Formulación de Hamilton-Jacobi para teorías gauge topológicas

Alumno: Christian Martínez Benavides

Director: Dr. Germán Enrique Ramos Zambrano

San Juan de Pasto, 17 de octubre de 2023

Universidad de Nariño FUNDADA EN 1904

Contenido ●	Introducción 000	Marco referencial	Resultados 0000	Cálculos extra	Conclusiones	Referencias 000
Conten	ido					

- 1 Introducción
- 2 Marco referencial
- 3 Resultados
- 4 Cálculos extra
- 5 Conclusiones
- 6 Referencias

Contenido ⊙	Introducción ●○○	Marco referencial	Resultados 0000	Cálculos extra	Conclusiones	Referencias 000
Introdu	icción					

¿Que son los campos?

Transformación de gauge local:

$$\mathsf{A}_{\mu}(\mathbf{x}) o \mathsf{A}_{\mu}'(\mathbf{x}) = \mathsf{A}_{\mu}(\mathbf{x}) + rac{1}{e}\partial_{\mu}\Lambda(\mathbf{x}),$$

Contenido ○	Introducción ○●○	Marco referencial	Resultados	Cálculos extra	Conclusiones	Referencias

Planteamiento del problema

- 1 ¿Que forma tienen las restricciones del sistema?
- 2 ¿Cuantas restricciones tiene el sistema?
- ¿Cómo se ve alterada la dinámica del sistema?

Contenido ○	Introducción ○○●	Marco referencial	Resultados	Cálculos extra	Conclusiones	Referencias
Objetivo	DS					

Objetivo General

Realizar un estudio de teorías gauge topológicas mediante la formulación de Hamilton Jacobi.

Objetivos Específicos

- 1 Analizar el método de Hamilton Jacobi para sistemas singulares.
- 2 Estudiar la teoría de Chern-Simons Pura en (2+1) dimensiones aplicando el modelo de Hamilton Jacobi.
- 3 Aplicar el método de Hamilton Jacobi a la teoría de Maxwell-Chern-Simons.

Contenido ○	Introducción	Marco referencial ●○○○	Resultados	Cálculos extra	Conclusiones	Referencias 000

Densidad Lagrangiana

Teoría de CS

$$\mathscr{L}_{CS} = rac{k}{8\pi} \varepsilon^{lphaeta\gamma} F_{lphaeta}(\mathbf{x}) \mathsf{A}_{\gamma}(\mathbf{x}),$$

Teoría de MCS

$$\begin{split} \mathscr{L}_{\mathsf{MCS}} = & \mathscr{L}_{\mathsf{M}} + \mathscr{L}_{\mathsf{CS}} \\ = & -\frac{1}{4} \mathsf{F}_{\alpha\beta} \mathsf{F}^{\alpha\beta} + \frac{k}{4\pi} \varepsilon^{\alpha\beta\gamma} (\partial_{\alpha} \mathsf{A}_{\beta}) \mathsf{A}_{\gamma} \end{split}$$

Conte O	nido Intro 000	oducción Marco	referencial	Resultados	Cálculos extra	Conclusiones 000	Referencias

¿Que es una teoría singular?

$$\begin{split} \ddot{\mathsf{A}}_{\nu}(\mathbf{x}) &= [\mathsf{W}_{\mu\nu}(\mathbf{x},\mathbf{y})]^{-1}\mathsf{G}_{\mu}[\mathsf{A}_{\lambda}(\mathbf{x}),\dot{\mathsf{A}}_{\lambda}(\mathbf{x})],\\ \mathsf{W}_{\mu\nu}(\mathbf{x},\mathbf{y}) &= \frac{\partial^{2}\mathscr{L}}{\partial(\partial_{\mathsf{o}}\mathsf{A}_{\mu})\partial(\partial_{\mathsf{o}}\mathsf{A}_{\nu})}\delta^{3}(\mathbf{x}-\mathbf{y}) \end{split}$$

Teoría CS

Teoría MCS

$$W(x,y) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \delta(\mathbf{x} \cdot \mathbf{y}). \qquad \qquad W(x,y) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \delta(\mathbf{x} \cdot \mathbf{y}).$$

Contenido ⊙	Introducción 000	Marco referencial ○○●○	Resultados 0000	Cálculos extra 00000	Conclusiones	Referencias
Espacio	de Fase					

En el espacio de configuración se define en términos del los campos $[A_{\mu}(x), \partial_{o}A_{\mu}(x)]$, mientras que el espacio de fase se define en términos de $[A_{\mu}(x), \Pi^{\mu}(x)]$.

