
ANEXO A HUMEDADES	86
ANEXO B RESISTENCIA MAXIMA A LA FLEXION95	
ANEXO C RESISTENCIA COMPRECION PARALELA A LA FIBRA112	
ANEXO D RESISTENCIA COMPRESION PARALELA A LA FIBRA129	9
ANEXO E RESISTENCIA A LA CIZALLADURA144	

INTRODUCCION

La presente propuesta de investigación consiste en determinar las propiedades físico-mecánicas de las maderas más utilizadas en la construcción del departamento de Nariño siendo estas: Granadillo, Chanul, Pandala y Cuangare, las cuales se encuentran clasificadas de acuerdo a su densidad básica en tres grupos determinados así por el PADT-REFORT, A, B y C respectivamente.

Los ensayos de laboratorio a realizar en esta investigación son:

- . Resistencia a la flexión
- . Resistencia a la compresión paralela y perpendicular a la fibra
- . Resistencia al cizallamiento
- . Dureza brinell

La madera, recurso natural que ha sido parte importante en la construcción de obras civiles durante mucho tiempo a lo largo de la historia de la construcción, Es por ello de resaltar su gran importancia dentro de este campo, siendo parte activa no solo en el proceso de construcción si no en la terminación de obras, encontrándolas de diferentes formas como en puertas, pisos, muros, etc.Y es debido a su gran utilización en las construcción que se hace imperativo conocer al máximo las características de las maderas, tanto estructurales que se usan para vigas, viguetas, columnas y losas, y también para las maderas que sirven en la realización de formaletas para todo tipo de elementos estructurales y de mampostería en la construcción con concreto hidráulico.

En muchas partes del mundo y del país las maderas han sido ya clasificadas en grupos de acuerdo a sus propiedades físicas ayudando de esta forma a una selección más apropiada y rápida al momento de su uso.

Pero en el departamento de Nariño tan solo se ha conseguido clasificar las maderas de acuerdo a su densidad, pero no de acuerdo a su resistencia física por lo que se hace una tarea de suma importancia conocer dichas propiedades.

Se mostrara a la comunidad científica, los resultados de la presente investigación, para que los ingenieros los utilicen con mayor eficiencia en el diseño de infraestructuras que requieran la utilización de este material tan importante en la ingeniería.

PROBLEMA DE INVESTIGACION

PLATEAMIENTO DEL PROBLEMA

Las maderas son un elemento fundamental para los ingenieros en la rama de la construcción, pero que en nuestro medio se maneja cierta incertidumbre en el manejo de estas debido a que no se conoce de manera concreta sus características físico-mecánicas tanto de maderas estructurales así como maderas usadas en las construcciones de concreto sirviendo como formaletas. Es por eso que esta situación conlleva a determinar sus características ya mencionadas, para mejorar la calidad en nuestra región y no hacer un uso excesivo de las maderas debido al no conocimiento de sus propiedades.

FORMULACIÓN DEL PROBLEMA

¿Cuáles son las características físico-mecánicas de las maderas Granadillo, Chanul, Pandala y Cuangare?

SISTEMATIZACIÓN DEL PROBLEMA

- ¿Es necesario usar el mismo tipo de madera en una construcción?
- ¿Es importante la elaboración de una tabla de resultados de resistencias de las maderas más utilizadas en el departamento de Nariño?
- ¿Los resultados obtenidos sirven para la elaboración de un proyecto económico y que cumpla las normas de la construcción?

JUSTIFICACION

Con la realización de esta investigación se busca comprobar la densidad básica y determinar las características físico-mecánicas de las maderas Granadillo, Chanul, Pandala y Cuangare, con lo cual se busca que los diseñadores realicen un uso optimo de las maderas en estudio en el Departamento de Nariño.

Lo señalado anteriormente es debido a que en el departamento se está construyendo de acuerdo al criterio del diseñador sin tener los datos de cada tipo de madera para que su diseño sea óptimo y se deje a un lado los diseños empíricos de maderas.

Los beneficiados con esta investigación serán principalmente los diseñadores, constructores, estudiantes y docente de la Universidad de Nariño, y principalmente la comunidad ya que al conocer sus propiedades se puede obtener un diseñomás económicas y mucho más seguro.

Nariño por su gran abundancia y riqueza en maderas hace que el estudio a realizar sea de gran importancia debido a que el precio de dichas maderas es más económico con respecto a otros departamentos, lo que impulsa la construcción con este material.

OBJETIVOS

OBJETIVO GENERAL

❖ Determinar la densidad básica y las características mecánicas de las maderas Granadillo, Chanul, Pandala y Cuangare que son las más utilizadas en la construcción en el departamento de Nariño.

OBJETIVOS ESPECÍFICOS

- Determinar la resistencia a la flexión en las maderas Granadillo, Chanul y Pandala y Cuangare
- Determinar la resistencia a la compresión en las maderas Granadillo, Chanul, Pandala y Cuangare
- Determinar la resistencia al cizallamiento en las maderas Granadillo, Chanul, Pandala y Cuangare
- ❖ Determinar la dureza Brinell en las maderas Granadillo, Chanul y Pandala, Cuangare.
- Elaborar una tabla con los resultados generados por los ensayos indicando el tipo de madera, densidad básica y su resistencia.

1. MARCO TEORICO

La madera ha estado presente en las construcciones del hombre desde su existencia misma.

Las construcciones de hogares en maderas se originaron por la necesidad de sentirse protegidos en las tormentas y para permanecer con sus familias. Estas construcciones a medida que pasa el tiempo se han venido perfeccionando desde el siglo XIX y se han generalizado las construcciones de hogares con este material natural como lo es la madera¹.

Continuando a través de la historia y situándose a mediados del siglo XIX se encuentra con la edad de oro de las maderas en la construcción, esta época fue llamada así por el gran auge que tuvo la construcción de edificaciones pequeñas en los países de Canadá y Estados Unidos.

Hoy en día la madera cuenta en comparación a otros materiales de construcción con varias cosas a favor como lo es su peso, ya que a comparación de los otros materiales las maderas utilizadas son muy livianas y con la gran capacidad de soportar mucha carga esto se comprueba por la gran cantidad de puentes, torres y construcciones en maderas que existen a través del mundo. Muchas de estas construcciones como casas, cerchas, y escaleras han durado por generaciones con más de 700 años donde aun vive gente hoy en día².

En la actualidad la madera tiene infinidad de uso en las construcciones así siendo un pequeño complemento en la decoración de los hogares, pasando como instrumento de construcción y siendo usado como formaletas de obras en concreto reforzado y siendo utilizadas como elementos estructurales en edificaciones. Y debido a su importancia económica se hace atractiva para nuevas construcciones.

¹ Heber Eduardo Yepez Villota y Luis Alberto Zura Morillo. Propiedades físicas y mecanicas de algunas maderas utilizadas en la ciudad de pasto. P. 3

² Lbid..p.3

1.1 GENERALIDADES

Generalmente las casas de madera se construyen en lugares de difícil acceso de los materiales ya que por su transporte se vuelven más costosos, aprovechando así la madera, lo cual es el caso de las comunidades indígenas, además en la costa pacífica las construcciones de pequeña altura que están cerca al mar se realizan sobre pilotes en madera debido a su bajo costo.

Las maderas tienen varias aplicaciones, entre las cosas útiles que se fabrican con ella están: postes, vigas, columnas, cerchas, pilotes ventanas, herramientas, papel, gas, etc, que son productos indispensables para la vida diaria del ingeniero.

1.2 ESTRUCTURA DE LA MADERA

1.2.1 Madera

Definición: Es el conjunto de tejidos orgánicos que forman la masa de los troncos de los árboles, desprovistos de corteza y hojas.

Composición de la madera: Los componentes principales de la madera³:

CELULOSA 40% - 50%

LIGNINA 20% - 25%

HEMICELULOSA 20% - 25%

EXTRACTIVOS POR AGUA 1%

CENIZA 1%

Celulosa: Es un polisacárido estructural formado por glucosa que forma parte de la pared de las células vegetales. Su fórmula empírica es (C₆H₁₀O₅)

³ Heber Eduardo Yepez Villota y Luis Alberto Zura Morillo. Propiedades físicas y mecanicas de algunas maderas utilizadas en la ciudad de pasto. P. 6

Lignina: Es un polímero presente en las paredes celulares de organismos como los arboles⁴.

Hemicelulosa: Es un polisacárido que junto a la celulosa forman las paredes celulares⁵.

Extractivos por agua: Sustancia de composición química variable que pueden ser removidos, sin alterar la estructura física del leño⁶.

Ceniza: Residuo mineral producto de la guema de la madera.

El árbol: Es una plata leñosa con un solo tallo principal, cuya altura supera una determinada altura 2 metros, 3 metros, 5 metros o 6 metros en su madurez y que producen ramas secundarias nuevas que parten de un único tronco⁷.

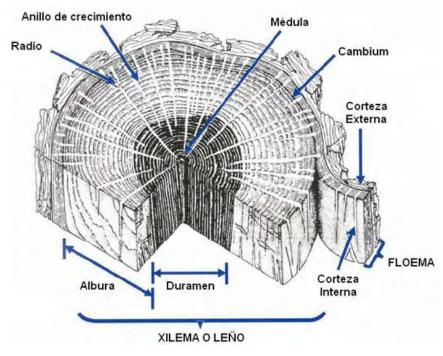
El tronco: Es la parte recta y dura del árbol comprendida entre la copa y la raíz, Y forma la parte más grande del árbol.

El tronco puede variar en su forma y tamaño según el lugar, clima y circunstancias de crecimiento.

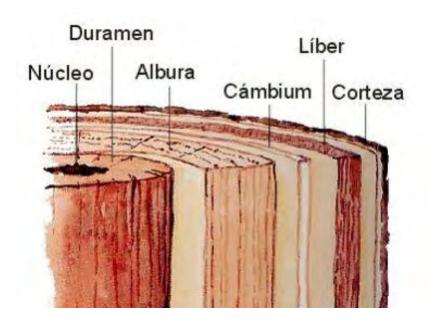
En el corte transversal de un árbol se pueden observar las siguientes partes⁸:

Corteza exterior: Es la capa más externa de las plantas leñosas como el árbol y sirve para cubrir y proteger la madera. Pueden alcanzar del 10% al 15% del peso total del árbol.(Ver imagen 3.1)

Corteza interior: Es la capa que se encuentro seguidamente de la corteza exterior, cuya función es el transporte de alimentos como hidratos de carbono, grasas y proteínas de una parte a otra. (Ver imagen 3.1).


⁴ Heber Eduardo Yepez Villota y Luis Alberto Zura Morillo. Propiedades físicas y mecánicas de algunas maderas utilizadas en la ciudad de pasto. P. 7

⁵ Lbid..p.7


⁶ Lbid.,p.7

⁷ Lbid..p.7

⁸ Lbid..p.7

a. corte transversal

b. Corte longitudinal

IMAGEN 1.1 PARTES DEL TRONCO

Cambium: Es un tejido vegetal específico de las plantas leñosas, situado entre la corteza y el leño, compuesto normalmente por una capa única de células embrionarias, y es el que oxigena al xilema o madera⁹.

La madera o xilema: Es la parte leñosa del tronco está formada por el duramen la albura y la medula¹⁰.

La albura: Es la parte joven de la madera, corresponde a los últimos anillos de crecimientos del árbol, producidos por el cambium vascular en el tallo de una planta, que corresponde al único xilema funcional. La albura suele ser de un color más claro¹¹.

EL duramen: Es la madera dura y consistente. Está formada por células fisiológicamente inactivas y se encuentra en el centro del árbol. Es más oscura que la albura y la savia ya no fluye por ella¹².

Estructura anatómica: El tronco al ser la parte más grande del árbol, también tiene una estructura interna más compleja, pues sus tejidos efectúan diversas funciones como; transportar el agua y dar la resistencia mecánica.

Estas funciones se llevan a cabo por un sistema que está compuesto principalmente por dos tejidos: la madera o xilema cuya función principal y de mayor interés es proporcionar la resistencia mecánica, y el floema es aquel tejido que transporta los alimentos¹³.

El grano: Indica la disposición de crecimiento longitudinal de las fibra, que pueden ser: recto, inclinado, espiralizado, crespo, etc. Siendo los dos más importantes el recto e inclinado¹⁴.

¹¹ Lbid.,p.10

⁹ Heber Eduardo Yepez Villota y Luis Alberto Zura Morillo. Propiedades físicas y mecanicas de algunas maderas utilizadas en la ciudad de pasto. P. 10

¹⁰ Lbid.,p.10

¹² Lbid.,p.10

¹³ I hid n 10

¹⁴ Heber Eduardo Yepez Villota y Luis Alberto Zura Morillo. Propiedades físicas y mecanicas de algunas maderas utilizadas en la ciudad de pasto. P. 13

Grano recto: son aquellas fibras que se encuentran en forma paralela al eje longitudinal del árbol¹⁵.

Grano inclinado: son aquellas fibras que presenta una desviación angular con respecto al eje longitudinal del árbol¹⁶.

1.3 ESPECIES MADERABLES

Las especies maderables son todas aquellas que son aptas para la utilización en construcción.

Hay una gran variedad de especies forestales en los bosques tropicales andinos de los cuales muchos son maderables, por lo que se encontrara una gran diferencia entre sus estructuras lo cual genera diferencias en sus propiedades físicas y mecánicas, como lo son: dureza, durabilidad, peso, densidad, etc¹⁷.

1.3.1 Granadillo: Madera marrón negruzco.- Albura blanca amarillenta muy estrecha. Duramen de aspecto casi negro, a veces de color marrón oscuro purpúreo con estrías negras, que por su predominancia dan un efecto negruzco general a la madera.- No tiene olor característico, es muy dura, de grano muy fino y uniforme, de naturaleza aceitosa y de fibra variable según la forma del tronco, aunque normalmente recta.- La albura y duramen están bien diferenciados.- Es utilizada principalmente en la construcción de edificios¹⁸.

Nombre científico: Dalbergiamelanoxylon.

Usos: Elaboración de pisos.

1.3.2 Chanul: Árbol que alcanza una altura de hasta 40 metros y con un diámetro de hasta 1,20 metros, su tronco recto y cilíndrico, con raíces tablares de hasta 2 metros.- Su corteza externa es de color "CAFÉ TIRANDO A ROJO", con una textura delgada algo escamosa o en placas con lenticelas¹⁹.

Nombre científico: Humiriastrumprocerum.

Usos: para tornería, estancos, puentes, construcciones navales, vigas y soleres.

¹⁶ Lbid.,p.13

¹⁵ Lbid.,p.13

¹⁷ Lbid.,p.14

¹⁸ http://www.colombianwoodcie.com/es/

¹⁹ http://www.colombianwoodcie.com/es/

1.3.3 Pandala²⁰.

Nombre científico: Dugandiodendrumstriatifolium.

Usos: Estructuras, marcos puertas y ventanas, formaleteria.

1.3.4 Cuangare: Madera liviana, muy utilizada en la construcción, aunque es necesario aplicar un tratamiento para evitar el ataque de hongos²¹.

Nombre científico: Otoba gracilipes

Usos: Madera útil para chapas, cajonería, molduras, carpintería, revestimientos de interiores y tableros.

1.4 PROPIEDADES FISICAS

1.4.1 Humedad: La madera contiene agua de constitución, inerte a su naturaleza orgánica, agua de saturación, que impregna las paredes de los elementos leñosos, y agua libre, absorbida por capilaridad por los vasos.

Como la madera es higroscópica, absorbe o desprende humedad, según el medio ambiente. El agua libre desaparece totalmente al cabo de un cierto tiempo, quedando, además del agua de constitución, el agua de saturación correspondiente a la humedad de la atmósfera que rodee a la madera, hasta conseguir un equilibrio, diciéndose que la madera esta secada al aire²².

Contenido de humedad: Es porcentaje en peso del agua presente en la madera.

C. H
$$\% = \frac{P.h-P.s}{P.s} * 100$$
 (Ec. 5.1)

Donde:

C.H (%): contenido de humedad en porcentaje

P.s: Peso de la muestra seca

P.h: Peso de la muestra húmeda

²⁰Lbid.

²¹I hid

²² Paola Patricia Díaz Méndez. Evaluación de las propiedades físicas y mecánicas de *nothofagus glauca* (hualo) provenientes de la zona de cauquenes [En línea]. Talca-Chile 2005.p.7

Cambios volumétricos: El cambio volumétrico depende de la humedad que contenga la madera es decir, si hay una contracción en la madera indica que hay baja humedad, y hay expansión cuando la madera es saturada²³.

Dureza: La dureza de la madera es la resistencia que opone al desgaste, rayado, clavar, etc. Depende de su densidad, edad, estructura y si se trabaja en sentido de sus fibras o en el perpendicular. Cuanta más vieja y dura es, mayor la resistencia que opone²⁴.

Conductividad: La madera seca es mala conductora del calor y electricidad, no así cuando esta húmeda²⁵.

La conductividad es mayor en el sentido longitudinal que en radial o transversal, y más en las maderas pesadas que en las ligeras o porosas, por lo cual se emplean como aisladores térmicos en los pavimentos y paredes.

Duración: La duración de la madera varía mucho con la clase y medio. A la intemperie, y sin impregnar depende de las alternativas de sequedad y humedad²⁶.

Peso específico: Se define como la relación entre el peso de la madera a un determinado contenido de humedad y el peso del volumen del agua desplazada por el volumen de la madera²⁷.

Densidad: Se define como la cantidad de masa que tiene un cuerpo por unidad de volumen²⁸.

1.4.2 Densidad básica: Es la relación entre el peso seco al horno y el volumen verde²⁹.

²³ Heber Eduardo Yepez Villota y Luis Alberto Zura Morillo. Propiedades físicas y mecanicas de algunas maderas utilizadas en la ciudad de pasto. P. 13

²⁴http://www3.ucn.cl/FacultadesInstitutos/laboratorio/Propiedades%20f%EDsicasm3.htm

²⁵Lbid.

²⁶Lbid.

²⁷ Heber Eduardo Yepez Villota y Luis Alberto Zura Morillo. Propiedades físicas y mecanicas de algunas maderas utilizadas en la ciudad de pasto. P. 19

²⁸ Paola Patricia Díaz Méndez. Evaluación de las propiedades físicas y mecánicas de *nothofagus glauca* (hualo) provenientes de la zona de cauquenes [En línea]. Talca-Chile 2005.p.19

²⁹ Lbid.,p.20

- 1.4.3 Densidad nominal: Relación entre la masa de la probeta en esta anhidro y el volumen de la probeta al contenido de humedad en el ensavo³⁰.
- **1.4.4 Contracción**: Es la disminución o pérdida de volumen de la madera. Y es una de las características más indeseables ya que causa inconvenientes en la construcción³¹.

$$C = \frac{Di - Df}{Di} * 100$$
 (Ec. 5.2)

Donde:

C (%): Contracción en porcentaje

Di: Dimensión inicial en milímetro.

Df: Dimensión final en milímetros

1.5 PROPIEDADES MECANICAS

1.5.1 HISTORIA: Desde los comienzos de la humanidad, la ingeniería estructural ha estado ligada a su historia. Pero sólo fue hasta mediado del siglo XVII que se empezaron a aplicar los conocimientos de la mecánica, en el análisis y diseño de estructuras y máquinas. Las primeras máquinas simples como el plano inclinado, la rueda, la polea, el tornillo y la cuña sirvieron para construir algunas de las magníficas estructuras antiguas. Podemos distinguir algunos períodos importantes de esta historia y en ellos algunos pueblos, construcciones, personajes y descubrimientos importantes³².

Antes de los griegos (3400 - 600 AD) Los pueblos de Egipto, Asiria y Persia fueron los más destacados de éste período. Las pirámides egipcias son un ejemplo de estas extraordinarias estructuras antiguas. Adicionalmente a las

³¹ Paola Patricia Díaz Méndez. Evaluación de las propiedades físicas y mecánicas de *nothofagus glauca* (hualo) provenientes de la zona de cauquenes [En línea]. Talca-Chile 2005.p.21

³² Eduardo Van der Rohe. Antologia estructura 1 [En línea]. Mayo de 2011.p.2

pirámides son de destacar los templos construidos con columnas, muros y vigas en piedra y barro cocido³³.

Griegos y Romanos (600 AC – 476 DC) Los templos griegos como el Parte nóny algunas construcciones romanas como puentes, acueductos, coliseos y templos, son ejemplos notorios de este período. Como elementos estructurales los romanos introdujeron la bóveda y el arco para la construcción de techos y puentes respectivamente³⁴.

Período Medieval (477 - 1492) En este período, los árabes introdujeron la notación decimal la cual permitió un desarrollo importante en las matemáticas³⁵.

Periodo temprano (1493- 1687) Francis Bacón (1561-1626), fue uno de los creadores del método experimental. Galileo Galilei (1564-1642). Matemático, físico y astrónomo italiano. Considerado como el fundador de la teoría de las Estructuras. En su libro Dos nuevas ciencias, publicado en 1938, Galileo analizó la falla de algunas estructuras simples como la viga en voladizo. Aunque sus resultados fueron corregidos posteriormente, puso los cimientos para los desarrollos analíticos posteriores especialmente en la resistencia de materiales³⁶.

Robert Hooke (1635-1703), desarrolló la ley de las relaciones lineales entre la fuerza y la deformación de los materiales o ley de Hooke. Isaac Newton (1642-1727), formuló las leyes del movimiento y desarrolló el cálculo³⁷.

Desde el año 1000 y durante este período, de destacaron las Catedrales góticas las que en la actualidad, son testimonio del ingenio de sus constructores³⁸.

Período Pre moderno (1688 - 1857)Entre los investigadores notables de este período se encuentran: John Bernoulli (1667-1748), quien formuló el principio del trabajo virtual. Leonard Euler (1707-1783), desarrolló la teoría del pandeo de columnas. Charles August de Coulomb (1736-0806), presentó el análisis de la flexión de las vigas elásticas. Período moderno (desde 1858) En 1826, L.M.Navier (1785-1836) publicó un tratado sobre el comportamiento elástico de las estructuras, el cual se considera como el primer libro de texto sobre la teoría moderna de la resistencia de los materiales³⁹.

³³ Lbid.,p.2

³⁴ Lbid.,p.2

³⁵ I hid n 2

³⁶ Eduardo Van der Rohe. Antologia estructura 1 [En línea]. Mayo de 2011.p.3

³⁷ Lbid.,p.3

³⁸Lbid.,p.3

³⁹ Lbid.,p.3

EL desarrollo de la mecánica estructural continuó a un paso tremendo durante todo el resto del siglo XIX y hacia la primera mitad del XX, cuando se desarrollaron la mayor parte de los métodos clásicos par el análisis de las estructuras que descritos⁴⁰.

Los colaboradores importantes de este período incluyeron B:P: Clapeyron (1799-1864), quien formuló la ecuación de los tres momentos para el análisis de las vigas continuas; J:C: Maxwell (1831-1879), quien presentó el método de las deformaciones coherentes y la ley de las deflexiones y los círculos de Mohr del esfuerzo y la deformación unitaria; Alberto Castigliano (1847-1884), quien formuló el teorema del trabajo mínimo; C. E. Grene (1842-1903), quien desarrolló el método del momento-área; H. Müller-Breslau (1851-1925), quien presentó un principio para la construcción de las líneas de influencias; G. A. Maney (1888-1947), quien desarrollo el método de la pendiente-deflexión, que se consideraba como el precursor del método material de las rigideces, y Hardy Cross (1885-1959); quien desarrolló el método de la distribución de momentos, en 1924. EL método de la distribución de momentos proporciona a los calculistas un procedimiento iterativo sencillo para el análisis de estructuras estáticamente indeterminadas con intensidad, como edificios muy altos, lo cual no habría sido posible sin disponer del método de la distribución de momentos. El advenimiento de las computadoras en la década de 1970 revolución el análisis estructural. Debido a que la computadora podía resolver grandes sistemas de ecuaciones simultáneas, los análisis que llevaban y, a veces, semanas en la era previa a la computadora ahora se podían realizar en segundos. El desarrollo de los métodos actuales, orientados a la computadora se pueden atribuir, entre otros, a J. H. Argyris, R. W. Clough, S. Kelsey, R. Livesley, H. C. Martin, M. T. Turner, E.L. Wilson y O. C. Zienkiewiez⁴¹.

-

⁴⁰ Libd.,p.3

⁴¹ Eduardo Van der Rohe. Antologia estructura 1 [En línea]. Mayo de 2011.p.3

1.5.2 Factores que inciden sobre las propiedades mecánicas:La madera, es un material heterogéneo, que se ve reflejado por lavariabilidad que es posible encontrar en probetas extraídas de una misma especiemaderera y de diferentes árboles, o aún más de probetas provenientes de unmismo árbol, lo que muestra una marcada diferencia en su densidad yresistencia.

Ésta variabilidad responde a diferencias genéticas, de ambiente y/oambas. Es por esto que posee valores de resistencia variables. Incluso puedenresultar más variables debido a que algunas de sus características no soncontroladas o controlables. Entre las más importantes cabe señalar⁴²:

- -Contenido de humedad
- -Densidad
- -Angulo de fibras
- -Nudosidad
- -Temperatura
- -Otras influencias

Contenido de humedad

El contenido de humedad en la madera afecta en general a propiedades mecánicas tales como, flexión estática, compresión paralela, compresión perpendicular, tracción, cizalle, dureza,la resistencia mecánica se mantiene constante y a medida que el contenido de humedad disminuye hasta estado anhidro la resistencia mecánica de la madera aumenta⁴³.

