SEGUIMIENTO Y APOYO TÉCNICO A LOS PROYECTOS ADELANTADOS POR LA SECRETARÍA DE GESTIÓN AMBIENTAL EN EL SECTOR RURAL Y SUBURBANO DEL MUNICIPIO DE PASTO.

JULIAN ARTURO PASCUAZA DULCE

UNIVERSIDAD DE NARIÑO FACULTAD DE INGENIERIA PROGRAMA DE INGENIERIA CIVIL SAN JUAN DE PASTO 2009

SEGUIMIENTO Y APOYO TÉCNICO A LOS PROYECTOS ADELANTADOS POR LA SECRETARÍA DE GESTIÓN AMBIENTAL EN EL SECTOR RURAL Y SUBURBANO DEL MUNICIPIO DE PASTO.

JULIAN ARTURO PASCUAZA DULCE

Trabajo de Grado presentado como requisito para optar al título de Ingeniero Civil

Director
ALVARO EFRAIN MARTINEZ BURBANO
Ingeniero Civil

Codirectora
JANET OJEDA HIDALGO
Ingeniera Civil

UNIVERSIDAD DE NARIÑO FACULTAD DE INGENIERIA PROGRAMA DE INGENIERIA CIVIL SAN JUAN DE PASTO 2009

NOTA DE ACEPTACIÓN:
FIRMA JURADO 1
FIRMA JURADO 2

LAS IDEAS Y CONCLUSIONES APORTADAS EN EL SIGUIENTE TRABAJO SON RESPONSABILIDAD EXCLUSIVA DEL AUTOR.	
ARTÍCULO 1º DEL ACUERDO No. 324 DE OCTUBRE 11 DE 1966 EMANADO DEL HONORABLE CONSEJO DIRECTIVO DE LA UNIVERSIDAD DE NARIÑO.	
ARTICULO 1º DEL ACUERDO No. 324 DE OCTUBRE 11 DE 1966 EMANADO DEL HONORABLE CONSEJO DIRECTIVO DE LA UNIVERSIDAD DE NARIÑO.	
ARTICULO 1º DEL ACUERDO No. 324 DE OCTUBRE 11 DE 1966 EMANADO DEL HONORABLE CONSEJO DIRECTIVO DE LA UNIVERSIDAD DE NARIÑO.	
ARTICULO 1º DEL ACUERDO No. 324 DE OCTUBRE 11 DE 1966 EMANADO DEL HONORABLE CONSEJO DIRECTIVO DE LA UNIVERSIDAD DE NARIÑO.	
ARTICULO 1º DEL ACUERDO No. 324 DE OCTUBRE 11 DE 1966 EMANADO DEL HONORABLE CONSEJO DIRECTIVO DE LA UNIVERSIDAD DE NARIÑO.	
ARTICULO 1º DEL ACUERDO No. 324 DE OCTUBRE 11 DE 1966 EMANADO DEL HONORABLE CONSEJO DIRECTIVO DE LA UNIVERSIDAD DE NARIÑO.	

DEDICATORIA

Este trabajo lo ofrezco a Dios quien me guía en todos mis pasos y actos, a mis padres Arturo Pascuaza Benavides y Mariana Dulce Miranda quienes me brindan incondicionalmente todo su apoyo y su amor y a todas aquellas personas que siempre están en mis pensamientos como mi hermana Bárbara y mis sobrinos Felipe y Sara.

AGRADECIMIENTOS

Quiero agradecer muy especialmente a la Universidad de Nariño por brindarme la oportunidad de tener un mejor futuro y enriquecer mi conocimiento y el amor a la Ingeniería Civil, a la Secretaría de Gestión Ambiental y a su Secretario el Ingeniero Hugo Ramiro Rosero Ortiz, por acogerme como un miembro mas de su equipo y por darme la oportunidad de aprender mas de lo que será mi fuente de trabajo en el futuro.

A mi Director del trabajo, el Ingeniero Álvaro Efraín Martínez Burbano y mi Codirectora la Ingeniera Janet Ojeda Hidalgo les envío un fraternal agradecimiento por su tiempo dedicado y por que me enseñaron la simpleza de la excelencia profesional.

Agradezco a todas las personas que de alguna forma intervinieron en mi camino para optar al titulo de ingeniero civil.

CONTENIDO

	pág
INTRODUCCIÓN	34
1. METODOLOGÍA	35
2. MARCO CONCEPTUAL	37
3. FORMULACION Y CONTROL DE LOS PROYECTOS DEL PROGRAMA AGUA PARA EL CAMPO	39
3.1 ETAPA DE PREINVERSIÓN E INVERSIÓN	39
3.2 ETAPA DE CONTRATACIÓN	40
3.3 ETAPA DE INTERVENTORÍA Y CONTROL	43
4. ACTIVIDADES TECNICAS DESEMPEÑADAS DENTRO DE LA ETAPA DE PREINVERSION E INVERSION	45
4.1 FICHA MGA	45
4.1.1 Ficha complementaria a la ficha del proyecto	46
4.1.1.1 Descripción ampliada y cuantificación del problema	46
4.1.1.2 Cuantificación de la población beneficiada por los proyectos	47
4.1.1.3 Características socioeconómicas y culturales de la población	48
4.1.1.4 Ubicación de la población afectada	48
4.1.1.5 Alternativas de solución al problema4.1.1.6 Selección de la alternativa	48 49
4.1.1.7 Descripción de la alternativa del proyecto	49
4.1.1.8 Descripción ampliada del proyecto	49
4.1.1.9 Detalles del proyecto	49
4.1.1.10 Descripción de objetivos, productos y resultados que se espera obtener con la alternativa	52
4.1.1.11 Cuantificación de los productos y resultados a obtener	52
4.2 VISITAS TÉCNICAS Y FORMULACIÓN DE DIAGNÓSTICOS	53

4.2.1 Sistema de abastecimiento de agua en Juanoy	54
4.2.1.1 Fuentes de abastecimiento del sistema de acueducto	54
4.2.1.2 Análisis de control de calidad en las fuentes de abastecimiento	54
4.2.1.3 Concesiones de agua	55
4.2.1.4 Evaluación del sistema existente	55
4.2.2 Sistema de abastecimiento de agua en Jamondino y barrio El Rosario	60
4.2.2.1 Planos de las redes existentes	60
4.2.2.2 Fuentes de abastecimiento del sistema de acueducto	61
4.2.2.3 Análisis de control de calidad en las fuentes de abastecimiento	61
4.2.2.4 Concesiones de agua	61
4.2.2.5 Evaluación del sistema existente	62
4.2.3 Sistema de abastecimiento de agua en Mocondino, Puerres y Canchala	67
4.2.3.1 Fuentes de abastecimiento del sistema de acueducto	67
4.2.3.2 Análisis de control de calidad en las fuentes de abastecimiento	67
4.2.3.3 Concesiones de agua	68
4.2.3.4 Evaluación del sistema existente	68
4.2.4 Sistema de abastecimiento de agua en San Cayetano – Mapachico	76
4.2.4.1 Fuentes de abastecimiento del sistema de acueducto	76
4.2.4.2 Análisis de control de calidad en las fuentes de abastecimiento	76
4.2.4.3 Concesiones de agua	77
4.2.4.4 Evaluación del sistema existente	77
4.2.5 Sistema de tratamiento de aguas residuales sector Popular y Rosal de	00
Oriente	83
4.2.5.1 Problema	83
4.2.5.2 Observaciones4.2.6 Sistema de almacenamiento de agua potable para el sector de San	86
Fernando	87
4.2.6.1 Descripción de la infraestructura existente	87
4.2.6.2 Evaluación del lote	90
5. ACTIVIDADES DESEMPEÑADAS DENTRO DE LA ETAPA DE	
CONTRATACIÓN	92
5.1 TÉRMINOS DE REFERENCIA PARA SISTEMAS DE ACUEDUCTO	92
5.1.1 Actividades del consultor	92
5.1.2 Documentos a ser proporcionados al consultor	93
5.1.3 Informes	93
5.1.4 Plazo de la consultoría	94
5.1.5 Alcance del proyecto	94
5.1.6 Objetivos del proyecto	95

5.1.7 Descripción de la zona del proyecto	96
5.1.7.1 Aspectos físicos del área del proyecto	96
5.1.7.2 Aspectos socioeconómicos de la zona del proyecto	96
5.1.8 Disponibilidad de agua y saneamiento en la zona	97
5.1.9 Localización del proyecto	97
5.1.10 Parámetros básicos de diseño	97
5.1.10.1 Estimación de la población	97
5.1.10.2 Cuantificación de la demanda	98
5.1.10.3 Determinación del nivel de complejidad del sistema	99
5.1.10.4 Caudales de diseño	99
5.1.11 Alternativas de diseño	99
5.1.11.1 Identificación de alternativas	99
5.1.12 Estudio topográfico (localización y replanteo)	99
5.1.13 Resumen técnico del proyecto	100
5.1.14 Estudio hidrológico de la fuente	100
5.1.15 Estudios de suelos	101
5.1.16 Diseño hidráulico y geométrico de los módulos de los sistemas	101
5.1.17 Cálculos estructurales de los componentes del los sistemas	101
5.1.18 Análisis y medidas de mitigación ambiental	101
5.1.19 Presupuesto y cronograma de ejecución del proyecto	102
5.1.19.1 Presupuesto general de obra	102
5.1.19.2 Cronograma de ejecución	102
5.1.20 Especificaciones técnicas ambientales	102
5.1.21 Indicadores de evaluación socioeconómicas	103
5.1.22 Sostenibilidad del proyecto	103
5.1.22.1 Determinación de la tarifa	103
5.1.22.2 Manual de operación y mantenimiento	103
5.1.22.3 Plan de operación y mantenimiento	104
5.1.23 Planos y memorias de cálculo	104
5.1.23.1 Planos	104
5.1.23.2 Memorias de cálculo	106
5.1.24 Valores para bienes y servicios CUBS	106
5.2 TÉRMINOS DE REFERENCIA PARA PLANTAS DE TRATAMIENTO DE	
AGUAS RESIDUALES	106
5.2.1 Actividades del consultor	106
5.2.2 Informes	107
5.2.3 Plazo de la consultoría	108
5.2.4 Alternativas	108

5.2.5 Objetivos del proyecto	108
5.2.6 Metodología	108
5.2.7 Resumen técnico del proyecto	109
5.2.8 Estudio del agua	109
5.2.9 Estudio de suelos	109
5.2.10 Diseño hidráulico y geométrico de los módulos de los sistemas	109
5.2.11 Cálculos estructurales de los componentes del los sistemas	110
5.2.12 Análisis y medidas de mitigación ambiental	110
5.2.13 Presupuesto y cronograma de ejecución del proyecto	110
5.2.13.1 Presupuesto general de obra	110
5.2.13.2 Cronograma de ejecución	111
5.2.14 Especificaciones técnicas y ambientales	111
5.2.15 Indicadores de evaluación socioeconómica	111
5.2.16 Sostenibilidad del proyecto	111
5.2.16.1 Manual de operación y mantenimiento	111
5.2.16.2 Plan de operación y mantenimiento	112
5.2.17 Planos y memorias de cálculo	112
5.2.17.1 Planos	112
5.2.17.2 Memorias de cálculo	114
6. ACTIVIDADES TECNICAS DESEMPEÑADAS DENTRO DE LA	
n Allividades lelimilas desembenadas dentro de la	
=	115
ETAPA DE INTERVENTORÍA Y CONTROL	115
=	115
ETAPA DE INTERVENTORÍA Y CONTROL	115 115
ETAPA DE INTERVENTORÍA Y CONTROL 6.1 EVALUACION TECNICA DEL SISTEMA DE ACUEDUCTO DISEÑADO	
ETAPA DE INTERVENTORÍA Y CONTROL 6.1 EVALUACION TECNICA DEL SISTEMA DE ACUEDUCTO DISEÑADO PARA LAS LOCALIDADES DE JAMONDINO Y BARRIO EL ROSARIO	115
ETAPA DE INTERVENTORÍA Y CONTROL 6.1 EVALUACION TECNICA DEL SISTEMA DE ACUEDUCTO DISEÑADO PARA LAS LOCALIDADES DE JAMONDINO Y BARRIO EL ROSARIO 6.1.1 Resumen del proyecto entregado	115 115
6.1 EVALUACION TECNICA DEL SISTEMA DE ACUEDUCTO DISEÑADO PARA LAS LOCALIDADES DE JAMONDINO Y BARRIO EL ROSARIO 6.1.1 Resumen del proyecto entregado 6.1.1.1 Descripción del problema 6.1.1.2 Cuantificación de la población afectada por el problema 6.1.1.3 Justificación y descripción general del proyecto	115 115 115
6.1 EVALUACION TECNICA DEL SISTEMA DE ACUEDUCTO DISEÑADO PARA LAS LOCALIDADES DE JAMONDINO Y BARRIO EL ROSARIO 6.1.1 Resumen del proyecto entregado 6.1.1.1 Descripción del problema 6.1.1.2 Cuantificación de la población afectada por el problema 6.1.1.3 Justificación y descripción general del proyecto 6.1.1.4 Descripción de los objetivos, productos y resultados que se esperan	115 115 115 116 116
6.1 EVALUACION TECNICA DEL SISTEMA DE ACUEDUCTO DISEÑADO PARA LAS LOCALIDADES DE JAMONDINO Y BARRIO EL ROSARIO 6.1.1 Resumen del proyecto entregado 6.1.1.1 Descripción del problema 6.1.1.2 Cuantificación de la población afectada por el problema 6.1.1.3 Justificación y descripción general del proyecto 6.1.1.4 Descripción de los objetivos, productos y resultados que se esperan obtener con la alternativa	115 115 115 116 116
6.1 EVALUACION TECNICA DEL SISTEMA DE ACUEDUCTO DISEÑADO PARA LAS LOCALIDADES DE JAMONDINO Y BARRIO EL ROSARIO 6.1.1 Resumen del proyecto entregado 6.1.1.1 Descripción del problema 6.1.1.2 Cuantificación de la población afectada por el problema 6.1.1.3 Justificación y descripción general del proyecto 6.1.1.4 Descripción de los objetivos, productos y resultados que se esperan obtener con la alternativa 6.1.2 Análisis del diseño y metodología empleada	115 115 115 116 116 117
6.1 EVALUACION TECNICA DEL SISTEMA DE ACUEDUCTO DISEÑADO PARA LAS LOCALIDADES DE JAMONDINO Y BARRIO EL ROSARIO 6.1.1 Resumen del proyecto entregado 6.1.1.1 Descripción del problema 6.1.1.2 Cuantificación de la población afectada por el problema 6.1.1.3 Justificación y descripción general del proyecto 6.1.1.4 Descripción de los objetivos, productos y resultados que se esperan obtener con la alternativa 6.1.2 Análisis del diseño y metodología empleada 6.1.3 Presupuesto oficial	115 115 116 116 117 118 130
6.1 EVALUACION TECNICA DEL SISTEMA DE ACUEDUCTO DISEÑADO PARA LAS LOCALIDADES DE JAMONDINO Y BARRIO EL ROSARIO 6.1.1 Resumen del proyecto entregado 6.1.1.1 Descripción del problema 6.1.1.2 Cuantificación de la población afectada por el problema 6.1.1.3 Justificación y descripción general del proyecto 6.1.1.4 Descripción de los objetivos, productos y resultados que se esperan obtener con la alternativa 6.1.2 Análisis del diseño y metodología empleada 6.1.3 Presupuesto oficial 6.1.4 Observaciones adicionales	115 115 116 116 117 118 130 131
6.1 EVALUACION TECNICA DEL SISTEMA DE ACUEDUCTO DISEÑADO PARA LAS LOCALIDADES DE JAMONDINO Y BARRIO EL ROSARIO 6.1.1 Resumen del proyecto entregado 6.1.1.1 Descripción del problema 6.1.1.2 Cuantificación de la población afectada por el problema 6.1.1.3 Justificación y descripción general del proyecto 6.1.1.4 Descripción de los objetivos, productos y resultados que se esperan obtener con la alternativa 6.1.2 Análisis del diseño y metodología empleada 6.1.3 Presupuesto oficial	115 115 116 116 117 118 130
6.1 EVALUACION TECNICA DEL SISTEMA DE ACUEDUCTO DISEÑADO PARA LAS LOCALIDADES DE JAMONDINO Y BARRIO EL ROSARIO 6.1.1 Resumen del proyecto entregado 6.1.1.1 Descripción del problema 6.1.1.2 Cuantificación de la población afectada por el problema 6.1.1.3 Justificación y descripción general del proyecto 6.1.1.4 Descripción de los objetivos, productos y resultados que se esperan obtener con la alternativa 6.1.2 Análisis del diseño y metodología empleada 6.1.3 Presupuesto oficial 6.1.4 Observaciones adicionales	115 115 116 116 117 118 130 131
6.1 EVALUACION TECNICA DEL SISTEMA DE ACUEDUCTO DISEÑADO PARA LAS LOCALIDADES DE JAMONDINO Y BARRIO EL ROSARIO 6.1.1 Resumen del proyecto entregado 6.1.1.1 Descripción del problema 6.1.1.2 Cuantificación de la población afectada por el problema 6.1.1.3 Justificación y descripción general del proyecto 6.1.1.4 Descripción de los objetivos, productos y resultados que se esperan obtener con la alternativa 6.1.2 Análisis del diseño y metodología empleada 6.1.3 Presupuesto oficial 6.1.4 Observaciones adicionales 6.1.5 Conclusiones	115 115 116 116 117 118 130 131
6.1 EVALUACION TECNICA DEL SISTEMA DE ACUEDUCTO DISEÑADO PARA LAS LOCALIDADES DE JAMONDINO Y BARRIO EL ROSARIO 6.1.1 Resumen del proyecto entregado 6.1.1.1 Descripción del problema 6.1.1.2 Cuantificación de la población afectada por el problema 6.1.1.3 Justificación y descripción general del proyecto 6.1.1.4 Descripción de los objetivos, productos y resultados que se esperan obtener con la alternativa 6.1.2 Análisis del diseño y metodología empleada 6.1.3 Presupuesto oficial 6.1.4 Observaciones adicionales 6.1.5 Conclusiones	115 115 116 116 117 118 130 131
6.1 EVALUACION TECNICA DEL SISTEMA DE ACUEDUCTO DISEÑADO PARA LAS LOCALIDADES DE JAMONDINO Y BARRIO EL ROSARIO 6.1.1 Resumen del proyecto entregado 6.1.1.1 Descripción del problema 6.1.1.2 Cuantificación de la población afectada por el problema 6.1.1.3 Justificación y descripción general del proyecto 6.1.1.4 Descripción de los objetivos, productos y resultados que se esperan obtener con la alternativa 6.1.2 Análisis del diseño y metodología empleada 6.1.3 Presupuesto oficial 6.1.4 Observaciones adicionales 6.1.5 Conclusiones 6.2 EVALUACION TECNICA DEL SISTEMA DE ACUEDUCTO DISEÑADO PARA LA LOCALIDAD DE JUANOY	115 115 116 116 117 118 130 131 131

6.2.1.2 Cuantificación de la población afectada por el problema	132
6.2.1.3 Justificación y descripción general del proyecto	132
6.2.1.4 Descripción de los objetivos, productos y resultados que se esperan	
obtener con la alternativa	132
6.2.2 Análisis del diseño y metodología empleada	133
6.2.3 Presupuesto oficial	145
6.2.4 Observaciones adicionales	145
6.2.5 Conclusiones	145
6.3 EVALUACION TECNICA DEL SISTEMA DE ACUEDUCTO DISEÑADO	
PARA LAS LOCALIDADES DE MOCONDINO CANCHALA Y PUERRES	146
6.3.1 Resumen del proyecto entregado	146
6.3.1.1 Descripción del problema	146
6.3.1.2 Cuantificación de la población afectada por el problema	146
6.3.1.3 Justificación del proyecto	147
6.3.1.4 Descripción general del proyecto	147
6.3.1.5 Descripción de los objetivos, productos y resultados que se esperan obtener con la alternativa	148
6.3.2 Análisis del diseño y metodología empleada	149
6.3.3 Presupuesto oficial	167
6.3.4 Observaciones adicionales	167
6.3.5 Conclusiones	167
6.4 EVALUACION TECNICA DEL SISTEMA DE ACUEDUCTO DISEÑADO	
PARA LA LOCALIDAD DE SAN CAYETANO CORREGIMIENTO DE	
MAPACHICO	169
6.4.1 Resumen del proyecto entregado	169
6.4.1.1 Descripción del problema	169
6.4.1.2 Cuantificación de la población afectada por el problema	169
6.4.1.3 Justificación	169
6.4.1.4 Descripción general del proyecto	169
6.4.1.5 Descripción de los objetivos, productos y resultados que se esperan	470
obtener con la alternativa	170
6.4.2 Análisis del diseño y metodología empleada	170
6.4.3 Presupuesto oficial	185
6.4.4 Observaciones adicionales	185
6.4.5 Conclusiones	186
6.5 EVALUACION TECNICA DEL DISEÑO DEL SISTEMA DE	
ALMACENAMIENTO DE SAN FERNANDO	186
6.5.1 Resumen del proyecto entregado	186

6.5.1.1 Descripción del problema	186
6.5.1.2 Cuantificación de la población afectada por el problema	186
6.5.1.3 Justificación	187
6.5.1.4 Descripción general del proyecto	187
6.5.1.5 Descripción de los objetivos, productos y resultados que se esperan	
obtener con la alternativa	187
6.5.2 Análisis del diseño y metodología empleada	188
6.5.3 Presupuesto oficial	193
6.5.4 Observaciones adicionales	193
6.5.5 Conclusiones	193
6.6 EVALUACION TECNICA DEL DISEÑO DEL SISTEMA DE TRATAMIENTO DE AGUAS RESIDUALES EN LOS BARRIOS POPULAR Y ROSAL DE	400
ORIENTE	193
6.6.1 Resumen del proyecto entregado	193
6.6.1.1 Descripción del problema	193
6.6.1.2 Cuantificación de la población afectada por el problema	194
6.6.1.3 Justificación y descripción general del proyecto	194
6.6.1.4 Descripción de los objetivos, productos y resultados que se esperan obtener con la alternativa	195
6.6.2 Análisis del diseño y metodología empleada	196
6.6.3 Presupuesto oficial	205
6.6.4 Observaciones adicionales	207
6.6.5 Conclusiones	207
0.0.0 Confiduationes	201
6.7 INTERVENTORÍA DE LA OBRA DE CONSTRUCCION PLANTA SEMICOMPACTA DE TRATAMIENTO DE AGUA POTABLE PARA LOS	
BARRIOS POPULAR Y ARNULFO GUERRERO	207
6.7.1 Justificación del proyecto	207
6.7.2 Descripción de los objetivos	208
6.7.3 Funcionamiento del sistema de potabilización	208
6.7.4 Descripción del proceso de construcción	211
6.7.5 Localización del proyecto	212
6.7.6 Personal en obra	212
6.7.7 Maquinaria y equipo utilizado	213
6.7.8 Presupuesto oficial	213
6.7.9 Seguimiento de la obra de construcción	215
6.7.10 Actividades desarrolladas por la interventoría técnica	226
6.7.11 Observaciones adicionales	226
6.7.12 Conclusiones	227
O.T. 12 Contradiction	~~1

6.8 SEGUIMIENTO DE LA OBRA CONSTRUCCIÓN DE LA SEGUNDA FASE DEL SISTEMA DE ABASTECIMIENTO RURAL DE SANTA TERESITA	227
	227
6.8.1 Justificación del proyecto6.8.2 Descripción de los objetivos	228
6.8.3 Descripción del proceso de construcción	228
·	229
6.8.4 Localización del proyecto 6.8.5 Personal en obra	229
	231
6.8.6 Maquinaria y equipo utilizado	231
6.8.7 Presupuesto, especificaciones, cantidades y acta de modificación6.8.8 Localización y replanteo	237
6.8.9 Acarreo de materiales	238
6.8.10 Proceso de excavación	238
6.8.11 Actividades desarrolladas por la interventoría técnica	236
6.8.12 Observaciones adicionales	244
6.8.11 Conclusiones	243
6.8.12 Recomendaciones	247
0.0.12 Recomendationes	271
6.9 ASISTENCIA TÉCNICA ACUEDUCTO POPULAR - ARNULFO GUERRERO	247
6.9.1 Problema	247
6.9.1.1 Solución parcial	247
6.9.1.2 Visita técnica 1	247
6.9.1.3 Procedimiento	248
6.9.1.4 Diagnostico inicial	250
6.9.1.5 Visita técnica 2	250
6.9.1.6 Conclusiones	253
7. CONCLUSIONES	254
8. RECOMENDACIONES	256
BIBLIOGRAFIA	257
ANEXOS	258

LISTA DE TABLAS

	pág.
TABLA 1. Resumen hoja de cálculo red de conducción Jamondino	121
TABLA 2. Caudales corregidos Jamondino	123
TABLA 3. Caudales corregidos El Rosario	124
TABLA 4. Presiones Jamondino	124
TABLA 5. Presiones El Rosario	124
TABLA 6. Revisión del diseño siguiendo parámetros RAS 2000	126
TABLA 7. Presupuesto oficial	130
TABLA 8. Registro de caudales y velocidades red Juanoy	139
TABLA 9. Presiones red Juanoy	140
TABLA 10. Revisión del diseño siguiendo parámetros RAS 2000	141
TABLA 11. Presupuesto oficial del proyecto	145
TABLA 12. Caudales en época de alta y baja precipitación	152
TABLA 13. Caudales corregidos y presiones Puerres	161
TABLA 14. Caudales corregidos y presiones Canchala	163
TABLA 15. Revisión del diseño siguiendo parámetros RAS 2000	164
TABLA 16. Presupuesto oficial	168
TABLA 17. Caudales, diámetros de diseño y velocidades de la aducción	172
TABLA 18. Cotas de la aducción	172
TABLA 19. Presiones de la aducción	173
TABLA 20. Longitudes y caudal de diseño de la conducción	175
TABLA 21. Diámetros, velocidades y cotas de la conducción	176
TABLA 22. Pérdidas y cotas de la conducción	176
TABLA 23. Presiones de la conducción	177
TABLA 24. Red de distribución tanque El Tinto – tanque Tres Vasos	177
TABLA 25. Red de distribución tanque Tres Vasos – cámara de quiebre	178
TABLA 26. Red de distribución cámara de quiebre – final	178
TABLA 27. Red de distribución ramal 1	179
TABLA 28. Red de distribución ramal 2	179
TABLA 29. Válvulas a lo largo de la red de distribución	180
TABLA 30. Revisión del diseño siguiendo parámetros RAS 2000	181
TABLA 31. Presupuesto del proyecto	185
TABLA 32. Revisión del diseño siguiendo parámetros RAS 2000	191
TABLA 33 Presupuesto oficial del provecto	193