Teoría de CS

$$\begin{split} \theta_1(x) &\equiv \Pi^{\mathsf{o}}(x) = \mathsf{o}, \\ \theta_2(x) &\equiv -\Pi^1(x) + \frac{k}{4\pi} \mathsf{A}_2(x) = \mathsf{o}, \\ \theta_3(x) &\equiv -\Pi^2(x) - \frac{k}{4\pi} \mathsf{A}_1(x) = \mathsf{o}. \end{split}$$

$$\phi_1(x) \equiv \Pi^{\mathsf{o}}(x) = \mathsf{o}.$$

Contenido ○	Introducción	Marco referencial 000●	Resultados	Cálculos extra	Conclusiones	Referencias

Condición de Frobenius

Ejemplo ilustrativo:

$$\phi = x_1^2 + x_2^2 = r^2 \to x_1 = \sqrt{r^2 - x_2^2}$$

Se debe exigir que:

1)
$$d\phi_{\scriptscriptstyle H}=$$
 0
2) $d\phi_{\scriptscriptstyle H}=C^{\prime}_{_{HP}}\phi_{\scriptscriptstyle J}d\tau^{\scriptscriptstyle P},$

Contenido ⊙	Introducción 000	Marco referencial	Resultados ●000	Cálculos extra	Conclusiones	Referencias
EDPHJ						

Teoría de CS $\begin{array}{l} \theta_{o}(x) \equiv p^{o}(x) - \mathscr{H}_{CS}^{o} = o; \qquad t, \\ \theta_{1}(x) \equiv \Pi^{o}(x) = o; \qquad \tau_{1}(x), \\ \theta_{2}(x) \equiv -\Pi^{1}(x) + \frac{k}{4\pi}A_{2}(x) = o; \quad \tau_{2}(x), \\ \theta_{3}(x) \equiv -\Pi^{2}(x) - \frac{k}{4\pi}A_{1}(x) = o; \quad \tau_{3}(x), \\ \theta_{4}(x) \equiv \varepsilon^{oij}\partial_{i}^{x}A_{j}(x) = o; \qquad \tau_{4}(x). \end{array}$

Teoría de MCS

$$\begin{split} \phi_{\mathsf{o}}(x) =& p^{\mathsf{o}} + \mathscr{H}_{\mathsf{MCS}}^{\mathsf{o}} = \mathsf{o}; \quad t, \\ \phi_{\mathsf{1}}(x) =& \Pi^{\mathsf{o}} = \mathsf{o}; \quad \tau_{\mathsf{1}}(x), \\ \phi_{\mathsf{2}}(x) =& \frac{k}{4\pi} \varepsilon^{\mathsf{o}ij} \partial_{i}^{\mathsf{x}} \mathsf{A}_{j}(x) \\ &+ \partial_{i}^{\mathsf{x}} \Pi^{i}(x) = \mathsf{o}; \ \tau_{\mathsf{2}}(x). \end{split}$$

Contenido ○	Introducción	Marco referencial	Resultados ○●○○	Cálculos extra	Conclusiones	Referencias 000

Dinámica del sistema

Diferencial fundamental:

Teoría de CS

$$dF(x) = \int d^2 y [\{F(x), heta_o(y)\} dt + \{F(x), heta_P(y)\} d au_P(y),$$

 $\operatorname{con} P \equiv \{1,...,4\}.$

Teoría de MCS

$$egin{aligned} d\mathsf{F}(\mathsf{x}) &= \int d^2 \mathsf{y}[\{\mathsf{F}(\mathsf{x}),\phi_\mathsf{o}(\mathsf{y})\}dt \ &+ \{\mathsf{F}(\mathsf{x}),\phi_\mathsf{H}(\mathsf{y})\}d au_\mathsf{H}(\mathsf{y})], \end{aligned}$$