Densidad

La densidad indica la cantidad de sustancia celular presente en una unidad de volumen de madera. Es por esto que especies con madera densa tienen resistencias altas y maderas livianas resisten menos que las anteriores⁴⁴.

44 Lbid..p.26

⁴² Paola Patricia Díaz Méndez. Evaluación de las propiedades físicas y mecánicas de *nothofagus glauca* (hualo) provenientes de la zona de cauquenes [En línea]. Talca-Chile 2005.

⁴³ Paola Patricia Díaz Méndez. Evaluación de las propiedades físicas y mecánicas de *nothofagus glauca* (hualo) provenientes de la zona de cauquenes [En línea]. Talca-Chile 2005.p.25

Ángulo de fibras

La dirección de la carga que se aplica, puede coincidir o no con la dirección en que se encuentra el eje mayor de las células. El ángulo que se forma entre la carga aplicada y la fibra, se denomina ángulo de las fibras⁴⁵.

Nudosidad

La presencia de nudos en la madera afecta a las propiedades mecánicas por:

- Variación de la dirección de las fibras,
- Diferencias de la densidad entre madera y nudo.
- Presencia de grietas cuando la madera está seca.

Los nudos disminuyen la resistencia de la madera por inducir a una distribución irregular de las tensiones⁴⁶.

Temperatura

El incremento de la temperatura provoca un aumento de la deformación disminuyendo la cohesión en el material.

Las resistencias estáticas disminuyen cuando la temperatura cambia de valores negativos a positivos. Para las resistencias dinámicas los cambios que se producen son irregulares y dependientes de la densidad y el contenido de humedad de la madera ensayada⁴⁷.

Otras influencias

Cabe destacar que los ataques patógenos de algún modo modifican o destruyen la pared celular, deterioran las resistencias mecánicas, especialmente las resistencias a solicitaciones dinámicas. Cabe destacar que existen algunos hongos patógenos, como hongos y mohos cromógenos que no influyen por lo general en las resistencias, a no ser que estén acompañados de degradadores de la madera⁴⁸.

⁴⁵ Lbid.,p.27

⁴⁶ Lbid.,p.27

⁴⁷ Paola Patricia Díaz Méndez. Evaluación de las propiedades físicas y mecánicas de *nothofagus glauca* (hualo) provenientes de la zona de cauquenes [En línea]. Talca-Chile 2005.p.27

1.5.3 Carga y esfuerzo: Carga es toda fuerza externa que es aplicada sobre un miembro o estructura. Las fuerzas que resisten a las cargas son fuerzas internas que se desarrollan en un cuerpo cargado, denominadas tensiones internas

A la tensión interna referida a una unidad de área resistente en una sección transversal de un cuerpo se le denomina esfuerzo unitario y queda expresado por⁴⁹:

$$\sigma = \frac{P}{A}$$
 (Ec.5.3)

Donde:

 σ : Esfuerzo

P: carga

A: Área de la sección

En todos los materiales, los esfuerzos que actúan sobre un cuerpo producen un cambio de forma y tamaño. La distorsión que resulta del esfuerza aplicado se conoce como deformación unitaria.La deformación es medida en milímetro (o en cualquier unidad lineal)⁵⁰.

$$\varepsilon = \frac{\delta}{1}$$
 (Ec. 5.4)

Donde:

ε: Deformación

 δ : Deformación total

l: Corresponde al largo del cuerpo en la dirección en el cual actúa la fuerza

⁴⁹ I hid n 27

Paola Patricia Díaz Méndez. Evaluación de las propiedades físicas y mecánicas de *nothofagus glauca* (hualo) provenientes de la zona de cauquenes [En línea]. Talca-Chile 2005.p.28

1.5.4 Diagrama esfuerzo-deformación: En el Gráfico 1 se puede observar la relación que existe entre los incrementos de carga o esfuerzo a que se ve sometido un cuerpo (eje de las ordenadas) y sus correspondientes aumentos de deformación (eje de las abscisas). La línea resultante está formada por una recta hasta el límite elástico del material ensayado. Al seguir aumentando la carga se obtiene la ruptura del material⁵¹.

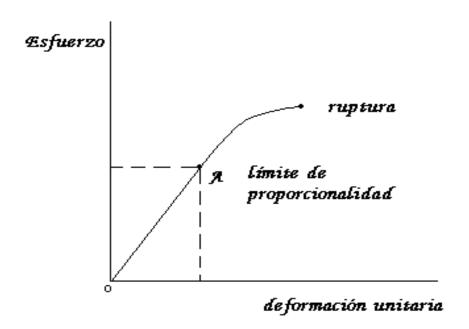


Grafico 1.1 Diagrama esfuerzo – deformación Fuente: Díaz Méndez 2005

Según Karsulovic (1982), cuando un cuerpo es aplastado o es cargado, este llega hasta un límite llamado *Limite de Proporcionalidad*, hasta este punto el cuerpo puede volver a recuperar su estado original, cuando la carga es suprimida, ésta zona es denominada con el nombre de zona elástica. Si se sigue aumentando la carga el material quedará permanentemente deformado, a esta zona se le denomina, zona plástica. En esta zona la carga y la deformación unitaria siguen creciendo, pero ahora la deformación sigue creciendo con mayor rapidez, (parte A – B de la curva del Gráfico 2), hasta alcanzar un esfuerzo máximo llamado

-

⁵¹ Paola Patricia Díaz Méndez. Evaluación de las propiedades físicas y mecánicas de *nothofagus glauca* (hualo) provenientes de la zona de cauquenes [En línea]. Talca-Chile 2005.p.28

también resistencia o esfuerzo máximo (punto B, de la Gráfico 2). El punto C del mismo Gráfico, corresponde a la tensión máxima o de rotura del material⁵².

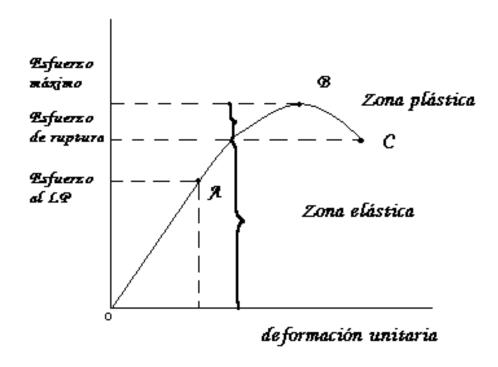


Grafico 1.2 Diagrama del ensayo de compresión paralela Fuente: Díaz Méndez 2005

Paola Patricia Díaz Méndez. Evaluación de las propiedades físicas y mecánicas de *nothofagus glauca* (hualo) provenientes de la zona de cauquenes [En línea]. Talca-Chile 2005.p.30

33

1.6 ENSAYOS PARA DETERMINAR LAS PROPIEDADES MECÁNICAS DE LA MADERA

Los ensayos a realizar son los siguientes

Resistencia a la flexión Resistencia a la compresión paralela a la fibra Resistencia a la compresión perpendicular a la fibra Resistencia a la cizalladura Dureza Brinell

1.6.1 Resistencia a la flexión: Generalmente al tratar de decir resistencia máxima a la flexión, se dice brevementeresistencia a la flexión⁵³.

Resistencia a la flexión en el límite proporcional al esfuerzo de flexión máximo soportadopor la probeta en el momento en que la deformación y el esfuerzo dejan de ser directamenteproporcionales⁵⁴.

El ensayo tiene como finalidad determinar la resistencia de la madera a la flexión estática mediante la aplicación de carga, a velocidad constante, hasta alcanzar la rotura de la muestra⁵⁵.

Los esfuerzos en flexión se producen en cuerpos de gran longitud respecto a las dimensiones de su sección transversal, cuando estos son sometidos a la acción de cargas transversales o normales de su eje longitudinal, de tal manera que tiendan a producir una arqueadura del elemento. Un caso típico es el de la viga⁵⁶.

⁵³ Norma técnica Colombiana NTC 636.p.3

⁵⁴ I hid n 3

⁵⁵ Paola Patricia Díaz Méndez. Evaluación de las propiedades físicas y mecánicas de *nothofagus glauca* (hualo) provenientes de la zona de cauquenes [En línea]. Talca-Chile 2005.p.35

⁵⁶http://www.construmatica.com/construpedia/AP-

^{014.} Madera. Resistencia a la Flexi%C3%B3n Est%C3%A1tica

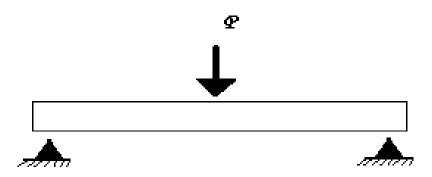


Figura 1.1 Probeta en ensayo a la flexión Fuente: Díaz Méndez 2005

Las probetas deben colocarse de tal manera que la carga se aplique tangencialmente alos anillos de crecimiento 57 .

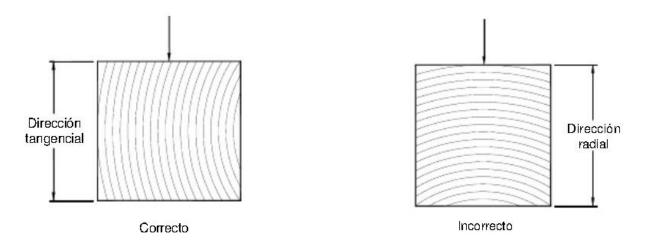


Figura 1.2 Forma de aplicación de la carga Fuente: NTC 636

_

⁵⁷ Norma técnica Colombiana NTC 636.p.4

La resistencia a la flexión se calcula con la siguiente ecuación:

$$\sigma \max = \frac{3PL}{2ae^2}$$
 (Ec. 5.5)

Dónde:

omax: Resistencia máxima a la flexión, en kilogramos por centímetro cuadrado

P: carga de rotura, en newton.

L:Luz entre los soportes en centímetros.

a: Ancho de la probeta en la dirección radial, en centímetros.

e:Altura de la probeta en la dirección tangencial, en centímetros

1.6.2 Resistencia a la compresión paralela a la fibra: Las probetas empleadas en este ensayo consisten en prismas rectos de 2 cm x 2 cmhasta 5 cm x 5 cm de sección transversal y longitud de 2 a 4 veces el ancho. La fibra debe serparalela a la longitud. Las medidas de las probetas deben verificarse en el momento delensayo⁵⁸.

Prensa:Capaz de producir fuerzas mayores de 2000 daN, provista de 2 crucetas, una fija y otra móvil yde un mecanismo que permita regular la velocidad lineal de la cruceta móvil. Una de lascrucetas por lo menos debe estar provista de un cabezal con una articulación esférica quepermita una distribución uniforme de la carga. (Véase la Figura 3)⁵⁹.

Deflectómetro: Debe utilizarse en caso de que la prensa no disponga de un registrador automático de la curvade esfuerzo-deformación. Al montarse éste sobre la probeta, debe haber entre sus abrazaderasuna separación mínima de 6 cm.

⁵⁸ Norma técnica Colombiana NTC 784.p.3

⁵⁹ Norma técnica Colombiana NTC 784.p.3

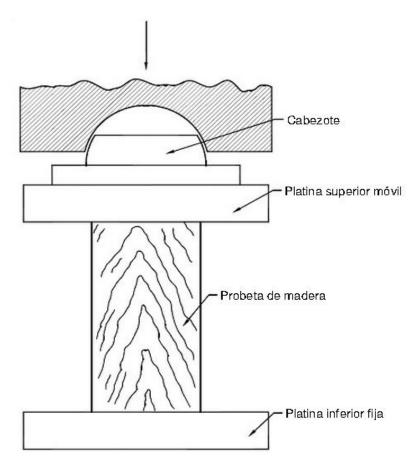


Figura 1.3 Montaje resistencia a la compresión paralela Fuente: NTC 784

La resistencia máxima a la rotura por compresión axial se calcula aplicando la siguienteecuación⁶⁰:

$$\sigma \max = \frac{P}{S}$$
 (Ec. 5.6)

Donde:

⁶⁰ Norma técnica Colombiana NTC 784.p.5

 σmax : Resistencia máxima a la rotura en decanewtons por centímetro cuadrado

P: Carga máxima soportada por la probeta en decanewtons

S: Superficie de la sección transversal de la probeta, calculada antes del ensayo, en centímetros cuadrados.

La resistencia en el límite proporcional a la compresión axial se determina aplicando la siguiente ecuación⁶¹:

$$σ$$
 limite proporcional = $\frac{P}{S}$ (Ec. 5.7)

Donde:

σLimite proporcional: Resistenciaen el límite proporcional en decanewtons por centímetro cuadrado

PI: Carga máxima soportada por la probeta en el límite proporcional en decanewtons

S: Superficie de la sección transversal de la probeta, en centímetros cuadrados.

1.6.3 Resistencia a la compresión perpendicular a la fibra: Las probetas empleadas en este ensayo consisten en primas rectos de 5 cm \times 5 cm y desección transversal de 10 cm hasta 15 cm de longitud, cortadas de tal manera que las caras longitudinalessean paralelas al grano, dos de sus caras opuestas tangenciales y las otras dos radiales. Lasmedidas se verifican en el momento del ensayo⁶².

Prensa:. Capaz de producir fuerzas mayores de 2 000 daN, con la precisión requerida deacuerdo a la finalidad del ensayo. Debe estar provista de dos crucetas, una fija y otra móvil y una válvula o mecanismo que permita regular la velocidad lineal de la cruceta⁶³.

⁶² Norma técnica Colombiana NTC 785.p.3

⁶¹Lbid, .p.5

⁶³ Lbid.,p.3

Placa: Metálica rígida de 50mm de ancho y de un espesor no inferior a 15 mm.

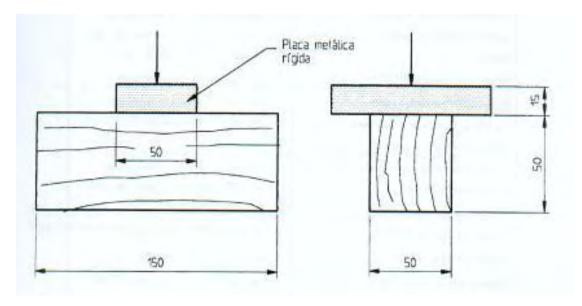


Figura 1.4 ensayo a la compresión perpendicular a la fibra Fuente: http://www3.ucn.cl/FacultadesInstitutos/laboratorio/compresionm3.htm

La resistencia en el límite proporcional se calcula aplicando la siguiente ecuación⁶⁴:

$$\sigma cL = \frac{Pl}{S}$$
 (Ec. 5.8)

Donde:

σcL: Resistencia en el límite proporcional en daN por centímetro cuadrado

Pl: Carga en ellímite proporcional en daN.

S: superficie impresa sobre la probeta por la pieza de presión, encentímetros cuadrados.

⁶⁴ Norma técnica Colombiana NTC 785.p.5

La resistencia a una deformación del 1 % del espesor de la probeta se calcula aplicando la siguiente ecuación⁶⁵:

$$\sigma cL1\% = \frac{P}{S}$$
 (Ec. 5.9)

Dónde:

 $\sigma cL1\%$: Resistencia a una deformación del 1 %, en daN por centímetrocuadrado

P: carga en el 1 % de deformación, en daN.

S: Superficie impresa sobre la probeta por la piza de presión, en centímetros cuadrados.

1.6.4 Resistencia a la cizalladura: Se coloca la probeta en el dispositivo de cizallamiento de tal manera que la cara de 5 cm x 5 cmquede en posición paralela a la pieza móvil y que la superficie B reciba la presión de la cizalla. Laprobeta debe quedar fuertemente ajustada al accesorio por medio de dos tornillos que haganpresión sobre la cara A y ligeramente apretada entre otros dos tornillos colocados próximos alasiento de la probeta. Entre el plano de falla de la probeta y cizalla se debe dejar un espacio de 3 mm⁶⁶.

La resistencia máxima de rotura por cizallamiento se determina mediante la siguiente ecuación⁶⁷:

$$\sigma cz = \frac{P}{S}$$
 (Ec. 5.10)

Donde:

σcz: Resistencia máxima de rotura, en kilogramos-fuerza por centímetro cuadrado.

P:Carga máxima soportada por la probeta, en kilogramos-fuerza.

S: Superficie del plano en que se produce el cizallamiento, en centímetros cuadrados

⁶⁷ Lbid,.p.5

⁶⁵ Norma técnica Colombiana NTC 775.p.5

⁶⁶ Lbid,.p.4

1.6.5 Dureza brinell

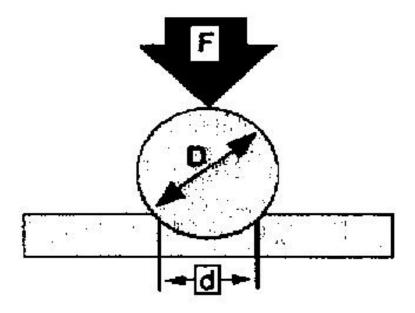


Figura 1.5 Montaje Dureza brinell Fuente: dureza brinell y la influencia de la humedad relativa del ambiente, de la edad y la altura a lo largo del tramo en la especie de bambú

La dureza brinell está dada por la siguiente ecuación⁶⁸:

$$HB = \frac{2F}{\pi D(D - D^2 - d^2)}$$
 (Ec. 5.11)

Donde:

HB: dureza brinell en newton milímetro cuadrado

F: Fuerza constante sobre el material

 $^{^{68}}$ dureza brinell y la influencia de la humedad relativa del ambiente, de la edad y la altura a lo largo del tramo en la especie de bambú.p.2

- D: Diámetro de la bola en milímetros
- D: Diámetro de la huella en milímetros

La bola utilizada para el ensayo consta de un diámetro de 10 mm y se aplicara a la probeta ensayada hasta que la mencionada esfera penetre 5 mm.

2 METODOLOGIA

2.1 NÚMERO DE PROBETAS

Para la determinación del número de probetas fue necesario encontrar la varianza que tienen las maderas sometidas a los ensayos, ya que al no conocer su población debido a su gran tamaño se dice que es una población infinita, por lo cual se determina una muestra de la siguiente manera:

$$n = \frac{z^2 * S^2}{d^2}$$
 (Ec. 6.1)

Donde:

n: Numero de muestras

Z: nivel de confianza

S: varianza

d: Error admisible

Para determinar su varianza fue necesario hacer una investigación a fondo en las bibliografías para obtener un valor promedio de acuerdo a los ensayos realizados, ya que si no se hubiese tenido dicha varianza el número de muestra no se podría determinar al inicio.

2.2 OBTENCION DE PROBETAS

Definidos los ensayos a realizar, y definido el tipo de maderas a utilizar se procedió a cotizar los costos de cada madera en los aserrados de la ciudad de pasto. Se buscó desde un principio que el proveedor de la madera también pudiera entregar así mismo las probetas. Por lo que se descartó una gran mayoría de proveedores que a pesar de que contaban con la madera no contaban con equipos sofisticados para el corte preciso de las probetas que se necesitaba.

De este modo se seleccionaron tres proveedores con la capacidad de entrega y teniendo en cuenta un factor muy importante que es los costos totales ya que estos hacían un cobro adicional debido al corte.

Debido a que el financiamiento de esta investigación fue llevada a cabo netamente por los estudiantes el factor económico es una prioridad, por lo que se selecciona al depósito de Maderas San Andrés, debido a su bajo costo en comparación con los demás proveedores y también se decanta por dicho depósito ya que fueron los únicos de los proveedores que cumplían las exigencias de tiempo establecidas que fueron una semana como plazo de entrega.

Llegado ya a un acuerdo con el proveedor seleccionado se procedió a entregar los detalles para la realización de los cortes de las probetas según lo establecido por las normas técnicas colombianas.

ENSAYOS	DIMENSIONES (mm)
PROPIEDADES FISICAS	
Densidad Básica	25X25X100
PROPIEDADES MECANICAS	
Flexión	20X20X300
Compresión paralela	20x20x50
Compresión perpendicular	50x50x100
Cizalladura	90X50x90 con cortes de 20mm para formar
	una cruz
Dureza Brinell	50X50x100

Tabla 2.1 Dimensiones de probetas para ensayos físicos y mecánicos

Ya recibidas las probetas en el tiempo establecido se procede a trasladarlas al laboratorio para su organización y debido conteo y verificación.

Imagen 2.1 organización de acuerdo al tipo de madera y ensayo a realizar

2.3 REALIZACIÓN DE LOS ENSAYOS

Ya organizando las maderas por tipo y ensayo a realizar se procede a verificar la calibración de los equipos en los cuales se va a trabajar.

El laboratorio en el que se realizaron todos los ensayos tanto físicos y mecánicos es el perteneciente a la facultad de ingeniería de la Universidad de Nariño.

2.3.1 Propiedades físicas

Equipo utilizado: Para la determinación tanto del contenido de humedad así como la densidad básica fue necesario el uso de los siguientes aparatos de laboratorio:

- Pie de rey
- Balanza hoaus scout pro
- Horno automático

2.3.1.1 Densidad básica: Para la determinación de la densidad básica fue necesaria la obtención de 10 probetas mas para cada tipo de madera a parte de las que se utilizo para los ensayos mecánicos debido que para esta densidad se necesitó que la madera este en un estado verde, razón por la cual se contrato con el mismo proveedor la realización de dichas probetas con las medidas indicadas anteriormente (ver tabla 6.2).

Procedimiento: Ya obtenidas las probetas se procedió a verificar las medidas con el pie de rey, para poder determinar con exactitud el volumen. Ya determinado su volumen real en estado verde de la madera, las probetas son llevadas al horno automático a +- 105º durante no menos de 24 horas hasta que las probetas alcancen un estado anhidro. Pasado el tiempo las probetas son sacadas del honor y llevadas a pesar a una balanza que mide su peso en gramos, para luego registrar sus datos y determinar su densidad básica de la siguiente manera:

$$DB = \frac{PS}{VV}$$
 (Ec. 6.2)

Dónde:

DB: Densidad básica

PS: peso seco

VV: volumen en estado verde

2.3.1.2 Contenido de humedad: Para la determinación del contenido de humedad se utilizó las mismas probetas que se utilizaron en los ensayos mecánicos ya que se necesitaba comprobar la humedad de trabajo es por eso que primero se ensayaron las probetas para luego ser pesadas, y llevadas al horno posteriormente. La humedad de trabajo se determinó mediante la ecuación 5.1.

2.3.2 Ensayos de resistencia mecánicos: Después de determinar la densidad básica de los tipos de madera en estudio se procedió a realizar los ensayos mecánicos a cada tipo de madera, con un respectivo orden.

Orden de ensayos	Ensayo	Orden de las maderas
Primero	flexión	 Cuangare Pandala Chanul granadillo
Segundo	Compresión paralela	 cuangare Pandala Chanul Granadillo
tercero	Compresión perpendicular	 Cuangare Pandala Chanul Granadillo
Cuarto	cizalladura	 Cuangare Pandala Chanul Granadillo
quinto	Dureza brinell	 Cuangare Pandala Chanul granadillo

Tabla 6.2 Orden de ensayos y tipos de madera

Equipo utilizados

- Pie de rey
- Maquina universal
- Balanza hoaus scout pro
- Horno automático

Imagen 2.2 Maquina Universal

La maquina universal fue el elemento más importante utilizado durante los ensayos mecánicos a las maderas ya que en esta se realizaron todos los ensayos. Era muy importante que la maquina estuviese calibrada para no tener errores en las mediciones de carga, verificación llevada a cabo tanto por el auxiliar de laboratorio así como por personal acreditado traído desde Bogotá por el jefe de laboratorios de la Universidad de Nariño.

La maquina universal consta de las siguientes partes:

- Sensor de cargas
- Plataforma metálica
- Deformimetro
- Motor
- Manivela

Nivel

2.3.2.1 Ensayo de flexión

Procedimiento: Se inició verificando las medidas tanto transversales como longitudinales de todas las probetas a ensayar. Seguidamente se realiza la marcación de su centro de cada una de las probetas, así como en sus extremos se delimita 1cm para su ubicación en la plataforma metálica.

Imagen 2.3 Verificación de medidas a las probetas del ensayo a flexión

Imagen 2.4 Marcación del centro de las probetas y delimitación de sus extremos

Ya preparadas las probetas son ubicadas sobre apoyos metálicos que están sujetos a la plataforma metálicas, luego en la mitad de la probeta anteriormente marcada se ubica un apoyo metálico que a su vez hace contacto con el sensor de cargas.

La plataforma es desplazada mediante el motor de la máquina universal hasta que la probeta se mantenga en una posición sin ningún tipo de desplazamiento.

Se verifica que tanto el Deformimetro como el indicador de carga estén en cero, se toma la manivela y se realiza el movimiento manualmente a una velocidad constante y con lecturas de deformación cada 5x10-3pulgadas hasta llegar a 40x10-3 pulgadas y luego se dictan cada 10x10-3 pulgadas para determinar su debida carga.