TABLA 34.	Características asumidas del agua a tratar	198
TABLA 35.	Eficiencia de remoción del sistema	198
TABLA 36.	Rejilla para gruesos	198
TABLA 37.	Rejilla para finos	199
TABLA 38.	Geometría recomendada para desarenadores de diferente tipo	199
TABLA 39.	Geometría del desarenador	200
TABLA 40.	Remociones esperadas en la PTAR	203
TABLA 41.	Presupuesto oficial del proyecto	206
TABLA 42.	Referencias del contrato para el proyecto	212
TABLA 43.	Presupuesto del proyecto	213
TABLA 44.	Referencias del contrato para el proyecto	230
TABLA 45.	Presupuesto del proyecto	232
TABLA 46.	Acta de modificación del proyecto	234

LISTA DE FOTOGRAFIAS

	pág
FOTO 1. Captación quebrada El Pailón 1	56
FOTO 2. Estado desarenador	56
FOTO 3. Cámara de quiebre de presión	57
FOTO 4. Mal estado de los accesorios y tuberías de entrada	57
FOTO 5. Paso elevado en tubería	58
FOTO 6. Tanque de almacenamiento	58
FOTO 7. Caseta de desinfección y tanque mezclador de cloro	59
FOTO 8. Dosificador automático de cloro	59
FOTO 9. Captación, bocatoma y detalle de la rejilla	62
FOTO 10. Línea de aducción	63
FOTO 11. Desarenador	64
FOTO 12. Línea de conducción	64
FOTO 13. Caseta de cloración	65
FOTO 14. Tanques de almacenamiento para Jamondino y El Rosario	66
FOTO 15. Bocatoma El Tambillo	69
FOTO 16. Bocatoma Motilón 1	70
FOTO 17. Bocatoma Motilón 2	70
FOTO 18. Bocatoma Chorrera Negra	71
FOTO 19. Bocatoma Toma Alta	71
FOTO 20. Desarenador 1 de la bocatoma El Tambillo	72
FOTO 21. Desarenador 2	72
FOTO 22. Conducción desde la bocatoma el tambillo	73
FOTO 23. Tanques para Mocondino	74
FOTO 24. Tanque para Puerres y Canchala	75
FOTO 25. Acceso a la Bocatoma	77
FOTO 26. Tubería de salida de la bocatoma al desarenador (aducción)	78
FOTO 27. Cámara de salida del desarenador	78
FOTO 28. Entrada a la bocatoma y salida a parques nacionales	79
FOTO 29. Bocatoma y salida a San Cayetano en la parte inferior izquierda	79
FOTO 30. Acceso a la fuente Ojo de Agua y cámara repartidora	80
FOTO 31. Desarenador	80
FOTO 32. Interior del desarenador	81
FOTO 33. Tanque El Tinto	82

FOTO 34.	Tanque de EMPOPASTO	82
FOTO 35.	Tanque Tres Vasos	83
FOTO 36.	Lote de la PTAR	84
FOTO 37.	Lote ubicación de la PTAR	84
FOTO 38.	Entrada de aguas vertidas al canal de conducción existente	85
FOTO 39.	Salida de aguas al río Pasto	85
FOTO 40.	Entrada al canal de conducción y rejilla de separación	85
FOTO 41.	Filtración y sedimentación	86
FOTO 42.	Tanques de almacenamiento existentes	88
FOTO 43.	Ventana comunicante tanque 1 al tanque 2	89
FOTO 44.	Salida a la red desde el tanque 1 y desagüe	89
FOTO 45.	Detalles del interior del tanque	90
FOTO 46.	Salida del tanque existente al lote destinado al tanque nuevo	90
FOTO 47.	Lote de ubicación del tanque a diseñar	91
FOTO 48.	Actividades de descapote del terreno	215
FOTO 49.	Transporte de materiales y equipo de trabajo	215
FOTO 50.	Construcción de muros perimetrales	216
FOTO 51.	Detalle de la losa del sistema de tratamiento	216
FOTO 52.	Figurado, formaletas y fundición de las vigas de cimentación	217
FOTO 53.	Preparación para fundición de losa	217
FOTO 54.	Compartimentos de floculación y sedimentación de la planta	218
FOTO 55.	Entrada al filtro	218
FOTO 56.	Detalle del interior del filtro, tubería de distribución por gravedad	219
FOTO 57.	Salida del agua filtrada a la cámara repartidora de caudales	219
FOTO 58.	Falso fondo y colector	220
FOTO 59.	Falso fondo y orificio central para el flujo ascendente	220
FOTO 60.	Tubo de distribución de agua	220
FOTO 61.	Tubería de retrolavado y desagüe del compartimiento superior	221
	Tubería de lavado y desagüe del tanque floculador -	
sedimenta		221
	Almacenamiento de los tubos aceleradores de sedimentación	221
	Caseta de desinfección	222
	Tanques de preparación de soluciones y bomba centrifuga	222
	Planta de tratamiento Popular – Arnulfo Guerrero	222
	Detalle planta fabricada en poliéster reforzado con fibra de	000
vidrio	Const de mande teneros flegoladores tobres de codimento de la	223
	Canal de mezcla, tanque floculador y tubos de sedimentación	223
	Salida del agua filtrada a la red de distribución	224
FUIU /0.	Detalle tuberías de salida de los filtros	224

FOTO 71.	Conexión de los tanques a las bombas dosificadoras	225
FOTO 72.	Conexión de la bomba al cilindro de cloro gaseoso	225
FOTO 73.	Circulación del agua cruda por el canal de mezcla	225
FOTO 74.	Almacenamiento de tubería en Santa Teresita	229
FOTO 75.	Tubería y manguera expuesta al transito	239
FOTO 76.	Pasos obligados de la tubería nueva	239
FOTO 77.	Actividades de excavación iniciales	239
FOTO 78.	Tubería transportada al lugar de trabajo	240
FOTO 79.	Tubería enterrada de acuerdo a la topografía del terreno	240
FOTO 80.	Proceso de instalación de tubería	241
FOTO 81.	Medición para construcción de viaductos	241
FOTO 82.	Excavación para construcción de cajillas de seguridad	242
FOTO 83.	Viaductos en madera rolliza	242
FOTO 84.	Válvula ventosa protegida por cajilla	243
FOTO 85.	Ensayo de válvula purga	244
FOTO 86.	Inundación de la cajilla por que no se instaló un desagüe	245
FOTO 87.	Rompimiento de tubería	245
FOTO 88.	Viaductos con pintura epóxica	246
FOTO 89.	Registro de presiones en varios puntos	246
FOTO 90.	Planta para los barrios Popular y Arnulfo Guerrero	248
FOTO 91.	Revisión de válvula ventosa	248
FOTO 92.	Revisión de válvula ventosa	249
FOTO 93.	Revisión de válvula purga	250
FOTO 94.	Excavaciones para revisión de tubería	251
FOTO 95.	Excavación mecánica para revisión de tubería	251
FOTO 96.	Excavación manual complementaria	251
FOTO 97.	Caudal de 10 lps registrado en el canal de mezcla	252

LISTA DE FIGURAS

	pág.
FIGURA 1. Distribución del tanque de Mocondino	74
FIGURA 2. Distribución del tanque de Puerres y Canchala	75
FIGURA 3. Tanque existente en San Fernando	88
FIGURA 4. Perfil de conducción	120
FIGURA 5. Vista en perfil desarenador	122
FIGURA 6. Vista en planta desarenador	122
FIGURA 7. Vista en planta red Jamondino	125
FIGURA 8. Vista en planta red El Rosario	125
FIGURA 9. Vista en perfil y planta bocatoma Pailón 1	134
FIGURA 10. Vista en perfil y planta bocatoma Pailón 2	134
FIGURA 11. Vista en perfil desarenador Pailón 1	135
FIGURA 12. Vista en planta desarenador Pailón 1	136
FIGURA 13. Vista en perfil tanque de almacenamiento	138
FIGURA 14. Vista en planta tanque de almacenamiento	138
FIGURA 15. Red de distribución Juanoy bajo	140
FIGURA 16. Dotación de dos acueductos a una sola casa	150
FIGURA 17. Contacto cimiento desarenador - suelo	154
FIGURA 18. Vista en planta desarenador Motilón 1	154
FIGURA 19. Vista en perfil desarenador Motilón 1	155
FIGURA 20. Conducción tramo Motilón 1 a desarenador	155
FIGURA 21. Conducción tramo Chorrera Negra a desarenador	156
FIGURA 22. Red de distribución Mocondino	157
FIGURA 23. Vista en planta tanque de compensación	160
FIGURA 24. Vista en perfil tanque de compensación	160
FIGURA 25. Red de distribución Puerres	162
FIGURA 26. Red de distribución Canchala	163
FIGURA 27. Vista en perfil desarenador	174
FIGURA 28. Vista en planta desarenador	174
FIGURA 29. Vista en planta conducción y red de distribución	180
FIGURA 30. Vista en planta del tanque de compensación	189
FIGURA 31. Vista en perfil tanque de compensación	190
FIGURA 32. Vista en perfil desarenador	200
FIGURA 33. Vista en planta desarenador	201

FIGURA 34.	Vista en planta sistema de tratamiento de aguas residuales	204
FIGURA 35.	Vista en planta detalle entrada a los tanques digestores	204
FIGURA 36.	Vista en planta detalle tanques digestores a filtros anaerobios	205
FIGURA 37.	Proceso de tratamiento	209
FIGURA 38.	Vista en planta Santa Teresita	229
FIGURA 39.	Distribución de ramales	230
FIGURA 40.	Vista en perfil de la red de conducción del acueducto	247
FIGURA 41.	Reubicación de la válvula ventosa	252

LISTA DE ANEXOS

	pág.
ANEXO A. Ficha MGA	259
ANEXO B. Registro y concepto de viabilidad	272
ANEXO C. Actas contrato acueducto Santa Teresita	273
ANEXO D. Actas contrato diseño acueducto Juanoy	280
ANEXO E. Actas contrato diseño acueducto Mocondino, Puerres,	
Canchala	283
ANEXO F. Actas contrato diseño acueducto San Cayetano	285
ANEXO G. Actas contrato diseño tanque San Fernando	286
ANEXO H. Actas contrato diseño PTAR Popular - Rosal de oriente	288
ANEXO I. Actas contrato PTAP Popular - Arnulfo Guerrero	290
ANEXO J. Actas contrato diseño acueducto Jamondino	292

GLOSARIO

ABSCISA: es el sentido progresivo medido en kilómetros (km) de un tramo diseñado sobre una topografía específica.

ACTA: es la relación escrita y autentificada de un convenio tratado entre dos partes de un contrato. Las actas pueden certificar lo tratado en una junta ó la elección de una persona para algún cargo.

ACUEDUCTO: es un sistema o conjunto de sistemas acoplados, que permite transportar agua en forma de flujo continuo desde un lugar en el que ésta es accesible en la naturaleza, hasta un punto de consumo distante.

ADMINISTRACIÓN: ciencia que estudia la organización de las empresas y la manera como se gestionan los recursos, procesos y resultados de sus actividades.

ADUCCIÓN: hace referencia al sistema que transporta agua sin tratamiento el cual se puede hacer a flujo libre o a presión.

AGRIETAMIENTO: es la abertura o formación de grietas que surge de forma natural en una superficie. Este tipo de aberturas se suele dar por el deterioro de una estructura sometida a uso continuo.

ALCANTARILLADO: es un sistema de estructuras y tuberías usadas para el transporte de aguas residuales o servidas (alcantarillado sanitario), o aguas de lluvia, (alcantarillado pluvial) desde el lugar en que se generan hasta el sitio en que se vierten a cauce o se tratan.

ALTITUD: es la distancia vertical a un origen determinado, considerado como nivel cero, para el que se suele tomar el nivel medio del mar.

ANTRACITA: es el carbón mineral de más alto rango y el que presenta mayor contenido en carbono, hasta un 95%. Es negro, brillante y muy duro, con irisaciones y sonoro por percusión. En obras de tratamiento de aguas se puede utilizar en el proceso de filtración.

APIQUE: excavaciones a diferente profundidad en el suelo realizadas generalmente para la toma de muestras.

ASENTAMIENTO DIFERENCIAL: es la diferencia de asentamientos entre columnas adyacentes o separadas.

BOCATOMA: o captación, es una estructura hidráulica destinada a derivar desde unos cursos de agua, río, arroyo, o canal; o desde un lago; o incluso desde el mar, una parte del agua disponible en esta, para ser utilizada en un fin específico, como pueden ser abastecimiento de agua potable, riego, generación de energía eléctrica, acuicultura, enfriamiento de instalaciones industriales, etc. Por medio de esta estructura se puede derivar el caudal de diseño que, por lo general, corresponde al caudal máximo diario.

BOMBA: es una maquina hidráulica capaz de transformar energía, absorbiendo un tipo de energía y restituyéndola en otra.

CABILDOS: es un mecanismo de participación que se da en municipios, distritos, localidades, comunas o corregimientos. Cada uno de estos entes territoriales está representado por concejos municipales o distritales o por juntas administradoras locales (JAL), que a lo largo de su período de sesiones ordinarias, deben dedicar al menos dos sesiones a las peticiones que el pueblo desea que sean analizadas y tenidas en cuenta.

CÁMARA DE QUIEBRE: es una estructura empleada para reducir el exceso de presión o fuerza de caída del líquido transportado. Este tipo de estructura se usa principalmente en pendientes pronunciadas que es en donde adquiere mas impulso el agua transportada.

CÁMARA DISTRIBUIDORA DE CAUDALES: es una estructura empleada para dividir el caudal de dotación a través de pantallas internas ubicadas a diferente nivel. Esta estructura se emplea cuando se requieren varias salidas requeridas para destinos o poblaciones separadas entre si.

CANAL: es una construcción destinada al transporte de fluidos.

CAPACIDAD PORTANTE: es la capacidad del terreno para soportar las cargas aplicadas. Técnicamente la capacidad portante es la máxima presión media de contacto entre la cimentación y el terreno tal que no se produzcan un fallo por cortante del suelo o un asentamiento diferencial excesivo.

CAPTACIÓN: véase bocatoma.

CASETA DE DESINFECCIÓN: o de de cloración, es un edificio empleado para el almacenamiento y transporte de los químicos empleados para la desinfección del agua a el punto en donde se produce la mezcla, por economía y facilidad de adquisición generalmente es el cloro el que se emplea para este fin, que puede ser gaseoso, granulado o en pastillas o en polvo. Generalmente este tipo de estructuras se adaptan para vigilancia y control las 24 horas del día.

CAUDAL: es la cantidad de fluido que pasa por un medio en una unidad de tiempo. La unidad de medida del caudal se expresa en volumen sobre tiempo.

CERCHA: es una estructura reticular de barras rectas interconectadas en nudos formando triángulos planos (retículos planos). También se conoce como celosía o armadura. Las cerchas pueden ser construidas con materiales diversos: acero, madera, aluminio, etc. Las uniones pueden ser articuladas o rígidas.

CIMENTACIÓN: conjunto de elementos estructurales cuya misión es transmitir las cargas de la edificación al suelo.

COLECTOR: tramo del alcantarillado público que colecta diversos ramales de alcantarilla. Se construye bajo tierra, a menudo al medio de las calles importantes, de manera que cada una de las viviendas de esa vía puedan conectarse para la evacuación apropiada de las aguas residuales.

COLIFORMES: es un grupo de especies bacterianas que tienen ciertas características bioquímicas en común e importancia relevante como indicadores de contaminación del agua y los alimentos.

COLUMNA: es una pieza vertical y de forma alargada que sirve, en general, para sostener el peso de la estructura.

CONCESIÓN: es el otorgamiento del derecho de explotación por un lapso de tiempo determinado de bienes y servicios por parte de una empresa a otra, generalmente privada.

CONCRETO: es el material resultante de la mezcla de cemento (u otro conglomerante) con áridos (grava, gravilla y arena) y agua.

CONCRETO CICLÓPEO: es el hormigón que tiene embebidos en su interior grandes piedras de dimensión no inferior a 30 cm.

CONCRETO DE LIMPIEZA: es la capa de concreto generalmente en mortero que se aplica directamente sobre el suelo antes de fundir un volumen con mayores especificaciones de resistencia, esta capa se utiliza para mejorar las características de contacto con el suelo.

CONCRETO IMPERMEABILIZADO: es el concreto empleado para impedir el paso de cualquier fluido a través de una superficie horizontal o vertical. Este tipo de concreto presenta menor porosidad que el concreto normal.

CONCRETO REFORZADO: o concreto armado, es la introducción en el concreto de barras de acero prediseñadas para soportar esfuerzos a tracción y a cortante.

El refuerzo se debe figurar o dar forma y armar antes de fundir el elemento en concreto.

CONDUCCIÓN: es el transporte de agua a flujo libre o a presión. Igualmente se puede transportar agua cruda o tratada. Generalmente es el tramo comprendido entre el desarenador y el tanque de almacenamiento de agua.

CONTRATO: es un acuerdo privado, oral o escrito, entre partes que se obligan sobre materia o cosa determinada, y a cuyo cumplimiento pueden ser exigidas. Es un acuerdo de voluntades que genera derechos y obligaciones para las partes. Por ello se señala que habrá contrato cuando varias partes se ponen de acuerdo sobre una manifestación de voluntad destinada a reglar sus derechos.

CONSULTOR: es un profesional que provee de consejo experto en un dominio particular o área de experiencia.

CORPONARIÑO: son las siglas que pertenecen a la Corporación Autónoma Regional de Nariño. Es una entidad estatal departamental que tiene como fin promover y encauzar el desarrollo económico y social de la región y prestar asistencia técnica a entidades oficiales y privadas de la región.

CORREGIMIENTO: es una división territorial o población dirigida por un corregidor.

CRONOGRAMA: consiste en una lista de todos los elementos terminales de un proyecto con sus fechas previstas de comienzo y final.

DBO: la demanda biológica de oxígeno, es un parámetro que mide la cantidad susceptible de ser consumida u oxidada por medios biológicos que contiene una muestra líquida, y se utiliza para determinar su grado de contaminación. El método se basa en medir el oxígeno consumido por una población microbiana en condiciones en las que se ha inhibido los procesos fotosintéticos de producción de oxígeno en condiciones que favorecen el desarrollo de los microorganismos. Normalmente se mide transcurridos 5 días (DBO $_5$) y se expresa en mg O $_2$ /litro.

DESARENADOR: son estructuras hidráulicas que tienen como función remover las partículas de cierto tamaño que la captación de una fuente superficial permite pasar.

DESCAPOTE: consiste en el retiro, de la capa de vegetal, hasta una profundidad de 0.20 m. Utilizando los medios manuales o mecánicos necesarios para su remoción.

DESPLANTE: es la distancia entre el borde superior de un cimiento y el suelo superficial.

DIAGNÓSTICO: es el procedimiento por el cual se identifica el estado del sistema analizado mediante observación y medición.

DISEÑO: es el proceso previo de configuración mental "pre-figuración" en la búsqueda de una solución en cualquier campo.

DOTACIÓN NETA: corresponde a la cantidad mínima de agua requerida para satisfacer las necesidades básicas de un habitante sin considerar las pérdidas que ocurran en el sistema de acueducto.

EBI: es la ficha de Estadística Básica de Inversión y hace parte del sistema que conforma a la ficha MGA o Metodología General Ajustada.

EMPOPASTO: son las siglas que pertenecen a la Empresa de Obras Sanitarias de Pasto, es una empresa publica encargada de cumplir con el servicio de agua potable y lo que implica su transporte y tratamiento desde el punto en que se capta hasta las acometidas domiciliarias pertenecientes a los sectores beneficiados por esta empresa.

ESTRATIFICACIÓN: la estratificación social es la conformación en grupos verticales diferenciados de acuerdo a criterios establecidos y reconocidos. La estratificación social da cuenta o es un medio para representar de la desigualdad social de una sociedad en la distribución de los bienes y atributos socialmente valorados.

ESTRUCTURA: es la disposición y orden de las partes dentro de un todo. También puede entenderse como un sistema de elementos enlazados, cuyo objetivo es precisar la esencia del objeto de estudio.

FICHA EBI: es un componente de la metodología general ajustada que se utiliza para la inscripción, registro y/o actualización de un proyecto en el Banco Distrital de Programas y Proyectos de la Administración Central y Establecimientos Públicos.

FIGURADO: es la disposición detallada del refuerzo del concreto de acuerdo a especificaciones de diseño del proyecto.

FILTRACIÓN: es una operación por la cual se hace pasar una mezcla de sólidos y líquido, a través de un medio poroso o medio filtrante que puede formar parte de un dispositivo denominado filtro, donde se retiene de la mayor parte de él o de los componentes sólidos de la mezcla.

FILTRO: es el componente principal del sistema de filtración. Estos sistemas se emplean para el control de la contaminación por partículas sólidas de origen externo y que son transportadas por el agua.

FILTRO ANAEROBIO: es un tanque en el cual se da el proceso de degradación de la materia orgánica por la acción coordinada de microorganismos, en ausencia de oxígeno u otros agentes oxidantes fuertes.

FLOCULACIÓN: es un proceso químico mediante el cual, con la adición de sustancias denominadas floculantes, se aglutina las sustancias coloidales presentes en el agua, facilitando de esta forma su decantación y posterior filtrado.

FORMALETA: son moldes empleados para dar una forma regular y definida al concreto empleado en la construcción de una estructura de acuerdo a los requerimientos exigidos por los planos arquitectónicos y estructurales.

FUNDIR: hace relación al proceso de aplicación de la mezcla de concreto fresco.

GPS: o sistema de posicionamiento global, es un sistema global de navegación por Satélite (GNSS) que permite determinar en todo el mundo la posición de un objeto, una persona, un vehículo o una nave, con una precisión hasta de centímetros, usando GPS diferencial, aunque lo habitual son unos pocos metros.

INFILTRACIÓN: es la acción y efecto de introducir suavemente un líquido entre los poros de un sólido.

INFRAESTRUCTURA: es la intervención primaria del ser humano sobre el territorio, para acceder a él y destapar su potencial de desarrollo. Usualmente comienza por la provisión de los servicios básicos para sobrevivir (agua y refugio) pero rápidamente se expande para incluir vías de acceso que permitan ampliar el área de influencia de la actividad humana y tecnologías más avanzadas para generar energía y permitir la comunicación a larga distancia.

INTERVENTORÍA: es el proceso de supervisión y control que deben realizar las entidades territoriales (departamentos, distritos, municipios) sobre aquellas funciones y competencias que les asigna la normatividad vigente en el sector social de la salud, cuando éstas se realizan mediante una relación contractual, con el propósito de verificar durante su ejecución el grado de avance y cumplimiento de las obligaciones contraídas en términos de oportunidad, utilización de los recursos y la calidad de los bienes o servicios contratados.

LADRILLO EN TIZÓN: ladrillo que se coloca de forma horizontal, sobre su tabla, en un muro, quedando a la vista la testa, que sigue la línea del muro.

LICITACIÓN: concursos en los que los proponentes interesados en proveer los bienes y/o servicios objeto del contrato, compran los pliegos de condiciones y presentan propuesta para competir por el derecho a la ejecución del contrato.

LOSA: elemento portante horizontal que transmite su carga a muros o columnas (sistema de pórtico); elemento de amarre y rigidez de carácter horizontal (diafragma).

Ips: unidad de medida del sistema internacional de unidades traducida en litros por segundo la cual es equivalente al volumen en una unidad de tiempo empleado para la medición de flujos o caudales.

M.S.N.M.: equivalente a metros sobre el nivel del mar y hace referencia a la altitud de un punto con respecto al nivel medio del mar.

MACRO MEDICIÓN: es el registro y la medición global del agua que llega a la población a través del sistema de acueducto.

MAMPOSTERÍA: es la unión de bloques o ladrillos de arcilla o de concreto con un mortero para conformar sistemas monolíticos tipo muro, que pueden resistir acciones producidas por las cargas de gravedad o las acciones de sismo o viento.

MICRO MEDICIÓN: es el registro y la medición del agua que llega a cada acometida domiciliaria empleado como mecanismo de control para evitar el uso inadecuado del agua potable.

MGA: son las siglas que pertenecen a la Metodología General Ajustada la cual se utiliza para proveer un sistema de información que controle los procesos inherentes a un manual metodológico para proyectos de inversión, con agilidad y eficiencia.

MORTERO: es la mezcla de cemento con arena y agua.

NACEDERO: hace referencia a la fuente por la cual empieza a salir a la superficie una cantidad considerable de agua subterránea.

NIVEL FREATICO: es la parte superior de suelo hasta donde llega la saturación de agua y por encima de él, las partículas de tierra no poseen más que una delgada película de agua y los poros están llenos de aire.

OBRA: es un conjunto de actividades en las cuales se altera la apariencia, estructura o forma de una edificación o parte de ella. Se emplea para designar un proyecto ejecutado o pendiente de ejecución.

PARRILLA: es un sistema mallado formado por hierro de refuerzo empleado para incrementar la resistencia de la estructura y para evitar retracción por fraguado.