 $\operatorname{con} H \equiv \{1, 2\}.$

Contenido ○	Introducción 000	Marco referencial	Resultados ○○●○	Cálculos extra 00000	Conclusiones	Referencias
Ecuacio	nes de cam	po CS				

Espacio de fase

$$\begin{split} \dot{A}_{o}(x) &= \dot{\tau}_{1}(x), \\ \dot{\Pi}^{o}(x) &= \frac{k}{2\pi} \varepsilon^{oij} \partial_{i}^{x} A_{j}(x) = \frac{k}{4\pi} \varepsilon^{oij} F_{ij}(x), \\ \dot{A}_{i}(x) &= \partial_{i}^{x} A_{o}(x) + \frac{2\pi}{k} \partial_{i}^{x} \dot{\tau}_{4}(x), \\ \dot{\Pi}^{i}(x) &= -\frac{k}{4\pi} \varepsilon^{iok} \partial_{k}^{x} A_{o}(x) + \frac{3}{2} \varepsilon^{oki} \partial_{k}^{x} \dot{\tau}_{4}(x). \end{split}$$

Espacio de configuración

$$rac{k}{4\pi}arepsilon^{lphaeta\gamma} F_{eta\gamma}(x) = -3arepsilon^{\mathrm{oki}}\partial_k^x \dot{ au}_4(x).$$

Contenido O	Introducción	Marco referencial	Resultados ○○○●	Cálculos extra	Conclusiones	Referencias			
Equacionas da campa MCS									

Ecuaciones de campo MCS

Espacio de fase Espacio de configuración $\dot{A}_{0}(x) = \dot{\tau}_{1}(x),$ $\frac{k}{4\pi}\varepsilon^{\alpha\beta\nu}F_{\beta\nu}+\partial_{\beta}F^{\beta\alpha}=\frac{k}{4\pi}\varepsilon^{\mathbf{0}\mathbf{i}\mathbf{j}}\partial_{\mathbf{j}}^{\mathbf{x}}\dot{\tau}_{\mathbf{2}}(\mathbf{x}).$ $\dot{\Pi}^{\mathsf{o}}(\mathbf{x}) = \left[\frac{k}{4\pi}\varepsilon^{\mathsf{o}kl}\partial_k^{\mathsf{x}}\mathsf{A}_{\mathsf{l}}(\mathbf{x}) + \partial_k^{\mathsf{x}}\Pi^k(\mathbf{x})\right],$ $\dot{A}_{i}(x) = \left[\Pi^{i}(x) - \frac{k}{4\pi}\varepsilon^{\text{oim}}A_{m}(x) + \partial_{i}^{x}A_{o}(x)\right] - \partial_{i}^{x}\dot{\tau}_{2}(x),$ $\dot{\Pi}^{i}(x) = \partial_{j}^{x} F^{ji}(x) - \frac{k}{4\pi} \varepsilon_{\text{o}ij} \Pi^{j}(x) - \left(\frac{k}{4\pi}\right)^{2} A_{i}(x) + \frac{k}{4\pi} \varepsilon^{\text{o}ij} \partial_{j}^{x} A_{\text{o}}(x) - \frac{k}{4\pi} \varepsilon^{\text{o}ij} \partial_{j}^{x} \dot{\tau}_{2}(x),$

ContenidoIntroducciónMarco referencialResultadosCálculos extraConclusionesReferencias00000000000000000000000000000

Tratamiento EDP linealmente dependientes

Mediante la condición de Frobenius se obtiene:

$$d\tau_b(\mathbf{y}) = -\iint d^2 \mathbf{v} d^2 u \left[\Theta_{Sub}^{-1}(\mathbf{y}, \mathbf{v})\right]_{bc} \left\{\theta_c(\mathbf{v}), \theta_\sigma(\mathbf{u})\right\} d\tau_\sigma(\mathbf{u}); \ \sigma = \{0, 1, 4\},$$
$$\Theta_{Sub}^{-1}(\mathbf{x}, \mathbf{y}) = \begin{pmatrix} \mathbf{0} & \frac{2\pi}{k} \\ -\frac{2\pi}{k} & \mathbf{0} \end{pmatrix} \delta^2(\mathbf{x} - \mathbf{y}),$$