El ensayo continua hasta que la probeta sometida a flexión falle, es decir que la carga vuelva a disminuir en el sensor. Luego es llevada a pesar y luego al horno durante 24 horas para determinar nuevamente su peso y así saber su humedad de trabajo.

Imagen 2.5 Montaje y realización del ensayo a flexión

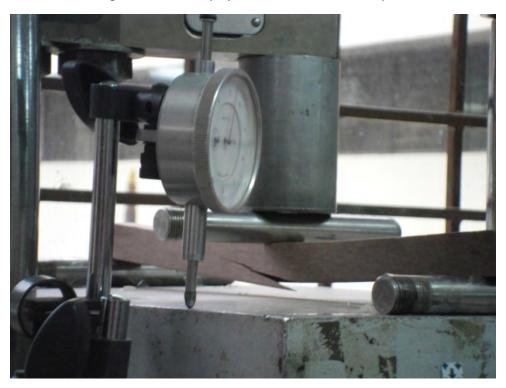


Imagen 2.6 Falla de probeta ensayo a la flexión

2.3.2.2 Ensayo compresión paralela a la fibra

Procedimiento: Se verifican las medidas de las probetas tanto longitudinal como transversalmente. Ya verificadas las medidas se procede a observar en detalle que las probetas no tengan ningún desnivel en la sección transversal ya que si esta existe, la compresión no será uniforme en toda su superficie.

Imagen 2.7 verificación de las medidas de las probetas de compresión paralela

Una vez verificado que las medidas cumplen con las establecidas en la normal se toma la probeta y se la lleva a la placa de la maquina universal, se la ubica en posición tal que las fibras queden paralelas al aparto de compresión, y que la probeta quede bien centrada, luego se sube la plataforma hasta que la probeta no se mueva es decir quede embebida entre la placa y el aparato compresor.

Luego se verifica que el deformimetro y el sensor de cargas estén en ceros, se toma la manivela y manualmente se realiza el ensayo, con deformaciones controladas y lecturas de cargas para cada deformación. El ensayo termina cuando la probeta llego a su falla. La probeta es retirada y llevada a pesar y luego puesta al horno.

Imagen 2.8 Montaje ensayo compresión paralela a la fibra

Imagen 2.9 Falla de probeta ensayada a la compresión paralela

2.3.2.3 Ensayo compresión perpendicular a la fibra

Procedimiento: Se verifica que las medidas de las probetas se encuentre en lo establecido por la norma, luego son llevadas hacia la maquina universal, se ubica sobre la plataforma metálica y sobre la probeta se pone una placa metálica de 5x5 cm ubicada en la mitad de dicha probeta.

La placa metálica ubicada sobre la probeta abarca toda la superficie que va a ser ensayado, mediante el motor se lleva a la probeta hasta la altura en que la placa metálica que se encuentra sobre ella haga contacto con el aparato de compresión sin que en el sensor marque algún tipo de carga. Seguidamente se verifica que el sensor de carga y el deformimetro estuvieran en ceros.

Se toma la manivela y a una velocidad constante se realiza el ensayo con deformación controladas cada 5x10-3 pulgadas hasta 40x10-3 para luego cambiar el rango a 10x10-3pulgadas.

El ensayo continua hasta que la placa de 5x5 cm que se encuentra sobre sobre la probeta, la penetre el 5% de su espeso, es decir 3mm.

La probeta ensayada es retirada y llevada a pesar para luego ser llevada al horno.

Imagen 2.10 verificación de las medidas de las probetas de compresión perpendicular

Imagen 2.11 Ensayo y montaje compresión perpendicular a la fibra

En esta etapa de la investigación se presentó un problema debido a que la madera granadillo sobrepaso la capacidad de carga de la maquina universal de 12000 libras por lo que nos vimos en necesidad de realizar el ensayo de compresión perpendicular para esta madera en la máquina de compresión de concretos del laboratorio de la Universidad de Nariño, razón por la cual se tuvo inconvenientes a la hora de medir las deformación ya que la maquina era muy rápida y no disponía de un manejo manual, por lo que se decidió tomar deformaciones cada 0,2mm para poder observar de una manera eficaz y confiable las carga.

Imagen 2.12 Máquina de compresión de concretos

Imagen 2.13 Fálla de probetas en el ensayo de compresión perpendicular

2.3.2.4 Ensayo resistencia a la cizalladura

Procedimiento: Se verifico las medidas de las probetas, luego se asegura de que las superficies a las cuales se les pondrá los apoyos para que estén completamente uniformes, ya verificado que las probetas cumplan todos los estándares de calidad se procede a ubicarla sobre la plataforma metálica de la maquina universal en la cual en su parte inferior se ubican dos apoyos metálicos a los extremos de la cruz de 2x5cm y en la parte superior se ubica una platina metálica de 5x5cm, mediante el motor de la maquina universal se sube la probeta hasta que la platina superior haga contacto con el aparato compresor. Ya sujeta la probeta se procede manualmente con el ensayo tomando deformaciones controladas cada 5x10-3 pulgadas hasta llegar a 40x10-3 pulgadas y seguidamente cada 10x10-3pulgadas hasta llegar a la falla.

Imagen 2.14 Verificación de las medidas de las probetas de cizalladura

Imagen 2.15 Montaje ensayo cizalladura

Imagen 2.16 Falla de probeta ensayo cizalladura

2.3.2.5 Dureza Brinell

Procedimiento: Se procedió al igual que los anteriores ensayos, verificando las medidas de las probetas a usar, lastimosamente ninguna de las normas técnicas colombianas orientaba de una manera clara tanto el procedimiento como las dimensiones de las probetas a ensayar. Problema que se solucionó con la ayuda del laboratorista que debido a sus más de 10 años de experiencia nos guio de la mejor manera para realizar el ensayo sin ningún inconveniente, incluyendo también una extensa búsqueda bibliográfica para guiarnos durante este ensayo. Las dimensiones recomendadas fueron de 5x5x10cm. Ya verificadas las dimensiones de las probetas, estas son llevadas a la plataforma metálica de la maquina universal, en este momento al aparato de compresión se le agregó de forma parcial durante cada ensayo un aparato que constaba en su punta de una bola de acero de 10mm de diámetro. Ya instalado este aparato se sube la plataforma junto con la probeta hasta que la bola haga contacto con el centro de la probeta sin que haya ningún tipo de presión.

Se verifica que el Deformimetro y el sensor de cargas estén en cero y se inicia el ensayo manualmente, marcando las deformaciones cada 5x10-3 pulgadas hasta los 40x10-3 pulgadas y de 10x10-3 seguidamente. El ensayo continua hasta que la bola de acero penetre 5mm de su diámetro, momento en el cual se detiene el ensayo y se lee su carga final.

Imagen 2.17 Verificación de las medidas de las probetas de dureza brinell

Imagen 2.18Montaje ensayo dureza brinell

Imagen 2.19 Resultado final ensayo dureza brinell

3 RESULTADOS Y ANALISIS

3.1 NUMERO DE PROBETAS

Como se mencionó en la metodología el número de probetas fue determinado por la ecuación 6.1, esto fue determinado de la manera ya mencionada debido a que se contaba con una varianza para las maderas más utilizadas aquí en el Departamento de Nariño, ya que si no hubiese sido así se hubiera necesitado realizar estudios estadísticos para su determinación.

Para una población infinita o en la que conocerla es muy difícil se tomaron en cuenta mediante asesoría con los docentes de ciencias exactas de la Universidad de Nariño los siguientes criterios:

- El nivel de confianza adoptado fue del 95 % por lo que se obtendrá un valor de z de 1,96 ya establecido.
- La varianza de las maderas mas utilizadas en Nariño fue encontrada en una investigación de 1991 en la cual se determina un valor promedio de 14%.
- El error máximo admisible que se considera conveniente para trabajar en los ensayos teniendo en cuenta todos los factores como el error humano, ambiente de trabajo, etc. fue del 10%.

Por lo que se obtuvo el siguiente resultado:

Número de muestra
$$n = \frac{1.96^2 * 0.14^2}{0.1^2} = 7.6$$
 (Ec. 7.1)

Como se observa el valor obtenido fue de 7,6 probetas para cada ensayo, pero por consideraciones y como prevención de algunos problemas q se podían presentar en la investigación se optó por tomar 10 probetas para cada ensayo.

3.2 PROPIEDADES FÍSICAS

3.2.1Densidad Básica

Cuangare						
Probeta No	volumen (cm3)	peso anhidro (g)	DB (g/cm3)			
1	90	28,8	0,32			
2	90	28,04	0,312			
3	90	29,16	0,324			
4	90	28,53	0,317			
5	90	29,16	0,324			
6	90	28,98	0,322			
7	90	29,88	0,332			
8	90	28,26	0,314			
9	90	29,34	0,326			
10	90	28,71	0,319			
	0,321					
	DESVIACION ESTA	ANDAR	0,005925463			

Tabla 3.1 Densidad básica madera cuangare

Pandala						
Probeta No	volumen (cm3)	peso anhidro (g)	DB (g/cm3)			
1	90	37,08	0,412			
2	90	37,89	0,421			
3	90	36,99	0,411			
4	90	38,52	0,428			
5	90	37,62	0,418			
6	90	37,35	0,415			
7	90	37,89	0,421			
8	90	37,26	0,414			
9	90	37,08	0,412			
10	90	37,62	0,418			
	0,417					
	DESVIACION ESTA	ANDAR	0,005312459			

Tabla 3.2 Densidad básica madera Pandala

Chanul						
Probeta No	volumen (cm3)	peso anhidro (g)	DB (g/cm3)			
1	90	55,26	0,614			
2	90	55,62	0,618			
3	90	56,16	0,624			
4	90	55,71	0,619			
5	90	56,52	0,628			
6	90	55,98	0,622			
7	90	55,17	0,613			
8	90	55,62	0,618			
9	90	56,34	0,626			
10	90	55,8	0,62			
PROMEDIO 0,62						
	DESVIACION ESTA	ANDAR	0,004871687			

Tabla 3.3 Densidad básica madera Chanul

Granadillo						
Probeta No	volumen (cm3)	peso anhidro (g)	DB (g/cm3)			
1	90	77,76	0,864			
2	90	77,58	0,862			
3	90	77,13	0,857			
4	90	77,49	0,861			
5	90	76,95	0,855			
6	90	78,12	0,868			
7	90	77,94	0,866			
8	90	76,5	0,85			
9	90	77,76	0,864			
10	90	77,67	0,863			
	0,861					
	DESVIACION ESTA	ANDAR	0,005477226			

Tabla 3.4 Densidad básica madera Granadillo

3.2.2 Contenido de humedad de las probetas en los ensayos: El contenido de humedad fue determinado de todas y cada una de las probetas ensayadas, para cada uno de los ensayos que así lo exigían en la norma, es así que después de cada probeta ensayada esta era pesada y luego llevada al horno para determinar su humedad de trabajo, que según la norma recomienda un valor no menor al 12% y no mayor al 30%.

Debido a que los valores son demasiados en los resultados se presenta el valor promedio de cada ensayo de cada madera y en el anexo A. se consignaran los valores de cada una de las probetas.

Contenido de humedad de las probetas (%)								
Cuangare Pandala Chanul Granadillo								
flexión	16,93	14,85	15,33	15,00				
Comp. Perpendicular	15,56	14,74	14,57	14,55				
Comp. Paralela	14,37	15,26	16,37	13,61				
cizalladura	15,39	13,75	16,40	14,45				

Tabla 3.5 Contenido de humedad promedio de las probetas ensayadas

3.3 PROPIEDADES MECÁNICAS

Los resultados de resistencia a la flexión, resistencia a la compresión paralela a la fibra, resistencia a la compresión perpendicular a la fibra, resistencia al cizallamiento, se encuentran dados para cada tipo de madera, estos resultados se expresan en kg/cm2, lo cual equivale aproximadamente a 1daN. Para los resultados de dureza brinell estos se expresan en newton/mm2.

3.3.1 Resistencia a la flexión: Los resultados obtenidos de la resistencia a la flexión para las maderas estudiadas se publican en la tabla 3.6, a continuación. Las gráficas de esfuerzo vs deformación y las tablas de resultados obtenidas en laboratorio se muestran en el anexo B.

RESISTENCIA MAXIMA A LA FLEXIÓN (Kg/cm2)							
No. PROBETA	CHANUL	CHANUL CUANGARE GF		PANDALA			
1	69	79	125	71			
2	89	76	127	73			
3	113	79	124	72			
4	112	79	126	75			
5	107	80	121	73			
6	87	80	124	72			
7	71	77	126	75			
8	116	77	125	74			
9	90	79	123	76			
10	88	81	130	76			
σ máx	94,2	78,7	125,1	73,7			
DESV. ESTANDAR	17,054	1,567	2,424	1,767			

Tabla 3.6 resultados para resistencia a la flexión y su valor promedio.

3.3.2 Resistencia a la compresión paralela al grano: Los resultados obtenidos de la resistencia a la compresión paralela al grano se publican en la tabla 3.7a, 3.7b, y 3.7c, a continuación. Las gráficas de esfuerzo vs deformación y las tablas de resultados obtenidas en laboratorio se muestran en el anexo C.

	RESISTENCIA PARALELA O AXIAL A LA FIBRA (Kg/cm2)					
No. PROBETA	CHANUL			CUANGARE		
	σ máx. Lim .Prop.	σ máx.	E	σ máx. Lim .Prop.	σ máx.	E
1	373	508	10488	347	446	9761
2	399	512	11231	355	444	9994
3	383	510	10772	391	449	10999
4	385	513	10833	341	443	9602
5	381	509	10708	372	439	10456
6	420	512	11821	336	440	9458
7	368	511	10351	355	434	9988
8	356	512	10004	364	445	10240
9	408	511	11467	348	441	9784
10	412	513	11579	344	437	9678
DESV. ESTANDAR	20,115	1,616		17,008	4,416	

Tabla 3.7a. Resultados para resistencia a la compresión paralela a la fibra.

	RESISTENCIA PARALELA O AXIAL A LA FIBRA (Kg/cm2)						
No.	GR <i>A</i>	GRANADILLO			PANDALA		
PROBETA	σ máx. Lim .Prop.	σ máx.	E	σ máx. Lim .Prop.	σ máx.	E	
1	531	719	14937	197	291	7766	
2	547	724	15381	192	292	7572	
3	561	725	15769	194	291	7643	
4	571	721	16066	203	286	7987	
5	584	722	16423	204	291	8027	
6	600	720	16885	194	285	7639	
7	555	719	15600	191	288	7527	
8	544	722	15291	199	287	7835	
9	586	724	16487	211	286	8322	
10	496	719	13955	199	290	7831	
DESV. ESTANDAR	22,627	2,224		6,595	2,698		

Tabla 3.7b. Resultados para resistencia a la compresión paralela a la fibra.

TIPO DE	σmáx . Lim	σ máx.	E
MADERA	.prop. (Kg/cm2)	(Kg/cm2)	(Kg/cm2)
CHANUL	388,5	511,1	10925,4
CUANGARE	355,3	441,8	9996
GRANADILLO	557,5	721,5	15679,4
PANDALA	198,4	288,7	7814,9

Tabla 3.7c. Resultados promedio para resistencia a la compresión paralela.

3.3.3 Resistencia a la compresión perpendicular al grano: Los resultados obtenidos de la resistencia a la compresión perpendicular al grano se publican en la tabla 2.8a, 3.8b, a continuación. Las gráficas de esfuerzo vs deformación y las tablas de resultados obtenidas en laboratorio se muestran en el anexo D.

	RESISTENCIA PERPENDICULAR A LA FIBRA (Kg/cm2)								
No.	CHAN	UL	CUAN	IGARE	GRANA	DILLO	PANI	PANDALA	
PROBETA	σ cL 1%	σcL	σ cL 1%	σcL	σ cL 1%	σcL	σ cL 1%	σcL	
1	36	115	13	29	12	322	25	70	
2	32	108	8	28	6	338	25	72	
3	24	110	12	29	12	344	27	72	
4	28	112	11	29	12	368	26	71	
5	28	114	5	28	6	312	24	77	
6	27	111	7	28	12	322	25	75	
7	25	107	10	27	12	332	26	75	
8	25	110	8	28	12	312	27	73	
9	26	106	4	27	6	318	25	72	
10	32	106	11	27	1	318	23	71	
DESV. ESTANDAR	3,855	3,041	3,082	0,782	3,000	18,123	1,014	2,236	

Tabla 3.8a. Resultados para resistencia a la compresión perpendicular a la fibra.

TIPO DE MADERA	σ cL 1%	σcL
CHANUL	28,3	109,9
CUANGARE	8,9	28
GRANADILLO	9,1	328,6
PANDALA	25,3	72,8

Tabla 3.8b. Resultados promedio para resistencia a la compresión perpendicular.

3.3.4 Resistencia a la cizalladura: Los resultados obtenidos de la resistencia a la cizalladura se publican en la tabla 7.9, a continuación. Las graficas de esfuerzo vs deformación y las tablas de resultados obtenidas en laboratorio se muestran en el anexo E.

RESISTENCIA MAXIMA A LA CIZALLADURA (Kg/cm2)						
No. PROBETA	CHANUL	CUANGARE	GRANADILLO	PANDALA		
1	168	64	147	145		
2	162	63	148	147		
3	164	67	149	149		
4	167	65	151	147		
5	163	66	151	145		
6	168	68	150	148		
7	169	69	151	153		
8	163	69	148,4	143		
9	165	67	147	145		
10	162	70	148	151		
σcz	165,1	66,8	149,04	147,3		
DESV. ESTANDAR	2,685	2,300	1,611	3,057		

Tabla 3.9. Resultados para resistencia a la cizalladura y su valor promedio.

3.3.5 Dureza Brinell

En las tablas 3.10a, 3.10b, 3.10c, 3.10d y 3.10e, se consignan los resultados de cada una de las maderas ensayadas al ensayo de dureza brinell.

	Cuangare							
Probeta No	carga (kg)	carga (N)	diámetro bola (mm)	diámetro huella (mm)	HB (N/mm2)			
1	53,1	520,74	10	5	24,74			
2	55,8	547,21	10	5	26			
3	54,9	538,39	10	5	25,58			
4	60,3	591,34	10	5	28,1			
5	54,65	535,94	10	5	25,47			
6	52,2	511,91	10	5	24,32			
7	62,1	609	10	5	28,94			
8	51,3	503,08	10	5	23,91			
9	53,1	520,74	10	5	24,74			
10	51,3	503,08	10	5	23,91			
	DES	VIACION EST	ANDAR		1,708			

Tabla 3.10a. Resultados para dureza brinell.

	Pandala							
Probeta No	carga (kg)	carga (N)	Diámetro bola (mm)	diámetro huella (mm)	HB (N/mm2)			
1	115,65	1134,14	10	5	53,89			
2	139,95	1372,45	10	5	65,22			
3	129,75	1272,42	10	5	60,46			
4	125,1	1226,82	10	5	58,3			
5	112,05	1098,84	10	5	52,21			
6	112,95	1107,67	10	5	52,63			
7	117,05	1147,87	10	5	54,54			
8	117	1147,38	10	5	54,52			
9	136,35	1337,14	10	5	63,54			
10	116,1	1138,56	10	5	54,1			
	DES	VIACION EST	ANDAR		4,839			

Tabla 3.10b. Resultados para dureza brinell.

	Chanul						
Probeta No	carga (kg)	carga (N)	Diámetro bola (mm)	diámetro huella (mm)	HB (N/mm2)		
1	206,1	2021,16	10	5	96,04		
2	203,35	1994,19	10	5	94,76		
3	215,55	2113,83	10	5	100,44		
4	210,15	2060,88	10	5	97,93		
5	206,55	2025,57	10	5	96,25		
6	209,7	2056,46	10	5	97,72		
7	205,2	2012,33	10	5	95,62		
8	209,75	2056,96	10	5	97,74		
9	207,2	2031,95	10	5	96,55		
10	209,35	2053,03	10	5	97,56		
	DES	VIACION EST	ANDAR		1,672		

Tabla 3.10c. Resultados para dureza brinell.

	Granadillo							
Probeta No	carga (kg)	carga (N)	Diámetro bola (mm)	Diámetro huella (mm)	HB (N/mm2)			
1	415,35	4073,21	10	5	193,55			
2	417,65	4095,77	10	5	194,62			
3	408,8	4008,98	10	5	190,5			
4	415,1	4070,76	10	5	193,43			
5	405,1	3972,69	10	5	188,77			
6	413,9	4058,99	10	5	192,87			
7	417,5	4094,3	10	5	194,55			
8	415,15	4071,25	10	5	193,46			
9	411,54	4035,85	10	5	191,77			
10	417,15	4090,86	10	5	194,39			
	DES	VIACION EST	ANDAR		1,938			

Tabla 3.10d. Resultados para dureza brinell

.

Tipo de madera	HB (N/mm2)	HB (kg/cm2)
cuangare	25,57	260,73
Pandala	56,94	580,6
Chanul	97,06	989,7
granadillo	192,79	1965,84

Tabla 3.10e. Resultados promedios de dureza brinell para cada tipo de madera

	CUANGARE	PANDALA	CHANUL	GRANADILLO
FLEXION kg/cm2	78,7	73,7	94,2	125,1
COM. PARALELA kg/cm2	441,8	288,7	511,1	721,5
COM. PERPENDICULAR kg/cm2	28	72,8	109,9	328,6
CIZALLADURA kg/cm2	66,8	147,3	165,1	149,04
DUREZA BRINEL kg/cm2	260,73	580,6	989,7	1965,84

Tabla 3.11. Resultados finales de todos los ensayos a cada tipo de madera.

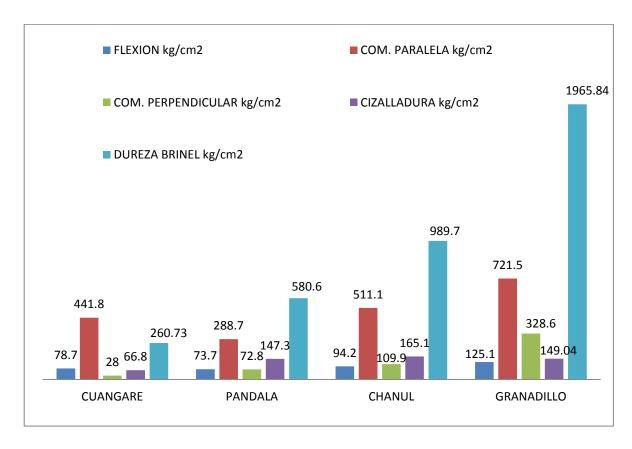


Grafico 3.1 Resultados de ensayos realizados para cada tipo de madera

3.4 ANALISIS DE RESULTADOS

- 1. En la clasificación de las densidades básicas tanto del Padt-refort, así como en la del Ingeniero Rondón no se tenía dato alguno sobre la madera cuangare (ordinaria) lo cual impidió llevar a cabo una comparación entre densidades obtenidas por dichos estudios y el llevado a cabo en esta investigación que fue de 0,321 g/cm3.
- 2. Comparando los resultados de las densidades básicas obtenidas de esta investigación con las obtenidas por el ingeniero Rondón se obtuvo que tanto la densidad básica de la Pandala como el granadillo son las mismas, caso contrario sucedió con el Chanul el cual arrojó resultados mayores en esta investigación a los valores obtenidos por el ingeniero Rondón.

Tipo de madera	D.B Investigada (g/cm3)	D.B PADT-REFORT
		(g/cm3)
Cuangare	0,321	Sin resultado
Pandala	0,417	0,41
Chanul	0,620	0,57
Granadillo	0,861	0,86

Tabla 3.12 Comparación entre densidades básicas encontradas y existentes

3. Ya corroborado y determinado las densidades básicas de cada madera se clasifican en los grupos estructurales A,B,C dependiendo su valor obtenido así:

grupo estructural	rango (g/cm3)	tipo de madera	densidad básica	pertenecen al grupo
А	>= 0,71	cuangare	0,32	no pertenece
В	0,56-0,70	Pandala	0,42	С
С	0,40-0,56	Chanul	0,62	В
		granadillo	0,86	А

Tabla 3.13 Clasificación de las maderas estudiadas en los grupos estructuras del PADT-REFORT

- **4.** El contenido de humedad con el que se realizaron los ensayos mecánicos de las maderas esta en el rango sugerido por la norma técnica Colombia que esta entre 12%-30%.
- 5. La resistencia a la flexión en la madera de Cuangare es mayor a la de Pandala, aunque es de resaltar que la madera Pandala se flexiono mas que las demás pero aguanta menos carga.
- 6. A pesar de que el granadillo es la madera mas densa y por dicha razón se ubica en el grupo A, de las maderas mas densas para uso estructural, se observa que en el ensayo de resistencia al cizallamiento se obtuvo un valor menor que del Chanul que es una madera con una densidad menor y que se encuentra en el grupo B, lo que determina que la densidades un pobre indicador de resistencia pues conllevaría a múltiples errores como este, lo cual no es verdadero que las resistencias de una madera sean mayores a otras si tengo una densidad básica mayor.
- 7. El PADT-REFORT afecta las resistencias de las maderas con factores de reducción obteniendo un esfuerzo admisible según el ensayo a realizar, que en comparación con los esfuerzos últimos obtenidos de las maderas en estudio en el ensayo a flexión, son muy superiores a pesar de que estos ya son afectados, por lo que se sugiere que dichos valores sean verificados ya que las fallas de las maderas son mucho antes de llegar al esfuerzo admisible sugerido por el PADT-REFORT como se muestra a continuación.