PATÓGENO: o agente biológico patógeno es toda aquella entidad biológica capaz de producir enfermedad o daño en la biología de un huésped (humano, animal, vegetal, etc.) sensiblemente predispuesto.

PATOLOGIA ESTRUCTURAL: es un diagnóstico real y muy detallado del estado funcional de una estructura. Su formulación implica una serie de conceptos enfocados en la raíz del problema los cuales generalmente van acompañados de soluciones que satisfacen y garantizan un buen funcionamiento del elemento analizado.

PH: es una medida de la acidez o basicidad de una solución. La sigla significa "potencial de hidrógeno". El pH típicamente va de 0 a 14 en disolución acuosa, siendo ácidas las disoluciones con pH menores a 7 y básicas las que tienen pH mayores a 7. El pH igual a 7 indica la neutralidad de la disolución (donde el disolvente es agua). El pH del agua potable debe estar entre 6,5 y 8,5.

TRATAMIENTO DE AGUAS: es el conjunto de operaciones unitarias de tipo físico, químico o biológico cuya finalidad es la eliminación o reducción de la contaminación o las características no deseables de las aguas, bien sean naturales, de abastecimiento, de proceso o residuales llamadas, en el caso de las urbanas, aguas negras. La finalidad de estas operaciones es obtener unas aguas con las características adecuadas al uso que se les vaya a dar, por lo que la combinación y naturaleza exacta de los procesos varía en función tanto de las propiedades de las aguas de partida como de su destino final.

PLANTA DE TRATAMIENTO: es el conjunto de estructuras en las que se trata el agua de manera que se vuelva apta para el consumo humano.

POLIPROPILENO: es el polímero termoplástico, parcialmente cristalino, que se obtiene de la polimerización del propileno o propeno. Pertenece al grupo de las poliolefinas y es utilizado en una amplia variedad de aplicaciones industriales.

PREINVERSIÓN: es la fase preliminar para la ejecución de un proyecto que permite, mediante elaboración de estudios, demostrar las bondades técnicas, económicas-financieras, institucionales y sociales de este, en caso de llevarse a cabo.

PSI: es una unidad de presión cuyo valor equivale a 1 libra por pulgada cuadrada.

PVC: o policloruro de vinilo, es un polímero termoplástico. Es el material base de la tubería sanitaria empleada en sistemas de acueducto. Entre sus características

están su alto contenido en halógenos. Es dúctil y tenaz; presenta estabilidad dimensional y resistencia ambiental. Además, es reciclable por varios métodos.

RAS 2000: es el reglamento técnico del sector de agua potable y saneamiento básico el cual señala los requisitos que deben cumplir las obras, equipos y procedimientos operativos que se utilicen en la prestación de los servicios públicos domiciliarios de acueducto, alcantarillado y aseo y sus actividades complementarias. Se expide en cumplimiento de lo dispuesto en la ley 142 de 1.994, que establece el régimen de los servicios públicos domiciliarios en Colombia, y busca garantizar su calidad en todos los niveles.

RDE: es la relación diámetro espesor para tuberías comerciales entre las que se encuentra la tubería sanitaria en PVC. Su valor se relaciona directamente con la presión máxima de servicio y el diámetro de la tubería.

RED DE DISTRIBUCIÓN: es el conjunto de tuberías, cuya función es suministrar el agua potable a los consumidores de la localidad en condiciones de cantidad y calidad aceptables.

REFUERZO A CORTANTE: contribuye a modo de cerco externamente adherido, y absorbe los esfuerzos de tracción producidos en el alma del elemento.

REMOLDEO: es la pérdida de la forma original de un elemento constituido por concreto fundido.

RESINA ISOFTÁLICA: es una resina de alta resistencia a los agentes químicos y a la temperatura.

SEDIMENTACIÓN: es el proceso por el cual el material sólido, transportado por una corriente de agua, se deposita en el fondo del río, embalse, canal artificial, o dispositivo construido especialmente para tal fin.

SELTAR: es un modelo conceptual de selección de tecnología para el control de contaminación por aguas residuales domésticas.

SISTEMA APORTICADO: es aquel cuyos elementos estructurales principales consisten en vigas y columnas conectados a través de nudos formando pórticos resistentes en las dos direcciones principales de análisis (x e y). su principal función es la transmisión de esfuerzos entre sus elementos causados por cargas de peso propio o carga muerta y peso externo o carga viva.

SST: es la carga contaminante determinada por sólidos suspendidos totales o la totalidad de pequeñas partículas de sólidos dispersas en el agua medida en toneladas por año.

TÉRMINOS DE REFERENCIA: son términos impuestos por la empresa contratante al profesional adjudicatario del proyecto objeto del contrato. Estos términos describen detalladamente cuales son los objetivos principales del contrato y los requerimientos necesarios para garantizar el éxito de la inversión en el proyecto.

TOPOGRAFÍA: estudia el conjunto de principios y procedimientos que tienen por objeto la representación gráfica de la superficie de la tierra, con sus formas y detalles, tanto naturales como artificiales.

TURBIEDAD: o turbidez, es la expresión de la propiedad óptica de la muestra que causa que los rayos de luz sean dispersados y absorbidos en lugar de ser transmitidos en línea recta a través de la muestra. La turbiedad en el agua puede ser causada por la presencia de partículas suspendidas y disueltas de con un ámbito de tamaños desde el coloidal hasta partículas macroscópicas, dependiendo del grado de turbulencia.

VÁLVULA: una válvula se puede definir como un aparato mecánico con el cual se puede iniciar, detener o regular la circulación (paso) de líquidos o gases mediante una pieza movible que abre, cierra u obstruye en forma parcial uno o más orificios o conductos.

VALVULA PURGA: son válvulas colocadas en todos los puntos bajos de la red y su función es eliminar el exceso de polvo que ingresa a la tubería.

VALVULA VENTOSA: son válvulas instaladas en todos los puntos altos de la red para permitir la remoción de aire.

VIGA DE AMARRE: es una parte de la infraestructura o cimentación de una edificación y como tal sufre asentamientos en forma conjunta con las zapatas. Los asentamientos a su vez generan esfuerzos de reacción debajo de las vigas. Las vigas son un sistema para el control de asentamientos diferenciales.

VERTIMIENTO: descarga de cualquier cantidad de material o sustancias ofensivas a la salud pública.

VIADUCTO: son puentes de protección a la tubería de paso hidráulico con ubicaciones elevadas para cruzar una hondonada, ya sea un valle o un barranco.

ZAPATA: es un tipo de cimentación superficial (normalmente aislada), que puede ser empleada en terrenos razonablemente homogéneos y de resistencias a compresión medias o altas.

RESUMEN

El presente trabajo contiene un informe final de todas las actividades realizadas durante el periodo de pasantía en la secretaria de gestión ambiental de la alcaldía de Pasto. Estas actividades consisten en apoyo y seguimiento técnico y administrativo a la preinversión, inversión, revisión e interventoría de los proyectos asignados.

Las actividades asignadas durante la pasantía y registradas en el presente trabajo empiezan con los proyectos de preinversión incluidos dentro del programa "agua potable y saneamiento para Pasto", en donde un componente es el subprograma "agua y saneamiento para el campo", se realizo la justificación y estructuración a través de un sistema de información que controla todos los procesos inherentes al proyecto como lo es la metodología general ajustada, así mismo, se llevó a cabo el seguimiento y la revisión técnica a seis proyectos de diseño incluidos dentro de la preinversión para los que también se realizó el proceso de contratación, en donde se elaboraron los términos de referencia como parámetros de cumplimiento del contrato, se emitieron las actas de inicio, de avance, de liquidación y de finalización. Los términos de referencia se fundamentaron en las actividades de reconocimiento y diagnostico realizadas a los sistemas existentes contemplados para su respectiva actualización y optimización mediante los diseños mencionados. Para finalizar, se llevó a cabo el seguimiento técnico a dos proyectos en ejecución y se brindó soporte técnico a la comunidad rural para mejorar las condiciones de abastecimiento del agua. También se desarrollaron diferentes actividades de acuerdo al avance de los proyectos presentados en este trabajo.

A través del presente trabajo se pretende transmitir la enriquecedora labor desarrollada dentro del periodo de pasantía, ya que se cumplieron las expectativas de interacción con actividades propias de la ingeniería civil por la forma como estas evolucionaron con el tiempo.

ABSTRACT

This report contains a work of all activities in the period of internship in the secretariat of environmental management of the Pasto mayor. These activities consist in support and follow-up to the technical and administrative preinvestment, investment, and review of projects allocated to the intervention.

The activities assigned during the internship and registered in the present work starts with projects of preinvestment included in the program for "drinking water and sanitation Pasto", where a component is the subprogramme "water and sanitation for the field", was performed a rationale and structure of an information system that controls all the inherent process of the project as the adjusted general methodology, also, was carried out on follow up and review technique to six projects included in the design for which preinvestment was also carried out the recruitment process, where they drew up terms of reference as a parameter of performance of the contract was issued acts of start progress, liquidation and completion. The terms of reference is based on the survey and diagnosis of existing systems for its listed upgrade and optimization by design specified. To finish, was carried out on follow two projects in technical and performance is provided technical support to the rural community to improve the conditions of water supply. Different activities will be developed according to progress of the projects presented here.

Through this work is intended to convey the enriching works within the period of the internship are met and expectations for interaction with activities of the civil engineering how these evolve over time.

INTRODUCCIÓN

La Secretaria de Gestión Ambiental del Municipio de Pasto adelanta la gestión de proyectos de preinversión en acueductos, alcantarillado y sistemas de tratamiento de aguas residuales domésticos y globales tanto para el sector rural como para el suburbano. Dentro del Plan de Desarrollo Municipal se encuentra en proceso de ejecución el programa "Agua Potable y Saneamiento para Pasto" financiado por el Banco Interamericano de Desarrollo (BID). Un componente del Programa es el denominado subprograma "Agua y Saneamiento para el Campo" que tiene como objetivo incrementar la cobertura y mejorar la calidad y sostenibilidad de los servicios de agua potable y saneamiento básico de la población del área rural del Municipio de Pasto. Este subprograma cuenta con un componente de proyectos de inversión de agua y saneamiento, cuyo principal producto es el diseño y la construcción de sistemas para la dotación de estos servicios.

El estudiante en calidad de pasante de ingeniería civil, tiene la oportunidad de participar en este propósito, interviniendo en la supervisión del diseño de los proyectos de agua potable y saneamiento básico contratados durante el periodo de pasantía, los cuales deben ser gestionados mediante una etapa de preinversión debidamente estructurada y sustentada para poder adelantar su contratación. Así mismo, el estudiante es capacitado para intervenir en la ejecución y asistencia técnica de obras cuyo objeto es la obtención de agua potable y saneamiento básico enfocados en los sectores rural y suburbano del Municipio de Pasto.

La participación en las actividades técnicas adelantadas por la secretaria de Gestión Ambiental es posible gracias a la formación profesional adquirida dentro del programa de Ingeniería Civil perteneciente a la Facultad de Ingeniería de la Universidad de Nariño. Este tipo de convenios entre la Alcaldía de Pasto y la Universidad permite al estudiante adquirir el conocimiento para desempeñarse en el campo práctico como profesional universitario.

1. METODOLOGÍA

El presente trabajo se desarrolló mediante un compendio de información trabajada y obtenida durante el periodo de pasantía. La metodología empleada para la ejecución de las actividades asignadas se guía por parámetros dispuestos a la Secretaría de Gestión Ambiental como entidad oficial del Municipio de Pasto.

Este trabajo es de tipo práctico puesto que se encuentra vinculado directamente dentro del campo laboral, permitiendo aplicar los conocimientos adquiridos durante la etapa de formación como ingenieros civiles.

Los parámetros de trabajo implementados para intervenir en las diferentes etapas son los siguientes:

1.1 ETAPA DE PREINVERSIÓN

- Revisión de la documentación inicial del proyecto, como el acta de Cabildos, y el Certificado de propiedad del Municipio del predio a intervenir.
- Visita al sitio, donde se realiza una inspección al terreno, medición de áreas y concepto sobre la viabilidad física del proyecto.
- Revisión de los diseños existentes. Si no se cuenta con un diseño hidráulico y estructural previo, se debe evaluar el estado y funcionamiento de la instalación y apoyar con el respectivo diseño.
- Realizar la inscripción de los proyectos en el Banco de proyectos de Planeación Municipal, elaborando la ficha MGA.
- Programar un cronograma de actividades del proyecto y socializarlo con la comunidad, para que ésta se mantenga enterada de los avances del mismo.

1.2 ETAPA DE CONTRATACIÓN

- Realizar la inscripción de los postulantes a cada proyecto y junto a ellos hacer la visita al lugar en donde se realizará el trabajo para hacer el diagnostico del sistema y formular las especificaciones técnicas.
- Estudiar las propuestas de los postulados, junto con la revisión de la documentación legal que se solicita para cada uno de ellos.

- Calificar las propuestas y seleccionar la alternativa más viable para el proyecto.

1.3 ETAPA DE INTERVENTORÍA

- Revisión y/o medición del alcance del proyecto.
- Apoyo y supervisión en cada una de las etapas de diseño.
- Orientación a la comunidad sobre la evolución del proyecto.
- Revisión de los diseños contratados teniendo en cuenta la funcionalidad hidráulica y la metodología empleada de acuerdo a la normatividad vigente.
- En caso de realizar seguimiento a obras adelantadas por la Secretaria de Gestión Ambiental, llevar un registro fotográfico necesario para elaborar los informes respectivos y dejar constancia de los avances realizados.
- Elaborar las actas de inicio y de avance de la consultoría, y si hay lugar a imprevistos adicionalmente elaborar las actas de modificación, de suspensión, o de reinicio y por último el acta de finalización, la cual se entregará para dar por terminado el diseño. Posteriormente se realizará la presentación ante la comunidad.

2. MARCO CONCEPTUAL

El programa "Agua Potable y Saneamiento para Pasto" se encuentra dentro del plan de desarrollo "Pasto Mejor 2004 – 2007" y "Juntos Podemos Más 2008 – 2011" El cual tiene la siguiente estructura:

- Componente Estratégico
- Plan Plurianual de Inversiones
- Procedimientos y mecanismos para lograr los objetivos y metas del Plan de Desarrollo

El Componente Estratégico contempla un marco conceptual fundamentado en la concepción del Desarrollo Humano Sostenible y la perspectiva de los Derechos Humanos, de ahí la gran importancia de trabajar en equipo con la comunidad a través de los Cabildos de participación ciudadana. Además contiene la formulación del problema básico, las estrategias, los programas, los objetivos específicos, las metas y los derechos que se busca garantizar en cada uno de los siguientes ejes categóricos:

- Convivencia seguridad y justicia.
- Empleo y productividad.
- Equidad y corresponsabilidad social.
- Servicios públicos, prioridad agua.
- Desarrollo y calidad de vida urbana.
- Desarrollo y calidad de vida rural.
- Cultura y autoestima colectiva.
- Gobernabilidad democrática.

En el plan Plurianual se establecen las fuentes y proyecciones de recursos al igual que la inversión estimada en cada año del periodo por ejes de acción estratégica y sus respectivos Programas.

Finalmente se establecen los elementos básicos para el diseño de un esquema de evaluación, seguimiento y monitoreo del plan de desarrollo. El programa "Agua para el Campo" se encuentra enmarcado dentro del eje "Desarrollo y Calidad de Vida Rural", que se fundamenta en que no se puede concebir el desarrollo humano sostenible de Pasto sin una relación sinérgica entre la ciudad y el entorno rural.

Mediante los mecanismos de participación ciudadana la comunidad trabaja con la Administración Municipal en la búsqueda de soluciones a los problemas básicos presentados, con el fin de identificar los que tienen mayor prioridad relacionados a las necesidades de los habitantes de la región.

La comunidad rural y suburbana a través de los Cabildos abiertos (que son eventos en donde se reúne la población y entidades representantes del Municipio de Pasto para discutir y plantear la presupuestación participativa), plantea las necesidades que requieren solución inmediata. Estas "sugerencias" son llevadas a un análisis de importancia, disponibilidad y factibilidad como primera etapa y luego se determina posterior a un análisis técnico del sistema demandado por la comunidad la solución más viable para las dos partes, el Municipio de Pasto y la Población directamente beneficiada.

Teniendo en cuenta las necesidades de la comunidad Rural y Suburbana del Municipio de Pasto, se debe garantizar la cobertura y buen funcionamiento de los sistemas de Acueducto o alcantarillado así mismo la optimización de algunos de sus componentes, estos proyectos representan una importancia de primer nivel para la población ya que implican el acceso al agua potable y la disposición adecuada de los residuos producidos. Beneficios requeridos para la vida humana y así mismo para mejorar las condiciones y la calidad de vida.

3. FORMULACION Y CONTROL DE LOS PROYECTOS DEL PROGRAMA AGUA PARA EL CAMPO.

Los proyectos que hagan parte del programa "Agua para el Campo" y que hayan sido aprobados por parte de la Administración Municipal, con base en una planeación concertada, integran el plan de acción de cada año y cursan tres etapas:

- Etapa de preinversión e inversión
- Etapa de contratación
- Etapa de interventoría y control

3.1 ETAPA DE PREINVERSIÓN E INVERSIÓN

Para una correcta elaboración y formulación de la preinversión se realizó un reconocimiento del terreno identificando los componentes existentes y los que se demandaban de parte de la comunidad para así hacer un diagnostico, el cual es una formulación técnica de la situación del sistema y una revisión de la propiedad del Municipio Esta actividad se realizó con representantes de la población y con planos existentes del sistema.

El presupuesto oficial para cada proyecto de consultoría se determinó de acuerdo a un compendio informativo del estado del sistema del acueducto, alcantarillado o sistema de tratamiento, en donde se tuvieron en cuenta los gastos por personal y los gastos no reembolsables.

Los gastos por personal son: personal profesional, personal administrativo y personal técnico. Estos gastos son afectados por un factor multiplicador el cual depende del sueldo demandado, las prestaciones sociales y los costos directos no reembolsables. Los gastos no reembolsables son: Equipos de trabajo, maquinaria, análisis y estudios, oficina, papelería, edición y comunicaciones.

La formulación de los proyectos de preinversión ante la Alcaldía Municipal de Pasto se realizaron a través de la Ficha MGA (Metodología General Ajustada), la cual se realiza con el fin de consignar en un formato unificado por el Departamento Nacional de Planeación todos las características y datos referentes al proyecto que se va a ejecutar. Para la elaboración de la ficha M. G. A., se diligenciaron una serie de formatos secuenciales entre ellos: **Identificación**, que es una descripción de todas las características generales del proyecto, tales como nombre, ubicación,

problemática, causas, efectos, entre otros; **Preparación**, en donde se procede a consignar los datos referentes a los recursos del proyecto, su destino tanto en las fases de preinversión y ejecución; **Evaluación Ex-Ante**, donde se realiza una evaluación a lo consignado en la fase de preparación e inmediatamente se genera información acerca del movimiento de los recursos en el proyecto. Aquí se describe el tipo de obra que se va a realizar y el avance que se tiene en cuanto a preinversión; **Ficha EBI**, que se genera automáticamente una vez recorridas todas las fases anteriores y es el formato más importante de la MGA puesto que resume todas las fases anteriores.

El proyecto fue inscrito por la parte jurídica de la Secretaria de Gestión Ambiental en el Banco de Proyectos de la oficina de Planeación Municipal para obtener la viabilidad. Para lograr la viabilidad se deben presentar documentos, tales como; el formato de presentación del proyecto, la ficha de Metodología General Ajustada. (M. G. A.). La certificación de socialización del proyecto, el cronograma de actividades del proyecto y los planos del proyecto.

El Departamento Administrativo de Planeación Municipal revisa la documentación presentada para la inscripción del proyecto y verifica que los recursos para el proyecto existan y correspondan a los asignados en el proceso de Cabildos. Además constata que el proyecto se ajuste a la normatividad del P.O.T. y expide la viabilidad financiera y técnica, este proceso se registró en el **Certificado de Viabilidad del Proyecto.**

Ya que se siguieron los pasos mencionados, el Departamento Administrativo de Planeación Municipal publicó el certificado de **Disponibilidad Presupuestal** el cual certifica el saldo presupuestal libre para respaldar el proyecto, además, se presentan las características del rubro que asume el proyecto.

Como etapa final de los proyectos de preinversión se elaboraron las **Especificaciones Técnicas**, en donde la Alcaldía Municipal de Pasto a través de la Secretaria de Gestión Ambiental establece todas las condiciones dadas a los requerimientos de tipo técnico que se exigirán en el proyecto de acuerdo a normas y especificaciones vigentes relacionadas a los diseños de los sistemas contemplados.

3.2 ETAPA DE CONTRATACIÓN

En este periodo se realizó la contratación de la consultoría profesional para cumplir con el objeto de la preinversión. Los contratos se realizaron con el fin de cumplir con los siguientes objetivos propuestos dentro de los alcances de la Secretaria de Gestión Ambiental: diseño para la optimización del acueducto del Corregimiento de Jamondino – Barrio El Rosario, diseño para la construcción del acueducto de San Cayetano – Corregimiento de Mapachico, diseño para la

actualización del acueducto de Juanoy – Sector Suburbano, diseño para la actualización del acueducto de Mocondino Puerres y Canchala, diseño para la construcción del sistema de tratamiento de aguas residuales de los sectores Barrio Popular y Rosal de Oriente y diseño para la construcción del tanque de almacenamiento de agua potable en San Fernando.

La Administración Municipal conforme con la normatividad vigente (Ley 80 de 1983 y el decreto 2170 de 2002) ejecuta tres tipos de contratación, los cuales son; Contratación sin formalidades plenas, Contratación por Invitación Pública y Contratación por Licitación Pública.

Contratación sin formalidades plenas. (Art. 11 Dcto. 2170 de 2002) Este tipo de contratación se puede dar si el presupuesto oficial del proyecto, para el año 2007, no supera un valor de \$26.022.000.00. El procedimiento consiste en invitar a tres contratistas para que analicen el proyecto y presenten sus propuestas. El contrato se adjudica al proponente que presente la mejor oferta en el aspecto técnico y económico.

Contratación por invitación pública. (Arts. 2 y 11 Dcto. 2170 de 2002) Serán objeto de Invitación Pública aquellos proyectos en los que el presupuesto oficial sea igual o superior a \$29.000.000.00 e inferior a \$260.220.000.00. En el proceso de Invitación pública pueden participar aquellas personas que cumplan con la idoneidad profesional, la capacidad financiera y técnica exigida, la inscripción de los oferentes no tiene ningún costo.

Contratación por licitación pública. Son objeto de contratación por proceso de Licitación Pública aquellos proyectos cuyo presupuesto oficial sea superior a \$260.220.000.00. En este tipo de contratación pueden participar todas las personas que cuenten con la idoneidad profesional, las capacidades financieras y técnicas exigidas. Se debe pagar por la inscripción y compra de pliegos el 0.05 % del valor del presupuesto oficial del proyecto.

De acuerdo a los datos obtenidos de cada sistema a trabajar tales como diseños previos, medición de longitudes de tubería para el caso de los sistemas de acueducto y la topografía del terreno y a los diagnósticos requeridos para evaluar física y funcionalmente el sistema como requisito general, se hace una evaluación presupuestal aproximada del valor de la consultoría para el diseño de los sistemas mencionados, la cual es la base para establecer que tipo de contratación requieren estos proyectos. El resultado del análisis presupuestal de los proyectos asignados fue que todos los contratos de consultoría serian **sin formalidades plenas.**

Los profesionales postulados, como requisito presentaron los siguientes documentos: hoja de vida, certificados de estudios y diplomas, copia de cedula, copia de matricula profesional, copia del Registro Único Tributario (RUT),

certificados de antecedentes de responsabilidad fiscal, certificados de antecedentes disciplinarios, certificados de experiencia laboral, referencias laborales, diligenciar la hoja de vida formato único, copia de la libreta militar, copia del pasado judicial, paz y salvo Municipal, y declaración de bienes y rentas.

De acuerdo a la información del sistema a trabajar que se facilitó a los profesionales postulados, ellos presentaron un presupuesto oficial del diseño del sistema, el cual fue evaluado de acuerdo al valor de la propuesta y a la experiencia en el diseño de acueductos, alcantarillados o plantas de tratamiento a través de un **Cuadro Comparativo**.

La selección del profesional idóneo para continuar con este proyecto fue aprobada por el Secretario de Gestión Ambiental, el abogado contratista representante de la Secretaria de Gestión Ambiental y por el profesional representante legal de la interventoría del proyecto como funcionario de la Secretaria de Gestión.

El oferente adjudicatario, dentro de los cinco (5) días siguientes a la notificación del acto de adjudicación, suscribe el respectivo contrato, previa presentación de un Análisis de precios unitarios de todos los ítems de la propuesta, incluyendo la "Administración". El valor unitario de cada ítem debe ser el mismo en el cuadro de presupuesto, cronograma de trabajo e inversiones y plan de calidad.

Ante la oficina de contabilidad el oferente adjudicatario debe presentar las pólizas; de responsabilidad civil extracontractual y de seguro de cumplimiento ante entidades estatales (Ley 80 de 1993).

Una vez aprobadas las pólizas se expide la correspondiente **Resolución de Aprobación**.

Se elaboraron los **Términos de Referencia** que contienen las condiciones y especificaciones con que ha de ejecutarse el diseño o la obra en particular. Estos términos describen los procedimientos administrativos y técnicos a realizarse durante el proyecto. Así mismo, se emitió un **Análisis de Riesgos** que es la estimación de riesgos previsibles que afectan el equilibrio económico del contrato y un **Estudio de Conveniencia y Oportunidad** que tiene en cuenta las razones por las cuales se adelanta el proyecto y a quines beneficia.

