INVESTIGACION EXPERIMENTAL PARA EVALUAR LA EFICIENCIA DE LOS SEPARADORES DE FLUJO CENTRÍFUGO

MAURICIO DAVID PABÓN MIÑO MANUEL ANTONIO PERENGÜEZ NARVAEZ

UNIVERSIDAD DE NARIÑO FACULTAD DE INGENIERIA PROGRAMA DE INGENIERIA CIVIL SAN JUAN DE PASTO 2010

INVESTIGACION EXPERIMENTAL PARA EVALUAR LA EFICIENCIA DE LOS SEPARADORES DE FLUJO CENTRÍFUGO

MAURICIO DAVID PABÓN MIÑO MANUEL ANTONIO PERENGÜEZ NARVAEZ

Trabajo de grado presentado como requisito parcial para optar al titulo de Ingeniero Civíl

Director de Investigación: HERNÁN JAVIER GÓMEZ ZAMBRANO Ingeniero Civil Magíster en Recursos Hidráulicos

UNIVERSIDAD DE NARIÑO FACULTAD DE INGENIERIA PROGRAMA DE INGENIERIA CIVIL SAN JUAN DE PASTO 2010

NOTA DE RESPONSABILIDAD

Las ideas y conclusiones aportadas en el trabajo de grado son responsabilidad exclusiva del autor.

Artículo 1° del acuerdo No. 324 de octubre 11 de 1966, emanado del honorable Consejo Directivo de la Universidad de Nariño.

Nota de aceptación:

Firma del jurado

Firma del jurado

San Juan Pasto, Noviembre de 2010

DEDICATORIA

Es bueno reconocer, que para cumplir con esta meta se deben superar muchas dificultades; lo importante es saber que no se está solo, es por eso que dedico este trabajo a los que siempre han estado a mi lado.

A Dios el amigo que nunca falla.

MI PADRE Rolando Alberto Pabón Hidalgo, quien con esmero, esfuerzo y sacrificio ha sabido apoyarme siempre que lo necesité y que me ha enseñado que la constancia es la llave que abre todas las puertas.

MI MADRE Luz Omaira Miño de Pabón, por su amor, confianza, concejo, apoyo incondicional, por su fe en mí y por enseñarme que dar lo mejor de sí para los demás es tan importante como hacerlo para uno mismo.

MI HIJO David Alejandro Pabón Vallejo, que es la inspiración para hacer las cosas cada vez mejor, por él y por mí.

MIS HERMANOS, Rolando Alexander, Ana Lucia, Jan Alberto, Natalia Alejandra, que con su apoyo incondicional han sido el abrigo ante toda adversidad.

MIS FAMILIARES Y AMIGOS, por sus consejos, amistad y compañía.

David Pabón.

DEDICATORIA

Cuando culmina una etapa tan importante en la carrera de un estudiante universitario, tan ardua y llena de dificultades como el desarrollo de una investigación, es inevitable que te asalte un muy humano orgullo que te lleva a concentrar la mayor parte del mérito en el aporte que has hecho. Sin embargo, el análisis objetivo te muestra inmediatamente que la magnitud de ese aporte hubiese sido imposible sin la participación de personas que han facilitado las cosas para que este trabajo llegue a un feliz término. Por ello, es para mí un verdadero placer utilizar este espacio para ser justo y consecuente con ellas, expresándoles mis agradecimientos.

Primero y antes que nada, dar gracias a **Dios**, por estar conmigo en cada paso que doy, por fortalecer mi corazón e iluminar mi mente y por haber puesto en mi camino a aquellas personas que han sido mi soporte y compañía durante todo el periodo de estudio.

Agradecer hoy y siempre a mi familia. A mi madre Sra. Rosalba Narvaez por su cariño y comprensión. A mis hermanas Carmen Narvaez, Rosa Perengüez y Martha Perengüez, por su valentía y tenacidad para superarse y ser un apoyo incondicional en mi carrera. A mi padre Sr. Manuel Perengüez por su disciplina y carácter-

Manuel Perengüez

AGRADECIMIENTOS

Especial agradecimiento al Ingeniero Civil, Magíster en Recursos Hidráulicos HERNÁN JAVIER GÓMEZ ZAMBRANO por brindarnos la oportunidad de trabajar en la línea de investigación denominada "TRANSPORTE DE MEZCLAS Y FLUJO TORRENCIAL" perteneciente al grupo de investigación Grama de la Universidad de Nariño, y por el apoyo durante el trabajo realizado dentro de las instalaciones del laboratorio de hidráulica de esta misma entidad.

ROBERTO GARCÍA C, Auxiliar de laboratorio de la Universidad de Nariño en el área de Hidráulica, por sus atenciones y su gran disposición en momentos de necesidad

GUSTAVO ADOLFO PONCE, Auxiliar de laboratorio de la Universidad de Nariño en el área de suelos, por sus atenciones y gran disponibilidad.

LEIDY DANIELA NARVAEZ, Geotecnista de la Universidad de Nariño por su gran amabilidad y un gran apoyo para la culminación de este trabajo de grado.

PIEDAD REBOLLEDO MUÑOZ, Directora de Laboratorios por su apoyo y amabilidad en facilitarnos las instalaciones del laboratorio de hidráulica.

MARTHA FIGUEROA, directora de la Oficina de Servicios Generales por su amabilidad en facilitarnos los respectivos permisos para el ingreso a la Universidad de Nariño.

A nuestros compañeros por su amistad y ayuda durante el desarrollo de este trabajo.

CONTENIDO

INTRO	DUCCIÓN	12
1.	PROPIEDADES DEL AGUA, SEDIMENTOS Y MEZCLAS	14
1.1.	PROPIEDADES DEL AGUA	18
1.1.1. 1.1.2. 1.1.3.	Densidad: Peso específico: Viscosidad:	18 18 19
1.2.	DETERMINACIÓN DE LAS PROPIEDADES DEL AGUA:	19
1.3.	PROPIEDADES DE LOS SEDIMENTOS	20
1.3.1. 1.3.2. 1.3.3. 1.3.4.	Gravedad específica (G _s) Tamaño Forma: Densidad:	20 20 21 22
1.4.	VELOCIDAD DE ASENTAMIENTO (V _S)	22
1.4.1. 1.4.2. 1.4.3. 1.4.4.	Teoría básica de la sedimentación Datos experimentales de velocidad de asentamiento final Efecto de la concentración sobre la velocidad de asentamiento Efecto de la distribución granulométrica sobre velocidad de asentamiento y el coeficiente de arrastre	23 25 28 30
1.5.	PROPIEDADES DE LA MEZCLA	30
1.5.1. 1.5.2. 1.5.3. 1.5.4. 1.5.5. 1.5.6. 1.5.7.	Efecto de la concentración sobre la viscosidad Efecto de la concentración sobre la densidad Modos de transporte Tipos de mezclas Clasificación de mezclas según Duckworth (1978) Clasificación de mezclas según Graf (1971) Distribución de concentración en una vertical según Rouse	31 31 33 34 35 36
2.	INVESTIGACIÓN EXPERIMENTAL PARA EL TUBO CURVO	38
2.1.	ASPECTOS TEORICOS	44
2.1.1. 2.1.2.	Concepto de flujo secundario Número de Dean	44 45
2.2.	DISEÑOS EXPERIMENTALES	45
2.2.1.	Conceptos generales	45

2.2.2. 2.2.3. 2.2.4. 2.2.5.	Conceptos básicos de diseño de experimentos Planeacion y realizacion del experimento Tipos de diseños experimentales Diseños experimentales factoriales	46 49 50 51
2.3.	MATERIALES Y METODOS	52
2.3.1. 2.3.2. 2.3.3. 2.3.4. 2.3.5. 2.3.6.	Montaje de Laboratorio Propiedades de los sólidos Variables de Respuesta Factores independientes Diseño experimental Procedimiento de medición	52 54 55 57 60 60
2.4.	ANÁLISIS DE RESULTADOS	63
2.4.1. 2.4.2. 2.4.3. 2.4.4. 2.4.5. 2.4.6.	Cálculos para agua limpia Cálculos para agua y sedimentos Cálculos para agua y plomo Cálculos para agua, plomo y sedimentos Correlaciones Matemáticas para las Variables de Respuesta Verificación de las correlaciones	63 64 66 67 70 73
3.	INVESITIGACIÓN EXPERIMENTAL PARA ELHIDROCICLÓN	77
3.1.	ASPECTOS TEORICOS	83
3.1.1. 3.1.2. 3.1.3. 3.1.4.	Generalidades Funcionamiento Tipos de hidrociclones Aplicaciones de los hidrociclones	83 83 86 89
3.2.	MATERIALES Y METODOS	91
3.2.1. 3.2.2. 3.2.3. 3.2.4. 3.2.5. 3.2.6.	Montaje de Laboratorio Propiedades de los sólidos Variables de Respuesta Factores independientes Diseño experimental Procedimiento de medición	91 92 93 94 95 96
3.3.	ANÁLISIS DE RESULTADOS	99
3.3.1. 3.3.2. 3.3.3. 3.3.4. 3.3.5. 3.3.6.	Cálculos para agua limpia Cálculos para agua y sedimentos	99 00 02 04 06 09

4.	INVESTIGACIÓN EXPERIMENTAL PARA LA ESPIRAL CONCENTRADORA 1	12
4.1	ASPECTOS TEORICOS 1	17
4.1.1. 4.1.2. 4.1.3. 4.1.4.	Generalidades	17 17 19 24
4.2	MATERIALES Y METODOS 1	27
4.2.1. 4.2.2. 4.2.3. 4.2.4. 4.2.5. 4.2.6.	Montaje de laboratorio1Propiedades de los sólidos1Variables de Respuesta1Factores independientes1Diseño experimental1Procedimiento de medición1	27 30 31 32 35 35
4.3	ANÁLISIS DE RESULTADOS 1	38
4.3.1. 4.3.2. 4.3.3. 4.3.4. 4.3.5. 4.3.6.	Cálculos para agua limpia	38 39 41 42 44 47
5.	DISPOSITIVO MÁS EFICIENTE Y METODO DE DISEÑO 1	50
5.1	EFICIENCIA DE LOS DISPOSITIVOS 1	53
5.1.1 5.1.2 5.1.3	Datos de entrada	53 53 57
5.2	CONCENTRADORA 1	61
5.2.1 5.2.2 5.2.3	Análisis de la concentración de plomo según ecuaciones empíricas 1 Efecto del caudal sobre el comportamiento de la mezcla en la espiral . 1 Ejemplo de aplicación	61 62 65
RECOM	IENDACIONES 1	76
CONCL	.USIONES 1	78
BIBLIO	GRAFÍA 1	79
ANEXOS 18		

LISTA DE ANEXOS

ANEXO A.	Ecuaciones para calcular las propiedades del agua 176
ANEXO B.	Ecuaciones para el cálculo del coeficiente de arrastre 185
ANEXO C.	Ecuaciones para el cálculo de la velocidad de asentamiento
ANEXO D.	Ecuaciones para cuantificar el exponente n 189
ANEXO E.	Ecuaciones para el cálculo de la viscosidad y densidad de mezclas
ANEXO F.	Deducción de ecuaciones para el cálculo de una mezcla 191
ANEXO G.	Banco de pruebas para dispositivos de flujo centrífugo 195
ANEXO G.	Fotografías para el tubo curvo 198
ANEXO I.	Fotografías para el hidrociclón 199
ANEXO J.	Fotografías para la espiral concentradora 200
ANEXO K.	Elementos de protección para la realización de laboratorios
ANEXO L.	Granulometría
ANEXO M.	Ejemplo de cálculo para el coeficiente de arrastre CDp 209
ANEXO N.	Deduccion de ecuaciones para el calulo de la concentracion de metales pesados

INTRODUCCIÓN

En la presente investigación se pretende determinar la eficiencia que tienen dispositivos tales como el separador de tubo curvo, el hidrociclón y la canaleta en espiral, en la separación hidráulica de metales pesados contenidos en matrices aluviales y establecer una metodología de diseño, que sirva para posibles usos en la extracción de metales pesados en la pequeña minería.

El problema radica en el desconocimiento de la eficiencia que poseen los dispositivos mencionados en la separación de metales pesados por acción de flujo secundario. Este problema se abordo construyendo pequeños prototipos en laboratorio y midiendo la eficiencia de separación del metal pesado en cada uno de ellos en función de las variables que influyen en el fenómeno de separación.

La realización del presente proyecto se justifica ya que en nuestro medio aún se siguen usando los métodos tradicionales en minería para separar sólidos o metales pesados de matrices pétreas o aluviales. Estos métodos van desde la batea tradicional de lavado usada por los barequeros, con una baja eficiencia hasta otros métodos con mayor rendimiento pero con un gran efecto negativo sobre el medio ambiente, que comprenden el uso de mercurio y cianuro para separar metales pesados como el oro.

La clasificación que se realizó en este trabajo de investigación fue la producida en la separación de partículas, de una cierta distribución granulométrica, en dos fracciones, una con una distribución en la que prevalecen los tamaños mayores y en otra los tamaños menores.

OBJETIVOS

OBJETIVO GENERAL

Determinar la eficiencia del hidrociclón, la espiral concentradora y el tubo curvo en la separación de plomo de matrices aluviales mezcladas con agua.

OBJETIVOS ESPECÍFICOS

 Identificar los procedimientos matemáticos existentes para el diseño del hidrociclón, la espiral concentradora y el tubo curvo.

- Evaluar en laboratorio la eficiencia de separación de plomo de la mezcla de material aluvial y agua en el hidrociclón, la espiral concentradora y un tubo curvo a presión.
- Comparar la eficiencia de los tres dispositivos bajo las mismas condiciones y seleccionar aquel que posea mayor eficiencia.
- Elaborar una metodología de diseño del dispositivo que posea mayor eficiencia para separar metales pesados, aplicada a la industria de la minería con base a los desarrollos matemáticos de la presente investigación.

CAPÍTULO

Ι

PROPIEDADES DEL AGUA, SEDIMENTOS Y MEZCLAS

NOMENCLATURA

- γ Peso específico
- ρ Densidad de masa
- μ Viscosidad dinámica
- v Viscosidad cinemática
- M Cantidad de masa
- W Peso de una sustancia
- V Volumen
- g Gravedad
- Gs Gravedad especifica
- τ Esfuerzo cortante
- **dV/dy** Gradiente de velocidad transversal a la dirección del desplazamiento de las partículas fluidas.
- **C**_D Coeficiente de arrastre de las partículas.
- σ_g Desviación estándar geométrica de los sedimentos
- Cu Coeficiente de uniformidad
- V_s Velocidad de asentamiento
- Ve Velocidad de asentamiento estándar
- *F*e Fuerzas de flotación o empuje
- **F**_p Fuerza debido al peso de la partícula
- **F**_D Fuerza de arrastre
- $\rho_{\rm s}$ Densidad de la partícula,
- **P**₁, **P**₂,..., **Pn** Porcentajes por peso de material entre cada rango de tamaños
- $C_{D1}, C_{D2}, \dots, C_{Dn}$ Correspondientes coeficientes de arrastre.

- Np Número de rangos de tamaños en la granulometría
- P_i Porcentajes por peso de material entre cada rango de tamaños
- *d* Diámetro de la partícula.
- **d**_{min} Diámetro mínimo
- dmax Diámetro máximo
- vf Viscosidad del fluido
- **R**_s Reynolds de partículas
- ρ_s Densidad de los sólidos
- *V*_s velocidad de asentamiento de la partícula.

LISTA DE TABLAS

Tabla 1.1Clasificación de sedimentos naturales según su tamaño,
por La American Society of Testing Material (ASTM).
Dada por Lane (Yang 1996).21

LISTA DE FIGURAS

Figura 1.1	Esquema de la acción de las fuerzas sobre una partícula sólida sedimentándose en un fluido	23
Figura 1.2	Coeficiente de arrastre (C_D) vs número de Reynolds (R_s)	25
Figura 1.3	Comparación entre valores del coeficiente de arrastre calculado y experimental.	26
Figura 1.4	Comparación entre valores de la velocidad de asentamiento calculados por las ecuaciones indicadas en este capítulo y los valores experimentales dados por Cheng (1997a], con $Ss = 2.65$	28
Figura 1.5	Curva generalizada para la clasificación de mezclas y la determinación de la velocidad de asentamiento	35

INTRODUCCIÓN

El transporte de mezclas agua-sólido es producto de la interrelación entre materiales sólidos y un medio fluido en movimiento. Pueden abarcar una gran gama en materiales, como sedimentos naturales; productos minerales (hierro, carbón, etc.); productos industriales, entre otros. Los fluidos que sirven como medio de transporte pueden estar clasificados en la categoría de fluidos Newtonianos y no Newtonianos, entre los primeros el fluido usado comúnmente para el transporte de sólidos, es el agua. Los segundos son también muy frecuentes en la naturaleza, como mezclas de Arcilla y Agua, lodos de aguas negras, suspensiones acuosas de aguas y finos, pulpas de papel en agua, suspensiones de líquido-sólido en muy altas concentraciones, etc.; Graf (1971). Teniendo en cuenta los objetivos de la presente investigación, el fluido y los sólidos a estudiar son el agua y sedimentos naturales, respectivamente. Por lo tanto conocer las propiedades físicas de estos dos componentes es esencial en el estudio del transporte hidráulico de sedimentos.

El propósito del presente capítulo es presentar las propiedades fundamentales del agua, los sedimentos y las mezclas, que serán de utilidad en los capítulos posteriores, para lo cual se ha tomado como base el trabajo realizado por Gómez (2002).

1.1. PROPIEDADES DEL AGUA

Las propiedades básicas del agua que son importantes en el estudio de transporte de mezclas se presentan a continuación y se hace una descripción de cada una.

Densidad:

Es la cantidad de masa por unidad de volumen y sus unidades en el Sistema Internacional (S.I.), están dadas como [Kg/m³].

$$\rho = \frac{M}{V_L} \tag{0.1}$$

Peso específico:

Es el peso de una sustancia por unidad de volumen y la gravedad relaciona la densidad y peso específico, las unidades en el S.I. esta dadas como [N/m³], se relaciona con la densidad por medio de la gravedad.

$$\gamma = \frac{W}{V_L} = g\rho$$
 [0.2]

Viscosidad:

Es una propiedad que tienen los fluidos para resistirse al movimiento. En la práctica es común usar el concepto de viscosidad dinámica y viscosidad cinemática.

Viscosidad dinámica (μ). Es la constante de proporcionalidad que relaciona el esfuerzo cortante y la deformación de una sustancia fluida expresada como el gradiente de velocidad transversal a la dirección del movimiento en la ley de viscosidad de Newton, dada por la siguiente expresión:

$$\tau = \mu \frac{dV}{dy}$$
[0.3]

La viscosidad dinámica se conoce como el coeficiente de viscosidad y en el sistema de unidades S.I. se da en [pa*s] y en el sistema CGS en [Poise=gr/(cm*s)]

Viscosidad cinemática (*v*). Es la relación que existe entre la viscosidad dinámica y la densidad del fluido, dada como:

$$v = \frac{\mu}{\rho}$$
 [0.4]

En el sistema de unidades S.I. se da en $[m^2/s]$.

DETERMINACIÓN DE LAS PROPIEDADES DEL AGUA:

Como las propiedades del agua varían con la temperatura, es común encontrar tablas en las cuales se indica los valores, pero para efectos prácticos es conveniente dar expresiones matemáticas para su cálculo, las cuales han sido tomadas de la literatura, como las que se indican a continuación:

• viscosidad del agua. Reportada por Yang (1996).

$$\nu_{w} = \frac{1.792 * 10^{-6}}{1 + 0.0337T + 0.000221T^{2}} \qquad (m^{2}/s)$$
[0.5]

• peso específico del agua.

$$\gamma_w = 9800 - \frac{(T-4)^2}{180}$$
 [Kg/m3] [0.6]

• densidad del agua

$$\rho_w = 1000 - \frac{(T-4)^2}{180} \quad [Kg/m3]$$
[0.7]

1.1. PROPIEDADES DE LOS SEDIMENTOS

Las propiedades de los sedimentos de una partícula simple que son importantes en el estudio del transporte de sedimentos son: *el tamaño, la forma, densidad, peso específico y velocidad de asentamiento (llamada también velocidad de sedimentación).*

Gravedad específica (G_s):

Es la relación entre el peso específico de un material dado o fluido y el peso específico del agua a 4ºC o 39.2ºF.

$$G_s = \frac{\rho}{\rho_w} = \frac{\gamma}{\gamma_w}$$
[0.8]

Tamaño:

El tamaño es una propiedad básica, fácil de medir en la mayoría de los casos. Para muchas aplicaciones prácticas se ha encontrado que el tamaño es suficiente para describir las propiedades físicas de una partícula de sedimentos. El tamaño de la partícula puede ser determinado asignándole el *diámetro nominal, el diámetro de tamiz o el diámetro de sedimentación.*

Sí son partículas muy gruesas se miden métricamente, sí son medianas se clasifican usando un conjunto estándar de tamices y sí son muy pequeñas el tamaño se determina mediante la velocidad de asentamiento, por análisis visual de la acumulación en un tubo de ensayo.

Para clasificar los sedimentos por tamaño por el método de Tamiz se usa tamices estándar (U.S. Standar), como se indica las Tablas 1.1. la cual indica la clasificación de sedimentos en arcilla, limo, arena, grava, guijarros y cantos rodados, dada originalmente por Lane y reportada por Yang, (1996). Esta

clasificación se tomará como base para establecer el tamaño de los sedimentos en la presente investigación. Los diferentes diámetros se definen a continuación:

DIÁMETRO DE	CLASE DE	Nº de TAMIZ	TIPO DE
PARTÍCULA	PARTÍCULA	Estándar	MEZCLA
[mm]			
64-32	Grava Muy Gruesa		Sedimentable
32-16	Grava Gruesa		Sedimentable
16-8	Grava Media		Sedimentable
8-4	Grava Fina	5 - +	Sedimentable
4-2	Grava Muy fina	10 –5	Sedimentable
2-1	Arena Muy Gruesa	18 – 10	Sedimentable
1-0.5	Arena gruesa	35 – 18	Sedimentable
0.5-0.25	Arena Media	60 – 35	Sedimentable
0.25-0.125	Arena Fina	120 – 60	Sedimentable
0.125-0.062	Arena Muy Fina	230 – 120	Sedimentable
0.062-0.034	Limo grueso		No-Sedimentable
0.034-0.016	Limo Medio		No-Sedimentable
0.016-0.008	Limo Fino		No-Sedimentable
0.008-0.004	Limo muy fino		No-Sedimentable
0.004-0.002	Arcilla Gruesa		No-Sedimentable
0.002-0.001	Arcilla Media		No-Sedimentable
0.001-0.0005	Arcilla Fina		No-Sedimentable
0.0005-0.00024	Arcilla Muy Fina		No-Sedimentable

Tabla 1.1 Clasificación de sedimentos naturales según su tamaño, por La American Society of Testing Material (ASTM). Dada por Lane (Yang 1996).¹

1.1.1. **Forma.** La forma se refiere a la configuración de la partícula, la cual es independientemente de su tamaño o composición química. Para evaluar la forma se utiliza el factor de la forma (F_f) definido en la siguiente expresión:

$$F_f = \frac{c}{\sqrt{(ab)}}$$
[0.9]

Donde $\mathbf{c} \leq \mathbf{b} \leq \mathbf{a}$ corresponden a las dimensiones de la partícula en sus tres ejes ortogonales. El valor de (F_f) para una esfera es igual a 1 y para sedimentos naturales compuestos de cuarzo es dado comúnmente como 0.7. Aunque este valor es difícil introducirlo en las ecuaciones de cálculo, se parte del hecho que su

¹ Yang, Chih Ted. (1996) "Sediment Transport: Theory and Practice". McGraw-Hill. Series in Water Resources and Environmental Engineering. New York. 1996. Pg 1.18.

efecto está cuantificado en el valor experimental del coeficiente de arrastre de las partículas.

1.1.2. **Densidad.** La densidad de una partícula de sedimentos está referida a su composición mineralógica y se refiere en general a la masa de material sólido seco y sin porosidad. Como un indicativo de la densidad es común usar la gravedad específica.

Uniformidad de los sedimentos:

Para cuantificar la uniformidad de los sedimentos es común usar la desviación estándar geométrica de los sedimentos y el coeficiente de uniformidad, los cuales se describen a continuación.

- Desviación estándar geométrica de los sedimentos, σ_g Esta relaciona los diámetros d₈₄, d_{16 y} d₅₀, como $\sigma_g = d_{84}/d_{50} \approx d_{84}/d_{16} \approx d_{50}/d_{16}$, es común usar la relación $\sigma_g = d84/d_{16}$ si su valor, es mayor 1.3 el sedimento se considera como no *uniforme*.
- **Coeficiente de uniformidad**, **C**_u. Relaciona el diámetro d₆₀ y d₁₀, **C**_u = d_{60}/d_{10} . Su valor numérico decrece cuando la uniformidad aumenta, realmente debería llamarse coeficiente de des-uniformidad. Los suelos con $C_u < 3$ se consideran muy uniformes; aun las arenas naturales muy uniformes rara vez tienen un Cu > 2.

1.2. VELOCIDAD DE ASENTAMIENTO (V_s)

La velocidad final de asentamiento o velocidad terminal de asentamiento de una partícula sumergida se da cuando en el proceso de caída de la partícula llega un momento en el que la fuerza gravitatoria se neutralizará con la fuerza de rozamiento, anulando la aceleración y generando un movimiento de velocidad constante.

Es el promedio terminal de una partícula es la que cae en un depósito de agua destilada en reposo de extensión infinita. Si la velocidad de asentamiento es medida a una temperatura del agua de 24°C se denomina *Velocidad de Asentamiento Estándar.*

La velocidad de asentamiento final es una propiedad básica de las partículas de sedimentos en un fluido. Esta depende no solamente de las características físicas de la partícula sino también de las propiedades del fluido y propiedades de la mezcla. De este modo la velocidad de asentamiento final puede verse afectada

por varios factores; por un lado, por el tamaño, forma, densidad, rugosidad, rotación de las partículas, efectos de turbulencia, concentración y por otro lado por fronteras de confinamiento, viscosidad y densidad del fluido. Aunque incluir todos estos efectos en la predicción de la velocidad de asentamiento, es un problema que está lejos de ser resuelto, si se ha logrado incluir los parámetros y variables independientes que tienen mayor influencia, proporcionado la suficiente exactitud en la cuantificación de la velocidad terminal para efectos prácticos en ingeniería.

1.2.1. **Teoría básica de la sedimentación.** Esta establece que la velocidad de asentamiento terminal, puede ser calculada considerando las fuerzas que actúan sobre la partícula, esto es, haciendo un balance entre las fuerzas de flotación o empuje; la fuerza debido al peso de la partícula y la fuerza de arrastre, como se indica en Figura 1.1.

Cuando existe un equilibrio entre la fuerza de empuje y la fuerza debido al peso gravitacional, la partícula teóricamente se encuentra en estado de equilibrio estático, Corcho (1993), cuando el peso es mayor que el empuje se produce la sedimentación, donde la fuerza resultante o peso neto, está dada por la ec. [1.10], para una partícula esférica.

$$W_n = \left(\frac{\pi}{6}\right) d^3 \left(\rho_s - \rho\right) g \qquad [0.10]$$

Figura 1.1 Esquema de la acción de las fuerzas sobre una partícula sólida sedimentándose en un fluido

Por otro lado, el movimiento de la partícula genera una fuerza de arrastre dada por la expresión de *Newton*. Para una partícula esférica F_D está dada como:

$$F_{D} = \frac{\pi d^{2}}{8} C_{D} \rho V_{s}^{2}$$
 [0.11]

Estableciendo la condición de equilibrio entre ec. [1.10] y ec. [1.11], se tiene:

$$\frac{\pi}{6}d^{3}(\rho_{s}-\rho)g = \frac{\pi d^{2}}{8}C_{D}\rho V_{s}^{2}$$
[0.12]

Solucionando para la velocidad de asentamiento final, se obtiene:

$$V_{s} = \left[\frac{4}{3} \frac{\left(\frac{\rho_{s} - \rho}{\rho}\right)gd}{C_{D}}\right]^{1/2}$$
[0.13]

En ec. [1.13] el problema radica en encontrar el valor de C_D y existen varias investigaciones que se han realizado encaminadas a dar expresiones para evaluar este factor de arrastre. Se ha encontrado que C_D para una partícula individual no es una constante, sino que depende del número de Reynolds de la partícula R_s , dado con ec. [1.28]. Las investigaciones que se han llevado a cabo a través de los años, tanto experimentales como teóricas, muestran una relación muy variada entre C_D y R_s . Como se observa en la Figura 1.2; se pueden identificar claramente tres regiones, a saber:

- Región de flujo laminar, sucede para números de Reynolds bajos menores que 1, (*Rs*<1).
- Región de transición, suele suceder entre números de Reynolds comprendidos entre 1 y 10³.
- Región turbulenta, se produce para elevados números de Reynolds, (*Rs* >10³).

Es de tener en cuenta que cuando se habla de estas tres regiones, no se refiere al flujo de la masa de fluido sino al flujo en las proximidades de la partícula. Es decir, se toma como referencia el movimiento relativo entre fluido y partícula.

Figura 1.2 Coeficiente de arrastre (C_D) vs número de Reynolds (R_s). Región Laminar 10^4

Fuente. Yang (1996), pg. 9.

Gómez (2002) realizó la recopilación de las ecuaciones para estimar C_D y también de ecuaciones para hallar de forma explícita la velocidad de asentamiento, las cuales se recopilan en las tablas 6.4 y 6.5. Para flujo laminar esto es para R_s <0.5, se puede usar la siguiente ecuación:

$$C_D = \frac{24}{R_s}$$
[0.14]

1.2.2. Datos experimentales de velocidad de asentamiento final. Para la validación de las ecuaciones dadas en el ANEXO C, el autor ha obtenido dos grupos de datos experimentales de velocidad de asentamiento final para partículas de arena dados por Cheng (1997a). Los primeros corresponden a velocidad de asentamiento de partículas de arena de cuarzo en agua a 20°C y los segundos para una temperatura de 15°C.

$$V_s = \frac{R_s v_f}{d}$$
 [0.15]

Estos datos fueron usados para determinar el grado de exactitud de las ecuaciones usando el valor del *error relativo* como parámetro de comparación, dado como:

$$error_relativo[\%] = \left[\frac{|Valor calculado-Valor medido|}{Valor medido}\right] x100$$
[0.16]

Con los datos del error relativo para cada dato, se calcula el error promedio, el cual es tomado como criterio para seleccionar la ecuación con el valor más bajo de error promedio en la predicción.

$$error _ promedio [\%] = \left[\frac{\sum_{i=1}^{ND} (error _ relativo)i}{ND}\right] x100$$
[0.17]

En la Figura 1.3 se indica la variación del coeficiente de arrastre con respecto al número de Reynolds de partícula calculado con las ecuaciones analizadas y los datos experimentales para una Temperatura de 15°C dados por Cheng (1997a).

Figura 1.3 Comparación entre valores del coeficiente de arrastre calculado y experimental.

Fuente. Gómez (2002)

En la Figura 1.4 se indica los errores de predicción de la velocidad de asentamiento para partículas individuales.

Las ecuaciones que presentan menor error relativo, son las ecuaciones dadas por Cheng (1997a], la ec. [1.18] para el coeficiente de arrastre y ec. [1.15] para la velocidad de asentamiento. El resto de ecuaciones presentan errores muy altos en la predicción, los cuales están por encima del 20%. Para el coeficiente de arrastre, Cheng (1997a], proporciona la siguiente ecuación, la cual se usa en la presente investigación.

$$C_D = \left[\left(\frac{32}{R_s} \right)^{2/3} + 1 \right]^{3/2}$$
 [0.18]

Donde R_s se calcula como:

$$R_{s} = \left(\sqrt{\left(25 + 1.2(d_{*})^{2}\right)} - 5\right)^{1.5}$$
 [0.19]

Donde d_* es el parámetro adimensional de la partícula individual y se calcula con la ec. 1.20.

$$d_* = \left(\frac{\Delta g}{\nu_w^2}\right)^{\left(\frac{1}{3}\right)} d \qquad [0.20]$$

 Δ es el coeficiente de densidad de partícula individual dado como $\Delta = (\rho_s - \rho_w) / \rho_w$, donde ρ_w es el peso específico del agua a temperatura de ensayo.

Teniendo en cuenta que las ecuaciones indicadas en la tabla 6.6, son las que tienen mayor sustentación teórica y experimental, con error de predicción promedio inferior al 5% en la predicción de la velocidad de asentamiento y coeficiente de arrastre de partículas individuales de sedimentos naturales, son las ecuaciones que se usarán en la presente investigación para cálculos posteriores.

Figura 1.4 Comparación entre valores de la *velocidad de asentamiento* calculados por las ecuaciones indicadas en este capítulo y los valores experimentales dados por Cheng (1997a], con Ss = 2.65.

1.2.3. Efecto de la concentración sobre la velocidad de asentamiento. Debido a que las anteriores ecuaciones han sido desarrolladas estrictamente para sedimentación de partículas individuales con concentraciones muy bajas y dado que el caso más frecuente encontrado en el análisis y predicción en el transporte de sedimentos es aquel que más de una partícula solitaria cae a través de un fluido; autores diversos, han realizado varias investigaciones para incluir el efecto de la concentración en la velocidad de asentamiento de partículas individuales.

La presencia de otras partículas en el fluido, modifica la velocidad de asentamiento final de las partículas individuales, debido a la mutua interferencia entre partículas. La velocidad de asentamiento final de muchas partículas dispersas (concentración) moviéndose a través de un fluido será *menor* que la de una partícula idéntica individual en un fluido claro. Este caso es el que se presenta comúnmente en la práctica. Las recientes investigaciones sobre la influencia de la concentración de partículas de sedimentos sobre la velocidad de asentamiento son reportadas por Cheng (1997b), quién afirma que los resultados de las investigaciones reportadas por otros investigadores, muestran que un incremento en la concentración de sedimentos produce una reducción en la velocidad de asentamiento.

Las investigaciones realizadas por los diferentes investigadores para cuantificar el efecto de la concentración son reportadas por Graf (1972), Duckworth (1978), Oroskar (1980) y Cheng (1997b). De este modo Duckworth (1978) sugiere:

$$V_m = V_s \left(1 - C\right)^{5/2}$$
 [0.21]

Donde V_s con ec. [1.39], V_m es la velocidad de asentamiento de las partículas teniendo en cuenta la concentración volumétrica C. A pesar de que Duckworth no especifica el rango en que se puede usar la ecuación [1.21], Cheng (1995b) afirma que su utilización se limita para valores de R_s mayores a 400. La ec. [1.21] se deriva de la siguiente ecuación genérica dada por Richardson JF & Zaki WN, (1954).

$$V_m = V_s (1 - C)^n$$
 [0.22]

$$V_s = 1.068 \quad \sqrt{(\Delta) gd}$$
 [0.23]

En donde (*n*) es un exponente que cuantifica el efecto de la concentración sobre la velocidad de asentamiento de las partículas. Oroskar (1980) da un valor de *n*=4.65 para la región de flujo laminar con (*Rs*<0.3); de *n*=2.33 para valores de (*R_s*) mayores a 1000, comentando además que el efecto de la concentración sobre la velocidad de asentamiento es más pronunciado cuando se trata de partículas no esféricas y de formas irregulares que en partículas esféricas.

(Cheng, 1997b), presenta un detallado estudio para evaluar el valor de (*n*), procediendo de manera similar que el de una partícula individual, pero incluyendo la viscosidad y densidad de la mezcla en vez de las propiedades de agua limpia; el grupo de ecuaciones para calcular (*n*) es indicado en el **ANEXO C** Observándose que el exponente (*n*) no solamente depende del número de Reynolds de la Partícula R_s , sino también de la gravedad específica de la partícula (S_s) y de la concentración volumétrica **C**. Como resultado de su análisis Cheng (1997b) también presenta la ecuación para el coeficiente de arrastre afectado por la concentración de partículas (C'_D), indicado en ec. [1.24).

$$C'_{D} = \left[\left(\frac{32}{R_{m}} \right)^{2/3} + 1 \right]^{3/2}$$
 [0.24]

1.2.4. Efecto de la distribución granulométrica sobre velocidad de asentamiento y el coeficiente de arrastre. Teniendo en cuenta que las anteriores ecuaciones son válidas cuando todos los tamaños de partícula son iguales, caso que nunca se presenta en la naturaleza, es necesario recurrir a un valor de V_m o C_D que cuantifique la distribución granulométrica de las partículas. Para ello se toman dos metodologías dadas por Graf (1971), las cuales se describen a continuación:

Condolios nombrado por Graf (1971), propone una ecuación que tiene en cuenta la distribución no uniforme de los tamaños de grano, donde el coeficiente de arrastre CD puede ser expresado como:

$$\sqrt{C_{Dp}} = \sum_{i=1}^{np} P_i \sqrt{C_{Di}} = P_1 \sqrt{C_{D1}} + P_2 \sqrt{C_{D2}} + P_3 \sqrt{C_{D3}} + \dots + P_{nP} \sqrt{C_{DnP}}$$
[0.25]

Donde *Pi* es el porcentaje de sedimento en el rango de tamaño *i*.

Bonnington nombrado por Graf (1971), propone definir el coeficiente de arrastre promedio, como aquel, que es igual al promedio por peso de los coeficientes de arrastre de los componentes individuales, dado por la siguiente ecuación:

$$C_{D} = \frac{\sum_{i=1}^{np} P_{i} C_{Di}}{\sum_{i=1}^{np} P_{i}}$$
[0.26]

Como cada rango de tamaños tiene un diámetro de partícula máximo y un mínimo, para cada fracción, se toma un diámetro representado por la media aritmética \overline{d} de los valores extremos de cada rango, dado con la siguiente ecuación:

$$\overline{d} = \frac{d_{\max} + d_{\min}}{2}$$
[0.27]

Para usar la metodología dada por Cheng (1997b), en la presente investigación, se parte del hecho de que el coeficiente de arrastre afectado por la mezcla C'_{D} , para un rango de tamaños, también se puede calcular con las ec. [1.25] y [1.26].

1.3. PROPIEDADES DE LA MEZCLA

Es claro que la inclusión de partículas dentro de un fluido, altera las propiedades físicas del mismo. La densidad se ve afectada dependiendo de la densidad de los sólidos. El efecto sobre la viscosidad es más complejo y difícilmente se puede

observar a simple vista. A continuación, se describen estos conceptos y las ecuaciones para cuantificar dicho efecto.

1.3.1. Efecto de la concentración sobre la viscosidad. Según consenso de varios autores, la viscosidad de suspensiones es independiente del tamaño absoluto de la esfera pero si depende de la relación de tamaño entre esferas, esto se ha visto ser válido para esferas con diámetros por encima de 15 micras (d $\approx 15 \mu$). Aunque otras investigaciones indican solamente una variación aleatoria de la viscosidad con la relación de tamaño de la partícula de sedimento, Graf (1971).

En la literatura no se reporta ninguna alternativa de uso práctico para el caso del efecto de la concentración de partículas de formas irregulares en la viscosidad del fluido. Aunque según algunos investigadores, la diferencia en el comportamiento entre suspensiones de partículas esféricas y no esféricas, radica principalmente en las capas de fluido inmóvil contenido en la superficie de partículas irregulares. En el **ANEXO D** se indican las ecuaciones para estimar el efecto de la concentración sobre la viscosidad cinemática del fluido. Para cálculos posteriores en esta investigación se usará la ecuación dada por (Cheng, 1997b), como:

$$\nu_{m} = \frac{2\nu_{f}}{2 - 3C}$$
[0.28]

1.3.2. Efecto de la concentración sobre la densidad. La inclusión de partículas más densas que el fluido modifica las características de este, de tal modo que su densidad aumenta considerablemente. Para evaluar el efecto de la concentración de los sedimentos en la densidad del fluido, se puede usar las ecuaciones indicadas en el ANEXO E, como por ejemplo la ecuación siguiente:

$$\rho_{m} = C \rho_{s} + (1 - C) \rho \qquad [0.29]$$

Para el caso de una mezcla compuesta por metal pesado, arena y agua, el autor deduce una ecuación para hallar la densidad de la mezcla, en función de la concentración del metal pesado y la concentración de la arena, indicada también en la parte final del **Anexo E**.

1.3.3. **Modos de transporte.** La manera como se mueven los sedimentos dentro del fluido constituye los modos de transporte. En este sentido se han identificado tres modos de transporte, comunes en el transporte de sedimentos, *1) rodamiento y arrastre, 2) saltación y 3) suspensión* y un modo especial, cuando se trata de transporte de sedimentos por tuberías o canales artificiales, identificado como *lecho deslizante, (sliding bed).*

- Rodamiento y arrastre: Estos modos suceden cuando las partículas de sedimentos son soportadas la mayor parte del tiempo por el fondo del conducto, rodando, arrastrándose o deslizándose sobre el fondo, cuando el fondo del tubo está cubierto por una capa de sedimentos en reposo, este modo de transporte genera las formas del lecho comúnmente conocidas como *rizos y dunas.* Las partículas que se mueven con este modo de transporte, forman lo que se denominan *carga de contacto.*
- **Saltación:** En este modo las partículas se mueven saltando y cayendo repetidamente al fondo del tubo siguiendo trayectorias balísticas, en parte soportadas por el fondo y en parte por el fluido; forma la *carga de saltación.*

Sobre este modo de transporte, Lee (1994), realiza un estudio detallado, proponiendo un modelo matemático con comprobación experimental, formulando expresiones para encontrar la longitud, altura del salto y velocidad de la partícula en función de la velocidad media del flujo.

- **Suspensión:** Son las partículas que están soportadas en su totalidad por el fluido y viajan suspendidas permanentemente con el agua. Las partículas que se mueven con este modo forman la carga en suspensión.
- Lecho deslizante (sliding bed): Este modo es particular del transporte de sedimentos sobre conductos con superficies lisas, en el cual las partículas se mueven en conjunto una vez han alcanzado el fondo del conducto, sin formar un depósito estacionario de partículas. Se supone que la energía necesaria para mover el bloque de partículas es transmitida por fricción del fluido sobre la superficie del depósito, sin que la fricción entre la superficie del tubo y las partículas sea suficiente para resistir el desplazamiento inducido por el fluido en movimiento.

Estos modos de transporte, suelen suceder simultáneamente siempre y cuando exista un lecho granular en reposo o en movimiento o un lecho deslizante, donde las partículas de la parte superior de este lecho se moverán en *rodamiento, arrastre y saltación.*

Es de aclarar que es muy difícil diferenciar entre la carga de contacto y la carga de saltación, por lo tanto se las agrupa en una sola, denominada *carga de arrastre*. Estos modos de transporte serán claves en establecer las clases de flujo que se presentan en el transporte hidráulico de sedimentos en canales abiertos. 1.3.4. **Tipos de mezclas.** Tomando la definición general que se tiene para una mezcla², esta se produce cuando dos o más sustancias puras se mezclan y no se combinan químicamente. Una mezcla puede ser separada en sus componentes (sustancias) simplemente por métodos físicos. Estas pueden ser clasificadas en homogéneas y heterogéneas.

- Mezclas heterogéneas: no son uniformes; en algunos casos, puede observarse la discontinuidad a simple vista (sal y carbón, por ejemplo); en otros casos, debe usarse una mayor resolución para observar la discontinuidad. El límite a partir del cual se distinguen los sistemas heterogéneos de los sistemas homogéneos lo constituye precisamente el ultramicroscopio. Los diferentes sistemas homogéneos que constituyen el sistema heterogéneo se denominan fases.
- Mezclas homogéneas: son totalmente uniformes (no presentan discontinuidades al ultramicroscopio) y presentan iguales propiedades y composición en todo el sistema, algunos ejemplos son la salmuera, el aire. Estas mezclas homogéneas se denominan soluciones.

Existen gran número de métodos para separar los componentes que forman una mezcla; en realidad, cada mezcla implicará el uso de uno o más métodos particulares para su separación en los componentes individuales.

Es de anotar que en el flujo de mezclas no es muy común usar los términos generalizados de heterogéneas y homogéneas, sino de sedimentables y no sedimentables, aunque es posible hacer la equivalencia ya que las homogéneas suelen tener comportamiento de no sedimentables y las heterogéneas de sedimentables. Aunque una mezcla heterogénea en reposo es posible que se comporte como una mezcla homogénea en movimiento, especialmente en altas velocidades del flujo.

Las mezclas pueden tener variadas características dependiendo de las propiedades del fluido y los sólidos que los conforman. Para efectos prácticos, mezclas formadas por agua y sedimentos son clasificadas como mezclas **sedimentables y no sedimentables**. Duckworth (1978)³ y Graf⁴ (1971) han propuesto criterios para diferenciarlas, los cuales se explican a continuación. Según este criterio se presenta la siguiente clasificación de mezclas.

²http://www.unlu.edu.ar/~qui10017/Quimica%20COU%20muestra%20para%20IQ10017/Cap%A1tulo%20VIa.htm

³ Duckworth, R.A."The hydraulic transport of materials by pipeline". South African Mechanical Engineer (Johannesburg). 1978. vol. 28, no. 8, pages 291.306. [16 pp.]

⁴ Graf, H. W. "Hydraulics of Sediment Transport". McGraw.Hill. New York. 1971. 513 pages [ISBN 07-023900-2]

1.3.5. Clasificación de mezclas según Duckworth (1978). Este autor propone usar como criterio para clasificar las mezclas, el número de Reynolds de partículas (R_s), el cual tiene la ventaja de incluir la densidad de los sólidos(ρ_s), el diámetro de partícula y viscosidad del fluido; pudiéndose generalizar a varios tipos de mezclas; a diferencia del criterio del tamaño de partícula que sería único para cada tipo de mezcla; (R_s) se indica en ec. [1.30].

$$R_s = \frac{V_s d}{V_f}$$
[0.30]

Duckworth presenta los siguiente sub-clasificación para lodos, en función del diámetro de los sólidos y su comportamiento reológico de la mezcla:

- LODOS NO NEWTONIANOS (d<30µm)
- LODOS NEWTONIANOS (50µm <d<150µm)

Donde los lodos Newtonianos son fluidos en los cuales la tensión cortante es directamente proporcional a la tasa de deformación y los lodos no Newtonianos son fluidos en los cuales la tensión cortante no es directamente proporcional a la tasa de deformación.

A partir de la anterior clasificación Duckworth presenta los siguientes rangos de clasificación generalizada para las mezclas agua-sólido en función del número de Reynolds de partícula individual:

- **MEZCLAS NO-NEWTONIANAS:** Cuando el número de Reynolds de partículas es menor a 0,02, (*R*_s <0,02).
- LODOS NEWTONIANOS: Cuando (*R*_s) está entre el rango dado por 0.1< (*R*_s) <2.0.
- **MEZCLAS SEDIMENTABLES SIN SALTACIÓN:** Cuando 2.0< (*R*_s) <525.
- MEZCLAS SEDIMENTABLES CON SALTACIÓN. Para $(R_s) > 525$.

Es de anotar que Duckworth (1978) no presenta la clasificación para mezclas entre 0,02< (R_s) <0.1, esto debido a que estas clasificaciones son las equivalentes a las dadas originalmente por Durand, quien toma como parámetro el diámetro de partícula y que tampoco presenta la clasificación para lodos entre diámetros de partícula entre 30µm y 50 µm, que sería el rango correspondiente al que falta en la clasificación dada por Duckworth (1978). En términos generales el comportamiento no-newtoniano se reserva para mezclas **no sedimentables** y el newtoniano para mezclas **sedimentables**.