MADERA	ESFUERZO ADMISIBLE A FLEXION	ESFUERZO ULTIMO ENCONTRADO
	SEGÚN EL PADT-REFORT kg/cm2	kg/cm2
PANDALA	101,96	73,7
CHANUL	152,95	94,2
GRANADILLO	214,13	125,1

Tabla 3.14 Comparación entre esfuerzo admisible a flexión según el PADT-REFORT y el esfuerzo ultimo investigado.

8. A diferencia de lo sucedido con el ensayo a flexión en el que el esfuerzo último se daba mucho antes del esfuerzo admisible suministrado por el PADT-REFORT. Ahora tanto como para el ensayo a compresión perpendicular así como el de compresión paralela los esfuerzos admisibles recomendados por el PADT-REFORT se quedan cortos en

comparación a los obtenidos en esta investigación, como se indica en las siguientes tablas

MADERA	esfuerzo admisible a	esfuerzo ultimo	factor de	esfuerzo admisible
	compresión paralela	encontrado a	reducción del	a compresión
	según el PADT-REFORT	compresión paralela	PADT-REFORT	paralela
	kg/cm2	kg/cm2		encontradokg/cm2
PANDALA	81,57	288,7	0,36	103,932
CHANUL	112,16	511,1	0,36	183,996
GRANADILLO	147,85	721,5	0,36	259,74

Tabla 3.15 Comparación entre esfuerzo admisible a compresión paralela según el PADT-REFORT y el esfuerzo admisible investigado.

MADERA	esfuerzo admisible a compresión perpendicular según el PADT-REFORT kg/cm2	esfuerzo ultimo encontrado a compresión perpendicular kg/cm2	factor de reducción del PADT-REFORT	esfuerzo admisible a compresión perpendicular encontrado kg/cm2
PANDALA	15,29	72,8	0,36	26,208
CHANUL	28,55	109,9	0,36	39,564
GRANADILLO	40,78	328,6	0,36	118,296

Tabla 3.16 Comparación entre esfuerzo admisible a compresión perpendicular según el PADT-REFORT y el esfuerzo admisible investigado.

9. Los valores de resistencia de Cuangare determinan de que se puede usar como madera para estructura de importancia menor pero que tenga una selección adecuada en el deposito ya que este tipo de madera tiende a presentar con mayor frecuencia irregularidades las cuales la conllevarían a la falla más rápidamente. **10.**Los resultados de cizalladura de las maderas Pandala, Chanul, Granadillo son muy cercanos los cuales indican que las fibras de este tipo de maderas se comportan de una manera similar.

4 CONCLUSIONES

- Como se observa según la densidad básica de la madera cuangare esta no clasifica en ningún grupo estructural de los propuestos por el PADT-REFORT ya que su densidad básica fue menor que la exigida para poder ser clasificada.
- 2. La desventaja de la madera de Cuangare es que es mas complicado en el medio obtener madera uniforme en cuanto a la calidad ya que es mas fácil afectada por hongos lo cual afecta sus propiedades mecánicas, pero tiene la gran ventaja que es económica, además si esta madera tiene una adecuada selección esta se comporta de una mejor manera que la madera Pandala.
- 3. la utilización de madera Cuangare que popularmente se conoce como ordinaria es una madera recomendable para usos en que la vida útil prevista sea corta y la exigencia de servicio no sea de gran magnitud, este tipo de madera es económica, se comporta bien a compresión, flexión, pero en cizalladura no se comporta bien debido a que las fibras son mas separadas una con otra con respecto a las demás maderas, lo cual hace de que la falla se produzca mas fácil por el camino que tienen las fibras.
- **4.** La madera de granadillo es la mejor madera que se puede usar en obras en que la exigencia sea de mayor importancia ya sean obras importantes como puentes, casas, ya que se comporta de la mejor manera, y además es una madera durable, agradable a la vista y de fácil accesibilidad.
- 5. Los resultados obtenidos son de gran importancia para impulsar las construcciones en madera, ya que en el medio ha perdido su auge, además será de gran importancia para la construcción de obras de mayor calidad y magnitud en el sector rural ya que es más difícil el acceso de material de mampostería y estructura de concreto, razón por la cual que las construcciones en madera resultan más económicas en estos lugares, siendo este sector el más beneficiado ya que se tiene mayor confiabilidad en momentos en que se presenten eventos sísmicos.
- **6.** Es de resaltar que el precio en el mercado de la madera Cuangare para la construcción es de gran economía ya que la madera Pandala es más costosa y tiene menor resistencia a la flexión y compresión.
- 7. La madera Pandala para obras de construcción no es recomendable desde el punto de vista económico y mecánico ya que se demostró en los ensayos que es una madera muy explosiva haciendo de que sea muy peligroso el uso de esta para uso estructural lo cual podría producir fallas irreversibles.

- 8. Se sugiere por parte de los investigadores tener en cuenta los esfuerzos admisibles investigados para los ensayos realizados de las maderas ya mencionadas debido a que estos se realizaron exclusivamente para maderas del Departamento de Nariño y además son datos confiables en el cual son independientes de la densidad básica, a diferencia de los sugeridos por el PADT-REFORT que son un promedio de varios tipos de maderas de diferentes partes de la región andina.
- 9. Los resultados obtenidos en esta investigación pueden diferir de otros resultados obtenidos de otras investigaciones a las mismas maderas provenientes de otros lugares, ya que influye en gran parte el lugar en que se producen así como el clima y variables ambientales únicas de cada región. Por esta razón los resultados aquí consignados se aseguran para maderas provenientes del Departamento de Nariño.
- 10. Es muy importante decir que la madera granadillo fue tan resistente en el ensayo de resistencia a la compresión perpendicular que se necesitó utilizar la maquina universal de concretos para fallar dicha madera, encontrando que su resistencia al mencionado ensayo es mayor que la de un concreto de 3500 psi (246,1 kg/cm2), obteniendo la madera granadillo un valor de 328,6 kg/cm2. Aun que es importante resaltar que los ensayos para el concreto y la madera difieren mucho en su metodología.
- 11. Es de gran importancia aclarar que la densidad básica no es un indicador real de la resistencia de una madera ya que esta se puede comportar para distintas solicitaciones de esfuerzo de forma variable ya que la madera puede ser fuerte en determinados parámetros o menos fuerte en otros como es el caso de la madera Granadillo y la madera Chanul o del Cuangare con la Pandala. Determinando que la densidad básica da una idea de la resistencia de la madera mas no un estimativo.
- 12. Los resultados presentados se pueden usar para maderas que se vayan a usar en la construcción que tengan humedades que estén aproximadamente del 12%, si están son mayores el diseñador deberá afectar los resultados por un factor relacionado directamente con el contenido de humedad el cual lo especifica la norma.

BIBLIOGRAFIA

- 1. Paola Patricia Díaz Méndez. Evaluación de las propiedades físicas y mecánicas de nothofagus glauca (hualo) provenientes de la zona de cauquenes [En línea]. Talca-Chile 2005. [Citado el 28 de agosto de 2012] disponible en < http://biblioteca.uandes.cl/doc/Normastesis.pdf>
- 2. Rafael Aguilar Romero. Propiedades físicas de la madera alometria y crecimiento de tres especies (genero quercus) bajo manejo en la cuenca del lago de cuitzeoMichoacan, México [En línea]. Morelia- Mexico 2010. [Citado el 1 de septiembre de 2012] disponible en < http://biblioteca.uandes.cl/doc/Normastesis.pdf>
- 3. Juan Carlos Hernández Canales. CARACTERÍSTICAS FÍSICAS Y PROPIEDADES MECÁNICAS DELOS SUELOS Y SUS MÉTODOS DE MEDICIÓN [En línea]. Guatemala junio de 2008. [Citado el 4 de septiembre de 2012] disponible en < http://es.scribd.com/doc/14537512/Caracteristicas-Fisicas-y-Propiedades-Mecanicas-de-los-suelos-y-sus-Metodos-de-Medicion>
- 4. Eduardo Van der Rohe. Antologia estructura 1 [En línea]. Mayo de 2011. [Citado el 3 de septiembre de 2012] disponible en: http://es.scribd.com/doc/55372000/1/UNIDAD-1-HISTORIA-DE-LA-RESISTENCIA-DE-MATERIALES
- 5. Norma técnica Colombiana NTC 636
- **6.** Jose Ale, Michael Herrera. APLICACIÓN DE LA MECANICA DE MATERIALES A LA MADERA [En línea]. Cordoba-Argentina 2010. [Citado el 29 de agosto de 2012] disponible en http://es.scribd.com/doc/53395334/Mecanica-de-la-Madera
- 7. Norma técnica Colombiana NTC 784
- 8. Norma técnica Colombiana NTC 785
- **9.** Dureza brinell y la influencia de la humedad relativa del ambiente, de la edad y la altura a lo largo del tramo en la especie bambú

ANEXO A

Humedad resistencia a la flexión.

Tabla No.1.1.1 Contenido de humedad madera cuangare en el ensayo a flexión

Cuangare			
probeta No.	Peso húmedo	peso seco	CH (%)
1	52,4	46,29	13,20
2	60,9	53,18	14,52
3	55,3	48,87	13,16
4	57,12	47,11	21,25
5	58,15	48,55	19,77
6	60,14	51,77	16,17
7	59,66	49,11	21,48
8	60,14	52,67	14,18
9	59,68	51,98	14,81
10	61,14	50,65	20,71
PROMEDIO			16,93

Tabla No.1.1.2 Contenido de humedad madera Pandala en el ensayo a flexión

Pandala			
probeta No.	Peso húmedo	peso seco	CH (%)
1	74,3	65,04	14,24
2	73,8	64,73	14,01
3	73,8	63,6	16,04
4	73,50	63,60	15,57
5	74,00	64,50	14,73
6	72,17	63,21	14,17
7	73,89	65,33	13,10
8	73,43	62,18	18,09
9	74,11	64,90	14,19
10	71,75	62,76	14,32
PROMEDIO			14,85

Tabla No.1.1.3 Contenido de humedad madera Chanul en el ensayo a flexión

Chanul				
probeta No.	Peso húmedo	peso seco	CH (%)	
1	84,40	72,60	16,25	
2	92,30	79,00	16,84	
3	95,40	82,60	15,50	
4	96,80	84,40	14,69	
5	93,80	81,50	15,09	
6	94,40	82,20	14,84	
7	94,70	82,50	14,79	
8	93,50	81,30	15,01	
9	93,30	81,40	14,62	
10	92,10	79,60	15,70	
	15,33			

Tabla No.1.1.4 Contenido de humedad madera granadillo en el ensayo a flexión

Granadillo				
probeta No.	Peso húmedo	peso seco	CH (%)	
1	103,2	88,5	16,61	
2	102	87,65	16,37	
3	98,5	82,19	19,84	
4	101,14	89,11	13,50	
5	100,12	88,65	12,94	
6	101,76	88,76	14,65	
7	102,76	90,12	14,03	
8	102,97	89,54	15,00	
9	101,45	88,98	14,01	
10	100,78	89,15	13,05	
	15,00			

Humedad resistencia a la compresión perpendicular

Tabla No.1.2.1 Contenido de humedad madera cuangare en el ensayo a la compresión perpendicular

Cuangare			
probeta No.	Peso húmedo	peso seco	CH (%)
1	110,11	95,43	15,38
2	111,73	94,89	17,75
3	109,98	94,78	16,04
4	110,22	95,23	15,74
5	110,76	96,52	14,75
6	111,62	96,12	16,13
7	110,29	95,82	15,10
8	109,65	96,22	13,96
9	110,28	95,97	14,91
10	109,87	94,88	15,80
PROMEDIO			15,56

Tabla No.1.2.2 Contenido de humedad madera Pandala en el ensayo a la compresión perpendicular

	Pandala				
probeta No.	Peso húmedo	peso seco	CH (%)		
1	124,3	110,52	12,47		
2	128,74	111,42	15,54		
3	126,54	109,88	15,16		
4	127,23	110,11	15,55		
5	125,98	110,35	14,16		
6	126,87	110,92	14,38		
7	127,71	111,23	14,82		
8	127,80	110,63	15,52		
9	126,73	109,32	15,93		
10	127,53	111,98	13,89		
	14,74				

Tabla No.1.2.3 Contenido de humedad madera Chanul en el ensayo a la compresión perpendicular

	Chanul				
probeta No.	Peso húmedo	peso seco	CH (%)		
1	195,96	172,40	13,67		
2	197,64	171,76	15,07		
3	196,55	171,90	14,34		
4	195,55	170,98	14,37		
5	196,00	170,67	14,84		
6	195,42	171,46	13,97		
7	195,87	171,32	14,33		
8	196,58	170,11	15,56		
9	196,77	170,76	15,23		
10	196,57	171,92	14,34		
	14,57				

Tabla No.1.2.4 Contenido de humedad madera granadillo en el ensayo a la compresión perpendicular

	Granadillo			
probeta No.	Peso húmedo	peso seco	CH (%)	
1	205,74	181,56	13,32	
2	206,75	180,76	14,38	
3	206,84	179,91	14,97	
4	205,87	178,00	15,66	
5	205,88	180,25	14,22	
6	207,11	181,00	14,43	
7	206,67	179,65	15,04	
8	207,43	181,66	14,19	
9	207,91	180,36	15,28	
10	206,58	181,22	13,99	
PROMEDIO			14,55	

Humedad resistencia a la compresión paralela

Tabla No.1.3.1Contenido de humedad madera cuangare en el ensayo a la compresión paralela

	Cuangare			
probeta No.	Peso húmedo	peso seco	CH (%)	
1	8,81	7,65	15,16	
2	9,13	7,98	14,41	
3	8,70	7,57	14,93	
4	8,56	7,44	15,05	
5	9,21	8,12	13,42	
6	9,11	7,98	14,16	
7	8,94	7,67	16,56	
8	9,25	8,23	12,39	
9	8,76	7,66	14,36	
10	8,54	7,54	13,26	
PROMEDIO			14,37	

Tabla No.1.3.2 Contenido de humedad madera Pandala en el ensayo a la compresión paralela

	Pandala		
probeta No.	Peso húmedo	peso seco	CH (%)
1	10,24	8,75	17,03
2	10,12	8,97	12,82
3	11,32	9,76	15,98
4	10,95	9,44	16,00
5	11,66	10,11	15,33
6	10,40	9,22	12,80
7	11,50	9,91	16,04
8	11,12	9,88	12,55
9	10,14	8,77	15,62
10	10,29	8,69	18,41
	PROMEDIO		15,26

Tabla No.1.3.3 Contenido de humedad madera Chanul en el ensayo a la compresión paralela

	Chanul		
probeta No.	Peso húmedo	peso seco	CH (%)
1	15,76	13,54	16,40
2	16,12	13,87	16,22
3	15,62	13,12	19,05
4	15,24	12,97	17,50
5	16,33	14,08	15,98
6	16,18	14,10	14,75
7	15,82	13,67	15,73
8	15,55	13,27	17,18
9	15,90	13,77	15,47
10	16,21	14,05	15,37
	PROMEDIO		16,37

Tabla No.1.3.4 Contenido de humedad madera granadillo en el ensayo a la compresión paralela

	Granadille)			
probeta No.	Peso húmedo	peso seco	CH (%)		
1	16,8	14,97	12,22		
2	17,12	15,11	13,30		
3	17,23	15,00	14,87 15,44 12,80		
4	16,97	14,70			
5	17,18	15,23			
6	16,75	14,88	12,57		
7	16,52	14,63	12,92		
8	16,88	15,02	12,38		
9	17,07	14,69	16,20		
10	17,21	17,21 15,18			
	PROMEDIO		13,61		

Humedad resistencia a la cizalladura

Tabla No.1.4.1 Contenido de humedad madera cuangare en el ensayo resistencia a la cizalladura

	Cuangare)	
probeta No.	Peso húmedo	peso seco	CH (%)
1	151,50	132,21	14,59
2	154,10	133,98	15,02
3	152,33	131,65	15,71
4	151,54	133,24	13,73
5	152,67	130,98	16,56
6	152,87	131,87	15,92
7	153,12	132,45	15,61
8	152,47	132,87	14,75
9	153,66	131,59	16,77
10	152,91	132,68	15,25
	PROMEDIO		15,39

Tabla No.1.4.2 Contenido de humedad madera Pandala en el ensayo resistencia a la cizalladura

	Pandala			
probeta No.	Peso húmedo	peso seco	CH (%)	
1	172,80	151,52	14,04	
2	172,60	151,25	14,12	
3	172,54	151,65	13,78	
4	1 171,98	151,88	13,23	
5	171,95	152,12	13,04	
6	172,12	151,65	13,50	
7	172,20	151,22	13,87	
8	172,44	152,23	13,28	
9	172,50	151,08	14,18	
10	172,85	150,97	14,49	
	PROMEDIO		13,75	

Tabla No.1.4.3 Contenido de humedad madera Chanul en el ensayo resistencia a la cizalladura

	Chanul				
probeta No.	Peso húmedo	eso húmedo peso seco			
1	281,63	240,1	17,30		
2	282,21	243,21	16,04		
3	281,93	241,98	16,51		
4	280,55	241,11	16,36		
5	5 281,68	242,32	16,24		
6	282,11	242,68	16,25		
7	280,97	241,82	16,19		
8	281,72	242,66	16,10		
9	282,32	241,33	16,99		
10	281,39	242,55	16,01		
	PROMEDIO		16,40		

Tabla No.1.4.4 Contenido de humedad madera granadillo en el ensayo resistencia a la cizalladura

	Granadille	0	
probeta No.	Peso húmedo	peso seco	CH (%)
1	315,20	278,95	13,00
2	317,40	275,43	15,24
3	316,45	275,65	14,80
4	315,97	275,87	14,54
5	315,76	276,92	14,03
6	316,12	275,65	14,68
7	316,98	276,54	14,62
8	315,52	276,18	14,24
9	315,78	275,77	14,51
10	316,54	275,59	14,86
	PROMEDIO		14,45

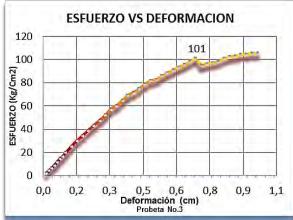
ANEXO B

Registro de resultados y gráficas de esfuerzo-deformación obtenidos de los ensayos de Resistencia a la flexión de las maderas Chanul, Cuangare, Granadillo, Pandala.

convenciones	resistencia máxima a la flexión	

TABLA No 2.1.1.- Resistencia a la flexión de Chanul.

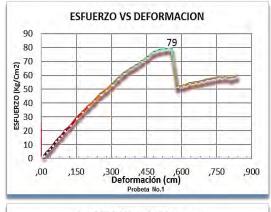
		PROB	ETA 1	PROB	ETA 2	PROB	ETA 3	PRO	BETA 4	PROB	ETA 5
DEFORMA CION 10 ^{-3"}	DEFORMAC IÓN cm	CARGA Kg.	RESIST. A FLEXION Kg/cm²	CARGA Kg.	RESIST. A FLEXION Kg/cm ²	CARGA Kg.	RESIST. A FLEXION Kg/cm ²	CARGA Kg.	RESIST. A FLEXION Kg/cm²	CARGA Kg.	RESIST. A FLEXION Kg/cm ²
5	0,013	5,90	3	5,4	3	4,5	2	5,0	3	3,2	2
10	0,025	11,34	6	9,1	5	8,6	5	10,0	5	5,4	3
15	0,038	10,89	6	14,1	8	12,7	7	15,0	8	9,5	5
20	0,051	20,87	11	16,3	9	17,2	9	19,1	10	13,2	7
25	0,064	25,85	14	20,9	11	22,2	12	24,5	13	17,2	9
30	0,076	29,03	16	26,3	14	27,7	15	28,6	15	22,2	12
35	0,089	34,47	18	29,0	16	31,3	17	33,1	18	26,3	14
40	0,102	39,46	21	35,4	19	37,2	20	38,1	20	30,8	17
50	0,127	48,08	26	44,0	24	47,6	26	47,2	25	39,5	21
60	0,152	57,61	31	53,5	29	56,7	30	56,2	30	49,4	26
70	0,178	67,13	36	61,7	33	64,9	35	65,8	35	59,0	32
80	0,203	74,84	40	68,9	37	73,0	39	74,4	40	67,1	36
90	0,229	84,37	45	76,2	41	80,7	43	82,6	44	76,2	41
100	0,254	92,53	50	83,0	44	88,9	48	90,7	49	85,3	46
110	0,279	101,60	54	94,8	51	97,5	52	99,8	53	93,9	50
120	0,305	110,22	59	104,3	56	107,0	57	108,9	58	101,6	54
130	0,330	117,03	63	107,5	58	112,5	60	116,1	62	110,2	59
140	0,356	125,19	67	118,4	63	121,1	65	123,8	66	117,5	63
150	0,381	133,36	71	125,2	67	129,7	69	131,1	70	124,3	67
160	0,406	139,25	75	130,6	70	134,3	72	137,4	74	128,8	69
170	0,432	145,60	78	137,4	74	139,7	75	144,2	77	137,9	74
180	0,457	152,86	82	143,3	77	147,0	79	151,5	81	143,3	77
190	0,483	157,85	85	149,2	80	152,9	82	156,5	84	148,8	80
200	0,508	161,02	86	155,1	83	154,2	83	161,9	87	155,1	83
210	0,533	166,92	89	161,0	86	160,6	86	166,5	89	160,1	86
220	0,559	170,55	91	166,9	89	165,1	88	171,5	92	165,1	88
230	0,584	177,81	95	171,9	92	170,1	91	176,0	94	169,6	91
240	0,610	182,80	98	174,2	93	174,6	94	180,5	97	173,3	93
250	0,635	185,97	100	182,3	98	178,7	96	184,6	99	177,4	95
260	0,660	189,60	102	186,4	100	183,3	98	188,2	101	182,3	98
270	0,686	191,87	103	188,7	101	189,1	101	191,4	103	187,3	100
280	0,711	193,68	104	190,1	102	177,4	95	183,7	98	190,1	102
290	0,737	195,50	105	191,0	102	180,1	96	184,2	99	196,0	105
300	0,76	184,16	99	192,8	103	181,4	97	184,2	99	186,0	100
310	0,79	184,61	99	182,8	98	183,7	98	185,1	99	186,9	100
320	0,81	185,06	99	183,7	98	188,7	101	186,4	100	189,6	102
330	0,84	185,52	99	185,1	99	191,4	103	188,2	101	190,1	102
340	0,86	186,43	100	186,4	100	192,8	103	189,1	101	191,0	102
350	0,89	186,88	100	187,3	100	195,0	104	194,1	104	191,9	103
360	0,91	187,33	100	187,3	100	195,5	105	196,0	105	192,8	103
370	0,94	187,33	100	188,7	101	196,9	105	196,4	105	192,8	103


TABLA No. 2.1.2.- Resistencia a la flexión de Chanul.