Con los documentos nombrados anteriormente y su respectiva aprobación, se procede a realizar el contrato de consultoría por parte de la Oficina Jurídica en donde se establecen todas las condiciones del objeto del contrato de la consultoría. Para la legalización del contrato, en Control Interno de la alcaldía se debe presentar todos los documentos legales con la respectiva **Acta de Inicio**, en donde se registró la intervención de la empresa contratista el interventor y las secretarias encargadas de los proyectos, con el fin de adelantar el pago del Anticipo de la consultoría que por lo general es del 40-50% del valor del contrato.

3.3 ETAPA DE INTERVENTORÍA Y CONTROL

Esta etapa consiste en la revisión y supervisión de los proyectos delegados durante el periodo de pasantía. Fueron asignados seis proyectos de los quince que se adelantaron en la preinversión por la Secretaria de Gestión Ambiental, enfocados al diseño para la actualización u optimización de sistemas de acueducto y tratamiento de aguas residuales. Así mismo, se asignó la supervisión de dos obras en ejecución y una asistencia técnica.

Los proyectos asignados son los siguientes:

- Diseño para la optimización del acueducto del Corregimiento de Jamondino Barrio El Rosario.
- Diseño para la actualización del acueducto de San Cayetano Corregimiento de Mapachico.
- Diseño para la actualización del acueducto de Juanoy.
- Diseño para la actualización del acueducto de Mocondino Puerres y Canchala.
- Diseño para la construcción sistema de tratamiento de aguas residuales para los sectores Barrio Popular y Rosal de Oriente.
- Diseño para la construcción tanque de almacenamiento de agua potable en San Fernando.
- Construcción planta semicompacta de tratamiento de agua potable para los barrios Popular y Arnulfo Guerrero
- Construcción de la segunda fase del sistema de abastecimiento rural de Santa Teresita.
- Asistencia técnica acueducto Popular Arnulfo Guerrero

Los diseños entregados se recibieron siguiendo las anotaciones de los **Términos** de **Referencia**. El reglamento técnico del sector de agua potable y saneamiento básico y la metodología teórica empleada por los consultores para el calculo y diseño hidráulico de cada elemento, fueron puntos de referencia para la revisión, ya que el reglamento RAS – 2000 determina las especificaciones técnicas que garantizan el buen funcionamiento de una estructura o un sistema hidráulico y la metodología empleada se revisó de acuerdo a la coherencia de su planteamiento y las formulas aplicadas en los cálculos.

La supervisión de las obras en ejecución se realizo mediante visitas periódicas a la obra junto con el consultor responsable del proyecto contratado por la Secretaria de Gestión Ambiental, en donde se intervino conceptualmente en cuanto a metodología constructiva y cronología del trabajo.

La asistencia técnica se efectuó mediante diagnósticos en el lugar en donde se originó el problema y el seguimiento a las actividades recomendadas para su completa solución.

Las fichas componentes de la Metodología General Aplicada, resumido en ficha MGA, se presentan en los anexos como ANEXO A. Ficha MGA.

El registro y concepto de viabilidad presupuestal de los proyectos adelantados en la preinversión, se presenta en los anexos como ANEXO B. Registro y concepto de viabilidad.

Se presentan las actas de inicio, final y de liquidación bilateral, así como la factura del contrato de suministro de tubería y materiales para la segunda fase del sistema de abastecimiento rural de Santa Teresita. Para los demás proyectos se realizó el mismo procedimiento, por lo cual solo se adjuntaran las actas de inicio como constancia de su contratación. Se presentan en los anexos como ANEXO C, ANEXO D, ANEXO E, ANEXO F, ANEXO G, ANEXO H, ANEXO I y ANEXO J.

4. ACTIVIDADES TECNICAS DESEMPEÑADAS DENTRO DE LA ETAPA DE PREINVERSION E INVERSION

4.1 FICHA MGA

Para la etapa de preinversión, se debió elaborar una ficha metodológica para la identificación, reparación y evaluación de proyectos; procedimiento dispuesto por el Departamento Nacional de Planeación. El sistema empleado es el diligenciamiento de la ficha MGA o Metodología General Ajustada. La MGA es un sistema de información conformada por listas o tablas en donde se registraron datos de entrada como la ubicación del proyecto, causas tanto directas como indirectas con el objetivo específico del proyecto y costos básicos de la alternativa seleccionada previamente.

Con los datos de entrada se procedió a diligenciar el módulo de evaluación, donde se escogió la mejor alternativa de solución, que seria el proyecto a desarrollar. Dentro del modulo de evaluación, se registraron a través de información facilitada por la secretaria de Gestión Ambiental los ingresos por las ventas de productos o servicios que al ser un servicio municipal a la comunidad rural se traduce un 100% cumpliéndose el objetivo de cubrimiento total; los beneficios del proyecto para la comunidad valorados y el valor de salvamento o asistencia del proyecto; los costos por agua potable y demás servicios a precios sociales en cada uno de los periodos, los cuales por tratares de comunidad rural y suburbana se registraron por pago anual en el caso del servicio de agua potable y saneamiento básico. Dado que se formuló una alternativa única la cual era requisito del Banco Interamericano de Desarrollo (BID) para adquirir la inversión, el programa a través de la opción de decisión determinó directamente el nombre del proyecto.

Con la alternativa seleccionada y el nombre del proyecto se procedió a diligenciar el módulo de programación en donde se registró la programación físico financiera, la programación regional de la inversión, la programación de las fuentes de financiación que fue realizada por el BID y la programación de las metas.

Finalizado el módulo de programación, se ingresó a la ficha EBI la cual se generó automáticamente con la información de los módulos necesarios de la MGA, con excepción de la información correspondiente a los datos de la Secretaria de Gestión Ambiental como entidad responsable de la formulación, la evaluación, la viabilidad del proyecto y la priorización y el control posterior del mismo.

Los Módulos de la MGA se pueden definir para el sistema de la siguiente manera:

- Identificación
- Preparación
- Evaluación
- Decisión
- Programación
- Ficha EBI

Cabe mencionar que el sistema de desarrollo es muy estricto con los datos que se registran los cuales deben ser equivalentes de principio a fin del documento.

La ficha MGA tiene un componente denominado ficha complementaria a la ficha del proyecto y es la base para la elaboración de la MGA ya que registra una descripción ampliada y detallada de las alternativas del proyecto. Esta ficha generalmente se presenta como un anexo a la ficha dentro del medio magnético y en el medio físico.

- **4.1.1 Ficha complementaria a la ficha del proyecto.** A continuación se presenta un resumen de la ficha complementaria del proyecto, presentado a la Secretaria de Gestión Ambiental. Esta ficha complementaria fue necesaria para identificar y justificar las alternativas registradas en la ficha de Metodología General Ajustada.
- 4.1.1.1 Descripción ampliada y cuantificación del problema. La carencia de estudios de preinversión de los proyectos del programa Agua y Saneamiento Básico para el Campo en el sector rural y suburbano del Municipio de Pasto, especialmente para aquellos proyectos priorizados por las comunidades en cabildos, ya que las comunidades los solicitaron sin tener en cuenta el respaldo técnico consignado en estudios y/o memorias, además del limitante de los recursos económicos ya que por la alta demanda de solicitudes resultan insuficientes, sumado al desconocimiento por parte de las comunidades de que todo proyecto de infraestructura debe contar con estudios que permitan dar mayor agilidad a la ejecución de los mismos. Esta situación hace que los sistemas de acueducto y abastecimiento de agua en el sector rural y suburbano en el Municipio de Pasto, cuentan con infraestructuras inadecuadas e inconclusas (diagnóstico: Universidad Mariana Alcaldía en el 2005), en aproximadamente el 80% de los sistemas de acueducto han cumplido su vida útil, que están ayudando a la mala calidad del agua para consumo humano y en general a la prestación del servicio

de agua y alcantarillado, generándose manifestaciones de enfermedades asociadas a la mala calidad del recurso hídrico para consumo humano.

4.1.1.2 Cuantificación de la población beneficiada por los proyectos. Teniendo en cuenta que para la vigencia 2008, se ha programado realizar 15 estudios de preinversión dentro del Programa de Agua Potable y Saneamiento Básico, se considera que la población identificada a atender con la ejecución de los mismos de la siguiente manera:

Contratos de acueducto:

- Optimización del acueducto del Corregimiento de Jamondino Barrio El Rosario; proyecto que beneficia a 10614 habitantes.
- Actualización del acueducto de Aranda Villa Nueva Sector Suburbano; proyecto que beneficia a 1000 habitantes.
- Construcción del acueducto de San Cayetano, Corregimiento de Mapachico; proyecto que beneficia a 120 habitantes.
- Actualización del acueducto de Juanoy Sector Suburbano; proyecto que beneficia a 750 habitantes.
- Optimización del acueducto de Bella Vista Catambuco; proyecto que beneficia a 393 habitantes.
- Optimización del acueducto de Castillo Loma Genoy; proyecto que beneficia a 461 habitantes.
- Actualización del acueducto de Mocondino Puerres y Canchala; proyecto que beneficia a 4773 habitantes (2368, 1695, 710, respectivamente).
- Actualización del acueducto del Encano Centro El Encano; proyecto que beneficia a 759 habitantes.
- Optimización acueducto Alto San Pedro y El Barbero; proyecto que beneficia a 1265 habitantes.

Contratos de alcantarillado:

- Construcción del alcantarillado de Genoy; proyecto que beneficia a 1325 habitantes.

- Construcción del alcantarillado para el sector de San Diego Catambuco; proyecto que beneficia a 100 habitantes.
- Construcción del alcantarillado para el sector de San Miguel Jongovito;
 proyecto que beneficia a 20 habitantes.

Contratos planta de tratamiento:

- Construcción sistema de tratamiento de aguas residuales para los sectores Barrio Popular y Rosal de Oriente; proyecto que beneficia a 1750 habitantes.
- Construcción sistema de tratamiento de aguas residuales para el sector Vereda El Puerto El Encano; proyecto que beneficia a 606 habitantes.

Contrato de tanque de almacenamiento de agua potable:

- Construcción tanque de almacenamiento de agua potable en San Fernando; proyecto que beneficia a 2813 habitantes.
- **4.1.1.3** Características socioeconómicas y culturales de la población. La población objeto de atención se ubica en el sector rural y suburbano del municipio de Pasto, se caracteriza por su baja condición económica, según fuente: POT dimensión social 1998 DANE, en el área rural del municipio de Pasto el NBI (Necesidades Básicas Insatisfechas) es del 50.8%. Las principales actividades de ingreso son la agrícola, pecuaria y forestal, predomina la pequeña empresa comunitaria de producción auto sostenible con baja aplicación de tecnologías, que utiliza principalmente la mano de obra familiar.
- **4.1.1.4 Ubicación de la población afectada.** La población afectada se ubica en el sector rural y suburbano del Municipio de Pasto, en los siguientes sectores: Aranda Villa Nueva Sector Suburbano, San Cayetano (Mapachico), Juanoy (Suburbano), Vereda Bella Vista y Sector de San Diego (Catambuco), San Miguel (Jongovito), Castillo Loma (Genoy), Bella Vista (Catambuco), Puerres, Canchala y Mocondino, Encano Centro (Encano), Jamondino, Barrio Popular y Rosal de Oriente, San Fernando.

4.1.1.5 Alternativas de solución al problema.

Alternativa 1. Se consideró como alternativa única la realización de estudios de preinversión de los proyectos priorizados en cabildos 2.005 del Programa Agua y saneamiento Básico del Campo, para atender los requerimientos de las

comunidades buscando mejorar la calidad de agua de consumo humano y la infraestructura de saneamiento básico.

4.1.1.6 Selección de la alternativa. Se selecciona como alternativa la realización de estudios de preinversión de los proyectos priorizados en cabildos 2.005 del Programa Agua y saneamiento Básico del Campo, para atender los requerimientos de las comunidades que priorizaron en cabildos 2.005, buscando mejorar la calidad de agua de consumo humano y la infraestructura de saneamiento básico.

4.1.1.7 Descripción de la alternativa del proyecto.

Justificación. Considerando los proyectos identificados y priorizados en cabildos 2.005, para la construcción, optimización de sistemas de acueducto y alcantarillado y en desarrollo del Programa de Agua Potable y Saneamiento Básico en el sector rural y suburbano del Municipio de Pasto que adelanta la presente administración, se requiere de la contratación de los estudios de preinversión, como propuesta establecida en el Presupuesto por Resultado PPR 2008 de la Secretaria de Gestión y Saneamiento Ambiental. Los estudios permitirían y son necesarios para la gestión de los recursos para futuras vigencias y ayudarían a que la ejecución de los proyectos sea más ágil y ejecutable, buscando así, mejorar la calidad de agua de consumo humano y la infraestructura de los acueductos y de saneamiento básico.

4.1.1.8 Descripción ampliada del proyecto. Los proyectos que requieren de preinversión son identificados y priorizados en los procesos de presupuestación participativa de años anteriores, para lo cual la Secretaría de Gestión y Saneamiento Ambiental para la vigencia 2008, destinó el respectivo presupuesto.

4.1.1.9 Detalles del proyecto.

Actualización del acueducto de Aranda Villa Nueva. En el año 2006, la Empresa de Obras Sanitarias de Pasto y EMPOPASTO S.A. en desarrollo del convenio No 060837 adelantó el estudio de la actualización del acueducto, en donde se veía necesaria la construcción de un tanque de almacenamiento, el cual no pudo ser construido por que no fue posible adquirir el predio, por este motivo se necesita actualizar el proyecto a los nuevos requisitos de funcionamiento y al lote adquirido por la comunidad.

Se debe recopilar la información existente del acueducto, para así evaluar las condiciones reales partiendo de la ubicación de este y así poder realizar el estudio

hidráulico teniendo en cuenta el diseño y el estado real de cada una de las instalaciones, en donde se deben especificar las condiciones de trabajo y el cumplimiento con los requerimientos de el reglamento RAS 2000.

Construcción del acueducto de San Cayetano. En el desarrollo de este proyecto, se pretende mejorar la totalidad de las instalaciones del acueducto, en donde es necesario implementar el nuevo sistema con estructuras más funcionales que cumplan con los requisitos de potabilidad pactados con la población.

Actualización del acueducto de Juanoy. Se debe realizar la completa revisión y actualización necesaria del acueducto, ya que fue diseñado e instalado para un periodo de diseño que ya culminó con su vida útil. El proyecto debe contener la revisión y estudio del funcionamiento hidráulico en la aducción, las estructuras y la conducción, análisis patológico de las estructuras existentes, análisis de calidad de las tuberías instaladas de acuerdo a parámetros de uso y desgaste según la Norma Técnica Colombiana, rediseño de las estructuras deficientes. Se debe tener especial cuidado en recopilar toda la información posible con respecto al acueducto.

Optimización del acueducto de Bella Vista – Catambuco. Con este proyecto, se busca mejorar las condiciones de abastecimiento a la población, teniendo en cuenta una revisión de diseños, los cuales deben ser funcionales de acuerdo a las condiciones de demanda de la población.

Optimización del acueducto de Castillo Loma. Es necesario evaluar todos los aspectos que garanticen las mejores condiciones de trabajo. El proyecto de optimización comprende el estudio del funcionamiento hidráulico de todo el sistema, análisis patológico de las estructuras, revisión del estado de las tuberías teniendo en cuenta las principales causas de desgaste y deterioro, rediseño de las estructuras deficientes. Se debe recopilar toda la información posible con respecto al acueducto.

Actualización del acueducto de Mocondino, Puerres y Canchala. Revisar y actualizar el acueducto para la captación, la aducción, la longitud total del tramo de conducción y la red de distribución, pues el acueducto ya esta cumpliendo su periodo de vida útil de acuerdo al reglamento de agua potable RAS 2000.

Actualización del acueducto del Encano centro. Este proyecto consiste en renovar las condiciones de servicio de agua potable. Actualizar las instalaciones implica una mejor calidad de agua la cual se puede deteriorar por las condiciones de la conducción debido a su uso continuo.

Optimización del acueducto de San Pedro Alto y El Barbero. El acueducto debe ser optimizado en sus principales componentes y reubicado desde la zona de captación hasta la conducción final.

Construcción del alcantarillado de Genoy. El sistema de alcantarillado debe ser manejado con cuidado, pues se deben evaluar las existencias y su funcionamiento. Ya que se construirá un alcantarillado nuevo, se diseñará de manera que no interfiera con el funcionamiento del existente y que se pueda empalmar al alcantarillado principal sin hacer inversiones fuera de las proyectadas o si se presenta la opción de vertimiento final, se buscara la construcción del sistema de tratamiento más eficiente y apropiado para el caso.

Construcción del alcantarillado para el sector de San Diego – Catambuco. Se trabajará en un proyecto de alcantarillado nuevo para la población de San Diego en donde se debe cubrir el desalojo de todas las unidades de desecho. Con este proyecto adelantado por la Alcaldía de Pasto en acuerdo con la población beneficiada se pretende mejorar la calidad de vida de los habitantes y así mismo mitigar las cargas contaminantes provenientes del sector.

Construcción del alcantarillado para el sector de San Miguel – Jongovito. Debido a las cargas generadas en el sector se busca implementar una obra física adaptada a las condiciones de vertimiento establecidas por la ley y el reglamento Colombiano para el sector de saneamiento básico y disposición final.

Construcción sistema de tratamiento de aguas residuales para los sectores barrio Popular y Rosal de Oriente. Implementar una alternativa que permita disminuir la carga contaminante de los vertimientos sobre las fuentes hídricas, para mitigar la problemática sanitaria y ambiental generadas por el uso del recurso hídrico. Se debe diseñar un sistema de tratamiento para las aguas residuales provenientes del sector del barrio Popular y Rosal de Oriente. Como objetivo general se pretende diseñar un sistema de tratamiento para las aguas residuales provenientes del sector del barrio Popular y Rosal de Oriente. Los objetivos específicos serian realizar el levantamiento del terreno, caracterización del agua a tratar, realizar un estudio detallado del suelo, analizar la situación actual de los vertimientos y diseño de los elementos del sistema.

Construcción sistema de tratamiento de aguas residuales para el sector Vereda El Puerto Corregimiento El Encano. Implementar el sistema de tratamiento de aguas residuales más adecuado teniendo en cuenta las características de la zona y cumpliendo con la disposición final adaptada a los planes de conservación del recurso natural y a los reglamentos técnicos dispuestos. El objetivo general consiste en diseñar estrategias de producción concebidas para la reconversión de la infraestructura de saneamiento y la recirculación de nutrientes ubicados en la zona. Los objetivos específicos serian

definir el tipo de tecnología a utilizar, realizar el diseño de todo el sistema e implementación del sistema.

Construcción tanque de almacenamiento de agua potable en San Fernando. Diseñar y construir un tanque de almacenamiento que cumpla con el abastecimiento de toda la población de San Fernando, de acuerdo a las especificaciones técnicas propuestas. Los objetivos específicos son diseñar el sistema de almacenamiento y la respectiva implementación.

El proyecto implica la vinculación de personal en el área de Ingeniería Civil y Social, los cuales desarrollarán las siguientes acciones: Ingeniero Civil y/o firma consultora: Realiza estudios, diseños y planos y contrata el personal necesario para la elaboración de los estudios de preinversión

4.1.1.10 Descripción de objetivos, productos y resultados que se espera obtener con la alternativa.

Objetivo general. Realizar los estudios de Preinversión de los proyectos del programa Agua y Saneamiento Básico para el Campo, para contribuir a optimizar la infraestructura de saneamiento básico en el sector rural y suburbano del Municipio de Pasto.

Objetivos específicos.

- Contar con las memorias de diseño, especificaciones necesarias y planos, para la ejecución de los proyectos, especialmente los priorizados en cabildos 2.005.
- Gestionar los recursos económicos para la ejecución de los proyectos que cuenten con memorias técnicas, para su posterior ejecución en campo, en el marco del Programa Agua y Saneamiento Básico
- Apoyo técnico, a las comunidades por demanda en los temas concernientes al sector.

Productos. Estudios de preinversión de acuerdo a Memorias técnicas, según norma RAS y normas vigentes para el sector de agua potable.

4.1.1.11 Cuantificación de los productos y resultados a obtener. Estudios de preinversión elaborados para su viabilización y posterior contratación y/o suscripción de convenios.

4.2 VISITAS TÉCNICAS Y FORMULACIÓN DE DIAGNÓSTICOS

Para complementar la etapa de preinversión y fundamentar los términos de referencia dentro de la etapa de contratación, es necesario conocer todo el sistema que se quiere optimizar, actualizar o diseñar en su totalidad, para ello es necesario socializar el proyecto con la comunidad beneficiada la cual debe asignar un representante para hacer el recorrido junto con el estudiante pasante en calidad de interventor del proyecto, con el fin de recorrer todo el sistema y así hacer un diagnostico de las estructuras y del funcionamiento en general del sistema existente. Esta actividad se debe hacer contando con la quía de un representante de la comunidad que tenga el conocimiento necesario del sistema visitado, además se debe contar con diseños existentes del proyecto (si es posible), los cuales brindarán una guía de la ubicación exacta de los componentes diseñados, tales como la(s) aducción(es), desarenadores, la conducción, estructuras de almacenamiento, estructuras reductoras de presión y la entrada a la red de distribución para el caso de sistemas de acueducto, además deben ser ubicados y registrados con la ayuda de un sistema de posicionamiento global (GPS)(*) el cual nos da una idea de la ubicación de estos elementos. Dada la antigüedad de algunos sistemas fue necesario adquirir en calidad de préstamo los planos diseñados encontrados en el Instituto Departamental de Salud, entidad encargada de contratar los diseños de los sistemas de acueducto y alcantarillado en esa época. Estos planos en el actual proyecto tuvieron dos funciones las cuales fueron servir como guía en el recorrido para el reconocimiento del sistema con sus respectivos componentes y para elaborar un presupuesto oficial para la contratación de cada uno de los sistemas a mejorar, actualizar o a diseñar en su totalidad.

Las visitas técnicas se realizan en función de los proyectos asignados al estudiante. Teniendo en cuenta la disposición del tiempo y la importancia de la revisión detallada oficialmente fueron asignados seis proyectos de los quince que se adelantan en la Secretaria de Gestión Ambiental. Los proyectos asignados para realizar la **interventoría de los diseños** son los siguientes: optimización del acueducto del Corregimiento de Jamondino – Barrio El Rosario, construcción del acueducto de San Cayetano – Corregimiento de Mapachico, actualización del acueducto de Juanoy – Sector Suburbano, actualización del acueducto de Mocondino, Puerres y Canchala, construcción sistema de tratamiento de aguas residuales para los sectores Barrio Popular y Rosal de Oriente y construcción tanque de almacenamiento de agua potable en San Fernando. En total son cuatro acueductos, una planta de tratamiento y un tanque de almacenamiento.

^(*) El uso de un GPS es simplemente una guía aproximada para el proyecto, ya que se debe tener en cuenta el nivel de precisión de este y la ubicación en donde sean tomados los puntos de referencia.

Los diagnósticos elaborados por el estudiante fueron tenidos en cuenta para la revisión de los diseños y por el ingeniero consultor contratado para tal fin como punto de partida del proyecto.

- **4.2.1 Sistema de abastecimiento de agua en Juanoy.** El Sistema de Acueducto que abastece a la Vereda Pinasaco del Corregimiento de Morasurco y a los barrios Juanoy Bajo, Juanoy Alto y San Antonio de Juanoy que hacen parte de la Comuna 9 de la ciudad de Pasto, consiste en un sistema que se surte de las Quebradas El Pailón 1 y El Pailón 2, ubicadas en el Corregimiento de Morasurco; el servicio de acueducto tiene una cobertura aproximada del 100%. La infraestructura consiste en una captación directa, un desarenador, redes de aducción y conducción, tanque de almacenamiento, caseta de desinfección y red de distribución; es un sistema carente de planta de tratamiento. El acueducto es administrado y operado por la Junta Administradora de Acueducto. En general el sistema se encuentra en regulares condiciones. El servicio de acueducto se presta todos los días durante las 24 horas generalmente, a no ser que el sistema falle por averías.
- **4.2.1.1 Fuentes de abastecimiento del sistema de acueducto.** El Sistema de Acueducto de Juanoy, se surte de las fuentes identificadas como quebradas El Pailón 1 y El Pailón 2, ubicadas en el Corregimiento de Morasurco, las cuales pertenecen a la Cuenca del Río Pasto, de acuerdo con la concesión de agua, otorgada por CORPONARIÑO, la fuente el Pailón 1, tiene un caudal medido de 3.99 litros por unidad de segundo (esta unidad de medida de caudal se presentará como lps para todo el texto), de los cuales 3.43 lps equivalentes al 86% del caudal han sido concedidos para el sistema de acueducto de Juanoy; la fuente el Pailón 2, tiene un caudal de 1.43 lps, de los cuales 1.10 lps, equivalentes al 76.9% del caudal han sido concedidos para el sistema de acueducto de Juanoy. De acuerdo a información de los integrantes de la Junta Administradora del Acueducto, estas fuentes no sufren disminución de caudal en épocas de verano y no son vulnerables a contaminación por encontrarse en las partes altas del cerro de Morasurco donde el acceso es dificultoso.
- **4.2.1.2** Análisis de control de calidad en las fuentes de abastecimiento. No se han realizado controles de calidad de agua a la fuente de abastecimiento del sistema de acueducto. Según el guía se hace control de calidad al agua en las redes de distribución.

Es de resaltar que en general las fuentes de abastecimiento El Pailón 1 y 2, son de buena calidad y no son vulnerables a contaminación por tratarse de fuentes ubicadas en el Cerro Morasurco, sobre un terreno de difícil acceso, a pesar de

esto los integrantes de la junta administradora del sistema de acueducto, se han preocupado por cuidarlas y evitar cualquier tipo de impacto sobre ellas.