Duckworth (1978) ha generalizado gráficas para la clasificación de las mezclas, como se indica en la Figura 1.5, en la cual se especifica un valor para (R_s)=2, para partículas esféricas como límite entre mezcla **sedimentable** y **no sedimentable**.

Figura 1.5 Curva generalizada para la clasificación de mezclas y la determinación de la velocidad de asentamiento.

En esta gráfica se entra con un valor calculado del número de Reynolds para obtener un valor de Vs/V', donde V' se calcula con la gravedad, el peso específico y la viscosidad del fluido, para luego poder calcular Vs.

Estos criterios se pueden usar para mezclas con concentraciones bajas, ya que la *concentración* de partículas tiene un gran efecto sobre el comportamiento newtoniano y no-newtoniano.

1.3.6. **Clasificación de mezclas según Graf (1971).** Este autor toma el criterio de la velocidad de asentamiento para definir el límite entre mezclas sedimentables y no sedimentables, de este modo propone un rango para la velocidad de asentamiento de 0.61mm/s-1.5mm/s, por encima de la cual la mezcla se comportará como sedimentable y por debajo como no sedimentable. En concentraciones bajas estas velocidades son obtenidas con sedimentos naturales con diámetros entre 0.02mm y 0.035mm, que corresponden a limo medio y limo grueso, respectivamente.

1.3.7. **Distribución de concentración en una vertical según Rouse**. Rouse propuso su fórmula en 1937. Para ello se basó en la teoría de la difusión. Conocida la concentración a una distancia a del fondo, la siguiente ecuación permite obtener la concentración a una distancia **y** del fondo:

$$\frac{C}{C_o} = \left[\left(\frac{y_n - y}{y} \right) \left(\frac{a}{y - a} \right) \right]$$
[0.31]

Donde z vale:

$$Z = \frac{\omega}{\kappa v_*}$$
[0.32]

Siendo

la velocidad de caida de la partícula, la cual se puede obtener con la fórmula de Rubey o por el procedimiento general descrito.

Al analizar la ecuación de Rouse se obtiene que, para un flujo dado en que **v*** permanece constante, cuanto menor es **Z** más uniforme será la distribución de concentraciones en la vertical. Si las partículas son mayores, **Z** será más grande y en consecuencia más marcado será el aumento de concentraciones hacia el fondo. De la misma manera se puede razonar al considerar partículas de tamaño constante y variar la velocidad de la corriente. Cuanto mayor sea la velocidad del flujo, mayor será la velocidad de corte **v*** y la turbulencia de la corriente, y en consecuencia menor será **Z** y más uniforme la distribución de concentraciones. Si la velocidad disminuye, también lo hará **v*** y **Z** aumentará, y con ello, también será mayor la diferencia entre las concentraciones cerca del fondo y las cercanas a la superficie.

La fórmula de Rouse no es válida para sus extremos, y = yn e y = 0, ya que para ellos se obtiene una concentración C = 0, lo que es falso; pero no por ello pierde su utilidad.

La indeterminación se halla en evaluar la concentración a una distancia a del fondo, *Ca*; para ello se presenta una ecuación obtenida por M. García y G. Parker (1991):

$$C_{a} = \frac{AZ_{u}^{5}}{1 + \frac{A}{0,3}Z_{u}^{5}}$$
[0.33]
Donde

A Es un coeficiente igual a 1,3x10⁻⁷

$$Z_{u} = \frac{V_{*}'}{\omega} R_{p}^{0.6}$$
 [0.34]

En la cual

 v_* es la velocidad de corte debida a la fricción

$$v_*' = \sqrt{\frac{\tau_o'}{\rho}}$$
 [0.35]

R_p es el número de Reynolds de la partícula, definido como:

$$R_p = \frac{d\sqrt{g\Delta d}}{v}$$
[0.36]

CAPÍTULO

INVESTIGACIÓN EXPERIMENTAL PARA EL TUBO CURVO

NOMENCLATURA

De Número de Dean D Diámetro de curvatura del conducto V Velocidad del flujo Densidad del fluido ρ Viscosidad dinámica del fluido μ Deq Diámetro equivalente R Radio de la curvatura Q Caudal Viscosidad cinemática v h Altura del tubo de sección rectangular R₁ Radios de curvatura interno Radios de curvatura externo R_2 Г Relación de aspecto С Curvatura Número de Reynolds Re U La velocidad media Qm Caudal de la mezcla Caudal sólido Qs Q_L Caudal líquido NA Sección transversal total M1 Muestra arena de cuarzo de mina Muestra arena de río de origen volcánico de color café oscuro M2

- M3 Muestra arena de río de origen volcánico de color gris
- **C**_D Coeficiente de arrastre
- **G**_s Gravedad específica
- C_{pbs} Corresponden a la concentración de metal pesado
- **R**_s Remoción de sedimentos
- R_{pb} Remoción de plomo
- PA Partición de agua
- Q_i Caudal interno salida tubo curvo
- **Q**_e Caudal total a la entrada del tubo curvo
- **R**_s Remoción de sedimentos
- W_{si} Peso del Sedimento entre la salida interna del tubo curvo
- Wse Peso total de sedimentos a la entrada del tubo curvo
- **R**_{pb} Remoción de plomo
- W_{pbi} Pesos de plomo entre la salida interna del tubo curvo
- W_{pbe} Peso de plomo a la entrada del tubo curvo
- C_{pbsi} Concentraciones de plomo a la salida
- W_{Pbi} Peso de plomo recuperado por la salida interna del tubo
- W_{Tpbi} Peso total de plomo mas sedimento recuperado por la parte interna del tubo
- C_{pbe} Concentración de plomo a la entrada
- NA Número de área
- **R**_H Radio hidráulico de la sección transversal
- **R** Radio medio de curvatura del tubo curvo
- R_i Radio interno
- R_e Radio externo
- **B** Base de la sección transversal
- h Altura de la sección transversal
- **Q**_{bp} Caudal de plomo medido a la entrada
- *v*_m Viscosidad cinemática de la mezcla

- V Viscosidad del agua
- T Temperatura del agua
- A_o Relaciona el área interna de drenaje del tubo curvo
- A Área total de la sección transversal del tubo
- B' Ancho interno de salida
- C_{DP} Coeficiente de arrastre promedio

P₁, **P**₂,..., **P**_{nP} Son los porcentajes en peso del solido

C_{D1}, C_{D2},..., C_{DnP} Son los coeficientes de arrastre de cada rango de tamaños

- d_p Diámetro promedio del rango
- d_i Diámetro inferior del rango
- d_s Diámetro superior del mismo
- hvi Altura del vertedero correspondiente la salida interna del tubo curvo
- \mathbf{h}_{ve} Atura del vertedero correspondiente a la salida externa del tubo curvo

LISTA DE TABLAS

Tabla 2.1	Clase de diseños experimentales.	51
Tabla 2.2	Datos de laboratorio según el diseño experimental para el flujo de agua limpia	61
Tabla 2.3	Datos de laboratorio según el diseño experimental para mezcla de agua y sedimento.	62
Tabla 2.4	Datos de laboratorio según el diseño experimental para mezcla de plomo y agua.	62
Tabla 2.5	Datos de laboratorio según el diseño experimental para mezcla de agua, plomo y sedimento	63
Tabla 2.6	Valores experimentales para el flujo de agua limpia	64
Tabla 2.7	Valores experimentales para mezcla agua-sedimento	65
Tabla 2.8	Valores experimentales para mezcla agua-plomo	66
Tabla 2.9	Valores experimentales para el flujo de la mezcla de agua, sedimentos y plomo	68
Tabla 2.10	Valores experimentales de las variables de respuesta afectadas por la mezcla de agua, plomo y sedimento	69
Tabla 2.11	Valores calculados a partir de datos medidos en laboratorio	73
Tabla 2.12	Valores calculados de las variables de respuesta afectadas por la mezcla de agua, plomo y sedimento	74

LISTA DE FIGURAS

Figura 2.1	Flujo de Dean o secundario en la sección transversal de un tubo curvo.	44
Figura 2.2	Esquema general del montaje de laboratorio. Q_m es el caudal de la mezcla, Q_S es el caudal sólido y Q_L es el caudal líquido	53
Figura 2.3	Foto y diseño en planta del tubo curvo instalado en el montaje, correspondiente a la relación de áreas de salida del 22%	53
Figura 2.4	Granulometrías de los sedimentos y el plomo	54
Figura 2.5	Esquema de la sección transversal del tubo (Corte A-A de figura 2.3)	59
Figura 2.6	Esquema de la sección transversal del tubo a la salida	59
Figura 2.9	Valores medidos y calculado para la ec.[2.8] y ec.[2.34]	76

INTRODUCCIÓN

En el presente capítulo se expone los resultados de la investigación experimental, correspondientes al dispositivo denominado tubo curvo.

A pesar de que el flujo a través de un tubo curvo ha sido estudiado por algunos investigadores, su uso como separador de metales pesados aún es desconocido, solamente (Gao et. Al, 2002) realizan una investigación más puntual sobre la clasificación de sedimentos usando un tubo curvo de sección transversal circular, aunque dicho autor, investiga el efecto de separación colocando el tubo en forma vertical; demuestra que el flujo secundario ejerce influencia en la disgregación de las partículas a lo ancho de la sección transversal según el tamaño o el peso específico.

Antes de realizar corridas con la mezcla total, se realizó ensayos solo con agua, con agua-plomo, y con agua-sedimentos. Para la preparación de la mezcla se usó plomo como metal pesado junto con sedimentos naturales. Para establecer los parámetros adimensionales a estudiar se utilizó el método del análisis dimensional y para conocer el número de ensayos experimentales y el orden de ejecución de los tratamientos experimentales, se realizó un diseño experimental con arreglos factoriales. Para la medición experimental, se construyó un montaje de laboratorio el cual permite recircular la mezcla de sedimento, plomo y agua y hacerla fluir a través del dispositivo de separación.

Al final se obtuvieron correlaciones matemáticas que relacionan la concentración de metal pesado, la partición de agua, la remoción de sedimentos y la remoción de metal pesado, con las variables que identifican las propiedades del agua, las de los sedimentos, las de la mezcla y la geometría del tubo curvo. Con dichas correlaciones es posible saber cuál es la concentración de metal pesado a la salida del separador, con relación a la concentración a la entrada del mismo.

2.1. ASPECTOS TEORICOS

2.1.1. **Concepto de flujo secundario.** El flujo al pasar a través de un tubo curvo sufre alteración en la dirección, deformando las líneas de corriente del flujo, forzándolas a seguir trayectorias en forma de espiral desde la parte externa de la curva hacia la parte interna, en la mitad inferior de la sección transversal del flujo y dependiendo de las condiciones del flujo, el flujo secundario puede tener uno o dos ejes de desarrollo, como se observa en la figura 2.1.

Figura 2.1 Flujo de Dean o secundario en la sección transversal de un tubo curvo.

Dicho comportamiento del flujo en un tubo curvo, hace que se formen corrientes transversales adicionales a la línea de flujo principal, generando el flujo secundario. Estas corrientes son capaces de transportar las partículas sólidas inmersas en el agua, desde la parte externa de la curva a la parte interna de la curva del tubo.

Entre los autores que han encaminado sus esfuerzos a un estudio más puntual del fenómeno, es de resaltar a (Gao et. Al, 2002), quienes realizan una investigación sobre el flujo en un tubo curvo cuyo propósito de su estudio fue describir la trayectoria de las partículas y los perfiles de concentración en la sección transversal del tubo curvo con flujo turbulento bifásico, tanto cualitativamente como cuantitativamente y evaluar la contribución del efecto centrífugo, las diferentes fuerzas hidráulicas, el flujo secundario y la dispersión turbulenta en la fase de separación. Aunque en su estudio el tubo curvo es analizado de forma vertical, proporciona conceptos importantes sobre el tema estudiado.

Como complemento a los conceptos de (Gao et. Al, 2002), se puede decir que la separación en un tubo curvo se da por un lado debido a la fuerza centrífuga, la

cual disgrega las partículas por tamaños o gravedad específica, a lo ancho de la sección transversal, produciendo una separación por fuerza centrífuga, transportando las partículas más gruesas o más pesadas al exterior de la curva; por otro lado la fuerza debido al flujo secundario que actúa en dirección opuesta de la fuerza centrífuga en la vecindad del fondo del tubo, hace que las partículas se muevan hacia la parte interna de la curva.

2.1.2. **Número de Dean**. Número adimensional que relaciona la fuerza de viscosidad que actúa sobre un fluido que se mueve en una tubería curvada y la fuerza centrífuga. De es igual al número de Reynolds multiplicado por la raíz cuadrada de la relación entre el diámetro equivalente D_{eq} y el diámetro de curvatura del conducto (2R). Según (Ookawara, 2004), para un tubo circular y agua limpia se da como.

$$De = \left(\frac{DV\rho}{\mu}\right) \left(\frac{D_{eq}}{2R}\right)^{1/2}$$
[2.1]

Donde, D_{eq} para un tubo circular es igual al diámetro interno del tubo circular D, para un canal o tubo con una sección transversal diferente a la circular, $D_{eq} = 4R_H$, R_H es el radio hidráulico de la sección mojada, μ es la viscosidad dinámica del fluido, V es la velocidad del flujo, ρ es la densidad del fluido y R es el radio de la curvatura.

Es de anotar que el uso del tubo curvo para separar metales inmersos en matrices de sedimentos, no es reportado en la literatura y los estudios se han encaminado a estudiar las pérdidas de energía y la posible clasificación de materiales de las mismas propiedades por efecto del flujo secundario, que es un tema diferente al reportado en la presente investigación.

2.2. DISEÑOS EXPERIMENTALES

2.2.1. **Conceptos generales.** Según (Gutiérrez, 2008)⁵, "el diseño estadístico experimental es precisamente la forma más eficaz de hacer pruebas. El diseño experimental consiste en determinar cuáles pruebas se deben realizar y de qué manera, para obtener datos que, al ser analizados estadísticamente, proporcionen evidencias objetivas que permitan responder los interrogantes planteados, y de esa manera clarificar los aspectos inciertos de un proceso, resolver un problema o lograr mejoras".

⁵ Gutiérrez, P. H. Román de la Vara (2004) "Análisis y Diseño de Experimentos". Edit. McGrawHill. Mexico D.F. 2008. Pg.4

Algunos problemas típicos en hidráulica que se pueden resolver por diseño y análisis de experimentos se encuentran los siguientes:

1. Comparar dos o más procedimientos matemáticos que describen el mismo fenómeno. Es común en ingeniería que varios autores propongan planteamientos matemáticos para resolver un determinado problema o explicar un mismo fenómeno. Por ejemplo sobre el transporte hidráulico de sedimentos, existen cantidad de procedimientos matemáticos para calcular el caudal sólido, pero al ser utilizados dan valores bastante alejados entre si.

2. Comparar varios dispositivos, montajes o instrumentos de medición para saber si trabajan con el mismo rendimiento, precisión, etc. Por ejemplo, evaluar la eficiencia de separación de tres dispositivos para separar metales pesados como el hidrociclón, la canaleta en espiral y el separador de tubo curvo.

3. Determinar los factores que tienen influencia en una variable de respuesta. Por ejemplo, de una lista de variables, evaluar cuántas de ellas y en que magnitud afectan la eficiencia de separación del separador de tubo curvo.

4. Encontrar las condiciones óptimas de operación, (temperatura, velocidad, concentración, humedad, etc.) de un determinado proceso. Por ejemplo determinar las condiciones óptimas para el transporte de mezclas complejas por tuberías, el funcionamiento óptimo de una planta de tratamiento, o una planta de procesamiento de minerales, etc.

2.2.2. **Conceptos básicos de diseño de experimentos.** Es necesario retomar algunas recomendaciones dadas por Gutiérrez (2004)⁶, para el diseño de experimentos el cual permite optimizar la información generada a cerca del procesos, en relación a los objetivos planteados en otras palabras, el diseño de experimentos es la aplicación del método científico para generar conocimiento de un sistema o proceso. Esta herramienta se ha ido consolidando en la industria actual como un conjunto de técnicas estadísticas y de ingeniería, que permiten lograr la máxima eficacia de los procesos con el mínimo costo. El diseño de experimentos es especialmente útil para crear calidad desde la fase de diseño del producto y del proceso; pero también permite lograr mejoras sustanciales en el proceso ya establecidos. A continuación se presentan algunas definiciones para mayor entendimiento del tema.

• *Experimento:* "es un cambio en las condiciones de operación de un sistema o proceso que se hace con el objeto de medir el efecto de cambio

⁶ Idem Pg. 9 a 13.

sobre una o varias propiedades del producto. Dicho experimento permite aumentar el conocimiento acerca del sistema". Por ejemplo en el transporte de sedimentos en canales abiertos se puede probar diferentes sedimentos, velocidades y formas de secciones de canal y se mide el cambio observado en la fricción dentro del fenómeno de flujo de mezclas. Esta experimentación genera conocimiento del fenómeno, lo que permite mejorar las metodologías de diseño.

- Diseño de experimentos: "El diseño de experimentos consiste en planear un conjunto de pruebas experimentales, de tal manera que los datos generados puedan analizarse estadísticamente para obtener conclusiones variadas y objetivas a cerca del sistema o procesos".
- Unidad experimental: "la unidad experimental es la muestra de artículos que es necesario producir en una condición de operación de proceso para obtener, a partir de ellos, una medición o dato representativo de lo que allí ocurre, en cada diseño de experimentos es importante definir la unidad experimental, ya que esta puede ser una pieza o un conjunto de piezas producidas, dependiendo del proceso que se estudia, por ejemplo, si el problema es investigar para reducir porcentaje piezas defectuosas en un procesos que produce muchas piezas en un lapso corto de tiempo, es claro que no sería muy confiable que la unidad experimental fuera una solo pieza en la cual se vea en una condición experimental fue defectuosa o no. Aquí la unidad experimental sería cierta cantidad de piezas que se producen en las mismas condiciones experimentales, y que al final se analizan cuántas de ellas son defectuosas y cuantas no".
- Variables, factores y niveles: en todo proceso intervienen distintos tipos de variables o factores como los que se definen a continuación:
 - Variables de respuesta: "es la característica, variable de salida o propiedad de producto, cuyo valor interesa mejorar. Por lo general el valor de dicha característica determina algún aspecto de la calidad del producto. La conjetura típica para utilizar diseño experimental es que existe otra manera de operar el proceso en la cual el comportamiento de una o varias variables de respuesta sería mejor que el actual". Por ejemplo la eficiencia de separación, la partición de arena, un factor de fricción, velocidades de depósito, etc.
 - Factores controlables: "son variables de proceso o variables de entrada que se pueden fijar en un punto o en un nivel de operación. Algunos de estos son los que usualmente se controlan durante la operación normal del proceso, y se distinguen por que para cada uno de ellos, existe la manera o el mecanismo para cambiar o manipular su

nivel de operación. Esto último es lo que hace posible que se pueda experimentar con ellos. Por ejemplo, si en el proceso se usa agua a 60°C, entonces debe haber un mecanismo que permite fijar la temperatura del agua dentro de un rango de operación". Algunos factores que generalmente se controlan son: temperatura, cantidad de sedimentos (caudal sólido), velocidad, caudal líquido, etc. "A los factores controlables también se les llama variables de entrada, condiciones de proceso, variables de diseño, parámetros del proceso, o simplemente factores".

- Factores no controlables o de ruido: "son variables que no se pueden controlar durante la operación del proceso". Por ejemplo algunos factores que suelen ser no controlables son las variable ambientales, (luz, humedad, temperatura, partículas, etc.), el ánimo de los operadores y personal de laboratorio, la calidad del material que se recibe del proveedor (externo e interno) y los diversos usos que el cliente pueda dar al producto. "Un factor que ahora es no controlable pueda convertirse en controlable, cuando se tenga el mecanismo o tecnología para ello". En el trabajo en laboratorio por ejemplo es muy difícil mantener la temperatura de los líquidos constante, se parte de la suposición que variaciones pequeñas de temperatura no afectan considerablemente las variables de respuesta.
- Factores Estudiados: "son las variables que se investigan en el experimento en cuanto a cómo influyen o afectan la(s) variable(es) de respuesta los factores estudiados pueden ser factores controlables o no controlables donde estos últimos y de posible interés controlarlo durante el experimento. Para que un factor pueda ser estudiado es necesario que durante el experimento se haya probado en al menos los dos niveles o condiciones. En principio, cualquier factor, sea controlable o no, puede tener alguna influencia en la variable de respuesta, en que se refleja en su medida o en su variabilidad. Para fines de un diseño de experimentos deben seleccionarse los factores que se considera, por conocimientos del proceso y conjeturas que pueden tener efecto sobre la respuesta de interés. Y parte de la problemática a superar durante el diseño es ver la manera en que se controlará durante el experimento un factor que normalmente es no contable".
- Niveles de tratamiento: "los diferentes valores que se asignan a cada factor estudiado en un diseño experimental se llaman *niveles*. Una combinación de niveles de todos los factores se llama *tratamiento* o punto de diseño. Por ejemplo, si en un experimento se controlan la velocidad y la temperatura y se decide probar cada uno en dos niveles, entonces cada combinación de niveles (velocidad, temperatura) es un tratamiento. En este caso habría cuatro tratamientos". "De acuerdo con

estas definiciones, en el caso de experimentar con un solo factor, la combinación de niveles es a la vez un tratamiento."

Matriz de diseño: Conocida también como solo diseño y consiste en el arreglo formado por los diferentes tratamientos que serán corridos, incluyendo las repeticiones. (Gutiérrez, 2008, pg. 10)

2.2.3. **Planeación y realización del experimento.** Para la presente investigación se tomó como base los conceptos de (Gutiérrez, 2008, pg. 10). El experimento se lleva a cabo en varias etapas siendo la de mayor importancia, *la etapa de planeación*, aunque esta etapa es crucial en la elaboración del protocolo de investigación, a continuación se indican varios conceptos que se manejan en estas dos etapas de planeación.

- Entender y delimitar el problema u objeto en estudio. "En la etapa de planeación se deben hacer investigaciones preliminares que conduzcan a entender y delimitar el problema u objeto en estudio, de tal forma que quede claro qué se va a estudiar, por qué es importante y, si es un problema, cual es la magnitud del mismo". Por ejemplo, el problema en la presenta investigación es el desconocimiento del efecto que tiene el flujo secundario en la separación de metales pesados contenidos en una matriz aluvial y agua.
- Elegir la o las variables de respuesta que serán medidas o evaluadas en cada tratamiento y verificar que su evaluación es confiable. "La elección de estas variables es vital, ya que en ella se refleja el resultado de las pruebas. Por ello, se deben elegir aquellas que mejor reflejen el problema o que caractericen el objeto en estudio. Además, se debe tener confianza en que las mediciones que se obtengan sobre esas variables sean confiables. En otra palabras, se debe garantizar que los instrumentos y/o métodos de medición son capaces de repetir y reproducir una medición, que tienen la precisión (error) y exactitud (calibración) necesaria". Los sistemas de medición son la forma en que percibimos la realidad, y si ellos no tienen la suficiente precisión, las decisiones derivadas serán erróneas. En la presente investigación se optó por grabar cada tratamiento con todos sus datos en un video, del cual se tomará la lectura de los mismos, esto evita errores humanos en la anotación de los valores.
- Seleccionar los factores que puedan afectar la variable de respuesta. Se debe documentar en detalle el fenómeno estudiado, hasta determinar con la mayor seguridad posible que factores pueden afectar la variable de respuesta. Si se tiene antecedentes científicos de que un factor no tiene el efecto que se supone, es mejor descartarlo e incluir aquellos que tienen mayor efecto. Esto hará que la matriz de diseño sea más simplificada, disminuyendo recursos económicos y humanos.

- Seleccionar adecuadamente el diseño experimental y el nivel de cada factor. Se debe hacer esta actividad enfocada a cumplir estrictamente el objeto de la investigación. Este concepto es importante ya que de ello dependen los recursos utilizados, ya que definen el tiempo, el costo y la precisión deseada.
- Planear y organizar el trabajo experimental. "Con base al diseño seleccionado, organizar y planear con detalle el trabajo experimental, por ejemplo, las personas que van a intervenir, la forma operativa en que se desarrollarán las actividades, etc.". Para el desarrollo experimental en laboratorio es recomendable realizar la guía del laboratorio, en la cual estará plasmado el desarrollo del experimento claramente. Se debe prever establecer a quien se reportará o acudirá en caso de algún imprevisto.
- **Ejecución experimental**. "Se debe seguir al pie de la letra lo plasmado en el paso anterior".

2.2.4. **Tipos de diseños experimentales.** Existen diferentes tipos de diseños experimentales, que según el objetivo se pueden clasificar, como se indica en la tabla 2.1.

Objeto de experimentación	Tipo de diseños a utilizar
Diseños para comparar dos o mas tratamientos	 Diseño completamente ala azar Diseño de bloques completos al azar Diseños de cuadros latino y grecolatino
Diseños para estudiar el efecto	1. Diseños factoriales 2 ^k
de varios factores sobre una o	2. Diseño factorial 3 ^k
mas variables de respuesta	 Diseños factoriales fraccionados 2^{k-1}
Diseños para la optimización de	1. Diseños factoriales 2 ^k y 2 ^{k-p}
procesos de primer orden	2. Diseño de Plakett-Burman 3. Diseño Simplex
Diseños para la optimización de	1. Diseños de composición
procesos de <i>segundo</i> orden	central
	2. Diseño de Box-Behnken 4. Diseños factoriales 3 ^k y 3 ^{k-p}
Diseños robustos	 Arreglos ortogonales (diseños factoriales)
	 Diseños con arreglos interno y externo
Diseños de mezclas	1. Diseño simplex reticular
	2. Diseño simplex con centroide
	3. Diseño con restricciones
	4. Diseno axial

 Tabla 2.1
 Clase de diseños experimentales.

Fuente: Adaptada de (Gutiérrez, 2008, pg. 15).

La selección de uno u otro diseño depende de ciertos aspectos como el objeto del experimento, el número de factores a estudiar, el número de niveles que se prueban en cada factor, los efectos que interesa investigar (relación factores-respuesta) y el costo del experimento, tiempo y precisión deseada.

2.2.5. **Diseños experimentales factoriales.** Para la presente investigación, como el objeto es evaluar el efecto que tienen algunas variables sobre la eficiencia de separación de metales pesados, los diseños más adecuados son: el diseños factorial 2^k, el diseño factorial 3^k y los diseños factoriales fraccionados 2^{k-1}.

Para saber cuál de estos diseños factoriales es el más adecuado, se emplea los criterios descritos la tabla 2.1, y además adoptando una **experimentación secuencial**, "en la cual en cada fase siguen una estrategia bien definida y pensada; por lo tanto, en cada fase se obtiene resultados y conclusiones importantes que permiten generar soluciones y conocimiento más refinado para plantear de mejor manera la siguiente fase de experimentación", (Gutiérrez, 2008, pg. 12). Por otro lado se tienen en cuanta los principios básicos del deiseño de experimentos como son: *la aleatorización*, *la repetición* y *el bloqueo*.

Por lo tanto se hará en cada dispositivo de flujo centrífugo una corrida preliminar, estableciendo una primera matriz de diseño con un diseño factorial 2^k con cuatro puntos al centro. Los puntos al centro son para evaluar efectos de curvatura, ya que estos procesos no suelen ser lineales. Esto para determinar qué factores influye en la eficiencia de separación.

Una segunda corrida experimental constituida pro un matriz de diseño de diseño para un diseño experimental de 3^k sin repeticiones, esto para establecer las correlaciones matemáticas.

Una tercer corrida para evaluar el grado precisión en la predicción de las correlaciones matemática con respecto a los datos experimentales, con un diseño factorial fraccionada con cuatro puntos al centro en dos bloques.

2.3. MATERIALES Y METODOS

2.3.1. **Montaje de Laboratorio.** Para la realización de la investigación experimental se construyó un montaje de laboratorio el cual tiene los siguientes componentes principales según se indica esquemáticamente en la figura 2.2:

1) Un tanque de succión; 2) una tolva de abastecimiento sólido; 3) una bomba para impulsión de lodos, de impulsor semi-abierto, autocebante, de 3 HP y diámetros de entrada y salida de 2 pulgadas, respectivamente; 4) un tanque de cabeza constante; 5) el dispositivo separador de tubo curvo y 6) un tanque desarenador para recuperar el sedimento y medir el caudal líquido a la salida del tanque por medio de vertederos triangulares.

Figura 2.2 Esquema general del montaje de laboratorio. Q_m es el caudal de la mezcla, Q_s es el caudal sólido y Q_L es el caudal líquido.

Fuente. Esta investigación.

El tubo curvo construido tiene un radio interno de 0.143 m, un radio externo de 0.193 m, con una sección transversal de 0.05m por 0.05m, iniciando con un tubo recto, seguido por una curvatura de 270 grados y terminando en un tubo recto con dos salida inferiores, una de las salidas evacua la mezcla del lado interno y la otra salida evacua la mezcla del resto de sección. Se utilizaron tres tubos curvos con diferente salida donde la relación entre el área de salida de la parte interna de la curva con respecto a la sección transversal total NA, fue del 22%, 30% y 48%. En la figura 2.3, se indica una foto de uno de los tubos curvos usados en la investigación y el diseño en planta del mismo.

Figura 2.3 Foto y diseño en planta del tubo curvo instalado en el montaje, correspondiente a la relación de áreas de salida del 22%.

Fuente. Esta investigación.

2.3.2. **Propiedades de los sólidos.** Entre las propiedades analizadas para el material sólido se encuentra la granulometría, la gravedad específica y el coeficiente de arrastre, los cuales se describen a continuación:

• Granulometría

La mezcla se preparó usando sedimento con tamaños comprendidos entre el tamiz 200 hasta el tamiz 10 y plomo pulverizado entre el tamiz 200 y el 40. Para los sedimentos se usó tres tipos de granulometría correspondientes a sedimentos de origen diferente, la muestra M1 corresponde a arena de cuarzo de mina, la muestra M2 correspondiente a arena de río de origen volcánico de color café oscuro y la muestra M3 corresponde a arena de río de origen volcánico de color gris. Las granulometrías de los sólidos se indican en la figura 2.4.

Para los ensayos de la mezcla de agua, sedimentos y plomo, se realizó granulometría a las mezclas de salida para cada ensayo, esto debido a que el material sólido fue reutilizado y por desperdicios no controlables, la granulometría cambia entre ensayos; por conservación de masa se calculó la granulometría de entrada. El coeficiente de arrastre C_{Dp} se calculó para cada ensayo con la granulometría de entrada.

• Gravedad específica. G_s

Se midió en laboratorio las gravedades específicas, G_s , de cada tipo de muestra de sedimento y del plomo, donde, para la muestra M1 se obtuvo G_s = 2.627, la muestra M2 una G_s = 2.529 y para M3 con G_s = 2.399. La gravedad específica del plomo obtenida fue de G_s =11.302.

• Coeficiente de arrastre. C_{DP}

Este parámetro relaciona las propiedades de los sedimentos y del fluido, se calcula con la metodología dada por (Cheng, 1997a) junto con el procedimiento de Condolios nombrado por Graf (1984). Debido a que los sedimentos y plomo usados no son de granulometría uniforme, se calcula para cada rango de tamaños el valor de C_{D} , con la metodología de (Cheng, 1997a) y luego se saca un valor ponderado de acuerdo al porcentaje entre los dos tamaños aplicando la ecuación [1.25]

Para poder calcular C_{DP} , fue necesario realizar las granulometrías correspondientes a las muestra de sedimentos recuperados por la parte externa e interna del tubo curvo. La granulometría de entrada se infirió de las granulometrías de salida; de este modo se obtuvieron valores de C_{DP} para cada uno de los ensayos tanto en la entrada como en las dos salidas.

2.3.3. **Variables de respuesta.** Las variables de respuesta estudiadas, corresponden a la concentración de metal pesado C_{pbs} recuperado en la salida interna del tubo curvo, la remoción de sedimentos R_s , la remoción de plomo R_{pb} y la partición de agua *PA*.

Partición de agua, P_A. Esta variable se incluye ya que es de suma importancia conocer la distribución del agua a la salida de separador, con el fin de ser usada en etapas posteriores de separación. La partición de agua está definida como la relación de caudales entre la salida interna del tubo curvo Q_i y el caudal total a la entrada del tubo curvo Q_e, expresada como:

$$P_A = \frac{Q_i}{Q_e}$$
[2.2]

• **Remoción de sedimentos, R**_s. Definida como la relación de pesos del sedimento entre la salida interna W_{si} y el peso total de sedimentos a la entrada del tubo curvo W_{se} , dada como:

$$R_s = \frac{W_{si}}{W_{se}}$$
[2.3]

 Remoción de plomo, R_{pb}. Definida como la relación de pesos de plomo entre la salida interna W_{pbi} y el peso de plomo a la entrada del tubo curvo W_{pbe}, expresada como:

$$R_{pb} = \frac{W_{pbi}}{W_{pbe}}$$
[2.4]

 Concentraciones de plomo por la salida interna, C_{pbsi}. Definida como la relación del peso de plomo recuperado por la salida interna del tubo W_{Pbi} y el peso total de plomo mas sedimento recuperado por la parte interna del tubo curvo W_{Tpbi}, expresada como:

$$C_{pbsi} = \frac{W_{Pbi}}{W_{Tpbi}}$$
[2.5]

Como estos pesos son desconocidos se propone el siguiente procedimiento para su cálculo. Como se necesita conocer C_{pbsi} , el $W_{pbi} = R_{pb}^* W_{pbe}$ y $W_{Tpbi} = W_{pbi+} W_{si}$, pero $W_{si} = R_s^* W_{se}$, Remplazando se obtiene:

$$C_{Pbsi} = \frac{R_{pb} * W_{pbe}}{R_{pb} * W_{pbe} + R_s * W_{se}}$$
[2.6]

Si se divide y multiplica por W_{se} , se tiene

$$C_{Pbsi} = \frac{R_{pb} * \frac{W_{pbe}}{W_{se}}}{R_{pb} \frac{W_{pbe}}{W_{se}} + R_s}$$
[2.7]

Si llamamos C'_{pbe} = W_{pbe}/W_{se} , la ecuación [2.7] se transforma en:

$$C_{Pbsi} = \frac{R_{pb} * C'_{Pbe}}{R_{pb} * C'_{Pbe} + R_s}$$
[2.8]

La relación entre la concentración de plomo a la entrada C_{pbe} y C'_{pbe} está dada como

$$C_{Pbe} = \frac{W_{pbe}}{W_{pbe} + W_{se}} = \frac{\frac{W_{pbe}}{W_{se}}}{\frac{W_{pbe}}{W_{se}} + 1} = \frac{C'_{Pbe}}{C'_{Pbe} + 1}$$
[2.9]

Despejando para C'_{pbe} se obtiene:

$$C'_{Pbe} = \frac{C_{pbe}}{1 - C_{pbe}}$$
[2.10]

Se parte del hecho que las propiedades de la mezcla y las concentraciones de metal a la entrada al tubo curvo son conocidas y las remociones de sedimento y plomo debido a la acción de separación se las puede calcular con las correlaciones propuestas en esta investigación.

2.3.4. **Factores independientes.** Para encontrar los posibles factores que tienen influencia en las variables de respuesta, se recurrió a la técnica del análisis dimensional, según lo expuesto por Streeter (1999). Se obtuvo las siguientes relaciones funcionales adimensionales:

$$f(PA, De, NA, C_{Dp}) = 0$$
 [2.11]

$$f(R_{pb}, De, NA, C_{Dp}) = 0$$
 [2.12]

$$f(R_s, De, NA, C_{Dp}) = 0$$
 [2.13]

Donde, **De** es el número de Dean, **NA** es el número de área. Estos parámetros adimensionales son explicados a continuación:

• Número de Dean: De. Adaptando la ec.[2.1] a un tubo curvo de sección cuadrada, para el flujo de una mezcla, se tiene:

$$De = \operatorname{Re}\sqrt{\frac{(4R_H)}{2R}}$$
[2.14]

$$\operatorname{Re} = \frac{(4R_H)Q_m}{Bhv_m}$$
[2.15]

Donde R_H es el radio hidráulico de la sección transversal, R es el radio medio de curvatura del tubo curvo dado como $(R_I+R_e)/2$, con R_i radio interno y R_e radio externo, B es la base de la sección transversal y h es la altura de la sección transversal. Q_m es el caudal de la mezcla, que para una mezcla de sedimento y agua, $Q_m=Q_L+Q_S$, para mezcla de sedimento y plomo, $Q_m=Q_L+Q_{pb}$, Q_{bp} es el caudal de plomo medido a la entrada, Q_s es el caudal de sedimentos medido a la entrada, Q_L es el caudal de agua limpia medido a la entrada. v_m es la viscosidad cinemática de la mezcla, calculada según Cheng (1997b), dada como:

$$v_{m} = \frac{2v}{2 - 3C}$$
[2.16]

Donde v es la viscosidad del agua, reportada por Yang (1996), calculada como:

$$\nu = \frac{1.792 \times 10^{-6}}{1 + 0.0337T + 0.000221T^2}$$
[2.17]

Donde, \boldsymbol{v} en (m²/s) y \boldsymbol{T} es la temperatura del agua en °C.

 Numero de área: NA. Relaciona el área interna de drenaje del tubo curvo *A*_o por la cual se capta el metal pesado y el área total de la sección transversal del tubo, *A*. Las relaciones se indican a continuación:

$$NA = \frac{A_o}{A}$$
[2.18]

$$A = Bh$$
 [2.19]

$$A_o = B'h$$
 [2.20]

La representación gráfica de las áreas de salida se indica en la figura 2.6.

Figura 2.5 Esquema de la sección transversal del tubo (Corte A-A de figura 2.3).

Donde, B es la base de la sección transversal del tubo cuadrado y B' es el ancho interno de salida por donde se recupera el metal pesado. Remplazando las cantidades se obtiene:

$$NA = \frac{B'h}{Bh} = \frac{B'}{B}$$
[2.21]

Para garantizar tres valores del número de área **NA**, se colocó los tabiques a 0.011m, 0.015m y 0.024m, correspondientes a **B**', sobre el ancho total **B**. Las dimensiones de las secciones de salida se indican en la figura 2.6.

Figura 2.6 Esquema de la sección transversal del tubo a la salida.

2.3.5. **Diseño experimental.** Con el fin de tener una visualización más amplia del fenómeno estudiado, se llevó a cabo el diseño y ejecución de la experimentación, para varias condiciones de flujo, en orden, se inició primero con flujo de agua limpia, flujo de mezcla y agua, flujo de agua y metal pesado y por último el flujo de agua, sedimentos y metal pesado. A continuación se indica el tipo de diseño que se realizó para cada condición de flujo.

Para el diseño experimental se usó la metodología dada por Gutiérrez (2000), usando arreglos factoriales según el caso. Para la calibración preliminar del tubo curvo, se realizaron ensayos con agua limpia, usando un diseño factorial mezclado con cuatro puntos al centro (3*2+4) para un total de 10 tratamientos. Para el estudio de agua y plomo, se optó por un diseño factorial 2^2 con dos puntos al centro y dos réplicas $2(2^2+2)$ para un total de 12 tratamientos. Para el estudio de agua y sedimento, se optó por un diseño factorial 2^3 , en este caso se tomó a C_{Dp} como el tercer factor, con cuatro puntos al centro (2^3+4) para un total de 12 tratamientos. Para la mezcla de agua, sedimento y plomo, se realizó un factorial mezclado con cuatro puntos al centro ($3^*2^{3-1}+4$) para un total de 16 tratamientos.

Estos diseños obedecen a que en laboratorio solo se podía hacer la variación de tres variables independientes en el caso de la mezcla, como son: el caudal del agua, el tipo de sedimento con diferente granulometría y el tipo de tubo curvo.

2.3.6. **Procedimiento de medición.** Para minimizar los errores de medición debido a posibles fallas humanas, se procedió a grabar en video el sistema de medición del montaje de laboratorio para cada corrida experimental, y luego se obtuvieron los valores del video. Para cada experimento se siguió el siguiente procedimiento:

Se prendió la bomba para recircular el agua hasta lograr flujo permanente, con el caudal de agua requerido según la corrida experimental del diseño.

Se suministró el caudal sólido por medio de una tolva con un orificio calibrado, para que dosifique el valor establecido.

Se procedió a gravar con la cámara de video en el siguiente orden: vertederos para aforo de caudal líquido correspondiente a la salida interna y externa del tubo curvo, respectivamente; la lectura del termómetro digital, tipo de muestra de sedimentos y tipo de tubo curvo, durante la ejecución del ensayo.

Los pesos de sedimento y plomo se recuperaron del sedimentador y se pesaron de forma separada según la correspondiente salida del tubo curvo.

Del video se obtuvo los siguientes datos: altura del vertedero correspondiente a la salida interna del tubo curvo h_{vi} ; atura del vertedero correspondiente a la salida

externa del tubo curvo h_{ve} ; temperatura en grados centígrados T; tipo de muestra de sedimentos (M1, M2, M3) y tipo de tubo curvo (Tubo1, Tubo 2, Tubo3). Los valores numéricos de cada arreglo experimental se indican en las tablas 2.1, 2.2 y 2.3.

El caudal del agua se calculó con tres vertederos triangularas calibrados, donde el vertedero 1 y 2 miden el caudal líquido de la salida externa del tubo curvo y el vertedero 3, mide el caudal del agua de la salida interna del tubo curvo. Las ecuaciones de calibración se indican a continuación:

Ecuación de calibración de los vertederos 1-2:

$$Q_e = 1242.4086 \quad (h_{ve})^{2.4113}$$
 [2.22]

Donde, *h*_{ve} en m, *Q* en L/s.

Ecuación de calibración del vertedero 3:

$$Q_i = 647.288 (h_{vi})^{2.4143}$$
 [2.23]

Donde, h_{vi} en m, Q en L/s.

iiiiipia.					
1	2	3	5	6	7
N°	Q_L	B'	h _{ve}	h _{vi}	т
[-]	[m ³ /s]	[m]	[m]	[m]	[°C]
1	Med	Tubo 3	0.06	0.082	19.8
2	Min	Tubo 1	0.058	0.06	20.5
3	Med	Tubo 2	0.065	0.075	21
4	Med	Tubo 2	0.065	0.075	21.3
5	Max	Tubo 3	0.067	0.0917	22
6	Med	Tubo 2	0.065	0.075	22.1
7	Max	Tubo 1	0.076	0.078	22.2
8	Med	Tubo 1	0.068	0.07	22.3
9	Min	Tubo 3	0.051	0.07	22.9
10	Med	Tubo 2	0.065	0.075	22.6

Tabla 2.2 Datos de laboratorio según el diseño experimental para el flujo de agua limpia.

1	2	3	4	5	6	7	8	9	10
N°	Q_L	B'	C_{Dp}	Muestra	W _{si}	W _{se}	h_{ve}	h _{vi}	Т
[-]	[-]	[m]	[-]	[-]	[g]	[g]	[m]	[m]	[°C]
1	max	0.011	24,06	M3	3480	16520	0.083	0.070	19.7
2	med	0.015	8,95	M2	6098	13902	0.066	0.073	20.3
3	max	0.024	2,66	M1	6567	13433	0.071	0.092	21.8
4	med	0.015	8,95	M2	5727	14273	0.069	0.067	22.6
5	max	0.024	24,06	M3	7117	12883	0.068	0.096	20.2
6	min	0.024	24,06	M3	9511	10489	0.045	0.067	22.7
7	min	0.011	2,66	M1	10928	9072	0.047	0.066	21.0
8	med	0.015	8,95	M2	6198	13802	0.066	0.073	20.8
9	min	0.011	24,06	M3	8722	11278	0.048	0.063	22.8
10	max	0.011	2,66	M1	3127	16873	0.085	0.065	20.6
11	med	0.015	8,95	M2	6213	13787	0.066	0.073	21.0
12	min	0.024	2,66	M1	13286	6714	0.043	0.070	22.4

Tabla 2.3 Datos de laboratorio según el diseño experimental para mezcla de agua y sedimento.

Tabla 2.4 Datos de laboratorio según el diseño experimental para mezcla de plomo y agua.

1	2	3	6	7	8	9	10
N°	Q_L	B'	W _{pbi}	W _{pbe}	h_{ve}	h _{vi}	Т
[-]	[m3/s]	[m]	[g]	[g]	[m]	[m]	[°C]
1	med	0.015	826.00	174.00	0.070	0.065	20.4
2	max	0.024	694.00	306.00	0.070	0.093	18.8
3	min	0.024	844.46	155.54	0.047	0.065	19.9
4	min	0.011	953.29	46.71	0.048	0.063	21.3
5	max	0.011	419.00	581.00	0.084	0.068	21.8
6	med	0.015	834.00	166.00	0.065	0.075	21.8
7	med	0.015	848.00	152.00	0.065	0.075	22.2
8	max	0.024	632.00	368.00	0.070	0.093	22.3
9	min	0.024	749.36	250.64	0.047	0.065	22.9
10	min	0.011	964.69	35.31	0.045	0.067	22.6
11	max	0.011	389.64	610.36	0.082	0.073	22.6
12	med	0.015	822.00	178.00	0.065	0.075	22.6

1	2	3	4	5	6	7	8	9	10
N°	Q_L	B'	C_{Dp}	Muestra	W _{si}	W _{se}	h_{ve}	h _{vi}	Т
[-]	[-]	[m]	[-]	[-]	[g]	[g]	[m]	[m]	[°C]
1	med	0.024	14.17	M3	10084	7745	0.059	0.083	23.1
2	min	0.011	21.54	M3	9741	7849	0.048	0.063	19.0
3	med	0.015	8.04	M2	8306	10155	0.067	0.073	21.0
4	med	0.024	3.51	M1	12186	7435	0.061	0.081	20.7
5	min	0.011	3.51	M1	12703	6205	0.047	0.064	19.2
6	med	0.015	7.79	M2	9259	9648	0.066	0.074	21.2
7	med	0.011	3.36	M1	9481	10072	0.069	0.069	23.7
8	med	0.015	8.09	M2	9339	10345	0.066	0.073	20.8
9	max	0.024	3.85	M1	7864	10084	0.068	0.096	21.9
10	max	0.011	15.12	M3	3712	14084	0.083	0.070	22.0
11	min	0.024	17.49	M3	9898	7737	0.045	0.066	19.5
12	med	0.011	20.15	M3	6229	12459	0.069	0.067	18.5
13	max	0.024	18.03	M3	6543	13051	0.070	0.067	18.4
14	max	0.011	3.97	M1	5024	13001	0.082	0.073	20.5
15	med	0.015	8.91	M2	8371	10528	0.067	0.072	18.3
16	min	0.024	3.94	M1	13241	6459	0.046	0.066	21.0

Tabla 2.5 Datos de laboratorio según el diseño experimental para mezcla de agua, plomo y sedimento.

2.4. ANÁLISIS DE RESULTADOS

A partir de los datos experimentales, se procesó la información, se realizaron los cálculos respectivos y se propuso nuevas correlaciones para el cálculo de la remoción de sedimentos y la remoción de metal pesado.

2.4.1. **Cálculos para agua limpia.** Con los datos tomados en laboratorio se calculó los parámetros adimensionales, como se indica en la tabla 2.6.