		PROB	ETA 6	PROE	BETA 7	PROB	ETA 8	PROB	ETA 9	PROB	ETA 10
DEFORMA CION 10 ^{-3"}	DEFORMACI ÓN cm	CARGA Kg.	RESIST. A FLEXION Kg/cm ²	CARGA Kg.	RESIST. A FLEXION Kg/cm²	CARGA Kg.	RESIST. A FLEXION Kg/cm ²	CARGA Kg.	RESIST. A FLEXION Kg/cm²	CARGA Kg.	RESIST. A FLEXION Kg/cm ²
5	0,013	5,90	3	3,6	2	4,1	2	3,6	2	5,0	3
10	0,025	11,34	6	6,8	4	9,1	5	7,3	4	7,7	4
15	0,038	15,88	9	11,3	6	13,2	7	11,3	6	12,2	7
20	0,051	19,96	11	13,6	7	17,2	9	14,5	8	15,9	9
25	0,064	24,04	13	17,7	9	22,7	12	17,2	9	20,4	11
30	0,076	29,03	16	23,6	13	27,7	15	25,9	14	23,6	13
35	0,089	32,20	17	27,7	15	33,1	18	29,0	16	28,6	15
40	0,102	39,01	21	33,1	18	38,1	20	34,0	18	31,8	17
50	0,127	46,72	25	37,2	20	47,2	25	44,0	24	40,4	22
60	0,152	54,88	29	47,2	25	57,2	31	50,8	27	48,5	26
70	0,178	63,96	34	59,4	32	65,8	35	62,1	33	57,6	31
80	0,203	73,48	39	69,4	37	76,2	41	70,8	38	65,3	35
90	0,229	79,83	43	78,9	42	85,7	46	78,0	42	73,0	39
100	0,254	89,36	48	86,6	46	95,3	51	88,0	47	81,2	43
110	0,279	100,24	54	96,6	52	103,0	55	93,9	50	88,9	48
120	0,305	111,58	60	107,0	57	111,1	60	102,1	55	95,7	51
130	0,330	118,39	63	112,5	60	117,9	63	114,8	61	102,5	55
140	0,356	126,55	68	121,6	65	127,5	68	121,1	65	108,4	58
150	0,381	136,98	73	129,3	69	135,2	72	128,8	69	113,9	61
160	0,406	142,88	77	138,3	74	141,5	76	134,7	72	119,7	64
170	0,432	148,78	80	142,4	76	147,4	79	141,1	76	124,7	67
180	0,457	154,22	83	149,2	80	154,2	83	143,8	77	131,1	70
190	0,483	159,66	85	155,6	83	159,7	85	151,5	81	141,5	76
200	0,508	164,65	88	159,2	85	165,1	88	156,9	84	148,3	79
210	0,533	168,28	90	168,7	90	167,4	90	165,1	88	154,7	83
220	0,559	173,27	93	172,8	93	171,9	92	171,9	92	162,4	87
230	0,584	180,98	97	178,7	96	177,4	95	177,8	95	168,7	90
240	0,610	184,61	99	184,2	99	181,9	97	182,8	98	178,7	96
250	0,635	190,96	102	188,7	101	186,4	100	187,8	101	182,3	98
260	0,660	193,23	103	193,7	104	189,6	102	190,5	102	186,9	100
270	0,686	194,59	104	195,5	105	192,8	103	193,7	104	190,1	102
280	0,711	195,04	104	186,4	100	196,0	105	194,1	104	191,9	103
290	0,737	182,34	98	188,2	101	196,9	105	197,3	106	180,1	96
300	0,76	184,16	99	191,0	102	189,1	101	185,5	99	181,9	97
310	0,79	184,61	99	191,4	103	189,1	101	184,2	99	182,3	98
320	0,81	184,61	99	192,8	103	191,0	102	184,6	99	182,8	98
330	0,84	185,52	99	193,2	103	192,8	103	186,4	100	184,6	99
340	0,86	186,43	100	194,1	104	193,2	103	188,7	101	186,4	100
350	0,89	188,24	101	194,6	104	193,7	104	190,1	102	184,2	99
360	0,91	188,69	101	195,0	104	194,6	104	190,1	102	184,6	99
370	0,94	190,05	102	195,5	105	194,6	104	190,5	102	185,5	99



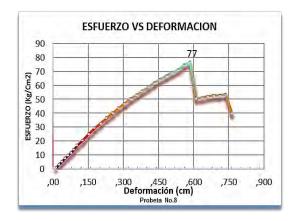


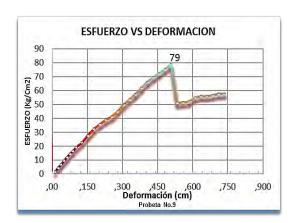

TABLA No. 2.2.1.- Resistencia a la flexión de Cuangare. (Ordinaria).

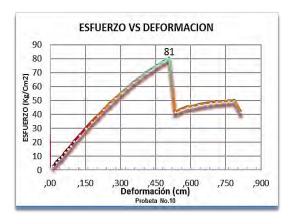
		PROE	BETA 1	PROE	BETA 2	PROE	BETA 3	PROE	BETA 4	PROE	BETA 5
DEFORMA CION 10 ^{-3"}	DEFORMAC IÓN cm	CARGA Kg.	RESIST. A FLEXION Kg/cm²								
5	0,013	4,08	2	3,2	2	3,6	2	4,1	2	2,7	1
10	0,025	8,62	5	8,2	4	9,1	5	8,6	5	5,0	3
15	0,038	12,70	7	13,2	7	13,6	7	11,8	6	7,3	4
20	0,051	17,69	9	16,8	9	18,6	10	15,9	9	9,5	5
25	0,064	23,13	12	23,1	12	23,6	13	20,4	11	12,7	7
30	0,076	27,22	15	28,1	15	27,2	15	24,0	13	16,3	9
35	0,089	31,30	17	30,8	17	32,2	17	27,7	15	19,5	10
40	0,102	37,65	20	36,7	20	37,6	20	31,3	17	22,2	12
50	0,127	44,45	24	44,0	24	43,1	23	38,6	21	27,7	15
60	0,152	54,43	29	54,0	29	55,8	30	45,4	24	34,0	18
70	0,178	62,60	34	61,7	33	65,8	35	51,3	27	39,5	21
80	0,203	70,76	38	71,2	38	73,0	39	56,7	30	45,8	25
90	0,229	78,02	42	78,9	42	79,4	43	63,5	34	52,2	28
100	0,254	86,64	46	87,1	47	88,9	48	70,3	38	58,5	31
110	0,279	92,53	50	93,9	50	94,3	51	76,7	41	64,0	34
120	0,305	99,79	53	102,1	55	106,1	57	80,7	43	70,3	38
130	0,330	107,95	58	109,3	59	112,0	60	86,2	46	75,3	40
140	0,356	115,21	62	116,1	62	118,4	63	91,6	49	80,3	43
150	0,381	120,65	65	122,0	65	125,6	67	96,6	52	85,7	46
160	0,406	125,19	67	126,6	68	128,8	69	102,1	55	92,1	49
170	0,432	131,09	70	128,8	69	134,3	72	108,4	58	98,0	52
180	0,457	136,53	73	134,3	72	140,2	75	112,5	60	103,9	56
190	0,483	143,33	77	141,1	76	144,2	77	119,3	64	109,3	59
200	0,508	146,06	78	117,0	63	148,3	79	126,1	68	121,1	65
210	0,533	147,42	79	118,4	63	126,1	68	131,1	70	127,5	68
220	0,559	147,87	79	119,3	64	127,5	68	137,0	73	134,3	72
230	0,584	96,61	52	121,1	65	128,8	69	147,9	79	143,3	77
240	0,610	97,98	52	123,4	66	129,7	69	112,5	60	149,2	80
250	0,635	101,15	54	124,3	67	131,1	70	114,8	61	122,5	66
260	0,660	102,51	55	124,7	67	133,4	71	116,6	62	125,2	67
270	0,686	103,87	56	125,6	67	134,7	72	118,4	63	127,5	68
280	0,711	106,14	57	127,5	68	137,0	73	121,6	65	129,7	69
290	0,737	107,50	58	127,0	68	137,4	74	125,2	67	131,5	70
300	0,76	109,32	59	126,6	68	139,7	75	128,4	69	134,3	72
310	0,79	109,77	59	111,1	60	117,0	63	119,7	64	135,6	73
320	0,81	108,41	58	0,0	0	117,5	63	0,0	0	138,8	74
330	0,84	111,13	60	0,0	0	0,0	0	0,0	0	96,6	52

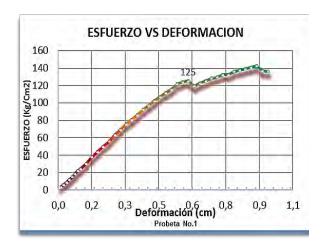
TABLA No. 2.2.2- Resistencia a la flexión de Cuangare. (Ordinaria).

		PROE	BETA 6	PROE	BETA 7	PROE	BETA 8	PROE	BETA 9	PROB	ETA 10
DEFORMA CION 10 ^{-3"}	DEFORMAC IÓN cm	CARGA Kg.	RESIST. A FLEXION Kg/cm²	CARGA Kg.	RESIST. A FLEXION Kg/cm ²	CARGA Kg.	RESIST. A FLEXION Kg/cm ²	CARGA Kg.	RESIST. A FLEXION Kg/cm ²	CARGA Kg.	RESIST. A FLEXION Kg/cm²
5	0,013	6,35	3	5,4	3	2,3	1	2,7	1	5,0	3
10	0,025	9,53	5	9,5	5	6,8	4	7,7	4	10,4	6
15	0,038	14,51	8	11,8	6	10,4	6	12,2	7	15,0	8
20	0,051	18,60	10	15,9	9	15,0	8	17,7	9	18,1	10
25	0,064	23,59	13	20,0	11	18,6	10	21,8	12	24,0	13
30	0,076	27,67	15	24,9	13	22,2	12	26,8	14	28,6	15
35	0,089	31,30	17	29,5	16	26,8	14	30,4	16	32,7	17
40	0,102	35,83	19	34,0	18	32,2	17	35,4	19	38,6	21
50	0,127	45,36	24	43,1	23	39,0	21	41,7	22	46,7	25
60	0,152	54,43	29	50,8	27	47,2	25	50,8	27	56,2	30
70	0,178	62,60	34	56,2	30	55,3	30	59,9	32	64,9	35
80	0,203	70,76	38	65,8	35	61,7	33	66,2	35	73,0	39
90	0,229	76,20	41	72,6	39	68,9	37	72,1	39	81,2	43
100	0,254	87,54	47	80,7	43	75,3	40	76,2	41	89,4	48
110	0,279	94,35	51	86,6	46	82,1	44	83,5	45	96,6	52
120	0,305	101,15	54	93,0	50	88,0	47	92,5	50	103,9	56
130	0,330	107,05	57	98,9	53	94,3	51	99,3	53	111,1	60
140	0,356	113,40	61	104,8	56	99,3	53	106,6	57	117,9	63
150	0,381	119,29	64	111,1	60	104,8	56	115,2	62	123,8	66
160	0,406	125,19	67	116,6	62	110,2	59	122,5	66	130,2	70
170	0,432	128,82	69	122,0	65	115,7	62	129,3	69	135,2	72
180	0,457	132,90	71	127,5	68	120,2	64	134,3	72	140,6	75
190	0,483	137,44	74	132,9	71	124,7	67	140,2	75	146,1	78
200	0,508	142,43	76	138,8	74	129,3	69	147,0	79	150,6	81
210	0,533	145,15	78	140,2	75	132,9	71	94,8	51	78,0	42
220	0,559	148,78	80	142,9	77	139,7	75	95,7	51	81,6	44
230	0,584	150,14	80	88,9	48	143,3	77	96,6	52	84,8	45
240	0,610	131,09	70	89,4	48	94,8	51	102,1	55	85,7	46
250	0,635	131,99	71	92,5	50	95,7	51	104,3	56	88,0	47
260	0,660	133,81	72	96,6	52	97,5	52	104,3	56	89,4	48
270	0,686	136,53	73	102,1	55	98,9	53	105,2	56	90,7	49
280	0,711	137,89	74	108,4	58	98,9	53	107,0	57	91,6	49
290	0,737	139,71	75	113,9	61	100,2	54	107,5	58	92,1	49
300	0,76	142,43	76	80,7	43	74,8	40	0,0	0	93,0	50
310	0,79	144,70	77	0,0	0	0,0	0	0,0	0	93,4	50
320	0,81	104,78	56	0,0	0	0,0	0	0,0	0	78,5	42
330	0,84	0,00	0	0,0	0	0,0	0	0,0	0	0,0	0

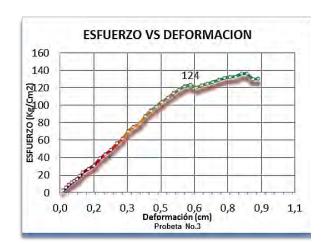


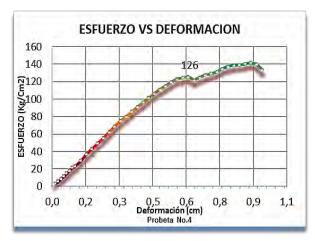


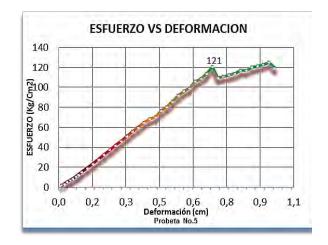



TABLA No. 2.3.1.- Resistencia a la flexión de Granadillo.

		PROBETA 1 PROBETA 2		PROBETA 3		PROBETA 4		PROBETA 5			
DEFORMA CION 10 ^{-3"}	DEFORM ACIÓN cm	CARGA Kg.	RESIST. A FLEXION Kg/cm ²	CARGA Kg.	RESIST. A FLEXION Kg/cm ²	CARGA Kg.	RESIST. A FLEXION Kg/cm ²	CARGA Kg.	RESIST. A FLEXION Kg/cm ²	CARGA Kg.	RESIST. A FLEXION Kg/cm ²
5	0,013	7,26	4	3,6	2	5,9	3	6,8	4	3,6	2
10	0,025	12,25	7	7,3	4	11,3	6	11,3	6	6,4	3
15	0,038	16,33	9	11,3	6	17,2	9	16,8	9	10,0	5
20	0,051	23,13	12	15,0	8	22,2	12	22,7	12	12,7	7
25	0,064	28,12	15	19,1	10	26,3	14	28,6	15	15,9	9
30	0,076	34,47	18	23,6	13	29,9	16	34,0	18	20,4	11
35	0,089	41,73	22	28,1	15	36,7	20	40,8	22	23,6	13
40	0,102	45,81	25	32,7	17	44,0	24	44,0	24	28,6	15
50	0,127	57,15	31	41,7	22	51,7	28	55,8	30	35,8	19
60	0,152	70,76	38	51,7	28	58,5	31	69,4	37	44,0	24
70	0,178	82,10	44	66,2	35	73,9	40	80,7	43	52,2	28
80	0,203	93,44	50	74,4	40	82,6	44	93,0	50	61,2	33
90	0,229	104,78	56	88,0	47	92,1	49	103,9	56	69,9	37
100	0,254	118,39	63	98,9	53	106,1	57	116,6	62	78,5	42
110	0,279	130,18	70	107,0	57	116,1	62	128,8	69	86,6	46
120	0,305	141,97	76	122,0	65	132,0	71	140,6	75	95,7	51
130	0,330	151,50	81	132,4	71	141,5	76	150,1	80	104,3	56
140	0,356	161,48	86	138,8	74	148,3	79	160,6	86	112,0	60
150	0,381	172,82	93	152,0	81	164,2	88	171,0	92	120,7	65
160	0,406	181,89	97	163,7	88	175,5	94	180,1	96	127,9	68
170	0,432	191,41	103	177,4	95	184,6	99	190,1	102	130,6	70
180	0,457	200,03	107	188,7	101	194,6	104	199,1	107	142,9	77
190	0,483	209,10	112	198,2	106	203,7	109	207,7	111	150,6	81
200	0,508	216,36	116	209,1	112	212,7	114	215,5	115	160,6	86
210	0,533	227,70	122	215,9	116	220,9	118	223,6	120	171,9	92
220	0,559	232,24	124	224,1	120	228,2	122	230,4	123	179,6	96
230	0,584	234,05	125	230,9	124	231,3	124	233,1	125	185,5	99
240	0,610	222,71	119	236,3	127	225,0	120	235,4	126	197,8	106
250	0,635	229,97	123	218,2	117	229,5	123	227,7	122	203,2	109
260	0,660	234,05	125	222,7	119	233,1	125	233,6	125	212,7	114
270	0,686	239,95	128	229,5	123	237,2	127	238,6	128	225,9	121
280	0,711	242,22	130	233,1	125	241,8	129	241,8	129	204,6	110
290	0,737	247,66	133	237,2	127	245,4	131	245,4	131	207,3	111
300	0,76	248,11	133	247,7	133	248,1	133	252,6	135	210,0	112
310	0,79	254,46	136	250,4	134	248,6	133	257,2	138	212,7	114
320	0,81	257,64	138	244,5	131	254,9	137	259,5	139	219,1	117
330	0,84	259,91	139	243,6	130	255,4	137	260,4	139	218,6	117
340	0,86	263,54	141	244,9	131	243,1	130	262,6	141	224,5	120
350	0,89	266,71	143	0,0	0	244,0	131	265,4	142	226,3	121
360	0,91	255,82	137	0,0	0	0,0	0	261,7	140	230,0	123
370	0,94	254,46	136	0,0	0	0,0	0	249,5	134	234,1	125
380	0,97	0,00	0	0,0	0	0,0	0	0,0	0	223,2	120




TABLA No. 2.3.2.- Resistencia a la flexión de Granadillo.


		PROE	PROBETA 6 PROBETA 7		PROBETA 8		PROBETA 9		PROBETA 10		
DEFORMA CION 10 ^{-3"}	DEFORMACIÓN cm	CARGA Kg.	RESIST. A FLEXION Kg/cm ²	CARGA Kg.	RESIST. A FLEXION Kg/cm ²	CARGA Kg.	RESIST. A FLEXION Kg/cm²	CARGA Kg.	RESIST. A FLEXION Kg/cm²	CARGA Kg.	RESIST. A FLEXION Kg/cm²
5	0,013	3,63	2	3,6	2	3,6	2	7,7	4	5,4	3
10	0,025	6,80	4	8,2	4	7,7	4	12,7	7	10,9	6
15	0,038	11,34	6	11,8	6	11,3	6	17,7	9	15,9	9
20	0,051	14,06	8	15,9	9	15,4	8	24,0	13	22,7	12
25	0,064	17,69	9	20,9	11	19,5	10	28,6	15	28,1	15
30	0,076	21,32	11	26,3	14	24,0	13	34,5	18	34,0	18
35	0,089	25,85	14	31,3	17	29,5	16	38,1	20	39,0	21
40	0,102	30,39	16	35,4	19	33,1	18	43,1	23	47,2	25
50	0,127	39,01	21	45,8	25	40,8	22	54,0	29	54,9	29
60	0,152	47,63	26	57,2	31	49,4	26	60,8	33	66,7	36
70	0,178	56,25	30	66,7	36	59,0	32	70,3	38	77,6	42
80	0,203	64,86	35	74,8	40	68,5	37	78,9	42	89,8	48
90	0,229	74,39	40	84,8	45	77,6	42	88,5	47	101,6	54
100	0,254	83,01	44	91,6	49	86,6	46	97,1	52	113,4	61
110	0,279	92,99	50	102,5	55	95,3	51	103,9	56	123,8	66
120	0,305	101,15	54	107,5	58	104,3	56	115,2	62	135,2	72
130	0,330	110,68	59	119,3	64	113,4	61	126,1	68	146,1	78
140	0,356	119,29	64	132,0	71	119,7	64	135,2	72	155,6	83
150	0,381	128,37	69	136,5	73	129,7	69	144,7	77	165,6	89
160	0,406	135,62	73	143,3	77	137,4	74	152,4	82	174,6	94
170	0,432	143,33	77	150,6	81	145,1	78	162,4	87	182,8	98
180	0,457	150,14	80	159,2	85	152,0	81	171,9	92	191,9	103
190	0,483	161,48	86	170,5	91	158,8	85	179,6	96	200,5	107
200	0,508	169,64	91	177,8	95	171,9	92	188,2	101	207,3	111
210	0,533	177,35	95	187,3	100	181,9	97	194,6	104	214,5	115
220	0,559	190,96	102	197,3	106	194,1	104	203,7	109	221,8	119
230	0,584	201,85	108	210,5	113	205,9	110	214,1	115	223,2	120
240	0,610	212,28	114	217,3	116	214,1	115	225,4	121	228,2	122
250	0,635	221,81	119	226,3	121	220,9	118	229,5	123	233,6	125
260	0,660	231,33	124	230,9	124	227,7	122	216,8	116	238,1	128
270	0,686	220,90	118	235,4	126	232,7	125	217,3	116	242,7	130
280	0,711	223,62	120	216,8	116	220,4	118	219,1	117	221,8	119
290	0,737	225,43	121	219,5	118	222,7	119	220,0	118	223,6	120
300	0,76	227,70	122	221,8	119	224,5	120	221,4	119	225,0	120
310	0,79	229,97	123	225,0	120	226,3	121	223,6	120	227,2	122
320	0,81	233,15	125	230,4	123	229,5	123	223,6	120	230,4	123
330	0,84	237,68	127	235,4	126	233,1	125	224,5	120	235,4	126
340	0,86	240,86	129	242,2	130	236,3	127	225,0	120	238,6	128
350	0,89	244,49	131	248,6	133	239,5	128	226,3	121	244,0	131
360	0,91	247,66	133	252,2	135	227,7	122	228,2	122	249,0	133
370	0,94	248,11	133	254,5	136	232,2	124	228,6	122	249,0	133
380	0,97	243,12	130	247,7	133	232,7	125	225,9	121	246,3	132

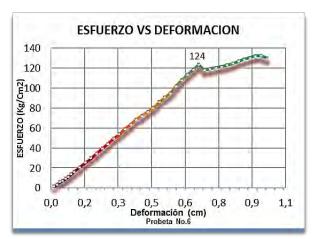
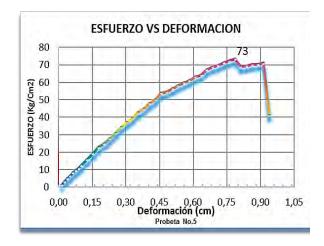


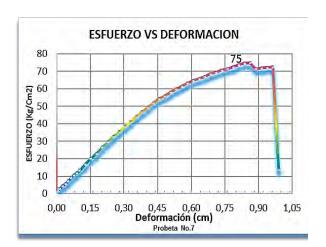


TABLA No. 2.4.1- Resistencia a la flexión de Pandala.

		PROBETA 1		PROBETA 2		PROBETA 3		PROBETA 4		PROBETA 5	
DEFORMA CION 10 ^{-3"}	DEFORM ACIÓN cm	CARGA Kg.	RESIST. A FLEXION Kg/cm²	CARGA Kg.	RESIST. A FLEXION Kg/cm ²						
5	0,013	2,27	1	3,6	2	3,2	2	3,6	2	2,3	1
10	0,025	5,90	3	6,4	3	5,9	3	6,8	4	5,4	3
15	0,038	9,98	5	9,1	5	8,6	5	10,0	5	9,1	5
20	0,051	14,06	8	11,3	6	11,3	6	13,2	7	11,8	6
25	0,064	16,78	9	15,0	8	14,1	8	16,3	9	15,4	8
30	0,076	19,05	10	18,1	10	17,2	9	19,1	10	17,7	9
35	0,089	22,23	12	20,9	11	19,1	10	21,3	11	20,0	11
40	0,102	25,85	14	24,0	13	23,1	12	24,9	13	23,1	12
50	0,127	32,20	17	29,5	16	28,6	15	30,4	16	29,0	16
60	0,152	37,19	20	34,9	19	36,3	19	36,7	20	35,4	19
70	0,178	43,09	23	41,7	22	42,2	23	42,2	23	42,2	23
80	0,203	49,44	26	47,6	26	48,1	26	47,2	25	46,3	25
90	0,229	55,34	30	53,5	29	53,5	29	52,6	28	51,7	28
100	0,254	60,33	32	58,5	31	57,6	31	57,2	31	57,6	31
110	0,279	66,22	35	62,1	33	63,0	34	64,9	35	64,0	34
120	0,305	72,12	39	68,5	37	69,4	37	69,9	37	68,9	37
130	0,330	77,56	42	73,5	39	74,8	40	76,2	41	73,9	40
140	0,356	82,55	44	78,9	42	78,9	42	80,7	43	79,8	43
150	0,381	85,73	46	82,6	44	83,0	44	84,4	45	83,5	45
160	0,406	92,08	49	88,0	47	88,9	48	91,2	49	89,4	48
170	0,432	95,71	51	92,5	50	93,9	50	94,8	51	93,4	50
180	0,457	99,79	53	96,6	52	97,1	52	99,3	53	100,2	54
190	0,483	103,87	56	100,2	54	101,2	54	103,0	55	101,6	54
200	0,508	107,95	58	104,8	56	105,7	57	107,0	57	104,8	56
210	0,533	111,58	60	108,0	58	108,4	58	108,9	58	108,4	58
220	0,559	116,12	62	111,6	60	112,0	60	112,5	60	111,1	60
230	0,584	117,48	63	113,9	61	115,2	62	116,6	62	113,9	61
240	0,610	119,29	64	115,2	62	117,0	63	119,7	64	117,5	63
250	0,635	121,56	65	118,8	64	119,7	64	122,0	65	119,3	64
260	0,660	123,38	66	120,2	64	121,1	65	123,8	66	125,2	67
270	0,686	125,64	67	122,9	66	123,4	66	125,6	67	127,9	68
280	0,711	127,46	68	123,8	66	124,7	67	127,5	68	129,7	69
290	0,737	129,73	69	126,1	68	127,0	68	129,7	69	132,9	71
300	0,76	131,54	70	127,9	68	128,4	69	131,1	70	134,7	72
310	0,79	133,36	71	129,3	69	129,7	69	134,3	72	137,0	73
320	0,81	127,91	68	129,7	69	130,2	70	136,5	73	128,4	69
330	0,84	128,37	69	131,5	70	130,6	70	139,7	75	129,3	69
340	0,86	129,27	69	132,4	71	133,8	72	131,5	70	130,6	70
350	0,89	130,18	70	134,3	72	129,7	69	131,5	70	131,1	70
360	0,91	131,54	70	137,0	73	130,2	70	132,4	71	132,4	71
370	0,94	131,54	70	129,7	69	131,5	70	132,9	71	76,7	41
380	0,97	131,99	71	130,2	70	132,4	71	133,8	72	0,0	0
390	0,99	44,45	24	131,1	70	132,9	71	134,3	72	0,0	0

TABLA No. 2.4.2- Resistencia a la flexión de Pandala.