El diferencial fundamental queda:

$$\{F(x), G(y)\}_{1}^{\bigstar} \equiv \{F(x), G(y)\} - \iint d^{2}ud^{2}v \{F(x), \theta_{b}(u)\} \left[\Theta_{Sub}^{-1}(\mathbf{v}, \mathbf{u})\right]_{bc} \{\theta_{c}(\mathbf{v}), G(y)\}.$$
$$dF(x) = \int d^{2}y \{F(x), \theta_{\sigma}(y)\}_{1}^{\bigstar} d\tau_{\sigma}(y).$$

Contenido ○	Introducción	Marco referencial	Resultados	Cálculos extra ○●○○○	Conclusiones	Referencias

Condiciones Gauge

Gauge de radiación:

$$A_{o}(x) = o,$$

 $\partial_{i}^{x}A_{i}(x) = o.$

Gauge de Coulomb:

$$\begin{split} & \mathbf{o} = \partial_i^{\mathbf{x}} \mathsf{A}_i(\mathbf{x}), \\ & \mathbf{o} = \partial_i^{\mathbf{x}} \Pi^i(\mathbf{x}) - \frac{k}{4\pi} \varepsilon^{\mathsf{o}\mathsf{k}\mathsf{l}} \partial_{\mathsf{k}}^{\mathbf{x}} \mathsf{A}_\mathsf{l}(\mathbf{x}) + \partial_i^{\mathbf{x}} \partial_i^{\mathbf{x}} \mathsf{A}_\mathsf{o}(\mathbf{x}). \end{split}$$

Contenido Introducción Marco referencial Resultados Cálculos extra Conclusiones Referencias

La dependencia temporal de los parámetros arbitrarios es:

$$d\tau_{H}(\mathbf{y}) = -\iint d^{2}ud^{2}v\Theta_{H^{p}}^{-1}(\mathbf{y},\mathbf{v})\{\theta_{p}(\mathbf{v}),\theta_{0}(u)\}_{1}^{\bigstar}dt; \ \{H,P\} = \{1,...,4\},$$

La dinámica del sistema se define mediante los PGR

$$\{F(x), G(y)\}^{\bigstar} \equiv \{F(x), G(y)\}_{1}^{\bigstar} - \iint d^{2}ud^{2}v\{F(x), \theta_{H}(y)\}_{1}^{\bigstar}\Theta_{HP}^{-1}(\mathbf{u}, \mathbf{v})\{\theta_{P}(v), G(y)\}_{1}^{\bigstar},$$
$$dF(x) = \int d^{2}y\{F(x), \theta_{O}(y)\}^{\bigstar}dt.$$

Contenido Introducción Marco referencial Resultados Cálculos extra Conclusiones Referencias

La dependencia temporal de los parámetros arbitrarios es:

$$d au_{\scriptscriptstyle H}(\mathbf{y}) = - \iint d^2 u d^2 \mathbf{v} \Phi_{\scriptscriptstyle HP}^{-1}(\mathbf{y}, \mathbf{v}) \{ \phi_{\scriptscriptstyle P}(\mathbf{v}), \phi_{\scriptscriptstyle O}(u) \} dt,$$

La dinámica del sistema se define mediante los PGR

$$\{F(x), G(y)\}^{\bigstar} \equiv \{F(x), G(y)\} - \iint d^{2}ud^{2}v\{F(x), \phi_{H}(y)\} \Phi_{H^{p}}^{-1}(\mathbf{u}, \mathbf{v})\{\phi_{P}(v), G(y)\},$$

$$dF(x) = \int d^2 y \{F(x), \phi_0(y)\}^{\bigstar} dt.$$

Paréntesis Generalizados Fundamentales

Por la equivalencia funcional de los PGR y los PGC con los paréntesis de Dirac evaluados a tiempos iguales en cada guage respectivo se concluye que los únicos PG fundamentales para cada teoría son:

Teoría de CS

$$\{A_i(\mathbf{x}), A_j(t)\}^{\bigstar} = \frac{2\pi}{k} \varepsilon_{\text{oij}} - \frac{2\pi}{k} \left[\varepsilon_{\text{omj}} \partial_m^{\mathbf{x}} \partial_i^{\mathbf{x}} - \varepsilon_{\text{om}} \partial_m^{\mathbf{x}} \partial_j^{\mathbf{x}}\right] \frac{1}{\nabla_x^2} \delta^2(\mathbf{x} - \mathbf{y}).$$

Teoría de MCS

$$\begin{aligned} \{\mathsf{A}_{i}(\mathbf{x}),\mathsf{\Pi}_{j}(\mathbf{y})\}^{\bigstar} &= \left(\delta_{ij} - \partial_{i}^{\mathsf{x}}\partial_{j}^{\mathsf{x}}\frac{1}{\nabla_{\mathbf{x}}^{2}}\right)\delta^{2}(\mathbf{x} - \mathbf{y}),\\ \{\mathsf{\Pi}_{i}(\mathbf{x}),\mathsf{\Pi}_{j}(\mathbf{y})\}^{\bigstar} &= \frac{k}{4\pi}\left(\varepsilon_{\mathsf{omi}}\partial_{\mathsf{m}}^{\mathsf{x}}\partial_{j}^{\mathsf{x}} - \varepsilon_{\mathsf{omj}}\partial_{\mathsf{m}}^{\mathsf{x}}\partial_{i}^{\mathsf{x}}\right)\frac{1}{\nabla_{\mathbf{x}}^{2}}\delta^{2}(\mathbf{x} - \mathbf{y}).\end{aligned}$$

Contenido ○	Introducción	Marco referencial	Resultados	Cálculos extra	Conclusiones ●○○	Referencias 000
Conclus	iones					

- Se demostró que las teorías de CS y MCS poseen relaciones entre los campos de forma innata.
- El conjunto inicial de variables independientes de cada teoría es incompleto y requiere la introducción de nuevas EDP con sus respectivas variables independientes.
- Se determinó que la teoría de CS posee 2 EDP linealmente dependientes (LD), mientras que tanto CS como MCS tienen 2 EDP linealmente independientes (LI).
- La presencia de los parámetros arbitrarios asociados a las EDP LI en las ecuaciones características genera que la evolución de cualquier variable dinámica definida en el espacio de fase no sea unívoca.

Contenido ○	Introducción	Marco referencial	Resultados	Cálculos extra	Conclusiones ○●○	Referencias 000
Conclus	iones					

- Es posible construir unos PG que incluyan la información de las EDP LD, reduciendo así los grados de libertad de la teoría de CS de 6 a 4.
- Al imponer las restricciones del gauge a las teorías estudiadas se determinó la dependencia temporal de los parámetros arbitrarios τ_H(x) y se redefinió la dinámica del sistema en términos de los PGR y PGC.
- Las condiciones gauges impuestas a las teorías reducen en 2 los grados de libertad de las mismas de manera que la teoría de CS posee ahora o grados de libertad y la de MCS posee 2.
- Se encontró una equivalencia funcional entre los PGC con los paréntesis de Dirac evaluados a tiempos iguales en el gauge de Coulomb en la teoría de MCS.

Contenido ○	Introducción	Marco referencial	Resultados 0000	Cálculos extra	Conclusiones ○○●	Referencias
Dropuo	sta da actud	lio				
Propues	sia de estud					

Como trabajo para futuras investigaciones, se sugiere la extensión de este estudio analizando distintas condiciones gauge en las teorías de CS y MCS, involucrar interacción con otros campos como el campo fermiónico o explorar otras teorías gauge topológicas y sistemas singulares en diferentes dimensiones.