1	2	3	4	5	6	7	8	9	10
N°	\boldsymbol{Q}_i	\boldsymbol{Q}_{e}	Q_L	v	V	Re	De	NA	PA
[-]	[m ³ /s]	[m ³ /s]	[m ³ /s]	[m²/s]	[m/s]	[-]	[-]	[-]	[-]
1	0.001544	0.001406	0.002950	1.0061E-06	1.180	58652	23631	0.024	0.50
2	0.000726	0.001296	0.002022	9.8916E-07	0.809	40887	16474	0.011	0.23
3	0.001245	0.001705	0.002950	9.7740E-07	1.180	60373	24325	0.015	0.31
4	0.001245	0.001705	0.002950	9.7048E-07	1.180	60804	24499	0.015	0.31
5	0.002023	0.001835	0.003858	9.5466E-07	1.543	80814	32561	0.024	0.50
6	0.001245	0.001705	0.002950	9.5244E-07	1.180	61955	24962	0.015	0.31
7	0.001369	0.002486	0.003855	9.5023E-07	1.542	81138	32692	0.011	0.23
8	0.001054	0.001901	0.002955	9.4803E-07	1.182	62349	25121	0.011	0.23
9	0.001054	0.000950	0.002004	9.3502E-07	0.802	42869	17272	0.024	0.50
10	0.001245	0.001705	0.002950	9.4149E-07	1.180	62676	25253	0.015	0.31

 Tabla 2.6
 Valores experimentales para el flujo de agua limpia.

Columna 1: numero de ensayos. Columna 2: caudal líquido evacuado por el lado interno del tubo, calculado con ec. [2.23]. Columna 3: caudal líquido evacuado por el lado externo del tubo, calculado con ec. [2.22]. Columna 4: caudal total de entrada al tubo curvo, calculado como $Q=Q_{1}+Q_{e}$. Columna 5: viscosidad cinemática del agua, calculada con ec.[2.17]. Columna 6: velocidad media del flujo, calculada como, V=Q/A, donde A es el área de la sección transversal del tubo dada como, A=0.05m*0.05m=0.0025 m². Columna 7: número de Reynolds calculado con ec.[2.15] tomando del fluio. como $Q_{m}=$ **Q**, Donde *R_H*=A/P=0.0025/(2*0.05+1*0.05)=0.0125m. **B**=0.05m **h**=0.05m. У Columna 8: número de Deán del flujo, calculado con la ec.[2.14]; donde R es el radio de la curva promedio, R=0.168 m. Columna 9: numero de área, se calcula con ec.[2.20]. Columna 10: partición de agua, calculada con la ec.[2.2].

2.4.2. **Cálculos para agua y sedimentos.** Con los datos experimentales se calculó las cantidades indicadas en tabla 2.7.

1	2	3		4	5		6
N°	\boldsymbol{Q}_i	\boldsymbol{Q}_{e}	(\mathbf{Q}_{s}	ν		<i>v</i> _m
[-]	[m ³ /s]	[m ³ /s]	[m	³ /s]	[m²/s]		[m²/s]
1	0.00105	0.00307	0.00	0188	0.000001024	0.00	00001096
2	0.00117	0.00174	0.00	0185	0.000001009	0.00	00001109
3	0.00205	0.00207	0.00	0186	0.000000974	0.00	00001042
4	0.00095	0.00197	0.00	0185	0.000000956	0.00	00001050
5	0.00226	0.00187	0.00	0188	0.000001012	0.00	00001083
6	0.00095	0.00070	0.00	0188	0.000000954	0.00	00001126
7	0.00092	0.00076	0.00	0186	0.000000993	0.00	00001167
8	0.00117	0.00177	0.00	0185	0.000000997	0.00	00001095
9	0.00080	0.00082	0.00	0188	0.000000952	0.00	00001127
10	0.00088	0.00326	0.00	0186	0.000001002	0.00	00001071
11	0.00115	0.00177	0.00	0185	0.000000993	0.00	0001090
12	0.00105	0.00063	0.00	0186	0.000000960	0.00	00001129
1	7	8	9	10	11	12	13
N°	V	Re _m	Dem	NA	Rs	PA	C_{Dp}
[-]	[m/s]	[-]	[-]	[-]	[-]	[-]	[-]
1	1.727	78791	31746	0.2292	0.1740	0.2553	24.06
2	1.235	55698	22441	0.3125	0.3049	0.4017	8.95
3	1.724	82764	33347	0.5000	0.3284	0.4970	2.66
4	1.241	59111	23816	0.3125	0.2864	0.3250	8.95
5	1.726	79718	32119	0.5000	0.3559	0.5474	24.06
6	0.736	32647	13154	0.5000	0.4756	0.5744	24.06
7	0.747	32004	12895	0.2292	0.5464	0.5477	2.66
8	1.248	57014	22971	0.3125	0.3099	0.3973	8.95
9	0.724	32130	12946	0.2292	0.4361	0.4940	24.06
10	1.730	80718	32522	0.2292	0.1564	0.2130	2.66
11	1.240	56899	22925	0.3125	0.3107	0.3933	8.95
12	0.748	33122	13345	0.5000	0.6643	0.6260	2.66

 Tabla 2.7
 Valores experimentales para mezcla agua-sedimento.

Columna 1: numero de ensayos. **Columna 2:** caudal líquido evacuado por el lado interno del tubo, con ec. [2.23]. **Columna 3:** caudal líquido evacuado por el lado externo del tubo, con ec. [2.22]. **Columna 4:** caudal sólido de los sedimentos. **Columna 5:** viscosidad cinemática del agua, con ec.[2.17]. **Columna 6:** viscosidad cinemática del agua, con ec.[2.17]. **Columna 6:** viscosidad cinemática del la mezcla, con ec.[2.16]. **Columna 7:** velocidad media del flujo, calculada como, V=Q/A, donde A es el área de la sección transversal del tubo

dada como, $A=0.05m*0.05m=0.0025 m^2$. Columna 8: número de Reynolds del flujo, con ec.[2.15], con $R_{H}=A/P=0.0025/(2*0.05+1*0.05)=0.0125 m$. B=0.05m y h=0.05m. Columna 9: número de Deán del flujo, con la ec.[2.14]; donde R es el radio de la curva promedio, R=0.168 m. Columna 10: numero de área, con ec.[2.21]. Columna 11: Remoción de sedimentos, con ec.[2.3]. Columna 12: partición de agua, con ec.[2.2]. Columna 13: Coeficiente de arrastre promedio del sedimento, con ec.[1.25].

2.4.3. Cálculos para agua y plomo. Con los datos experimentales se calculó las cantidades mostradas en tabla 2.8.

1	2	3	4	5	6	7
N°	Q_i	Qe	Q_{pb}	V	Vm	V
[-]	[m ³ /s]	[m ³ /s]	[m ³ /s]	[m²/s]	[m²/s]	[m/s]
1	0.000881	0.002039	0.000188	0.000001024	0.000001096	1,24
2	0.002093	0.002039	0.000185	0.000001009	0.000001109	1,73
3	0.000878	0.000760	0.000186	0.000000974	0.000001042	0,73
4	0.000817	0.000821	0.000185	0.00000956	0.000001050	0,73
5	0.000965	0.003165	0.000188	0.000001012	0.000001083	1,73
6	0.001245	0.001705	0.000188	0.000000954	0.000001126	1,26
7	0.001245	0.001705	0.000186	0.000000993	0.000001167	1,25
8	0.002093	0.002039	0.000185	0.000000997	0.000001095	1,73
9	0.000878	0.000760	0.000188	0.000000952	0.000001127	0,73
10	0.000948	0.000703	0.000186	0.000001002	0.000001071	0,73
11	0.001147	0.002986	0.000185	0.000000993	0.000001090	1,73
12	0.001245	0.001705	0.000186	0.000000960	0.000001129	1,25

Tabla 2.8 Valores experimentales para mezcla agua-plomo.

1	8	9	10	11	12	13
N°	Rem	Dem	NA	$R_{ hob}$	PA	C _{Dp}
[-]	[-]	[-]	[-]	[-]	[-]	[-]
1	78791	31746	0.2292	0.8260	0.3018	11.41
2	55698	22441	0.3125	0.6940	0.5065	11.41
3	82764	33347	0.5000	0.8445	0.5359	11.41
4	59111	23816	0.3125	0.9533	0.4989	11.41
5	79718	32119	0.5000	0.4190	0.2337	11.41
6	32647	13154	0.5000	0.8340	0.4220	11.41
7	32004	12895	0.2292	0.8480	0.4220	11.41
8	57014	22971	0.3125	0.6320	0.5065	11.41
9	32130	12946	0.2292	0.7494	0.5359	11.41
10	80718	32522	0.2292	0.9647	0.5744	11.41
11	56899	22925	0.3125	0.3896	0.2775	11.41
12	33122	13345	0.5000	0.8220	0.4220	11.41

Columna 1: numero de ensayos. **Columna 2:** caudal líquido evacuado por el lado interno del tubo, con ec.[2.23]. **Columna 3:** caudal líquido evacuado por el lado externo del tubo, con ec.[2.22]. **Columna 4:** caudal de plomo. **Columna 5:** viscosidad cinemática del agua, con ec.[2.17]. **Columna 6:** viscosidad cinemática del agua, con ec.[2.17]. **Columna 6:** viscosidad cinemática del la mezcla, con ec.[2.16]. **Columna 7:** velocidad media del flujo, calculada como, V=Q/A. **Columna 8:** número de Reynolds del flujo, con ec.[2.15]. **Columna 9:** número de Deán del flujo, con la ec. [15]. **Columna 10:** número de área, con ec. [2.22]. **Columna 11:** Remoción de plomo, con ec.[2.3]. **Columna 12:** partición de agua, con ec. [2.2]. **Columna 13:** Coeficiente de arrastre promedio del plomo pulverizado, con ec.[1.25].

2.4.4. **Cálculos para agua, plomo y sedimentos.** Con los datos experimentales se calculó las cantidades mostradas en tabla 2.9.

1 2	3	4		5		6
N° Q _i	Q_e	Q_e Q_{pb}		Qs		Q_m
[-] [m ³ /s]	[m ³ /s]	[m ³ /s	5]	[m ³ /s]	[n	n ³ /s]
1 0.00161	0.00132	0,00000	3858	0,000200462	0,00	31358
2 0.00082	0.00082	0,000002563 0,000206565		0,00	18474	
3 0.00115	0.00180	0,00000	2453	0,000186783	0,00	31383
4 0.00148	0.00147	0,000001975 0,000206412		0,00	31544	
5 0.00085	0.00079	0,00000	1841	0,000206987	0,00	18461
6 0.00121	0.00174	0,00000	1680	0,000190236	0,00	31345
7 0.00100	0.00194	0,00000	2096	0,000205892	0,00	31504
8 0.00117	0.00177	0,00000	2895	0,000184810	0,00	31234
9 0.00223	0.00190	0,00000	2103	0,000205861	0,00	43406
10 0.00105	0.00308	0,00000	3274	0,000203212	0,00)43443
11 0.00091	0.00071	0,00000	3144	0,000203825	0,00	18278
12 0.00093	0.00200	0,00000	2027	0,000209087	0,00	31396
13 0.00215	0.00200	0,00000	2996	0,000204522	0,00	43592
14 0.00117	0.00297	0,000002757		0,000203045	0,00	43410
15 0.00113	0.00180	0 0,000001092		0,000192866	0,00	31240
16 0.00091	0.00072	0,00000	2534	0,000204005	0,00	18426
1 7		8	9	10	11	12
N° v		v _m	V	Rem	Dem	NA
[-] [m ² /s]	[1	m²/s]	[m/s]	[-]	[-]	[-]
1 0,0000009	0,00	0001047	1,254	59884	23101	0.48
2 0,0000010	0,00	0001255	0,739	29442	11358	0.22
3 0,0000009	99 0,00	0001091	1,255	57508	22184	0.30
4 0,0000010	0,00	0001110	1,262	56845	21929	0.48
5 0,0000010	0,00	0001249	0,738	29571	11407	0.22
6 0,000000	99 0,00	0001088	1,254	57623	22229	0.30
7 0,000000	93 0,00	0,000001034		60913	23498	0.22
8 0,0000010	0,00	0,00001096		56983	21982	0.30
9 0,000000	97 0,00	0001047	1,736	82911	31984	0.48
10 0,000000	97 0,00	0001044	1,738	83230	32107	0.22
11 0,0000010	0,00	0001240	0,731	29486	11375	0.48
12 0,0000010	0,00	0001173	1,256	53530	20650	0.22
					~~~~~	

**Tabla 2.9** Valores experimentales para el flujo de la mezcla de agua, sedimentos y plomo.

14	0,00000100	0,000001082	1,736	80273	30966	0.22
15	0,00000106	0,000001169	1,250	53459	20622	0.30
16	0,0000099	0,000001193	0,737	30880	11912	0.48

**Columna 1:** numero de ensayos. **Columna 2:** caudal líquido evacuado por el lado interno del tubo, con ec.[2.23]. **Columna 3:** caudal líquido evacuado por el lado externo del tubo, con ec.[2.22]. **Columna 4:** caudal de plomo. **Columna 5:** caudal sólido de los sedimentos. **Columna 6:** caudal de la mezcla total. **Columna 7:** viscosidad cinemática del agua, con ec.[2.17]. **Columna 8:** viscosidad cinemática del agua, con ec.[2.17]. **Columna 8:** viscosidad cinemática del la mezcla, con ec.[2.16]. **Columna 9:** velocidad media del flujo, calculada como, V=Q/A. **Columna 10:** número de Reynolds del flujo, con ec.[2.15]. **Columna 11:** número de Deán del flujo, con la ec.[2.14]. **Columna 12:** número de área, con ec.[2.21].

Los valores experimentales de las variables de respuesta afectadas por la mezcla de agua, plomo y sedimento, se indican en la tabla 2.10.

Tabla 2.10	Valores	experimentale	s de las	s variables	de r	respuesta	afectadas	por la	а
mezcla de a	igua, ploi	mo y sediment	0.						

1	2	3	4	5	6	7	8
N°	$C_{Dp}$	PA	<b>C</b> _{Pbe}	<b>C</b> _{Pbsi}	$C_{Pbse}$	$R_{ hob}$	Rs
[-]	[-]	[-]	[-]	[-]	[-]	[-]	[-]
1	14.17	0.5488	6.9243	12.9143	2,324	0,87858	0,5372
2	21.54	0.4989	5.5223	9.6098	0,449	0,96368	0,5298
3	8.04	0.3890	5.5580	12.3004	0,016	0,99840	0,4177
4	3.51	0.5013	3.9540	5.2884	1,767	0,83068	0,6124
5	3.51	0.5185	4.5821	6.2836	1,099	0,90219	0,6630
6	7.79	0.4096	10.2599	7.2634	0,470	0,93678	0,4721
7	3.36	0.3399	4.4864	7.6732	1,016	0,87530	0,4678
8	8.09	0.3973	6.1900	13.0062	0,704	0,94341	0,4416
9	3.85	0.5399	4.7799	6.7979	2,192	0,70745	0,4263
10	15.12	0.2547	7.0559	11.6470	5,846	0,34431	0,1983
11	17.49	0.5641	6.7753	11.3850	0,878	0,94314	0,5335
12	20.15	0.3180	4.1761	12.3592	1,129	0,82773	0,3107
13	18.03	0.3212	4.8930	14.4370	2,505	0,74155	0,3058
14	3.97	0.2820	3.0687	6.5577	3,618	0,52732	0,2642
15	8.91	0.3850	2.1652	4.4941	0,855	0,80685	0,4337
16	3.94	0.5589	5.1793	7.0251	1,073	0,93065	0,6583

**Columna 2:** coeficiente de arrastre de la mezcla a la entrada del tubo, con ec.[1.25]. **Columna 3:** partición de agua, con ec.[2.2]. **Columna 4:** Concentración de plomo a la entrada (ver ecuación 2.9), donde Wpbe=Wpbi+Wpbe y Wpbi con ecuación [2.5]. **Columna 5:** concentración de plomo a la salida interna del tubo curvo, calculada con el principio de Arquímedes. **Columna 6:** concentración de plomo a la salida externa del tubo curvo, calculada con el principio de Arquímedes. **Columna 7:** Remoción de plomo a la salida interna del tubo, con ec.[2.4]. **Columna 8:** Remoción de sedimento a la salida interna del tubo, con ec.[2.3].

#### 2.4.5. Correlaciones Matemáticas para las Variables de Respuesta:

#### • Regresión Lineal Múltiple

La regresión lineal múltiple se remonta al año 1908 donde el profesor Lionel Pearson hizo uso de ella⁷, se emplea para darse cuenta de la variación en un intervalo dependiente, basada en combinaciones lineales de variables independientes, casi constantemente en la práctica de la investigación estadística, se encuentran variables que de alguna manera están relacionados entre sí, por lo que es posible que una de las variables puedan relacionarse matemáticamente en función de otra u otras variables, es decir, conociendo los valores de una variable independiente, se trata de estimar los valores, de una o más variables dependientes.

La regresión lineal múltiple es una extensión del modo simple al que se incorporan dos o más variables independientes. Este modelo puede expresarse como:

$$Y_1 = B_0 + B_1 + X_{1i} + B_2 + X_{2i} + B_3 + \dots + B_p + X_{pi} + e_i$$
[2.24]

Donde

- X_{pi}: es la puntuación de un sujeto i en la variable dependiente "*p*"
- B: son los parámetros estandarizados desconocidos.
- e_i: son los términos de residuos o errores , de medida =0 y variancia constante.

Aplicando regresión lineal múltiple (RLM) a los datos experimentales y con ayuda del programa computacional **Statgraphics plus 5.0** en versión académica, se obtuvo las siguientes correlaciones para cada una de las variables de respuesta.

⁷ Achen, Christopher H. (1982).

• Partición de agua, PA.

Con solo agua

$$PA = 0.819895 [De]^{-0.008198} [NA]^{0.490336}$$
 [2.25]

Afectada por el sedimento

$$PA = 171.2655 De^{-0.533867} NA^{0.629937} C_{Dp}^{0.00425397}$$
[2.26]

Afectada por el metal pesado

$$PA = 26.45940 \left(\frac{De}{\sqrt{C_{Dppb}}}\right)^{-0.418083} NA^{0.431456}$$
[2.27]

Afectada por la mezcla de metal pesado y el sedimento

$$PA = 10^{1.47606} \times \left[De\right]^{-0.361937} \times \left[NA\right]^{0.537127} \times \left[C_{Dp}\right]^{-0.0216973}$$
[2.28]

#### Remoción de plomo

Afectada por el metal pesado

$$R_{pb} = 65.9584 \left(\frac{De}{\sqrt{C_{Dppb}}}\right)^{-0.5} NA^{0.127519}$$
[2.29]

Teniendo en cuenta que en la práctica es difícil conocer la granulometría de las partículas de metal pesado, es necesario excluir el coeficiente de arrastre del plomo del análisis y realizar la correlación para la remoción de plomo solamente con los parámetros, número de Deam De y número de área NA, apartir de la cual por el método de regresión lineal múltiple se obtiene la ec. 2.30 de datos tomados de la tabla 2.8 (col. 9, 10 y 11), la cual es válida únicamente para el rango de partículas aplicadas a estos ensayos.

$$R_{pb} = \frac{121.1351(NA)^{0.127519}}{\sqrt{De}}$$
[2.30]

Afectada por la mezcla de metal pesado y el sedimento

$$R_{pb} = 10^{1.95571} \times \left[De\right]^{-0.446312} \times \left[NA\right]^{0.200235} \times \left[C_{Dp}\right]^{-0.0334923}$$
[2.31]

En ec. [2.31]  $C_{Dp}$  es el coeficiente de arrastre de la mezcla de sedimento y plomo y no la del plomo puro.

#### • Remoción de sedimento

Afectada por solo sedimento

$$R_s = 4410 .7225 \ De^{-0.876001} \ NA^{0.582254} \ C_{Dp}^{-0.0494875}$$
 [2.32]

Afectada por la mezcla de metal pesado y el sedimento

$$R_{s} = 10^{2.86896} \times \left[ De \right]^{-0.669988} \times \left[ NA \right]^{0.34925} \times \left[ C_{Dp} \right]^{0.18903}$$
[2.33]

#### Concentración de plomo a la salida interna del tubo curvo

Afectada por la mezcla de metal pesado y el sedimento

$$\frac{C_{Pbe}}{C_{Pbsi}} = 10^{0.820904} \times \left[De\right]^{-0.202657} \times \left[NA\right]^{0.147627} \times \left[C_{Dp}\right]^{-0.134748}$$
[2.34]

El coeficiente de arrastre  $C_{Dp}$  toma el valor dependiendo de la mezcla transportada, para ecuaciones [2.28], [2.31] [2.33] y [2.34], corresponde al valor calculado para la mezcla de sedimentos y plomo a la entrada a partir de su granulometría, el peso específico de los sedimentos, viscosidad del agua y el diámetro de la mezcla de agua y sedimentos.

Los estadísticos para cada ecuación se indican en la tabla 2.11.
1	2	3	4	5	6
Estadístico	Ec.[2.25]	Ec.[2.26]	Ec.[2.27]	Ec.[2.28]	Ec.[2.29]
P-Valor	0.000	0.0053	0.0128	0,0001	0.0388
R-cuadrado	99.7617 %	77.8938%	62.0025%	81,2431%	51.4249%
R-cuadrado (ajustado para g.l.)	99.6937%	69.604%	53.5586%	76,5538%	40.6304%
Error estándar de est.	0.00379101	0.0802903	0.0865602	0,0542045	0.0990916
Error absoluto medio	0.0029958	0.0551668	0.0669383	0,0399336	0.0766864
Estadístico de Durbin-Watson	1.73937 (P=0.3498)	3.23033 (P=0.0035)	2.89823 (P=0.0537)	1,74309 (P=0,3051)	2.54994 (P=0.1649)
Autocorrelación residual en Lag 1	0.0150587	-0.643151	-0.573258	0,0388529	-0.344594

 Tabla 2.11
 Valores calculados a partir de datos medidos en laboratorio

1	7	8	9	10	11
Estadístico	Ec.[2.30]	Ec.[2.31]	Ec.[2.32]	Ec.[2.33]	Ec.[2.34]
P-Valor	0.0388	0,0668	0.0005	0,0002	0.0568
R-cuadrado	51.4249%	43,7336%	87.9013%	80,1511%	48.1716%
R-cuadrado (ajustado para g.l.)	40.6304%	29,667%	83.3643%	75,1888%	34.0365%
Error estándar de est.	0.0990916	0,0997564	0.0747606	0,0730103	0.0895925
Error absoluto medio	0.0766864	0,0664656	0.0451788	0,052292	0.0619273
Estadístico de Durbin-Watson	2.54994 (P=0.1649)	1,52923 (P=0,1664)	3.19626 (P=0.0046)	0,931081 (P=0,0083)	1.17833 (P=0.0434)
Autocorrelación residual en Lag 1	-0.344594	0,199838	-0.604042	0,361841	0.399393

El objeto de encontrar las ecuaciones [2.31], [2.33] y [2.34], es poderlas usar junto con ec.[2.8], para hallar  $C_{Pbsi}$ , con solo medir estas variables por separado, donde el procedimiento de laboratorio es más sencillo, aunque se puede establecer cierta relación, su predicción produce un error promedio del 48%.

2.4.6. Verificación de las correlaciones. Para evaluar el error de predicción de las correlaciones, se utiliza el criterio de error promedio  $\overline{E}$ , el cual es dado como:

$$\overline{E} = \frac{\sum_{i=1}^{ND} (Ei)}{ND}$$
[2.35]

Donde ND= es el número de experimentos,  $E_i$  en [%] es el error de predicción para cada uno de los datos, calculado como:

$$Ei = \frac{Cpb_{exp} - Cpb_{cal}}{Cpb_{exp}} 100$$
 [2.36]

Donde *Cpb*_{exp} es el valor experimental y *Cpb*_{cal} es el valor calculado con ec.[2.5]. Se obtuvo los siguientes errores promedio para cada una de las ecuaciones: ec.[2.25] un  $\overline{E} = 0.69\%$ , ec.[2.26] un  $\overline{E} = 15.71\%$ , ec.[2.27] un  $\overline{E} = 12.76\%$ , ec.[2.29] un  $\overline{E} = 18.41\%$ , ec.[2.30] un  $\overline{E} = 18.42\%$  y ec.[2.32] un  $\overline{E} = 10.59\%$ .

Para las ecuaciones correspondientes a la mezcla de agua, sedimento y metal pesado, se calculan los errores de predicción para cada ensayo como se indica en la tabla 2.12.

	1	2	3	4	5	6
	N°	PA	<b>C</b> _{Pbsi}	$R_{pb}$	Rs	<b>C</b> _{Pbsi}
		Ec.[2.28]	Ec.[2.34]	Ec.[2.31]	Ec.[2.33]	Ec.[2.8]
		[-]	[-]	[-]	[-]	[-]
	1	0,5018	15,3251	0,8050	0,4135	15,0052
	2	0,4228	10,4660	0,9321	0,4680	10,4268
	3	0,4005	10,0640	0,7603	0,4013	10,0068
	4	0,5270	5,9756	0,8633	0,5574	5,9942
	5	0,4391	5,4764	0,9885	0,6575	5,4413
	6	0,4005	6,8674	0,7605	0,4031	6,9294
	7	0,3384	7,1738	0,7171	0,4086	7,1381
	8	0,4018	11,8635	0,7633	0,4033	11,6973
	9	0,4588	6,9546	0,7272	0,4254	6,9893
	10	0,2925	15,7389	0,5932	0,2494	15,2928
	11	0,6455	11,1304	1,0966	0,6387	11,0942
	12	0,3411	9,2627	0,7154	0,3175	9,3319
	13	0,4567	12,9230	0,7155	0,3350	12,8471
	14	0,3051	10,2079	0,6305	0,3291	10,0675
	15	0,4103	4,4753	0,7828	0,4132	4,5726
-	16	0,6557	6,8817	1,1292	0,8209	6,8491

**Tabla 2.12** Valores calculados de las variables de respuesta afectadas por la mezcla de agua, plomo y sedimento.

1	7	8	9	10	11
N°	Error	Error	Error	Error	Error
	Ec.[2.28]	Ec.[2.32]	Ec.[2.31]	Ec.[2.33]	Ec.[2.8]
	[%]	[%]	[%]	[%]	[%]
1	8,56	18,67	8,38	23,04	16,19
2	15,24	8,91	3,28	11,66	8,50
3	2,95	18,18	23,85	3,94	18,65
4	5,13	12,99	3,93	8,99	13,35
5	15,31	10,64	9,57	0,84	9,92
6	2,23	5,45	18,82	14,60	4,60
7	0,46	5,29	18,08	12,66	5,76
8	1,12	8,79	19,09	8,69	10,06
9	15,01	2,30	2,80	0,22	2,82
10	14,85	35,13	72,28	25,80	31,30
11	14,42	2,24	16,27	19,71	2,55
12	7,26	14,62	13,57	2,19	13,98
13	11,71	9,87	3,51	9,56	10,40
14	8,18	2,27	19,56	24,56	3,61
15	6,56	0,42	2,98	4,72	1,75
16	17,31	2,04	21,34	24,69	2,50
Promedio=	9,14	10,52	17,15	13,06	10,40

En la figura 2.7 se indica la representación gráfica de los valores medidos y calculados de la ec. [2.8] y ec. [2.34].



Figura 2.7 Valores medidos y calculado para la ec.[2.8] y ec.[2.34].

# CAPÍTULO

# 

# INVESITIGACIÓN EXPERIMENTAL PARA EL HIDROCICLÓN

#### NOMENCLATURA

- A Alimentación
- **R** Rebose
- **D** Descarga
- Mi Masa en t/h de sólido seco
- *Vpi* Volumen en m³/h de pulpa
- VLi Volumen en m³/h líquido
- Cwi Concentración de sólidos
- d_c Diámetro de corte
- μ Viscosidad dinámica del fluido
- Di Diámetro de entrada
- Dc Diámetro del hidrociclón
- ρ Densidad del agua
- **Q** Caudal de entrada
- Re Número de Reynolds
- V_i Velocidad a la entrada del hidrociclón
- **D**_i Diámetro del hidrociclón
- V Velocidad definida
- *△P* Pérdida de presión en el hidrociclón
- H Altura libre del vórtice por encima del depósito

- $\rho_p$  Densidad de la pulpa (mezcla de sólidos y agua)
- $\rho_{\rm s}$  Densidad de los sólidos
- Cv Concentración volumétrica en fracción
- Cv_A Concentración a la entrada o alimentación del hidrociclón
- Cv_D Concentración en la descarga o salida inferior
- M_A Masa de sólidos a la entrada o alimentación
- *M_D* Masa de sólidos en la descarga
- γ_s Peso específico de los sólidos
- yw Peso específico del agua
- RS Reparto de sólidos
- *Cw* Concentración por peso de sólidos
- W_D Peso de sólidos que sale por la descarga
- W_A Peso de sólidos que entra al hidrociclón
- **Q**_S Caudal sólido en peso por unidad de tiempo
- **Q**_L Peso del agua por unidad de tiempo
- *RP* Reparto de pulpa
- *RL* Reparto de líquido
- Eu Número de Euler
- **N**_R Número de restricción
- L_N Longitud normalizada del "vortex finder"
- *V* Velocidad de entrada
- D_v Diámetro del vortex finder
- **D**_A Diámetro del Apex
- P Presión antes del hidrociclón
- $\rho_{\rm s}$  Densidad del sólido
- **C**_{Dp} Coeficiente de arrastre de partícula
- **G**_s Gravedad específica
- M1 Muestra arena de cuarzo de mina
- M2 Muestra arena de río de origen volcánico de color café oscuro
- M3 Muestra arena de río de origen volcánico de color gris

- **P**_A Partición de agua
- $\rho_m$  Densidad de la mezcla
- V_m Velocidad del fluido
- **R**_s Remoción de sedimentos
- W_{si} Pesos del sedimento entre la salida interna (ápex)
- Wse Peso total de sedimentos a la entrada del hidrociclón
- R_{pb} Remoción de plomo
- W_{pbi} Pesos de plomo entre la salida interna (ápex)
- W_{pbe} Peso de plomo a la entrada del hidrociclón
- Cpbsi Concentraciones de plomo a la salida
- W_{Tpbi} Peso total de plomo mas sedimento recuperado por la parte interna del hidrociclón (ápex)
- C_{pbe} Concentración de plomo a la entrada
- d* Diámetro adimensional de partícula
- **Q**_s Caudal de sólidos
- **Q**_L Caudal de agua
- **D**_E Diámetro del tubo de entrada al hidrociclón
- Dc Diámetro del cuerpo del hidrociclón
- vm Viscosidad cinemática de la mezcla
- v_f Viscosidad cinemática del agua reportada
- Cv Concentración volumétrica de partículas
- D_v Diámetro del "vortex finder"
- D_A Diámetro de la boquilla de salida inferior del hidrociclón o "Apex"
- L_v Largo del cilindro del hidrociclón
- *h_{vi}* Altura del vertedero correspondiente la salida apex del hidrociclón
- *h*_{ve} Altura del vertedero correspondiente a la salida vortex del hidrociclón
- P Cabeza de agua en el piezómetro
- *T* Temperatura en grados centígrados

## LISTA DE TABLAS

Datos de laboratorio según el diseño experimental para el flujo de agua limpia	97
Datos de laboratorio según el diseño experimental para mezcla de agua y sedimento.	98
Datos de laboratorio según el diseño experimental para mezcla de plomo y agua	98
Datos de laboratorio según el diseño experimental para mezcla de agua, plomo y sedimento	99
Valores experimentales para el flujo de agua limpia 1	00
Valores experimentales para mezcla agua-sedimento 1	01
Valores experimentales para mezcla agua-plomo 1	03
Valores experimentales para el flujo de la mezcla de agua, sedimentos y plomo1	04
Valores experimentales de las variables de respuesta afectadas por la mezcla de agua, plomo y sedimento	06
Valores calculados a partir de datos medidos en laboratorio1	09
Valores calculados de las variables de respuesta afectadas por la mezcla de agua, plomo y sedimento	10
	Datos de laboratorio según el diseño experimental para el flujo de agua limpia. Datos de laboratorio según el diseño experimental para mezcla de agua y sedimento. Datos de laboratorio según el diseño experimental para mezcla de plomo y agua. Datos de laboratorio según el diseño experimental para mezcla de agua, plomo y sedimento. Valores experimentales para el flujo de agua limpia. Valores experimentales para mezcla agua-sedimento. Valores experimentales para mezcla agua-plomo. Valores experimentales para el flujo de la mezcla de agua, sedimentos y plomo. Valores experimentales de las variables de respuesta afectadas por la mezcla de agua, plomo y sedimento. Valores calculados a partir de datos medidos en laboratorio. 1 Valores calculados de las variables de respuesta afectadas por la mezcla de agua, plomo y sedimento. 1 Valores calculados de las variables de respuesta afectadas por la mezcla de agua, plomo y sedimento. 1 Valores calculados de las variables de respuesta afectadas por la mezcla de agua, plomo y sedimento. 1 Valores calculados de las variables de respuesta afectadas por la mezcla de agua, plomo y sedimento. 1 Valores calculados de las variables de respuesta afectadas por la mezcla de agua, plomo y sedimento. 1 Valores calculados de las variables de respuesta

## LISTA DE FIGURAS

Figura 3.1	Geometría de un hidrociclón de fondo plano	84
Figura 3.2	Geometría general de un hidrocicón y esquema de las corrientes internas.	85
Figura 3.3	Ciclón cilíndrico LAROX tipo TWIN vortex.	87
Figura 3.4	Ciclón cilíndrico AKW ( 200 mm) Tipo fondo plano CBC	88
Figura 3.5	Hidrociclón con todas sus secciones y diseño	92
Figura 3.8	Representación gráfica de los valores medidos y calculados para Cpbsi1	11

#### INTRODUCCIÓN

Se pretende con este trabajo presentar las novedades y tendencias actuales de clasificación en el procesamiento de minerales, entendiendo ésta como la separación de partículas pesadas en un medio fluido, en las operaciones de clasificación de minerales, el equipo básico es el hidrociclón, y a él básicamente se refiere esta presentación. En los últimos años pocos cambios ha habido, pudiendo afirmarse que las novedades han sido mínimas en lo que hace referencia a los equipos empleados, centrándose estas principalmente, en alternativas y modificaciones de los diferentes procesos unitarios.

Antes de realizar corridas con la mezcla total, se realizó ensayos solo con agua, con agua-plomo, y con agua-sedimentos. En la preparación de la mezcla última se usó plomo como metal pesado junto con sedimentos naturales. Para establecer los parámetros adimensionales a estudiar se utilizó el método del análisis dimensional y para conocer el número de ensayos experimentales y el orden de ejecución de los tratamientos experimentales, se realizó un diseño experimental con arreglos factoriales. La medición experimental se la realiza en el mismo montaje de laboratorio.

Como resultado de la presente investigación se obtuvo correlaciones que relacionan la concentración de metal pesado, la partición de agua, la remoción de sedimentos y la remoción de metal pesado, con las variables que identifican las propiedades del agua, las de los sedimentos, las de la mezcla y la geometría del hidrociclón. Con dichas correlaciones es posible saber cuál es la concentración de metal pesado a la salida del separador, con relación a la concentración a la entrada del mismo.

#### 3.1. ASPECTOS TEORICOS

3.1.1. **Generalidades.** Según ⁸ "El hidrociclón es básicamente un cilindro vertical fijo, con una entrada tangencial en el borde superior para la alimentación. La salida está a media altura en el eje. La alimentación entra a alta velocidad, describiendo una espiral convergente hacia el centro hasta encontrar la salida. La trayectoria circular crea un campo de aceleración centrífuga. Si las partículas sólidas son más densas que el líquido, se desplazarán radialmente hacia afuera hasta chocar con la pared y caer hacia la salida de fondo (underflow)".

A comienzos del Siglo XX empiezan a aparecer, esporádicamente, aplicaciones de Hidrociclones. La primera patente de que se tiene constancia sobre un hidrociclón, fue otorgada a Bretney en Estados Unidos en 1891, pero curiosamente hasta 1914 no se conoce la aplicación aislada de un hidrociclón en una mina de fosfato americana, tal y como recoge Bradley en su libro "The Hydrocyclone", la primera publicación seria sobre este equipo.

Mediados los años 20 se hicieron tímidas incursiones con Hidrociclones para la depuración de arenas en la extracción de petróleo, y a finales de los 30 se empiezan a emplear con éxito en la industria del papel. En 1939 el Estado de Minas Holandés, Dutch State Mines (DSM) comienza a estudiar la aplicación de los Hidrociclones en el lavado de carbón por medios densos, más concretamente en el desaguado de estériles, y un poco más tarde en el desaguado del carbón lavado previo a las cribas de escurrido.

Los mayores desarrollos en esta aplicación fueron llevados a cabo por M. G. Driessen, quien publicó numerosos artículos sobre sus trabajos, entre los años 1939 a 1948.

El hidrociclón diseñado por Driessen carecía de tobera de rebose, evacuándose el mismo a través de una sencilla abertura practicada en la tapa del cuerpo de alimentación. No obstante, al momento de su comercialización en 1948, por la empresa Stamicarbon N. V., el hidrociclón ya contaba con la correspondiente tobera de rebose.⁹

3.1.2. **Funcionamiento.** Se tendrá en cuenta la nomenclatura, indicada en la figura 3.1 para indicar el funcionamiento y los desarrollos matemáticos.

⁸ CAPÍTULO 7: Equipos de separación sólido – Fluido. Universidad de Chile. Facultad de Ciencias Físicas y Matemáticas. Departamento de Ingeniería Química. 2002. http://metalurgistas.com/catalogos/Ciclones-Filtros-Espesadores.pdf

⁹ BOUSO, Juan Luis. Hitos históricos en el desarrollo de la clasificación. IX simposium sobre procesamiento de minerales Moly- Cop 2001. Puyehue, Chile. www.minas.upm.es/catedra-anefa/Bouso-M3/Hidrociclones_Fondo_Plano.pdf





Los subíndices **A** significan alimentación, **R** rebose y **D** descarga. **Mi**: Masa en t/h de sólido seco, **Vpi**: Volumen en m³/h de pulpa. **VLi**: Volumen en m³/h líquido, **Cwi**: Concentración de sólidos expresada como gramos de sólido seco por litro de pulpa, es decir **Cwi** = **Mi**. / **Vp**.

En un hidrociclón el fluido de alimentación entra tangencialmente a la parte cilíndrica bajo una cierta presión, lo que genera su rotación alrededor del eje longitudinal del hidrociclón, formando un torbellino descendente hacia el vértice de la parte circular o cónica. Las partículas más gruesas debido a la aceleración centrífuga giran cercanas a la pared, siendo evacuadas a través de la boquilla en forma de pulpa espesa. Debido a las reducidas dimensiones de ésta, solamente se evacua una parte de la suspensión, creándose en el vértice del cono un segundo torbellino de trayectoria ascendente, el cual transporta las partículas finas junto con la mayor parte del líquido, abandonando el hidrociclón a través de un tubo central situado en la tapa superior del cuerpo cilíndrico. En la figura 3.2 se indica la geometría general de un hidrociclón y el comportamiento del flujo en su interior.







Como se puede observar en la figura 3.2, debido al incremento de la velocidad tangencial en el torbellino secundario (flujo inferior), las altas fuerzas centrífugas generadas traen consigo una eficientísima separación secundaria. Las partículas finas rechazadas sedimentan radialmente y se unen al torbellino primario; la mayoría de estas partículas son evacuadas finalmente a través de la boquilla formada por el vértice del cono. Por consiguiente, la separación dentro de un hidrociclón tiene lugar como resultado de estos dos procesos, y el punto de corte final será determinado principalmente por la aceleración centrífuga del torbellino secundario interior¹¹.

¹⁰ UNIVERSIDAD DE SEVILLA, Hidráulica y riegos, Creative commons lisence, [En línea]. http://ocwus.us.es/ingenieriaagroforestal/hidraulica-y-riegos/temario/Tema%2010.Riego%20goteo/tutorial_06.htm

¹¹ TRAWINSKI, Helmut. Aplicaciones y funcionamiento práctico de los hidrociclones. Adaptación: Juan Luis Bouso Aragonés, Director General de ERAL, Equipos y Procesos, S.A. [En línea]. www.minas.upm.es/catedra-anefa/Bouso-M3/ApliyFun_Prac_Hidrociclones.pdf -

#### 3.1.3. Tipos de hidrociclones:

#### • Con cono pronunciado, convencionales:

Este grupo recogería los hidrociclones con ángulo menor de 20°, caracterizados por un cuerpo relativamente largo debido a su conicidad. Este tipo de diseño se acompaña con partes cilíndricas de gran longitud (mayor que una vez el diámetro), y toberas de alimentación y rebose de pequeñas dimensiones, para aumentar el tiempo de residencia.

Esto, debido a la gran altura libre de vórtice, (distancia entre el borde inferior de la tobera de rebose y el vértice de la parte cónica), y su influencia inversamente proporcional al tamaño de corte, los hace los más adecuados para clasificaciones finas, como se requiere en operaciones de clarificación y espesado.

En general, solamente los hidrociclones de pequeño y medio diámetro, hasta 25 cm, se construyen con conicidad pronunciada.

Suelen operar a presiones medias, entre 150 y 400 kPa, obteniendo tamaños de corte entre 2 micras *y* 30 micras.

Es este tipo el más difundido, especialmente en el tratamiento de minerales industriales donde a menudo se requieren clasificaciones más finas (Fig. 3.3).

#### • Hidrociclones cilíndricos:

Podrían incluirse dentro de la clasificación anterior, como hidrociclones de fondo plano, pero debido a que exteriormente no se aprecia nada más que su cuerpo cilíndrico por su ángulo de 180°, es decir fondo perpendicular a la pared lateral, y también porque su campo de aplicación difiere notablemente de aquellos, merecen un tratamiento diferenciado.

Estos hidrociclones no suponen realmente una nueva teoría, pues ya a principios de siglo pueden encontrarse las primeras aplicaciones de este tipo de ciclones.

a) con descarga periférica: Consisten, básicamente en un ciclón convencional del cual se ha eliminado su zona cónica, remplazándola por una parte cilíndrica de similar longitud. El fondo del ciclón es plano y la extracción del producto grueso se realiza tangencialmente por la zona baja de la pared cilíndrica.

Como quiera que este diseño, provoca una descarga muy diluida, debido al cortocircuito, (partículas finas en suspensión en el líquido acompañando a la descarga), la eficiencia de separación se reduce. Hace unos 30 años que uno de los principales fabricantes de hidrociclones, KREBS, comercializó un tipo de hidrociclones, conocidos como EE¹² que, basándose en este diseño de descarga tangencial, conectó dos unidades. Una primera de gran diámetro y pared cilíndrica y una segunda convencional, cónica, de menor diámetro. Este diseño no tuvo mucha aceptación al menos a escala industrial, quizás debido a los elevados desgastes que podrían esperarse en la zona de transición debido a la alta concentración de sólidos.

En resumen, este nuevo diseño, llevado a la práctica por la firma LAROX bajo el nombre de Twin Vortex Cyclone presenta las ventajas de una doble etapa de clasificación, pero sin la necesidad de una bomba intermedia (Fig. 3.3).



Figura 3.3 Ciclón cilíndrico LAROX tipo TWIN vortex.

Fuente.13

Este tipo de hidrociclones debería presentar ventajas operativas en procesos de tratamiento de minerales industriales, donde se opera normalmente a bajas concentraciones de sólidos.

¹² KREBS, NUEVOS TIPOS DE HIDROCICLONES. Adaptación: JUAN LUIS BOUSO, Director General de ERAL, Equipos y Procesos, S.A. [En línea]. *www.minas.upm.es/catedra-anefa/Bouso-M3/ApliyFun_Prac_Hidrociclones.pdf* - ¹³

¹³ KREBS, op. Cit.

**b) cilíndricos con descarga central Fondo plano**¹⁴: Difiere este diseño del anterior en que la descarga se realiza de modo convencional, es decir, a través de un orificio central (Fig. 3.4).

Figura 3.4 Ciclón cilíndrico AKW ( 200 mm) Tipo fondo plano CBC.



#### Fuente.15

Con el fin de ampliar el campo de trabajo de los hidrociclones hacia tamaños de corte mayores, por encima de las 150 micras surgió, basándose en la cama de sólidos que se crea en los ciclones de cono obtuso, el desarrollo de los llamados ciclones de fondo plano, mejor llamados por su inventor el Prof. Dr. Helmut Trawinski de Amberger Kaolinwerke Gmbh Ciclones CBC (Circulating Bed Cyclone) o (Circulating Bed Classifier), ciclones de lecho circulante o clasificadores del lecho circulante.

Se explicaba anteriormente que el lecho "fluido" creado en la zona inferior de los ciclones de cono ancho, no es un lecho estacionario, sino que está dotado de un movimiento de convención alrededor del núcleo central, lo cual favorece la reclasificación de partículas, ligeras o de pequeño tamaño, mal clasificadas, que

¹⁴ KREBS, NUEVOS TIPOS DE HIDROCICLONES. Adaptación: JUAN LUIS BOUSO, Director General de ERAL, Equipos y Procesos, S.A. [En línea]. www.minas.upm.es/catedra-anefa/Bouso-M3/ApliyFun_Prac_Hidrociclones.pdf -¹⁵ vp5pp, va. Oit

¹⁵ KREBS, op. Cit.

en su movimiento constante son en algún momento arrastradas por el torbellino interior o principal, siendo finalmente evacuadas con el rebose superior.

Este principio no puede ser aprovechado en un ciclón cónico, porque un aumento de la altura del lecho provocaría rápidamente la obstrucción de la boquilla de descarga, debido a la fricción de las partículas con la pared cónica (efecto silo), pero si puede ser desarrollado, alejando la pared del orificio de descarga, para lo cual se elimina la zona cónica, prolongando al mismo tiempo la zona cilíndrica y "cerrando" el ciclón con un fondo horizontal o casi, con un ángulo comprendido entre I60º-I80º.

El lecho fluido creado en el fondo del ciclón actúa como un "colchón", amortiguando las variaciones en la alimentación, tanto en caudal como en concentración de sólidos. Este efecto es de sumo interés, especialmente en circuitos cerrados de molienda donde existen variaciones frecuentes de la concentración de sólidos en la alimentación, debido a los cambios de dureza del mineral y otras variables. Una disminución de la concentración de alimentación es seguida de una disminución de la concentración en la descarga, lo que provoca automáticamente una pérdida de partículas finas con el producto grueso (cortocircuito o by-pass).

Contrariamente a lo que podría pensarse la tendencia a la obstrucción de la descarga, por aumentos en el tonelaje de sólidos, es menor en ese tipo de ciclones que en los convencionales, resultando extraño, llegar a la obstrucción total, lo que es bastante usual en circuitos de molienda, con las terribles consecuencias que esto trae para los circuitos de flotación posteriores que reciben el producto del rebose de los ciclones.

La responsabilidad de esta "resistencia" al bloqueo se debe buscarla en los flujos de convección existentes en el lecho de sólidos que lo mantienen en rotación.

3.1.4. **Aplicaciones de los hidrociclones.** A continuación se muestra diez aplicaciones esenciales para Hidrociclones: ¹⁶

• Espesado. Esta denominación se refiere a la eliminación de la mayor cantidad de agua para producir un escurrido de los sólidos. El verdadero espesado apunta a la recuperación de todos los sólidos, resultando una clarificación del líquido, pero como en la práctica, y debido a que los agentes floculantes no pueden ser utilizados, en los Hidrociclones, como acelerante de la sedimentación, la recuperación de peso es limitada y el resultado es un flujo superior turbio, es decir, lo que tiene lugar en el ciclón

¹⁶ Idem www.minas.upm.es/catedra-anefa/Bouso-M3/Hidrociclones_Fondo_Plano.pdf

es un deslamado. La construcción de diques de residuos con Hidrociclones es un ejemplo muy conocido de esta técnica.