- **4.2.1.3 Concesiones de agua.** El sistema de abastecimiento de Juanoy, cuenta con concesión de aguas emitida por CORPONARIÑO, estas concesiones se han modificado mediante Resolución No 392 del 22 de noviembre de 2006 y mediante Resolución No. 00066 del 28 de enero de 2008.
- **4.2.1.4 Evaluación del sistema existente.** El sistema de acueducto de Juanoy tiene aproximadamente 30 años de construido. De acuerdo a la concesión de aguas emitida por CORPONARIÑO, mediante resolución No. 392 de 2006 el acueducto se abastece de la quebrada el Pailón 1, con un caudal de 3.43 lps. En la actualidad la Asociación Junta Administradora Acueducto Juanoy, cuenta con una modificación a la concesión de aguas mediante resoluciones No. 392 del 22 de noviembre de 2006 y No. 00066 del 28 de enero de 2008, en las cuales se aumenta el caudal de concesión en 1.10 lps, quedando un caudal de 4.53 lps; el sistema de acueducto cuenta con las siguientes estructuras:

Captación – Fuente Quebrada El Pailón 1. Ubicación: 981.069.20E, 631.698.43N; Altura: 3127.48 m.s.n.m. Se trata de una captación de tipo lateral, en la cual se canaliza el agua por medio de una estructura de aletas en concreto, estas aletas tienen una longitud aproximada de 3.50 m; esta agua se capta por medio de una rejilla lateral de 0.85 m de largo y 0.25 m de ancho, el agua es transportada por un canal de 1.98 m de longitud hasta la caja de derivación la cual tiene las siguientes dimensiones: largo 1.35, ancho 1 m, altura 1.2 m. La bocatoma se encuentra en un área vulnerable a contaminación, puesto que es un terreno de fácil acceso; se debe proteger este lugar para evitar contaminación del agua y problemas de seguía. De acuerdo a información de los moradores del lugar, esta quebrada no disminuye considerablemente su caudal en temporada de verano, el caudal hasta el momento ha sido adecuado para abastecer a la población, pero a futuro con el crecimiento continuo de habitantes no será suficiente, para lo cual la Asociación Junta Administradora Acueducto Juanoy ya cuenta con un caudal adicional de 1.10 lps, los cuales serán captados de la quebrada el Pailón 2. En la fotografía 1 se aprecia como la bocatoma se encuentra en condiciones físicas perecederas, además sin protección adecuada del agua captada, propiciándose la contaminación por acido húmico proveniente de las hojas de los árboles que caen al agua.

Foto: 1. Captación quebrada El Pailón 1

Red de aducción. El agua que entra a la caja de derivación es entregada directamente al desarenador mediante un canal en concreto.

Desarenador. Ubicación: 981060.00E, 631702.00N; Altura: 3127.00 m.s.n.m. A este desarenador llega el agua de la captación, construido en ladrillo en tizón, es de tipo convencional semienterrado, de dimensiones 3.46 m de longitud, 1.83 m de ancho y profundidad de 1.37 m, esta estructura se encuentra en regular estado, presenta fisuras y ya cumplió su vida útil. Cuenta con dos módulos de desarenado, carece de válvulas para control del flujo. En la fotografía 2 se puede apreciar el estado en que se encontró el desarenador.

Foto: 2. Estado desarenador

Red de conducción. Desde el desarenador se conduce el flujo por tubería PVC de 4" de diámetro en una longitud aproximada de 30 m, luego esta tubería disminuye su diámetro a 3" hasta la abscisa K3+456.00, desde esta abscisa se disminuye el diámetro de la tubería a 2" hasta la abscisa K7+322.93, desde esta abscisa se disminuye el diámetro a 1 ½" hasta el tanque de almacenamiento ubicado en la abscisa K7+833.34.

En la abscisa K5+681.15 existe una cámara distribuidora de caudales de donde salen los ramales de Chimayoy en diámetro de ¾" tubería PVC, este ramal abastece a 2 viviendas, y el ramal de Daza el cual tiene un diámetro de ½" en tubería PVC y abastece a 2 viviendas de Daza.

En la abscisa K6+867.00 existe otra cámara distribuidora de caudales, de la cual sale el ramal a Pinasaco en diámetro de 1" tubería PVC, este ramal alimenta a 32 viviendas de la vereda Pinasaco.

En la red de conducción se encuentran algunas estructuras y accesorios que permiten su normal funcionamiento, aunque algunas de las válvulas existentes ya presentan desgaste por el paso del tiempo.

Las cámaras de quiebre de presión existentes se encuentran en regular estado, pues presentan agrietamientos debidos al tiempo de construcción, estas estructuras ya han cumplido con su vida útil, así mismo los accesorios de entrada a estas estructuras ya presentan daños.

Esta situación se puede observar en las fotografías 3 y 4:

Foto: 3. Cámara de quiebre de presión

Foto: 4. Mal estado de los accesorios y tuberías de entrada

En los sitios donde no se puede enterrar las tuberías existen pasos elevados en los cuales la tubería instalada es de hierro galvanizado, tal como se muestra en la fotografía 5.

Foto: 5. Paso elevado en tubería

Tanque de almacenamiento. Ubicación: 976928.49E, 628381.74N; Altura: 2602.92 m.s.n.m. El sistema de acueducto de Juanoy, cuenta con 1 tanque de almacenamiento ubicado en la abscisa K7+833.34, este tanque está construido en ladrillo tizón, por lo cual se observan los agrietamientos que se presentan debido a la cantidad de años que lleva en funcionamiento, tiene las siguientes dimensiones: largo 7.14 m, ancho 5.08 m, altura 2.90 m. En la fotografía 6 se puede observar que el tanque tiene agrietamientos, pero su funcionamiento en el momento de la visita era adecuado ya que la comunidad no ha tenido que realizar mantenimiento, aun así, se recomienda la actualización u optimización de todos los componentes del tanque, así mismo conviene realizar una nueva impermeabilización para evitar posibles filtraciones de agua.

Foto: 6. Tanque de almacenamiento

De acuerdo con la información suministrada por la Asociación Junta Administradora Acueducto Juanoy, este tanque fue construido hace aproximadamente 30 años.

Planta de tratamiento de agua potable. El sistema de acueducto de Juanoy, no cuenta con planta de tratamiento de agua potable, puesto que de acuerdo a los análisis de agua realizados a las fuentes el agua que llega hasta este tanque solamente necesita desinfección.

Desinfección. El sistema de acueducto de Juanoy, cuenta con una caseta de cloración, la cual se ubica sobre el tanque de almacenamiento desde el cual se hace la distribución del agua hacia los barrios Juanoy Alto, Juanoy Bajo y San Antonio de Juanoy, dentro de la caseta se encuentra el sistema de desinfección el cual consta de un tanque sobre el cual se diluye el cloro y se entrega por goteo al tanque de almacenamiento, ya existe el dosificador automático aunque aún no se ha instalado debidamente. En las fotografías 7 y 8 se aprecian la caseta y el sistema para la dosificación del cloro.

Foto: 7. Caseta de desinfección y tanque mezclador de cloro

Foto: 8. Dosificador automático de cloro

Red de distribución. Se cuenta con una red de distribución que se encuentra en regular estado, construida en tubería PVC de 2", 1 ½" y 1", distribuidas a lo largo de los barrios Juanoy Alto, Juanoy Bajo y San Antonio de Juanoy; no se visualizan válvulas para corte ni sectorización del servicio, existe una cámara de quiebre de presión ubicada en la abscisa K0+146.02.

Las presiones son adecuadas a lo largo de la red. No se cuenta con planos precisos de las redes, tampoco longitudes ni diámetros, según informa la Junta Administradora, las redes se encuentran en regulares condiciones, se hace necesaria la evaluación precisa del estado actual para identificar los tramos que deben reemplazarse, repararse y/o ampliarse.

Macro medición. No existen sistemas de macro medición, sin embargo debe definirse el sitio y sistema más adecuado para su instalación.

Micro medición. No se cuenta con micro medición en las redes de distribución, nunca se han llevado registro de consumos.

4.2.2 Sistema de abastecimiento de agua en Jamondino y barrio El Rosario. El Corregimiento de Jamondino y el barrio El Rosario, pertenecen al Municipio de Pasto. Están situados al sur oriente de la ciudad y colindan con los barrios: El Triunfo, 7 de Agosto, El Porvenir, 12 de Octubre, Miraflores y Altos de Chapalito.

El Corregimiento de Jamondino tiene una extensión de 1128,4 km² y el área urbana es de 26.4 km², siendo uno de los 13 corregimientos que conforman el sector rural del municipio. El Barrio El Rosario y el corregimiento de Jamondino, se encuentran ubicados en límites de la ciudad de Pasto, a una altitud de entre 2621 y 2726 m.s.n.m. y una temperatura que oscila entre los 12 y 13 °C.

Actualmente la prestación de los servicios de Acueducto y alcantarillado, se hacen a través de la Junta Administradora de Acueducto y Alcantarillado del Barrio el Rosario y el Corregimiento de Jamondino. La estratificación del Corregimiento de Jamondino se enmarca dentro de los estratos 1 y rural; y para el barrio El Rosario entre 1 y 2.

4.2.2.1 Planos de las redes existentes. De acuerdo con la información recopilada, se cuenta con planos de redes de distribución para las dos zonas, pero con base en modificaciones realizadas por reparaciones o acontecimientos de otro tipo, no se puede estimar si estos corresponden a lo existente. Tales cambios han afectado las diversas redes tanto del Barrio El Rosario como del Corregimiento de Jamondino, por lo que se requiere adecuar los mismos y ajustarlos a las condiciones actuales de servicio.

4.2.2.2 Fuentes de abastecimiento del sistema de acueducto. El Corregimiento de Jamondino y el Barrio El Rosario, cuentan con un sistema de abastecimiento de agua que se alimenta de la Quebrada Guachucal y de la Quebrada de La Encañada, que es la base de la microcuenca Guachucal, ubicada en el área conocida como la montaña del Oso. La fuente tiene un caudal promedio de 36 lps y su caudal mínimo es de 18 lps.

La infraestructura consiste en una bocatoma, dos desarenadores, aducción – conducción, tres tanques de almacenamiento (uno para Jamondino y dos para El Rosario) y redes de distribución.

El sistema de acueducto se construyó hace más de 30 años, la bocatoma fue reconstruida por parte de la gestión del Plan Colombia hace más de 5 años. Sin embargo, a pesar del diseño inadecuado y secciones no aptas para su funcionamiento, en términos generales la infraestructura se encuentra en buen estado.

4.2.2.3 Análisis de control de calidad en las fuentes de abastecimiento. Se han realizado controles de calidad de agua a las fuentes de abastecimiento del sistema de acueducto por parte de las juntas, con el fin de tener claridad en el servicio que ellos prestan.

En general tanto la fuente de abastecimiento quebrada Guachucal como el agua que emana de La Encañada, presentan contaminación por la presencia de arrastre de sedimentos y por el paso de ganado que transporta excrementos en sus patas.

Otro tipo de contaminación que afecta a esta quebrada, es a causa de la existencia de árboles, los cuales producen unas sustancias que generan y causan coloración al agua de procedencia orgánica, lo que le da a la misma a presentar una apariencia de color amarillo.

Debe promoverse de forma inmediata, la realización de una reforestación a la parte alta de la microcuenca para conservar y aumentar el caudal, por lo que se recomienda comprar predios que garanticen buena calidad de agua al momento de la captación.

4.2.2.4 Concesiones de agua. Las juntas cuentan con los trámites de concesión de aguas, emitida por CORPONARIÑO para las quebradas Guachucal y la Encañada, respectivamente.

4.2.2.5 Evaluación del sistema existente.

Sistema de captación. La estructura posee solado superior e inferior, con muros laterales con dimensiones de 2.40 m en la parte superior conformando unas secciones irregulares. En la parte inferior, tiene un ancho de 1.85 m de largo en la sección de la rejilla y muros de 0.25 m; 35 varillas de 3/8 de pulgada, con una distancia cada una de 0.02 m, largo de 0.70 m y una canaleta de recolección con longitud de 0.5 m. En general, la bocatoma se encuentra en buenas condiciones. Sin embargo, se propone el rediseño para que se obtenga un sistema óptimo como por ejemplo la eliminación de dos líneas de aducción que se observan innecesarias, dejando el funcionamiento de una sola correspondiente al mayor diámetro de las tres existentes, la cual llevará el agua hasta el desarenador. Además, se propone un mejor manejo de las estructuras y un mantenimiento con más frecuencia para evitar deterioro de las mismas y prolongar su vida útil. En la fotografía 9 se puede observar el detalle del funcionamiento de la bocatoma.

Foto: 9. Captación, bocatoma y detalle de la rejilla

En la parte derecha del sentido del flujo, se encuentra una cámara de recolección que se comunica por una tubería en PVC de 6 pulgadas, y las dimensiones de la misma son de 1 m x 1 m x 2 m. Esta cámara tiene una tapa de lámina de hierro para realizar el proceso de lavado y mantenimiento. De la misma forma, cuenta con una válvula de apertura y cierre, la cual funciona a través de un volante que sirve de desagüe por un Tubo en PVC de 4 pulgadas.

La bocatoma se encuentra expuesta a un elevado nivel de contaminación sobre la fuente de abastecimiento, ya que cerca a sus orillas hay crianza de ganado vacuno, por lo que se afecta considerablemente la calidad del agua.

Red de aducción. La línea de aducción está compuesta por tres tuberías de PVC en 3, 4 y 6 pulgadas, con una longitud de 100 m entre la caja de derivación y el desarenador. La tubería se encuentra enterrada aproximadamente a un metro, pero por la temporada invernal, parte de la tubería está expuesta al paso de

animales y personas dedicadas a las actividades de cultivo y crianza de ganado. Además, a 20 m se encuentra una válvula de red de aducción de 6 pulgadas protegida por una caja de 0,8 m x 0,8 m. Se puede apreciar en la fotografía 10 como la aducción se encuentra expuesta al transito humano y animal.

Foto: 10. Línea de aducción

Desarenador. Las comunidades del barrio El Rosario y Corregimiento de Jamondino, cuentan con dos desarenadores de tipo convencional, a donde llega el agua captada por tres tuberías en PVC de 3, 4 y 6 pulgadas, a una altura de 2856 m.s.n.m.; uno de ellos construido en mampostería y otro en concreto reforzado, de tipo convencional semienterrado con las siguientes dimensiones: el ancho de muro es de 0,25 m; 15.0 m de longitud; 2.30 m de ancho y 2.20 m de altura.

El Desarenador con más de 30 años de funcionamiento, ya ha cumplido su vida útil por lo cual debe ser remplazado.

El otro desarenador tiene las siguientes dimensiones: el ancho de muro es de 0.2 m; 7,0 m de longitud; 1,5 m de ancho y 1,6 m de altura.

De acuerdo con las dimensiones presentadas, se puede comprobar que la estructura más grande no cumple con la relación largo – ancho que debería estar entre 3 y 6 (RAS 2000, Título B).

Según el guía el más pequeño fue construido a través del Plan Colombia hace aproximadamente unos 6 años, pero no se encuentra en funcionamiento continuo.

Para alcanzar un funcionamiento adecuado, los dos desarenadores cuentan con respiraderos de metal, una compuerta para el acceso del personal para su lavado y mantenimiento en el área de alimentación de agua.

A la entrada el desarenador existe una pantalla de 0.5 m de profundidad, con una tubería de 2 pulgadas y 2 tuberías de 4 pulgadas en PVC. El agua golpea con el

muro. Además la estructura posee un sistema para la evacuación de lodos. En la fotografía 11 se aprecia el desarenador construido a través del plan Colombia.

Foto: 11. Desarenador

Red de conducción. La conducción se hace en tubería de PVC de 3, 4 y 6 pulgadas. La tubería se encuentra instalada a una profundidad de 1.00 m, en el tramo entre el desarenador y cámara de distribución de caudales para la red de alimentación del Barrio el Rosario y del tanque de abastecimiento del Corregimiento de Jamondino. Adicionalmente en la conducción se observaron dos purgas y una ventosa en buen estado de funcionamiento. En la fotografía 12 se aprecia que en algunos sectores la red de conducción queda expuesta a deterioro debido al transito ya que no tiene protección sobre todo en épocas invernales.

Foto: 12. Línea de conducción

Planta de tratamiento de agua potable. Las dos localidades en la actualidad no cuentan con planta de tratamiento de agua potable. Sin embargo es recomendable utilizar un sistema de tratamiento dadas las condiciones del agua conducida.

Desinfección. El sistema de acueducto del barrio El Rosario cuenta con un sistema de desinfección ubicado en el interior de una caseta y consta de un tanque de 500 L. El cloro es granulado y se aplica por sistema de goteo.

El Corregimiento de Jamondino carece del sistema de cloración debido al impedimento de su instalación por parte de la población. La fotografía 13 expone el detalle de la caseta de cloración convencional ubicada sobre el tanque de almacenamiento.

Foto: 13. Caseta de cloración

Tanque de almacenamiento. El acueducto cuenta con 3 tanques: un tanque de almacenamiento para Jamondino y dos para el Barrio El Rosario. El de Jamondino tiene una forma irregular, debido a que posee varias estructuras internas que se han modificado a través del tiempo. Además, tiene una cámara donde se reparte los caudales tanto para El Rosario como para el Corregimiento de Jamondino.

El último tanque está localizado en el sector de La Cruz y fue construido hace aproximadamente 30 años en mampostería y modificado con concreto reforzado. A éste llega la tubería de la conducción en PVC de 3 pulgadas y sale hacia la red de distribución una tubería de PVC en 6 pulgadas.

Los otros tanques tienen forma rectangular definida, construidos en mampostería con columnas en concreto reforzado cada 2 m. Están localizados en el sector del Cementerio, tienen casetas respectivas y entrada en 3 pulgadas. Uno de ellos posee una entrada más en tubería de 2 pulgadas.

A pesar del tiempo, se encuentra en buen estado al igual que sus válvulas y no presenta filtraciones; estas estructuras son semienterradas.

Dimensiones tanque Jamondino: 12.4 m de longitud; 14.2 m de ancho; 2.3 m de profundidad; 0.15 m de ancho de muro y tiene una capacidad de almacenamiento de 410.27 m³.

Dimensiones tanque del Rosario No 1: 18.40 m de longitud; 6.65 m de ancho; 2.35 m de Profundidad; 0.25 m de Ancho de Muro y capacidad de almacenamiento de 290,7 m³.

Dimensiones Tanque del Rosario No 2: 14.25 m de Longitud; 7.80 m de Ancho; 2.2 m de Profundidad; 0.25 m de Ancho de Muro y capacidad de almacenamiento de 244.53 m³. La fotografía 14 expone los tanques para Jamondino y El Rosario de derecha a izquierda respectivamente.

Foto: 14. Tanques de almacenamiento para Jamondino y El Rosario

Los tanques cuentan con sistemas de ventilación de 2 pulgadas tipo cono en hierro y una compuerta para lavado y mantenimiento. A la salida del tanque hay una caja construida en ladrillo.

Red de distribución. Del tanque de almacenamiento sale una conducción en PVC de 6 pulgadas hasta la entrada al casco Urbano del Corregimiento.

Presenta una serie de ramales en diferentes diámetros y reducciones. Los ramales poseen diámetros desde 6 pulgadas hasta ½ pulgada.

El barrio El Rosario presenta una serie de deficiencias en el servicio continuo por la existencia de tuberías de diferentes diámetros, sin contar las modificaciones realizadas en las líneas de transporte de agua en la red.

La red se encuentra en regular estado, construida en tubería PVC de 2 pulgadas. Tiene algunas válvulas para corte por lo que se debe suspender a la totalidad de los suscriptores cuando se presentan daños, además las presiones son bajas.

A pesar de que las redes no han sido técnicamente diseñadas (motivo por el cual tampoco se cuenta con planos precisos de las mismas), los miembros de la junta conocen con exactitud donde están las redes ayudados por el fontanero del acueducto. Se desconocen longitudes y diámetros reales, según informa la Junta Administradora.

Las redes se encuentran en regulares condiciones, por lo cual se hace necesaria la evaluación precisa del estado de las redes actuales para identificar los tramos que deben reemplazarse, repararse y/o ampliarse.

Identificación de las necesidades del sistema. De acuerdo a la evaluación realizada al acueducto actual, se pudieron identificar anomalías dentro del mismo, por lo cual se recomienda realizar las siguientes actividades:

- Realizar mantenimientos de los componentes del sistema, de tal forma que sigan con un funcionamiento de manera óptima.
- Realizar e implementar el Plan de Uso eficiente y Ahorro del Agua, el cual se debe aplicar de forma eficiente, para la implementación de un sistema de medición y aumentar la cobertura al 100%.
- Se sugiere una capacitación permanente acerca del mantenimiento y operación del sistema de acueducto.

Micro medición. No se presenta la cobertura de micro medición.

4.2.3 Sistema de abastecimiento de agua en Mocondino, Puerres y Canchala. Los sectores de Mocondino, Puerres y Canchala pertenecen al Municipio de Pasto, ubicados al sur de este Municipio. Estos tres sectores están limitados de la siguiente forma:

Mocondino; Norte: Barrio Popular, Río Pasto. Sur: Jamondino. Oriente: Dolores. Occidente: Canchala y Puerres

Puerres; Norte: Villa Flor II, Canchala. Sur: Villa Docente, El Rosario. Oriente: Canchala, Mocondino. Occidente: El Tejar

Canchala; Norte: Arnulfo Guerrero, Las Iajas. Sur: El Rosario, Jamondino. Oriente: Mocondino. Occidente: Puerres

- **4.2.3.1** Fuentes de abastecimiento del sistema de acueducto. La quebrada Dolores nace a 3350 m.s.n.m. en el sector de Peña Blanca, haciendo un recorrido de 5092 m desembocando en el río Pasto a una altura de 2570 m.s.n.m. El cauce principal es abastecido por cinco quebradas, ubicadas en el margen izquierdo: quebrada Motilón 1, quebrada Motilón 2, quebrada Chorrera Negra, quebrada Tambillo y quebrada Toma Alta.
- **4.2.3.2** Análisis de control de calidad en las fuentes de abastecimiento. No hay control de calidad en las fuentes, el agua captada por la población es en general de buena calidad, menos la de la bocatoma Motilón 2, la cual por estar ubicada en cotas inferiores a las de pasteo de ganado se encuentra expuesta a la

recepción de sustancias toxicas con presencia de coliformes, aunque se sabe de este problema, la población no opta ni siquiera por la cloración. Este problema debe ser atendido por el consultor escogido ya que puede representar repercusiones graves en el desarrollo de la población. No se han encontrado registros de análisis de agua en las fuentes pero si en las redes de distribución de Mocondino, Puerres y Canchala, esta información se obtuvo del Departamento de Salud de la Alcaldía Municipal de Pasto, en donde se encontró un dato muy importante, el cual es que para las localidades de Canchala y Puerres se encontró registro de cloro residual, situación muy rara ya que los presidentes de la junta de cada localidad informaron que nunca han practicado el proceso de cloración del agua.

- **4.2.3.3 Concesiones de agua.** El Tambillo con 2 lps, 71.47% del caudal; El Motilón 1 con 1.5 lps, 75% del caudal; El Motilón 2 con 2.41 lps, 95% del caudal; Chorrera Negra con 1.3 lps, 58.03% del caudal; Toma alta con 0.7 lps, 58.33% del caudal; de la desembocadura se captan 2.5 lps; 10.41 lps en total.
- **4.2.3.4 Evaluación del sistema existente.** La microcuenca Dolores a pesar de presentar seis bocatomas para abastecer a un importante número de habitantes del Municipio de Pasto, no presenta un volumen importante de agua para este fin. Realizado el aforo en cada una de las bocatomas se observa que el caudal real es reducido y según cuenta el fontanero en épocas de baja precipitaciones el caudal llega a ser nulo, es decir que el caudal ecológico desaparece. Realizada la sumatoria del caudal captado por las seis bocatomas de la parte alta de la microcuenca se tiene una cantidad de 10.41 lps.

Analizando la relación, cantidad de bocatomas – concesión legal – caudal total captado, se obtiene que el volumen de agua es reducido lo cual pone en evidencia la poca disponibilidad del recurso hídrico, por lo cual el caudal concedido por CORPONARIÑO para la población no cumple con las demandas reales, por lo cual estas poblaciones están haciendo uso de la totalidad del caudal captado en El Tambillo, El Motilón 1, El Motilón 2, Chorrera Negra y Toma alta, cumpliéndose solo así con los requerimientos de dotación para la población, también se debe tener en cuenta que esta población no cuenta con micro medición en donde los principales oponentes a su instalación son algunos habitantes de Mocondino que poseen animales criados para la actividad comercial, por lo tanto se recomienda a los consultores hacer un análisis de dotación y consumo y sus respectivas medidas correctivas todo con el fin de promover un uso racional del agua y así mismo que se cumpla con la dotación a los habitantes siendo este el principal objetivo del proyecto.

Captación. Las 5 estaciones de muestreo de la microcuenca Dolores se encuentran situadas en la parte alta y una en la parte baja, su descripción es la siguiente:

- Estación 1 (Desembocadura): se encuentra a una altura de 2600 m en la parte baja de la microcuenca cercana a la vía al Putumayo. La zona aledaña se caracteriza por presentar cultivos como papa, arveja, maíz, fríjol, cebolla y otras dedicadas a pastos, con un gran número de viviendas.
- Estación 2 (Bocatoma El Tambillo): se encuentra a una altura de 3018 m.s.n.m. Ubicación: 077.22153W, 01.17213N; en la parte más alta de la microcuenca. La zona aledaña se caracteriza por presentar gran cantidad de bosque, la geografía del terreno presenta altas pendientes. Existe bastas zonas de pastos lo que favorece la presencia de actividades dedicadas a la ganadería. Es una bocatoma de fondo con una rejilla de 0.19 x 0.93 m y tiene una cámara de derivación en la parte derecha de 0.90 x 0.90 m. En la fotografía 15 se puede apreciar el detalle de la bocatoma de fondo la cual se encuentra en buenas condiciones físicas y funcionales.