Contenido ○	Introducción	Marco referencial	Resultados	Cálculos extra	Conclusiones	Referencias ●○○
Referer	ncias					

- [Alfredo, 2013] Alfredo, B. L. (2013). Formulación de hamilton-jacobi en teoría clásica de campos. Universidad de Nariño. Facultad de Ciencias Exactas y Naturales. Departamento de Física.
- [Badajoz, 2017] Badajoz (2017). Apuntes de grupos de lie. http://matematicas.unex.es/ ~ricarfr/LibroGLie.pdf.
- [Bastianelli, 2019] Bastianelli, P. F. (2019). On noether's theorems and gauge theories in hamiltonian formulation. Dipartimento di Fisica e Astronomia - Università di Bologna.
- [Das, 2020] Das, A. (2020). Lectures on quantum field theory. World Scientific.
- [de Araújo, 2016] de Araújo, J. R. P. (2016). Formalismo de hamilton-jacobi aplicado a teorias de campos topológicas. Universidade Federal da Bahia – UFBA. Instituto de Física.
- [Dunne, 1998] Dunne, G. (1998). Aspects of chern-simons theory (1999). arXiv preprint hep-th/9902115.
- [Elitzur et al., 1989] Elitzur, S., Moore, G., Schwimmer, A., and Seiberg, N. (1989). Remarks on the canonical quantization of the chern-simons-witten theory. *Nuclear Physics B*, 326(1):108–134.

[Greiner, 2012] Greiner, W. (2012). Classical electrodynamics. Springer Science & Business Media.

[Greiner and Reinhardt, 1996] Greiner, W. and Reinhardt, J. (1996). *Field quantization*. Springer Science & Business Media.

Contenido ○	Introducción	Marco referencial	Resultados 0000	Cálculos extra	Conclusiones	Referencias ○●○
Referer	ncias					

- [Hanson and Regge, 1976] Hanson, A. and Regge, T. (1976). Teitelboim constrained hamiltonian systems. *Accademia Nazionale Dei Lincei*.
- [Lin and Ni, 1990] Lin, Q.-g. and Ni, G.-j. (1990). Dirac quantization of chern-simons theories in (2+ 1) dimensions. *Classical and Quantum Gravity*, 7(7):1261.
- [Lopez, 2001] Lopez, E. O. (2001). Electrodinámica cuántica bidimensional, rernormalización. PhD thesis, Universidad de Salamanca.
- [Mariño, 2005] Mariño, M. (2005). Chern-simons theory and topological strings. Department of Physics, CERNhttps://arxiv.org/abs/hep-th/0406005.
- [M.C. Bertín, 2007] M.C. Bertín, B. P. y. P. P. (2007). Formalismo de hamilton-jacobi à la carathéodory. Revista Brasileira de Ensino de Fisica.
- [M.C. Bertín, 2008a] M.C. Bertín, B. P. y. P. P. (2008a). Formalismo de hamilton-jacobi à la carathéodory. parte 2: sistemas singulares. Revista Brasileira de Ensino de Fisica.

Contenido ○	Introducción 000	Marco referencial	Resultados 0000	Cálculos extra	Conclusiones	Referencias ○○●
Referer	ncias					

- [M.C. Bertín, 2008b] M.C. Bertín, B.M. Pimentel, C. V. (2008b). Non-involutive constrained systems and hamilton-jacobi formalism. Instituto de Física Teórica - Sao Paulo State University.
- [Muñoz, 2015] Muñoz, K. A. L. (2015). Teoría de maxwell-chern-simons libre y en interacción con campo fermiónico. Universidad de Nariño. Facultad de ciencias exactas y naturales. Departamento de física https://sired.udenar.edu.co/7660/.
- [Schrödinger, 2003] Schrödinger, E. (2003). Collected papers on wave mechanics.
- [Sundermeyer, 1982] Sundermeyer, K. (1982). Constrained dynamics: Lecture notes in physics. *Lecture Notes in Physics*, 169.
- [Wang, 2010] Wang, Z. (2010). Topological quantum computation. University of California, Santa Barbara http://web.math.ucsb.edu/~zhenghwa/data/course/cbms.pdf.
- [Wilczek, 1982] Wilczek, F. (1982). Quantum mechanics of fractional-spin particles. Institute for Theoretical Physics, University of California, Santa Barbara, C https://www.ifi.unicamp.br/ ~mtamash/f689_mecquant_i/pr149_957.pdf.