- Deslamado. En esta operación el objeto es eliminar las partículas finas junto con el flujo superior. Esto es a menudo necesario para mejorar el producto para procesos posteriores, tales como flotación, separación magnética en húmedo, filtración, etc. En plantas químicas, los ciclones en deslamado se usan frecuentemente para eliminar el agua después de un proceso de cristalización; los cristales finos, son evacuados con el flujo superior, siendo reciclados al cristalizador donde actúan como núcleos para la formación de un nuevo cristal.
- **Refinado.** En el refinado, el flujo superior es el producto final y pequeñas cantidades de partículas superiores al tamaño deseado son evacuadas con el flujo inferior.
- Circuitos cerrados de molienda. Los ciclones de deslamado y refinado se usan a menudo juntos con procesos de molienda. Diferentes circuitos posibles, en los cuales, los Hidrociclones de clasificación y molinos en vía húmeda, pueden emplearse conjuntamente.
- Clasificación selectiva. La separación de una alimentación heterogénea en sus componentes minerales puede basarse en las diferentes características de los minerales: por ejemplo: el peso específico (separación por medios densos, jigs, mesas, espirales); forma de partículas (mesas, espirales); tensión superficial (flotación); propiedades eléctricas y magnéticas (separadores); solubilidad (proceso de lixiviación); y otras. Algunas veces, tan sólo la diferencia en el tamaño del grano permite la separación por un simple proceso mecánico.

En este caso se genera una distribución granulométrica llamada antiparalela. Un ejemplo es el caolín (china clay) es refinado basándose en esto. El producto más fino, a la izquierda, es el caolín, mientras que el de la derecha es cuarzo. La separación al tamaño indicado en el diagrama produce un enriquecimiento del caolín fino en el flujo superior del ciclón del cuarzo grueso en el inferior, esto se llama clasificación selectiva.

 Recuperación de sólidos. Los equipos de lavado y escurrido, a menudo, generan efluentes turbios (flujos superiores o filtrados) que transportan con ellos fracciones finas, las cuales causan pérdidas de producto. La recuperación de estas fracciones finas de: tornillos lavadores de arenas, desenlodadores, escurridores, Cribas, escurridoras centrífugas, es una aplicación atractiva para los Hidrociclones.

- **Fraccionamiento.** Otra aplicación interesante en el tratamiento por Hidrociclones, es la clasificación en dos fracciones para un tratamiento posterior en diferentes procesos. Un ejemplo típico, es el fraccionado de un concentrado de hierro para alimentación sinter (gruesos) y pellet (finos).
- **Pre-concentración.** Si hay grandes diferencias en el peso específico de los componentes minerales, el producto bruto puede ser enriquecido en Hidrociclones. Esto es un proceso de concentración por gravedad, o quizás, mejor dicho, un proceso de concentración centrifuga. En estos Hidrociclones no se usan medios densos. Un ejemplo típico es la separación de componentes pesados, tales como sulfuros metálicos (pirita, blenda), óxidos metálicos, metales preciosos (plata, platino), etc., de gangas. Los ciclones para esta operación difieren de los tipos normales, ya que su fondo plano y su larga parte cilíndrica se han proyectado para aumentar la eficacia.
- Recuperación de líquido. Si las aguas de procesos o soluciones madres deben reciclarse, con Hidrociclones puede obtenerse a menudo una clarificación satisfactoria. En las plantas de lavado de carbón, este es uno de los problemas más importantes, especialmente cuando los esperadores existentes están sobrecargados; en estos casos, los Hidrociclones se instalan frecuentemente en paralelo para mantener el nivel de turbiedad del agua de reciclado dentro de valores admisibles.
- Lavado contra-corriente. La eliminación de ácidos adherentes, lejías o partículas finas de un producto en particular, es realizada por diluciones y espesados periódicos en etapas múltiples de ciclones. El lavado en contra-corriente puede alcanzar eficiencias altas, añadiendo agua solamente una vez, p. ej. en la última etapa de ciclonado. En comparación con los procesos en los que se añade agua limpia varias veces, el efecto total de lavado es un poco más reducido, por supuesto, pero en relación con la cantidad de agua limpia añadida, el sistema contra-corriente es mucho más efectivo.

#### 3.2. MATERIALES Y METODOS

3.2.1. **Montaje de Laboratorio.** Se utilizó para la investigación experimental con el hidrociclón, el mismo montaje de laboratorio que para el tubo curvo, el cual se indica esquemáticamente en la figura 2.3.

El hidrociclón construido tiene un diámetro de 0.15 m, y su altura varía entre 0.08 m, 0.23 m y 0.38 m, con un diámetro de alimentación de 0.042 m y un diámetro de rebose de 0.0513 m. Para los ensayos en el laboratorio se hace variar el diámetro

de salida ápex (descarga), entre 0.0175 m, 0.023 m y 0.0298 m. En la figura 3.7, se indica una foto del hidrociclón con la altura Lv máxima, utilizado en esta investigación, y el diseño del mismo. Donde Lv es la longitud del vortex finder, Dc es el diámetro del hidrociclón,  $D_E$  es el diámetro del tubo de entrada,  $D_v$  es el diámetro del vortex finder y  $D_A$  es el diámetro del Ápex.



Figura 3.5 Hidrociclón con todas sus secciones y diseño.

Fuente. Esta investigación.

3.2.2. **Propiedades de los sólidos.**Entre las propiedades analizadas para el material sólido se encuentra la granulometría, la gravedad específica y el coeficiente de arrastre, los cuales se describen a continuación:

#### • Granulometría

La mezcla se preparó usando sedimento con tamaños comprendidos entre el tamiz 200 hasta el tamiz 10 y plomo pulverizado entre el tamiz 200 y el 40. Para los sedimentos se usó tres tipos de granulometría correspondientes a sedimentos de origen diferente, la muestra M1 corresponde a arena de cuarzo de mina, la muestra M2 correspondiente a arena de río de origen volcánico de color café oscuro y la muestra M3 corresponde a arena de río de origen

volcánico de color gris. Las granulometrías de los sólidos se indican en la figura 2.6.

Para los ensayos de la mezcla de agua, sedimentos y plomo, se realizó granulometría a las mezclas de salida para cada ensayo, esto debido a que el material sólido fue reutilizado y por desperdicios no controlables, la granulometría cambia entre ensayos; por conservación de masa se calculó la granulometría de entrada. El coeficiente de arrastre  $C_{Dp}$  se calculó para cada ensayo con la granulometría de entrada.

#### • Gravedad específica. G_s

Se midió en laboratorio las gravedades específicas,  $G_s$ , de cada tipo de muestra de sedimento y del plomo, donde, para la muestra M1 se obtuvo  $G_s$  = 2.627, la muestra M2 una  $G_s$  = 2.529 y para M3 con  $G_s$  = 2.399. La gravedad específica del plomo obtenida fue de  $G_s$  =11.302.

#### • Coeficiente de arrastre. C_{DP}

Este parámetro relaciona las propiedades de los sedimentos y del fluido, se calcula con la metodología dada por (Cheng, 1997a) junto con el procedimiento de Condolios nombrado por Graf (1984). Debido a que los sedimentos y plomo usados no son de granulometría uniforme, se calcula para cada rango de tamaños el valor de  $C_{D}$ , con la metodología de (Cheng, 1997a) y luego se saca un valor ponderado de acuerdo al porcentaje entre los dos tamaños aplicando la ecuación [1.25]

Para poder calcular  $C_{DP}$ , fue necesario realizar las granulometrías correspondientes a las muestra de sedimentos recuperados por la salida vortex y ápex del hidrociclón. La granulometría de entrada se infirió de las granulometrías de salida; de este modo se obtuvieron valores de  $C_{DP}$  para cada uno de los ensayos tanto en la entrada como en las dos salidas.

3.2.3. **Variables de Respuesta.** Las variables de respuesta estudiadas, corresponden a la concentración de metal pesado  $C_{pbs}$  recuperado en la salida inferior del hidrociclón (ápex), la remoción de sedimentos  $R_s$ , la remoción de plomo  $R_{pb}$ , número de Euler *Eu* y la partición de agua *PA*.

• **Partición de agua, P**_A. Esta variable se incluye ya que es de suma importancia conocer la distribución del agua a la salida de separador, con el fin de ser usada en etapas posteriores de separación. La partición de agua está definida como la relación de caudales entre el caudal interno (ápex) de hidrociclón, dividido sobre el caudal liquido total a la entrada, ec. [2.2].

 Número de Euler, Eu. Esta variable determina la pérdida de energía en el hidrociclón. Definida como la relación entre la presión antes del dispositivo P, dividido sobre la densidad de la mezcla ρ_m, y la velocidad del fluido V_m, expresada como:

$$Eu = \frac{2P}{\rho_m V_m^2}$$
[3.1]

- Remoción de sedimentos, R_s. Definida como la relación de pesos del sedimento entre la salida interna (ápex) W_{si} y el peso total de sedimentos a la entrada del hidrociclón W_{se}, ec. [2.4].
- **Remoción de plomo**,  $R_{pb}$ . Definida como la relación de pesos de plomo entre la salida interna (ápex)  $W_{pbi}$  y el peso de plomo a la entrada del hidrociclón  $W_{pbe}$ , ec. [2.5].
- Concentraciones de plomo a la salida, C_{pbsi}. Definida como la relación del peso de plomo recuperado por la salida interna del hidrociclón W_{Pbi} y el peso total de plomo mas sedimento recuperado por la parte interna del hidrociclón (ápex) W_{Tpbi}, ec. [2.6].

Como estos pesos son desconocidos se propone el siguiente procedimiento para su cálculo. Como se necesita conocer  $C_{pbsi}$ , el  $W_{pbi} = R_{pb}^* W_{pbe}$  y  $W_{Tpbi} = W_{pbi+} W_{si}$ , pero  $W_{si} = R_s^* W_{se}$ , remplazando se obtiene ec. [2.7]. Si se divide y multiplica por  $W_{se}$ , se tiene, ec [2.8]. Si llamamos C'_{pbe} =  $W_{pbe}/W_{se}$ , la ecuación [2.8] se transforma en, ec. [2.9].

La relación entre la concentración de plomo a la entrada  $C_{pbe}$  y C'_{pbe} está dada como, ec. [2.10]. Despejando para C'_{pbe} se obtiene, ec. [2.11].

Se parte del hecho que las propiedades de la mezcla y las concentraciones de metal a la entrada al hidrociclón son conocidas y las remociones de sedimento y plomo debido a la acción de separación se las puede calcular con las correlaciones propuestas en esta investigación.

3.2.4. **Factores independientes.** Para encontrar los posibles factores que tienen influencia en las variables de respuesta, se recurrió a la técnica del análisis dimensional, según lo expuesto por Streeter (1999). Se obtuvo las siguientes relaciones funcionales adimensionales:

$$f(PA, De, N_R, L_N, C_{Dp}) = 0$$
 [3.2]

$$f(Eu, De, N_R, L_N, C_{Dp}) = 0$$
 [3.3]

$$f(R_{pb}, De, N_R, L_N, C_{Dp}) = 0$$
 [3.4]

$$f(R_s, De, N_R, L_N, C_{Dp}) = 0$$
 [3.5]

Para el hidrociclón se seleccionaron los siguientes parámetros:  $De_m$  es el número de Dean del flujo de la mezcla agua y arena.  $N_R$  y  $L_N$  indican el número de Restricción y el número Longitud Normalizada del "vortex finder", definidos por (Etayo, 2008), los cuales representan los aspectos geométricos del hidrociclón. Los números  $C_D$  y  $d^*$ , son el coeficiente de arrastre y el diámetro adimensional de partícula, respectivamente. Estos dos últimos parámetros se calcularán según (Cheng, 1997a) y (Cheng, 1997b), como se expuso en el capítulo uno. Las ecuaciones correspondientes a cada parámetro se indican a continuación.

$$De_m = \frac{4(Q_s + Q_L)}{\pi D_E V_m} \sqrt{\frac{D_E}{D_C}}$$
[3.6]

$$C_v = \frac{Q_s}{Q_s + Q_L}$$
[3.7]

$$N_R = \frac{D_v^2 + D_A^2}{D_E^2}$$
 [3.8]

$$L_N = \frac{L_V}{D_C}$$
[3.9]

Donde  $Q_s$  es el caudal de sólidos,  $Q_L$  es el caudal de agua,  $D_E$  es el diámetro del tubo de entrada al hidrociclón, Dc es el diámetro del cuerpo del hidrociclón,  $v_m$  es la viscosidad cinemática de la mezcla, calculada según Cheng (1997b), ec. [2.16],  $v_f$  es la es la viscosidad cinemática del agua reportada por Yang (1996), ec. [2.17], Cv es la concentración volumétrica de partículas,  $D_v$  es el diámetro del "vortex finder" en este caso se toma como el diámetro de salida superior del hidrociclón,  $D_A$  es el diámetro de la boquilla de salida inferior del hidrociclón o "Apex".  $L_v$  es el largo del cilindro del hidrociclón.

3.2.5. **Diseño experimental.** Con el fin de tener una visualización más amplia del fenómeno estudiado, se llevó a cabo el diseño y ejecución de la experimentación, para varias condiciones de flujo, en orden, se inició primero con flujo de agua limpia, flujo de mezcla y agua, flujo de agua y metal pesado y por último el flujo de agua, sedimentos y metal pesado. A continuación se indica el tipo de diseño que se realizó para cada condición de flujo.

Para el diseño experimental se usó la metodología dada por Gutiérrez (2000), usando arreglos factoriales según el caso. Para la calibración preliminar del hidrociclón, se realizaron ensayos con agua limpia, usando un diseño factorial mezclado con cuatro puntos al centro ( $2^3$ +4) para un total de 12 tratamientos. Para el estudio de agua y plomo, se optó por el mismo diseño factorial mezclado ( $2^3$ +4) para un total de 12 tratamientos. Para el estudio de agua y sedimento, se optó por un diseño factorial  $2^4$ , en este caso se tomó a C_{Dp} como el cuarto factor, con cuatro puntos al centro ( $2^4$ +4) para un total de 20 tratamientos. Para la mezcla de agua, sedimento y plomo, se realizó un diseño factorial similar al anterior de ( $2^4$ +4) para un total de 20 tratamientos. Estos diseños obedecen a que en laboratorio solo se podía hacer la variación de tres variables independientes en el caso de la mezcla, como son: el caudal del agua, el tipo de sedimento con diferente granulometría y la altura de cada hidrociclón.

3.2.6. **Procedimiento de medición.** Para minimizar los errores de medición debido a posibles fallas humanas, se procedió a grabar en video el sistema de medición del montaje de laboratorio para cada corrida experimental, y luego se obtuvieron los valores del video. Para cada experimento se siguió el siguiente procedimiento:

- 1. Se prendió la bomba para recircular el agua hasta lograr flujo permanente, con el caudal de agua requerido según la corrida experimental del diseño.
- 2. Se suministró el caudal sólido por medio de una tolva con un orificio calibrado, para que dosifique el valor establecido.
- 3. Se procedió a gravar con la cámara de video en el siguiente orden: tipo de muestra de sedimento a utilizar, tipo de hidrociclón, salidas de hidrociclón ápex y vortex, lectura de piezómetro; la lectura del termómetro digital; vertederos para aforo de caudal líquido correspondientes a la salida interna y externa del hidrociclón, respectivamente, tipo de hidrociclón, tipo de muestra de sedimentos durante la ejecución del ensayo, peso de la muestra a utilizar, peso de las muestras en los diferentes vertederos( muestra ya ceca), granulometrías de cada vertedero.
- 4. Los pesos de sedimento y plomo se recuperaron del sedimentador y se pesaron de forma separada según la correspondiente salida del hidrociclón.

Del video se obtuvo los siguientes datos: altura del vertedero correspondiente la salida ápex del hidrociclón  $h_{vi}$ , atura del vertedero correspondiente a la salida vortex del hidrociclón  $h_{ve}$ ; cabeza de agua en el piezómetro P; temperatura en grados centígrados T; tipo de muestra de sedimentos (M1, M2, M3) y la altura del hidrociclón (Lv min, Lv med, Lv max). Los valores numéricos de cada arreglo experimental se indican en las tablas 3.4, 3.5, y 3.6.

El caudal del agua se calculó con tres vertederos triangulares calibrados, donde el vertedero 1 y 2 miden el caudal líquido de la salida vortex del hidrociclón y el vertedero 3, mide el caudal del agua de la salida ápex del hidrociclón . Las ecuaciones de calibración se indican en el capitulo dos, vertederos 1-2 ec. [2.22] y vertedero 3 ec. [2.23].

1	2	3	4	5	6	7	8
N°	QL	Lv	Da	$h_{ve}$	h _{vi}	Р	Temp
[-]	[m3/s]	[m]	[Pulg]	[m]	[m]	[m]	°C
1	Min	Min	1/2	0.057	0.023	0.7860	19.0
2	Min	Min	1 1/2	0.046	0.054	0.6810	20.5
3	Min	Max	1/2	0.053	0.038	0.4675	20.2
4	Med	Med	1	0.052	0.049	0.6250	20.4
5	Min	Max	1 1/2	0.000	0.076	0.0600	20.9
6	Max	Max	1/2	0.059	0.038	0.6635	20.8
7	Med	Med	1	0.052	0.049	0.6275	20.3
8	Med	Med	1	0.052	0.049	0.6285	20.3
9	Max	Max	1 1/2	0.000	0.083	0.3100	20.7
10	Max	Min	1 1/2	0.051	0.056	0.9630	18.4
11	Max	Min	1/2	0.062	0.020	1.1085	19.0
12	Med	Med	1	0.052	0.049	0.6250	20.4

**Tabla 3.1** Datos de laboratorio según el diseño experimental para el flujo de agua limpia.

1	2	3	4	5	6	7	8	9	10	11	12
N°	$Q_L$	Lv	Da	$C_{Dp}$	Muestra	<b>W</b> si	W _{se}	$h_{ve}$	h _{vi}	Ρ	Τ
[-]	[-]	[m]	[Pulg]	[-]	[-]	[g]	[g]	[m]	[m]	[m]	[°C]
1	Med	Med	1	6.51	M2	18269	299	0.0521	0.049	0,65	20.8
2	Max	Min	1 1/2	25.25	M3	15543	1570	0.049	0.06	1,03	20.5
3	Max	Max	1 1/2	25.25	M3	18965	0	0	0.08299	0,045	20.6
4	Min	Max	1 1/2	2.62	M1	18156	0	0	0.076	0,035	20.1
5	Min	Min	1/2	2.62	M1	18759	39	0.0566	0.0215	0,73	22.5
6	Min	Min	1 1/2	2.62	M1	19630	117	0.0449	0.055	0,56	19.5
7	Min	Max	1/2	25.25	M3	17837	1431	0.0566	0.0224	0,05	21.3
8	Max	Min	1/2	2.62	M1	12498	6189	0.0595	0.0355	0,89	19.3
9	Med	Med	1	6.51	M2	18373	300	0.0521	0.049	0,625	21
10	Min	Max	1 1/2	25.25	M3	18971	0	0	0.076	0,095	18.7
11	Max	Max	1/2	2.62	M1	15409	1833	0.0595	0.036	0,71	20.4
12	Max	Min	1/2	25.25	M3	12354	6121	0.0595	0.0355	1,09	18.5
13	Max	Min	1 1/2	2.62	M1	19118	238	0.049	0.06	0,99	20.3
14	Min	Min	1/2	25.25	M3	13779	5070	0.0534	0.037	0,8	19.6
15	Med	Med	1	6.51	M2	18519	231	0.0521	0.049	0,57	21.2
16	Min	Max	1/2	2.62	M1	17755	1948	0.0535	0.0365	0,29	20.5
17	Max	Max	1/2	25.25	M3	18072	1431	0.0595	0.036	0,69	19.4
18	Min	Min	1 1/2	25.25	M3	16191	1326	0.0449	0.055	0,61	20.3
19	Max	Max	1 1/2	2.62	M1	19013	0	0	0.0829	0,25	20.5
20	Med	Med	1	6.51	M2	18541	393	0.0521	0.049	0,58	21.4

**Tabla 3.2** Datos de laboratorio según el diseño experimental para mezcla de agua y sedimento.

**Tabla 3.3** Datos de laboratorio según el diseño experimental para mezcla de plomo y agua.

1	2	3	4	5	6	7	8	9	10
N°	$Q_L$	Lv	Da	<b>W</b> _{pbi}	W _{pbe}	h _{ve}	h _{vi}	Ρ	Τ
[-]	[-]	[m]	[Pulg]	[g]	[g]	[m]	[m]	[m]	[°C]
1	Min	Min	1/2	996.00	1.170	0.0566	0.0215	0.371	18
2	Min	Min	1 1/2	995.85	1.200	0.0445	0.0555	0.197	19.9
3	Min	Max	1/2	998.57	0.720	0.0532	0.0376	0.456	20.2
4	Med	Med	1	997.15	0.190	0.0524	0.0485	0.58	21
5	Min	Max	1 1/2	999.35	0.000	0.001	0.076	0.04	20.5
6	Max	Max	1/2	999.050	0.56	0.0512	0.0564	0.645	19.4
7	Med	Med	1	998.15	0.190	0.0526	0.048	0.62	21.1
8	Med	Med	1	997.85	0.190	0.0527	0.0476	0.6	21.3
9	Max	Max	1 1/2	998.28	0.000	0.001	0.08299	0.253	18.5
10	Max	Min	1 1/2	998.89	0.490	0.0495	0.059	0.92	20.3
11	Max	Min	1/2	998.66	0.430	0.0595	0.0355	1.05	20.9
12	Med	Med	1	997.26	0.190	0.0523	0.0481	0.615	21.4

1	2	3	4	5	6	7	8	9	10	11	12
N°	$Q_L$	Lv	Da	$C_{Dp}$	Muestra	W _{sMi}	W _{sMe}	$h_{ve}$	h _{vi}	Ρ	Τ
[-]	[-]	[m]	[Pulg]	[-]	[-]	[g]	[g]	[m]	[m]	[m]	[°C]
1	Max	Min	1	20.80	M3	15590	2533	0.0615	0.0312	1,24	19.4
2	Max	Max	1	7.64	M1	19256	83	0.0544	0.053	0,57	19.1
3	Max	Max	1	31.42	M3	18996	955	0.0544	0.053	0,5945	19.5
4	Max	Max	1/2	29.37	M3	18739	685	0.06	0.038	0,6415	19.9
5	Max	Max	1/2	2.94	M1	16310	3299	0.0599	0.0385	0,6225	20.4
6	Min	Max	1/2	6.46	M1	19336	121	0.047	0.0413	0,305	21
7	Med	Med	3/4	23.01	M2	19336	309	0.054	0.0395	0,5865	20.6
8	Max	Min	1/2	12.55	M1	19750	242	0.0635	0.016	1,275	19.1
9	Min	Max	1	8.69	M1	19702	76	0.0244	0.0661	0,569	19.4
10	Min	Max	1	37.27	M3	18592	347	0.0244	0.0661	0,2767	16.3
11	Med	Med	3/4	19.46	M2	19143	259	0.054	0.0395	0,574	18.8
12	Min	Min	1	5.16	M1	19863	37	0.0494	0.0348	0,5775	18.8
13	Med	Med	3/4	31.00	M2	19195	371	0.054	0.0395	0,5915	18.9
14	Min	Min	1/2	19.94	M3	16019	3385	0.052	0.0235	0,579	19.1
15	Min	Min	1/2	8.11	M1	19413	371	0.0522	0.023	0,5675	19.2
16	Med	Med	3/4	26.46	M2	18818	315	0.054	0.0395	0,6075	19.3
17	Min	Max	1/2	29.88	M3	18058	1077	0.047	0.041	0,2965	20
18	Max	Min	1	17.15	M1	19632	311	0.0612	0.033	1,285	17.8
19	Min	Min	1	24.07	M3	17611	1988	0.0494	0.0349	0,5875	18.8
20	Max	Min	1/2	19.13	M3	13768	5313	0.0634	0.0182	1,285	19.1

**Tabla 3.4** Datos de laboratorio según el diseño experimental para mezcla de agua, plomo y sedimento.

#### 3.3. ANÁLISIS DE RESULTADOS

A partir de los datos experimentales, se procesó la información, se realizaron los cálculos respectivos y se propuso nuevas correlaciones para el cálculo de la remoción de sedimentos y la remoción de metal pesado.

3.3.1. **Cálculos para agua limpia.** Con los datos tomados en laboratorio se calculó los parámetros adimensionales, como se indica en la tabla 3.8.

1	2	3	4	5	6	7	8	9	10	11
N٢	Qi	Qe	$Q_L$	V	v	De	Eu	L _N	N _R	PA
[-]	[m ³ /s]	[m ³ /s]	[m ³ /s]	[m/s]	[m²/s]	[-]	[-]	[-]	[-]	[-]
1	0.000068	0.001216	0.001284	0.93	0.000001042	19777	17.936	0.533	12.83	0.053
2	0.000563	0.000722	0.001285	0.93	0.000001005	20517	15.528	0.533	19.69	0.438
3	0.000234	0.001052	0.001286	0.93	0.000001012	20381	10.648	2.533	12.83	0.182
4	0.000445	0.001000	0.001446	1.04	0.000001007	23032	11.255	1.533	15.42	0.308
5	0.001285	0.000000	0.001285	0.93	0.000000995	20722	1.367	2.533	19.69	1.000
6	0.000234	0.001356	0.001589	1.15	0.00000997	25560	9.889	2.533	12.83	0.147
7	0.000445	0.001000	0.001446	1.04	0.000001009	22976	11.300	1.533	15.42	0.308
8	0.000445	0.001000	0.001446	1.04	0.000001009	22976	11.318	1.533	15.42	0.308
9	0.001590	0.000000	0.001590	1.15	0.000001000	25504	4.618	2.533	19.69	1.000
10	0.000626	0.000959	0.001585	1.14	0.000001057	24046	14.434	0.533	19.69	0.395
11	0.000048	0.001534	0.001582	1.14	0.000001042	24356	16.678	0.533	12.83	0.030
12	0.000445	0.001000	0.001446	1.04	0.000001007	23032	11.255	1.533	15.42	0.308

Tabla 3.5 Valores experimentales para el flujo de agua limpia.

**Columna 1:** numero de ensayos. **Columna 2:** caudal líquido evacuado por el lado interno del hidrociclón, calculado con ec. [2.23]. **Columna 3:** caudal líquido evacuado por el lado externo del hidrociclón, calculado con ec. [2.22]. **Columna 4:** caudal total de entrada al Hidrociclón, calculado como  $Q=Q_i+Q_e$ . **Columna 5:** velocidad de flujo está dada por la siguiente ecuación  $V = \frac{4Q}{\pi D_c^2}$ , donde **Q** es el

caudal de la mezcla a usar, y D_C es el diámetro de entrada del hidrociclón. **Columna 6:** viscosidad cinemática del agua, calculada con ec. [2.17]. **Columna 7:** número de Dean del flujo, calculado con ec. [3.6]. **Columna 8:** número de Euler del flujo, calculado con la ec. [3.1]. **Columna 9:** número Longitud Normalizada del "vortex finder", se calcula con ec. [3.9]. **Columna 10:** número de Restricción, calculada con la ec. [3.8]. **columna 11:** Partición de agua, calculada con la ec. [2.2].

3.3.2. Cálculos para agua y sedimentos. Con los datos experimentales se calculó las cantidades indicadas en tabla 3.9.

1	2	3	4		5	6	7
N°	Qi	Qe	Qs		ν	<i>v</i> _m	V
[-]	[m ³ /s]	[m ³ /s]	[m ³ /s]		[m²/s]	[m ² /s]	[m/s]
1	0.000445	0.001000	0.00019	77 0.00	0000997	0.0000012171	1.186
2	0.000726	0.000863	0.00021	86 0.00	0001005	0.0000012273	1.305
3	0.001590	0.000000	0.00021	86 0.00	0001002	0.0000012243	1.305
4	0.001285	0.000000	0.00021	49 0.00	0001014	0.0000012919	1.083
5	0.000061	0.001222	0.00021	49 0.00	0000958	0.0000012211	1.081
6	0.000589	0.000699	0.00021	49 0.00	0001029	0.0000013103	1.085
7	0.000067	0.001222	0.00021	86 0.00	0000986	0.0000012597	1.088
8	0.000205	0.001378	0.00021	49 0.00	0001034	0.0000012602	1.297
9	0.000445	0.001000	0.00019	0.00	0000993	0.0000012113	1.186
10	0.001285	0.000000	0.00021	86 0.00	0001050	0.0000013422	1.086
11	0.000212	0.001378	0.00021	49 0.00	0001007	0.0000012261	1.303
12	0.000205	0.001378	0.00021	86 0.00	0001055	0.0000012895	1.300
13	0.000726	0.000863	0.00021	49 0.00	0001009	0.0000012291	1.302
14	0.000226	0.001062	0.00021	86 0.00	0001027	0.0000013124	1.087
15	0.000445	0.001000	0.00019	0.00	0000988	0.0000012056	1.186
16	0.000219	0.001066	0.00021	49 0.00	0001005	0.0000012796	1.083
17	0.000212	0.001378	0.00021	86 0.00	0001032	0.0000012603	1.305
18	0.000589	0.000699	0.00021	86 0.00	0001009	0.0000012904	1.087
19	0.001585	0.000000	0.00021	49 0.00	0001005	0.0000012238	1.300
20	0.000445	0.001000	0.00019	0.00	0000983	0.0000011999	1.186
1	8	9	10	11	12	13	14
N°	Dem	Eu	LN	N _R	Rar	PA	C _{Dp}
[-]	[-]	[-]	[-]	[-]	[-]	[-]	[-]
1	21663	11.7	1.5333	2.1260	0.9839	0.308	6.51
2	23631	15.4	0.5333	2.6226	0.9083	0.457	25.25
3	23693	0.7	2.5333	2.6226	1.0000	1.000	25.25
4	18629	0.8	2.5333	2.6226	1.0000	1.000	2.62
5	19672	16.7	0.5333	1.7962	0.9979	0.048	2.62
6	18396	12.7	0.5333	2.6226	0.9941	0.457	2.62
7	19198	1.1	2.5333	1.7962	0.9257	0.052	25.25
8	22881	13.4	0.5333	1.7962	0.6688	0.129	2.62
9	21767	11.3	1.5333	2.1260	0.9839	0.308	6.51
10	17976	2.2	2.5333	2.6226	1.0000	1.000	25.25
11	23610	10.6	2.5333	1.7962	0.8937	0.133	2.62
12	22408	16.4	0.5333	1.7962	0.6687	0.129	25.25

 Tabla 3.6
 Valores experimentales para mezcla agua-sedimento.

13	23547	14.8	0.5333	2.6226	0.9877	0.457	2.62
14	18412	18.2	0.5333	1.7962	0.7310	0.176	25.25
15	21870	10.3	1.5333	2.1260	0.9877	0.308	6.51
16	18806	6.6	2.5333	1.7962	0.9011	0.170	2.62
17	23017	10.3	2.5333	1.7962	0.9266	0.133	25.25
18	18725	13.8	0.5333	2.6226	0.9243	0.457	25.25
19	23600	3.7	2.5333	2.6226	1.0000	1.000	2.62
20	21974	10.4	1.5333	2.1260	0.9792	0.3081	6.51

**Columna 2:** caudal líquido evacuado por el lado interno del hidrociclón, calculado con ec. [2.23]. **Columna 3:** caudal líquido evacuado por el lado externo del hidrociclón, calculado con ec. [2.22]. **Columna 4:** caudal sólido de los sedimentos. **Columna 5:** viscosidad cinemática del agua, calculada con ec. [2.17]. **Columna 6:** viscosidad cinemática del la mezcla, calculada con la ec. [2.16].

**Columna 7:** velocidad de flujo está dada por la siguiente ec. [7],  $V = \frac{4Q}{\pi D_c^2}$ ,

donde **Q** es el caudal de la mezcla a usar, y D_C es el diámetro de entrada del hidrociclón. **Columna 8:** número de Dean del flujo, calculado con ec. [3.6]. **Columna 9:** número de Euler del flujo, calculado con la ec. [3.1]. **Columna 10:** número Longitud Normalizada del "vortex finder", se calcula con ec. [3.9]. **Columna 11:** número de Restricción, calculada con la ec. [3.8]. **Columna 12:** remoción de sedimento, se calcula con la ec. [2.3]. **Columna 13:** Partición de agua, calculada con la ec. [2.2]. **Columna 14:** coeficiente de arrastre de partículas, calculada con la ec. [1.25].

3.3.3. **Cálculos para agua y plomo.** Con los datos experimentales se calculó las cantidades mostradas en tabla 3.10.

1	2	3	4		5	6	7
N°	Qi	Qe	$Q_M$	ν		Vm	V
[-]	[m ³ /s]	[m ³ /s]	[m ³ /s]	[m ² /s]		[m²/s]	[m/s]
1	0.000061	0.001222	2.30E-06	0.000	001068	0.0000010707	0.927
2	0.000602	0.000684	2.30E-06	0.000	001019	0.0000010220	0.930
3	0.000235	0.001052	2.30E-06	0.000	001012	0.0000010146	0.931
4	0.000435	0.001014	2.30E-06	0.000	000993	0.0000009951	1.047
5	0.001285	0.000000	2.30E-06	0.000	001005	0.0000010073	0.930
6	0.000626	0.000959	2.30E-06	0.000	001032	0.0000010339	1.146
7	0.000424	0.001024	2.30E-06	0.000	000990	0.000009927	1.047
8	0.000415	0.001028	2.30E-06	0.000	000986	0.000009880	1.044
9	0.001590	0.000000	2.30E-06	0.000	001055	0.0000010570	1.149
10	0.000698	0.000884	2.30E-06	0.000	001009	0.0000010117	1.143
11	0.000205	0.001378	2.30E-06	0.000	000995	0.0000009973	1.144
12	0.000426	0.001010	2.30E-06	0.000	000983	0.0000009857	1.038
1	8	9	10	11	12	13	14
N°	Dem	Eu	L _N	N _R	$R_{pb}$	PA	$C_{Dp}$
[-]	[-]	[-]	[-]	[-]	[-]	[-]	[-]
1	19250	8.5	0.5333	1.7962	0.9988	0.0475	3.553
2	20218	4.5	0.5333	2.6226	0.9988	0.4680	3.553
3	20386	10.4	2.5333	1.7962	0.9993	0.1826	3.553
4	23395	10.4	1.5333	2.1260	0.9998	0.2999	3.553
5	20507	0.9	2.5333	2.6226	1.0000	0.9999	3.553
6	24624	9.7	2.5333	1.7962	0.9994	0.3947	3.553
7	23428	11.2	1.5333	2.1260	0.9998	0.2928	3.553
8	23479	10.9	1.5333	2.1260	0.9998	0.2877	3.553
9	24162	3.8	2.5333	2.6226	1.0000	1.0000	3.553
10	25117	13.9	0.5333	2.6226	0.9995	0.4410	3.553
11	25494	15.8	0.5333	1.7962	0.9996	0.1293	3.553
12	23402	11.3	1.5333	2.1260	0.9998	0.2967	3.553

 Tabla 3.7
 Valores experimentales para mezcla agua-plomo.

Columna 1: número de ensayos. Columna 2: caudal líquido evacuado por el lado interno del hidrociclón, calculado con ec. [2.23]. Columna 3: caudal líquido evacuado por el lado externo del hidrociclón, calculado con ec. [2.22]. Columna 4: caudal de plomo. Columna 5: viscosidad cinemática del agua, calculada con ec. [2.17]. Columna 6: viscosidad cinemática del la mezcla, calculada con la ec.

[2.16]. **Columna 7:** velocidad de flujo está dada por la siguiente ecuación  $V = \frac{4Q}{\pi D_c^2}$ 

, donde **Q** es el caudal de la mezcla a usar, y D_C es el diámetro de entrada del hidrociclón. **Columna 8:** número de Dean del flujo, calculado con ec. [3.6]. **Columna 9:** número de Euler del flujo, calculado con la ec. [3.1]. **Columna 10:** número Longitud Normalizada del "vortex finder", se calcula con ec. [3.9].

**Columna 11:** número de Restricción, calculada con la ec. [3.8]. **Columna 12:** remoción de plomo, se calcula con la ec. [2.4]. **Columna 13:** Partición de agua, calculada con la ec. [2.2]. **Columna 14:** Coeficiente de arrastre de plomo, calculada con la ec. [1.25].

3.3.4. **Cálculos** para agua, plomo y sedimentos. Con los datos experimentales se calculó las cantidades mostradas en tabla 3.11.

**Tabla 3.8** Valores experimentales para el flujo de la mezcla de agua, sedimentos y plomo.

1	2	3	4	5	6	7
N°	Qi	Qe	$oldsymbol{Q}_{pb}$	Qs	$Q_m$	ν
[-]	[m ³ /s]	[m²/s]				
1	0.00015	0.00149	0.000005188	0.000211423	0.0018588	0.00000103
2	0.00054	0.00111	0.000002820	0.000203015	0.0018545	0.00000104
3	0.00054	0.00111	0.000004113	0.000216489	0.0018692	0.00000103
4	0.00024	0.00141	0.000004376	0.000215250	0.0018669	0.00000102
5	0.00025	0.00140	0.000001893	0.000207005	0.0018582	0.00000101
6	0.00029	0.00078	0.000004579	0.000195445	0.0012752	0.00000099
7	0.00026	0.00109	0.000002649	0.000186627	0.0015447	0.00000100
8	0.00003	0.00161	0.000002213	0.000205626	0.0018498	0.00000104
9	0.00092	0.00016	0.000002694	0.000203556	0.0012846	0.00000103
10	0.00092	0.00016	0.000004164	0.000216250	0.0012987	0.00000111
11	0.00026	0.00109	0.000002253	0.000188395	0.0015461	0.00000105
12	0.00019	0.00088	0.000002420	0.000204737	0.0012821	0.00000105
13	0.00026	0.00109	0.000001980	0.000189615	0.0015470	0.00000104
14	0.00008	0.00100	0.000005060	0.000212027	0.0012884	0.00000104
15	0.00007	0.00101	0.000001586	0.000208326	0.0012867	0.00000104
16	0.00026	0.00109	0.000002565	0.000187002	0.0015450	0.00000103
17	0.00029	0.00078	0.000004294	0.000215635	0.0012900	0.00000102
18	0.00017	0.00147	0.000004254	0.000196846	0.0018475	0.00000107
19	0.00020	0.00088	0.000002273	0.000225157	0.0013037	0.00000105
20	0.00004	0.00161	0.000005679	0.000209109	0.0018616	0.00000104

1	8	9	10	11	12	13
N°	Vm	V	Dem	Eu	L _N	N _R
[-]	[m²/s]	[m/s]	[-]	[-]	[-]	[-]
1	0.000001250	1.342	23850	13.511	0.5333	2.1260
2	0.000001247	1.339	23859	6.240	2.5333	2.1260
3	0.000001251	1.349	23977	6.405	2.5333	2.1260
4	0.000001238	1.347	24197	6.929	2.5333	1.7962
5	0.000001211	1.341	24609	6.787	2.5333	1.7962
6	0.000001298	0.920	15758	7.061	2.5333	1.7962
7	0.000001228	1.115	20179	9.254	1.5333	1.9225
8	0.000001250	1.335	23740	14.027	0.5333	1.7962
9	0.000001359	0.927	15163	12.981	2.5333	2.1260
10	0.000001495	0.937	13936	6.176	2.5333	2.1260
11	0.000001285	1.116	19307	9.040	1.5333	1.9225
12	0.000001382	0.925	14883	13.227	0.5333	2.1260
13	0.000001283	1.117	19348	9.305	1.5333	1.9225
14	0.000001391	0.930	14861	13.130	0.5333	1.7962
15	0.000001373	0.929	15037	12.904	0.5333	1.7962
16	0.000001267	1.115	19553	9.581	1.5333	1.9225
17	0.000001366	0.931	15147	6.708	2.5333	1.7962
18	0.000001283	1.334	23108	14.173	0.5333	2.1260
19	0.000001418	0.941	14749	13.013	0.5333	2.1260
20	0.000001257	1.344	23760	13.960	0.5333	1.7962

**Columna 1:** número de ensayos. **Columna 2:** caudal líquido evacuado por el lado interno del hidrociclón, calculado con ec. [2.23]. **Columna 3:** caudal líquido evacuado por el lado externo del hidrociclón, calculado con ec. [2.22]. **Columna 4:** caudal de plomo. **Columna 5:** caudal sólido de los sedimentos. **Columna 6:** caudal mezcla. **Columna 7:** viscosidad cinemática del agua, calculada con ec. [2.17]. **Columna 8:** viscosidad cinemática del la mezcla, calculada con la ec.

[2.16]. **Columna 9:** velocidad de flujo está dada por la siguiente ecuación  $V = \frac{4Q}{\pi D_c^2}$ 

, donde **Q** es el caudal de la mezcla a usar, y D_C es el diámetro de entrada del hidrociclón. **Columna 10:** número de Dean del flujo, calculado con ec. [3.6]. **Columna 11:** número de Euler del flujo, calculado con la ec. [3.1]. **Columna 12:** número Longitud Normalizada del "vortex finder", se calcula con ec. [3.9]. **Columna 13:** número de Restricción, calculada con la ec. [3.8].

Los valores experimentales de las variables de respuesta afectadas por la mezcla de agua, plomo y sedimento, se indican en la tabla 3.9.

1	2	3	4	5	6	7	8
N°	Eu	$C_{Dp}$	PA	<b>C</b> _{Pbe}	<b>C</b> _{Pbsi}	$R_{ hob}$	<b>R</b> _s
[-]	[-]	[-]	[-]	[%]	[%]	[-]	[-]
1	13.511	20.7964	0.0806	10,6878	12.047	0,970	0.844
2	6.240	7.6438	0.2903	5,6418	5.664	1,000	0.995
3	6.405	31.4228	0.2880	8,2159	8.628	1,000	0.948
4	6.929	29.3712	0.1292	8,8030	9.060	0,993	0.961
5	6.787	2.9370	0.1339	3,9705	4.551	0,953	0.825
6	7.061	6.4646	0.2312	9,1591	9.216	1,000	0.993
7	9.254	23.0110	0.1714	5,9864	6.058	0,996	0.983
8	14.027	12.5496	0.0162	4,4264	4.480	1,000	0.987
9	12.981	8.6864	0.7144	5,3968	5.409	0,998	0.996
10	6.176	37.2670	0.7066	8,4238	8.472	0,987	0.980
11	9.040	19.4583	0.1713	5,0839	5.141	0,998	0.986
12	13.227	5.1602	0.1521	4,8397	4.849	1,000	0.998
13	9.305	30.9993	0.1711	4,4591	4.543	1,000	0.980
14	13.130	19.9433	0.0587	10,3636	12.243	0,975	0.806
15	12.904	8.1099	0.0558	3,1773	3.232	0,998	0.981
16	9.581	26.4627	0.1714	5,7917	5.871	0,997	0.983
17	6.708	29.8820	0.2246	8,6378	9.089	0,993	0.938
18	14.173	17.1540	0.0928	8,5241	8.642	0,998	0.983
19	13.013	24.0671	0.1506	4,6490	5.053	0,977	0.894
20	13.960	19.1264	0.0219	11,6431	15.722	0,974	0.686

**Tabla 3.9** Valores experimentales de las variables de respuesta afectadas por la mezcla de agua, plomo y sedimento.

**Columna 3:** coeficiente de arrastre promedio de partícula de la mezcla, calculado con la ec. [1.25]. **Columna 4:** partición de agua para el hidrociclón, con ec. [2.2]. **Columna 5:** concentración de plomo a la entrada del hidrociclón, calculado como  $W_{pbe}/W_{sM}$ . **Columna 6:** concentración de plomo por la salida ápex del hidrociclón, calculada con ec. [2.5]. **Columna 7:** Remoción de plomo por la salida ápex del hidrociclón, con ec. [2.4]. **Columna 8:** Remoción de sedimento por la salida ápex del hidrociclón, con ec. [2.3].

3.3.5. **Correlaciones matemáticas para las variables de respuesta.** Aplicando regresión lineal múltiple (RLM) a los datos experimentales se obtuvo las siguientes correlaciones para cada una de las variables de respuesta.

#### • Partición de agua, PA.

Con solo agua

$$PA = 10^{-2.278771} \left[ De \right]^{-0.955219} \left[ N_R \right]^{4.81137} \left[ L_N \right]^{0.791008}$$
[3.10]

Afectada por el sedimento

$$PA = 10^{-3,87551} \left[ De \right]^{0,393277} \left[ N_R \right]^{4,75938} \left[ L_N \right]^{0.270761} \left[ C_{Dp} \right]^{0,00487888}$$
[3.11]

Afectada por el metal pesado

$$PA = 10^{-9,7287} \left[ \frac{De}{\sqrt{C_{Dppb}}} \right]^{1,91082} \left[ N_R \right]^{4,0555} \left[ L_N \right]^{0,611349}$$
[3.12]

Afectada por la mezcla de metal pesado y el sedimento

$$PA = 16783,0157 \left[ De \right]^{-1.62591} \left[ N_R \right]^{6.19474} \left[ L_N \right]^{1.0049} \left[ C_{Dp} \right]^{-0.00875224}$$
[3.13]

#### • Número de Euler, Eu.

Con solo agua

$$Eu = 10^{-3.11894} \left[ De \right]^{1.48696} \left[ N_R \right]^{-1.91491} \left[ L_N \right]^{-0.72411}$$
[3.14]

Afectado por el sedimento

$$Eu = 10^{-6,50742} \left[ De \right]^{1,90214} \left[ N_R \right]^{-1,95495} \left[ L_N \right]^{-1,0302} \left[ C_{Dp} \right]^{-0,127861}$$
[3.15]

Afectada por el metal pesado

$$Eu = 10^{-14,7465} \left[ \frac{De}{\sqrt{C_{Dppb}}} \right]^{4,07645} \left[ N_R \right]^{-2,8625} \left[ L_N \right]^{-0,449213}$$
[3.16]

Afectada por la mezcla de metal pesado y el sedimento

$$Eu = 24,1123 \left[ De \right]^{-0.0918943} \left[ N_R \right]^{0.253397} \left[ L_N \right]^{-0.396226} \left[ C_{Dp} \right]^{-0.0323062}$$
[3.17]

#### Remoción de plomo

Afectada por el metal pesado

$$R_{Pb} = 0,97796 \left[\frac{De}{\sqrt{C_{Dppb}}}\right]^{0,00225688} \left[N_R\right]^{0,000714681} \left[L_N\right]^{0,000352796}$$
[3.18]

Afectada por la mezcla de metal pesado y el sedimento

$$R_{Pb} = 10^{0.0278179} De^{-0.00990626} N_R^{0.0239754} L_N^{0.00347877} C_{Dp}^{0.00256433}$$
[3.19]

Se observa que los exponentes tienden a cero, determinando que la remoción de plomo no es estadísticamente significativa, con relación a las variables de origen.