Foto: 15. Bocatoma El Tambillo

- Estación 3 (Bocatoma Motilón 1): se encuentra a una altura de 2900 m.s.n.m. Ubicación: 077.22695W, 01.17772N; la zona aledaña se caracteriza por estar cercana a los límites del bosque, la geografía del terreno es pronunciada, sin embargo se nota la presencia de ganadería. Al igual que en El Tambillo es una bocatoma de fondo con una rejilla de 0.19 x 0.93 m y tiene una cámara de derivación en la parte derecha de 0.90 x 0.90 m. En la foto 16 se puede observar que la bocatoma no requiere protección adicional para evitar la contaminación ya que se ha ubicado a continuación de roca natural alejada del alcance de material vegetal o materia orgánica animal.

Foto: 16. Bocatoma Motilón 1

Estación 4 (Bocatoma motilón 2): se encuentra a una altura de 2860 m.s.n.m. Ubicación: 077.22865W, 01.17792N; la zona limítrofe se caracteriza por estar cercana a los límites del bosque, la bocatoma se encuentra cubierta por vegetación aunque existen evidencias notables de su continuo deterioro. Las zonas aledañas corresponden a pastos y la presencia de ganadería. Es una bocatoma de fondo con una rejilla de 0.2 x 1.0 m y tiene una cámara de derivación en la parte derecha de 1.00 x 0.80 m. En la foto 17 se aprecia que ha sido necesario proteger el agua captada con una malla para evitar sobrecarga de contaminación vegetal ya que se ha ubicado en una zona boscosa.

Foto: 17. Bocatoma Motilón 2

- Estación 5 (Bocatoma Chorrera Negra): se encuentra a una altura de 2830 m.s.n.m. Ubicación: 077.23266W, 01.17667N; esta estación se encuentra cubierta por una importante vegetación típica de las riberas de ríos y el cauce de la quebrada es angosto y se encuentra excavado profundamente al suelo. Igualmente existen zonas cercanas de pastos dedicados a la ganadería. No hay conexión con desarenador, por lo tanto la red de aducción carece de este tratamiento. La fotografía 18 expone una bocatoma de fondo con buena

funcionalidad pero con riesgo de contaminación debida al material vegetal de la zona aledaña.

Foto: 18. Bocatoma Chorrera Negra

Estación 6 (Toma Alta): se encuentra a una altura de 2865 m.s.n.m. Ubicación: 077.23537W, 01.17477N; esta estación se encuentra en cercanías al bosque, al igual que la mayoría de estaciones presentan en sus inmediaciones una zona de pastos dedicados a la ganadería. Es una bocatoma de fondo con una rejilla de 0.19 x 0.93 m y tiene una cámara de derivación en la parte derecha de 0.90 x 0.90 m, además de esta sale una tubería de 4 pulgadas de diámetro. En la fotografía 19 se aprecia que la bocatoma Toma Alta está en buenas condiciones de servicio pero requiere un medio de protección para mejorar las condiciones del agua captada.

Foto: 19. Bocatoma Toma Alta

Red de aducción. Las instalaciones se han cambiado por parte de la comunidad cuando ha sido necesario, las tuberías originales se instalaron hace 30 años para

el diseño original del acueducto, se encuentran a una profundidad de 0.70 m dispuesto este patrón para todas las aducciones del acueducto. La tubería tiene un diámetro de 3 pulgadas.

Desarenadores. Existe un desarenador semienterrado que se comunica con la bocatoma principal (El Tambillo) el cual se encuentra a una altura de 2830 m.s.n.m. Ubicación: 077.22130W, 01.17184N; esta construido en concreto impermeabilizado con tapa en concreto reforzado, tiene como dimensiones 5.77 m de largo x 1.8 m de ancho x 1.77 m de alto, con borde libre de 0.3 m (cumpliendo este ultimo con especificaciones RAS 2000). Tiene una salida de tubería de 4 pulgadas de diámetro. El desarenador se encuentra funcionando bien, gracias a que la población se ha encargado de hacerle mantenimiento periódico, adicionalmente se puede observar en la fotografía 20 que cumple con buenas condiciones de servicio.

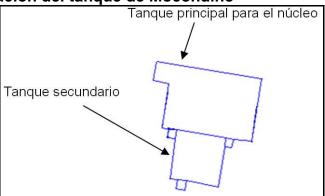
Foto: 20. Desarenador 1 de la bocatoma El Tambillo

De la bocatoma Motilón 1 se conecta una cámara repartidora de caudales con ubicación: 077.22733W, 01.17785N, la cual se deriva para la bocatoma Motilón 2 y para el segundo desarenador, el cual se encuentra a una altura de 2847 m.s.n.m. Ubicación: 077.22958W, 01.17809N; como se aprecia en la fotografía 21, este desarenador semienterrado esta construido en concreto impermeabilizado con tapa en concreto reforzado, tiene como dimensiones 7.0 m de largo x 2.0 m de ancho x 2.0 m de alto, con borde libre de 0.3 m los desarenadores tienen un buen funcionamiento

Foto: 21. Desarenador 2

Red de conducción. La tubería al igual que en la red de aducción se ha cambiado por parte de la población cuando ha sido necesario, esta tubería tiene diámetros de 3, 4 y 2 pulgadas. En la fotografía 22 se observa la pendiente del terreno natural por el que pasa la tubería de conducción.

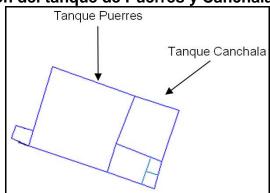
Foto: 22. Conducción desde la bocatoma el tambillo



Tanques de almacenamiento. La localidad de Mocondino posee dos tanques conectados en donde el principal almacena para el núcleo y el secundario lo hace para la zona dispersa, se encuentran a una altura de 2870 m.s.n.m. Ubicación: 077.24564W, 01.18252N (cota de entrada), el primer tanque de Mocondino fue construido hace 30 años y no presenta filtraciones ni averías serias en su estructura, encontrándose en un estado bueno, el segundo tanque de Mocondino de 3 años de existencia no presenta filtración, no obstante en su concepción no se contó con la garantía de colocar vigas de amarre y columnas de confinamiento. El tanque principal de Mocondino esta conformado por 4 conos de ventilación en lamina, una válvula de vástago ascendente de 4 pulgadas para lavado, 2 tapas circulares de hierro fundido de acceso al tanque y cajilla de inspección, una válvula de corte de 4 pulgadas, losa en concreto reforzado repellada, paredes laterales en concreto reforzado repellado interior y fue diseñado para un periodo de 30 años por lo cual ya esta entrando en vigencia, pero debido a las buenas condiciones aparentes, se le recomendaría al consultor las respectivas especificaciones técnicas que impliquen su correcto mantenimiento, esto siempre y cuando se apoye y fundamente en un análisis patológico de la estructura. Este tanque tiene unas dimensiones de 7.14 x 10.18 m. El tanque secundario de Mocondino esta conformado por: una válvula de 4 pulgadas para lavado, una tapa circular de hierro fundido de acceso al tanque y una tapa cuadrada en lamina para inspección, dos cajillas una al oriente y otra al occidente, una cajilla de acceso de tuberías que vienen de la caja repartidora, una válvula de corte de 4 pulgadas, losa en concreto armado repellada, paredes laterales en mampostería en tizón repellado interior y exterior, paredes laterales en mampostería en tizón esmaltadas interior y exterior, el tanque tiene como dimensiones 5.53 x 5.6 m. Este tanque no presenta filtraciones ni daños severos. En la fotografía 23 se pueden apreciar las características de los tanques semienterrados construidos en concreto y en la figura 1 se observa la disposición.

Foto: 23. Tanques para Mocondino

Figura: 1. Distribución del tanque de Mocondino



Canchala y Puerres tienen un tanque dividido (3.51 x 4 m para Canchala y 6.64 x 6.2 m para Puerres) el cual tiene 25 años de existencia. Los tanques tienen columnas de confinamiento y no cuentan con filtraciones ni daños severos en su estructura por lo tanto su estado es bueno. Este tanque esta conformado por: una válvula de 4 pulgadas para lavado, una tapa cuadrada en lamina para inspección, dos cajillas, una cajilla de acceso a la válvula, una válvula de corte de 4 pulgadas, losa en concreto armado repellada, paredes laterales en mampostería en tizón repellado interior y exterior, paredes laterales en mampostería en tizón y columnas de confinamiento. Las características físicas relativamente nuevas de los tanques para Canchala y Puerres se aprecian en la foto 24, así mismo, se aprecia la disposición de estos tanques a través de la figura 2.

Foto: 24. Tanque para Puerres y Canchala

Figura: 2. Distribución del tanque de Puerres y Canchala

Planta de tratamiento de agua potable. Mocondino, Puerres y Canchala son localidades que a pesar de ser hermanas tienen muchas diferencias en cuestión a puntos de vista e intereses, es así que estos tres lugares demandan un sistema de tratamiento de agua potable pero en forma independiente ya que no quieren tener ningún proyecto en común por diferencias irreconciliables. Este problema se consultó en la Secretaria de Gestión Ambiental y se concluyó que el Municipio no puede asumir un gasto de esta magnitud siendo la justificación la rivalidad entre las tres localidades ya que un sistema de tratamiento ubicado en la zona alta después del tanque de almacenamiento principal seria la solución mas viable, pero así mismo no es aceptada por ellos. Se recomienda una reunión para sensibilizar a la población ya que el agua se encuentra expuesta a contaminación de tipo vegetal y animal y esto puede afectar a largo plazo a los usuarios especialmente a los niños.

Desinfección. La población debe ser beneficiada con un medio de desinfección ya que no lo tiene.

Red de distribución. La red de distribución principal de Mocondino es de 4 y 6 pulgadas en PVC y es de tipo abierta, la red de Puerres es de 2 pulgadas en PVC de tipo abierta y la red de Canchala es de 2 pulgadas en PVC. Según sus

representantes, en las localidades de Puerres y Canchala hay un problema de vaciado prematuro del agua en el tanque por lo cual ellos no disponen de este recurso continuamente, es posible que afecte el hecho de que las redes sean abiertas y no cerradas lo cual puede afectar en la recirculación del agua, otro problema puede ser que en los tanques no se han ubicado correctamente las pantallas deflectoras encontrándose estas a un nivel superior del que se requiere para que el tanque distribuya el agua a través de estos los cuales sacan el agua para Mocondino o para Puerres.

Macro medición. La población no cuenta con macro medición.

Micro medición. La población no cuenta con micro medición.

- **4.2.4 Sistema de abastecimiento de agua en San Cayetano Mapachico.** Se encuentra funcionando en forma deficiente en cuanto a cobertura y continuidad de prestación del servicio, debido a la falta de elementos estructurales que garanticen un servicio más técnico del acueducto.
- **4.2.4.1 Fuentes de abastecimiento del sistema de acueducto.** Actualmente la población de San Cayetano se alimenta de la fuente denominada El Bolsón la cual se encuentra a una altura de 3255 m.s.n.m. y de un nacedero (aguas subterráneas) llamado "Ojo de agua" a través de acometidas en manguera, se encuentra a una altura de 2983 m.s.n.m., siendo esta captación complementaria ya que la principal es la fuente El Bolsón.
- **4.2.4.2** Análisis de control de calidad en las fuentes de abastecimiento. Teniendo en cuenta el estado actual del acueducto y la dotación de agua a la población, se puede concluir que no hay control de calidad en las fuentes, con respecto a la captación en el nacedero Ojo de Agua se consultó en el departamento de salud el análisis de agua realizado en la red principal del cual se obtienen resultados de Coniformes totales 238.2 NMP/100 ml. y de Escherichia coli 5.2/100 ml. los cuales deben ser iguales a 0.0 UFC según la resolución 2115 del 2007 por lo tanto el agua no es microbiológicamente aceptada, estos valores se pueden confirmar debido a la presencia de ganado en el perímetro del nacedero. Según esta información se puede concluir que el Ojo de Agua para ser habilitado como una fuente debe ser sometido a un aislamiento y la aducción se debe hacer a una cota más alta a través de filtros que garanticen que no habrá mezcla del agua captada con sustancias tóxicas y nocivas.

El agua captada de la principal fuente El Bolsón no presenta deficiencias en su calidad pero se recomienda su tratamiento por lo menos con cloración ya que las personas vienen consumiendo el agua captada directamente de la fuente.

4.2.4.3 Concesiones de agua. En el momento la concesión de la fuente denominada "Páramo La Toma El Galeras" ó El Bolsón proveniente del volcán galeras, se esta tramitando por la junta. Según el fontanero, ya que esta fuente solo abastece a San Cayetano y debido a la cercanía al volcán Galeras, pueden hacer uso del caudal necesario, por lo tanto se les recomendó que informaran esta situación al consultor contratado para el diseño definitivo del acueducto para que este después de un aforo de la fuente, pueda diseñar con el caudal mas conveniente proyectado a los años de vida útil de un acueducto de estas características y luego de revisar el diseño, se pueda gestionar legalmente la concesión de agua. Por otra parte el nacedero Ojo de Agua tiene una concesión de 0.86 lps.

4.2.4.4 Evaluación del sistema existente. El actual medio de abastecimiento de agua en San Cayetano tiene 25 años de existencia, de la fuente El Bolsón se deriva una bocatoma artesanal defectuosa en cuanto a diseño y a eficiencia, además el acceso a esta bocatoma es muy peligroso y puede poner en riesgo la salud de las personas encargadas de su mantenimiento como se observa en la fotografía 25.

Foto: 25. Acceso a la bocatoma

La captación así como todos los elementos del acueducto son artesanales; la aducción y el desarenador no tienen funcionalidad técnica además el desarenador carece de sus accesorios originales y por lo tanto se encuentra expuesto a la contaminación ambiental, una de las cajas de salida se encuentra destruida en la superficie, además este desarenador fue construido en un terreno sin mejoramiento de suelo, y a simple vista se puede observar que el nivel freático es alto y llega a la superficie. En la conducción solo se encontró una cámara de quiebre, lo cual se debe revisar teniendo en cuenta que la conducción tiene una pendiente pronunciada por lo cual se pueden generar grandes presiones. La fotografía 26 expone las condiciones desfavorables de la tubería de aducción y en

la fotografía 27 se puede observar que el desarenador se encuentra prácticamente destruido.

Foto: 26. Tubería de salida de la bocatoma al desarenador (aducción)

Foto: 27. Cámara de salida del desarenador

Existen tres tanques de almacenamiento de construcción mas reciente, su construcción ha sido con diseño previo y con mano de obra calificada, estos tanques mantienen un buen desempeño de almacenamiento y dotación.

La red de distribución debe ser mejorada y ampliada para cumplir con el abastecimiento adecuado a todas las viviendas de San Cayetano.

Captación. En El Bolsón, el agua es captada a una caja con muro en ladrillo y entrada artesanal en mortero impermeabilizado, donde se conectan dos mangueras una que da agua hacia parques nacionales, y la otra es conducida hacia el sistema de acueducto en diámetro de 3 pulgadas, como se observa en la foto 28. En la fotografía 29 se aprecia que la bocatoma se encuentra en regular estado de funcionamiento.

Foto: 28. Entrada a la bocatoma y salida a parques nacionales

Foto: 29. Bocatoma y salida a San Cayetano en la parte inferior izquierda

En el Ojo de Agua la captación se hace a través de tubería enterrada, ya que este es un sistema de flujo subterráneo de agua. Está expuesto a contaminación por infiltración, si se quiere tener en cuenta este medio para el diseño del acueducto se debe optimizar ya que su ubicación no garantiza una buena calidad del agua, además en temporada invernal es complicado el acceso a pesar de encontrarse dentro del núcleo de San Cayetano como se observa en la fotografía 30. Se encuentra a una altura de 2983 m.s.n.m. Ubicación: 077.32086W, 01.21974N. Esta captación llega a una cámara repartidora de caudales construida en concreto con refuerzo en la tapa y en la base, en esta cámara se almacena por un periodo el agua propiciando la sedimentación de algunas partículas en el fondo de la misma, estas partículas se remueven a través de limpieza periódica.

Foto: 30. Acceso a la fuente Ojo de Agua y cámara repartidora

Red de aducción. Es realizada por medio de manguera con diámetro de 3 pulgadas, instalada sobre una zanja por donde anteriormente conducían el agua, es un sistema instalado por los habitantes del sector.

Desarenador. Es un tanque semienterrado que tiene las siguientes dimensiones: 1.5 m de largo x 1.5 m de ancho x 1.00 m de alto. En la fotografía 31 se observan las condiciones físicas del desarenador, el cual no ha sido mantenido por la población.

Foto: 31. Desarenador

Fue construido por los habitantes de este sector, como se aprecia en la fotografía 32 no tiene ningún diseño aunque si esta sedimentando los sólidos pero no es la estructura mas adecuada para esta función. La estructura del desarenador tiene tres salidas las cuales se conducen a dos fincas y hacia el acueducto.

Foto: 32. Interior del desarenador

Red de conducción. Es realizada en manguera de 3 pulgadas. En algunos sectores, el agua esta siendo conducida en tubería PVC de 3 pulgadas y en otras en tubería de asbesto cemento de 3 pulgadas. Las viviendas que se ubican dentro del recorrido de la conducción hacen acometidas domiciliarias para su conexión.

Tanques de almacenamiento. En el acueducto se encuentra tres tanques de almacenamiento.

Tanque de almacenamiento El Tinto, el cual se aprecia en la fotografía 33, está conformado por 3 conos de ventilación en lámina, una válvula de vástago ascendente de 4 pulgadas para lavado, 2 tapas cuadradas de hierro fundido de acceso al tanque y cajilla de inspección: Este tanque se divide entres partes; El primero es un tanque con muros en ladrillo repellado e impermeabilizado con losa en concreto armado repellada. Su función es almacenar y repartir el agua a dos tanques, este tanque tiene las siguientes dimensiones: 1.30 m de longitud x 1.26 m de ancho x 1.20 m de profundidad. Tiene fugaz pequeñas, por lo que se recomienda una impermeabilización. El segundo es un tanque en mampostería repellado e impermeabilizado unido a columnas de confinamiento v sus dimensiones son las siguientes: 1.80 m de longitud x 1.62 m de ancho x 1.10 m de profundidad. Este tanque conduce el agua hacia el tanque construido por EMPOPASTO. El último tanque esta construido en mampostería repellado e impermeabilizado y conduce el agua hacia el tanque numero 3 sus dimensiones son las siguientes: 3.20 m de longitud x 4.30 m de ancho x 1.80 m de profundidad. Este sistema de tanques no cuenta con By – Pass, por lo tanto se recomienda diseñar un paso directo y adecuarlo dentro de las mejoras generales. Se encuentra а una altura de 3179 m.s.n.m. Ubicación: 077.32934W, 01.21962N (cota de salida).

Foto: 33. Tanque El Tinto

Tanque de almacenamiento EMPOPASTO: se aprecia en la fotografía 34, está construido en concreto, con losa en concreto armado repellada, paredes laterales en concreto armado y repellado interior, conformado por 4 conos de ventilación con remate de codo PVC de 3 pulgadas y 2 tapas circulares de hierro fundido de acceso al tanque. Fue construido por la empresa de servicios públicos EMPOPASTO S.A. y sus dimensiones son las siguientes: 6.30 m de longitud x 6.00 m de ancho x 2.85 m de profundidad, además el tanque cuenta con By – Pass y no tiene fugaz encontrándose en buen estado. Se encuentra a una altura de 3165 m.s.n.m. Ubicación: 077.32671W, 01.22086N (cota de entrada).

Foto: 34. Tanque de EMPOPASTO

- Tanque de almacenamiento de los tres vasos: se aprecia en la fotografía 35, construido en mampostería, no tiene fugaz y se encuentra en buen estado. No cuenta con By – Pass y sus dimensiones son las siguientes: 5.15 m de longitud x 2.37 m de ancho x 1.48 m de profundidad. Tiene 3 vasos de igual volumen que reparten caudales a la zona dispersa del sector y al núcleo de San Cayetano.

Foto: 35. Tangue Tres Vasos

Planta de tratamiento de agua potable. El acueducto no cuenta con planta de tratamiento de agua, debido a que San Cayetano se encuentra muy cerca de la amenaza volcánica no seria viable diseñar una planta de estas características, ya que los organismos de control como CLOPAD (Sistema Nacional de Prevención y Atención de Desastres) restringen la infraestructura en lugares expuestos a desastres naturales.

Desinfección. La población debe ser beneficiada con un sistema de desinfección ya que no lo tiene.

Red de distribución. La red de distribución se la realiza por medio de manguera en diámetro de 1½ pulgadas, debido a la instalación de esta tubería de poco diámetro y la ausencia de estructuras que trabajen como cámaras de quiebre de presión para la pendiente tan pronunciada que tiene la red de conducción se generan presiones altísimas en la parte baja de san Cayetano causando que se estallen los grifos y las mangueras, por lo tanto es recomendable hacer un análisis de presiones y diseñar la mejor alternativa para la solución de este problema.

Macro medición. La población no cuenta con macro medición.

Micro medición. La población no cuenta con micro medición.

4.2.5 Sistema de tratamiento de aguas residuales sector Popular y Rosal de **Oriente.** Es completamente nuevo, por lo cual no hay un diagnostico de las estructuras existentes, pero se puede hacer un informe detallado de las condiciones de adaptación del nuevo sistema de tratamiento a las características presentadas por el lugar.

4.2.5.1 Problema. La planta de tratamiento de aguas residuales (PTAR) es completamente indispensable teniendo en cuenta que los vertimientos se hacen

directamente sobre la conducción de agua a barrios de la ciudad de Pasto. A continuación se presentan los detalles de este problema y sus respectivas observaciones.

La PTAR se ubicará en la vía Pasto – Putumayo al sur oriente de Pasto con coordenadas 981068.16E, 624504.77N y a una altura de 2630 m.s.n.m. Esta planta será diseñada para tratar aguas residuales provenientes de los sectores Buesaquillo en la zona rural y Barrio Popular, Rosal de Oriente, La Estrella y Pinar del Río en la zona suburbana del Municipio de Pasto, la futura ubicación de la planta se aprecia en las fotografías 36 y 37.

Foto: 36. Lote de la PTAR

Foto: 37. Lote ubicación de la PTAR

Las aguas residuales provenientes principalmente de Buesaquillo, Barrio Popular y Rosal de Oriente se vierten inadecuadamente generando problemas sanitarios y ambientales en barrios localizados aguas abajo del vertimiento. Actualmente la captación de esta agua se hace através de una compuerta de manipulación mecánica la cual desvía hacia un canal el cual carece de tratamiento adecuado para esta agua como se aprecia en la fotografía 38. El agua que no es captada continúa su ciclo hacia el río Pasto como se muestra en la fotografía 39.

Foto: 38. Entrada de aguas vertidas al canal de conducción existente

Foto: 39. Salida de aguas al río Pasto

La conducción de agua no cuenta con un tratamiento adecuado para este tipo de aguas. Como se observa en la fotografía 40, el sistema esta formado por un canal de conducción en buen estado y un medio de separación de excesos de turbiedad a través de una rejilla de manipulación mecánica de 1 x 0.50 m.

Foto: 40. Entrada al canal de conducción y rejilla de separación

Como se observa en la foto 41, también cuenta con un sistema de separación, filtración y sedimentación en 8 pozos divididos en 2 secciones los cuales convergen en un mismo punto.

Foto: 41. Filtración y sedimentación

4.2.5.2 Observaciones. Teniendo en cuenta la normatividad colombiana en relación al vertimiento de aguas residuales, es necesaria la implementación de alternativas que permitan disminuir la carga contaminante de los vertimientos sobre las fuentes hídricas, para lograr mitigar la problemática sanitaria y ambiental generadas por el uso del recurso hídrico. Por lo tanto se deben determinar el caudal de vertimiento y las características fisicoquímicas y microbiológicas del aqua a tratar y así determinar la alternativa de tratamiento adecuada.

Ya que este sistema de tratamiento requiere la construcción de estructuras, se deben hacer apiques a cielo abierto para determinar la capacidad portante del suelo y la profundidad del nivel freático.

Para el sistema de alcantarillado existente se recomienda detectar el punto exacto en donde se hacen los vertimientos a través de una topografía adecuada para así diseñar el empalme del alcantarillado con el sistema de tratamiento.

Se deben realizar chequeos hidráulicos del sistema diseñado como tiempos de retención y porcentajes de remoción, teniendo en cuenta los requerimientos de tratamiento exigidos por la ley Colombiana y el reglamento técnico del sector del agua potable y saneamiento básico RAS 2000 y las estructuras se deben diseñar teniendo en cuenta la norma colombiana de construcciones sismo – resistentes NSR-98.

4.2.6 Sistema de almacenamiento de agua potable para el sector de San Fernando. Debido al aumento de población se ha diligenciado una nueva concesión de agua a CORPONARIÑO, por lo cual se debe optimizar el acueducto en donde se hace necesaria la construcción de elementos nuevos que garanticen el correcto funcionamiento de este sistema, la Secretaria de Gestión Ambiental del Municipio de Pasto ha decidido adelantar el proyecto de consultoría para el diseño de un tanque de almacenamiento complementario que cumpla con las necesidades de demanda de agua potable para la población.

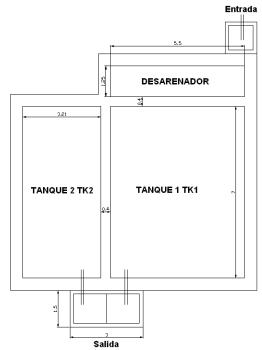
El proyecto se ejecutará en el corregimiento de San Fernando, ubicada a 7 km al oriente de la ciudad de Pasto, a una altura de 2875 m.s.n.m. Ubicación: 077.21659W, 01.18948N.

El acueducto requiere una optimización con base en la resolución No 306 del 23 de Agosto 2007, expedida por CORPONARIÑO, mediante la cual se aumenta la concesión de la fuente Chauperrio de 5 a 10 lps, y además también concede 3 lps de una nueva fuente denominada El Tábano. Los caudales de estas dos fuentes se concentrarán en un desarenador para luego ser conducidos en forma unificada hasta el tanque de almacenamiento.