		PROBETA 6		PROBETA 7		PROBETA 8		PROBETA 9		PROBETA 10	
DEFORMA CION 10 ⁻³ "	DEFORM ACIÓN cm	CARGA Kg.	RESIST. A FLEXION Kg/cm²	CARGA Kg.	RESIST. A FLEXION Kg/cm ²	CARGA Kg.	RESIST. A FLEXION Kg/cm²	CARGA Kg.	RESIST. A FLEXION Kg/cm²	CARGA Kg.	RESIST. A FLEXION Kg/cm²
5	0,013	3,63	2	5,0	3	3,6	2	2,7	1	3,6	2
10	0,025	7,26	4	8,2	4	6,8	4	6,4	3	6,4	3
15	0,038	9,53	5	10,4	6	9,1	5	10,0	5	10,4	6
20	0,051	12,70	7	13,2	7	11,8	6	11,8	6	13,2	7
25	0,064	15,88	9	16,8	9	15,4	8	15,0	8	16,3	9
30	0,076	18,14	10	19,5	10	13,2	7	18,1	10	20,0	11
35	0,089	20,87	11	21,8	12	20,0	11	20,9	11	25,4	14
40	0,102	24,49	13	24,5	13	22,7	12	24,0	13	28,6	15
50	0,127	29,94	16	30,8	17	27,7	15	29,9	16	32,7	17
60	0,152	35,83	19	37,6	20	33,6	18	36,7	20	37,6	20
70	0,178	41,28	22	42,6	23	39,0	21	43,1	23	45,4	24
80	0,203	47,63	26	49,4	26	46,3	25	49,4	26	50,8	27
90	0,229	53,07	28	55,3	30	51,7	28	54,4	29	55,8	30
100	0,254	58,06	31	60,8	33	56,7	30	59,9	32	61,2	33
110	0,279	64,41	34	66,2	35	62,6	34	65,8	35	66,7	36
120	0,305	70,31	38	71,7	38	67,6	36	70,3	38	70,8	38
130	0,330	75,30	40	76,7	41	73,0	39	75,3	40	77,1	41
140	0,356	80,29	43	82,1	44	78,0	42	79,4	43	82,6	44
150	0,381	83,91	45	87,1	47	82,6	44	83,0	44	86,6	46
160	0,406	90,26	48	91,6	49	88,9	48	87,5	47	91,2	49
170	0,432	94,35	51	96,6	52	92,1	49	91,2	49	95,3	51
180	0,457	98,43	53	101,2	54	96,2	51	94,8	51	99,3	53
190	0,483	102,06	55	103,9	56	99,3	53	98,0	52	102,1	55
200	0,508	106,14	57	108,0	58	102,5	55	100,7	54	106,6	57
210	0,533	109,77	59	111,6	60	108,4	58	107,5	58	110,2	59
220	0,559	112,94	60	114,3	61	112,0	60	111,1	60	113,4	61
230	0,584	115,67	62	117,9	63	115,7	62	112,9	60	116,6	62
240	0,610	117,93	63	120,7	65	121,6	65	116,6	62	119,3	64
250	0,635	120,20	64	122,5	66	122,9	66	119,7	64	122,0	65
260	0,660	121,56	65	124,7	67	126,1	68	122,0	65	124,3	67
270	0,686	123,83	66	127,5	68	128,8	69	125,2	67	126,6	68
280	0,711	125,19	67	129,3	69	132,4	71	128,8	69	128,4	69
290	0,737	127,01	68	131,5	70	136,5	73	133,8	72	131,1	70
300	0,76	127,91	68	132,9	71	137,0	73	137,0	73	133,4	71
310	0,79	129,73	69	134,7	72	137,9	74	138,8	74	134,7	72
320	0,81	130,63	70	137,4	74	133,4	71	141,1	76	136,5	73
330	0,84	131,99	71	138,8	74	134,7	72	132,0	71	138,3	74
340	0,86	132,90	71	139,3	75	135,2	72	132,9	71	140,2	75
350	0,89	133,81	72	132,9	71	136,1	73	133,8	72	141,5	76
360	0,91	127,46	68	133,8	72	133,8	72	132,0	71	133,8	72
370	0,94	129,73	69	134,3	72	46,7	25	131,5	70	134,7	72
380	0,97	131,99	71	135,2	72	0,0	0	57,2	31	134,7	72
390	0,99	133,36	71	25,4	14	0,0	0	0,0	0	135,2	72



ANEXO C

Registro de resultados y gráficas de esfuerzo-deformación obtenidos de los ensayos de Resistencia a la compresión paralela a la fibra de las maderas Chanul, Cuangare, Granadillo, Pandala.

CONVENCIONES	RESISTENCIA EN EL LIMITE PROPORCIONAL A LA COMPRESION AXIAL
	RESISTENCIA MAXIMA A LA ROTURA
	MODULO DE ELASTICIDAD DE MADERA EN EL LIMITE PROPORCIONAL

TABLA No. 3.1.1- Resistencia a la compresión paralela al grano de Chanul.

		P	ROBETA 1			PROBETA 2		F	PROBETA 3			
DEFORMA CION 10 ⁻³ "	DEFORMA CIÓN cm	CARGA Kg.	Res. A compresión	Ec //	CARGA Kg.	Res. A compresión	Ec //	CARGA Kg.	Res. A compresión	Ec //		
5	0,013	5,0	1	491	2,3	1	223	2,3	1	223		
10	0,025	13,2	3	647	13,6	3	670	13,6	3	670		
15	0,038	20,0	5	655	15,4	4	506	18,6	5	610		
20	0,051	34,9	9	859	26,3	7	647	29,5	7	725		
25	0,064	57,2	14	1125	51,7	13	1018	73,9	18	1455		
30	0,076	99,8	25	1637	127,9	32	2098	124,7	31	2046		
35	0,089	149,7	37	2105	197,8	49	2781	197,3	49	2774		
40	0,102	225,0	56	2768	348,4	87	592	313,0	78	3851		
50	0,127	504,4	126	4964	615,1	154	6054	600,6	150	5911		
60	0,152	965,2	241	7917	1060,9	265	8702	1083,2	271	8884		
70	0,178	1491,9	373	10488	1597,5	399	11231	1532,2	383	10772		
80	0,203	1839,3	460	11315	1969,0	492	12113	1824,3	456	11223		
90	0,229	2031,2	508	11107	2046,6	512	11191	2038,9	510	11149		
100	0,254	2003,1	501	9858	1975,4	494	9721	1999,4	500	9840		
110	0,279	1975,4	494	8838	1965,0	491	8791	1985,4	496	8882		

TABLA No. 3.1.2- Resistencia a la compresión paralela al grano de Chanul.

		F	PROBETA 4		F	PROBETA 5			PROBETA (ô
DEFORMA CION 10 ^{-3"}	DEFORMA CIÓN cm	CARGA Kg.	Res. A compresión	Ec //	CARGA Kg.	Res. A compresión	Ec //	CARGA Kg.	Res. A compresión	Ec //
5	0,013	2,3	1	223	13,6	3	1339	15,0	4	1473
10	0,025	10,9	3	536	16,8	4	826	16,8	4	826
15	0,038	13,6	3	446	25,4	6	833	22,7	6	744
20	0,051	37,7	9	926	33,1	8	815	45,8	11	1127
25	0,064	85,3	21	1679	52,6	13	1036	73,0	18	1438
30	0,076	183,7	46	3014	91,2	23	1496	123,4	31	2024
35	0,089	289,8	72	4075	152,0	38	2137	187,3	47	2634
40	0,102	433,2	108	5329	220,4	55	2712	316,2	79	3890
50	0,127	743,9	186	7322	505,8	126	4978	765,2	191	7532
60	0,152	1128,1	282	9253	996,1	249	8170	1245,1	311	10212
70	0,178	1540,8	385	10833	1523,2	381	10708	1681,5	420	11821
80	0,203	1872,4	468	11518	1874,2	469	11529	1890,6	473	11630
90	0,229	2051,6	513	11218	2035,3	509	11129	2052,0	513	11221
100	0,254	2012,1	503	9902	1945,5	486	9574	2016,2	504	9922
110	0,279	1936,4	484	8663	1893,3	473	8470	1975,8	494	8840

TABLA No. 3.1.3- Resistencia a la compresión paralela al grano de Chanul.

		F	PROBETA 7		F	PROBETA 8			PROBETA 9)
DEFORMA CION 10 ^{-3"}	DEFORMA CIÓN cm	CARGA Kg.	Res. A compresión	Ec //	CARGA Kg.	Res. A compresión	Ec //	CARGA Kg.	Res. A compresión	Ec //
5	0,013	9,5	2	938	8,2	2	804	13,2	3	1295
10	0,025	15,9	4	781	10,4	3	513	15,4	4	759
15	0,038	18,1	5	595	16,3	4	536	20,0	5	655
20	0,051	24,0	6	592	23,6	6	580	21,8	5	536
25	0,064	34,0	9	670	43,5	11	857	33,6	8	661
30	0,076	54,9	14	900	74,4	19	1220	81,2	20	1332
35	0,089	84,4	21	1186	96,2	24	1352	140,6	35	1977
40	0,102	189,6	47	2333	112,0	28	1378	298,9	<i>7</i> 5	3678
50	0,127	466,7	117	4594	426,4	107	4197	762,0	191	7500
60	0,152	953,0	238	7817	893,1	223	7325	1215,6	304	9971
70	0,178	1472,4	368	10351	1422,9	356	10004	1631,1	408	11467
80	0,203	1797,1	449	11055	1803,9	451	11097	1882,9	471	11583
90	0,229	2043,4	511	11174	2048,9	512	11203	2042,0	511	11166
100	0,254	1935,9	484	9527	2009,0	502	9887	1911,9	478	9409
110	0,279	1925,0	481	8612	1945,0	486	8702	1836,0	459	8214

TABLA No. 3.1.4- Resistencia a la compresión paralela al grano de Chanul.

		Р	ROBETA 10)
DEFORMACION 10 ^{-3"}	DEFORMACIÓN cm	CARGA Kg.	Res. A compresión	Ec //
5	0,013	4,1	1	402
10	0,025	17,7	4	871
15	0,038	31,8	8	1042
20	0,051	57,2	14	1406
25	0,064	88,9	22	1750
30	0,076	145,2	36	2381
35	0,089	244,9	61	3444
40	0,102	386,5	97	4755
50	0,127	790,2	198	7777
60	0,152	1234,2	309	10123
70	0,178	1647,0	412	11579
80	0,203	1903,3	476	11708
90	0,229	2053,9	513	11231
100	0,254	2015,3	504	9918
110	0,279	1984,9	496	8880

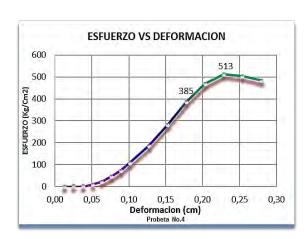


TABLA No. 3.2.1- Resistencia a la compresión paralela al grano de Cuangare, (Ordinaria)

		F	PROBETA 1		Р	ROBETA 2			PROBETA 3	3
DEFORMA CION 10 ^{-3"}	DEFORMA CIÓN cm	CARGA Kg.	Res. A compresión	Ec //	CARGA Kg.	Res. A compresión	Ec //	CARGA Kg.	Res. A compresión	Ec //
5	0,013	2,3	1	223	1,4	0	134	12,2	3	1205
10	0,025	3,6	1	179	1,8	0	89	44,9	11	2210
15	0,038	4,5	1	149	3,2	1	104	101,2	25	3319
20	0,051	8,6	2	212	12,7	3	313	159,7	40	3929
25	0,064	29,5	7	580	30,4	8	598	227,7	<i>57</i>	4482
30	0,076	76,7	19	1258	54,9	14	900	301,2	<i>7</i> 5	4941
35	0,089	154,7	39	2175	113,4	28	1594	376,9	94	5300
40	0,102	274,9	69	3382	274,9	69	3382	502,6	126	6183
50	0,127	539,3	135	5308	603,7	151	5942	788,3	197	7759
60	0,152	951,6	238	7805	1008,8	252	8274	1203,4	301	9870
70	0,178	1388,4	347	9761	1421,6	355	9994	1564,4	391	10999
80	0,203	1685,1	421	10366	1675,4	419	10306	1726,4	432	10620
90	0,229	1784,4	446	9757	1776,3	444	9713	1795,8	449	9819
100	0,254	1652,4	413	8132	1713,2	428	8431	1764,0	441	8681
110	0,279	1601,2	400	7163	1672,8	418	7484	1718,7	430	7689

TABLA No. 3.2.2- Resistencia a la compresión paralela al grano de Cuangare, (Ordinaria)

		I	PROBETA 4	4	Р	ROBETA 5		ı	PROBETA 6	
DEFORMA CION 10 ^{-3"}	DEFORMA CIÓN cm	CARGA Kg.	Res. A compresión	Ec //	CARGA Kg.	Res. A compresión	Ec //	CARGA Kg.	Res. A compresión	Ec //
5	0,013	1,4	0	134	1,36	0	134	1,4	0	134
10	0,025	1,8	0	89	1,81	0	89	1,4	0	67
15	0,038	2,3	1	74	3,18	1	104	3,2	1	104
20	0,051	6,8	2	167	12,70	3	313	8,6	2	212
25	0,064	21,3	5	420	30,39	8	598	16,3	4	321
30	0,076	66,7	17	1094	54,88	14	900	36,7	9	603
35	0,089	140,2	35	1971	113,40	28	1594	59,4	15	835
40	0,102	266,7	67	3281	274,88	69	3382	88,9	22	1094
50	0,127	527,1	132	5188	624,50	156	6147	258,5	65	2545
60	0,152	932,6	233	7649	1079,09	270	8851	786,5	197	6451
70	0,178	1365,8	341	9602	1487,32	372	10456	1345,4	336	9458
80	0,203	1645,6	411	10123	1698,69	425	10450	1623,4	406	9986
90	0,229	1774,0	443	9700	1756,75	439	9606	1758,6	440	9616
100	0,254	1586,7	397	7808	1701,86	425	8375	1687,8	422	8306
110	0,279	1564,4	391	6999	1659,69	415	7425	1635,6	409	7318

TABLA No. 3.2.3- Resistencia a la compresión paralela al grano de Cuangare, (Ordinaria)

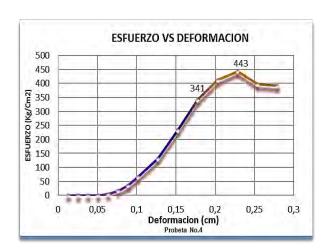

		F	ROBETA 7	,	Р	ROBETA 8			PROBETA 9	
DEFORMA CION 10 ^{-3"}	DEFORMA CIÓN cm	CARGA Kg.	Res. A compresión	Ec //	CARGA Kg.	Res. A compresión	Ec //	CARGA Kg.	Res. A compresión	Ec //
5	0,013	2,3	1	223	2,27	1	223	2,7	1	268
10	0,025	4,5	1	223	13,61	3	670	14,5	4	714
15	0,038	12,2	3	402	25,40	6	833	38,4	10	1260
20	0,051	19,5	5	480	47,17	12	1161	64,8	16	1594
25	0,064	105,2	26	2072	77,11	19	1518	103,9	26	2045
30	0,076	166,5	42	2731	123,83	31	2031	166,5	42	2731
35	0,089	279,0	70	3922	190,05	48	2672	236,8	59	3329
40	0,102	416,4	104	5123	317,97	79	3912	415,5	104	5112
50	0,127	738,9	185	7273	689,46	172	6786	716,2	179	7049
60	0,152	1103,6	276	9052	1104,49	276	9059	1092,7	273	8962
70	0,178	1420,6	355	9988	1456,48	364	10240	1391,6	348	9784
80	0,203	1598,9	400	9836	1648,80	412	10143	1603,0	401	9861
90	0,229	1736,3	434	9494	1780,79	445	9737	1764,0	441	9646
100	0,254	1586,7	397	7808	1685,54	421	8295	1697,8	424	8355
110	0,279	1523,6	381	6816	1627,48	407	7281	1652,4	413	7393

TABLA No. 3.2.4- Resistencia a la compresión paralela al grano de Cuangare, (Ordinaria)

		Р	ROBETA 10)
DEFORMA CION 10 ^{-3"}	DEFORMA CIÓN cm	CARGA Kg.	Res. A compresión	Ec //
5	0,013	0,9	0	89
10	0,025	8,2	2	402
15	0,038	17,7	4	580
20	0,051	50,8	13	1250
25	0,064	106,1	27	2089
30	0,076	185,1	46	3036
35	0,089	278,5	70	3916
40	0,102	421,4	105	5184
50	0,127	691,3	173	6804
60	0,152	1009,2	252	8278
70	0,178	1376,7	344	9678
80	0,203	1586,7	397	9760
90	0,229	1748,6	437	9561
100	0,254	1675,6	419	8246
110	0,279	1643,8	411	7354

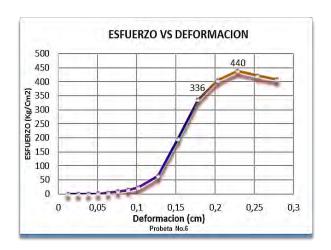


TABLA No. 3.3.1- Resistencia a la compresión paralela al grano de Granadillo.

		F	ROBETA 1		P	ROBETA 2		F	PROBETA 3	}
DEFORMA CION 10 ^{-3"}	DEFORMA CIÓN cm	CARGA Kg.	Res. A compresión	Ec //	CARGA Kg.	Res. A compresión	Ec //	CARGA Kg.	Res. A compresión	Ec //
5	0,013	1,4	0	134	1,4	0	134	1,4	0	134
10	0,025	2,3	1	112	13,6	3	670	28,1	7	1384
15	0,038	8,2	2	268	56,7	14	1860	72,6	18	2381
20	0,051	15,9	4	391	100,2	25	2467	114,8	29	2824
25	0,064	97,5	24	1920	167,8	42	3303	174,6	44	3438
30	0,076	222,7	56	3653	244,9	61	4018	258,6	65	4241
35	0,089	367,0	92	5160	392,4	98	5517	406,0	101	5708
40	0,102	562,9	141	6926	580,6	145	592	590,1	148	7260
50	0,127	1045,6	261	10291	1084,1	271	10670	1104,5	276	10871
60	0,152	1583,5	396	12988	1644,3	411	13486	1671,5	418	13710
70	0,178	2124,6	531	14937	2187,8	547	15381	2243,0	561	15769
80	0,203	2506,5	627	15419	2601,8	650	16005	2553,7	638	15709
90	0,229	2876,7	719	15730	2895,7	724	15834	2899,4	725	15854
100	0,254	2795,0	699	13755	2825,9	706	13907	2851,7	713	14034
110	0,279	2728,3	682	12206	2819,1	705	12612	2822,7	706	12628

TABLA No. 2.3.2- Resistencia a la compresión paralela al grano de Granadillo.

		Р	ROBETA 4		Р	ROBETA 5		F	PROBETA 6	
DEFORMA CION 10 ^{-3"}	DEFORMA CIÓN cm	CARGA Kg.	Res. A compresión	Ec //	CARGA Kg.	Res. A compresión	Ec //	CARGA Kg.	Res. A compresión	Ec //
5	0,013	1,4	0	134	8,2	2	804	8,2	2	804
10	0,025	5,4	1	268	46,3	12	2277	39,5	10	1942
15	0,038	23,6	6	774	88,5	22	2902	63,5	16	2083
20	0,051	73,9	18	1819	127,9	32	3147	112,0	28	2757
25	0,064	132,0	33	2598	234,1	59	4607	203,2	51	4000
30	0,076	258,1	65	4234	337,9	84	5543	330,7	83	5424
35	0,089	397,8	99	5593	486,3	122	6837	472,2	118	6639
40	0,102	561,1	140	6903	752,1	188	9253	735,7	184	9052
50	0,127	1088,2	272	10710	1342,2	336	13210	1298,2	325	12777
60	0,152	1666,5	417	13669	1935,9	484	15879	1896,9	474	15559
70	0,178	2285,2	571	16066	2336,0	584	16423	2401,8	600	16885
80	0,203	2745,1	686	16887	2702,0	676	16622	2756,0	689	16954
90	0,229	2885,7	721	15779	2889,4	722	15799	2881,2	720	15755
100	0,254	2844,9	711	14001	2815,0	704	13853	2795,9	699	13759
110	0,279	2767,8	692	12383	2782,8	696	12450	2802,3	701	12537



TABLA No. 3.3.3- Resistencia a la compresión paralela al grano de Granadillo.

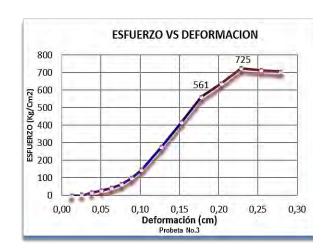

		P	ROBETA 7	7	P	ROBETA 8		F	PROBETA 9)
DEFORMA CION 10 ^{-3"}	DEFORMA CIÓN cm	CARGA Kg.	Res. A compresión	Ec //	CARGA Kg.	Res. A compresión	Ec //	CARGA Kg.	Res. A compresión	Ec //
5	0,013	19,5	5	1920	1,4	0	134	14,5	4	1429
10	0,025	56,7	14	2790	9,5	2	469	64,4	16	3170
15	0,038	98,4	25	3229	25,4	6	833	177,8	44	5834
20	0,051	182,3	46	4487	84,8	21	2087	237,2	59	5837
25	0,064	319,8	80	6295	134,7	34	2652	382,8	96	7536
30	0,076	489,0	122	8021	209,6	52	3438	518,0	129	8497
35	0,089	666,3	167	9369	398,0	100	5596	660,0	165	9280
40	0,102	900,4	225	11077	675,0	169	8305	865,0	216	10642
50	0,127	1359,9	340	13384	1245,0	311	12254	1354,9	339	13335
60	0,152	1813,0	453	14870	1756,0	439	14403	1851,1	463	15183
70	0,178	2219,0	<i>555</i>	15600	2175,0	544	15291	2345,1	586	16487
80	0,203	2580,0	645	15871	2576,0	644	15846	2747,9	687	16904
90	0,229	2874,9	719	15720	2889,8	722	15802	2895,7	724	15834
100	0,254	2849,9	712	14025	2834,0	709	13947	2814,1	704	13849
110	0,279	2798,2	700	12519	2821,8	705	12624	2769,2	692	12389

TABLA No. 3.3.4- Resistencia a la compresión paralela al grano de Granadillo.

		Р	ROBETA 1	0
DEFORMA CION 10 ^{-3"}	DEFORMA CIÓN cm	CARGA Kg.	Res. A compresión	Ec //
5	0,013	2,3	1	223
10	0,025	14,1	4	692
15	0,038	24,5	6	804
20	0,051	40,8	10	1005
25	0,064	65,3	16	1286
30	0,076	93,9	23	1540
35	0,089	132,4	33	1862
40	0,102	235,9	59	2902
50	0,127	655,9	164	6456
60	0,152	1250,1	313	10253
70	0,178	1984,9	496	13955
80	0,203	2510,2	628	15441
90	0,229	2875,8	719	15725
100	0,254	2856,7	714	14059
110	0,279	2785,0	696	12460



TABLA No. 3.4.1- Resistencia a la compresión paralela al grano de Pandala.

		Р	ROBETA 1		P	ROBETA 2		P	ROBETA 3	
DEFORMA CIÓN 10 ^{-3"}	DEFORMA CIÓN cm	CARGA Kg.	Res. A compresión	Ec //	CARGA Kg.	Res. A compresión	Ec //	CARGA Kg.	Res. A compresión	Ec //
5	0,013	11,3	3	1116	6,5	2	640	8,6	2	848
10	0,025	25,4	6	1250	15,0	4	737	21,3	5	1049
15	0,038	46,7	12	1533	25,4	6	833	44,9	11	1473
20	0,051	91,2	23	2243	42,2	11	1038	70,8	18	1741
25	0,064	135,6	34	2670	68,0	17	1339	126,1	32	2482
30	0,076	212,3	53	3482	120,2	30	1972	219,1	55	3594
35	0,089	320,7	80	4509	207,7	52	2921	314,8	79	4426
40	0,102	449,5	112	5530	375,1	94	4615	447,7	112	5508
50	0,127	789,0	197	7766	769,3	192	7572	776,6	194	7643
60	0,152	977,0	244	8014	984,7	246	8077	959,8	240	7872
70	0,178	1110,0	278	7804	1091,3	273	7673	1107,7	277	7787
80	0,203	1127,0	282	6933	1123,5	281	6912	1151,2	288	7082
90	0,229	1164,0	291	6365	1167,5	292	6384	1163,9	291	6364
100	0,254	1109,0	277	5458	1094,1	274	5384	1161,6	290	5717
110	0,279	1089,0	272	4872	1096,3	274	4905	1107,7	277	4956

TABLA No. 3.4.2- Resistencia a la compresión paralela al grano de Pandala.