#### • Remoción de sedimento

Afectada por solo sedimento

$$Rs = 2,556342 \left[ De \right]^{-0,131915} \left[ N_R \right]^{0,41868} \left[ L_N \right]^{0,0828824} \left[ C_{Dp} \right]^{-0,025682}$$
[3.20]

Afectada por la mezcla de metal pesado y el sedimento

$$Rs = 2,03488 \left[ De \right]^{-0,102484} \left[ N_R \right]^{0,365282} \left[ L_N \right]^{0,050206} \left[ C_{Dp} \right]^{-0,00853139}$$
[3.21]

#### • Concentración de plomo a la salida interna del tubo curvo

Afectada por la mezcla de metal pesado y el sedimento

$$\frac{C_{Pbe}}{C_{Pbsi}} = 10^{0.292403} \times \left[De\right]^{-0.0953949} \left[N_R\right]^{0.328198} \left[L_N\right]^{0.0445291} \left[C_{Dp}\right]^{-0.00979056}$$
[3.22]

El coeficiente de arrastre  $C_{Dp}$  toma el valor dependiendo de la mezcla transportada, para ecuaciones [3.13], [3.17], [3.19], [3.21] y [3.22], corresponde al valor calculado para la mezcla de sedimentos y plomo a la entrada a partir de su granulometría, el peso específico de los sedimentos, viscosidad del agua y el diámetro de la mezcla de agua y sedimentos.

Los estadísticos para cada ecuación se indican en la tabla 3.10.
1	2	3	4	5	6	7	8
Estadístico	Ec.[3.10]	Ec.[3.11]	Ec.[3.12]	Ec.[3.13]	Ec.[3.14]	Ec.[3.15]	Ec.[3.16]
	[m ³ /s]	[m ³ /s]	[m ³ /s]				
P-Valor	0.0000	0,0000	0,0001	0.0000	0.0196	0,0027	0,0154
R-cuadrado	96.677%	85,2647%	92,215%	97.2604%	69.0398 %	64,1396%	70,9063
R-cuadrado (ajustado para g.l.)	95.4309%	81,3353%	89,2956%	96.5298%	57.4297%	54,5768%	59,9962
Error estándar de est.	0.0960019	0,173295	0,118589	0.0768978	0.201044	0,309273	0,216874
Error absoluto medio	0.0619419	0,112431	0,0843715	0.0532166	0.1275	0,225578	0,149533
Estadístico de Durbin-Watson	2.80053 (P=0.0289)	2,32234 (P=0,2885)	2,16982 (P=0,2650)	2.39022 (P=0.1395)	2.13022 (P=0.3233)	1,1391 (P=0,0318)	1.86269 (P=0,2353)
Autocorrelación residual en Lag 1	-0.435301	-0,165212	-0,166165	-0.228383	-0.0917008	0,391501	-0,136694

Tabla 3.10 Valores calculados a partir de datos medidos en laboratorio.

1	9	10	11	12	13	14	
Estadístico	Ec.[3.17]	Ec.[3.18]	Ec.[3.19]	Ec.[3.20]	Ec.[3.21]	Ec.[3.22]	
	[m ³ /s]						
P-Valor	0,0000	0,0122	0,6848	0,0089	0,2844	0,2423	
R-cuadrado	79,6065%	72,6045%	10,2424 %	57,344%	27,0503%	29,0513%	
R-cuadrado (ajustado para g.l.)	74,1682%	62,3312%	0,0%	45,9691%	7,59709%	10,1316%	
Error estándar de est.	0,0719701	0,000109449	0,00626299	0,0415455	0,0409549	0,0351053	
Error absoluto medio	0,0419265	0,000077688	0,00455266	0,028662	0,0290184	0,025438	
Estadístico de Durbin-Watson	2,37109 (P=0,1497)	2,40139 (P=0,1377)	2,18951 (P=0,2690)	2,73286 (P=0,0630)	1,75271 (P=0,2270)	1,79449 (P=0,2571)	
Autocorrelación residual en Lag 1	-0,192851	-0,223676	-0,16601	-0,390437	-0,0604033	-0,0641909	

3.3.6. Verificación de la correlaciones. Para evaluar el error de predicción de las correlaciones, se utiliza el criterio de error promedio  $\overline{E}$ , ec. [2.34].

Se obtuvo los siguientes errores promedio para cada una de las ecuaciones: ec. [3.10] un  $\overline{E} = 0.69\%$ , ec. [3.11] un  $\overline{E} = 15.71\%$ , ec. [3.12] un  $\overline{E} = 12.76\%$ , ec. [3.14] un  $\overline{E} = 18.41\%$ , ec. [3.15] un  $\overline{E} = 18.42\%$  y ec. [3.16] un  $\overline{E} = 10.59\%$ .

Para las ecuaciones correspondientes a la mezcla de agua, sedimento y metal pesado, se calculan los errores de predicción para cada ensayo como se indica en la tabla 3.14.

**Tabla 3.11**Valores calculados de las variables de respuesta afectadas por la<br/>mezcla de agua, plomo y sedimento.

PA	Eu	<b>C</b> _{Pbsi}	<b>R</b> _{pb}	Rs	<b>C</b> _{Pbsi}	Error	Error	Error	Error	Error	Error
Ec.	Ec.	Ec.	Ec.	Ec.	Ec.	Ec.	Ec.	Ec.	Ec.	Ec.	Ec.
[3.13]	[3.17]	[3.22]	[3.19]	[3.21]	[2.8]	[3.13]	[3.17]	[3.22]	[3.19]	[3.21]	[2.8]
[-]	[-]	[-]	[-]	[-]	[-]	[%]	[%]	[%]	[%]	[%]	[%]
0,0709	13,4453	11,4349	0,9880	0,9008	11,3746	11,9988	0,4859	5,08	1,892	9,9218	5,5792
0,3422	7,4899	5,7496	0,9908	0,9824	5,7351	17,8811	20,0375	1,51	0,889	50,8803	1,2530
0,3353	7,1522	8,4957	0,9943	0,9701	8,4468	16,4159	11,6598	1,53	0,558	67,6626	2,1021
0,1163	6,8624	9,5555	0,9901	0,9119	9,5053	9,9235	0,9664	5,47	0,289	77,2035	4,9120
0,1155	7,3809	4,0529	0,9841	0,9283	4,0660	13,7570	8,7535	10,95	3,211	81,4331	10,6647
0,2368	7,4960	9,4693	0,9904	0,9652	9,4573	2,4106	6,1626	2,75	0,952	83,9130	2,6207
0,1441	8,7301	6,3920	0,9911	0,9306	6,3796	15,9519	5,6574	5,51	0,502	86,7063	5,3034
0,0253	13,1005	5,1340	0,9827	0,8510	5,1609	56,4077	6,6083	14,59	1,721	89,3619	15,1878
0,7144	7,7762	5,2673	0,9956	1,0280	5,2494	0,0046	40,0963	2,62	0,288	88,5780	2,9537
0,8091	7,4766	8,1805	1,0001	1,0241	8,1368	14,5019	21,0644	3,44	1,300	89,7589	3,9554
0,1550	8,8132	5,4053	0,9911	0,9361	5,3996	9,4802	2,5120	5,15	0,660	91,4898	5,0344
0,1545	14,6874	5,0360	0,9890	0,9567	5,0476	1,6096	11,0449	3,87	1,093	92,0276	4,1047
0,1539	8,6800	4,7725	0,9923	0,9322	4,7658	10,0972	6,7125	5,05	0,727	92,8292	4,8980
0,0539	13,4736	11,2621	0,9885	0,8894	11,2230	8,1386	2,6138	8,01	1,359	93,6473	8,3286
0,0533	13,8560	3,5068	0,9861	0,8951	3,5298	4,4557	7,3743	8,50	1,208	94,0323	9,2127
0,1515	8,7160	6,1793	0,9918	0,9325	6,1665	11,6242	9,0317	5,26	0,520	94,1721	5,0386
0,2492	7,1602	8,9686	0,9947	0,9566	8,9321	10,9463	6,7438	1,32	0,171	94,3732	1,7259
0,0748	13,5685	9,3414	0,9878	0,9052	9,3155	19,4478	4,2633	8,09	1,028	94,9712	7,7909
0,1547	13,9862	4,7922	0,9930	0,9451	4,7914	2,7427	7,4808	5,16	1,685	95,0259	5,1720
0,0251	12,9224	13,2143	0,9838	0,8479	13,1123	14,7406	7,4320	15,95	0,971	95,7604	16,5994
				Errores p	promedio =	12,6268	9,3351	5,99	1,051	83,1874	6,1219

En la figuras 3.8, se indica la representación gráfica de los valores medidos y calculados de la ec. [2.8] y ec. [3.22].

Figura 3.6 Representación gráfica de los valores medidos y calculados para Cpbsi



# CAPÍTULO

# IV

# INVESTIGACIÓN EXPERIMENTAL PARA LA ESPIRAL CONCENTRADORA

## NOMENCLATURA

- X y Y Coordenadas en planta
- **Z** Altura en cada coordenada *x*, *y*.
- $\phi$  Angulo en planta
- **r** Radio desde el centro hasta el punto x, y
- **N** Número de espiras
- *H* Altura total de la espiral
- *u* Altura del paso de la hélice
- $\alpha$  Angulo de inclinación longitudinal de la espiral.
- $\theta$  Angulo en dirección transversal
- $C_v$  Máxima altura de la canaleta
- *r*_{*i*} Radios internos de la canaleta desde el centro
- *r*o Radios externos de la canaleta desde el centro
- V Velocidad media del flujo
- *d_p* Tamaño de las partículas transportadas
- *R* Radio hidráulico
- **S** Pendiente longitudinal
- **C**_y Altura máxima de la canaleta
- $\vec{C_x}$  Ancho máximo neto de la canaleta
- **h**_m Altura media
- x'y y' Son las derivadas de x y y en función de  $\phi$
- *r_m* Radio medio
- hs Altura total de la capa de fluido en cm
- **c**_m Concentración por peso de la suspensión en %
- P_f Perímetro mojado
- **z** Altura vertical sobre el punto de referencia en cm
- zo Altura del punto de referencia en cm
- ro Radio de movimiento desde el punto de referencia en cm
- **g** Gravedad en cm/s²
- **C**_v Constante de vórtice
- $\beta$  Angulo de la pendiente transversal de la canaleta

- **C**_o Constante de proporcionalidad
- **U*** Velocidad de corte o de fricción en cm/s
- ks Factor de rugosidad
- k Constante de Von Karman
- M1 Muestra arena de cuarzo de mina
- M2 Muestra arena de río de origen volcánico de color café oscuro
- M3 Muestra arena de río de origen volcánico de color gris
- **G**_s Gravedad específica
- C_{DP} Coeficiente de arrastre
- Cpbs Concentración de metal pesado
- *R*_s Remoción de sedimentos
- *R*_{*pb*} Remoción de plomo
- **PA** Partición de agua
- **Q**_i Relación de caudales entre la salida interna de la espiral
- **Q**_e Caudal total a la entrada de la espiral
- W_{si} Relación de pesos del sedimento entre la salida interna
- *W*_{se} Peso total de sedimentos a la entrada de la espiral
- W_{pbi} Relación de pesos de plomo entre la salida interna
- *W*_{pbe} Peso de plomo a la entrada de la espiral
- **C**_{pbsi} Concentraciones de plomo a la salida
- $\dot{W}_{Pbi}$  Relación del peso de plomo recuperado por la salida interna de la espiral
- $W_{Tpbi}$  Peso total de plomo mas sedimento recuperado por la parte interna
- C_{pbe} Relación entre la concentración de plomo a la entrada
- De Número de Dean
- *R*_{*H*} Radio hidráulico de la sección transversal
- **R** Radio de curvatura de la canaleta
- Ac Área de la sección transversal mojada de la canaleta en espiral.
- *N_m* Número de Manning Modificado
- **N** Factor de fricción de la ecuación de Manning para agua limpia
- $y_x$  Altura máxima a la cual sube el nivel del agua en la canaleta
- **Q**_s Caudales de sólido
- **Q**_L Caudales de agua
- **R**_p Radio hasta los orificios de remoción
- NA Número de área
- Ao Área de los orificios de drenaje
- **A**_E Área superficial del separador
- *T* Ancho de la sección transversal
- *d*_o Diámetro del orificio circular de drenaje de metal pesado
- h_{vi} Altura del vertedero correspondiente la salida interna de la espiral
- hve Altura del vertedero correspondiente a la salida externa de la espiral
- T Temperatura en grados centígrados

# LISTA DE TABLAS

Tabla 4.1	Spiral data 119
Tabla 4.2	Datos de laboratorio según el diseño experimental para el flujo de agua limpia
Tabla 4.3	Datos de laboratorio según el diseño experimental para mezcla de agua y sedimento
Tabla 4.4	Datos de laboratorio según el diseño experimental para mezcla de plomo y agua
Tabla 4.5	Datos de laboratorio según el diseño experimental para mezcla de agua, plomo y sedimento
Tabla 4.6	Valores experimentales para el flujo de agua limpia 139
Tabla 4.7	Valores experimentales para mezcla agua-sedimento 140
Tabla 4.8	Valores experimentales para mezcla agua-plomo 141
Tabla 4.9	Valores experimentales para el flujo de la mezcla de agua, sedimentos y plomo142
Tabla 4.10	Valores experimentales de las variables de respuesta afectadas por la mezcla de agua, plomo y sedimento
Tabla 4.11	Valores calculados a partir de datos medidos en laboratorio
Tabla 4.12	Valores calculados de las variables de respuesta afectadas por la mezcla de agua, plomo y sedimento

# LISTA DE FIGURAS

Figura 4.1	Perfiles transversales de las espirales tipo LD9 y FM20	120
Figura 4.2	Perfil de la sección transversal de la espiral tipo FGL (Fine Grade Low).	120
Figura 4.3	Sección transversal típica de la espiral	121
Figura 4.4	Schematic drawing of a spiral and its trough (Kapur & Meloy, 1998).	123
Figura 4.5	Modelo a construir de la canaleta en espiral	129
Figura 4.6	Perfil de flujo transversal de la canaleta en espiral	130
Figura 4.7	Angulo longitudinal donde se recoge el plomo	133
Figura 4.8	Valores medidos y calculados para la ec. [2.8], [4.40] y ec. [4.41]	149

# INTRODUCCIÓN

En el capítulo presente se ilustra los resultados obtenidos de la investigación experimentas correspondientes al dispositivo denominado espiral concentradora.

La primera espiral, Humphrey, fue introducida en 1945. El principio básico se ha mantenido hasta nuestros días, pero con evoluciones considerables en cuanto al diseño y técnicas de fabricación. Los materiales de construcción empleados han evolucionado desde la madera y hierro fundido hasta el poliéster reforzado con fibra de vidrio, pasando por aleaciones, hormigón, goma, etc... Actualmente la mayoría de las espirales se construyen en poliéster reforzado con fibra de vidrio con recubrimientos de poliuretano, y éste relativamente sencillo proceso de fabricación, ha sido uno de los motivos del rápido avance en el diseño de estos separadores. Su campo de aplicación se ha expandido debido al desarrollo de espirales con canales de distinta sección en las que, además, el paso y el perfil cambian a lo largo de su longitud, a pesar de que el flujo a través de una espiral concentradora ha sido estudiado por algunos investigadores, su uso como separador de metales pesados aún es desconocido, la dificultad con las espirales concentradores es que no conocemos la relación que existe entre la geometría de la espiral, las propiedades del flujo, las del fluido, las de los sólidos y las de la mezcla. Por lo cual no nos es posible diseñar una espiral para las condiciones iniciales que se desee. Por lo tanto lo que se pretende es encontrar la relación entre las anteriores propiedades en ecuaciones que nos permitan establecer una metodología de diseño.

Antes de realizar corridas con la mezcla total, se realizó ensayos solo con agua, con agua-plomo, y con agua-sedimentos. En la preparación de la mezcla última se usó plomo como metal pesado junto con sedimentos naturales. Para establecer los parámetros adimensionales a estudiar se utilizó el método del análisis dimensional y para conocer el número de ensayos experimentales y el orden de ejecución de los tratamientos experimentales, se realizó un diseño experimental con arreglos factoriales. Para la medición experimental, se construyó un montaje de laboratorio el cual permite recircular la mezcla de sedimento, plomo y agua y hacerla fluir a través del dispositivo de separación.

Como resultado de la presente investigación se obtuvo correlaciones que relacionan la concentración de metal pesado, la partición de agua, la remoción de sedimentos y la remoción de metal pesado, con las variables que identifican las propiedades del agua, las de los sedimentos, las de la mezcla y la geometría del tubo curvo. Con dichas correlaciones es posible saber cuál es la concentración de metal pesado a la salida del separador, con relación a la concentración a la entrada del mismo.

# 4.1 ASPECTOS TEORICOS

4.1.1. **Generalidades**. Según (Bouso, 1999)¹⁷ y (Pavez, 1987)¹⁸, el primer tipo de espiral Humphrey fue introducido en 1945. El principio básico se ha mantenido hasta la actualidad, pero con evoluciones considerables en cuanto al diseño y técnicas de fabricación. Los materiales de construcción empleados han evolucionado desde la madera y hierro fundido hasta el poliéster reforzado con fibra de vidrio, pasando por aleaciones, hormigón, goma, etc.

Actualmente, la mayoría de los fabricantes construyen en poliéster reforzado con fibra de vidrio, con recubrimientos de poliuretano o goma, y este relativamente sencillo proceso de fabricación ha sido uno de los motivos del rápido avance en el diseño de estos separadores. Los mayores avances en el diseño han incidido en el perfil y paso de la espiral. El campo de aplicación se ha expandido principalmente, debido al desarrollo de espirales en las cuales el paso y el perfil cambian a lo largo de su longitud.

(Pavez, 1987) da los siguientes datos para espirales concentradoras, la capacidad de tratamiento de sólidos por espiral varía de 0,5 a 2,5 ton/h, la tasa más utilizada es de 1,5 ton/h (416.67 gr_f/s). El flujo de pulpa de la alimentación depende de las características de la mena. Para materiales finos se aconseja flujos de 50 a 65 L/min, para materiales medios, 70 a 90 L/min y para materiales gruesos, alrededor de 110 L/min.

El consumo de agua para cada espiral, incluyendo el agua de lavado varía de 50 a 110 L/min. Esta agua es normalmente recuperada y recirculada. En el caso de las espirales de retiradas limitadas, el agua de lavado ha sido reducida e incluso en ciertos casos ha sido eliminada. El porcentaje de sólidos es de 20 a 30%, pulpas conteniendo sólidos de granulometría gruesa, pueden tener hasta 50% de sólidos.

4.1.2. **Clasificación de espirales.** (Bouso, 1999), clasifica las espirales considerando dos grupos principales: minerales pesados y carbón, dentro de cada uno de los cuales podría establecerse la siguiente clasificación:

¹⁷ Bouso, Juan Luis, 1999, Las espirales de concentración y su vuelta a la actualidad. XXIV Convención de Ingenieros de minas del Perú. ERAL, Equipos y procesos S. A. Septiembre 1999.

¹⁸ Pavez, Oswaldo (1987) "Concentración Gravimétrica". Universidad de Atacama. http://www.exalumnos.uda.cl/metalurgia/402/concentracion.minerales.2/01.-.Concentracion.Gravimetrica.pdf

#### • Minerales pesados

1) Espirales **LG**, (*Low Grade*): para productos con bajo contenido de pesados, inferior a 5%. Aplicación en etapas de desbaste y barrido. Dentro de este subgrupo existen básicamente dos modelos, LG4 y LG7D.

2) Espirales **MG**, (*Medium Grade*): para contenidos medios de pesados, hasta 20%, Aplicación en desbaste y limpieza. Modelos MG4B, MG4CF, MG5D, MG6.3, MG7S.

3) Espirales **HG**, (*High Grade*): para alto contenido de pesados, superiores al 20%. Aplicación en limpieza y etapas finales de afino. Modelos HG7D, HG8-5, HG8-7, HG10.

4) Espirales **WW**, (*Wash Water*): para aplicaciones específicas con baja diferencia de densidades entre mena y ganga, de diseño "convencional" con adición de agua de limpieza. Modelos WW2, WW3, WW6-5, WW6-7.

5) Espirales **FM**, (*Fine Mineral*): para minerales de granulometría fina. Modelo FM1. El último desarrollo, la espiral FM1 representa una solución para el tratamiento de finos con procedimientos gravimétricos. Hasta el presente los modelos de espirales existentes del grupo de minerales pesados "acababan" en las 30/40 micras, pero a partir de las 70 micras la recuperación caía "en picado". Este nuevo modelo FM1 puede recuperar con buena eficiencia partículas de hasta 20 micras y menores, significando la extensión de la gravimetría hasta el rango solamente cubierto por equipos de precio superior y costo operativo más elevado, representado inclusive una alternativa a la flotación. No existen todavía muchas referencias dada su novedad, pero hasta el momento los resultados son prometedores.

6) Espiral **PW1**, (*Walkabout*): de laboratorio para realización de ensayos.

Los principales minerales donde las anteriores tipos de espirales pueden ser aplicados son: Arenas minerales (ilmenita, rutilo y zirconio), minerales de hierro, cromita, estaño y wolframio, Tántalo, oro, arenas silíceas (eliminación de pesados), piedra pómez, etc.

En general la capacidad unitaria por canal puede estimarse entre 2 t/h y 4 t/h (555.55 gr_f/s- 1111.11 gr_f/s), para las espirales tipo LG y MG, máximo 3 t/h (833.33 gr_f/s) para las HG, y menos de 2 t/h las FM. En cualquiera de estos tipos la concentración de sólidos en la alimentación puede llegar hasta el 50% en peso, aunque el mejor rango está entre 35% y 45%. El tamaño máximo de partícula recomendable no debe ser mayor de 2 mm.

#### Carbón

1) Espirales LD, (Low Density): para productos de baja densidad, carbón. Aplicación en cualquiera de las etapas de lavado, Modelos LD4E, LD7, LD9. LD10. Las espirales de carbón tipo LD 4E y LD7 tratan hasta 5 t/h por canal y pueden montarse como máximo 3 canales por columna. Los tipos LD9 y LD10 tratan unas 2 t/h. Todos los modelos han sido hoy día prácticamente desplazados por el último diseño LD7, que ha demostrado una gran flexibilidad, tanto en el rango granulométrico como en el contenido de cenizas del producto de alimentación. La granulometría del carbón bruto no debe ser superior a 3 mm y la concentración de sólidos puede llegar hasta el 40% en peso, pero el meior rango es 25-30%.

Según (Hollant-Batt, 1991)¹⁹, las espirales se pueden clasificar de la siguiente manera:

TYPE	DUTY	<b>TROUGHT RADIUS</b>	PITCH
		[cm]	[cm]
FGL	Mineral	30	40
FM20	Fine Mineral	46	38
LD2	Coal	33	30.8
LD9	High ash coal	35	27.3
LG7	Low grade mineral	29	40.6
MG5	Medium grade mineral	32.5	41.6
HG4	High grade mineral	29	43.2
HG5	High grade mineral	29	42.6
HG7	High grade mineral	29	40.6

#### Tabla 4.1 Spiral data.

F: fine, L: low, M: medium, G: grade, D: density, H: high. Fuente: (Hollant-Batt, 1991)

4.1.3. Geometría de las Espirales. (Hollant-Batt, 1989)²⁰ presenta los perfiles transversales de las espirales tipo LD9 y FM20. Figura 4.1.

¹⁹B. HOLLAND-BATT and P.N. HOLTHAM. 1991. Particle and fluid motion on spiral separators. *Minerals engineering*. Vol 4. N° ¾. Pp. 457-482. 1991. http://mineraltechnologies.com.au/042. [En Linea] ²⁰ A.B. HOLLAND-BATT. Spiral Separation: theory and simulation. Trans. Instn. Min. Metall. (Sect. C: Mineral Process.

Extr. Metall.), 98, January-Abril 1989. http://mineraltechnologies.com.au/069. [En línea].



Figura 4.1 Perfiles transversales de las espirales tipo LD9 y FM20.

Fuente: (Hollant-Batt, 1989).

(Hollant-Batt, 1991), presenta en la siguiente figura el perfil de la sección transversal de la espiral tipo FGL (Fine Grade Low). Figura 4.2.





Pulp profile on the FGL spiral at 15% solids and 4  $m^3/h$ .



La espiral concentradora es un aparato concentrador basado en la gravedad, que separa material consistente en arena granular (2mm a 0.075mm) con densidad baja de otro material con densidad más alta. El rango de concentraciones volumétricas recomendado a manejar es entre 20% y 40%. La mezcla suele ser bombeada a una altura de 13 pies (3,96 m) a 15 pies (4,57 m).

La mezcla a procesar se introduce por la parte superior de la espiral concentradora y la geometría y pendiente de la misma, hacen el trabajo, como se observa en la figura 4.3, las partículas con mayor densidad o mayor tamaño ocupan la parte interna de la curva y la partículas más livianas y el agua ocupan la parte externa de la curvatura.





Según Pavez (1987)²² da los siguientes datos para espirales concentradoras, la capacidad de tratamiento de sólidos por espiral varía de 0,5 a 2,5 ton/h, la tasa más utilizada es de 1,5 ton/h (0.4167 kp/s). El flujo de pulpa de la alimentación depende de las características de la mena. Para materiales finos se aconseja flujos de 50 a 65 l/min, para materiales medios, 70 a 90 l/min y para materiales gruesos, alrededor de 110 l/min.

²¹ Pavez, Osvaldo (1987) "Concentración Gravimétrica". Universidad de Atacama.

²² Pavez, Osvaldo (1987) op. Cit.

El consumo de agua para cada espiral, incluyendo el agua de lavado varía de 50 a 110 l/min. Esta agua es normalmente recuperada y recirculada. En el caso de las espirales de retiradas limitadas, el agua de lavado ha sido reducida e incluso en ciertos casos ha sido eliminada.

El porcentaje de sólidos es de 20 a 30%, pulpas conteniendo sólidos de granulometría gruesa, pueden tener hasta 50% de sólidos.

Desafortunadamente las geometrías de la sección transversal de la espiral concentradora reportadas en la literatura son esquemáticas y no se puede reproducir exactamente sus dimensiones, esto debido a que la mayoría de las investigaciones realizadas en este campo son de carácter privado y protegidas muchas veces por patentes, divulgando información solo de carácter general.

La dificultad con las espirales concentradoras es que no conocemos la relación que existe entre la geometría de la espiral, las propiedades del flujo, las del fluido, las de los sólidos y las de la mezcla. Por lo cual no es posible diseñar una espiral para las condiciones que se desee. Por lo tanto lo que se pretende es encontrar co-rrelaciones matemática empíricas que incluyan las anteriores propiedades y que permitan establecer una metodología de diseño.

Con base a los trabajos reportados por (Hollant-Batt, 1989) y (Siame, 1986), se puede establecer la geometría longitudinal. (Siame, 1986) dice que el rendimiento de la espiral depende de los parámetros de diseño, como el diámetro, la altura, el número de espiras, el paso de la espira, la pendiente así como la forma del canal o las dimensiones de la canaleta en espiral. La superficie del canal puede ser visualizado como un gran número de curvas axialmente helicoidales adyacentes no interceptas. Las ecuaciones paramétricas de la hélice están dadas como:

$$x = rSenc(\phi)$$
 [4.1]

$$y = rCos(\phi), 0 \le \phi \le N\pi$$
[4.2]

$$z = \frac{u\phi}{2\pi}, z \le H$$
 [4.3]

Donde x y y son las coordenadas en planta y z es la altura en cada coordenada x, y.  $\phi$  es el ángulo en planta, r es el radio desde el centro hasta el punto x, y. N es el número de espiras, H es la altura total de la espiral, u es la altura del paso de la hélice. La pendiente longitudinal de la superficie del canal S puede ser dada como:

$$S = \tan(\alpha) = \frac{u}{2\pi r}$$
[4.4]

Donde  $\alpha$  es el ángulo de inclinación longitudinal de la espiral.





Fuente: (Siame, 1986)

Según (Siame, 1986), la mayoría de las secciones transversales son de la forma de un arco con cuarto de círculo modificado. Esto puede ser representado exacta

o aproximadamente como una curva elíptica, como se muestra en la figura 4.9, para esta forma la pendiente del canal radial o transversal es dada como:

$$\tan(\theta) = \frac{c_y}{r_o - r_i} \tan\left[ \arccos\left(\frac{r - r_i}{r_o - r_i}\right) \right]$$
[4.5]

Donde  $\theta$  es el ángulo en dirección transversal,  $C_y$  es la máxima altura de la canaleta,  $r_i$  y  $r_o$  son los radios internos y externos de la canaleta desde el centro. La selección de un contorno elíptico de la canaleta es dictado principalmente por convencía matemática realizar análisis o expresiones simples.

4.1.4. **Flujo de mezclas en espirales**. (Siame, 1986), propone una ecuación para estimar el flujo en una espiral en función de la geometría y las propiedades de las partículas.

$$V = \frac{26.4RS^{1/2}}{d_p^{1/6}}$$
[4.6]

Donde *V* es la velocidad media del flujo,  $d_p$  es el tamaño de las partículas transportadas, *R* es el radio hidráulico y *S* es la pendiente longitudinal. Como el Q=A*V, (Siame, 1986), proporciona la siguiente ecuación:

$$Q = \frac{3.3\pi^{1.5}}{2d_p^{1/6}} \sqrt{\frac{u}{C_x}} \frac{\left[C_x C_y - (C_x - h_m)(C_y - h_m)\right]^2}{\int_0^{\pi/2} (x'^2 + y'^2)^{1/2} d\phi + h_m}$$
[4.7]

Donde  $C_y$  es la altura máxima de la canaleta,  $C_x$  es el ancho máximo neto de la canaleta igual a ( $C_x = r_o r_i$ ),  $h_m$  es la altura media, x' y y' son las derivadas de x y y en función de  $\phi$ .

Reemplazando las derivadas en la integral y simplificando se tiene:

$$\int_{0}^{\pi/2} \left( x'^{2} + y'^{2} \right)^{1/2} d\phi = r \int_{0}^{\pi/2} \left( \cos \phi^{2} + sen \phi^{2} \right)^{1/2} d\phi$$
 [4.8]

La integral se convierte en un valor numérico. Desafortunadamente (Siame, 1986), no explica cómo usar cada variable por ejemplo el  $d_p$ , no se sabe que diámetro usar ya que los sólidos están compuestos por varios tamaños, se

supondría que  $d_{p} = d_{50}$ , el valor de  $h_m$  no se saber de dónde se mide, si es del punto más bajo de la canaleta o del fondo en el punto medio, ya que la profundidad varia a lo ancho de la sección transversal, el radio r de la integral tampoco se sabe que radio se debe tomar. Por lo tanto ecuación propuesta para el caudal como está planteada es difícil de usar en la práctica. Por otro lado ec [2.99] del caudal no incluye el efecto de la concentración o el caudal sólido, ya que este parámetro se ha visto ser muy importante en el flujo, al aumentar la concentración aumenta el nivel de la mezcla sobre el fondo de la canaleta en espiral.

como

$$\left(\cos\phi^2 + sen\phi^2\right) = 1$$
[4.9]

La integral queda como 
$$\int_0^{\pi/2} (x'^2 + y'^2)^{1/2} d\phi = r \int_0^{\pi/2} d\phi = r \pi / 2$$
 [4.10]

El inconveniente es saber que pendiente, ya que la pendiente externa es menor que la interna, si se trabaja con la pendiente promedio, r sería el radio medio  $r = r_m$ .

$$V = \frac{26.4R}{d_p^{1/6}} \left(\frac{u}{2\pi r_m}\right)^{1/2}$$
[4.11]

$$r_m = \frac{Cx}{2}$$
 [4.12]

El problema es hallar el radio hidráulico, de la sección ya que sería necesario obtener una ecuación para el perfil del fondo de la canaleta como del perfil transversal de la superficie del fluido para hallar una expresión para el área y el perímetro mojado. Por otro lado la altura del fluido de interés, es la altura máxima que puede alcanzar para un determinado flujo.

Por otro lado (Holland-Batt, 1991), presenta dos tipos de ecuaciones, una usando el concepto de ecuación de Manning y la otra el concepto de distribución logarítmica de de velocidades, para el primero divide el flujo en una canaleta en espiral en tres regiones, flujo en zona interna, flujo en zona de transición y flujo principal en zona externa, las cuales se describen a continuación.

#### • Flujo principal en zona interna

El flujo en esta zona puede ser descrito satisfactoriamente por la ecuación de manning, dada como:

$$V = K h_s^{2/3} (sen(\theta))^{1/2}$$
 [4.13]

Donde, V es la velocidad principal de la mezcla en cm/s, hs es la altura total de la capa de fluido en cm,  $\theta$  es el ángulo descendente a lo largo de la canaleta en rad, K es dado por la siguiente ecuación.

$$K = 1300 - 1.333c_m - 850P_f$$
 [4.14]

Donde  $c_m$  es la concentración por peso de la suspensión en %, P_f es el perímetro mojado expresado como una fracción del perímetro total cuando la canaleta entra en rebose, (esta definición de P_f no es muy clara, lo que crea dificultades para calcular su valor).

#### • Flujo principal en zona de transición

El flujo en esta zona debe cumplir la siguiente ecuación:

$$rh_{s}^{2/3}(sen(\theta))^{1/2} \le 11 + 0667c_{m}$$
 [4.15]

Donde *r* es el radio de movimiento en cm.

Flujo principal en zona externa

$$z = z_o + \frac{C_v^2}{2g} \left[ \left(\frac{1}{r_o}\right)^2 + \left(\frac{1}{r}\right)^2 \right]$$
[4.16]

Donde, z es la altura vertical sobre el punto de referencia en cm, zo es la altura del punto de referencia en cm, ro es el radio de movimiento desde el punto de referencia en cm, g es la gravedad en cm/s². C_v es la constante de vórtice, dada como:

$$C_{v} = C_{o} \left( gr_{o} \tan(\beta) \right)$$
[4.17]

Donde  $\beta$  es el ángulo de la pendiente transversal de la canaleta,  $C_o$  es una constante de proporcionalidad = 22.88s/cm. La velocidad en términos de C_v, es dada como:

$$V = \frac{C_v}{r}$$
[4.18]

#### Modelo de Vortex del flujo en suspensión o distribución logarítmica de velocidades

El flujo en suspensión puede ser descrito como:

$$\frac{V}{U_*} = \frac{1}{k} \left[ \log \left( \frac{h_s}{35.45k_s} \right) - 1 \right] + 17.66$$
[4.19]

Donde, U^{*} es la velocidad de corte o de fricción en cm/s,  $k_s$  es el factor de rugosidad (es posible tomar el diámetro de partícula en suspensión) en cm, k es la constante de Von Karman, que para agua limpia es 0.4, pero para agua con contenido de sedimentos este valor disminuye, generando inconvenientes para su cálculo.

#### 4.2 MATERIALES Y METODOS

4.2.1. **Montaje de laboratorio**. Para la realización de la investigación experimental se construyó un montaje de laboratorio el cual tiene los siguientes componentes principales según indica esquemáticamente en la figura 2.3.

En las figura 4.10, se indica las dimensiones y el modelo en 3D de la espiral con la cual se trabajó en el laboratorio, su geometría se tomo de (W. Matthews, C. A. J. Fletcher, A. C. Partridge, and S. Vasquez, 1999)²³, y teniendo en cuenta otras recomendaciones dadas por MINE-ENGINEER^{24.} En la figura 4.11, se indica el perfil transversal de la espiral, el cual fue tomado como base para el diseño en la presente investigación, la cual inicia cerca al tubo central en un tramo horizontal, luego se une a un arco circular hasta rematar en la parte externa con un tramo recto vertical. Para los primeros ensayos, solo con agua, solo con plomo y solo con sedimento, los orificios de salida eran tres; colocados a 266,25°, 474,38° y

²³ W. Matthews, 1 C. A. J. Fletcher, 2 A. C. Partridge, 3 and S. Vasquez, 1999. "*Computations of curved free surface water flow on spiral concentrators*". *Journal of Hydraulic Engineering*, Vol. 125, No. 11, November, 1999. qASCE, ISSN 0733-9429/99/0011-1126–1139/\$8.00 1 \$.50 per page. Paper No. 19138.

²⁴MINE-ENGINEER.COM [en línea]. http://www.mineengineer.com/mining/minproc/spiral.htm

663,75° respectivamente a lo largo de la espiral (figura 4,12), y a una distancia de 0.04 m, desde la parte inferior de su sección transversal. Estos orificios hacen que varíe la cantidad de metal pesado removido. En los ensayos con mezcla de agua, plomo y sedimento, estos orificios se modificaron adicionando seis orificios más colocados; tres orificios a 0.07 m y otros tres a 0.1 m desde la parte inferior de su sección transversal.



Figura 4.5 Medidas y sección transversal de la canaleta en espiral.

Fuente: Elaboración para esta investigación

**Figura 4.6** Perfil de flujo transversal de la canaleta en espiral.



4.2.2. **Propiedades de los sólidos.** Entre las propiedades analizadas para el material sólido se encuentra la granulometría, la gravedad específica y el coeficiente de arrastre, los cuales se describen a continuación:

# • Granulometría

La mezcla se preparó usando sedimento con tamaños comprendidos entre el tamiz 200 hasta el tamiz 10 y plomo pulverizado entre el tamiz 200 y el 40. Para los sedimentos se usó tres tipos de granulometría correspondientes a sedimentos de origen diferente, la muestra M1 corresponde a arena de cuarzo de mina, la muestra M2 correspondiente a arena de río de origen volcánico de color café oscuro y la muestra M3 corresponde a arena de río de origen volcánico de color gris. Las granulometrías de los sólidos se indican en la figura 2.6.

Para los ensayos de la mezcla de agua, sedimentos y plomo, se realizó granulometría a las mezclas de salida para cada ensayo, esto debido a que el material sólido fue reutilizado y por desperdicios no controlables, la granulometría cambia entre ensayos; por conservación de masa se calculó la granulometría de entrada. El coeficiente de arrastre CDp se calculó para cada ensayo con la granulometría de entrada.

## • Gravedad específica. G_s

Se midió en laboratorio las gravedades específicas,  $G_s$ , de cada tipo de muestra de sedimento y del plomo, donde, para la muestra M1 se obtuvo  $G_s$  = 2.627, la muestra M2 una  $G_s$  = 2.529 y para M3 con  $G_s$  = 2.399. La gravedad específica del plomo obtenida fue de  $G_s$  =11.302.

#### • Coeficiente de arrastre. C_{DP}

Este parámetro relaciona las propiedades de los sedimentos y del fluido, se calcula con la metodología dada por (Cheng, 1997a) junto con el procedimiento de Condolios nombrado por Graf (1984). Debido a que los sedimentos y plomo usados no son de granulometría uniforme, se calcula para cada rango de tamaños el valor de  $C_{D}$ , con la metodología de (Cheng, 1997a) y luego se saca un valor ponderado de acuerdo al porcentaje entre los dos tamaños aplicando la ecuación [1.25]

Para poder calcular  $C_{DP}$ , fue necesario realizar las granulometrías correspondientes a las muestra de sedimentos recuperados por la salida vortex y ápex del hidrociclón. La granulometría de entrada se infirió de las granulometrías de salida; de este modo se obtuvieron valores de  $C_{DP}$  para cada uno de los ensayos tanto en la entrada como en las dos salidas.

4.2.3. **Variables de respuesta.** Las variables de respuesta estudiadas, corresponden a la concentración de metal pesado  $C_{pbs}$  recuperado en la salida interna del tubo curvo, la remoción de sedimentos  $R_s$ , la remoción de plomo  $R_{pb}$  y la partición de agua *PA*.

- Partición de agua, P_A. Esta variable se incluye ya que es de suma importancia conocer la distribución del agua a la salida de separador, con el fin de ser usada en etapas posteriores de separación. La partición de agua está definida como la relación de caudales entre la salida interna de la espiral Q_i y el caudal total a la entrada de la espiral Q_e, ec. [2.2].
- **Remoción de sedimentos, R**_s. Definida como la relación de pesos del sedimento entre la salida interna  $W_{si}$  y el peso total de sedimentos a la entrada de la espiral  $W_{se}$ , ec. [2.3].
- **Remoción de plomo, R**_{pb}. Definida como la relación de pesos de plomo entre la salida interna  $W_{pbi}$  y el peso de plomo a la entrada de la espiral  $W_{pbe}$ , ec. [2.4].

 Concentraciones de plomo a la salida, C_{pbsi}. Definida como la relación del peso de plomo recuperado por la salida interna de la espiral W_{Pbi} y el peso total de plomo mas sedimento recuperado por la parte interna de la espiral W_{Tpbi}, ec. [2.5].

Como estos pesos son desconocidos se propone el siguiente procedimiento para su cálculo. Como se necesita conocer Cpbsi, el  $W_{pbi} = R_{pb}^* W_{pbe}$  y  $W_{Tpbi} = W_{pbi+} W_{si}$ , pero  $W_{si} = R_s^* W_{se}$ , Remplazando se obtiene ec. [2.6]. Si se divide y multiplica por  $W_{se}$ , se tiene, ec [2.7]. Si llamamos C'pbe =  $W_{pbe}/W_{se}$ , la ecuación [2.7] se transforma en, ec. [2.8].

La relación entre la concentración de plomo a la entrada C_{pbe} y C'pbe está dada como, ec. [2.9]. Despejando para C'_{pbe} se obtiene, ec. [2.10].

Se parte del hecho que las propiedades de la mezcla y las concentraciones de metal a la entrada de la espiral son conocidas y las remociones de sedimento y plomo debido a la acción de separación se las puede calcular con las correlaciones propuestas en este trabajo.

4.2.4. **Factores independientes.** Para encontrar los posibles factores que tienen influencia en las variables de respuesta, se recurrió a la técnica del análisis dimensional, según lo expuesto por Streeter (1999). Se obtuvo las siguientes relaciones funcionales adimensionales:

$$f(PA, De, NA, C_{Dp}) = 0$$
 [4.20]

$$f\left(PA, N_m, NA, C_{Dp}\right) = 0$$
[4.21]

$$f(R_{pb}, De, NA, C_{Dp}) = 0$$
 [4.22]

$$f(R_s, De, NA, C_{Dp}) = 0$$
[4.23]

Para la canaleta en espiral como tiene un comportamiento similar al separador de tubo curvo, solamente que esta última es para flujo a superficie libre, se seleccionaron los mismos parámetro pero modificados, como son: el Número de Dean, El número adimensional de partícula, el coeficiente de arrastre y la relación de áreas; los cuales se describen a continuación:

• Número de Dean: *De*. Modificando, para este parámetro y adaptándola a un tubo curvo de sección no circular, se tiene:

$$De_{m} = \frac{(4R_{H})(Q_{s} + Q_{L})}{A_{c}v_{m}}\sqrt{\frac{(4R_{H})}{2R}}$$
[4.24]

Donde  $v_m$  es dado por ec. [2.16],  $R_H$  es el radio hidráulico de la sección transversal, R es el radio de curvatura de la canaleta, Ac es el área de la sección transversal mojada de la canaleta en espiral.

 Número de Manning Modificado: N_m. Se parte del hecho de que la canaleta en espiral es un canal abierto que se puede ajustar a la ecuación de Mannig y si se agrupa las variables que intervienen en dicha ecuación tendremos el siguiente parámetro:

$$N_m = \frac{(Q_s + Q_L)n}{y_x^{5/3} S^{1/2}}$$
[4.25]

Donde *n* es el factor de fricción de la ecuación de Manning para agua limpia,  $y_x$  es la altura máxima a la cual sube el nivel del agua en la canaleta, medida desde el punto más bajo de la misma, **S** es la pendiente longitudinal de la canaleta. Q_s y Q_L son los caudales de sólido y agua, respectivamente.

 Angulo longitudinal: θ. Se varía el ángulo longitudinal donde se recoge el plomo removido para los ensayos solo con agua, plomo y arena por separado, (figura 4.7).

Figura 4.7 Angulo longitudinal donde se recoge el plomo.



De esta forma es posible obtener una relación funcional adimensional de parámetros independientes que influyen en cada una de las variables de respuesta para la espiral, que en forma general se da como:

$$\Pi_{T} = f\left(De, N_{m}, \theta, CD_{p}\right)$$
[4.26]

Radio hasta los orificios de remoción, R_p. Se varía el radio hasta los orificios donde se recoge el plomo removido para los ensayos con mezcla de agua, arena y plomo, (figura 4.5).

De esta forma es posible obtener una relación funcional adimensional de parámetros independientes que influyen en cada una de las variables de respuesta para la espiral, que en forma general se da como:

$$\Pi_{T} = f\left(De, N_{m}, R_{p}, CD_{p}\right)$$
[4.27]

 Relación del área de los orificios de drenaje con el área en planta. Número de área: NA. Relaciona el área de los orificios de drenaje (Ao) por la cual se recupera el metal pesado y el área superficial del separador (A_E) la cual dependerá del ángulo de curvatura θ, del radio de curvatura R y del ancho de la sección transversal T. Las relaciones se indican a continuación:

$$NA = \frac{Ao}{A_E}$$
[4.28]

$$A_E = \theta R_c T$$
 [4.29]

$$A_o = \pi d_o^2 / 4$$
 [4.30]

Donde, T es el ancho superior superficial mojado de la canaleta, do es el diámetro del orificio circular de drenaje de metal pesado y  $\theta$  es el ángulo de curvatura.

4.2.5. **Diseño experimental.** Con el fin de tener una visualización más amplia del fenómeno estudiado, se llevó a cabo el diseño y ejecución de la experimentación, para varias condiciones de flujo, en orden, se inició primero con flujo de agua limpia, flujo de mezcla y agua, flujo de agua y metal pesado y por último el flujo de agua, sedimentos y metal pesado. A continuación se indica el tipo de diseño que se realizó para cada condición de flujo.

Para el diseño experimental se usó la metodología dada por Gutiérrez (2000), usando arreglos factoriales según el caso. Para la calibración preliminar de la espiral concentradora, se realizaron ensayos con agua limpia, usando un diseño factorial mezclado con cuatro puntos al centro ( $2^3+4$ ) para un total de 12 tratamientos. Para el estudio de agua y plomo, se optó por un diseño factorial ( $2^3+4$ ) para un total de 12 tratamientos. Para el estudio de agua y sedimento, se optó por un diseño factorial  $2^3$ , en este caso se tomó a  $C_{Dp}$  como el tercer factor, con cuatro puntos al centro ( $2^3+4$ ) para un total de 12 tratamientos. Para la mezcla de agua, sedimento y plomo, se realizó un factorial mezclado con cuatro puntos al centro ( $3^*2^{3-1}+4$ ) para un total de 16 tratamientos. Estos diseños obedecen a que en laboratorio solo se podía hacer la variación de tres variables independientes en el caso de la mezcla, como son: el caudal del agua, el tipo de sedimento con diferente granulometría y el tipo de espiral concentradora.

4.2.6. **Procedimiento de medición.** Para minimizar los errores de medición debido a posibles fallas humanas, se procedió a grabar en video el sistema de medición del montaje de laboratorio para cada corrida experimental, y luego se obtuvieron los valores del video. Para cada experimento se siguió el siguiente procedimiento:

- 1. Se prendió la bomba para re circular el agua hasta lograr flujo permanente, con el caudal de agua requerido según la corrida experimental del diseño.
- 2. Se suministró el caudal sólido por medio de una tolva con un orificio calibrado, para que dosifique el valor establecido.
- 3. Se procedió a gravar con la cámara de video en el siguiente orden: vertederos para aforo de caudal líquido correspondientes a la salida interna y externa de la espiral concentradora, respectivamente; la lectura del perímetro en cada punto crítico de la espiral concentradora, lectura del termómetro digital, tipo de espiral concentradora, tipo de muestra de mezcla: Plomo Arena Agua y durante la ejecución del ensayo, peso de la muestra utilizar, pesos de las muestras obtenidas después del cada ensayo para cada vertedero, granulometrías de las muestras obtenidas para cada vertedero luego de cada ensayo.
- 4. Los pesos de sedimento y plomo se recuperaron del sedimentado y se pesaron de forma separada según la correspondiente salida de la espiral concentradora.