La secretaria ha encomendado al estudiante autor de este trabajo como representante interventor del proyecto de diseño del tanque nuevo, visitar el lugar y evaluar el lugar más conveniente para su ubicación, teniendo en cuenta que la población ya había adquirido un lote para su ubicación, era necesaria una evaluación del terreno para determinar si es factible la construcción del tanque nuevo, así mismo fue necesaria una evaluación del tanque de almacenamiento para así determinar si es conveniente hacer mejoras que cumplan con la optimización buscada. El tanque nuevo se debe unir a un sistema de dos tanques unidos ya existentes, por lo tanto es necesario evaluar el estado de estos tanques y hacer un diagnostico que sirva como referencia para el consultor el cual debe garantizar en su diseño el correcto funcionamiento y acople entre las estructuras viejas y la nueva.

4.2.6.1 Descripción de la infraestructura existente. El sistema se encuentra funcionando en forma deficiente en cuanto a cobertura y continuidad debido a la creciente demanda del servicio. Actualmente se alimenta de la fuente denominada Chauperrio de la que se conceden 5 lps que se derivan mediante una bocatoma de fondo en estado de deterioro. Este tanque tiene una capacidad de 187 m³. Las estructuras construidas como se observa en la fotografía 42 son semienterradas en concreto con losa y tapa reforzada.

Foto: 42. Tanques de almacenamiento existentes



Existe un desarenador que no es funcional porque se ha construido junto al tanque de almacenamiento a una distancia de más de 2600 m de la fuente Chauperrio, además la población ya ha construido un desarenador que lo reemplaza y por lo tanto este ya no es necesario, este desarenador se puede rediseñar para ser empleado como una cámara de entrada al tanque.

La optimización del sistema de acueducto cuenta con dos desarenadores, uno se ha ubicado a 46 m de la fuente Chauperrio el cual reemplaza al existente, y otro que se ubica a 89 m de la fuente El Tábano debido a las condiciones topográficas.

En la figura 3, se describe con mayor precisión la distribución del tanque:

Figura: 3. Tanque existente en San Fernando

Desarenador. Existen dos planchas en concreto que tienen la función de amarrar los muros. Tiene una ventana que hace pasar el agua hacia el tanque numero 1. Esta estructura tiene las siguientes dimensiones: largo útil 5.50 m, ancho útil 1.25 m y profundidad 1.50 m. El volumen de esta estructura es de 8.44 m³, que no se utiliza en su totalidad debido a que la ventana que comunica con el tanque 1 se encuentra a una altura de 1.50 m permitiendo que pase el agua solamente hasta que se llene el desarenador. Por esta razón se recomienda bajar la conexión a 0.30 m. Se debe analizar la estabilidad de la estructura después de hacer cualquier cambio en su forma original

Tanque 1 (Tk1). Como se observa en la foto 43 y la foto 44, tiene repellado e impermeabilizado y esta en buen estado de funcionamiento. Esta estructura tiene las siguientes dimensiones: largo útil 7.00 m, ancho útil 5.50 m y profundidad 1.90 m. El tanque tiene un volumen de 73.15 m³.

Foto: 43. Ventana comunicante tanque 1 al tanque 2

Foto: 44. Salida a la red desde el tanque 1 y desagüe

Tanque 2 (Tk2). Tiene repellado e impermeabilizado en buen estado y tiene buen funcionamiento como se puede apreciar en la fotografía 45. Esta estructura tiene

las siguientes dimensiones: largo útil 7.00 m. ancho útil 3.21 m. profundidad 1.70 m. El tanque tiene un volumen de 73.15 m³

Foto: 45. Detalles del interior del tanque

Como se observa en la anterior fotografía, solamente hasta que se llene el tanque 1 se permite el paso hacia el tanque 2. Por esta razón se recomienda bajar la conexión a 0.30 m.

4.2.6.2 Evaluación del lote. Existe la posibilidad de construir el tanque antes o después de los tanques existentes (entiéndase antes en el sentido de llegada del agua al tanque existente y después en el sentido de la salida del agua de los tanques).

La ubicación del tanque de compensación depende de que el flujo del agua no se entorpezca reduciéndose la posibilidad del suministro, ya que el terreno aunque sea de difícil topografía se puede mejorar. Por lo tanto el lote adquirido aguas abajo de los tanques existentes no presentaba ninguna condición desfavorable para la construcción del tanque nuevo. En las fotografías 46 y 47 se observa el lote hacia donde se proyecta el tanque de compensación.

Foto: 46. Salida del tanque existente al tanque nuevo

Foto: 47. Lote de ubicación del tanque a diseñar

5. ACTIVIDADES DESEMPEÑADAS DENTRO DE LA ETAPA DE CONTRATACIÓN

Durante la etapa de contratación se elaboraron los términos de referencia como parámetros de cumplimiento del contrato de cada uno de los diseños, por tal motivo fueron elaborados para cada caso específico con base en términos de referencia generales facilitados por la Secretaría de Gestión Ambiental, también se emitieron las actas de inicio, de avance, de liquidación y de finalización.

A continuación se presenta un resumen técnico de los Términos de Referencia emitidos para la contratación de los servicios de consultoría. Estos términos se enfocan en el cumplimiento de distintas actividades que enmarcan el diseño de los diferentes sistemas contemplados en la preinversión.

Los Términos de Referencia fueron aprobados por el señor Secretario de Gestión Ambiental Ing. Hugo Ramiro Rosero Ortiz.

5.1 TÉRMINOS DE REFERENCIA PARA SISTEMAS DE ACUEDUCTO

- **5.1.1 Actividades del consultor.** Para la consecución de los productos esperados. El diseñador deberá realizar como mínimo las siguientes actividades:
- Organizar y efectuar reuniones y actividades con la comunidad, autoridades locales, representantes de otras instituciones relacionadas con el proyecto (gubernamentales, ONGs, fundaciones y otras) para la recopilación de información, constitución de compromisos locales y otros aspectos requeridos para la elaboración del proyecto.
- Coordinar con el equipo representante del Municipio de Pasto S.G.A. la elaboración del diagnóstico social, cuyos resultados se constituirán en insumos para el diseño del proyecto.
- Efectuar el trabajo de campo para la elaboración de estudios básicos de diseño.
- Diseño técnico del proyecto de acuerdo a la normativa vigente emitida por el Ministerio de Ambiente Vivienda y Desarrollo Territorial.

- Organizar, en coordinación con el equipo representante del Municipio de Pasto

 S.G.A., los eventos necesarios para capacitar a la comunidad en aspectos
 relacionados con: beneficios del proyecto para la salud, alternativas técnicas y
 niveles de servicio a ser presentadas a la comunidad para su selección, costos
 y estructuración tarifaria, elaboración de planes de operación y mantenimiento.
- **5.1.2 Documentos a ser proporcionados al consultor.** Para el cumplimiento de los servicios de interventoría de obras, el Contratante proporcionará la siguiente documentación:
- Resolución 1096/2000 que adopta el reglamento técnico de agua potable y saneamiento básico – RAS.
- Reglamento técnico para el sector de agua y saneamiento RAS 2000.
- Manual de prácticas de buena ingeniería del RAS 2000.
- Ley 373/1997 sobre ahorro y uso eficiente del agua.
- Decreto 1594/1984 expedido por el Ministerio de salud, por el cual se expide la Norma Técnica de calidad de los vertimientos.
- Decreto 1575/2007 (que reemplaza al Decreto 475/1998) expedido por los Ministerios de Salud y Desarrollo Económico, por el cual se expide la Norma Técnica de Calidad del Agua Potable.
- Guía RAS-001 definición del nivel de complejidad y evaluación de la población, la dotación y la demanda de agua.
- Guía RAS-002 Identificación, justificación y priorización de proyectos.
- Guía RAS-004 evaluación socioeconómica de proyecto de acueducto y alcantarillado.
- Guía RAS-005 alcantarillados sanitarios.
- **5.1.3 Informes.** Cada uno de los informes deberá ser entregado por el consultor en tres (3) ejemplares impresos y medio magnético (CONTRATANTE/Gobierno Municipal/veeduría de obras). Los informes deberán ser acompañados de reportes fotográficos de las acciones realizadas, así:
- Un primer informe a ser presentado a los diez (10) días calendario de recibida la orden de proceder por parte del supervisor designado por el Municipio de

Pasto, que contendrá el plan y cronograma de trabajos a ser implementados, incluyendo los recursos materiales, humanos y el apoyo logístico necesarios para el trabajo.

- Un segundo informe deberá ser presentado a los veinte (20) días calendario de ejecución del contrato el cual contendrá el documento de prediseño del proyecto (memoria descriptiva del proyecto y prediseño de las alternativas) y las memorias de los eventos de presentación a la comunidad y selección de alternativas técnicas por parte de ésta. Este informe será sometido a la revisión y evaluación por parte del Municipio de Pasto S.G.A. a fin de que éste efectúe las observaciones y recomendaciones pertinentes acerca de la viabilidad del proyecto.
- El tercer informe contendrá el documento de diseño final de la alternativa seleccionada con la memoria final; todos los estudios, encuestas, resultados de ensayos, licencias, planos, presupuesto, especificaciones técnicas y ambientales y demás documentos de respaldo de acuerdo a lo contemplado en los Estudios de Prediseño y Diseño de Proyectos de Agua Potable y Saneamiento concebidos para el proyecto.
- **5.1.4 Plazo de la consultoría.** El plazo de ejecución del contrato de consultoría; para la elaboración del proyecto a nivel de diseño final será de un mes contado a partir de la suscripción del acta de inicio. Este plazo se computará a partir de la emisión de la Orden de Proceder emitida por el Supervisor del Municipio de Pasto S.G.A., hasta la recepción y conformidad de este con el documento de diseño final del proyecto.
- **5.1.5** Alcance del proyecto. Con este proyecto se busca la actualización del acueducto, para lograr el suministro de agua potable a la población y que cumpla con los requisitos de funcionamiento establecidos en la norma técnica colombiana y con el reglamento RAS

Para la revisión de los tramos existentes de acueducto, se debe tener en cuenta la renovación total o parcial dependiendo de las siguientes condiciones de existencia:

- Recopilación de información existente
- Finalización de la vida útil del acueducto
- Deterioro de las tuberías
- Fallas en las uniones

- Rompimiento de las tuberías por exceso de presión
- Funcionamiento adecuado de los tramos diseñados
- Revisión de los diámetros de diseño y los caudales de diseño
- Revisión de las presiones de abastecimiento
- Optimización de los tramos si es necesario
- Construcción de estructuras nuevas que cumplan con el abastecimiento requerido por la población, tales como bocatomas, desarenador, planta de tratamiento (si es necesaria), tanques de almacenamiento, cajas repartidoras de caudales, cámaras de quiebre, válvulas de purga, válvulas ventosas, etc.
- Revisión del cumplimiento del funcionamiento de las instalaciones de acuerdo a los requerimientos de la norma técnica colombiana NTC y según el reglamento RAS
- Se debe analizar la patología de las estructuras existentes

En caso que se requiera la construcción de un acueducto nuevo para la población, se recomienda:

- Identificar las condiciones del terreno, lo cual implica localización y replanteo y selección del tramo mas adecuado para la construcción y el debido suministro del servicio
- Se debe seleccionar la fuente de alimentación mas adecuada para el servicio, haciendo los análisis de calidad respectivos
- Hacer un estudio de población beneficiada a corto y largo plazo para un periodo de vida útil del acueducto
- Todas las instalaciones deberán cumplir con el reglamento RAS para acueductos
- **5.1.6 Objetivos del proyecto.** Se describirán en forma clara y concreta los objetivos generales y específicos del proyecto. Deberán estar enfocados hacia los problemas que se pretenden resolver y a los resultados que se esperan lograr.

5.1.7 Descripción de la zona del proyecto.

5.1.7.1 Aspectos físicos del área del proyecto. Se describirá en forma breve y concisa las características climáticas, de topografía y relieve y geológicas - geomorfológicas de la zona, así como la cobertura de vegetación en las áreas donde serán emplazados los sistemas en sus distintos módulos. De igual manera, se describirá la hidrografía y la ubicación del proyecto dentro del Plan de Ordenamiento Territorial del Municipio, debiéndose además especificar el uso actual y proyectado del suelo.

5.1.7.2 Aspectos socioeconómicos de la zona del proyecto. Los aspectos socioeconómicos del área de implementación del proyecto serán resultado del autodiagnóstico institucional – comunitario a efectuarse en coordinación con el consultor encargado de la ejecución de la fase 1 del fortalecimiento institucional y comunitario. Se presentará de manera resumida los siguientes aspectos:

Educación: nivel de escolaridad, matrícula, centros educativos existentes.

Salud: centros de salud existentes en la comunidad (incluyendo distancias medias desde las viviendas), nivel de atención, personal médico y paramédico, enfermedades de origen y transmisión hídrica más frecuentes, índices de morbimortalidad (si existen).

Servicios de electricidad: tipo de dotación (por red ó generador), tiempo de suministro.

Medios de comunicación y transporte existentes y proyectados.

Servicios de aseo: costumbres sanitarias de la comunidad.

Actividad económica de la zona: se describirá de manera sucinta el potencial económico, rubros y actividades productivas de la zona incluyendo los roles de los miembros de familia por género, uso del suelo actual y futuro. También se especificarán las épocas del año de migración temporal y el ingreso familiar promedio anual.

Características socio - culturales de la población: se describirán brevemente las características socio-culturales de la comunidad relevantes al proyecto: costumbres, festividades, autoridades, rol y actividades de los hombres y mujeres dentro de la comunidad.

5.1.8 Disponibilidad de agua y saneamiento en la zona.

En el caso de sistemas ya existentes se deberá realizar una verificación física y una evaluación del estado de funcionamiento general, la capacidad máxima real, la eficiencia y los criterios operacionales de la infraestructura existente (si es el caso y en caso de que esta evaluación no exista), con el fin de determinar los componentes necesarios para mejorar el funcionamiento del sistema ó decidir si se requiere la renovación del sistema.

En el caso de proyectos nuevos, se describirá la fuente actual y forma de abastecimiento, tiempo promedio de recolección de agua por familia/día, volumen estimado de consumo doméstico de agua.

En todos los casos, se deberá detallar la existencia de actividades con consumo intenso de agua.

5.1.9 Localización del proyecto.

- Se especificará la ubicación del proyecto, debiendo señalarse la vereda, localidad y corregimiento. Se presentará un plano de localización general de la zona en una escala que permita visualizar el área a servir, de acuerdo a lo establecido en el punto 8.1.
- Deberán describirse las vías principales de acceso a la zona de ubicación del proyecto en cuanto a su kilometraje, tiempo de recorrido y estado al momento de efectuar el proyecto.

5.1.10 Parámetros básicos de diseño.

5.1.10.1 Estimación de la población.

Población inicial. Inicialmente, el Diseñador deberá verificar la existencia de información sobre la población de referencia ó actual del área el proyecto, de fuentes oficiales como el DANE (Censo 2005), el Gobierno Departamental ó Municipal, UMATA ú otras.

En caso de no existir datos sobre censo de usuarios, este deberá ser realizado, debiendo obtenerse los siguientes datos: población total (hombres y mujeres), número de familias, tamaño promedio de las familias, número de viviendas, porcentaje de cobertura del proyecto respecto a la población total de la comunidad.

Como resultado del censo se obtendrán los nombres de los propietarios de todos los predios en los que se emplazarán las obras del proyecto (paso de tuberías, construcción de tanques y otras), además de los usuarios del sistema. Estos últimos se clasificarán de acuerdo con los usos y categoría residencial establecidos por el artículo 102 de la Ley 142/1994 y por otros usos definidos en el Decreto 229/2002 expedido por el Ministerio de Desarrollo Económico.

En caso de que exista el censo de usuarios, este deberá ser actualizado en campo.

Grado de nucleamiento y estabilidad poblacional. Se clasificará la población según su grado de nucleamiento en: poblaciones concentradas, semi-dispersas ó dispersas.

Población de diseño. El cálculo de la proyección de la población de diseño se efectuará utilizando los métodos de crecimiento aritmético, geométrico y Wappus, debiendo mostrarse los resultados en un solo gráfico, de los cuales el Diseñador deberá elegir uno y justificar debidamente.

Se considerarán correcciones de acuerdo al comportamiento de la población en los últimos años y se explicarán las causas y efectos sobre el proyecto de la disminución ó incremento permanente ó temporal de la población.

Además de la población demográfica, se deberá definir la distribución espacial de la población proyectada en términos de expansión y densificación.

Con los resultados obtenidos se deberá indicar la distribución de la población futura sobre un plano de planta urbana, definiendo la densidad en hab/Ha y la población total.

5.1.10.2 Cuantificación de la demanda. Se estimarán las demandas actual y futura del sistema para un periodo de diseño acorde al nivel de complejidad del proyecto, según se establece en el cuadro de caudales de diseño del punto 2.2 de la Guía metodológica para la formulación y diseño de sistemas de acueductos rurales.

Se deberá tomar en cuenta los consumos de los usuarios no residenciales, mediante un estudio de medición de consumos con lapsos no mayores a una hora y por un tiempo mínimo de 24 horas en días de actividades productivas ó laborales.

En el estudio de medición de consumos no se deben subestimar las necesidades de agua de las unidades agrícolas familiares a las que están asociadas las

viviendas rurales para atender usos como riego agrícola, pecuario ó beneficios de la cosecha. Sin embargo, el sistema deberá atender prioritariamente las necesidades de la población para consumo humano.

5.1.10.3 Determinación del nivel de complejidad del sistema. El prediseño de los proyectos se iniciará con la determinación del nivel de complejidad de los proyectos priorizados, según lo establecido en el capítulo III (art. 11 al 13) de la Resolución 1096/2000.

5.1.10.4 Caudales de diseño. Los caudales de diseño para cada elemento del sistema se calcularán de acuerdo al la guía metodológica para la formulación y diseño de sistemas de acueductos rurales.

5.1.11 Alternativas de diseño

5.1.11.1 Identificación de alternativas. El Diseñador deberá identificar distintas alternativas técnicas en cuanto a fuentes, opciones técnicas, alineamiento de redes y niveles de servicio y tecnología para dar solución al problema identificado.

En los proyectos de saneamiento se deberá efectuar un diagnóstico del sistema de agua existente y se diseñará el proyecto con la nueva proyección y requerimientos de ampliación de cobertura respectiva.

- **5.1.12 Estudio topográfico (localización y replanteo).** En el caso de proyectos nuevos o mejoramiento de sistemas que requieran la construcción de módulos o nueva alineación de redes, el levantamiento topográfico deberá facilitar la identificación de alternativas técnicas y lo trazado de las redes, evitando zonas inestables, de difícil acceso y con accidentes insalvables. Para cada alternativa encontrada se deberán proyectar los trazados de las líneas de aducción, conducción y redes de acueductos. Asimismo, se detallaran los sitios de emplazamiento de las estructuras como bocatomas, plantas de tratamiento y otras. En este sentido, la topografía brindará información completa para el diseño del proyecto, describiendo a detalle cada sitio de interés, interferencias con otras redes, deslizamientos, cruces de cauces, accidentes topográficos, ubicación de viviendas (actuales y proyectadas), escuelas y otros equipamientos públicos.
- La topografía se deberá referenciar con los puntos de control del sistema nacional de coordenadas determinado por el IGAC, a objeto de facilitar el replanteo de obras e integrar los proyectos al sistema de información geográfica del gobierno Municipal de Pasto. No se descarta el uso de

fotografías aéreas actuales (antigüedad no menor a 5 años) convertidas a formato de ortofoto digital en el caso de proyectos con áreas muy grandes y gran dispersión de usuarios, con el fin de evitar que las viviendas queden sin servicio. Si se tiene esta opción de uso de fotografías aéreas, se deberá hacer un trazado preliminar y se verificará en el terreno con un recorrido para efectuar correcciones al trazado.

- Para el caso de topografía plana, se deben tomar puntos de referencia que incluyan todos los usuarios. Cuando la topografía sea quebrada y presente altas diferencias del nivel (de mas de 15 m)
- El trazado de redes de agua y/ó saneamiento se debe realizar con preferencia por vías públicas, evitando expropiaciones y servidumbres de paso en propiedades privadas. En caso de no poder evitar estos pasos, se medirá la zona afectada (señalando los vértices con estacas ó mojones).
- En caso de cruce de cursos de agua, se obtendrán secciones transversales cada 10 m en 50 m aguas arriba y aguas abajo del río, determinando el nivel del agua y registrando la fecha.
- Se deben completar los trabajos, midiendo el ancho de las vías, caminos, calles y avenidas ú otros puntos representativos y obtenerse detalles altimétricos (perfiles transversales y longitudinales de cruces de vías donde existan puentes, canales, ductos ú otras obras civiles que puedan utilizarse para el paso de la tubería proyectada.
- Para redes de agua potable, se obtendrán datos sobre los ejes de tubería, profundidad de la solera, puntos de ubicación de cambios de dirección ó pendiente, válvulas en general, material, longitud, diámetro y estado de las tuberías.
- Cuando se considere aprovechable la infraestructura existente en uno ó varios módulos, se deberá efectuar el relevamiento respectivo.
- Se deberá acompañar a la Memoria Final del proyecto una copia de las libretas de levantamiento topográfico, con sus croquis respectivos.
- **5.1.13 Resumen técnico del proyecto.** Presentar un resumen describiéndose brevemente los elementos que componen la infraestructura del sistema.
- **5.1.14 Estudio hidrológico de la fuente.** Para la fuente de agua seleccionada se presentará un estudio hidrológico y/ó hidrogeológico (según el tipo de fuente) que deberá garantizar el abastecimiento de agua para la demanda estimada.

5.1.15 Estudios de suelos. Si es necesario en la optimización se realizara estudios de suelos para determinar la capacidad portante en los sitios donde se encuentran las estructuras que componen el acueducto.

Se identificaran zonas de fallas, deslizamientos e inundaciones y se propondrán alternativas de solución para cada caso.

5.1.16 Diseño hidráulico y geométrico de los módulos de los sistemas. La selección, así como el diseño hidráulico y geométrico de los distintos componentes de los sistemas de acueducto (captación, desarenador, líneas de aducción y conducción, tanques de compensación y redes de distribución se efectuarán de acuerdo a las recomendaciones de los puntos 3.6, 3.7, 3.8, 3.9 y 3.10 de la Guía metodológica para la formulación y diseño de sistemas de acueducto rurales.

En la memoria de cálculo se incluirán los métodos y fórmulas utilizados, adjuntando la planificación urbana (para poblaciones concentradas), esquema base y planilla de cálculo hidráulico de la aducción y red de distribución, con la siguiente información: longitud, diámetro y material de la tubería, caudales, presiones dinámica y estática, velocidades máximas y mínimas y pérdidas de carga.

- **5.1.17 Cálculos estructurales de los componentes del los sistemas.** Los cálculos estructurales deberían ser realizados teniendo en cuenta las recomendaciones contenidas cual se establecen los requisitos para estructuras sismo-resistentes. Se describirá el método y forma de cálculo estructural de los módulos que se requiera.
- **5.1.18** Análisis y medidas de mitigación ambiental. El análisis ambiental del proyecto se realizará de acuerdo a lo establecido en la ley 99/1993 y su reglamentación vigente. A tal efecto, el Diseñador identificará los posibles impactos ambientales, dimensionará las medidas y costos de mitigación ambiental para las fases de ejecución y operación, utilizando la matriz de medidas de mitigación. Asimismo, incorporará los costos correspondientes al presupuesto de obras y de operación y mantenimiento, respectivamente.

El Diseñador deberá tener especial cuidado en los siguientes aspectos:

- En proyectos de agua potable: deberá prever obras y actividades que garanticen la protección de la fuente contra agentes contaminantes; 1) en caso de fuentes de escurrimiento superficial deberá dejarse al menos un porcentaje

del caudal medido en época de estiaje (de acuerdo a lo normalizado por CORPONARIÑO) como caudal ecológico; 2) el proyecto deberá incluir un tratamiento adecuado para las aguas servidas de uso domiciliario (pozos absorbentes ú otros); 3) en caso de que el agua no cumpla con los parámetros de calidad establecidos por la normativa vigente, el proyecto deberá contemplar el tratamiento respectivo.

- El proyecto evitará afectaciones negativas a parques nacionales ó al patrimonio cultural. Si el proyecto se encontrara en una de estas áreas, éste debe ser compatible con los planes de manejo respectivos.
- El proyecto deberá prever compensaciones en caso de existir reasentamientos poblacionales.

5.1.19 Presupuesto y cronograma de ejecución del proyecto.

5.1.19.1 Presupuesto general de obra. El presupuesto de obra deberá estar organizado por módulo y contener la descripción de los ítems de construcción, sus unidades de medida y sus cantidades de obra así como el precio unitario y el precio total de cada ítem.

Se deberán anexar a esta sección las planillas de cómputos métricos por módulo y el análisis de precios unitarios.

Asimismo, se incorporará para cada módulo el presupuesto correspondiente a los ítems de medidas de mitigación ambiental identificadas.

- **5.1.19.2** Cronograma de ejecución. Deberá elaborarse un cronograma (diagrama de barras) de ejecución de obra desglosado por actividad y módulo proyectados para las etapas de construcción y el primer año de puesta en operación del sistema.
- **5.1.20** Especificaciones técnicas ambientales. Se utilizará el pliego de especificaciones técnicas a ser proporcionado por el Municipio de Pasto S.G.A. y en caso necesario, deberán ser complementadas por el consultor. Asimismo, se para elaborarán especificaciones técnicas para ítems específicos que no se encuentren en los documentos prestados por el Municipio de Pasto S.G.A.

En todo caso, las especificaciones técnicas deberán contener las calidades de cada uno de los componentes a suministrar ó construir, las normas y reglamentos

técnicos colombianas que deban cumplir, los procedimientos constructivos y las unidades de medida correspondientes.