		P	ROBETA 4		F	PROBETA 5		Р	ROBETA 6	
DEFORMA CIÓN 10 ^{-3"}	DEFORM ACIÓN cm	CARGA Kg.	Res. A compresión	Ec //	CARGA Kg.	Res. A compresión	Ec //	CARGA Kg.	Res. A compresión	Ec //
5	0,013	6,8	2	670	11,3	3	1116	10,9	3	1071
10	0,025	16,3	4	804	16,3	4	804	15,0	4	737
15	0,038	24,5	6	804	21,3	5	699	21,8	5	714
20	0,051	45,4	11	1116	34,0	9	837	38,1	10	938
25	0,064	87,1	22	1714	60,8	15	1196	60,3	15	1188
30	0,076	181,9	45	2984	130,6	33	2143	149,7	37	2455
35	0,089	311,2	78	4375	247,7	62	3482	267,2	67	3756
40	0,102	481,3	120	5921	443,2	111	5452	464,0	116	5709
50	0,127	811,5	203	7987	815,6	204	8027	776,1	194	7639
60	0,152	1012,4	253	8304	1023,8	256	8397	985,2	246	8081
70	0,178	1082,7	271	7612	1137,2	284	7995	1101,8	275	7746
80	0,203	1104,9	276	6797	1145,8	286	7048	1118,1	280	6878
90	0,229	1144,9	286	6260	1163,9	291	6364	1139,0	285	6228
100	0,254	1098,1	275	5404	1139,9	285	5610	1092,7	273	5377
110	0,279	1112,0	278	4975	1129,9	282	5055	1095,0	274	4899

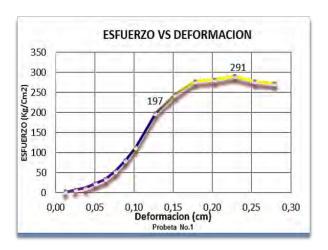


TABLA No. 3.4.3- Resistencia a la compresión paralela al grano de Pandala.

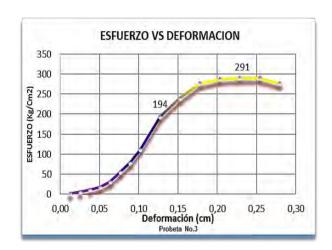
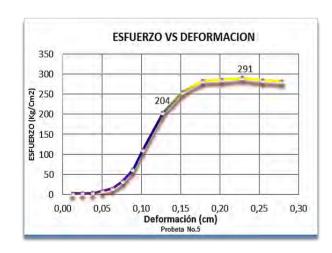
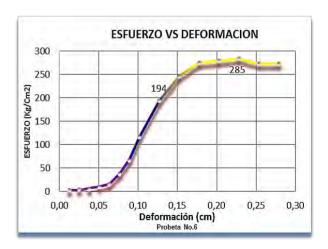
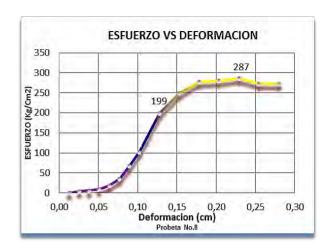

		PI	ROBETA 7		P	ROBETA 8		PI	ROBETA 9	
DEFORMA CIÓN 10 ^{-3"}	DEFORM ACIÓN cm	CARGA Kg.	Res. A compresión	Ec //	CARGA Kg.	Res. A compresión	Ec //	CARGA Kg.	Res. A compresión	Ec //
5	0,013	2,7	1	268	2,7	1	268	5,4	1	536
10	0,025	13,2	3	647	15,4	4	759	15,9	4	781
15	0,038	26,3	7	863	24,0	6	789	29,0	7	952
20	0,051	42,2	11	1038	37,2	9	915	51,3	13	1261
25	0,064	78,0	20	1536	71,2	18	1402	99,3	25	1955
30	0,076	132,0	33	2165	141,5	35	2322	196,4	49	3222
35	0,089	242,2	61	3406	268,5	67	3776	338,4	85	4758
40	0,102	396,0	99	4872	408,2	102	5023	513,9	128	6323
50	0,127	764,8	191	7527	796,0	199	7835	845,5	211	8322
60	0,152	965,2	241	7917	995,2	249	8163	1007,0	252	8259
70	0,178	1097,2	274	7714	1109,5	277	7800	1067,8	267	7507
80	0,203	1136,2	284	6990	1119,0	280	6884	1111,3	278	6836
90	0,229	1153,0	288	6305	1147,0	287	6272	1142,0	286	6245
100	0,254	1113,1	278	5478	1091,0	273	5369	1135,3	284	5587
110	0,279	1101,8	275	4929	1089,0	272	4872	1124,4	281	5031

TABLA No. 3.4.4- Resistencia a la compresión paralela al grano de Pandala.


		PI	ROBETA 10	
DEFORMA CIÓN 10 ^{-3"}	DEFORMA CIÓN cm	CARGA Kg.	Res. A compresión	Ec //
5	0,013	4,5	1	447
10	0,025	16,8	4	826
15	0,038	25,9	6	848
20	0,051	38,6	10	949
25	0,064	73,0	18	1438
30	0,076	146,5	37	2403
35	0,089	274,4	69	3859
40	0,102	413,7	103	5089
50	0,127	795,6	199	7831
60	0,152	987,5	247	8099
70	0,178	1087,7	272	7647
80	0,203	1116,3	279	6867
90	0,229	1161,2	290	6349
100	0,254	1090,9	273	5369
110	0,279	1089,1	272	4872

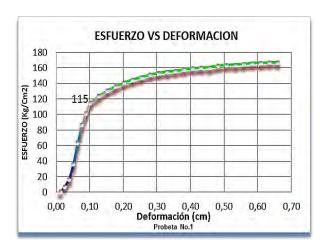




ANEXO D

Registro de resultados y gráficas de esfuerzo-deformación obtenidos de los ensayos de Resistencia a la compresión perpendicular a la fibra de las maderas Chanul, Cuangare, Granadillo, Pandala.

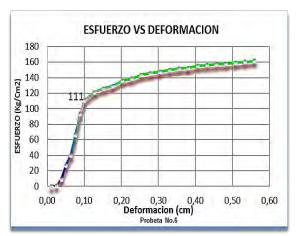
CONVENCIONES	RESISTENCIA EN EL LIMITE PROPORCIONAL A LA COMPRESION PERPENDICULAR
CONVENCIONES	RESISTENCIA A UNA DEFORMACION DEL 1%

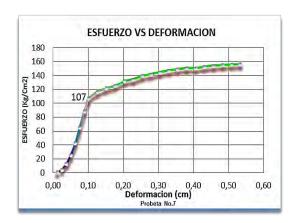

TABLA No. 4.1.1- Resistencia a la compresión perpendicular al grano de Chanul.

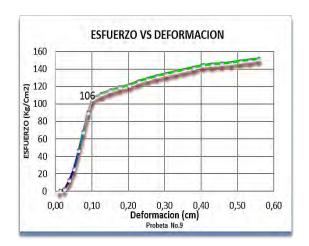

		PROB	ETA 1	PROE	BETA 2	PROE	BETA 3	PROE	BETA 4	PROBETA 5	
DEFORMA CION 10 ^{-3"}	DEFORMAC IÓN cm	CARGA Kg.	RESIST. A FLEXION Kg/cm ²	CARGA Kg.	RESIST. A FLEXION Kg/cm²	CARGA Kg.	RESIST. A FLEXION Kg/cm²	CARGA Kg.	RESIST. A FLEXION Kg/cm ²	CARGA Kg.	RESIST. A FLEXION Kg/cm ²
5	0,013	17,2	1	17,2	1	16,8	1	11,3	0	4,5	0
10	0,025	186,0	7	107,0	4	89,8	4	159,7	6	25,9	1
15	0,038	416,8	17	397,3	16	262,2	10	447,7	18	209,6	8
20	0,051	903,1	36	796,5	32	602,8	24	699,0	28	711,7	28
25	0,064	1593,0	64	1319,9	53	1030,1	41	1418,8	57	1303,2	52
30	0,076	2162,3	86	1774,4	71	1618,4	65	1978,6	79	1698,7	68
35	0,089	2541,9	102	2186,3	87	2219,0	89	2352,3	94	2248,0	90
40	0,102	2884,4	115	2710,7	108	2743,8	110	2805,5	112	2845,4	114
50	0,127	3099,8	124	2953,8	118	2961,0	118	3014,1	121	3076,7	123
60	0,152	3274,5	131	3118,4	125	3160,6	126	3169,2	127	3176,0	127
70	0,178	3402,4	136	3259,5	130	3271,7	131	3342,1	134	3310,3	132
80	0,203	3523,0	141	3395,6	136	3406,9	136	3412,4	136	3448,2	138
90	0,229	3620,6	145	3474,0	139	3498,1	140	3505,8	140	3535,3	141
100	0,254	3697,7	148	3580,2	143	3607,4	144	3621,9	145	3634,6	145
110	0,279	3776,6	151	3649,6	146	3703,6	148	3711,7	148	3717,6	149
120	0,305	3827,4	153	3690,4	148	3741,7	150	3749,8	150	3776,6	151
130	0,330	3874,6	155	3728,1	149	3776,6	151	3805,2	152	3823,3	153
140	0,356	3908,1	156	3808,8	152	3835,6	153	3858,2	154	3883,2	155
150	0,381	3948,5	158	3844,6	154	3884,5	155	3926,7	157	3911,3	156
160	0,406	3981,6	159	3887,7	156	3907,2	156	3957,1	158	3949,0	158
170	0,432	4005,2	160	3933,5	157	3951,7	158	3993,0	160	3971,6	159
180	0,457	4012,0	160	3947,6	158	3962,1	158	4004,7	160	3988,9	160
190	0,483	4063,7	163	3958,9	158	3973,9	159	4030,6	161	4005,7	160
200	0,508	4090,5	164	3968,0	159	3988,0	160	4042,8	162	4018,4	161
210	0,533	4095,9	164	3988,9	160	4002,0	160	4053,3	162	4032,9	161
220	0,559	4119,5	165	3995,7	160	4018,4	161	0,0	0	4047,4	162
230	0,584	4147,2	166	4007,5	160	4035,6	161	0,0	0	4071,4	163
240	0,610	4148,5	166	4026,1	161	4086,8	163	0,0	0	0,0	0
250	0,635	4180,3	167	0,0	0	0,0	0	0,0	0	0,0	0
260	0,660	4175,3	167	0,0	0	0,0	0	0,0	0	0,0	0

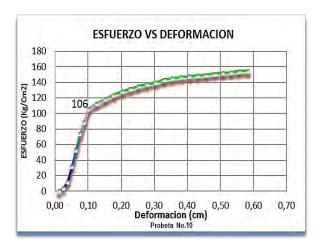
TABLA No. 4.1.2- Resistencia a la compresión perpendicular al grano de Chanul.

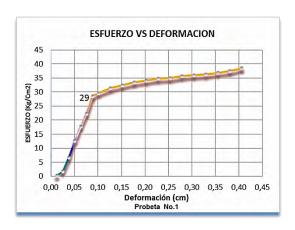

		PROB	SETA 6	PROE	BETA 7	PROE	BETA 8	PROE	BETA 9	PROB	ETA 10
DEFORMA CION 10 ^{-3"}	DEFORMAC IÓN cm	CARGA Kg.	RESIST. A FLEXION Kg/cm²								
5	0,013	5,0	0	15,9	1	17,2	1	14,1	1	8,6	0
10	0,025	27,7	1	107,0	4	84,4	3	61,7	2	91,2	4
15	0,038	232,2	9	319,8	13	289,8	12	320,7	13	303,0	12
20	0,051	664,5	27	634,1	25	633,2	25	637,7	26	788,3	32
25	0,064	987,0	39	1069,6	43	1304,1	52	1174,3	47	1324,5	53
30	0,076	1653,8	66	1634,7	65	1773,1	71	1703,7	68	1841,1	74
35	0,089	2332,4	93	2205,8	88	2432,1	97	2253,0	90	2211,7	88
40	0,102	2780,5	111	2682,1	107	2753,7	110	2658,9	106	2650,3	106
50	0,127	3039,5	122	2915,2	117	2897,1	116	2792,3	112	2818,2	113
60	0,152	3150,6	126	3041,3	122	2970,1	119	2898,0	116	2962,8	119
70	0,178	3245,4	130	3131,1	125	3064,5	123	2977,4	119	3089,9	124
80	0,203	3410,1	136	3299,9	132	3150,2	126	3044,5	122	3200,5	128
90	0,229	3468,1	139	3357,9	134	3289,9	132	3150,2	126	3282,2	131
100	0,254	3588,8	144	3485,8	139	3349,8	134	3233,6	129	3382,0	135
110	0,279	3639,2	146	3540,3	142	3401,0	136	3304,4	132	3442,3	138
120	0,305	3690,4	148	3609,7	144	3449,6	138	3360,2	134	3493,6	140
130	0,330	3748,9	150	3679,5	147	3511,7	140	3419,6	137	3579,7	143
140	0,356	3795,2	152	3724,0	149	3554,3	142	3481,3	139	3630,5	145
150	0,381	3821,9	153	3763,0	151	3621,9	145	3539,4	142	3664,6	147
160	0,406	3888,2	156	3753,9	150	3649,6	146	3614,2	145	3690,4	148
170	0,432	3910,4	156	3811,5	152	3674,5	147	3634,2	145	3713,5	149
180	0,457	3928,5	157	3844,6	154	3694,9	148	3658,2	146	3739,8	150
190	0,483	3956,7	158	3872,8	155	3709,9	148	3682,7	147	3767,5	151
200	0,508	3979,3	159	3891,3	156	3727,1	149	3724,0	149	3796,1	152
210	0,533	4012,5	160	3911,3	156	3737,1	149	3750,7	150	3816,1	153
220	0,559	4046,9	162	0,0	0	0,0	0	3795,6	152	3852,3	154
230	0,584	0,0	0	0,0	0	0,0	0	0,0	0	3868,7	155
240	0,610	0,0	0	0,0	0	0,0	0	0,0	0	0,0	0
250	0,635	0,0	0	0,0	0	0,0	0	0,0	0	0,0	0
260	0,660	0,0	0	0,0	0	0,0	0	0,0	0	0,0	0

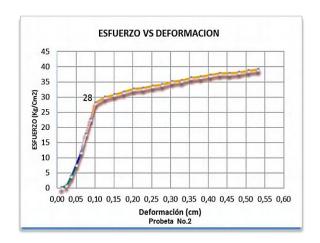


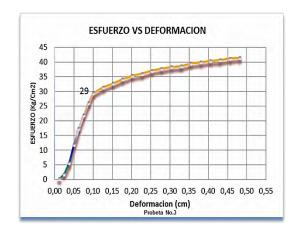


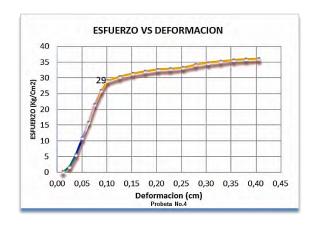




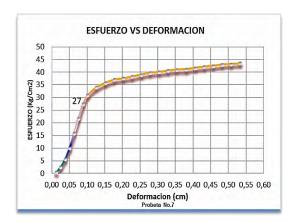

TABLA No. 4.2.1- Resistencia a la compresión perpendicular al grano de Cuangare.

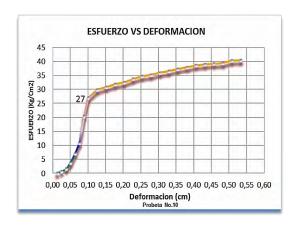

		PROB	ETA 1	PROE	BETA 2	PROE	BETA 3	PROE	BETA 4	PROBETA 5	
DEFORMA CION 10 ^{-3"}	DEFORMAC IÓN cm	CARGA Kg.	RESIST. A FLEXION Kg/cm²	CARGA Kg.	RESIST. A FLEXION Kg/cm²	CARGA Kg.	RESIST. A FLEXION Kg/cm²	CARGA Kg.	RESIST. A FLEXION Kg/cm ²	CARGA Kg.	RESIST. A FLEXION Kg/cm²
5	0,013	8,16	0	5,0	0	5,9	0	5,9	0	5,0	0
10	0,025	42,64	2	22,7	1	43,5	2	43,5	2	19,1	1
15	0,038	167,37	7	98,4	4	139,7	6	139,7	6	52,2	2
20	0,051	313,88	13	191,9	8	294,4	12	273,1	11	121,1	5
25	0,064	442,25	18	293,9	12	433,2	17	396,9	16	241,3	10
30	0,076	558,37	22	442,7	18	545,7	22	538,0	22	398,7	16
35	0,089	713,95	29	563,8	23	651,4	26	646,8	26	597,8	24
40	0,102	740,26	30	701,3	28	736,2	29	726,2	29	701,3	28
50	0,127	784,26	31	748,0	30	783,8	31	759,3	30	747,5	30
60	0,152	810,11	32	767,9	31	816,5	33	783,8	31	775,2	31
70	0,178	835,97	33	791,5	32	853,2	34	800,1	32	792,0	32
80	0,203	852,30	34	814,6	33	882,7	35	816,0	33	817,8	33
90	0,229	869,53	35	822,4	33	899,9	36	821,0	33	835,1	33
100	0,254	874,07	35	838,7	34	926,2	37	831,4	33	854,1	34
110	0,279	892,67	36	851,8	34	942,6	38	854,1	34	875,9	35
120	0,305	900,83	36	875,9	35	957,5	38	869,1	35	895,4	36
130	0,330	908,99	36	884,5	35	964,3	39	881,3	35	910,4	36
140	0,356	921,24	37	906,3	36	987,0	39	891,8	36	925,8	37
150	0,381	937,57	38	915,8	37	998,4	40	897,7	36	938,9	38
160	0,406	962,52	39	929,9	37	1010,6	40	902,2	36	956,2	38
170	0,432	0,00	0	943,5	38	1016,0	41	0,0	0	968,4	39
180	0,457	0,00	0	942,6	38	1029,6	41	0,0	0	982,5	39
190	0,483	0,00	0	951,6	38	1036,9	41	0,0	0	987,9	40
200	0,508	0,00	0	966,1	39	0,0	0	0,0	0	999,7	40
210	0,533	0,00	0	977,0	39	0,0	0	0,0	0	1002,4	40
220	0,559	0,00	0	0,0	0	0,0	0	0,0	0	0,0	0

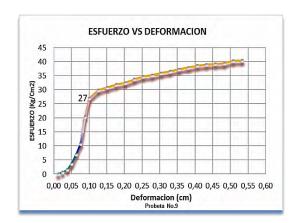


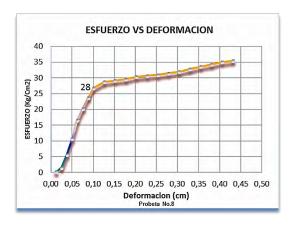

TABLA No. 4.2.2- Resistencia a la compresión perpendicular al grano de Cuangare.

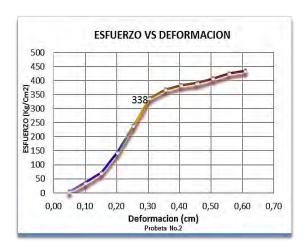
		PROB	ETA 6	PROE	BETA 7	PROE	BETA 8	PROE	BETA 9	PROB	ETA 10
DEFORMA CION 10 ^{-3"}	DEFORMAC IÓN cm	CARGA Kg.	RESIST. A FLEXION Kg/cm²								
5	0,013	4,08	0	11,3	0	4,1	0	3,6	0	4,1	0
10	0,025	24,04	1	62,1	2	27,7	1	15,4	1	34,5	1
15	0,038	68,95	3	142,0	6	81,6	3	38,1	2	140,2	6
20	0,051	167,37	7	250,4	10	189,1	8	91,2	4	265,8	11
25	0,064	299,37	12	396,0	16	323,9	13	175,1	7	413,7	17
30	0,076	447,24	18	542,0	22	447,7	18	270,3	11	504,4	20
35	0,089	584,68	23	683,1	27	564,7	23	509,4	20	590,6	24
40	0,102	692,18	28	771,6	31	688,5	28	675,4	27	667,7	27
50	0,127	742,98	30	850,9	34	755,2	30	747,5	30	716,2	29
60	0,152	761,58	30	891,8	36	807,8	32	770,2	31	726,7	29
70	0,178	776,09	31	925,3	37	858,6	34	795,1	32	737,1	29
80	0,203	802,85	32	937,1	37	895,8	36	811,5	32	756,6	30
90	0,229	818,28	33	954,8	38	923,5	37	843,2	34	765,2	31
100	0,254	835,06	33	974,3	39	952,5	38	867,3	35	772,0	31
110	0,279	850,93	34	993,8	40	975,7	39	878,2	35	784,3	31
120	0,305	860,46	34	999,7	40	991,1	40	897,7	36	796,5	32
130	0,330	876,79	35	1013,3	41	1010,1	40	913,1	37	817,4	33
140	0,356	889,04	36	1023,8	41	1021,0	41	932,6	37	836,9	33
150	0,381	898,56	36	1025,1	41	1036,5	41	947,5	38	855,5	34
160	0,406	904,46	36	1040,5	42	1046,9	42	963,9	39	873,6	35
170	0,432	912,17	36	1051,4	42	1060,9	42	973,9	39	884,0	35
180	0,457	914,44	37	1060,0	42	1066,8	43	978,8	39	0,0	0
190	0,483	921,69	37	1073,2	43	1075,5	43	985,2	39	0,0	0
200	0,508	0,00	0	1079,1	43	1089,5	44	1006,5	40	0,0	0
210	0,533	0,00	0	1087,7	44	1098,6	44	1009,7	40	0,0	0









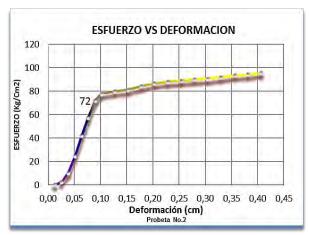

TABLA No. 4.3.1- Resistencia a la compresión perpendicular al grano de Granadillo.

		PROBE	ETA 1	PROBE	TA 2	PROBE	TA 3	PROBE	ETA 4	PROBE	TA 5
DEFORMA CION 10 ^{-3"}	DEFORMAC IÓN cm	CARGA Kg.	RESIST. A FLEXION Kg/cm ²	CARGA Kg.	RESIST. A FLEXION Kg/cm ²	CARGA Kg.	RESIST. A FLEXION Kg/cm ²	CARGA Kg.	RESIST. A FLEXION Kg/cm ²	CARGA Kg.	RESIST. A FLEXION Kg/cm ²
20	0,051	300,0	12	150,1	6	299,8	12	299,8	12	150,1	6
40	0,102	899,9	36	899,9	36	1050,1	42	899,9	36	749,8	30
60	0,152	1950,0	78	1799,8	72	2100,1	84	1950,0	78	1799,8	72
80	0,203	3749,8	150	3600,1	144	3450,0	138	3600,1	144	3450,0	138
100	0,254	5699,8	228	5999,9	240	6000,1	240	5350,1	214	5699,8	228
120	0,305	8049,9	322	8449,9	338	8599,6	344	7599,9	304	7799,9	312
140	0,356	8749,8	350	9199,7	368	9599,8	384	9199,7	368	9199,7	368
160	0,406	9199,7	368	9599,8	384	10199,9	408	9599,8	384	10049,7	402
180	0,457	9599,8	384	9799,8	392	10350,0	414	9899,6	396	10350,0	414
200	0,508	9899,6	396	10199,9	408	10799,5	432	10199,9	408	10499,7	420
220	0,559	10199,9	408	10649,8	426	11049,9	442	10799,5	432	10750,1	430
240	0,610	10799,5	432	10899,8	436	11199,6	448	10899,8	436	10799,5	432
260	0,660	0,0	0	0,0	0	0,0	0	0,0	0	0,0	0

TABLA No. 4.3.2- Resistencia a la compresión perpendicular al grano de Granadillo.

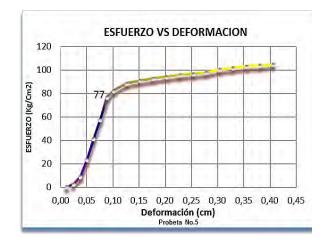
		PROB	ETA 6	PROBI	ETA 7	PROB	ETA 8	PROB	ETA 9	PROBE	TA 10
DEFORMA CION 10 ^{-3"}	DEFORM ACIÓN cm	CARGA Kg.	RESIST. A FLEXION Kg/cm²								
20	0,051	300,0	12	299,8	12	300,0	12	150,0	6	299,8	1
40	0,102	749,8	30	899,9	36	749,8	30	900,0	36	1050,1	42
60	0,152	1950,0	78	2100,0	84	1800,0	72	1950,0	78	2250,0	90
80	0,203	3799,9	152	3799,9	152	3600,1	144	3450,0	138	3749,8	150
100	0,254	5999,9	240	5999,9	240	5699,8	228	5349,9	214	5699,8	228
120	0,305	8049,9	322	8300,7	332	7799,9	312	7949,8	318	7949,6	318
140	0,356	9300,0	372	9299,8	372	8899,9	356	9500,0	380	9199,7	368
160	0,406	10199,9	408	9599,8	384	9500,0	380	10049,7	402	9899,8	396
180	0,457	10350,0	414	9899,8	396	9799,8	392	10350,0	414	9899,6	396
200	0,508	10499,7	420	10199,8	408	10199,8	408	10499,7	420	10199,9	408
220	0,559	10799,5	432	10750,1	430	10199,9	408	10649,8	426	10349,8	414
240	0,610	10799,5	432	10899,8	436	10500,2	420	10800,0	432	10350,0	414
260	0,660	0,0	0	0,0	0	0,0	0	0,0	0	0,0	0

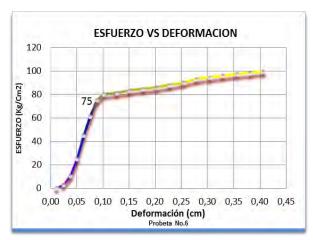


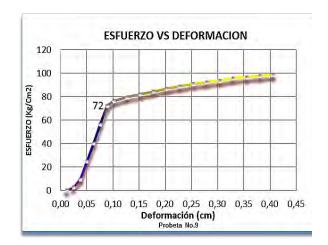

TABLA No. 4.4.1- Resistencia a la compresión perpendicular al grano de Pandala.