Del video se obtuvo los siguientes datos: altura del vertedero correspondiente la salida interna de la espiral concentradora  $h_{vi}$ ; atura del vertedero correspondiente a la salida externa de la espiral concentradora  $h_{ve}$ ; perímetros en cada sección de la espiral; temperatura en grados centígrados T; tipo de muestra de sedimentos (M1, M2, M3), y tipo de espiral concentradora (Espiral # 1, Espiral # 2, Espiral # 3), dependiendo de los radios hasta los orificios donde se recoge el plomo. Los valores numéricos de cada arreglo experimental se indican en las tablas 1, 2 y 3.

El caudal del agua se calculó con tres vertederos triangularas calibrados, donde el vertedero 1 y 2 miden el caudal líquido de la salida externa de la espiral concentradora y el vertedero 3, mide el caudal del agua de la salida interna de la espiral concentradora. Las ecuaciones de calibración se indican en el capitulo dos, vertederos 1-2 ec. [2.22] y vertedero 3 ec. [2.23].

**Tabla 4.2** Datos de laboratorio según el diseño experimental para el flujo de agua limpia.

1	2	3	4	5	6	7	8	9	10	11
N°	QL	θ	$h_{ve}$	h _{vi}	Y _X	T°	Т	Rpr	Pmax	Pmin
[-]	[m³/s]	[Grd]	[m]	[m]	[m]	°C	[seg]	[m]	[m]	[m]
1	Med	Med	0,0315	0,0190	0,04403	21,7	1,447	0,124	0,15267	0,08333
2	Min	Min	0,0114	0,0090	0,01765	22,5	2,240	0,121	0,12700	0,08833
3	Min	Max	0,0096	0,0125	0,01744	22,8	2,313	0,121	0,12667	0,05667
4	Max	Max	0,0400	0,0296	0,06271	23,8	1,370	0,126	0,17200	0,08467
5	Max	Min	0,0425	0,0200	0,06322	24,0	1,348	0,125	0,17400	0,08967
6	Med	Med	0,0312	0,0205	0,04156	24,1	1,440	0,124	0,15033	0,08267
7	Med	Med	0,0310	0,0210	0,04156	24,3	1,444	0,124	0,15033	0,08267
8	Min	Min	0,0110	0,0100	0,01776	19,9	2,314	0,121	0,12733	0,08867
9	Min	Med	0,0060	0,0155	0,01587	19,7	2,312	0,121	0,12467	0,08767
10	Max	Med	0,0404	0,0291	0,06552	20,3	1,372	0,126	0,17367	0,08200
11	Max	Min	0,0435	0,0135	0,06461	20,5	1,350	0,124	0,17200	0,07833
12	Med	Med	0,0315	0,0195	0,04156	20,7	1,428	0,125	0,15000	0,08300

1 <b>N</b> °	2 <b>Q</b> L	з <b>Ө</b>	4 <b>h</b> ve	5 <b>h</b> vi	6 <b>M/tra</b>	7 Wsi	8 Wse	9 <b>Y</b> x	10 <b>T°</b>	11 <b>T</b>	12 <b>Rpr</b>	13 <b>Pmax</b>	14 <b>Pmin</b>	15 <b>С</b> _{Dp}
[-]	[m³/s]	[Grd]	[m]	[m]	[-]	[g]	[9]	[m]	°C	[seg]	[m]	[m]	[m]	[-]
1	Max	Max	0,0396	0,0280	M1	2354	2619	0,059	18,50	1,223	0,117	0,164	0,069	2,62
2	Min	Min	0,0190	0,0115	M1	1019	3956	0,033	20,80	1,720	0,091	0,134	0,047	2,62
3	Med	Med	0,0320	0,0220	M2	1674	3212	0,049	21,20	1,367	0,108	0,153	0,063	6,51
4	Max	Min	0,0430	0,0140	M1	926	4026	0,055	21,30	1,227	0,112	0,159	0,064	2,62
5	Med	Med	0,0320	0,0215	M2	1679	3204	0,046	21,70	1,360	0,103	0,148	0,057	6,51
6	Min	Max	0,0159	0,0190	M1	1261	3702	0,034	21,10	1,687	0,091	0,135	0,047	2,62
7	Med	Med	0,0320	0,0216	M2	1669	3211	0,045	21,80	1,380	0,101	0,147	0,056	6,51
8	Max	Min	0,0425	0,0130	M3	671	4273	0,038	19,40	1,223	0,108	0,159	0,057	25,25
9	Min	Min	0,0190	0,0115	M3	877	4065	0,038	18,80	1,777	0,097	0,140	0,053	25,25
10	Med	Med	0,0319	0,0218	M2	1680	3206	0,047	19,00	1,363	0,105	0,150	0,059	6,51
11	Min	Max	0,0160	0,0200	M3	1986	2993	0,037	19,40	1,757	0,094	0,138	0,050	25,25
12	Max	Max	0,0405	0,0280	M3	1693	3230	0,058	19,70	1,227	0,107	0,160	0,053	25,25

Tabla 4.3.- Datos de laboratorio según el diseño experimental para mezcla de agua y sedimento.

**Tabla 4.4** Datos de laboratorio según el diseño experimental para mezcla de plomo y agua.

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
N°	$Q_L$	θ	M/tra	h _{ve}	<b>h</b> vi	Wsi	Wse	Yx	Т	Rpr	Pmax	Pmin	T°	<b>C</b> _{Dp}
[-]	[m³/s]	[Grd]	[-]	[m]	[m]	[g]	[g]	[m]	[seg]	[m]	[m]	[m]	°C	[-]
1	Max	Max	P3	0,0410	0,0125	271,49	228,49	0,0628	1,227	0,132	0,1730	0,0880	23,70	2,773
2	Min	Min	P3	0,0114	0,0090	206,85	287,83	0,0230	2,160	0,122	0,1293	0,0753	18,50	2,773
3	Med	Med	P2	0,0320	0,0176	449,79	49,62	0,0425	1,297	0,128	0,1513	0,0827	20,10	2,071
4	Max	Min	P3	0,0410	0,0105	301,08	198,29	0,0696	1,240	0,131	0,1787	0,0850	21,90	2,773
5	Med	Med	P2	0,0321	0,0174	450,82	48,56	0,0434	1,283	0,126	0,1510	0,0797	20,20	2,071
6	Min	Max	P3	0,0090	0,0130	388,32	110,97	0,0196	2,122	0,124	0,1270	0,0810	23,00	2,773
7	Med	Med	P2	0,0325	0,0170	448,28	51,02	0,0425	1,287	0,127	0,1513	0,0823	23,00	2,071
8	Max	Min	P1	0,0410	0,0105	431,72	73,08	0,0684	1,233	0,132	0,1783	0,0867	22,60	1,669
9	Min	Min	P1	0,0098	0,0120	488,05	10,97	0,0203	2,143	0,125	0,1283	0,0817	23,40	1,669
10	Med	Med	P2	0,0322	0,0170	446,50	52,61	0,0423	1,303	0,128	0,1513	0,0840	20,20	2,071
11	Min	Max	P1	0,0080	0,0140	471,47	27,33	0,0173	2,124	0,125	0,1247	0,0827	23,10	1,669
12	Max	Max	P1	0,0407	0,0134	439,21	58,71	0,0674	1,248	0,131	0,1770	0,0863	23,40	1,669

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
N°	M/tra	$Q_L$	Rp	<b>W</b> _{sMi}	<b>W</b> _{sMe}	h _{ve}	h _{vi}	Y _X	Т	Rpr	Pmax	Pmin	T°	<b>C</b> _{Dp}
[-]	[-]	[m³/s]	[m]	[g]	[g]	[m]	[m]	[m]	[seg]	[m]	[m]	[m]	°C	[-]
1	M3	Max	Min	504	9364	0,0460	0,0050	0,0663	1,237	0,107	0,1660	0,0417	18,5	15,54
2	M1	Med	Max	2516	7438	0,0357	0,0136	0,0621	1,297	0,103	0,1607	0,0313	19,9	3,57
3	M3	Med	Min	244	9723	0,0365	0,0020	0,0716	1,313	0,111	0,1653	0,0430	18,9	14,15
4	M2	Med	Med	1100	8837	0,0365	0,0040	0,0689	1,317	0,109	0,1620	0,0410	21,2	8,40
5	M1	Max	Max	2383	7552	0,0453	0,0160	0,0586	1,237	0,109	0,1590	0,0440	21,7	3,53
6	M1	Min	Min	791	9181	0,0201	0,0020	0,0398	1,640	0,108	0,1403	0,0467	18,5	4,28
7	M1	Min	Max	3477	6498	0,0190	0,0115	0,0406	1,650	0,105	0,1403	0,0377	18,9	3,71
8	M2	Med	Med	1612	8322	0,0365	0,0040	0,0679	1,297	0,108	0,1613	0,0410	21,9	8,84
9	M3	Min	Max	3798	6166	0,0190	0,0118	0,0388	1,633	0,104	0,1383	0,0370	19,3	14,28
10	M3	Max	Max	2176	7761	0,0454	0,0150	0,0600	1,233	0,111	0,1610	0,0480	21,5	12,62
11	M2	Med	Med	1212	8714	0,0365	0,0040	0,0639	1,317	0,108	0,1640	0,0407	22,4	8,50
12	M3	Min	Min	691	9268	0,0201	0,0030	0,0418	1,647	0,104	0,1413	0,0363	19,6	15,35
13	M1	Max	Min	354	9567	0,0460	0,0040	0,0685	1,233	0,106	0,1677	0,0357	21,6	5,39
14	M2	Med	Med	1451	8481	0,0365	0,0040	0,0649	1.293	0.108	0,1650	0,0410	22,3	8,11
15	M1	Med	Min	184	9776	0,0365	0,0020	0,0606	1,300	0,109	0,1610	0,0440	22,9	4,31
16	М3	Med	Max	2415	7541	0,0357	0,0135	0,0626	1,303	0,112	0,1643	0,0497	22,5	12,22

**Tabla 4.5** Datos de laboratorio según el diseño experimental para mezcla de agua, plomo y sedimento.

# 4.3 ANÁLISIS DE RESULTADOS

A partir de los datos experimentales, se procesó la información, se realizaron los cálculos respectivos y se propuso nuevas correlaciones para el cálculo de la remoción de sedimentos y la remoción de metal pesado.

4.3.1. **Cálculos para agua limpia.** Con los datos tomados en laboratorio se calculó los parámetros a dimensionales, como se indica en la tabla 4.6.

1	2	3	4	5	6	7	8	9	10	11
N٢	Qi	Qex	V	ν	Ao	Pm	De	NA	Nm	PA
[-]	[m³/s]	[m³/s]	[ <i>m</i> /s]	[m²/s]	[m ² ]	[m]	[-]	[-]	[-]	[-]
1	0,000045	0,000297	0,726	0,00000179	0,000088	0,06933	3648,579	0,00040134	0,001135	0,1321
2	0,000007	0,000026	0,469	0,00000177	0,000044	0,03867	335,054	0,00020067	0,000503	0,2251
3	0,000016	0,000017	0,454	0,00000177	0,000133	0,03667	374,180	0,00060201	0,000518	0,4928
4	0,000132	0,000529	0,766	0,00000177	0,000133	0,08733	6762,770	0,00060201	0,001214	0,1996
5	0,000051	0,000612	0,779	0,00000177	0,000044	0,08433	7128,984	0,00020067	0,001203	0,0772
6	0,000054	0,000291	0,729	0,00000177	0,000088	0,06767	3860,955	0,00040134	0,001258	0,1576
7	0,000058	0,000286	0,727	0,00000177	0,000088	0,06767	3843,313	0,00040134	0,001254	0,1676
8	0,000010	0,000024	0,454	0,00000177	0,000044	0,03867	341,373	0,00020067	0,000499	0,2899
9	0,000028	0,000005	0,454	0,00000177	0,000133	0,03700	365,152	0,00060201	0,000601	0,8353
10	0,000127	0,000542	0,765	0,00000177	0,000133	0,09167	6402,224	0,00060201	0,001142	0,1894
11	0,000020	0,000648	0,778	0,00000177	0,000044	0,09367	6164,077	0,00020067	0,001167	0,0297
12	0,000048	0,000297	0,735	0,00000177	0,000088	0,06700	3901,759	0,00040134	0,001260	0,1394

**Tabla 4.6** Valores experimentales para el flujo de agua limpia.

**Columna 2:** caudal líquido evacuado por el lado interno de la espiral concentradora, calculado con ec. [2.23]. **Columna 3:** caudal líquido evacuado por el lado externo de la espiral concentradora, calculado con ec. [2.22]. **Columna 4:** velocidad de flujo está dada por la ecuación V=L/T, donde L=1.05 m hace referencia a la longitud de recorrido del agua desde el inicio de la espiral hasta el final de la misma y T es el tiempo de recorrido que se demora el flujo entre los puntos de inicio hasta el punto de final de la espiral. **Columna 5:** viscosidad cinemática del agua, calculada con ec. [2.17]. **Columna 6:** área de los orificios de drenaje, calculado com Pm=Pmax-Pmin. **Columna 8:** número de Dean del flujo, calculado com ec. [4.24], donde R_H=A_C/Pm, A_C=Q_L/V y R=Rpr. **Columna 9:** número de área, calculada con la ec. [4.28], donde A_E=0.22015m². **Columna 10:** número de Manning, calculado con la ec. [4.25], donde n=0.01 y S=H_{espiral}/L_{espiral}= 37/122.4145=0.30225. **Columna 11:** partición de Agua, calculado con ec. [2.2], donde Q_e=Q_L.

4.3.2. **Cálculos para agua y sedimentos.** Con los datos experimentales se calculó las cantidades indicadas en tabla 4.7.

1	2	3	4	5	6	7		8
N°	Qi	Qex	$Q_s$	V	V	Vm		Ao
[-]	[m³/s]	[m³/s]	[m³/s]	[m/s]	[m²/s]	[m²/s]		[m ² ]
1	0,00012	0,00052	3,9041E-05	0,858	0,00000105	0,00000116	6 0	,000133
2	0,00001	0,00009	3,9041E-05	0,610	0,00000100	0,00000171	0	,000044
3	0,00006	0,00031	4,0202E-05	0,768	0,0000099	0,00000116	6 O	,000088
4	0,00002	0,00063	3,9041E-05	0,856	0,0000099	0,00000108	6 0	,000044
5	0,00006	0,00031	4,0202E-05	0,772	0,0000098	0,00000114	0	,000088
6	0,00005	0,00006	3,9041E-05	0,623	0,0000099	0,00000169	0	,000133
7	0,00006	0,00031	4,0202E-05	0,761	0,0000097	0,00000114	0	,000088
8	0,00002	0,00061	4,1084E-05	0,858	0,00000103	0,00000114	0	,000044
9	0,00001	0,00009	4,1084E-05	0,591	0,00000105	0,00000185	6 0	,000044
10	0,00006	0,00031	4,0202E-05	0,770	0,00000104	0,00000122	2 0	,000088
11	0,00005	0,00006	4,1084E-05	0,598	0,00000103	0,00000175	0	,000133
12	0,00012	0,00055	4,1084E-05	0,856	0,00000102	0,00000112	2 0	,000133
9	10	1	11	12	_	13	14	15
N°	Pm	Ľ	De	NA	^	Nm (inclusion)	PA	$C_{Dp}$
[-]	[m]	l	[-]	[-]		[-]	[-]	[-]
1	0,095	912	8,31	0,00060201	0,001	136779	0,1826	2,62
2	0,087	909	9,64	0,00020067	0,000	073413	0,1328	2,62
3	0,090	531	2,48	0,00040134	0,001	113237	0,1726	6,51
4	0,095	1051	17,32	0,00020067	0,001	157541	0,0332	2,62
5	0,092	525	4,77	0,00040134	0,001	128135	0,1649	6,51
6	0,088	902	2,17	0,00060201	0,000	070513	0,4417	2,62
7	0,091	541	4,54	0,00040134	0,001	132192	0,1664	6,51
8	0,102	872	1,06	0,00020067	0,002	279043	0,0287	25,25
9	0,087	854	4,17	0,00020067	0,000	059189	0,1328	25,25
10	0,091	493	2,12	0,00040134	0,001	120905	0,1706	6,51
11	0,088	957	7,60	0,00060201	0,000	066712	0,4686	25,25
12	0,107	889	1,78	0,00060201	0,001	146147	0,1747	25,25

 Tabla 4.7
 Valores experimentales para mezcla agua-sedimento.

**Columna 2:** caudal líquido evacuado por el lado interno de la espiral concentradora, calculado con ec. [2.23]. **Columna 3:** caudal líquido evacuado por el lado externo de la espiral concentradora, calculado con ec. [2.22]. **Columna 4:** caudal sólido de los sedimentos. **Columna 5:** velocidad de flujo está dada por la ecuación V=L/T, donde L=1.05 m hace referencia a la longitud de recorrido del agua desde el inicio de la espiral hasta el final de la misma y T es el tiempo de recorrido que se demora el flujo entre los puntos de inicio hasta el punto de final de la espiral. **Columna 6:** viscosidad cinemática del agua, calculada con ecua. Ec.

[2.18]. **Columna 7:** viscosidad cinemática de la mezcla, calculada con ec. [2.16]. Columna 8: área de los orificios de drenaje, calculado con la ec. [4.30], donde  $d_0$ =0.0075m. **Columna 10:** perímetro mojado, calculado como Pm=Pmax-Pmin. **Columna 11:** número de Dean del flujo, calculado con ec. [4.24], donde R_H=A_C/Pm, A_C=Q_L/V y R=Rpr. **Columna 12**: número de área, calculada con la ec. [4.28], donde A_E=0.22015m². **Columna 13:** número de Manning, calculado con la ec. [4.25], donde n=0.01 y S=H_{espiral}/L_{espiral}= 37/122.4145=0.30225. **Columna 14:** partición de Agua, calculado con ec. [2.2], donde Q_e=Q_L. **Columna 15:** coeficiente de arrastre promedio de partícula del sedimento, calculado con la ec. [1.25].

4.3.3. **Cálculos** para agua y plomo. Con los datos experimentales se calculó las cantidades mostradas en tabla 4.8.

1	2	3	4	5	6	7	8
N°	Qi	Qex	$Q_p$	ν	<i>v</i> _m	Ao	Pm
[-]	[m ³ /s]	[m ³ /s]	[m ³ /s]	[m²/s]	[m²/s]	[m ² ]	[m]
1	1,65E-05	5,61E-04	9,53E-07	9,32E-07	9,34E-07	0,000133	0,085
2	7,45E-06	2,56E-05	9,53E-07	1,05E-06	1,10E-06	0,000044	0,054
3	3,76E-05	3,09E-04	9,60E-07	1,01E-06	1,02E-06	0,000088	0,069
4	1,08E-05	5,61E-04	9,53E-07	9,72E-07	9,74E-07	0,000044	0,094
5	3,66E-05	3,11E-04	9,60E-07	1,01E-06	1,02E-06	0,00088	0,071
6	1,81E-05	1,45E-05	9,53E-07	9,47E-07	9,89E-07	0,000133	0,046
7	3,46E-05	3,21E-04	9,60E-07	9,47E-07	9,51E-07	0,00088	0,069
8	1,08E-05	5,61E-04	9,20E-07	9,56E-07	9,58E-07	0,000044	0,092
9	1,49E-05	1,78E-05	9,20E-07	9,38E-07	9,79E-07	0,000044	0,047
10	3,46E-05	3,14E-04	9,60E-07	1,01E-06	1,02E-06	0,00088	0,067
11	2,16E-05	1,09E-05	9,20E-07	9,45E-07	9,86E-07	0,000133	0,042
12	1,95E-05	5,52E-04	9,20E-07	9,38E-07	9,41E-07	0,000133	0,091
9	10	11	12	13	5	14	15
N°	V	De	NA	Nn	n	PA	$C_{Dp}$
[-]	[m/s]	[-]	[-]	[-]		[-]	[-]
1	0,856	10126,11	0,000602	0,001	060	0,0285	2,773
2	0,486	334,19	0,000201	0,000	332	0,2251	2,773
3	0,810	6217,93	0,000401	0,001	219	0,1085	2,071
4	0,847	8346,84	0,000201	0,000	885	0,0189	2,773
5	0,818	5923,22	0,000401	0,001	185	0,1052	2,071
6	0,495	454,10	0,000602	0,000	427	0,5552	2,773
7	0,816	6846,87	0,000401	0,001	250	0,0974	2,071
8	0,851	8711,16	0,000201	0,000	912	0,0189	1,669
9	0,490	452,13	0,000201	0,000	406	0,4559	1,669
10	0,806	6469,45	0,000401	0,001	238	0,0994	2,071
11	0,494	520,02	0,000602	0,000	525	0,6648	1,669
12	0,841	9066,11	0,000602	0,000	933	0,0341	1,669

 Tabla 4.8
 Valores experimentales para mezcla agua-plomo.

Columna 2: caudal líquido evacuado por el lado interno de la espiral concentradora, calculado con ec. [2.23]. Columna 3: caudal líquido evacuado por el lado externo de la espiral concentradora, calculado con ec. [2.22]. Columna 4: caudal de plomo. Columna 5: viscosidad cinemática del agua, calculada con ec. [2.17]. Columna 6: viscosidad cinemática de la mezcla, calculada con ec. [2.16]. Columna 7: área de los orificios de drenaje, calculado con la ec. [4.30], donde d₀=0.0075m. **Columna 8:** perímetro mojado, calculado como Pm=Pmax-Pmin. Columna 10: velocidad de flujo está dada por la ecuación V=L/T, donde L=1.05 m hace referencia a la longitud de recorrido del agua desde el inicio de la espiral hasta el final de la misma y T es el tiempo de recorrido que se demora el fluio entre los puntos de inicio hasta el punto de final de la espiral. Columna 11: número de Dean del flujo, calculado con ec. [4.24], donde  $R_H = A_C/Pm$ ,  $A_C = Q_I/V y$ R=Rpr. Columna 12: número de área, calculada con la ec. [4.28], donde A_F=0.22015m². Columna 13: número de Manning, calculado con la ec. [4.25], donde n=0.01 y S=Hespiral/Lespiral= 37/122.4145=0.30225. Columna 14: ppartición de Agua, calculado con ec. [2.2], donde Q_e=Q_I. Columna 15: coeficiente de arrastre promedio de partícula del plomo, calculado con la ec. [1.25].

4.3.4. **Cálculos para agua, plomo y sedimentos**. Con los datos experimentales se calculó las cantidades mostradas en tabla 4.9.

1	2	3	4	5	6	7	8	9
N°	Qi	Qex	$oldsymbol{Q}_{pb}$	Qs	$Q_M$	ν	v _m	Ao
[-]	[m ³ /s]	[m²/s]	[m²/s]	[m ² ]				
1	1,80E-06	7,41E-04	1,00E-06	3,80E-05	7,82E-04	1,05E-06	1,14E-06	0,000133
2	2,02E-05	4,02E-04	4,68E-07	3,77E-05	4,60E-04	1,02E-06	1,16E-06	0,000398
3	1,97E-07	4,24E-04	7,23E-07	3,70E-05	4,62E-04	1,04E-06	1,19E-06	0,000133
4	1,05E-06	4,24E-04	4,96E-07	3,76E-05	4,63E-04	9,88E-07	1,13E-06	0,000265
5	2,99E-05	7,14E-04	5,38E-07	3,74E-05	7,82E-04	9,76E-07	1,05E-06	0,000398
6	1,97E-07	1,01E-04	3,07E-07	3,70E-05	1,38E-04	1,05E-06	1,77E-06	0,000133
7	1,35E-05	8,79E-05	4,83E-07	3,76E-05	1,39E-04	1,04E-06	1,77E-06	0,000398
8	1,05E-06	4,24E-04	5,85E-07	3,77E-05	4,63E-04	9,72E-07	1,11E-06	0,000265
9	1,43E-05	8,79E-05	1,11E-06	3,73E-05	1,41E-04	1,03E-06	1,75E-06	0,000398
10	2,56E-05	7,18E-04	9,71E-07	3,78E-05	7,82E-04	9,81E-07	1,06E-06	0,000398
11	1,05E-06	4,24E-04	6,04E-07	3,69E-05	4,63E-04	9,60E-07	1,09E-06	0,000265
12	5,25E-07	1,01E-04	8,67E-07	3,66E-05	1,39E-04	1,03E-06	1,73E-06	0,000133
13	1,05E-06	7,41E-04	6,05E-07	3,49E-05	7,77E-04	9,79E-07	1,05E-06	0,000133
14	1,05E-06	4,24E-04	5,91E-07	3,76E-05	4,63E-04	9,63E-07	1,10E-06	0,000265
15	1,97E-07	4,24E-04	3,72E-07	3,93E-05	4,64E-04	9,49E-07	1,09E-06	0,000133
16	1,98E-05	4,02E-04	8,12E-07	3,66E-05	4,59E-04	9,58E-07	1,09E-06	0,000398

**Tabla 4.9**Valores experimentales para el flujo de la mezcla de agua, sedimentosy plomo.

40		10	10	4.4	4 5	40	47
10	11	12	13	14	15	16	17
N°	Pm	V	Dem	NA	Nm	PA	$C_{Dp}$
[-]	[m]	[m/s]	[-]	[-]	[-]	[-]	[-]
1	0,124	0,849	8206,84	6,02E-04	1,31E-03	0,0024	15,54
2	0,129	0,810	3572,62	1,81E-03	8,60E-04	0,0478	3,57
3	0,122	0,799	3711,48	6,02E-04	6,81E-04	0,0005	14,15
4	0,121	0,797	4042,35	1,20E-03	7,28E-04	0,0025	8,40
5	0,115	0,849	9887,24	1,81E-03	1,61E-03	0,0402	3,53
6	0,094	0,640	688,25	6,02E-04	5,41E-04	0,0020	4,28
7	0,103	0,636	620,17	1,81E-03	5,29E-04	0,1328	3,71
8	0,120	0,810	4113,54	1,20E-03	7,46E-04	0,0025	8,84
9	0,101	0,643	645,03	1,81E-03	5,76E-04	0,1402	14,28
10	0,113	0,851	9983,23	1,81E-03	1,55E-03	0,0344	12,62
11	0,123	0,797	4050,99	1,20E-03	8,23E-04	0,0025	8,50
12	0,105	0,638	610,42	6,02E-04	5,00E-04	0,0052	15,35
13	0,132	0,851	8108,38	6,02E-04	1,23E-03	0,0014	5,39
14	0,124	0,812	3968,27	1,20E-03	8,04E-04	0,0025	8,11
15	0,117	0,808	4364,27	6,02E-04	9,04E-04	0,0005	4,31
16	0,115	0,806	4364,94	1,81E-03	8,46E-04	0,0470	12,22

Columna 2: caudal líquido evacuado por el lado interno de la espiral concentradora, calculado con ec. [2.23]. Columna 3: caudal líquido evacuado por el lado externo de la espiral concentradora, calculado con ec. [2.22]. Columna 4: caudal del plomo. Columna 5: caudal sólido de los sedimentos. Columna 6: caudal mezcla. Columna 7: viscosidad cinemática del agua, calculada con ec. [2.17]. Columna 8: viscosidad cinemática de la mezcla, calculada con ec. [2.16]. Columna 9: área de los orificios de drenaje, calculado con la ec. [4.30], donde  $d_0$ =0.0075m. **Columna 11:** perímetro mojado, calculado como Pm=Pmax-Pmin. Columna 12: velocidad de flujo está dada por la ecuación V=L/T, donde L=1.05 m hace referencia a la longitud de recorrido del agua desde el inicio de la espiral hasta el final de la misma y T es el tiempo de recorrido que se demora el flujo entre los puntos de inicio hasta el punto de final de la espiral. Columna 13: número de Dean del flujo, calculado con ec. [4.24], donde R_H=A_C/Pm, A_C=Q_L/V y R=Rpr. Columna 14: número de área, calculada con la ec. [4.28], donde A_F=0.22015m². Columna 15: número de Manning, calculado con la ec. [4.25], donde n=0.01 y S=37/122.4145=0.30225. Columna 16: partición de Agua, calculado con ec. [2.2], donde Qe=QL. Columna 17: coeficiente de arrastre promedio de partícula de la mezcla, calculado con la ec. [1.25].

Los valores experimentales de las variables de respuesta afectadas por la mezcla de agua, plomo y sedimento, se indican en la tabla 4.10.

1	2	3	4	5	6	7	8
N°	$C_{Dp}$	PA	$C_{Pbse}$	<b>C</b> _{Pbsi}	$C_{Pbe}$	$R_{pb}$	R _s
[-]	[-]	[-]	[%]	[%]	[%]	[-]	[-]
1	15,54	0,0024	8,0464	66,7569	11,0450	0,3087	0,0191
2	3,57	0,0478	1,2978	16,2494	5,0770	0,8090	0,2230
3	14,15	0,0005	7,1152	61,0778	8,4362	0,1772	0,0104
4	8,40	0,0025	2,6091	29,3274	5,5668	0,5832	0,0828
5	3,53	0,0402	1,9875	18,0349	5,8366	0,7412	0,2088
6	4,28	0,0020	1,3013	28,2783	3,4411	0,6518	0,0589
7	3,71	0,1328	3,2427	8,9709	5,2394	0,5968	0,3348
8	8,84	0,0025	2,0624	29,3333	6,4876	0,7337	0,1226
9	14,28	0,1402	6,4996	21,7198	12,3011	0,6730	0,3402
10	12,62	0,0344	4,8560	31,9559	10,7903	0,6485	0,1670
11	8,50	0,0025	3,7653	28,7037	6,8104	0,5146	0,0934
12	15,35	0,0052	6,9401	51,7966	10,0524	0,3575	0,0372
13	5,39	0,0014	4,1381	82,6557	6,9398	0,4250	0,0067
14	8,11	0,0025	2,7602	28,7741	6,5606	0,6407	0,1114
15	4,31	0,0005	2,4399	81,7885	3,9058	0,3869	0,0035
16	12,22	0,0470	5,0072	23,3892	9,4660	0,5993	0,2053

**Tabla 4.10** Valores experimentales de las variables de respuesta afectadas por la mezcla de agua, plomo y sedimento.

**Columna 2:** coeficiente de arrastre promedio de partícula de la mezcla, calculado con la ec. [1.25]. **Columna 3:** partición de agua, con ec. [2.2]. Columna 4: concentración de plomo por la salida externa de la espiral, calculada con ec. [2.6]. **Columna 5:** concentración de plomo por la salida interna de la espiral, calculada con ec. [2.6]. **Columna 6:** concentración de plomo a la entrada de la espiral, calculada con ec. [2.4]. **Columna 7:** Remoción de plomo a la salida interna de la espiral, calculada interna de la espiral, con ec. [2.4]. **Columna 8:** Remoción de sedimento a la salida interna de la espiral, con ec. [2.3].

4.3.5. **Correlaciones matemáticas para las variables de respuesta.** Aplicando regresión lineal múltiple (RLM) a los datos experimentales se obtuvo las siguientes correlaciones para cada una de las variables de respuesta.

#### • Partición de agua, PA.

Con solo agua

$$PA = 0,040779 [N_m]^{-1.52734} [NA]^{1.16259}$$
[4.31]

$$PA = 36674, 1452 \left[ De \right]^{-0.485975} \left[ NA \right]^{1.07562}$$
[4.32]
Afectada por el sedimento

$$PA = 504301.198 \left[ De \right]^{-0.473031} \left[ NA \right]^{1.40322} \left[ C_{Dp} \right]^{-0.0425234}$$
 [4.33]

$$PA = 0.948074 \left[ N_m \right]^{-1.12892} \left[ NA \right]^{1.2098} C_{Dp}^{-0.0192778}$$
 [4.34]

Afectada por el metal pesado

$$PA = 26.45940 \left(\frac{De}{\sqrt{C_{Dppb}}}\right)^{-0.418083} NA^{0.431456}$$
[4.35]

Afectada por la mezcla de metal pesado y el sedimento

$$PA = 2978379266, 84 \left[ De \right]^{-0.55408} \left[ NA \right]^{3.30241} \left[ C_{Dp} \right]^{0.092457}$$
[4.36]

#### • Remoción de plomo

Afectada por el metal pesado

No se incluye porque no existe correlación con los datos de origen.

Afectada por la mezcla de metal pesado y el sedimento

$$R_{pb} = 51,4529 D e^{-0.0373596} [NA]^{0.556583} [C_{Dp}]^{-0.241297}$$
[4.37]

## • Remoción de sedimento

Afectada por solo sedimento

$$R_{s} = 50,00230214 \left[ De \right]^{0.0403366} \left[ NA \right]^{0.685737} \left[ C_{Dp} \right]^{-0.0464701}$$
[4.38]

Afectada por la mezcla de metal pesado y el sedimento

$$R_{s} = 75476195, 4 \left[ De \right]^{-0.413268} \left[ NA \right]^{2.62209} \left[ C_{Dp} \right]^{0.194989}$$
[4.39]

#### • Concentración de plomo a la salida interna del tubo curvo

Afectada por la mezcla de metal pesado y el sedimento

$$\frac{C_{Pbe}}{C_{Pbsi}} = 10^{3.33473} \left[ De \right]^{-0.198474} \left[ NA \right]^{1.21198} \left[ C_{Dp} \right]^{0.32381}$$
[4.40]

$$\frac{C_{Pbe}}{C_{Pbsi}} = 10^{1,48827} \left[ N_m \right]^{-0,398552} \left[ NA \right]^{1,23102} \left[ C_{Dp} \right]^{0,303607}$$
[4.41]

El coeficiente de arrastre  $C_{Dp}$  toma el valor dependiendo de la mezcla transportada, para ecuaciones [4.36], [4.37], [4.39], [4.40] y [4.41], corresponde al valor calculado para la mezcla de sedimentos y plomo a la entrada a partir de su granulometría, el peso específico de los sedimentos, viscosidad del agua y el diámetro de la mezcla de agua y sedimentos.

Los estadísticos para cada ecuación se indican en la tabla 9.

1	2	3	4		5	6
Estadístico	Ec.[4.31]	Ec.[4.32]	Ec.[4.	33] Ec.	.[4.34]	Ec.[4.35]
	[m ³ /s]	[m ³ /s]	[m ³ /	s] [r	m ³ /s]	[m ³ /s]
P-Valor	0.0000	0.0002	0.000	0 00	.0000	0,0004
R-cuadrado	89.3374 %	84.9384%	94.912	2% 95	5.9295	82,0362%
R-cuadrado (ajustado para g.l.)	86.968%	81.5914%	93.004	l2% 9	4.403	78,0442%
Error estándar de est.	0.132092	0.156994	0.0955	168 0.0	854356	0,258696
Error absoluto medio	0.0863857	0.108713	0.0693	438 0.0	593547	0,213549
Estadístico de Durbin-Watson	1.68627 (P=0.3191)	1.49825 (P=0.2125)	3.287 ) (P=0.00	26 2 019) (P=	49495 0.1320)	2,19249 (P=0,4126)
Autocorrelación residual en Lag 1	0.144235	0.240826	-0.651	522 -0.3	316386	-0,234634
1	7	8	9	10	11	12
Estadístico	Ec.[4.36]	Ec.[4.37]	Ec.[4.38]	Ec.[4.39]	Ec.[4.40]	Ec.[4.41]
	[m ³ /s]	[m ³ /s]	[m ³ /s]	[m³/s]	[m ³ /s]	[m ³ /s]
P-Valor	0.0002	0.0037	0,0075	0.0000	0.0000	0,0000
R-cuadrado	78.807%	66.1256	75,885%	88.3767	88.6211	84,6742
R-cuadrado (ajustado para g.l.)	73.5088 %	57.6571	66,8419%	85.4709	85.7764	80,8428
Error estándar de est.	0.427796	0.11305	0,0956944	0.235233	0.108871	0,126313
Error absoluto medio	0.331921	0.0671346	0,0655293	0.156247	0.0683799	0,0824949
Estadístico de Durbin-Watson	2.23124 (P=0.3444)	2.76106 (P=0.0562)	2,67578 (P=0,0714)	2.14693 (P=0.4129)	1.74595 (P=0.3266)	1,68708 (P=0,2865)
Autocorrelación residual en Lag 1	-0.205729	-0.380826	-0,367222	-0.118957	0.0108547	0,0588948

 Tabla 4.11
 Valores calculados a partir de datos medidos en laboratorio

4.3.6. Verificación de las correlaciones. Para evaluar el error de predicción de las correlaciones, se utiliza el criterio de error promedio  $\overline{E}$ , ec. [2.34].

Se obtuvo los siguientes errores promedio para cada una de las ecuaciones: ec. [4.31] un  $\overline{E} = 21.57\%$ , ec. [4.32] un  $\overline{E} = 27.58\%$ , ec. [4.33] un  $\overline{E} = 16.29\%$ , ec. [4.34] un  $\overline{E} = 14.03\%$ , ec. [4.35] un  $\overline{E} = 52.21\%$  y ec. [4.38] un  $\overline{E} = 16.00\%$ .

Para las ecuaciones correspondientes a la mezcla de agua, sedimento y metal pesado, se calculan los errores de predicción para cada ensayo como se indica en la tabla 4.12.

1	2	3	4	5	6	7
N°	PA	C _{Pbsi}	C _{Pbsi}	R _{pb}	Rs	C _{Pbsi}
	Ec.	Ec.	Ec.	Ec.	Ec.	Ec.
[-]	[4.36]	[4.40]	[4.41]	[4.37]	[4.39]	[2.8]
	[-]	[-]	[-]	[-]	[-]	[-]
1	0,00060	100,5924	102,0158	0,3057	0,0112	77,2504
2	0,03141	16,6623	16,0212	0,8286	0,2110	17,3600
3	0,00093	67,6627	61,7846	0,3221	0,0152	66,0789
4	0,00832	23,2054	20,8926	0,5355	0,0818	27,8471
5	0,01785	23,5424	23,7327	0,8002	0,1382	26,4140
6	0,00211	29,1028	33,0569	0,4579	0,0242	40,2659
7	0,08316	12,0020	13,4641	0,8767	0,4382	9,9611
8	0,00828	26,6905	24,2066	0,5285	0,0820	30,8953
9	0,09217	18,3549	21,7311	0,6324	0,5607	13,6588
10	0,01997	28,8603	29,3437	0,5881	0,1765	28,7305
11	0,00832	28,3000	26,7500	0,5340	0,0819	32,2743
12	0,00254	54,8826	63,4896	0,3379	0,0326	53,6398
13	0,00055	88,8554	86,3222	0,3949	0,0091	76,3205
14	0,00838	27,5601	25,8854	0,5404	0,0819	31,6732
15	0,00076	47,5238	45,9116	0,4264	0,0113	60,5291
16	0,03149	21,7133	20,4354	0,6114	0,2468	20,5724

**Tabla 4.12**Valores calculados de las variables de respuesta afectadas por la<br/>mezcla de agua, plomo y sedimento.

1	8	9	10	11	12	13
N°	Error	Error	Error	Error	Error	Error
[-]	Ec. [4.36]	Ec. [4.40]	Ec. [4.41]	Ec. [4.37]	Ec. [4.39]	Ec. [2.8]
	[%]	[%]	[%]	[%]	[%]	[%]
1	75,15	50,68	52,82	0,98	41,44	15,72
2	34,27	2,54	1,40	2,42	5,40	6,84
3	99,63	10,78	1,16	81,73	46,39	8,19
4	236,49	20,87	28,76	8,18	1,27	5,05
5	55,56	30,54	31,59	7,96	33,82	46,46
6	8,03	2,92	16,90	29,76	58,92	42,39
7	37,40	33,79	50,09	46,90	30,86	11,04
8	234,84	9,01	17,48	27,96	33,11	5,33

9	34,24	15,49	0,05	6,04	64,80	37,11
10	41,92	9,69	8,17	9,32	5,64	10,09
11	236,44	1,41	6,81	3,77	12,33	12,44
12	51,02	5,96	22,57	5,50	12,23	3,56
13	61,16	7,50	4,44	7,08	37,39	7,66
14	238,86	4,22	10,04	15,66	26,50	10,08
15	63,51	41,89	43,87	10,23	222,81	25,99
16	32,97	7,17	12,63	2,00	20,23	12,04
Promedio =	96,34	16,96	20,58	17,70	40,82	17,33

En la figuras 4.8 se indica la representación gráfica de los valores medidos y calculados de la ec. [2.8], [4.40] y ec. [4.41].



Figura 4.8 Valores medidos y calculados para la ec. [2.8], [4.40] y ec. [4.41].

# CAPÍTULO



## DISPOSITIVO MÁS EFICIENTE Y METODO DE DISEÑO

## LISTA DE TABLAS

Tabla 5.1	Datos de entrada que se evalúan en el hidrociclón y el tubo curvo	153
Tabla 5.2	Datos para el tubo curvo	153
Tabla 5.3	Datos para evaluar el hidrociclón	157
Tabla 5.4	Datos para la ecuación empírica del radio máximo	163
Tabla 5.5	Datos para la ecuación empírica del perímetro máximo	164
Tabla 5.6	Datos para la ecuación empírica para el tiempo de recorrido del flujo a través de la espiral	165
Tabla 5.7	Datos iniciales para el ejemplo de diseño de la espiral	166

## LISTA DE FIGURAS

Figura 5.1	Comparación de dispositivos bajo las mismas condiciones de ensayo.	161
Figura 5.2	Referencia de medidas en la espiral concentradora	162

## INTRODUCCIÓN

En el presente capítulo se muestra la comparación del dispositivo más eficiente, que en este caso es la espiral concentradora, con los otros dos dispositivos; bajo condiciones similares en cuanto a tipo de minerales y procedimiento en el laboratorio.

También se detalla un método de diseño para la espiral concentradora que servirá como base para estudios posteriores con el fin de mejorar la eficiencia de separación de metales pesados en la pequeña minería en nuestra región.

## 5.1 EFICIENCIA DE LOS DISPOSITIVOS

Se realizó una comparación entre los tres dispositivos de separación, teniendo en cuenta el porcentaje de remoción de metal pesado que se obtuvo por el lado interno de la espiral (*CPbsi* = 77.2504%), calculado con la ecuación teórica 2.8, correspondiente al ensayo de mayor eficiencia, que en este caso sería el que presente mayor porcentaje de remoción. Las condiciones en las cuales se realizó este ensayo se evalúan en los otros dos dispositivos y así confrontar la eficiencia de remoción de cada uno.

5.1.1 **Datos de entrada.** Los datos de entrada se obtienen con base en el ensayo número uno, columna siete de la tabla 4.12 con agua, plomo y sedimento, correspondiente a la concentración de metal pesado por el lado interno de la espiral. Las tablas 4.5 y 4.6 proporcionan los datos de entrada que se evalúan en los otros dos dispositivos.

Tabla 5.1 Datos de entrada que se evalúan en el hidrociclón y el tubo curvo

Parámetro	Valor	Medida	
Qi	1,80E-06	[m ³ /s]	
Qex	7,41E-04	[m ³ /s]	
Tipo de mezcla	Arena blanca + plomo + agua	[-]	
Temperatura, T⁰	18.5	°C	

5.1.2 Eficiencia con relación al tubo curvo. Las características del tubo curvo con las cuales se evalúa los datos de la espiral, son los que corresponden al ensayo número diez, con mezcla total; de la tabla 2.4, que tiene B'=0.011 m que es el espesor del lado interno del tubo curvo. Se escoge este ensayo debido a que el valor de la concentración de plomo por la salida interna del tubo curvo es el máximo de todos los ensayos, demostrando así el caso más eficiente para este dispositivo. Los datos para el tubo curvo se muestran en la tabla 5.2

Tabla 5.2	Datos	para el	tubo	curvo
-----------	-------	---------	------	-------

Parámetro	Descripción	Valor	Medida
$Q_{pb} + Q_S$	Caudal del plomo + caudal del sedimento	0.5	[Kg/s]
Wpbe	Peso del plomo a la entrada (establecido)	1	[Kg]
Wpbe + Wse	Peso del plomo y sedimento a la entrada. (establecido)	20	[Kg]
ρ _{pb}	Densidad del plomo	11.302	[Ton/m ³ ]
ρ _s	Densidad del sedimento (arena blanca)	2.399	[Ton/m ³ ]
r _e	Radio externo del tubo curvo	0.193	[m]
r _i	Radio interno del tubo curvo	0.143	[m]
C _{Dp}	Coeficiente de arrastre de partícula	15.12	[-]

#### 5.1.3 Concentración de plomo a la entrada

De la ecuación [2.9], se tiene:

$$C_{Pbe} = \frac{W_{pbe}}{W_{pbe} + W_{se}} * 100 = \frac{1[Kg]}{20[Kg]} * 100 = 5\%$$
[5.1]

Estos pesos fueron establecidos en el laboratorio

#### Caudal del plomo

$$Q_{Pb} = (Q_{pb} + Q_s) * C_{pbe} = (0.5) * [Kg / s] * 0.05 = 0.025 [Kg / s]$$
[5.2]

Se divide entre la densidad del plomo y se obtiene:

$$Q_{Pb} = \frac{0.025 [\text{Kg/s}]}{11.302 [\text{Ton/m}^3] * 1000} = 2.212 \times 10^{-6} [\text{m}^3/\text{s}]$$
[5.3]

#### Caudal del sedimento

Determinando Q_{Pbs}=Q_{Pb}+Q_s se tiene:

$$Q_{\rm s} = 0.5 [\rm Kg/s] - 0.025 [\rm Kg/s] = 0.475 [\rm Kg/s]$$
[5.4]

y dividiendo entre la densidad del sedimento, se tiene:

$$Q_{s} = \frac{0.475 [\text{Kg/s}]}{2.399 [\text{Ton/m}^{3}] * 1000} = 1.98 \times 10^{-4} [\text{m}^{3}/\text{s}]$$
 [5.5]

Concentración de plomo mas sedimento

$$C_{Pb+s} = \frac{Q_{Pb} + Q_s}{Q_{Pbsw}} = \frac{2.002 \times 10^{-4}}{2.002 \times 10^{-4} + 1.8 \times 10^{-6} + 7.41 \times 10^{-4}} \frac{\left[\text{m}^3/\text{s}\right]}{\left[\text{m}^3/\text{s}\right]} = 0.2123$$
[5.6]

Donde Q_{Pbsw} es el caudal de la mezcla total.

#### • Velocidad de la mezcla

$$V_m = \frac{Q_{Pbsw}}{A} = \frac{9.43 \times 10^{-4} \left[ \text{m}^3/\text{s} \right]}{0.05 \times 0.05} = 0.3772 \left[ \text{m/s} \right]$$
[5.7]

Donde A es el área de la sección transversal del tubo curvo.

• Radio hidráulico

$$RH = \frac{A}{P} = \frac{0.05 \times 0.05 [\text{m}^2]}{4 \times 0.05 [\text{m}]} = 0.0125 [\text{m}]$$
 [5.8]

Donde P es el perímetro

## • Viscosidad cinemática del agua

De la ecuación [2.17], se tiene:

$$\nu = \frac{1.792 \times 10^{-6}}{1 + 0.0337 (18.5^{\circ} C) + 0.000221 (18.5^{\circ} C)^{2}} = 1.05 \times 10^{-6} [m^{2} / s]$$
 [5.9]

#### • Viscosidad de la mezcla

De la ecuación 2.16, se tiene:

$$\nu_{m} = \frac{2\nu}{2-3C} = \frac{2 \times 1.05 \times 10^{-6} \left[\text{m}^{2}/\text{s}\right]}{2-3 \times 0.2123} = 1.548 \times 10^{-6} \left[\text{m}^{2}/\text{s}\right]$$
[5.10]

donde  $C = C_{Pb+s}$ .

#### • Número de Reynolds de la mezcla

De la ecuación [2.15], se tiene:

$$\operatorname{Re}_{m} = \frac{(4RH)V_{m}}{V_{m}} = \frac{4 \times 0.0125 [m] \times 0.3772 [m/s]}{1.548 \times 10^{-6} [m^{2}/s]} = 12186$$
 [5.11]

#### Radio medio de curvatura del tubo curvo

Con los datos de la tabla 5.2 se tiene:

$$R = \frac{r_e + r_i}{2} = \frac{0.193[\text{m}] + 0.143[\text{m}]}{2} = 0.168[\text{m}]$$
[5.12]

#### • Número de Deam

De la ecuación [2.14], se tiene:

$$De_m = \operatorname{Re}\sqrt{\frac{(4R_H)}{2R}} = 12186\sqrt{\frac{(4 \times 0.0125[\mathrm{m}])}{2 \times 0.168[\mathrm{m}]}} = 4701$$
 [5.13]

#### • Número de área

Teniendo en cuenta la ecuación [2.18] y los datos de la tabla 5.2, se tiene:

$$NA = \frac{A_o}{A} = \frac{B'h}{Bh} = \frac{0.011 \times 0.05}{0.05 \times 0.05} \frac{\left[\text{m}^2\right]}{\left[\text{m}^2\right]} = 0.22$$
[5.14]

#### Remoción de plomo

Con los datos anteriores y la ecuación [2.31] obtenida en esta investigación por regresión lineal múltiple RLM con un coeficiente de correlación  $R^2$ =0,437336, se calcula la remoción de plomo.

$$R_{pb} = 10^{1.95571} \times [4701]^{-0.446312} \times [0.22]^{0.200235} \times [15.12]^{-0.0334923} = 1.3983$$
[5.15]

Como  $R_{Pb}$  no puede ser mayor que uno, se asume uno (1) suponiendo que para dichas condiciones se remueve el 100% de metal pesado. Esto sucede ya que el caudal líquido es muy bajo y seguramente el transporte de la mezcla se hace en condiciones de depósito

#### Remoción de sedimento

Con los datos anteriores y la ecuación [2.33] obtenida en esta investigación por regresión lineal múltiple RLM con un coeficiente de correlación  $R^2$ =0,801511, se calcula la remoción de sedimento.

$$R_{s} = 10^{2.86896} \times [4701]^{-0.669988} \times [0.22]^{0.34925} \times [15.12]^{0.18903} = 0.9037$$
[5.16]

#### • Concentración de plomo por la salida interna del tubo curvo

Para poder obtener Cpbsi se trabaja con la ecuación [2.8], donde C'Pbe se calcula con la ecuación [2.10]; asi:

$$C'_{Pbe} = \frac{C_{pbe}}{1 - C_{pbe}} = \frac{0.05}{1 - 0.05} = 0.0526$$
[5.17]

Luego se obtiene:

$$C_{Pbsi} = \frac{R_{pb} \times C'_{Pbe}}{R_{pb} \times C'_{Pbe} + R_s} \times 100 = \frac{1 \times 0.0526}{1 \times 0.0526 + 0.899} \times 100 = 5.5275\% \text{ [5.18]}$$

5.1.4 Eficiencia con relación al hidrociclón. Las características del hidrociclón con las cuales se evalúa los datos obtenidos de la espiral, son los que corresponden al ensayo número 20, con mezcla total; de la tabla 3.4, que tiene Lv =0.08 m que es la altura del hidrociclón, un diámetro Dc =0.15 m que es el diámetro del cilindro y un diámetro de salida por la parte inferior de ½ pulgadas. Se escoge este ensayo debido a que el valor de la concentración de plomo por la salida inferior Apex es el máximo de todos los ensayos, demostrando así el caso más eficiente para este dispositivo.

Los datos para el hidrociclón se muestran el la tabla 5.3

Parámetro	Descripción	Valor	Medida
$Q_{pb} + Q_S$	Caudal del plomo + caudal del sedimento (sugerido)	0.5	[Kg/s]
Wpbe	Peso del plomo a la entrada (sugerido)	1	[Kg]
Wpbe + Wse	Peso del plomo y sedimento a la entrada. (sugerido)	20	[Kg]
ρ _{pb}	Densidad del plomo	11.302	[Ton/m ³ ]
ρ _s	Densidad del sedimento (arena blanca)	2.399	[Ton/m ³ ]
Lv	Altura del hidrociclón	0.08	[m]
D _E	Diámetro del tubo a la entrada del hidrociclón	0.042	[m]
D _A	Diámetro de la salida inferior Apex	0.0175	[m]
D _c	Diámetro del cilindro del hidrociclón	0.15	[m]
D _V	Diámetro del vortex finder parte superior del hidrociclón	0.0535	[m]
C _{Dp}	Coeficiente de arrastre	19.1262	[-]

 Tabla 5.3
 Datos para evaluar el hidrociclón

#### • Concentración de plomo a la entrada

De la ecuación [2.9], se tiene:

$$C_{Pbe} = \frac{W_{pbe}}{W_{pbe} + W_{se}} *100 = \frac{1[Kg]}{20[Kg]} *100 = 5\%$$
[5.19]

Estos pesos fueron recomendados en el laboratorio para todos los ensayos

#### Caudal del plomo

$$Q_{Pb} = (Q_{pb} + Q_s) * C_{pbe} = (0.5) * [Kg / s] * 0.05 = 0.025 [Kg / s]$$
[5.20]

Se divide entre la densidad del plomo y se obtiene:

$$Q_{Pb} = \frac{0.025 [\text{Kg/s}]}{11.302 [\text{Ton/m}^3] * 1000} = 2.212 \times 10^{-6} [\text{m}^3/\text{s}]$$
[5.21]

#### • Caudal del sedimento

Determinando Q_{Pbs}=Q_{Pb}+Q_s se tiene:

$$Q_{\rm s} = 0.5 [{\rm Kg/s}] - 0.025 [{\rm Kg/s}] = 0.475 [{\rm Kg/s}]$$
 [5.22]

y dividiendo entre la densidad del sedimento, se tiene:

$$Q_{s} = \frac{0.475 [\text{Kg/s}]}{2.399 [\text{Ton/m}^{3}] * 1000} = 1.98 \times 10^{-4} [\text{m}^{3}/\text{s}]$$
 [5.23]

#### • Concentración de plomo mas sedimento

$$C_{Pb+s} = \frac{Q_{Pb} + Q_s}{Q_{Pbsw}} = \frac{2.002 \times 10^{-4}}{2.002 \times 10^{-4} + 1.8 \times 10^{-6} + 7.41 \times 10^{-4}} \frac{\left[\text{m}^3/\text{s}\right]}{\left[\text{m}^3/\text{s}\right]} = 0.2123$$
[5.24]

Donde Q_{Pbsw} es el caudal de la mezcla total.

#### • Velocidad de la mezcla

$$V_{m} = \frac{Q_{Pbsw}}{A} = \frac{9.43 \times 10^{-4} \left[\text{m}^{3}/\text{s}\right]}{\frac{\pi \times (0.042)^{2}}{4} \left[\text{m}^{2}\right]} = 0.681 \left[\text{m/s}\right]$$
[5.25]

Donde A es el área de la sección transversal del tubo a la entrada del hidrociclón.

## • Viscosidad cinemática del agua

De la ecuación [2.17], se tiene:

$$\nu = \frac{1.792 * 10^{-6}}{1 + 0.0337 (18.5^{\circ} C) + 0.000221 (18.5^{\circ} C)^{2}} = 1.05 * 10^{-6} [m^{2} / s]$$
 [5.26]

#### • Viscosidad de la mezcla

De la ecuación 2.16, se tiene:

$$\nu_{m} = \frac{2\nu}{2-3C} = \frac{2 \times 1.05 \times 10^{-6} \left[\text{m}^{2}/\text{s}\right]}{2-3 \times 0.2123} = 1.548 \times 10^{-6} \left[\text{m}^{2}/\text{s}\right]$$
[5.27]

donde C =  $C_{Pb+s}$ .

#### • Número de Deam

De la ecuación [3.6], y los datos de la Tabla 5.3 se tiene:

$$De_{m} = \frac{4(Q_{s} + Q_{L})}{\pi D_{E} v_{m}} \sqrt{\frac{D_{E}}{D_{C}}} = \frac{4 \times (9.43 \times 10^{-4} [\text{m}^{3}/\text{s}])}{\pi \times 0.042 [\text{m}] \times 1.548 \times 10^{-6} [\text{m}^{2}/\text{s}]} \sqrt{\frac{0.042 [\text{m}]}{0.15 [\text{m}]}} = 9774$$
 [5.28]

#### • Número de restricción

Teniendo en cuenta la ecuación [3.8] y los datos de la tabla 5.3, se tiene:

$$N_{R} = \frac{D_{\nu}^{2} + D_{A}^{2}}{D_{E}^{2}} = \frac{0.0535^{2} + 0.0175^{2}}{0.042^{2}} \frac{\left[\text{m}^{2}\right]}{\left[\text{m}^{2}\right]} = 1.7962$$
[5.29]

#### • Longitud normalizada del "vortex finder"

De la ecuación [3.9], se tiene:

$$L_N = \frac{L_V}{D_C} = \frac{0.08}{0.15} \frac{[\text{m}]}{[\text{m}]} = 0.5333$$
 [5.30]

#### Remoción de plomo

Con los datos anteriores y la ecuación [3.19] obtenida en esta investigación por regresión lineal múltiple RLM, con un coeficiente de correlación  $R^2$ =0,102424, se calcula la remoción de plomo.

$$R_{Pb} = 10^{0.0278179} [9774]^{-0.00990626} [1.796]^{0.0239754} [0.533]^{0.00347877} [19.126]^{0.00256433}$$

$$R_{Pb} = 0.9925$$
[5.31]

#### • Remoción de sedimento

Con los datos anteriores y la ecuación [3.21] obtenida en esta investigación por regresión lineal múltiple RLM, con un coeficiente de correlación  $R^2$ =0,270503, se calcula la remoción de sedimento.

$$Rs = 2,03488[9774]^{-0,102484}[1.796]^{0,365282}[0.533]^{0,050206}[19.126]^{-0,00853139}$$

$$Rs = 0.9287$$
[5.32]

#### Concentración de plomo por la salida interna del tubo curvo

Para poder obtener Cpbsi se trabaja con la ecuación [2.8], donde C'Pbe se calcula con la ecuación [2.10]; asi:

$$C'_{Pbe} = \frac{C_{pbe}}{1 - C_{pbe}} = \frac{0.05}{1 - 0.05} = 0.0526$$
[5.33]

Luego se obtiene:

$$C_{Pbsi} = \frac{R_{pb} \times C'_{Pbe}}{R_{pb} \times C'_{Pbe} + R_s} \times 100 = \frac{0.999 \times 0.0526}{0.999 \times 0.0526 + 0.9287} \times 100 = 5.3631\%$$
 [5.34]

Con los resultados obtenidos de la concentración de metal pesado a la salida interna para cada dispositivo se comprueba que la espiral concentradora es el dispositivo más eficiente en cuanto a la separación de plomo, de matrices aluviales mezcladas con agua, por fuerza de gravedad (Figura 5.1), con condiciones de ensayo similares en el laboratorio.

A pesar de que la medida de algunos parámetros no se pudo controlar para una medida más exacta, como la velocidad del flujo o la concentración de plomo a la salida por la falta de dispositivos de medición que lo permitan, se pudo tener comparaciones importantes entre cada dispositivo.



Figura 5.1 Comparación de dispositivos bajo las mismas condiciones de ensayo.

El bajo porcentaje de concentración de plomo por la salida inferior en el hidrociclón y por el lado interno en el tubo curvo nos indica que estos dispositivos no son eficientes para las mismas condiciones de ensayo que se usó en la espiral, se debería entonces modificar la geometría de estos dispositivos o modificar las condiciones de ensayo para una misma mezcla, con ayuda de los resultados obtenidos en esta investigación, para luego poder realizar una nueva comparación.

## 5.2 METODOLOGÍA DE DISEÑO PARA LA ESPIRAL CONCENTRADORA

La metodología de diseño parte de una información base que depende de las características de los materiales con los cuales se vaya a trabajar, como por ejemplo el caudal, la temperatura, el tipo de sedimento entre otros.

5.2.1 Análisis de la concentración de plomo según ecuaciones empíricas. Analizando las ecuaciones [4.40] y [4.41], se puede decir que la concentración de plomo por la salida interna del dispositivo  $C_{Pbsi}$ , es inversamente proporcional al número de área *NA*, y que éste número de área es el que tiene mayor influencia en cuanto a la concentración de plomo. Y que la concentración es directamente proporcional al número de Deam *De* y al número de Manning *Nm*, los cuales a su vez son directamente proporcionales al caudal de la mezcla. Entonces para obtener un porcentaje de concentración de metal pesado más alto, se debe disminuir el número de área, que relaciona el área de los orificios para la remoción de plomo  $A_0$ , y el área superficial de la espiral concentradora  $A_E$ , y/o aumentar el caudal de la mezcla.

Se observa que en el ensayo siete de la tabla 4.12, con mezcla de arena amarilla, agua y plomo, la concentración de plomo por la salida interna de la espiral calculada con la ecuación [2.8], es de 9.9611% con un  $A_0 = 0.000398 \text{ m}^2$ ; si se quiere aumentar la concentración de plomo se debe disminuir al área de los orificios a 0.000133 m², como se indica en el ensayo seis de la tabla 4.9, pero si se quiere aumentar aún mas la concentración de plomo por la salida interna de la espiral, se debe aumentar el caudal de la mezcla de 0.0001394 m³/s a 0.0007775 m³/s como se indica en el ensayo 13 de la tabla 4.9.

5.2.2 Efecto del caudal sobre el comportamiento de la mezcla en la espiral. Según los datos de laboratorio para la espiral concentradora, se logró obtener relaciones entre el caudal y el comportamiento de la mezcla en la espiral, por el método de regresión lineal, consiguiendo ecuaciones empíricas que nos ayudan al cálculo del número de Deam.

En la Figura 5.2 se indica el perfil de la espiral y cómo se referenciaron las medidas de Rmax, Rmin y Yx.



Figura 5.2 Referencia de medidas en la espiral concentradora

Ensayo	Rmax	Qm	Rmax
#	medido		calculado
	(m)	[m3/s]	(m)
1	0,1277	0,0007818	0,1282
2	0,1268	0,0004604	0,1268
3	0,1285	0,0004620	0,1268
4	0,1281	0,0004633	0,1269
5	0,1265	0,0007818	0,1282
6	0,1234	0,0001382	0,1238
7	0,1234	0,0001394	0,1238
8	0,1278	0,0004634	0,1269
9	0,1231	0,0001406	0,1238
10	0,1268	0,0007822	0,1282
11	0,1273	0,0004627	0,1269
12	0,1236	0,0001386	0,1238
13	0,1280	0,0007775	0,1282
14	0,1275	0,0004634	0,1269
15	0,1269	0,0004641	0,1269
16	0,1274	0,0004593	0,1268

Tabla 5.4 Datos para la ecuación empírica del radio máximo

$$R \max = \frac{\left[Qm\right]^{0.0203529}}{10^{0.828834}} [m]$$
 [5.35]

El estadístico R-cuadrado indica que el modelo explica un 0,779987 de la variabilidad en Rmax con respecto al caudal.

Ensayo	Pmax	Qm	Pmax
#	medido		calculado
	(m)	[m3/s]	(m)
1	0,1660	0,0007818	0,1681
2	0,1607	0,0004604	0,1596
3	0,1653	0,0004620	0,1596
4	0,1620	0,0004633	0,1597
5	0,1590	0,0007818	0,1681
6	0,1403	0,0001382	0,1417
7	0,1403	0,0001394	0,1419
8	0,1613	0,0004634	0,1597
9	0,1383	0,0001406	0,1420
10	0,1610	0,0007822	0,1681
11	0,1640	0,0004627	0,1597
12	0,1413	0,0001386	0,1418
13	0,1677	0,0007775	0,1680
14	0,1650	0,0004634	0,1597
15	0,1610	0,0004641	0,1597
16	0,1643	0,0004593	0,1595

 Tabla 5.5
 Datos para la ecuación empírica del perímetro máximo

$$P\max = \frac{\left[Qm\right]^{0.0984805}}{10^{0.468414}} [m]$$
 [5.36]

El estadístico R-cuadrado indica que el modelo explica un 85.6725% de la variabilidad en Pmax con respecto al caudal.

Ensayo	Tiempos	Qm	Tiempos
#	medidos		calculados
	(seg)	[m3/s]	(seg)
1	1,237	0,0007818	1,210
2	1,297	0,0004604	1,325
3	1,313	0,0004620	1,324
4	1,317	0,0004633	1,324
5	1,237	0,0007818	1,210
6	1,640	0,0001382	1,630
7	1,650	0,0001394	1,627
8	1,297	0,0004634	1,323
9	1,633	0,0001406	1,625
10	1,233	0,0007822	1,209
11	1,317	0,0004627	1,324
12	1,647	0,0001386	1,629
13	1,233	0,0007775	1,211
14	1,293	0,0004634	1,323
15	1,300	0,0004641	1,323
16	1,303	0.0004593	1.326

**Tabla 5.6** Datos para la ecuación empírica para el tiempo de recorrido del flujo a través de la espiral

$$T = \frac{\left[Qm\right]^{0.172084}}{10^{0.45202}} [\text{seg}]$$
 [5.37]

El estadístico R-cuadrado indica que el modelo explica un 0,978272 de la variabilidad en T con respecto al caudal.

5.2.3 **Ejemplo de aplicación.** Debido a que el diseño de la espiral con la cual se trabajo en el laboratorio, es más eficiente cuando se usan unos datos iniciales, como los del ensayo número uno tabla 4.9, con mezcla de arena blanca, plomo y agua, se hace un ejemplo de aplicación para el diseño de una espiral concentradora, con los datos más convenientes para la corrida con mezcla de arena amarilla de cuarzo, plomo y agua número siete de la tabla 4.9, la cual es la de menor concentración de metal pesado por la parte interna de la espiral.

#### • Datos iniciales

A continuación se calculan los parámetros Rmax, Pmax y T, a partir del máximo caudal de mezcla registrado entre todos los ensayos.

Para Qm=0.0007822 se tiene:

$$R \max = \frac{\left[0.0007822\right]^{0.0203529}}{10^{0.828834}} [m] = 0.1282 [m]$$
 [5.38]

$$P \max = \frac{\left[0.0007822\right]^{0.0984805}}{10^{0.468414}} [m] = 0.1681 [m]$$
 [5.39]

$$T = \frac{\left[0.0007822\right]^{0.172084}}{10^{0.45202}} [\text{seg}] = 1.209 [\text{seg}]$$
[5.40]

Datos iniciales extraídos de las tablas 4.5 y 4.9.

#### Tabla 5.7 Datos iniciales para el ejemplo de diseño de la espiral

Parámetro	Descripción	Valor	Medida
$Q_M$	Caudal total de la mezcla	0.0007822	[m ³ /s]
Т	Temperatura	18.9	°C
<b>Q</b> SPb	Caudal del sedimento más plomo	0.1	[Kg/s]
<b>C</b> _{Pbe}	Concentración de plomo a la entrada	5.2394	%
A _E	Área superficial de la espiral medida por métodos geométricos	0.220157	[m ² ]
Ao	Área de los orificios para remoción de plomo	0.000133	[m ² ]
CDp	Coeficiente de arrastre	3.71	[-]
n	Coeficiente de fricción de Manning	0.001	[-]
u	altura del paso de la espiral	0.185	[m]

## • Cálculos para el ejemplo

## > Caudal del plomo

$$Q_{Pb} = (Q_{pb} + Q_s) * C_{pbe} = (0.1) * [Kg / s] * 0.052394 = 0.00523939 [Kg / s]$$
 [5.41]

Se divide entre la densidad del plomo y se obtiene:

$$Q_{Pb} = \frac{0.00523939 [\text{Kg/s}]}{11.302 [\text{Ton/m}^3] * 1000} = 4.64 \times 10^{-7} [\text{m}^3/\text{s}]$$
[5.42]

### > Caudal del sedimento

Determinando  $Q_{Pbs}=Q_{Pb}+Q_s$  se tiene:

$$Q_{\rm s} = 0.1 [{\rm Kg/s}] - 0.00523939 [{\rm Kg/s}] = 0.09476061 [{\rm Kg/s}]$$
 [5.43]

y dividiendo entre la densidad del sedimento, se tiene:

$$Q_{s} = \frac{0.09476061 [\text{Kg/s}]}{2.627 [\text{Ton/m}^{3}] * 1000} = 3.6078 \times 10^{-5} [\text{m}^{3}/\text{s}]$$
[5.44]

#### > Concentración de plomo mas sedimento

$$C_{Pb+s} = \frac{Q_{Pb} + Q_s}{Q_{Pbsw}} = \frac{3.6541 \times 10^{-5}}{0.0007822} \frac{\left[\text{m}^3/\text{s}\right]}{\left[\text{m}^3/\text{s}\right]} = 0.0467$$
[5.45]

Donde Q_{Pbsw} es el caudal de la mezcla total.

#### Viscosidad cinemática del agua

De la ecuación [2.17], se tiene:

$$\nu = \frac{1.792 * 10^{-6}}{1 + 0.0337 (18.9^{\circ} C) + 0.000221 (18.9^{\circ} C)^{2}} = 1.04 * 10^{-6} [m^{2} / s]$$
 [5.46]

#### Viscosidad de la mezcla

De la ecuación 2.16, se tiene:

$$v_{m} = \frac{2v}{2-3C} = \frac{2 \times 1.04 \times 10^{-6} \left[\text{m}^{2}/\text{s}\right]}{2-3 \times 0.0467} = 1.123 \times 10^{-6} \left[\text{m}^{2}/\text{s}\right]$$
[5.47]

donde  $C = C_{Pb+s}$ .

#### Radio medio

$$Rm = \frac{Rmax + Rmin}{2} = \frac{0.1282 + 0.0408}{2} = 0.0845 [m]$$
 [5.48]

donde Rmin es el radio desde el borde inferior de la sección transversal de la espiral, hasta la parte inferior del fluido, medido horizontalmente. Este valor es el promedio de todos los ensayos debido a que su valor trata de mantenerse fijo.

#### > Velocidad de la mezcla

$$V_{m} = \frac{L_{p}}{T} = \frac{(\text{Rm} + 0.02405) \times 4 \times \pi \times \sqrt{1 + S^{2}}}{T}$$

$$V_{m} = \frac{(0.0845 + 0.02405) \times 4 \times \pi \times \sqrt{1 + 0.2712}}{1.209} = 1.169 \text{[m/s]}$$
[5.49]

Donde *Lp* es la longitud del perímetro ubicado a un radio *Rm*. y *Rm* es la distancia desde el borde inferior de la espiral hasta el centro del área transversal del fluido, medido horizontalmente. Se debe sumar el radio del tubo que soporta la espira que tiene un valor de 0.02405 m. *S* es la pendiente longitudinal de la espiral calculada con la ecuación [5.53].

#### Perímetro mojado

$$Pm = Pmax[m] - Pmin[m] = 0.1681 - 0.0412 = 0.127[m]$$
 [5.50]

donde Pmax es la medida, en la regla transversal de la espiral, hasta donde llega el flujo en la parte superior y Pmin es la medida hasta la parte inferior. Pmin es el promedio en todos los ensayos debido a que su valor tiende a ser fijo.

#### Área de la sección transversal del fluido

$$A_{C} = \frac{\text{Qm}}{\text{Vm}} = \frac{7.822 \times 10^{-4} \left[\text{m}^{3}/\text{s}\right]}{1.169 \left[\text{m/s}\right]} = 6.69 \times 10^{-4} \left[\text{m}^{2}\right]$$
[5.51]

#### Radio hidráulico

$$R_{H} = \frac{A_{C}}{Pm} = \frac{6.69 \times 10^{-4}}{0.127} \frac{\left[\text{m}^{2}\right]}{\left[\text{m}\right]} = 0.0053 \left[\text{m}\right]$$
[5.52]

#### Pendiente de la espiral

$$S = \frac{u}{2\pi \times \text{Rm}} = \frac{0.185}{(0.0845 + 0.02045) * 2\pi} = 0.2712$$
 [5.53]

donde *u* es la altura del paso de la espiral y *Rm* es la distancia desde el borde inferior de la espiral hasta el centro del área transversal del fluido, medido horizontalmente.

#### Número de Deam

El número de Deam depende del caudal, el comportamiento del fluido en la espiral y la viscosidad de la mezcla, como se ve en la ecuación [4.24].

$$De_{m} = \frac{(4 \times 0.0053 \text{[m]}) \times (0.0007822 \text{[m^{3}/s]})}{(6.69 \times 10^{-4} \text{[m^{2}]}) \times (1.123 \times 10^{-6} \text{[m^{2}/s]})} \sqrt{\frac{(4 \times 0.0053 \text{[m]})}{2 \times (0.0845 + 0.02405) \text{[m]}}}$$

$$De_{m} = 6837.48$$

$$(5.54)$$

 $De_m = 005/.48$ 

#### Número de área

Según la ecuación [4.28], se tiene:

$$NA = \frac{Ao}{A_E} = \frac{0.000133}{0.220157} \frac{\left[\text{m}^2\right]}{\left[\text{m}^2\right]} = 0.00060201$$
 [5.55]

donde A_E es el área superficial de la espiral. Como el caudal con el cual se trabaja no sobrepasa los límites de la geometría de la espiral, entonces no se modifica. En caso contrario se debería hacer una relación entre el caudal y el área superficial, por métodos geométricos.

#### Concentración de plomo por la parte interna de la espiral

Despejando CPbsi de la ecuación [4.40], se tiene:

$$C_{Pbsi} = \frac{\left[De\right]^{0.198474} \times C_{Pbe}}{10^{3.33473} \times \left[NA\right]^{1.21198} \times \left[C_{Dp}\right]^{0.32381}}$$
[5.56]

reemplazando valores se tiene:

$$C_{Pbsi} = \frac{\left[6837.48\right]^{0.198474} \times \left[5.2394\right]}{10^{3.33473} \times \left[0.00060201\right]^{1.21198} \times \left[3.71\right]^{0.32381}} = 73.1757\%$$
[5.57]

aquí se comprueba que la concentración sube de un 9.9611% a 73.4339% para la mezcla con arena amarilla, plomo y agua.

#### > Número de Manning

De la ecuación [4.41] se despeja *Nm*, teniendo así:

$$[N_m] = \left[\frac{10^{1,48827} \times [NA]^{1,23102} \times [C_{Dp}]^{0,303607} \times C_{Pbsi}}{C_{Pbe}}\right]^{\frac{1}{0,398552}}$$
[5.58]

reemplazando valores se tiene:

$$\begin{bmatrix} N_m \end{bmatrix} = \begin{bmatrix} \frac{10^{1,48827} \times \begin{bmatrix} 6.02 \times 10^{-4} \end{bmatrix}^{1,23102} \times \begin{bmatrix} 3.71 \end{bmatrix}^{0,303607} \times \begin{bmatrix} 73.1757 \end{bmatrix}}{5.2394} \end{bmatrix}^{\frac{1}{0,398552}}$$

$$\begin{bmatrix} N_m \end{bmatrix} = 0.001241702$$
[5.59]

#### Altura Yx

Como se observa en la figura 5.2, la altura Yx es la distancia desde la parte más inferior de la sección transversal de la espiral, hasta la parte superior del flujo.

De la ecuación [4.25] se despeja Yx:

$$y_{X} = \left[\frac{(Q_{s} + Q_{L})n}{N_{m}S^{1/2}}\right]^{3/5}$$
[5.60]

reemplazando valores se tiene:

$$y_{X} = \left[\frac{(0.0007822) \times 0.01}{[0.001241702] \times [0.2712]^{1/2}}\right]^{3/5} = 0.07072[m]$$
[5.61]

Esta altura esta en los límites de la parte superior de la sección transversal de la espiral, siendo un valor coherente con el caudal máximo con el cual se trabajó en este ejercicio.

Es de tener en cuenta que las ecuaciones deducidas para esta metodología son válidas para la geometría de la canaleta en espiral estudiada en esta investigación y por lo tanto el cálculo de la altura máxima de la mezcla Yx, solo sirve para dicha sección. De todas formas es importante ya que esta metodología nos permite relacionar la altura de la mezcla Yx con la eficiencia de separación del metal pesado. Si se varía el radio o la geometría de la sección las ecuaciones no serán estrictamente validas, aunque se podría usar para cálculos aproximados.

# CAPÍTULO



## ANEXOS

## LISTA DE TABLAS

Tabla 6.1	Ecuaciones comunes dadas en la literatura para el cálculo de la viscosidad del agua	184
Tabla 6.2	Ecuaciones comunes dadas en la literatura para el cálculo del peso específico del agua.	184
Tabla 6.3	Ecuaciones comunes dadas en la literatura para el cálculo de la densidad del agua	184
Tabla 6.4	Ecuaciones propuestas para el cálculo del coeficiente de arrastre C _D . Tomada de Gómez (2002)	185
Tabla 6.5	Ecuaciones propuestas para el cálculo de la velocidad de asentamiento V _s . Tomada de Gómez (2002)	187
Tabla 6.6	Ecuaciones propuestas para cuantificar el exponente n	189
Tabla 6.7	Ecuaciones propuestas para cuantificar el efecto de la concentración de sobre la viscosidad del fluido	190
Tabla 6.8	Ecuaciones propuestas para cuantificar el efecto de la concentración de las partículas sólidas sobre la densidad del fluido	190
Tabla 6.9	Ecuación para la densidad compuesta por los tres componentes.	192
Tabla 6.10	Granulometría de arena blanca de río - plomo e1	209
Tabla 6.11	Granulometría de arena blanca de río – plomo e1	210
Tabla 6.12	Granulometría de arena blanca lavada - plomo e1	211
Tabla 6.13	Cálculo del CD ponderado cdp, para la granulometría del lado interno de la espiral concentradora	213
Tabla 6.14	Resumen del coeficiente de arrastre CDp para cada ensayo y cada granulometría	215

Tabla 6.15	Ejemplo de desarrollo para ensayo no. 1 (arena blanca le (v1-2))	. 221
Tabla 6.16	Ejemplo de desarrollo para ensayo no. 1 (arena blanca Li (v3))	. 222
Tabla 6.17	Resumen de Cpw	. 223

## LISTA DE FIGURAS

Figura 6.1	Tolva de abastecimiento solido (Tanque de succión), Tanque desarenador	195
Figura 6.2	Bomba para impulsión de lodos triangulare Tubería del banco de pruebas, vertederos (Zona de recolección de lodos)	196
Figura 6.3	Tanque de cabeza constante	196
Figura 6.4	Banco de pruebas vista de perfil	197
Figura 6.5	Banco de pruebas vista de frente	197
Figura 6.6	Diseño de tubo curvo antes del montaje en el banco de pruebas	198
Figura 6.7	Montaje y vistas de frente y perfil de tubo curvo	198
Figura 6.8	Diseño de un hidrociclón estudiado en laboratorio	199
Figura 6.9	Montaje de hidrociclón para realización de laboratorios	199
Figura 6.10	Diseño espiral concentradora	200
Figura 6.11	Diseño de salida o evacuación de material de la espiral concentradora	200
Figura 6.12	Diseño para la toma de mediciones en la espiral concentradora	201
Figura 6.13	Montaje de la espiral concentradora en Laboratorio de banco de pruebas	201
Figura 6.14	Guantes de látex, Gafas, botas, Tapabocas, overol, delantal, Orejeras, guantes para horno	202
Figura 6.15	Tipos de muestras	204
Figura 6.16	Muestra a utilizar	205
Figura 6.17	Pesaje de la muestra inicial	205
Figura 6.18	Maquina de tamizaje	206
Figura 6.19	Tamizaje de la muestra	206
Figura 6.20	Separación de muestras	207
Figura 6.21	Pesaje de cada muestra tamizada	207
Figura 6.22	Diferenciación de muestras	208

Figura 6.23 Diagrama de curvas de granulometría	. 211
Figura 6.24 Características físicas que intervienen en el peso del plomo	. 218
Figura 6.25 Balanza de medición	. 220
Figura 6.26 Palanca de sensibilidad para medición de peso especifico	. 221
Figura 6.27 Tamaños de Beacker	. 221

## CONCLUSIONES

En los dispositivos de separación de flujo centrifugo se pudo observar el tipo de separación que se da para la clasificación en una mezcla aluvial de arenas y metal, y observándose que en cada dispositivo se notaba la variación de plomo sobre la muestra final.

Se logró obtener correlaciones matemáticas para predecir el grado de enriquecimiento de plomo, a través de los diferentes dispositivos.

Las ecuaciones obtenidas por regresión múltiple relacionan las propiedades geométricas de los dispositivos, las propiedades de los sedimentos, las del metal pesado y las del flujo de la mezcla.

El dispositivo que logra concentrar la mayor cantidad de metal pesado por flujo centrífugo es la espiral concentradora, obteniéndose concentraciones mayores al 50% de la concentración total, con respecto a los otros dispositivos.

El método de separación propuesto en este trabajo experimental tiene su aplicación en el área de tratamiento de aguas residuales y en la industria de la minería, principalmente. Teniendo en cuenta que los metales pesados presentes, se encuentran comúnmente entre matrices pétreas o materiales más livianos, siendo este método propicio para lograr una mayor concentración del metal, lo cual facilita los posteriores tratamientos de separación.

Como conclusión primordial se puede esperar el interés de diferentes sectores de investigación, para la profundización de trabajos de minería sostenible, reduciendo el nivel de amenaza ambiental y problemas de salud en seres humanos.

Estos dispositivos debido a su sencillez de operación se pueden incluir dentro de un montaje de separación con facilidad, ya que actúan como un accesorio adicional y que a la vez cumplirán con la función de realizar una separación preliminar para las posteriores etapas de tratamiento.

Para que el hidrociclón sea de utilidad, el diámetro de tamaño de las partículas del material aluvial debe de ser inferior al diámetro de corte, teniendo en cuenta que el material aluvial que se encuentra en las corrientes naturales, por lo general es mayor al diámetro de corte que puede proporcionar un hidrociclón, la única manera de lograr que el hidrociclón sea eficiente, es que el material aluvial sea triturado, para reducir el tamaño de partículas.

Es posible llegar a una optimización más refinada de los separadores de flujo centrifugo si se incluye en el fenómeno, el efecto del factor de sección (base/altura), el cual tiene gran influencia en la separación, según lo estipula Ookawara S. et al. (1997).Se puede incluir el efecto del ángulo de curvatura, esto permitirá captar el metal pesado a lo largo del tubo curvo y la espiral concentradora y así determinar la longitud óptima para la máxima eficiencia de separación y concentración.

Se encuentra que el flujo secundario generado por la curvatura del flujo principal, puede ser utilizado en la separación de metales pesados contenidos en una matriz de material aluvial más liviano.

Para obtener un conocimiento general sobre este tipo de fenómenos, en lo que se refiere al efecto de flujo secundario, concentración y condiciones de entrada en las eficiencias de remoción se identifico y estudio los diferentes procesos existentes hasta ahora. Para un sistema convencional se logro involucrar variables adicionales tales como, concentración, eficiencia, número Froude, coeficiente de arrastre afectado por la mezcla y tipo de entrada junto con las variables clásicas de diseño como el ancho del desarenador, caudal y tamaño de partícula; con las cuales se logró formular expresiones matemáticas para uso práctico en la ingeniería.

Se pudo identificar el efecto producido por las concentraciones en mezclas sedimentables en este sistemas de separación centrifuga, esto gracias a la realización de ensayos experimentales en el laboratorio. Además se incluye en esta investigación expresiones donde se puede ver la variación de la eficiencia a medida que varía la concentración.

Con los resultados obtenidos se puede esperar que un número de empresas mineras adopten implementar sistemas de minería limpia en la separación de metales pesados, conllevando así a una gran disminución al impacto ambiental negativo generado por el uso de mercurio y cianuro en las empresas mineras. Seguimiento que se puede llevar a cabo en coordinación con los *centros ambientales mineros (CAM)*.

En este trabajo de grado se pretendió sacar la mayoría de análisis propuestos, para que se favorezca en la calidad de vida de los pequeños mineros por implantación de sistemas de extracción con un mayor rendimiento que los tratamientos tradicionales en esta actividad laboral.

## RECOMENDACIONES

Estas primeras recomendaciones van enfocadas al diseño del banco de pruebas:

Utilizar equipos de protección personal como casco, gafas protectoras, tapones auditivos, delantal y en lo posible usar calzado dieléctrico durante el manejo del equipo de laboratorio para el transporte de mezclas; además Se debe usar las herramientas adecuadas para la manipulación del equipo debido a que los materiales de los cuales están hechos los dispositivos de flujo centrifugo son delicados.

Tener unos buenos hábitos de aseo ya que al manipular diferentes materiales se corre el riesgo de que la persona pueda sufrir alguna complicación, como el caso del "plomo" que es muy perjudicial para la salud si se mantiene un contacto frecuente con este metal.

Tratar de cambiar el sistema de evacuación de mezcla por uno más eficiente, uno que evacue por sistema de tubería la mayor cantidad de material, para su recolección.

Modificar el sistema de evacuación para una mejor eficiencia y así reducir alguna perdida de material que se pueda presentar.

Ubicar la tolva para la distribución del caudal solida hacia la parte de encima de la tolva del caudal líquido para un mejor acceso y distribución del material a utilizar.

Ampliar la tolva de caudal líquido para un mejor acceso del caudal solido, para que así se dé una mejor distribución entre estos dos caudales y del material a utilizar.

Ampliar el tanque de caudal líquido, haciendo que mejore la recirculación en el tanque de pruebas.

## BIBLIOGRAFÍA

A.B. HOLLAND-BATT. Spiral Separation: theory and simulation. Trans. Instn. Min. Metall. (Sect. C: Mineral Process. Extr. Metall.), 98, January-Abril 1989. [en linea] <u>http://mineraltechnologies.com.au/069.pdf</u> [consultada 30 de enero de 2010]. Pag 126.

A.B. HOLLAND-BATT and P.N. HOLTHAM. 1991. Particle and fluid motion on spiral separators. Minerals engineering. Vol 4. N° ³/₄. Pp. 457-482. 1991. [en linea] <u>http://mineraltechnologies.com.au/042.pdf</u> [consultada 1 de febrero de 2010]. Pag 126.

ACHEN, Christopher H. (1982). Interpreting and using regression. Series: Quantitative Applications in the Social Sciences, No. 29. Thousand Oaks, CA: Sage Publications. Introduction notable for its admonitions against over-reliance on  $R^2$  and beta weights rather than unstandardized b coefficients and level importance in interpreting independent variables.

BOUSO, Juan Luis. Eral, Equipos y Procesos S. A. Canteras y Explotaciones, Mayo 1999. [Consultada 30 de enero de 2010]. Pág. 86.

BOUSO, Juan Luis, 1999, Las espirales de concentración y su vuelta a la actualidad. XXIV Convención de Ingenieros de minas del Perú. Eral, Equipos y procesos S. A. Septiembre 1999. Pág. 124.

BOUSO, Juan Luis. Hitos históricos en el desarrollo de la clasificación. IX simposium sobre procesamiento de minerales Moly- Cop 2001. Puyehue, Chile <u>www.minas.upm.es/catedra-anefa/Bouso-M3/Hidrociclones_Fondo___Plano.pdf</u>. Pág. 69.

BOUSO, Juan Luis. "Hidrociclones De Fondo Plano", Director General de Eral, Equipos y Procesos, S.A. [En línea]. <u>www.minas.upm.es/catedra-anefa/Bouso-</u><u>M3/ApliyFun_Prac_Hidrociclones.pdf.</u> Pág. 5.

BOUSO, Juan Luis. Eral, Equipos y Procesos S. A. "Canteras y Explotaciones", Mayo 1999 <u>www.minas.upm.es/catedra-anefa/Bouso-</u> <u>M3/Hidrociclones_Fondo_Plano.pdf. Pag. 75</u>.

CAIRNS, et Al. (1959). Separating Small particles from liquids with the hydrociclone. Australian Atomic Energy Commission. Sydney. Junio. 1959. http]]apo.ansto.gov.au]dspace]bitstream]10238]666]2]AAEC-E-45. Pág. 78.

CARRISO Regina & CORREIRA Julio. Classificação e Peneiramento. Capítulo 5.

Centro de Tecnología Mineral Ministerio da Ciência e Tecnología. Rio de Janeiro Dezembro/2004. Pág. 214.

CARRISO Regina & CORREIRA Julio, Op.cit., Pág. 91.

CHENG. N. S. "Simplified Settling Velocity Formula For Sediment Particle". Journal of Hydraulic Engineering. Vol 123. No 2. 1997a. Pag 17.

------. "Effect of Concentration on Settling Velocity of Sediment Particles". Journal of Hydraulic Engineering. Vol 123. No 8. 1997b. Pag 20.

DUCKWORTH, R.A."The hydraulic transport of materials by pipeline". South African Mechanical Engineer (Johannesburg). 1978. vol. 28, no. 8, pages 291.306. [16 pp.], Graf, H. W. "Hydraulics of Sediment Transport". McGraw.Hill. New York. 1971. 513 pages [ISBN 07-023900-2]. Pag 20.

EQUIPOS DE SEPARACIÓN SÓLIDO – Fluido. Universidad de Chile. Facultad de Ciencias Físicas y Matemáticas. Departamento de Ingeniería Química. 2002. http://metalurgistas.com/catalogos/Ciclones-Filtros-Espesadores.pdf. Pág. 68.

EQUIPOS DE SEPARACIÓN SÓLIDO, Op.cit., Pág. 79.

ETAYO J. & BARRAZA J. (2009). Correlaciones matemáticas para la obtención de rendimiento de producción, remoción de cenizas y partición de agua usando un hidrociclón "solo agua". Dyna, Año 76, Nro. 157, pp. 181-193. Medellín, Marzo de 2009. ISSN 0012-7353. Pág. 78.

GAO et. Al. (2002). "Liquid–solid separation phenomena of two-phase turbulent flow in curved pipes". International Journal Heat and Mass Transfer. 45 (2002) 4995–5005. Received 4 January 2002; received in revised form 20 May 2002. Pag 11.

GAUTHIER, G. Et. Al. 2001. "Centrifugal instabilities in a curved rectangular duct of small aspect ratio". Physics of Fluids. Volume 13, Number 10. October. 2001. Pag 42.

GÓMEZ, Z. Hernán. J. "Hidrotransporte de sedimentos en tubos horizontales a presión: Estudio de la velocidad crítica de depositación". Trabajo de investigación para optar el título de Magíster en Recursos Hidráulicos. Universidad Nacional de Colombia. Bogotá. Oct. 2002.

-----. "Velocidad Crítica de Depositación en el Transporte de Sedimentos en Tubos Horizontales a Presión", XX Congreso Latinoamericano de Hidráulica, La Habana: Octubre de 2002.
-----. "Velocidad Crítica de Depositación en el Transporte de Sedimentos en Canales Abiertos", XX Congreso Latinoamericano de Hidráulica, La Habana: Octubre de 2002. Pág. 9.

-----. "Efecto de la Concentración de Partículas de Sedimentos Naturales en la Velocidad Mínima de Transporte en Canales Abiertos". XXI Congreso Latinoamericano de Hidráulica". São Pedro, Estado de São Paulo, Brasil, octubre 18 al 22 de 2004.

GRAF, H. W. "Hydraulics of Sediment Transport". McGraw. Hill. New York. 1971. [ISBN 07-023900-2], 1972. Pág. 513.

**G**UTIÉRREZ, P. H. Román de la Vara (2004) "Análisis y Diseño de Experimentos". Edit. McGraw-Hill. México D.F. 2004.

http://www.unlu.edu.ar/~qui10017/Quimica%20COU%20muestra%20para%20IQ1 0017/Cap%A1tulo%20VIa.htm. Pág. 25.

KREBS, Nuevos Tipos De Hidrociclones. Adaptación: JUAN LUIS BOUSO, Director General de ERAL, Equipos y Procesos, S.A. [En línea].www.minas.upm.es/catedra-anefa/Bouso-M3/ApliyFun_Prac_Hidrociclones.pdf.Pag 73 – 74.

MINE-ENGINEER.COM [en línea]. <u>http://www.mine-</u> engineer.com/mining/minproc/spiral.htm . Pág. 136.

NUEVOS TIPOS DE HIDROCICLONES. Adaptación: JUAN LUIS BOUSO, Director General de ERAL, Equipos y Procesos, S.A. [En línea]. www.minas.upm.es/catedra-anefa/Bouso- M3/ApliyFun_Prac_Hidrociclones.pdf. Pag 71.

OOKAWARA S. et al. (1997) "The Influence of Channel Depth on the Performance of a Micro-Separator/Classifier". The Chemical Engineering Journal and the Biochemical Engineering Journal. Volume 65, Issue 1, 15 January 1997. Pag 21-26.

OOKAWARA, S. et Al. 2004. "Feasibility study on concentration of slurry and classification of contained particles by microchannel". Chemichal Engineering Journal 101. 2004. Pag 42.

PAVEZ, Oswaldo (1987) "Concentración Gravimétrica". Universidad de Atacama. <u>http://www.ex-alumnos.uda.cl/metalurgia/402/concentracion.minerales.2/01.-</u>.Concentracion.Gravimetrica.pdf. Pág. 124.

PAVEZ, Oswaldo (1987) "Concentración Gravimétrica". Universidad de Atacama. Pág. 129.

RICHARDSON J F & ZAKI W N. Sedimentation and fluidisation. Part 1. *Trans. Inst. Chem. Eng.* **32**:35-53, 1954.

STREETER et. Al., Víctor, Wylie, Benjamin, Bedford, Keith. (1999). Mecánica de los Fluidos. 9^a edición. McGraw-Hill. Bogotá. Pág. 740.

TRAWINSKI, Helmut. Aplicaciones y funcionamiento práctico de los hidrociclones. Adaptación: Juan Luis Bouso Aragonés, Director General de ERAL, Equipos y Procesos, S.A. [En línea]. <u>www.minas.upm.es/catedra-anefa/Bouso-</u><u>M3/ApliyFun_Prac_Hidrociclones.pdf. Pág. 71</u>.

TRAWINSKI, Helmut. Adaptación: Juan Luis Bouso Aragonés, "Aplicaciones Y Funcionamiento Práctico De Los Hidrociclones", Director General de ERAL, Equipos y Procesos, S.A. <u>http://www.minas.upm.es/catedra-anefa/Bouso-M3/ApliyFun_Prac_Hidrociclones.pdf. Pág. 78</u>.

YAMAMOTO, Et. Al., 2000. Flow through a rotating helical pipe with circular cross-section. International Journal of Heat and Fluid Flow 21 (2000). Pag 34.

YAMAMOTO, Op.cit. Pag 213 - 220.

YANG CHIH, Ted "Sediment Transport: Theory and Practice". McGraw-Hill. Series in Water Resources and Environmental Engineering. New York. 1996. Pag 1.18.

WEBER, Juan F. (2003). "Hidráulica del transporte de sedimentos". Universidad Nacional de Cordoba. Pag 20.