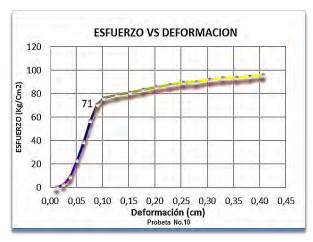
		PROB	PROBETA 1		PROBETA 2		PROBETA 3		PROBETA 4		PROBETA 5	
DEFORMA CION 10 ^{-3"}	DEFORMAC IÓN cm	CARGA Kg.	RESIST. A FLEXION Kg/cm ²	CARGA Kg.	RESIST. A FLEXION Kg/cm²							
5	0,013	5,0	0	6,4	0	5,9	0	4,5	0	4,5	0	
10	0,025	67,6	3	62,6	3	57,2	2	44,5	2	61,7	2	
15	0,038	250,4	10	257,2	10	272,6	11	304,4	12	225,4	9	
20	0,051	629,1	25	615,1	25	670,4	27	654,5	26	588,3	24	
25	0,064	998,8	40	1049,6	42	1117,2	45	1071,8	43	1033,7	41	
30	0,076	1379,8	55	1438,8	58	1481,9	59	1409,3	56	1440,6	58	
35	0,089	1757,2	70	1799,8	72	1803,5	72	1766,7	71	1916,9	77	
40	0,102	1889,2	76	1951,3	78	1937,3	77	1871,1	75	2058,8	82	
50	0,127	1979,9	79	2000,8	80	2006,2	80	1992,2	80	2218,5	89	
60	0,152	2041,6	82	2034,8	81	2042,1	82	2079,3	83	2273,8	91	
70	0,178	2080,2	83	2110,1	84	2093,8	84	2132,8	85	2318,8	93	
80	0,203	2096,9	84	2170,9	87	2143,7	86	2200,4	88	2357,8	94	
90	0,229	2173,6	87	2205,8	88	2180,0	87	2253,9	90	2393,1	96	
100	0,254	2211,3	88	2228,0	89	2211,7	88	2304,2	92	2416,3	97	
110	0,279	2253,4	90	2253,4	90	2248,0	90	2346,0	94	2450,7	98	
120	0,305	2302,0	92	2269,3	91	2303,3	92	2357,8	94	2507,9	100	
130	0,330	2334,2	93	2303,8	92	2352,3	94	2363,7	95	2549,6	102	
140	0,356	2433,1	97	2342,3	94	2387,7	96	2393,6	96	2576,8	103	
150	0,381	2473,4	99	2364,6	95	2438,5	98	2440,8	98	2594,1	104	
160	0,406	0,0	0	2396,8	96	2485,7	99	2472,1	99	2616,3	105	
170	0,432	0,0	0	0,0	0	2549,2	102	2511,1	100	0,0	0	

TABLA No. 4.4.2- Resistencia a la compresión perpendicular al grano de Pandala.


		PROBETA 6		PROBETA 7		PROBETA 8		PROBETA 9		PROBETA 10	
DEFORMACION 10 ^{-3"}	DEFORMACIÓN cm	CARGA Kg.	RESIST. A FLEXION Kg/cm ²								
5	0,013	11,34	0	6,8	0	5,0	0	5,4	0	4,1	0
10	0,025	76,20	3	69,9	3	64,9	3	68,9	3	63,0	3
15	0,038	266,71	11	249,9	10	254,9	10	247,7	10	227,7	9
20	0,051	625,05	25	651,4	26	684,5	27	629,1	25	569,7	23
25	0,064	1123,09	45	1103,1	44	1146,7	46	1012,0	40	966,1	39
30	0,076	1530,41	61	1524,1	61	1510,9	60	1415,2	57	1415,2	57
35	0,089	1880,58	75	1885,1	75	1818,9	73	1804,4	72	1767,2	71
40	0,102	2007,14	80	2005,3	80	1922,8	77	1911,9	76	1903,3	76
50	0,127	2037,53	82	2085,6	83	1985,4	79	1995,8	80	1975,8	79
60	0,152	2085,15	83	2128,7	85	2045,2	82	2057,9	82	2021,7	81
70	0,178	2120,53	85	2173,1	87	2101,9	84	2115,5	85	2088,3	84
80	0,203	2149,56	86	2238,9	90	2148,2	86	2176,8	87	2140,0	86
90	0,229	2202,63	88	2272,5	91	2187,7	88	2224,9	89	2187,7	88
100	0,254	2252,07	90	2329,6	93	2220,3	89	2272,9	91	2233,9	89
110	0,279	2329,64	93	2341,4	94	2269,8	91	2314,2	93	2249,4	90
120	0,305	2362,75	95	2357,3	94	2299,7	92	2344,6	94	2294,3	92
130	0,330	2403,12	96	2360,0	94	2324,6	93	2395,4	96	2326,5	93
140	0,356	2435,32	97	2376,4	95	2350,0	94	2420,4	97	2338,3	94
150	0,381	2462,54	99	2404,5	96	2391,8	96	2446,7	98	2368,2	95
160	0,406	2488,85	100	2431,2	97	2404,5	96	2467,1	99	2398,1	96







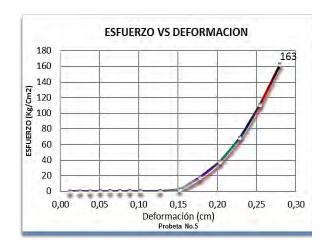
ANEXO E

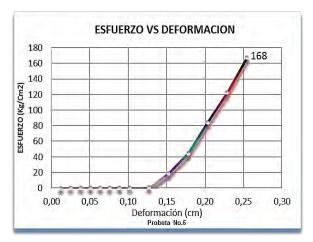
Registro de resultados y gráficas de esfuerzo-deformación obtenidos de los ensayos de Resistencia a La cizalladura de las maderas Chanul, Cuangare, Granadillo, Pandala.

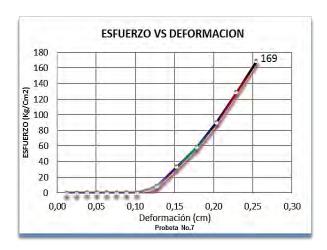
TABLA No.5.1.1- Resistencia a la cizalladura de Chanul.

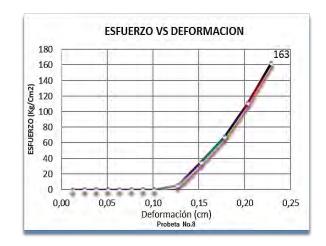
		PROB	ETA 1	PROBETA 2		PROE	BETA 3	PROE	BETA 4	PROBETA 5	
DEFORMA CION 10 ^{-3"}	DEFORMAC IÓN cm	CARGA Kg.	RESIST. A FLEXION Kg/cm ²	CARGA Kg.	RESIST. A FLEXION Kg/cm²						
5	0,013	2,3	0	2	0	2,3	0	1,8	0	1,8	0
10	0,025	7,3	0	8	0	17,2	1	7,3	0	4,1	0
15	0,038	15,9	1	17	1	18,6	1	14,5	1	6,8	0
20	0,051	15,9	1	16	1	20,0	1	15,4	1	11,3	0
25	0,064	16,3	1	17	1	22,7	1	15,9	1	13,6	1
30	0,076	16,8	1	17	1	22,2	1	16,3	1	15,4	1
35	0,089	17,2	1	17	1	23,1	1	16,8	1	17,2	1
40	0,102	17,7	1	20	1	28,1	1	17,2	1	18,1	1
50	0,127	59,4	2	62	2	247,7	10	22,2	1	20,9	1
60	0,152	300,7	12	292	12	547,5	22	67,1	3	63,0	3
70	0,178	1035,5	41	881	35	949,8	38	593,3	24	447,2	18
80	0,203	1975,8	79	1870	75	1552,2	62	1778,5	71	946,2	38
90	0,229	3124,8	125	2927	117	2318,8	93	2919,3	117	1707,8	68
100	0,254	4211,6	168	4044	162	3053,6	122	4164,9	167	2776,0	111
110	0,279	0,0	0	0	0	4087,8	164	0,0	0	4076	163

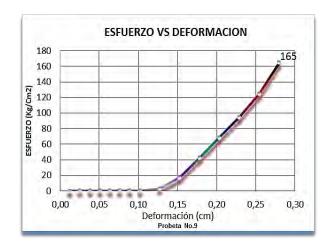
TABLA No.5.1.2- Resistencia a la cizalladura de Chanul.


		PROB	PROBETA 6		PROBETA 7		PROBETA 8		BETA 9	PROBETA 10	
DEFORMA CION 10 ^{-3"}	DEFORMAC IÓN cm	CARGA Kg.	RESIST. A FLEXION Kg/cm²								
5	0,013	2,7	0	3,6	0	3,6	0	4,1	0	1,8	0
10	0,025	10,0	0	5,4	0	12,7	1	14,5	1	10,4	0
15	0,038	15,4	1	14,1	1	15,9	1	15,4	1	15,9	1
20	0,051	16,3	1	14,5	1	16,3	1	16,3	1	15,9	1
25	0,064	16,8	1	15,9	1	16,8	1	17,2	1	15,9	1
30	0,076	19,1	1	16,8	1	17,7	1	18,1	1	16,3	1
35	0,089	21,8	1	18,1	1	20,4	1	20,0	1	17,2	1
40	0,102	23,6	1	19,5	1	23,1	1	22,2	1	19,5	1
50	0,127	34,0	1	218,2	9	142,9	6	73,5	3	84,8	3
60	0,152	485,8	19	841,9	34	885,4	35	430,0	17	335,7	13
70	0,178	1124,0	45	1471,9	59	1701,0	68	1066,8	43	925,8	37
80	0,203	2112,8	85	2262,1	90	2780,5	111	1717,3	69	1870,2	75
90	0,229	3079,4	123	3229,6	129	4071,4	163	2372,3	95	2825,9	113
100	0,254	4192,5	168	4227,5	169	0,0	0	3118,4	125	4056,5	162
110	0,279	0,0	0	0,0	0	0,0	0	4128,6	165	0,0	0









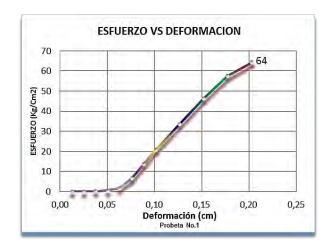
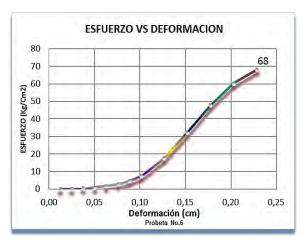


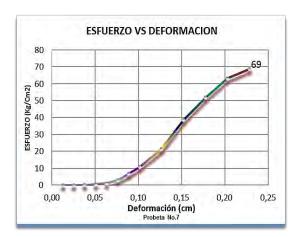
Tabla No. 5.2.1 resistencia a la cizalladura de Cuangare

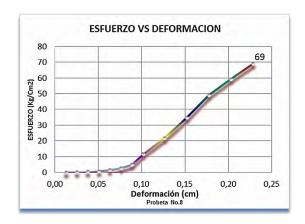
		PROBETA 1		PROBETA 2		PROBETA 3		PROBETA 4		PROBETA 5	
DEFORMAC ION 10 ^{-3"}	DEFORMAC IÓN cm	CARGA Kg.	RESIST. A FLEXION Kg/cm²	CARGA Kg.	RESIST. A FLEXION Kg/cm²						
5	0,013	1,4	0	1,4	0	3,2	0	1,4	0	1,8	0
10	0,025	1,4	0	1,8	0	10,9	0	2,7	0	3,6	0
15	0,038	3,6	0	10,4	0	30,4	1	5,9	0	10,0	0
20	0,051	13,2	1	18,6	1	63,5	3	10,4	0	23,6	1
25	0,064	39,5	2	36,7	1	111,1	4	26,8	1	64,4	3
30	0,076	166,5	7	69,9	3	220,9	9	74,8	3	127,5	5
35	0,089	341,1	14	120,7	5	342,9	14	150,1	6	256,7	10
40	0,102	521,6	21	171,9	7	492,1	20	287,6	12	400,5	16
50	0,127	840,5	34	350,6	14	762,5	30	611,0	24	810,6	32
60	0,152	1158,5	46	601,0	24	1056,9	42	954,4	38	1109,9	44
70	0,178	1440,1	58	964,3	39	1328,6	53	1236,0	49	1402,5	56
80	0,203	1610,7	64	1307,7	52	1506,4	60	1440,1	58	1643,8	66
90	0,229	0,0	0	1568,5	63	1666,9	67	1614,8	65	0,0	0
100	0,254	0,0	0	0,0	0	0,0	0	0,0	0	0,0	0
110	0,279	0,0	0	0,0	0	0,0	0	0,0	0	0,0	0

TABLA No.5.2.2- Resistencia a la cizalladura de Cuangare.

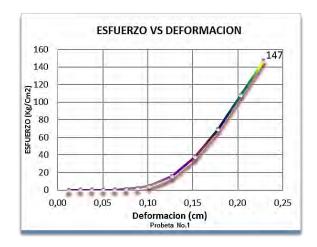

		PROBETA 6		PROBETA 7		PROBETA 8		PROBETA 9		PROBETA 10	
DEFORMA CION 10 ^{-3"}	DEFORMAC IÓN cm	CARGA Kg.	RESIST. A FLEXION Kg/cm²	CARGA Kg.	RESIST. A FLEXION Kg/cm²	CARGA Kg.	RESIST. A FLEXION Kg/cm ²	CARGA Kg.	RESIST. A FLEXION Kg/cm²	CARGA Kg.	RESIST. A FLEXION Kg/cm²
5	0,013	1,8	0	1,8	0	1,8	0	1,4	0	1,4	0
10	0,025	2,7	0	2,7	0	3,2	0	2,3	0	2,7	0
15	0,038	11,8	0	7,7	0	11,3	0	10,4	0	10,4	0
20	0,051	22,7	1	16,3	1	21,8	1	20,9	1	18,1	1
25	0,064	42,2	2	29,5	1	41,7	2	35,4	1	24,0	1
30	0,076	67,6	3	73,9	3	70,3	3	55,8	2	53,5	2
35	0,089	114,3	5	169,2	7	126,1	5	137,0	5	158,3	6
40	0,102	181,9	7	272,2	11	292,6	12	262,6	11	270,3	11
50	0,127	437,3	17	537,1	21	551,6	22	610,5	24	579,7	23
60	0,152	804,2	32	965,7	39	870,0	35	891,3	36	882,7	35
70	0,178	1191,1	48	1295,0	52	1230,1	49	1231,5	49	1198,8	48
80	0,203	1505,0	60	1581,2	63	1486,0	59	1527,7	61	1502,3	60
90	0,229	1702,8	68	1724,5	69	1728,2	69	1676,9	67	1749,0	70
100	0,254	0,0	0	0,0	0	0,0	0	0,0	0	0,0	0
110	0,279	0,0	0	0,0	0	0,0	0	0,0	0	0,0	0

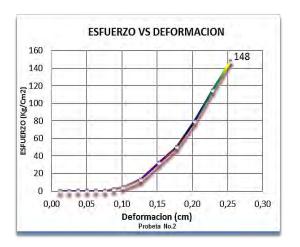




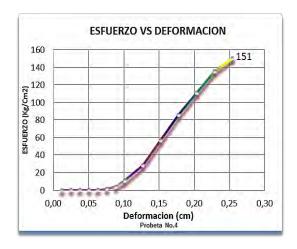




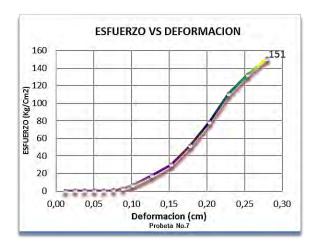


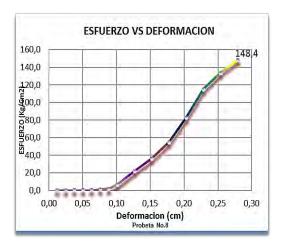

TABLA No.5.3.1- Resistencia a la cizalladura de Granadillo.

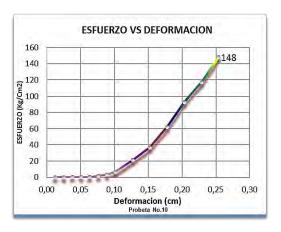
		PROB	ETA 1	PROE	BETA 2	PROB	ETA 3	PROE	ETA 4	PROBETA 5	
DEFORMAC ION 10 ^{-3"}	DEFORMAC IÓN cm	CARGA Kg.	RESIST. A FLEXION Kg/cm²	CARGA Kg.	RESIST. A FLEXION Kg/cm²						
5	0,013	7,3	0	1,8	0	5,4	0	5,4	0	5,4	0
10	0,025	14,5	1	7,3	0	14,5	1	16,3	1	15,9	1
15	0,038	16,8	1	14,5	1	15,4	1	17,7	1	16,8	1
20	0,051	17,7	1	16,3	1	16,3	1	19,5	1	17,7	1
25	0,064	21,8	1	17,7	1	18,6	1	21,8	1	20,4	1
30	0,076	34,5	1	25,4	1	20,9	1	42,6	2	36,3	1
35	0,089	62,6	3	62,6	3	25,4	1	103,4	4	60,3	2
40	0,102	118,4	5	116,1	5	74,8	3	286,7	11	140,2	6
50	0,127	399,2	16	341,1	14	323,0	13	711,7	28	515,3	21
60	0,152	948,0	38	810,1	32	845,9	34	1431,5	57	986,6	39
70	0,178	1726,8	69	1264,2	51	1481,0	59	2157,3	86	1554,0	62
80	0,203	2700,7	108	1994,9	80	2206,7	88	2778,2	111	2186,3	87
90	0,229	3685,0	147	2874,4	115	3032,2	121	3395,6	136	2819,5	113
100	0,254	0,0	0	3699,0	148	3725,3	149	3765,3	151	3471,3	139
110	0,279	0,0	0	0,0	0	0,0	0	0,0	0	3772,1	151


TABLA No.5.3.2- Resistencia a la cizalladura de Granadillo.

		PROBETA 6		PROBETA 7		PROB	ETA 8	PROBETA 9		PROBETA 10	
DEFORMAC ION 10 ^{-3"}	DEFORMAC IÓN cm	CARGA Kg.	RESIST. A FLEXION Kg/cm²								
5	0,013	8	0	11	0	2,7	0,1	4,5	0	3,6	0
10	0,025	15	1	17	1	10,4	0,4	11,8	0	10,0	0
15	0,038	16	1	18	1	15,4	0,6	16,3	1	16,3	1
20	0,051	17	1	20	1	15,9	0,6	16,8	1	17,2	1
25	0,064	18	1	21	1	20,9	0,8	22,2	1	19,5	1
30	0,076	29	1	32	1	38,1	1,5	42,2	2	45,8	2
35	0,089	59	2	81	3	54,0	2,2	71,7	3	83,0	3
40	0,102	135	5	176	7	170,5	6,8	147,0	6	166,5	7
50	0,127	508	20	441	18	560,6	22,4	496,7	20	534,8	21
60	0,152	1055	42	753	30	913,5	36,5	1032,4	41	923,5	37
70	0,178	1685	67	1290	52	1381,2	55,2	1571,7	63	1553,5	62
80	0,203	2425	97	1960	78	2069,7	82,8	2157,3	86	2325,1	93
90	0,229	3033	121	2768	111	2879,4	115,2	2863,1	115	2929,7	117
100	0,254	3753	150	3321	133	3350,2	134,0	3672,3	147	3707,6	148
110	0,279	0	0	3777	151	3709,5	148,4	0,0	0	0,0	0







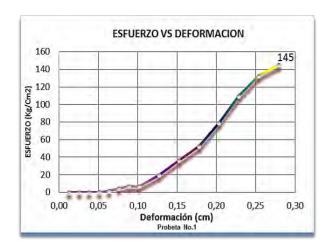
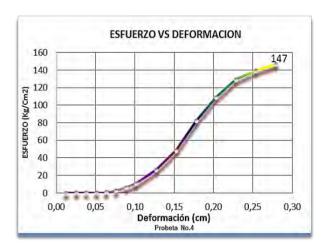
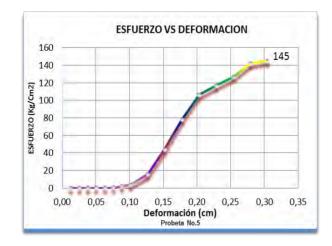


TABLA No.5.4.1- Resistencia a la cizalladura de Pandala.

		PROB	ETA 1	PROB	ETA 2	PROB	ETA 3	PROBI	ETA 4	PROBETA 5	
DEFORMAC ION 10 ^{-3"}	DEFORM ACIÓN cm	CARGA Kg.	RESIST. A FLEXION Kg/cm²	CARGA Kg.	RESIST. A FLEXION Kg/cm²	CARGA Kg.	RESIST. A FLEXION Kg/cm²	CARGA Kg.	RESIST. A FLEXION Kg/cm²	CARGA Kg.	RESIST. A FLEXION Kg/cm²
5	0,013	1,4	0	1,4	0	4,5	0	1,4	0	2,3	0
10	0,025	1,8	0	2,7	0	6,8	0	6,4	0	12,2	0
15	0,038	5,4	0	10,4	0	13,2	1	14,5	1	14,5	1
20	0,051	15,4	1	20,0	1	21,8	1	20,4	1	17,2	1
25	0,064	46,3	2	28,6	1	30,8	1	30,8	1	18,6	1
30	0,076	113,4	5	50,8	2	56,2	2	74,4	3	24,9	1
35	0,089	174,6	7	102,5	4	103,9	4	152,4	6	56,2	2
40	0,102	167,4	7	222,7	9	172,4	7	271,2	11	97,5	4
50	0,127	495,8	20	477,2	19	442,3	18	657,7	26	396,9	16
60	0,152	912,6	37	1067,3	43	1183,0	47	1214,7	49	1114,0	45
70	0,178	1307,7	52	1755,4	70	1886,0	75	2051,6	82	1962,2	78
80	0,203	1975,8	79	2844,9	114	2673,9	107	2727,0	109	2662,6	107
90	0,229	2737,0	109	3474,0	139	3336,6	133	3230,9	129	2917,0	117
100	0,254	3318,0	133	3558,4	142	3622,4	145	3487,7	140	3167,0	127
110	0,279	3625,1	145	3663,2	147	3714,4	149	3676,8	147	3557,1	142
120	0,305	0,0	0	0,0	0	0,0	0	0,0	0	3634,2	145
130	0,330	0,0	0	0,0	0	0,0	0	0,0	0	0,0	0


TABLA No.5.4.2- Resistencia a la cizalladura de Pandala.


		PROB	ETA 6	PROBETA 7		PROB	ETA 8	PROBI	ETA 9	PROBETA 10	
DEFORMAC ION 10 ^{-3"}	DEFORM ACIÓN cm	CARGA Kg.	RESIST. A FLEXION Kg/cm²	CARGA Kg.	RESIST. A FLEXION Kg/cm²	CARGA Kg.	RESIST. A FLEXION Kg/cm ²	CARGA Kg.	RESIST. A FLEXION Kg/cm ²	CARGA Kg.	RESIST. A FLEXION Kg/cm²
5	0,013	1,4	0	1,4	0	1,4	0	1,8	0	1,4	0
10	0,025	4,1	0	4,5	0	3,2	0	4,5	0	3,6	0
15	0,038	14,5	1	12,2	0	8,2	0	10,9	0	11,8	0
20	0,051	16,3	1	14,1	1	15,4	1	14,1	1	13,6	1
25	0,064	30,4	1	16,8	1	16,3	1	14,5	1	14,5	1
30	0,076	68,5	3	24,0	1	18,1	1	16,8	1	19,1	1
35	0,089	135,2	5	38,1	2	20,4	1	19,1	1	21,8	1
40	0,102	248,1	10	57,2	2	39,5	2	24,5	1	32,2	1
50	0,127	647,7	26	187,8	8	81,6	3	37,2	1	122,0	5
60	0,152	1245,1	50	560,2	22	525,7	21	222,7	9	398,7	16
70	0,178	1969,0	79	1348,5	54	1406,6	56	747,5	30	897,7	36
80	0,203	2663,5	107	2202,6	88	2326,5	93	1610,2	64	1666,5	67
90	0,229	3128,4	125	2991,0	120	3064,5	123	2436,2	97	2444,4	98
100	0,254	3445,5	138	3685,4	147	3296,2	132	2981,4	119	3250,0	130
110	0,279	3625,5	145	3835,6	153	3565,7	143	3390,6	136	3602,4	144
120	0,305	3705,4	148	0,0	0	0,0	0	3623,7	145	3785,2	151
130	0,330	0,0	0	0,0	0	0,0	0	0,0	0	0,0	0