W. MATTHEWS, 1 C. A. J. Fletcher, 2 A. C. Partridge, 3 and S. Vasquez, 1999. "Computations of curved free surface water flow on spiral concentrators". Journal of Hydraulic Engineering, Vol. 125, No. 11, November, 1999.ASCE, ISSN 0733-9429/99/0011-1126–1139/\$8.00 1 \$.50 per page. Paper No. 19138. Pag 135 – 136

ANEXOS

#### ANEXO A. Ecuaciones para calcular las propiedades del agua

**Tabla 6.1** Ecuaciones comunes dadas en la literatura para el cálculo de la viscosidad del agua.

Ecuación	Autor	Referencia	Comentarios	N٥
				Ec.
$v_w = \frac{1.792 * 10^{-6}}{1 + 0.0337T + 0.000221T^2}$	Yang	Yang (1996)	Donde $T$ es la temperatura del agua en grados centígrados y ( $\nu$ ) es la viscosidad cinemática, dada en (m ² /s)	[6.1]
$v_{w} = v_{10} \frac{33.3}{T + 23.3}$	;? ;	Corcho (1993) Pg. 178	Donde $v_{10}$ es la viscosidad Cinemática en [m ² /s] a una temperatura de 10°C. <b>T</b> en grados centígrados, $v_w en$ [m ² /s].	[6.2]

(¿?): Desconocido

**Tabla 6.2** Ecuaciones comunes dadas en la literatura para el cálculo del peso específico del agua.

Ecuación	Autor	Referencia	Comentarios	N٥
				Ec.
$\gamma_w = 9800 - \frac{(T-4)^2}{180}$	Potter	Potter (2003)	Donde $\gamma_w$ está dado en[kg _m /m ³ ], donde <b>T</b> en grados centígrados	[6.3]
$\gamma_{w} = 10^{-5}T^{3} - 0.0055T^{2} + 0.0002T + 1000.08$	Gómez	Gómez (2002)	Donde $\gamma_w$ está dado en[kp/m ³ ], válido para 4 $\leq$ T $\leq$ 100, donde <b>T</b> en grados centígrados	[6.4]

**Tabla 6.3** Ecuaciones comunes dadas en la literatura para el cálculo de la densidad del agua.

Ecuación	Auto	Refere	Coment	N٥
	r	ncia	arios	Ec
				•
$(T-4)^2$	Potte	Potter	Donde	[6.
$\rho_{\rm m} = 1000 - \frac{(1 - 1)}{1}$	r	(2003)	$(\rho_w)$	5]
180			dada en	
			[kg _m /m ³ ].	
			<b>T</b> en	
			grados	
			centígra	
			dos	
$\rho_{\rm m} = 999.939900 + 4.216485 (10^{-2})T$	Stree	Streete	Donde	[6.
	ter	r	$(\rho_w)$	6]
$(-7.097451 (10^{-3})T^{2} + 3.509571 (10^{-5})T^{3\circ} - 9.9037785 (10^{-6})T^{4})$		(1999)	dada en	
		Pg. 13	[kg _m /m ³ ].	
			<b>T</b> en	
			grados	
			centígra	
			dos	

ECUACIÓN	AUTOR	REFERENCIA	COMENTARIOS	№ Ec.
$C_D = \frac{24}{R_s}$	Stokes	(Cheng (1997a)	Para usar este valor el número de Reynolds de partícula debe ser menor a 0.5.	[6.7]
$C_{D} = \left[ \left( \frac{32}{R_{s}} \right)^{2/3} + 1 \right]^{3/2}$	Cheng	Cheng (1997a)	<b>R</b> s con Ec. [1.19]	[6.8]
$R_{s} = \left(\sqrt{\left(25 + 1.2d_{*}^{2}\right)} - 5\right)^{1.5}$	Cheng	Cheng (1997a)	<b>d</b> ∗ es el número adimensional de partícula, Con ec. [1.20],	[6.9]
$d_* = \left(\frac{\left(\frac{\rho_s - \rho}{\rho}\right)g}{v_f^2}\right)^{1/3} d$	Cheng	Cheng (1997a)	<b>v</b> _f es la viscosidad del fluido	[6.10]
$C_D = \frac{24}{R_s} \left[ 1 + \frac{3}{16} R_s \right]$	Ossen	Graf (1971)	Válida para flujo laminar, Rs≤1.	[6.11]
$C_D = \frac{24}{R_s} \left[ 1 + \frac{3}{16} R_s + \frac{19}{1.28} R_s^2 + \frac{71}{20.48} R_s^3 \dots \right]$	Goldstein	Graf (1971)	Es una expresión más elaborada a la aproximación de Ossen. válida para Rs≤2.	[6.12]
$C_D = \frac{24}{R_s} (1 + 0.15R^{0.687})$	Schiller	Graf (1971)	Válida para flujo laminar, Rs≤1.	[6.13]
$C_D = \frac{24.4}{R_s} + 0.4$	Dallavalle	Graf (1971)	Válida para flujo laminar, Rs≤1.	[6.14]
$C_D = \frac{24}{R_s} (1 + 0.197 R_s^{0.63} + 0.0026 R_s^{1.38})$	Langmuir	Graf (1971)	Buenos resultados para valores de R _s mayores a 10.	[6.15]
$C_D = \frac{24}{R_s} \left( 1 + \frac{3}{16} R \right)^{1/2}$	Olson	Graf (1971)	Representativa para valores de 10< <b>R</b> s<100.	[6.16]
$C_D = \frac{24}{R_s} + 2$	Rubey	Graf (1971)	ec. Empírica. Buena para valores de 10< <b>R</b> s<100.	[6.17]

**Tabla 6.4** Ecuaciones propuestas para el cálculo del coeficiente de arrastre  $C_D$ . Tomada de Gómez (2002)

**ANEXO B.** Ecuaciones para el cálculo del coeficiente de arrastre

ECUACIÓN	AUTOR	REFERENCIA	COMENTARIOS	№ Ec.
$C_D = \frac{24}{R_s} + \frac{3}{\sqrt{R_s}} + 0.34$	;?	Corcho (1993)	Válida para flujo de transición, 1≤R _s ≤ 1000 y partículas esféricas. Regular para predicción.	[6.18]
$\Lambda = C_{D}R_{s} = \left(\frac{4}{3}\frac{(\Delta)d^{3}}{v^{2}}\right)^{1/2}$	;?	Turian (1977)	Comparación con datos experimentales, da buenos resultados en el rango de 1< <b>Rs</b> <100. (Λ) es el número de Karman, calculado según ec. [1.30]	[6.19]
$\begin{aligned} \mathbf{R}_{\mathbf{S}} &= -1.38 + 1.94 \ Log(\Lambda) \ - \ 0.086 \ Log(\Lambda)^2 \\ 0.0252 \ Log(\Lambda)^3 + \\ 0.000919 \ Log(\Lambda)^4 + 0.000535 \ Log(\Lambda)^5 \end{aligned}$	;?	Turian (977)		[6.20]

Ecuaciones propuestas para el cálculo del coeficiente de arrastre C_D. Tomada de Gómez (2002). Continuación...

¿?: Autor Desconocido.

# ANEXO C. Ecuaciones para el cálculo de la velocidad de asentamiento

	AUTOR	REFERENCI	COMENTARIOS	Nº
LOCADION	ACTOR	A		Ec.
$V_{s} = \frac{R_{s} v_{f}}{d}$	Cheng	Cheng (1997a)	R _s con ec. [1.28]	[6.21]
$V_s = \frac{1}{24} \frac{(\Delta) g d^{-2}}{\nu}$	Sha Concharov	Cheng (1997a)	Para <b>d</b> <0.01cm y <b>d</b> <0.015cm, respectivamente.	[6.22]
$V_s = 1.14 \sqrt{(\Delta) gd}$	Sha	Cheng (1997a)	Para <b>d</b> >0.20cm	[6.23]
$\left[\left(Log\left(\frac{R_s}{d_*}\right) + 3.790\right)^2 + (Log(d_*) - 5.777)^2 = 39\right]$	Sha	Cheng (1997a)	Para 0.01cm< <b>d</b> <0.20cm. <b>R</b> _s <b>y d</b> ∗ usados en ec. [1.11a,b]	[6.24]
$V_s = 1.068  \sqrt{(\Delta) gd}$	Concharov	Cheng (1997a)	Para <b>d</b> >0.15cm	[6.25]
$V_s = 67.6(\Delta)d + 0.52(s-1)\left(\frac{T}{26} - 1\right)$	Concharov	Cheng (1997a)	Para 0.015cm< <b>d</b> <0.15cm. <b>T</b> es la temperatura del fluido en [ºC], <b>d</b> en [cms] y <b>V</b> _s en [cms/s]	[6.26]
$V_{s} = \sqrt{\left(1395\frac{V_{f}}{d}\right)^{2} + 1.09(\Delta)gd} - 1395\frac{V_{f}}{d}$	Zhang	Cheng (1997a)	Para todo los regímenes de flujo.	[6.27]
$V_s = 1.1 \sqrt{(\Delta) gd}$	Van Rijn & Zanke	Cheng (1997a)	Para <b>d</b> >0.10cm.	[6.28]
$V_{s} = 10 \frac{v_{f}}{d} \left( \sqrt{\left(1 + 0.01d_{*}^{3}\right)} - 1 \right)$	Zanke	Cheng (1997a)	Para 0.01cm< <b>d</b> <0.10cm y <b>d</b> ₊ usado en ec. [1.21]	[6.29]
$R_{\rm S} = \frac{-24C\alpha s^3\omega + \sqrt{576C\alpha s^6\omega + (18C\alpha s^3\omega + 3.68\alpha n^2)}}{9C\alpha s^3\omega + 1.88\alpha n^2\omega}$	Zhu & Cheng	Cheng (1997a)	Para todos los flujos desde el laminar al turbulento, $0 \le \le = 0$ para $\mathbf{d} \le = 0$ $\omega = \pi/[2+2.5(Log(d^*))^3]$ si $\mathbf{d} \ge 2$ . $\mathbf{d} \le usado en ec.$ [1.11b]. Buena para todo $R_s$	[6.30]

Tabla 6.5	Ecuaciones	propuestas	para el c	álculo de la	velocidad de asentan	niento	
V _s . Tomad	la de Gómez	(2002).	-				

Ecuaciones propuestas para el cálculo de la velocidad de asentamiento  $V_s$ . Tomada de Gómez (2002). Continuación...

$V_{s} = \frac{\sqrt{\frac{2}{3}g(\Delta)d^{3} + 36*v_{f}^{2}} - 6v_{f}}{d}$	Rubey	Yang (1996)	Deducida para partículas de cuarzo, para todos los regimen de flujo.	[6.31]
$V_{s} = 1.49\sqrt{[g(\Delta) d]}$	Rubey	Yang (1996)	Es la simplificación de ec. [1.19] para tamaños mayores de 1mm y temperaturas del agua entre 10ºC y 25ºC.	[6.32]
$V_{s} = 0.79\sqrt{[dg(\Delta)]}$	??	Corcho (1993)	Válida para la zona de flujo turbulento.	[6.33]

¿?: Autor Desconocido.

El valor del parámetro adimensional de densidad, está dado como

$$\Delta = \left(\frac{\rho_s - \rho}{\rho}\right)$$
 [6.34]

### ANEXO D. Ecuaciones para cuantificar el exponente n

ECUACIÓN	AUTOR	REFERENCIA	COMENTARIOS	№ Ec.
$n = \frac{Ln \left[ \frac{(2 - 2C)}{(2 - 3C)} \right] + Ln \left[ \frac{R_m}{R_s} \right]}{Ln \left[ 1 - C \right]}$	Cheng	Cheng (1997b)	Donde $R_s$ se calcula con ec. [1.11a], $R_m$ es el número de Reynolds de las partículas afectadas por la mezcla, con Ec [1.38]	[6.35]
$R_{m} = \left(\sqrt{\left(25 + 1.2(d_{*})^{2}\right)} - 5\right)^{1.5}$	Cheng	Cheng (1997b)	Donde <b>d'</b> * Es el parámetro adimensional de la partícula afectado por la mezcla, con ec. [1.39]	[6.36]
$d'_{*} = \left(\frac{\Delta'g}{\nu_{m}^{2}}\right)^{\left(\frac{1}{3}\right)} d$	Cheng	Cheng (1997b)	$\Delta$ es el coeficiente de densidad de partículas dentro de una mezcla dado ec. [1.40] y $v_m$ es la viscosidad de la mezcla.	[6.37]
$\Delta' = \left[ \frac{(1 - C)(G_s - 1)}{1 + C(G_s - 1)} \right]$	Cheng	Cheng (1997b)	(G _s ) Es la gravedad específica de los sólidos.	[6.38]
$C'_{D} = \left[ \left( \frac{32}{R_{m}} \right)^{2/3} + 1 \right]^{3/2}$	Cheng	Cheng (1997b)	<b>R</b> _m es el número de Reynolds de las partículas afectadas por la mezcla, con Ec [1.38]	[6.39]
$R_{s} = \left(\sqrt{\left(25 + 1.2(d_{*})^{2}\right)} - 5\right)^{1.5}$	Cheng	Cheng (1997a)	Donde <b>d</b> . Es el parámetro adimensional de la partícula individual	[6.40]
$d_* = \left(\frac{\Delta g}{v_w^2}\right)^{\left(\frac{1}{3}\right)} d$	Cheng	Cheng (1997a)	$\Delta$ es el coeficiente de densidad de partícula individual dado como $\Delta$ =( $\rho_s$ - $\rho_w$ )/ $\rho_w$ , donde $\rho_w$ es el peso específico del agua a temperatura de ensayo.	[6.41]

**Tabla 6.6** Ecuaciones propuestas para cuantificar el exponente n.

Fuente. Cheng (1997b)

Las ecuaciones [1.68] y [1.69] han sido comprobadas por Cheng (1997b) con datos experimentales, donde el parámetro usado para describir la exactitud de cálculo es el error relativo promedio. Para diámetros de sedimentos menores que 3.29 mm el error es menor al 5%, pero se incrementa hasta una valor de 15.35% en promedio para diámetros de sedimentos mayores a 3.29mm.

ANEXO E. Ecuaciones para el cálculo de la viscosidad y densidad de mezclas

ECUACIÓN	AUTOR	REFERENCIA	COMENTARIOS	N٥
				Ec.
$\nu_m = \frac{2\nu_f}{2 - 3C}$	Sha	Cheng (1997b)	Donde $v_m$ es la viscosidad cinemática de la mezcla. $v_f$ es la viscosidad cinemática del fluido en el cual se deposita la partícula, que generalmente es agua. Esta Ecuación es deducida suponiendo un paquete de esferas idénticas.	[6.42]
$v_m = \frac{v_f e^{(-0.726 C)}}{(1 - 1.61 C)^2}$	Vocadlo	Duckworth (1978)		[6.43]
$\frac{\nu_m}{\nu_f} = 1 + k_e C$	Einstein	Graf (1971)	Donde $\mathbf{k}_{e}$ es la constante de viscosidad de Einstein, cuyo valor ha sido deducido teóricamente, tomando un valor de 2.5, lo que concuerda con datos experimentales dados por otros autores.	[6.44]

**Tabla 6.7** Ecuaciones propuestas para cuantificar el efecto de la concentración de sobre la viscosidad del fluido.

**Tabla 6.8** Ecuaciones propuestas para cuantificar el efecto de la concentración de las partículas sólidas sobre la densidad del fluido

ECUACION	AUTOR	REFERENCIA	COMENTARIOS	N٥
				Ec.
$\rho_m = \rho \left( C \left( \Delta \right) + 1 \right)$	;? ;	Ducwortk (1978)	La densidad del agua $ ho$ es a la temperatura de ensayo.	[6.45]
$\rho_m = \frac{\rho_s}{1 + \Delta'}$	Cheng	Cheng (1997b)	$\Delta$ es el coeficiente de densidad de partículas dentro de una mezcla de aguasólido, calculado con ec. [1.66]	[6.46]
$\rho_m = C \rho_s + (1 - C) \rho$	;?	Cheng (1997b) Ducwortk (1978) Streeter(1999)	Donde $\rho_m$ es la densidad de la mezcla fluido-sólido, $\rho$ es la densidad del fluido sin sedimentos y $\rho_s$ es la densidad de las partículas de sedimentos.	[6.47]
$\rho_m = \frac{\rho}{1 - C\left(\frac{\rho_s - \rho}{\rho_s}\right)}$	Abulnaga	Abulnaga (2002)	Donde $\rho_m$ es la densidad de la mezcla fluido-sólido, $\rho$ es la densidad del fluido sin sedimentos y $\rho_s$ es la densidad de las partículas de sedimentos.	[6.48]
¿?: Autor Desconocido. Las subestima la densidad de la me	ecuaciones zcla <i>o</i> m.	s [1.71], [1.72]	y [1.73] dan resultados idénticos pero ec.	[1.77]

ANEXO F. Deducción de ecuaciones para el cálculo de una mezcla

# 1. Deducción de la ecuación para el cálculo de la densidad de una mezcla compuesta por arena y agua

Combinando las siguientes ecuaciones:

$$V_T \gamma_m = V_s \gamma_s + V_w \gamma_w$$
[6.49]

$$V_T = V_s + V_w$$
 [6.50]

$$\gamma_m = \frac{V_s \gamma_s}{V_T} + \frac{V_w \gamma_w}{V_T}$$
[6.51]

Si se toma que la concentración volumétrica de partículas es dada como  $C = V_s / V_T$ , se tiene:

$$\gamma_m = \gamma_s C + \frac{V_w \gamma_w}{V_r}$$
 [6.52]

Remplazando el volumen de agua  $V_w$ , de ec. [1.79].

$$\gamma_{m} = \gamma_{s}C + (V_{T} - V_{s})\frac{\gamma_{w}}{V_{T}}$$
[6.53]

$$\gamma_{m} = \gamma_{s}C + (1 - C)\gamma_{w}$$
 [6.54]

Si se considera la gravedad como constante, se obtiene la ecuación para la densidad compuesta por arena y agua, correspondiente a ec. [1.75].

# 2. Deducción de la ecuación para el cálculo de la densidad de una mezcla compuesta por metal pesado, arena y agua

Combinando las siguientes ecuaciones:

$$V_T \gamma_{mM} = V_M \gamma_M + V_s \gamma_s + V_w \gamma_w$$
[6.55]

$$V_{T} = V_{M} + V_{s} + V_{w}$$
 [6.56]

$$\gamma_{mM} = \frac{V_{M} \gamma_{M} + V_{s} \gamma_{s} + V_{w} \gamma_{w}}{V_{T}}$$
[6.57]

$$\gamma_{mM} = \frac{V_M \gamma_M}{V_T} + \frac{V_s \gamma_s}{V_T} + \frac{V_w \gamma_w}{V_T}$$
[6.58]

$$\gamma_{mM} = C_{M} \gamma_{M} + C_{s} \gamma_{s} + \frac{V_{w} \gamma_{w}}{V_{T}}$$
[6.59]

Como  $V_w$ , es dado como:

$$V_{w} = V_{T} - V_{M} - V_{s}$$
 [6.60]

Al reemplazar en ec. [1.89] en ec. [1.88], se tiene:

$$\gamma_{mM} = C_{M} \gamma_{M} + C_{s} \gamma_{s} + \frac{V_{w} \gamma_{w}}{V_{T} - V_{M} - V}$$
[6.61]

Al simplificar, se obtiene la siguiente ecuación para la densidad compuesta por los tres componentes, como se indica en la tabla 1.11.

Tabla 6.9 Ecuación para la densidad compuesta por los tres componentes.

ECUACION	AUTO R	REFERENCI A	COMENTARI OS	№ Ec.
$\rho_{mM} = C_M \rho_M + C_s \rho_s + (1 - C_M - C_s) \rho_w$ V es el volumen, Subíndices. <i>M</i> =metal, s=Sólido y w= agua	Gómez (2010)	Esta investigación	Donde $\rho_{mM}$ es la densidad de la mezcla fluido-sólido- metal, $\rho_W$ es la densidad del fluido sin sedimentos, $\rho_M$ es la densidad del metal y $\rho_s$ es la densidad de las partículas de sodimentos	[6.62]

El valor de  $V_M$  se debe hallar experimentalmente.

# 3. Deducción de la ecuación para el cálculo de la densidad de una mezcla compuesta por arena y plomo

Combinando las siguientes ecuaciones:

$$V_T \gamma_m = V_s \gamma_s + V_M \gamma_M$$
[6.63]

$$V_T = V_s + V_M$$
 [6.64]

$$\gamma_m = \frac{V_s \gamma_s}{V_T} + \frac{V_M \gamma_M}{V_T}$$
[6.65]

Si se toma que la concentración volumétrica de partículas de metal dentro de la mezcla total es dada como  $C = V_M / V_T$ , se tiene:

$$\gamma_{m} = \frac{V_{s}\gamma_{s}}{V_{\tau}} + C_{M}\gamma_{M}$$
[6.66]

Remplazando el volumen de los sedimentos  $V_s$ , de ec. [1.79].

$$\gamma_{m} = \frac{(V_{T} - V_{M})\gamma_{s}}{V_{T}} + C_{M}\gamma_{M}$$
[6.67]

$$\gamma_{m} = (1 - C_{M}) \gamma_{s} + C_{M} \gamma_{M}$$
 [6.68]

Donde  $C_M$  es la concentración de Metal pesado dentro de la mezcla total de sedimento y metal,  $\gamma_M$  es el peso específico del metal y  $\gamma_s$  es el peso específico de los sedimentos.

Usando la concentración en peso  $C_w=W_M/W_T=Cv^*\gamma_M/\gamma_m$ .

$$\gamma_{m} = (1 - C_{WM} - \frac{\gamma_{m}}{\gamma_{M}}) \gamma_{s} + C_{WM} - \frac{\gamma_{m}}{\gamma_{M}} \gamma_{M}$$
[6.69]

$$1 = \left(\frac{1}{\gamma_{m}} - C_{WM} - \frac{1}{\gamma_{M}}\right) \gamma_{s} + C_{WM} - \frac{1}{\gamma_{M}} \gamma_{M}$$
 [6.70]

$$\gamma_{m} = \left(\frac{C_{WM}}{\gamma_{M}} - \frac{C_{WM}}{\gamma_{s}}\right)^{-1}$$
[6.71]

**ANEXO G.** Banco de pruebas para dispositivos de flujo centrífugo.

Para la realización de la investigación experimental se construyó un montaje de laboratorio el cual tiene los siguientes componentes principales según indica esquemáticamente en la figura 1:

1). Un tanque de succión; 2) una tolva de abastecimiento sólido; 3) una bomba para impulsión de lodos, de impulsor semi-abierto, autocebante, de 3 HP y diámetros de entrada y salida de 2 pulgadas, respectivamente; 4) un tanque de cabeza constante; 5) el dispositivo separador 6) un tanque desarenador para recuperar el sedimento y medir el caudal líquido a la salida del tanque por medio de vertederos triangulares.

Figura 6.1 Tolva de abastecimiento solido (Tanque de succión), Tanque desarenador



**Figura 6.2** Bomba para impulsión de lodos triangulare Tubería del banco de pruebas, vertederos (Zona de recolección de lodos)



Figura 6.3 Tanque de cabeza constante



Figura 6.4 Banco de pruebas vista de perfil



Figura 6.5 Banco de pruebas vista de frente



**ANEXO H.** Fotografías para el tubo curvo.



Figura 6.6 Tubo curvo antes del montaje en el banco de pruebas

Figura 6.7 Montaje y vistas de frente y perfil de tubo curvo



ANEXO I. Fotografías para el hidrociclón.



Figura 6.8 Hidrociclón estudiado en laboratorio

Figura 6.9 Montaje de hidrociclón para realización de laboratorios



ANEXO J. Fotografías para la espiral concentradora.

Figura 6.10 Espiral concentradora



Figura 6.11 Salida o evacuación de material de la espiral concentradora



Figura 6.12 Toma de mediciones en la espiral concentradora



Figura 6.13 Montaje de la espiral concentradora en Laboratorio de banco de pruebas



ANEXO K. Elementos de protección para la realización de laboratorios

**Figura 6.14** Guantes de látex, Gafas, botas, Tapabocas, overol, delantal, Orejeras, guantes para horno.



### ANEXO L. Granulometría

#### Granulometría:

El análisis de tamices es utilizado para determinar la distribución de tamaños o gradación de los agregados disponibles y conseguir la mejor combinación posible de acuerdo a las especificaciones que la investigación requiera. Estos tres agregados son arena de cuarzo, arena de río blanca, arena de río café. La gradación dé los agregados es un factor muy importante para la mezcla que se va a disponer en la investigación, ya que de este factor dependen la economía, manejabilidad y la resistencia de la mezcla.

#### TAMIZ

# 120
# 140
# 170
# 200
# 230
Bandeja

La combinación a utilizar de tamices dependía de la disponibilidad de estos y la exigencia del tipo de material a utilizarse, de esta manera se establece ciertas normas y límites tanto para el tamaño de los agregados como para su granulometría, pudiéndose así seguir un guía o patrón al seleccionar la combinación más adecuada de material a utilizar.

#### Materiales.

- Serie de tamices con tapa y bandeja, para agregados finos: #20 #40#60 #80, #100, #140, #170, #200.
- Serie de tamices con tapa y bandeja, para agregados finos: #35, # 40, #60, #120, #140, #200, #230.
- Guantes
- Tapabocas
- Gafas
- Espátulas y cucharas
- Platones pequeños
- Cepillos o brocha
- Maquina de tamizaje
- Balanza

#### Procedimiento

Para agregado fino (arena de cuarzo y arena de río)

a) Recoja una bandeja la cantidad de muestra a analizar (hacerle la granulometría)
b) Pese su muestra, ésta debe ser alrededor de 500 a 1000 gramos de arena de cuarzo o de arena de río.

c) Ordene los tamices en el orden siguiente, de menor numeración a mayor numeración de forma descendente.

d) proceda a tamizar ya sea mecánicamente o manualmente.

e) para finalizar se separa la mezcla de cada tamiz en recipientes diferentes y se procede hacer el pesaje de estas.



### Figura 6.15 Tipos de muestras

Figura 6.16 Muestra a utilizar



Figura 6.17 Pesaje de la muestra inicial



Figura 6.18 Maquina de tamizaje



Figura 6.19 Tamizaje de la muestra



Figura 6.20 Separación de muestras



Figura 6.21 Pesaje de cada muestra tamizada



Figura 6.22 Diferenciación de muestras



**ANEXO M.** Ejemplo de cálculo para el coeficiente de arrastre CDp.

## GRANULOMETRIA DE ARENA BLANCA DE RÍO - PLOMO E1 LADO INTERNO DE LA ESPIRAL CONCENTRADORA (Li)

Nº de	Abertura	Peso ret	%	%	%
Tamiz	[mm]	[gr]	retenido	Ret acumu	pasa
30	0,6	0	0,00	0,00	100,00
35	0,5	21,00	4,29	4,29	95,71
40	0,425	35,00	7,16	11,45	88,55
60	0,25	129,00	26,38	37,83	62,17
120	0,125	249,00	50,92	88,75	11,25
140	0,106	29,00	5,93	94,68	5,32
200	0,075	21,00	4,29	98,98	1,02
230	0,063	3,00	0,61	99,59	0,41
fondo	0	2,00	0,41	100,00	0,00
suma total		489,00	100		

Tabla 6.10 Granulometría de arena blanca de río - plomo e1

	Peso muest Peso total r	500,00 489,00	gr gr			
Abertura por la cual pasa determinado porcentaje de material						
D84 =	0,3948	mm	D30 =	0,1710	mm	
D50 =	0,2201	mm	D16 =	0,1367	mm	
D60=	0,2447	mm	D10 =	0,1210	mm	

Cu= 2,02 Sedimento uniforme

# GRANULOMETRIA DE ARENA BLANCA DE RÍO - PLOMO E1 LADO EXTERNO DE LA ESPIRAL CONCENTRADORA (Le)

Nº de	Abertura	Peso ret	%	%	%
Tamiz	[mm]	[gr]	retenido	Ret acumu	pasa
30	0,6	0	0,00	0,00	100,00
35	0,5	14,00	2,81	2,81	97,19
40	0,425	28,00	5,61	8,42	91,58
60	0,25	200,00	40,08	48,50	51,50
120	0,125	212,00	42,48	90,98	9,02
140	0,106	23,00	4,61	95,59	4,41
200	0,075	17,00	3,41	99,00	1,00
230	0,063	3,00	0,60	99,60	0,40
fondo	0	2,00	0,40	100,00	0,00
suma total		499,00	100		

 Tabla 6.11
 Granulometría de arena blanca de río – plomo e1

Abertura por la cual pasa determinado porcentaje de material
D84 = 0,3919 mm D30 = 0,1867 mm
D50 = 0,2456 mm D16 = 0,1455 mm
D60= 0,2871 mm D10 = 0,1279 mm

Cu= 2,24 Sedimento uniforme

## GRANULOMETRIA DE ARENA BLANCA LAVADA - PLOMO E1 A LA ENTRADA DE LA ESPIRAL CONCENTRADORA

Nº de	Abertura	Peso ret	%	%	%			
Tamiz	[mm]	[gr]	retenido	Ret acumu	pasa			
30	0,6	0	0,00	0,00	100,00			
35	0,5	35,00	3,54	3,54	96,46			
40	0,425	63,00	6,38	9,92	90,08			
60	0,25	329,00	33,30	43,22	56,78			
120	0,125	461,00	46,66	89,88	10,12			
140	0,106	52,00	5,26	95,14	4,86			
200	0,075	38,00	3,85	98,99	1,01			
230	0,063	6,00	0,61	99,60	0,40			
fondo	0	4,00	0,40	100,00	0,00			
suma total		988,00	100					
	Peso muestr	a total:		1000,00	gr			
	Peso total re	tenido:		988,00	gr			
Abertura por la cual pasa determinado porcentaje de material								
D84 =	0,3930	mm	D30 =	0,1783	mm			
D50 =	0,2318	mm	D16 =	0,1407	mm			
D60=	0,2669	mm	D10 =	0,1246	mm			
Cu= 2,14 Sedimento uniforme								

 Tabla 6.12
 Granulometría de arena blanca lavada - plomo e1

Figura 6.23 Diagrama de curvas de granulometría



1	2	3	4	5	6	7	8	9	10	11	12
TIPO DE MUEST	No Dat	С	d promedi o	Ss	т	ρw	γw	ρs	ρm	Vw	Vm
RA	OS	max									
			[	r 1	1001	[kg/m	[kp/m	[], er/ee 0]	[], a /ma []]	[m 0/a]	[m Q/a]
		[-]	լՠՠֈ	[-]	[°C]	3]	3]	[Kg/m3]	[Kg/m3]	[m2/s]	[m2/s]
		0.10		2 20	10	009	000	2204	1120	1 0425	1 0065
Mo	1	0,10	0 550	2,39	19,	990, 44	990, 44	2394,	1130,	1,0420	1,220E-
IVIS	I	00	0,550	2 30	10	41	41	2301 2301	07 1138	-00 1 042E	00 1.226⊑-
M3	2	0,10	0 463	2,39	00	990, 11	990, 11	2394,	07	-06	1,2200-
IVIS	2	0.10	0,403	2 30	10	008	008	2301 33	1138	-00 1 0/2E	1 226E-
МЗ	З	0,10	0 338	2,33	00	330, 41	330, 41	239 <del>4</del> , QQ	07	-06	06
into	0	0 10	0,000	2 39	19	998	998	2394	1138	1 042F	1 226F-
M3	4	00	0.188	88	00	41	41	99	07	-06	06
	•	0.10	0,100	2.39	19.	998.	998.	2394.	1138.	1.042E	1.226E-
M3	5	00	0.116	88	00	41	41	99	07	-06	06
	_	0,10	-, -	2,39	19,	998,	998,	2394,	1138,	1,042E	1,226E-
M3	6	00	0,091	88	00	41	41	99	07	-06	06
		0,10	,	2,39	19,	998,	998,	2394,	1138,	1,042E	1,226E-
M3	7	00	0,069	88	00	41	41	99	07	-06	06
		0,10		2,39	19,	998,	998,	2394,	1138,	1,042E	1,226E-
M3	8	00	0,032	88	00	41	41	99	07	-06	06
		0,10									
M3	9	00									

**Tabla 6.13** Cálculo del CD ponderado cdp, para la granulometría del lado interno de la espiral concentradora

Columna 1 Tipo de muestra a utilizar

Columna 2 Numero de datos para cada corrida experimental

**Columna 3** Concentración máxima, dato inicial obtenido

Columna 4 Diámetro promedio de los diámetros consecutivos de cada tamiz

**Columna 5** Gravedad especifica de los solidad, dato inicial obtenido

Columna 6 Temperatura del fluido, dato inicial obtenido

**Columna 7** La densidad del agua, se determina con la ecuación 1.34 de Streeter

Columna 8 Peso especifico obtenido de columna 7

**Columna 9** Densidad del solido es el resultado de multiplicar columna 5 por columna 7

**Columna 10** Densidad de la mezcla, se determina con la ecuación que se encuentra en el anexo D, ecuación 1.75

Columna 11 Viscosidad del agua dada por la ecuación 1.5 de Yang

**Columna 12** Viscosidad cinemática de la mezcla dada con las ecuaciones [1.68], [1.69] o [1.70] do Chong

[1.69] o [1.70] de Cheng

13	14	15	16	17	18
	,	d*	d*'	R₅	C⊳
[-]	[-]	[-]	[-]	[-]	[-]
1,399	1,104	12,490	10,625	29,591	2,943
1,399	1,104	10,503	8,935	20,724	3,570
1,399	1,104	7,664	6,520	10,424	5,491
1,399	1,104	4,258	3,622	2,491	16,512
1,399	1,104	2,623	2,231	0,671	53,203
1,399	1,104	2,055	1,748	0,336	102,123
1,399	1,104	1,567	1,333	0,153	217,718
1,399	1,104	0,715	0,609	0,015	2141,689

**Columna 13** Ccoeficiente de densidad de partícula individual esta dado por la formula (columna 9/columna7-1) o la ecuación 1.62 de anexo B

**Columna 14** Coeficiente de densidad de la partícula con mezcla con ecuación [1.66] dada por Cheng

**Columna 15** Es el parámetro adimensional de la partícula afectado por la mezcla por la ecuación 1.69 dada por Cheng

**Columna 16** Es el parámetro adimensional prima, de la partícula afectado por la mezcla por la ecuación 1.69 dada por Cheng

**Columna 17** Remoción de sedimento calculado por la ecuación 1.68 dada por Cheng

**Columna 18** Coeficiente de arrastre de las partículas dada por la ecuación 1.36 tomada de Gómez (2002)

S/Condolios	S/Condolios	S/Bonnington	S/Bonnington	S/Condolios	S/Condolios	S/Bonning
Pi*CD^.5	CDp		CDp	Pi*d*^.5	d*	
0,074		0,126		0,152		0
0,135		0,256		0,232		0
0,618		1,448		0,730		2
2,069		8,408		1,051		2
0,433		3,155		0,096		0
0,434		4,386		0,062		0
0,091		1,336		0,008		0

ſ	0,189		8,759		0,003		0
	4,043	16,34	27,874	27,87	2,334	5,4454	5

**Tabla 6.14** Resumen del coeficiente de arrastre CDp para cada ensayo y cada granulometría

1	2	3	4	5	6	7
	S/Condolios	S/Condolios	S/Condolios	S/Condolios	S/Condolios	S/Condolios
	CDp	CDp	CDp	d'*p	d'*p	d'*p
d50	interno	externo	entrada	interno	externo	entrada
BL	16,342	14,246	15,265	5,445	5,768	5,607
AM	4,094	2,954	3,518	12,903	15,563	14,163
BL	15,564	12,118	13,173	5,607	6,257	6,045
CF	8,963	7,862	8,402	6,959	7,781	7,365
AM	4,162	3,076	3,598	12,854	15,335	14,069
AM	5,257	3,040	4,072	10,737	15,297	12,919
AM	3,916	3,252	3,576	13,434	15,275	14,340
CF	9,793	8,301	9,030	6,750	7,606	7,172
BL	14,734	12,284	13,476	5,840	6,212	6,025
BL	12,710	12,951	12,830	6,033	6,195	6,114
CF	9,490	8,133	8,798	6,771	7,466	7,114
BL	17,815	11,740	14,623	5,228	6,322	5,761
AM	9,541	3,373	5,509	7,525	14,705	11,490
CF	8,807	7,949	8,373	7,091	7,783	7,433
AM	8,969	3,332	4,530	7,721	14,846	12,778
BL	12,577	13,074	12,825	5,999	5,987	5,993

**Columna 1** Diámetro por el cual pasa el 50 % en la granulometría de alimentación de la espiral, el cual hace variar el  $C_{Dp}$ , este valor es un dato inicial **Columna 2** Coeficiente de arrastre lado interno, Condolios nombrado por Graf (1971), propone una ecuación que tiene en cuenta la distribución no uniforme de los tamaños de grano, donde el coeficiente de arrastre  $C_D$  puede ser expresado por la ecuación 1.18

**Columna 3** Coeficiente de arrastre lado externo, Condolios nombrado por Graf (1971), propone una ecuación que tiene en cuenta la distribución no uniforme de los tamaños de grano, donde el coeficiente de arrastre  $C_D$  puede ser expresado por la ecuación 1.18

**Columna 4** Coeficiente de arrastre lado entrada, Condolios nombrado por Graf (1971), propone una ecuación que tiene en cuenta la distribución no uniforme de los tamaños de grano, donde el coeficiente de arrastre  $C_D$  puede ser expresado por la ecuación 1.18

**Columna 5** Diámetro adimensional de la partícula individual lado interno, calculada con la ecuación 1.38 dada por Cheng

**Columna 6** Diámetro adimensional de la partícula individual lado externo, calculada con la ecuación 1.38 dada por Cheng

**Columna 7** Diámetro adimensional de la partícula individual lado entrada, calculada con la ecuación 1.38 dada por Cheng
# **ANEXO N.** Deducción de ecuaciones para el cálculo de la concentración de metales pesados

### 1. Cálculo del peso de plomo por medio de principio de Arquímedes.

Para hallar el peso de plomo se ha deducido las siguientes ecuaciones, las cuales proporcionan el mismo valor para  $W_{pb}$ .

$$W_{pb} = \frac{\left[W_{ma} - \frac{\gamma_{ar}}{\gamma_{w}} (W_{ma} - W_{ms})\right]}{\left[1 - \frac{\gamma_{ar}}{\gamma_{pb}}\right]}$$

$$W_{pb} = \frac{\frac{\gamma_{pb}}{\gamma_{w}} (W_{ma} - W_{ms}) - \frac{\gamma_{pb}}{\gamma_{ar}} W_{ma}}{1 - \frac{\gamma_{pb}}{\gamma_{ar}}}$$
[6.73]

Donde  $W_{pb}$  es el peso del plomo contenido en la matriz de arena en el aire en gr,  $W_{ma}$  es el peso total de la mezcla de arena y plomo en el aire en gr,  $W_{ms}$  es el peso total de la mezcla de arena y plomo sumergido en el agua en gr,  $\gamma_{ar}$  es el peso específico de la arena en gr/cm³,  $\gamma_{pb}$  es el peso específico del plomo en gr/cm³ y  $\gamma_w$  es el peso específico del agua a temperatura de ensayo en gr/cm³. El esquema de las fuerzas actuantes se indica en la figura 1. Figura 6.24 Características físicas que intervienen en el peso del plomo.



La concentración en peso de metal pesado (plomo), en la arena  $C_{pbw}$  a partir de ec. [E1] se calcula con la siguiente ecuación:

$$C_{pbw} = \frac{W_{pb}}{W_{ma}}$$
[6.74]

La concentración en volumen de metal pesado (plomo), en la arena  $C_{pbv}$  a partir de ec. [E3] se calcula con la siguiente ecuación:

$$C_{pbv} = C_{pbw} \frac{\gamma_m}{\gamma_{pb}}$$
[6.75]

### 2 Cálculo del peso de plomo por medio de relación de volúmenes

Partiendo de la siguiente ecuación:

$$\gamma_{m} = \frac{W_{ma}}{V_{m}} = \frac{W_{ar} + W_{pb}}{V_{m}} = \frac{V_{ar}\gamma_{ar} + V_{pb}\gamma_{pb}}{V_{m}}$$
[6.76]

Donde  $W_{ar}$  es el peso de la arena en el aire en gr,  $\gamma_m$  es el peso específico de la mezcla de plomo y arena en gr/cm³,  $V_m$  es el volumen total de la mezcla de arena y plomo en cm³,  $V_{ar}$  es el volumen total de la arena en cm³,  $V_{pb}$  es el volumen total del plomo en cm³. Dando  $C_{pb} = V_{pb} / V_m$  y  $V_m = V_{ar} + V_{pb}$ , y despejando  $C_{pbv}$ , se obtiene:

$$C_{pbv} = \frac{\gamma_m - \gamma_{ar}}{\gamma_{pb} - \gamma_{ar}}$$
[6.77]

 $C_{pb}$ , es la concentración volumétrica. Para  $\gamma_m$  se utiliza el principio de Arquímedes y se calcula como sigue:

$$\gamma_m = \frac{W_{ma} \gamma_w}{W_{ma} - W_{ms}}$$
[6.78]

Donde  $W_{ma}$  es el peso total de la mezcla de arena y plomo en el aire en gr,  $W_{ms}$  es el peso total de la mezcla de arena y plomo sumergido,  $\gamma_w$  es el peso específico del agua a temperatura de ensayo en gr/cm³. El mismo procedimiento se usa para hallar  $\gamma_{pb}$  y $\gamma_{ar}$ , con las siguientes ecuaciones:

$$\gamma_{pb} = \frac{W_{ara}\gamma_{w}}{W_{ara} - W_{ars}}$$
[6.79]

$$\gamma_{pb} = \frac{W_{pba}\gamma_{w}}{W_{pba} - W_{pbs}}$$
[6.80]

Donde,  $W_{ara}$  es el peso total de la arena en el aire en gr,  $W_{ars}$  es el peso total de la arena sumergido,  $W_{pba}$  es el peso total del plomo en el aire en gr,  $W_{pbs}$  es el peso total del plomo sumergido.

El peso del plomo contenido en la arena se calcula con la siguiente ecuación, a partir de  $C_{pbv}$ .

$$W_{pb} = C_{pbv} V_m \gamma_{pb} = \left(\frac{\gamma_m - \gamma_{ar}}{\gamma_{pb} - \gamma_{ar}}\right) \left(\frac{W_{ma}}{\gamma_m}\right) \gamma_{pb}$$
[6.81]

## 3. Comentario.

Al realizar la comprobación experimental por medio de un montaje, usando una balanza de precisión 0.01 gr con mecanismo para pesar por debajo, se observa que las ecuaciones E1, E2 y E9, proporcionan valores idénticos y el error de predicción depende de la concentración de metal pesado, y por ende de la precisión de la balanza, en este sentido se encontró que este error aumenta al disminuir la concentración de metal pesado, lo que es razonable ya que cuando

el contenido de plomo es muy bajo la precisión de la balanza no alcanza a detectar dicho peso con la suficiente precisión.

Por lo anterior se encontró el método de laboratorio para determinar C_{pb}, no es conveniente usarlo para concentraciones de metal en volumen menores al 2%. Posiblemente con balanzas de mayor precisión se podría trabajar concentraciones mucho más bajas.

## 4- Materiales.

- Balanza de sensibilidad 0,001 gr.
- Termómetro digital
- Guantes
- Tapabocas
- Beaker
- Gafas
- Platón

# Figura 6.25 Balanza de medición



Figura 6.26 Palanca de sensibilidad para medición de peso especifico



Figura 6.27 Tamaños de Beacker



5- ENSAYO No. 1 (ARENA BLANCA Le - (V1-2))

Tabla 6.15	Ejemplo de desarrollo	para ensayo no. 1	I (arena blanca le (v1-2))
------------	-----------------------	-------------------	----------------------------

	1	2	3	4	5	6	7	8	9	10	11
	Тіро	Wma	Wms	γpb	γarena	т	γagua	γm	Wpb	Cpw	Сру
Ν	luestra	[g]	[g]	[g/cm3]	[g/cm3]	[°C]	[g/cm3]	[g/cm3]	[g]	[%]	[%]
М	1	108,47	66,15	11,30153901	2,39881636	19,7	0,9983	2,559	8,60	7,930	1,80
M	2	73,13	44,68	11,30153901	2,39881636	19,8	0,9982	2,566	6,05	8,270	1,88
M	3	24,89	15,18	11,30153901	2,39881636	19,8	0,9982	2,559	1,98	7,939	1,80

Columna 1 Tipo de muestra para cada corrida experimentalColumna 2 Peso de la muestra de arena, medida obtenida en laboratorio

**Columna 3** Peso de la muestra de sedimento, medida obtenida en laboratorio

**Columna 4** Gravedad especifica del plomo, medida obtenida en laboratorio

Columna 5 Gravedad especifica de la arena, medida obtenida en laboratorio

**Columna 6** Temperatura, medida obtenida en laboratorio

**Columna 7** Gravedad especifica del agua, col la siguiente formula utilizando como factor común la temperatura:

= (999,9399 + 4,216485 * 10 ^ - 2 * columna 6 - 7,097451 * 10 ^ - 3 * columna 6 ^ 2 + 3,509571 * 10 ^ - 5 * columna 6 ^ 3 - 9,9037785 * 10 ^ - 8 * columna 6 ^ 4) / 1000

**Columna 8** Gravedad especifica de la mezcla se calculo con la siguiente formula = columna 2 / (columna 2 – columna 3) * columna 7

**Columna 9** Peso del plomo, dado por la siguiente ecuación:

= (columna 4 / columna 5 * (columna 2 – columna 3) – columna 4 / columna 5 * columna 2) / (1- columna 4 / columna 5)

**Columna 10** Porcentaje de Concentraciones de plomo en peso, calculada con la siguiente fórmula: = columna 2 / columna 9 * 100

**Columna 11** Porcentaje de Concentraciones de plomo en volumen, sacada de la columna 10

## 6- ENSAYO No. 1 (ARENA BLANCA Li - (V3))

 Tabla 6.16
 Ejemplo de desarrollo para ensayo no. 1 (arena blanca Li (v3))

1 Tipo	2 Wma	3 Wms	4 γpb	5 γarena	6 T	7 γagua	8 γm	9 Wpb	10 Cpw	11 Cpv
Muestra	[g]	[g]	[g/cm3]	[g/cm3]		[g/cm3]	[g/cm3]	[g]	[%]	[%]
M1	109,55	87,88	11,30153901	2,39881636	19,8	0,9982	5,047	72,96	66,603	29,74
M2	73,23	58,85	11,30153901	2,39881636	19,8	0,9982	5,084	49,10	67,043	30,16
M3	36,21	29,05	11,30153901	2,39881636	19,8	0,9982	5,048	24,13	66,625	29,76

Este procedimiento es el mismo que el realizado en la tabla 5.6

Tabla 6.1	'Resumen	de	Cpw
-----------	----------	----	-----

Ensayo #	Cpw Le	Cpw Li
1	8,04640323	66,7569134
2	1,29780571	16,2493703
3	7,1151737	61,077752
4	2,60912811	29,3273993
5	1,9875047	18,0349228
6	1,30125203	28,2782777
7	3,242692	8,97092135
8	2,06236945	40,2649964
9	6,49955372	21,7197859
10	4,85601364	31,955903
11	3,7653451	28,7037443
12	6,94008969	51,7965885
13	4,13812777	82,6556882
14	2,76018142	28,7740992
15	2,43989534	81,7885243
16	5,00717886	23,3891727