Los proveedores de tuberías, accesorios y equipos utilizados en la construcción de cualquier componente del proyecto deben cumplir con lo dispuesto en los artículos 7º y 8º del Decreto 2269/1993 expedido por el Ministerio de Desarrollo Económico ó aquel que lo sustituya ó complemente en lo referente a normas y certificados de conformidad.

5.1.21 Indicadores de evaluación socioeconómicas. El proyecto deberá cumplir con los criterios de costo-efectividad especificados en el reglamento operativo del Subprograma, no debiendo sobrepasarse los costos/conexión establecidos según los valores de corte.

5.1.22 Sostenibilidad del proyecto.

5.1.22.1 Determinación de la tarifa. Deberá analizarse y determinarse la tarifa por el servicio propuesto (incluyendo agua y saneamiento en el caso de sistemas de redes). La tarifa deberá cubrir al menos los costos de administración, operación y mantenimiento de los servicios, así como reposiciones menores y deberá calcularse en acuerdo con la capacidad y disponibilidad de pago de la población determinada durante el diagnóstico social.

La estructuración de costos de la tarifa deberá efectuarse de acuerdo a la Cartilla 2 del MAVDT "Costos y tarifas – municipios menores y zonas rurales".

La estructura tarifaria deberá incluir los montos de las tasas de utilización de aguas y la tasa retributiva (según corresponda), de acuerdo a lo previsto en (art. 43 de ley 99/1993).

5.1.22.2 Manual de operación y mantenimiento. El manual de operación y mantenimiento detallará las diversas actividades, cantidad y tipo de personal requeridos para el mantenimiento preventivo y correctivo del (los) sistemas, tomando en cuenta todos sus componentes. Para la elaboración del manual de operación y mantenimiento se podrá consultar el Manual de Fontanería Rural del MAVDT.

La difusión de, y capacitación sobre el Manual de operación y mantenimiento deberá efectuarse en coordinación con el equipo representante del Municipio de Pasto – S.G.A.

Las actividades y requerimientos de personal del manual de operación y mantenimiento derivarán en un presupuesto que será insumo para el plan anual de operación y mantenimiento.

5.1.22.3 Plan de operación y mantenimiento. Tanto la administración, como el conjunto de actividades destinadas a garantizar la eficiencia y sostenibilidad del (los) sistema(s) proyectados deberán estar respaldados con un análisis de costos de administración, operación, mantenimiento y reposiciones menores y de equipos cuando corresponda. Sobre la base de estos costos, el consultor deberá estructurar la tarifa de acuerdo a lo descrito en el Manual Nº2 de costos y tarifas para municipios menores y zonas rurales del Programa de Cultura Empresarial del MAVDT.

En todo caso, la tarifa deberá cubrir estos costos y deberá estar acorde a la capacidad y disponibilidad de pago de la población.

En el Plan de operación y mantenimiento también se especificarán los requerimientos de subsidios ú otras acciones para garantizar la sostenibilidad del sistema.

Asimismo, los proyectos deberán contemplar un plan de implementación (ó ampliación de cobertura según corresponda) de macro y micromedición.

5.1.23 Planos y memorias de cálculo.

5.1.23.1 Planos. Se deberán presentar como mínimo los siguientes planos:

- Plano de localización general del proyecto en escala 1:1.250.000 ú otra que permita visualizar la(s) vereda(s) a la(s) que servirá el proyecto, con respecto al municipio. Asimismo, se presentará un plano de planta general del proyecto en una escala que permita visualizar el área a servir, en el que debe aparecer la totalidad del proyecto en planta, con la localización de todos los módulos del sistema hasta su llegada a los usuarios finales; se incluirán las líneas de nivel y se mostrarán los accidentes topográficos, quebradas, ríos, .vías y centros poblados.

En ambos planos se incluirán los BM que el proyectista dejara en el campo debidamente identificados para facilitar el replanteo de obras, además de la georeferenciación mediante la implantación de puntos de control con coordenadas y cotas pertenecientes al sistema utilizado por la IGAC; si no existiesen datos, se referenciará el área por sistemas de posicionamiento geodésico ó satelital. Las poblaciones se dibujarán indicando claramente las

vías principales, localización de las viviendas y edificios públicos y otros de acuerdo a la simbología.

Planos de planta y perfil conteniendo información detallada en escala apropiada (Horizontal 1:1000 ó 1:2000 y vertical 1:100 ó 1:200) la línea del acueducto (incluyendo interceptores y emisarios) en planta y perfil en la que se indicará: 1) las estructuras de captación, desarenadotes, tanques, cámaras de quiebre de presión; 2) la localización de todos los accesorios y nomenclatura secuencial de cada uno de ellos; 3) diseño de la línea piezométrica; 4) cotas de terreno y tuberías así como distancias parciales y totales; 5) especificación de las tunerías, caudal, diámetro, material y resistencia; 6) en planos de sistemas de alcantarillado, es necesario presentar los perfiles longitudinales de la red de colectores, toda indicación al respecto debe ir en la planimetría.

Planos estructurales, geométricos y de detalles constructivos, deben contener la información a nivel constructivo de las diferentes estructuras. En ellos se especificarán las medidas de los diferentes elementos, cotas de terreno y estructuras, especificaciones de los materiales de construcción y accesorios, planillas de fierros, despieces. Estos planos deberán presentarse en planta, corte transversal y longitudinal y en lo posible, se anexarán modelos tridimensionales de las estructuras.

- Planos de instalaciones eléctricas y electromecánicos (cuando corresponda).

Todos los planos deberán estar debidamente numerados y ser firmados y rotulados por los profesionales responsables del diseño y deberán incluir la información necesaria para la construcción de obras, la escala del plano y, cuando corresponda, el cuadro de convenciones y la dirección del norte geográfico.

Las escalas utilizadas deberán permitir una lectura clara de los detalles, simbología y literatura consignados en los planos.

Las curvas de nivel en la planta general y la planimetría del sistema se dibujarán con trazo fino y las curvas de intervalo con trazo grueso. El intervalo entre curvas de nivel se establecerá de acuerdo a la siguiente tabla:

Se podrán fraccionar los planos mayores en varias láminas. En este caso, en cada lámina se hará constar un croquis de ubicación de todas las láminas correspondientes a una escala reducida entre 1/5 y 1/20 de cada plano quedando resaltada la lámina correspondiente.

Los planos serán entregados al Municipio de Pasto – S.G.A. en 3 copias impresas y en medio magnético (CD).

Aquellos planos que contengan errores aritméticos, de dibujo, cotas, abscisas, transcripción, copia ú otras fallas, estos deberán ser corregidos en el plano original, debiéndose registrar la corrección, fecha y firma del responsable en el mismo plano.

5.1.23.2 Memorias de cálculo. La memoria de cálculo plasmará el proceso de diseño, determinación de la población, dotación y demanda en el horizonte del proyecto, selección de alternativas, diseños y cálculos hidráulicos, geométricos y estructurales de todos y cada uno de los módulos del sistema. Deberá contener además la información de topografía, censos, análisis de laboratorios, análisis de suelos.

5.1.24 Valores para bienes y servicios CUBS. Determinar los valores para bienes y servicios registrados en la base de datos del SICE, escribiendo los códigos CUBS que los identifican o realizando el despliegue jerárquico correspondiente. Se definirá cada parte del código a continuación:

Tipo: Agrupación de primer nivel, que divide los elementos del catálogo en Bienes, Servicios y Obras Públicas.

Clase: Agrupación de segundo nivel, adoptado por la CGR. Cada Clase reúne un conjunto de bienes caracterizados por su utilización dentro de un mismo Tipo.

Subclase: Corresponde a la clasificación de un conjunto de bienes o servicios que pertenecen a una clase.

Grupo: El Grupo es el eje del catalogo, su parte medular. Corresponde al nombre más simple básico o genérico del bien o servicio. Está determinado por un conjunto de características propias y homogéneas a todos los productos que pueden ser clasificados dentro del mismo Grupo

Ítem: La combinación dentro de cada Grupo de un único conjunto de valores de calificadores conforma el ítem, que se constituye en el elemento identificador o unidad del catálogo. A este elemento se le asigna un código numérico, que lo relaciona con la conformación establecida en valores de los calificadores".

5.2 TÉRMINOS DE REFERENCIA PARA PLANTAS DE TRATAMIENTO DE AGUAS RESIDUALES

5.2.1 Actividades del consultor. Para la consecución de los productos esperados, el Diseñador deberá realizar como mínimo las siguientes actividades:

- Organizar y efectuar reuniones y actividades con la comunidad, autoridades locales, representantes de otras instituciones relacionadas con el proyecto (gubernamentales, ONGs, fundaciones y otras) para la realización de diagnósticos, recopilación de información, constitución de compromisos locales y otros aspectos requeridos para la elaboración del proyecto.
- Coordinar con el equipo representante del Municipio de Pasto S.G.A. la elaboración del diagnóstico social, cuyos resultados se constituirán en insumos para el diseño del proyecto.
- Efectuar el trabajo de campo para la elaboración de estudios básicos de diseño.
- Diseño técnico del proyecto de acuerdo a la normativa vigente emitida por el Ministerio de Ambiente Vivienda y Desarrollo Territorial.
- Organizar, en coordinación con el equipo representante del Municipio de Pasto

 S.G.A., los eventos necesarios para capacitar a la comunidad en aspectos
 relacionados con: beneficios del proyecto para la salud, alternativas técnicas y
 niveles de servicio a ser presentadas a la comunidad para su selección, costos
 y estructuración tarifaria, elaboración de planes de operación y mantenimiento.
- **5.2.2 Informes.** Cada uno de los informes deberá ser entregado por el consultor en tres (3) ejemplares impresos y medio magnético (CONTRATANTE/Gobierno Municipal/veeduría de obras). Los informes deberán ser acompañados de reportes fotográficos de las acciones realizadas, así:
- Un primer informe a ser presentado a los diez (10) días calendario de recibida la orden de proceder por parte del Supervisor designado por el Municipio de Pasto, que contendrá el plan y cronograma de trabajos a ser implementados, incluyendo los recursos materiales, humanos y el apoyo logístico necesarios para el trabajo.
- Un segundo informe deberá ser presentado a los veinte (20) días calendario de ejecución del contrato el cual contendrá el documento de prediseño del proyecto (memoria descriptiva del proyecto y prediseño de las alternativas) y las memorias de los eventos de presentación a la comunidad y selección de alternativas técnicas por parte de ésta. Este informe será sometido a la revisión y evaluación por parte del Municipio de Pasto S.G.A. a fin de que éste efectúe las observaciones y recomendaciones pertinentes acerca de la viabilidad del proyecto.

- El tercer informe contendrá el documento de diseño final de la alternativa seleccionada con la memoria final; todos los estudios, encuestas, resultados de ensayos, licencias, planos, presupuesto, especificaciones técnicas y ambientales y demás documentos de respaldo de acuerdo a lo contemplado en los Estudios de Prediseño y Diseño de Proyectos de Agua Potable y Saneamiento concebidos para el proyecto.
- **5.2.3 Plazo de la consultoría.** El plazo de ejecución del contrato de consultoría; para la elaboración del proyecto a nivel de diseño final será de un mes contado a partir de la suscripción del acta de inicio. Este plazo se computará a partir de la emisión de la Orden de Proceder emitida por el Supervisor del Municipio de Pasto S.G.A., hasta la recepción y conformidad de este con el documento de diseño final del proyecto.
- **5.2.4 Alternativas.** Implementar una alternativa que permita disminuir la carga contaminante de los vertimientos sobre las fuentes hídricas, para mitigar la problemática sanitaria y ambiental generadas por el uso del recurso hídrico. Se debe diseñar un sistema de tratamiento para las aguas residuales provenientes del sector del barrio Popular y Rosal de Oriente.
- **5.2.5 Objetivos del proyecto.** Plantear objetivos enfocados en el diseño de un sistema de tratamiento para las aguas residuales.

Los objetivos se enfocarán en el tipo de tecnología que se implementará y los diseños tipo de los diferentes sistemas: unidades sanitarias, sistemas para el manejo adecuado de aguas grises y sistemas de tratamiento y disposición de final (sistema de tratamiento primario).

- **5.2.6 Metodología.** Para el cumplimiento de cada uno de los objetivos propuestos se desarrollaran las siguientes actividades:
- Georeferenciación de los puntos básicos del sistema de tratamiento, viviendas y establecimiento ubicados en la zona a veneficiar con el proyecto definiendo usos y disponibilidad de servicio de agua y saneamiento.
- Evaluación de las condiciones geotécnicas locales (Nivel freático, cotas de inundación y tipo de suelo).
- Búsqueda, evaluación y selección de diferentes opciones tecnológicas para el saneamiento ambiental, bajo el concepto SELTAR, de acuerdo a las condiciones locales.

- Diseño de la solución individual o colectiva. Se incluirán diseños hidráulicos y estructurales.
- Presupuesto de obra de la solución.
- Especificaciones técnicas de construcción.
- Manuales de operación y mantenimiento.

En resumen para el proyecto se realizará el levantamiento detallado del terreno, caracterización del agua a tratar, un estudio detallado del suelo, análisis de la situación de los vertimientos y diseño de los elementos del sistema. El procedimiento detallado es el siguiente:

- **5.2.7 Resumen técnico del proyecto.** Deberá presentarse un resumen de la alternativa seleccionada, describiéndose brevemente los módulos (elementos que componen la infraestructura de los sistemas) y presupuesto de los mismos.
- **5.2.8 Estudio del agua.** Para la fuente de agua seleccionada, se presentará un estudio y evaluación de las aguas servidas antes y después del tratamiento.
- **5.2.9 Estudio de suelos.** Se realizarán estudios de suelos para determinar la capacidad portante en los sitios en los que se construirán estructuras como desarenadores, tanques, plantas de potabilización y tratamiento ó estaciones de bombeo. Se identificaran zonas de fallas, deslizamientos e inundaciones y se prepondrán alternativas de solución para cada caso; igualmente se tendrán en cuenta amenazas por actividad sísmica.
- **5.2.10** Diseño hidráulico y geométrico de los módulos de los sistemas. La selección, así como el diseño de los distintos componentes de los sistemas de servicio se efectuarán de acuerdo a las recomendaciones de la Guía metodológica para la formulación y diseño de sistemas de tratamiento de aguas residuales existentes.

En la memoria de cálculo se incluirán los métodos y fórmulas utilizados, adjuntando la planificación urbana (para poblaciones concentradas), esquema base y planilla de cálculo de la eficiencia del sistema, con la siguiente información: Cuadro de diseño y detalle explicativo de todos los componentes del sistema, actividades completadas, cantidades, especificaciones técnicas y cálculos estructurales.

5.2.11 Cálculos estructurales de los componentes del los sistemas. Los cálculos estructurales deberían ser realizados teniendo en cuenta las recomendaciones contenidas en la Norma Técnica Colombiana, en el cual se establecen los requisitos para estructuras sismo-resistentes. Se describirá el método y forma de cálculo estructural de los módulos que se requiera.

Este acápite deberá contener: la calidad de los materiales, cargas de diseño, cálculos y metodologías empleadas, planos, recomendaciones para la construcción.

5.2.12 Análisis y medidas de mitigación ambiental. El análisis ambiental del proyecto se realizará de acuerdo a lo establecido en la ley 99/1993 y su reglamentación vigente,.. A tal efecto, el Diseñador identificará los posibles impactos ambientales, dimensionará las medidas y costos de mitigación ambiental para las fases de ejecución y operación, utilizando la matriz de medidas de mitigación. Asimismo, incorporará los costos correspondientes al presupuesto de obras y de operación y mantenimiento, respectivamente.

El Diseñador deberá tener especial cuidado en los siguientes aspectos:

- Deberá prever obras y actividades que garanticen la protección del receptor de aguas tratadas.
- El proyecto evitará afectaciones negativas a parques nacionales ó al patrimonio cultural. Si el proyecto se encontrara en una de estas áreas, éste debe ser compatible con los planes de manejo respectivos.
- El proyecto deberá prever compensaciones en caso de existir reasentamientos poblacionales.
- En proyectos de alcantarillado no se deberán ocasionar daños en cursos de aguas, debiendo preverse el tratamiento de aguas correspondiente.

5.2.13 Presupuesto y cronograma de ejecución del proyecto.

5.2.13.1 Presupuesto general de obra. El presupuesto de obra deberá estar organizado por módulo y contener la descripción de los ítems de construcción, sus unidades de medida y sus cantidades de obra así como el precio unitario y el precio total de cada ítem.

Se deberán anexar a esta sección las planillas de cómputos métricos por módulo y el análisis de precios unitarios.

Asimismo, se incorporará para cada módulo el presupuesto correspondiente a los ítems de medidas de mitigación ambiental identificadas.

- **5.2.13.2 Cronograma de ejecución.** Deberá elaborarse un cronograma (diagrama de barras) de ejecución de obra desglosado por actividad y módulo proyectados para las etapas de construcción y el primer año de puesta en operación del sistema.
- **5.2.14 Especificaciones técnicas y ambientales.** Se utilizará el pliego de especificaciones técnicas a ser proporcionado por el contratante y en caso necesario, deberán ser complementadas por el consultor. Asimismo, se elaborarán especificaciones técnicas para ítems específicos que no se encuentren en los documentos del contratante.

En todo caso, las especificaciones técnicas deberán contener las calidades de cada uno de los componentes a suministrar ó construir, las normas y reglamentos técnicos colombianas que deban cumplir, los procedimientos constructivos y las unidades de medida correspondientes.

Los proveedores de tuberías, accesorios y equipos utilizados en la construcción de cualquier componente del proyecto deben cumplir con lo dispuesto en los artículos 7º y 8º del Decreto 2269/1993 expedido por el Ministerio de Desarrollo Económico ó aquel que lo sustituya ó complemente en lo referente a normas y certificados de conformidad.

5.2.15 Indicadores de evaluación socioeconómica. El proyecto deberá cumplir con los criterios de costo-efectividad especificados en el reglamento operativo del subprograma, no debiendo sobrepasarse los costos/conexión establecidos según los valores de corte.

5.2.16 Sostenibilidad del proyecto.

5.2.16.1 Manual de operación y mantenimiento. El manual de operación y mantenimiento detallará las diversas actividades, cantidad y tipo de personal requeridos para el mantenimiento preventivo y correctivo del (los) sistemas, tomando en cuenta todos sus componentes. Para la elaboración del manual de operación y mantenimiento según reglamento dispuesto por el MAVDT.

Las actividades y requerimientos de personal del manual de operación y mantenimiento derivarán en un presupuesto que será insumo para el plan anual de operación y mantenimiento.

5.2.16.2 Plan de operación y mantenimiento. Tanto la administración, como el conjunto de actividades destinadas a garantizar la eficiencia y sostenibilidad del (los) sistema(s) proyectados deberán estar respaldados con un análisis de costos de administración, operación, mantenimiento y reposiciones menores y de equipos cuando corresponda. Sobre la base de estos costos, el consultor deberá estructurar la tarifa de acuerdo a lo descrito en el Manual de costos y tarifas para municipios menores y zonas rurales del Programa de Cultura Empresarial del MAVDT.

En todo caso, la tarifa deberá cubrir estos costos y deberá estar acorde a la capacidad y disponibilidad de pago de la población.

En el Plan de operación y mantenimiento también se especificarán los requerimientos de subsidios ú otras acciones para garantizar la sostenibilidad del sistema. Asimismo, los proyectos deberán contemplar un plan de implementación (ó ampliación de cobertura según corresponda) de macro y micromedición.

Esta propuesta es necesaria siempre y cuando sea necesario implementar medidas de mantenimiento por parte de la comunidad en caso contrario la entidad contratante debe garantizar la implementación eficiente de todo el sistema asumiendo todos los gastos de mantenimiento.

5.2.17 Planos y memorias de cálculo.

5.2.17.1 Planos. Se deberán presentar como mínimo los siguientes planos:

- Plano de localización general del proyecto en escala 1:1.250.000 ú otra que permita visualizar el lugar al que servirá el proyecto. Asimismo, se presentará un plano de planta general del proyecto en una escala que permita visualizar el sistema, en el que debe aparecer la totalidad del proyecto en planta, con la localización de todos los módulos del sistema hasta su llegada a la disposición final; se deben especificar en el diseño "todos" los componentes del proyecto. El estado de los emisores de aguas negras se presentaría en informe escrito con especificaciones técnicas.
- Planos de planta y perfil conteniendo información detallada en escala apropiada (Horizontal 1:1000 ó 1:2000 y vertical 1:100 ó 1:200) la línea de

transporte de aguas residuales (incluyendo interceptores y emisarios) en planta y perfil en la que se indicará: 1) Tanques, rejillas y detalles; 2) la localización de todos los accesorios y nomenclatura secuencial de cada uno de ellos; 3) diseño de la línea piezométrica; 4) cotas de terreno y tuberías así como distancias parciales y totales; 5) especificación de las tuberías, caudal, diámetro, material, pendiente y resistencia; 6) en planos de sistemas de alcantarillado, es necesario presentar los perfiles longitudinales de la red de colectores, toda indicación al respecto debe ir en la planimetría.

- Planos estructurales, geométricos y de detalles constructivos, deben contener la información a nivel constructivo de las diferentes estructuras. En ellos se especificarán las medidas de los diferentes elementos, cotas de terreno y estructuras, especificaciones de los materiales de construcción y accesorios, planillas de fierros, despieces. Estos planos deberán presentarse en planta, corte transversal y longitudinal y en lo posible, se anexarán modelos tridimensionales de las estructuras.
- Planos de instalaciones eléctricas y electromecánicos (si se requieren).

Todos los planos deberán estar debidamente numerados y ser firmados y rotulados por los profesionales responsables del diseño y deberán incluir la información necesaria para la construcción de obras, la escala del plano y, cuando corresponda, el cuadro de convenciones y la dirección del norte geográfico.

Las escalas utilizadas deberán permitir una lectura clara de los detalles, simbología y literatura consignados en los planos.

Las curvas de nivel en la planta general y la planimetría del sistema se dibujarán con trazo fino y las curvas de intervalo con trazo grueso. El intervalo entre curvas de nivel se establecerá de acuerdo a la siguiente tabla:

Se podrán fraccionar los planos mayores en varias láminas. En este caso, en cada lámina se hará constar un croquis de ubicación de todas las láminas correspondientes a una escala reducida entre 1/5 y 1/20 de cada plano quedando resaltada la lámina correspondiente.

Los planos serán entregados al Municipio de Pasto – S.G.A. en 3 copias impresas y en medio magnético (CD).

Aquellos planos que contengan errores aritméticos, de dibujo, cotas, abscisas, trascripción, copia ú otras fallas, estos deberán ser corregidos en el plano original, debiéndose registrar la corrección, fecha y firma del responsable en el mismo plano.

5.2.17.2 Memorias de cálculo. La memoria de cálculo plasmará el proceso de diseño, determinación de la población, dotación y demanda en el horizonte del proyecto, selección de alternativas, diseños y cálculos hidráulicos, geométricos y estructurales de todos y cada uno de los módulos del sistema. Deberá contener además la información de topografía, censos, análisis de laboratorios, análisis de suelos.

6. ACTIVIDADES TECNICAS DESEMPEÑADAS DENTRO DE LA ETAPA DE INTERVENTORÍA Y CONTROL

El estudio de los diseños entregados por las consultorías contratadas durante el periodo de pasantía, tiene como fin garantizar que la materialización de los productos de estos contratos garantice los objetivos buscados en la preinversión del proyecto, de ahí la importancia de su revisión hidráulica, en donde se tiene en cuenta la coherencia de las metodologías empleadas para la concepción del diseño y la implementación del reglamento técnico para el sector de agua potable y saneamiento básico RAS – 2000. Para garantizar la calidad del trabajo, el estudiante se apoya con material bibliográfico para la revisión del diseño de sistemas de acueducto 1 y plantas de tratamiento de aguas residuales (PTAR)2.

Con el fin de darle valides y credibilidad a los estudios analizados, el estudiante decide presentar un resumen de los datos obtenidos de los diseños entregados a la Secretaria de Gestión Ambiental acompañados de las observaciones y recomendaciones elaboradas durante el periodo en que se prestó este servicio, anexo a estas observaciones el estudiante presentó un cuadro evaluativo para cada proyecto en donde se hace una revisión de acuerdo a parámetros del reglamento RAS – 2000.

6.1 EVALUACION TECNICA DEL SISTEMA DE ACUEDUCTO DISEÑADO PARA LAS LOCALIDADES DE JAMONDINO Y BARRIO EL ROSARIO

6.1.1 Resumen del proyecto entregado.

6.1.1.1 Descripción del problema. El acueducto del barrio El Rosario y el Corregimiento de Jamondino, tiene aproximadamente 30 años de construido, por lo tanto existen elementos del sistema que ya han cumplido con su vida útil en cuanto a funcionamiento y estabilidad estructural. Así mismo se debe considerar la reforestación de la zona boscosa para garantizar la calidad y cantidad de agua necesaria para cumplir con la dotación en verano.

^{1.} LÓPEZ CUALLA, Ricardo Alfredo. Elementos de diseño para acueductos y alcantarillados; Editorial Escuela Colombiana de Ingeniería; Segunda edición. Colombia. Varios.

^{2.} METCALF y HEDÍ. Ingeniería de aguas residuales, Tratamiento, Vertido y Reutilización. Editorial Mc Graw Hill; Tercera Edición, Volumen 2. Varios.

6.1.1.2 Cuantificación de la población afectada por el problema. Se establece una distribución espacial de la población, ubicando la cantidad adecuada de matrículas y asumiendo un criterio generalizado de que cada una corresponde a una casa habitada por seis (6) personas, con el fin de determinar el número total de habitantes que se afectarán por el consumo de agua.

El número de matrículas se determina con base en la información facilitada por las Juntas de Acueducto tanto del Corregimiento de Jamondino como del Barrio El Rosario. Los datos obtenidos se consignan así: 1046 matrículas en El Rosario y 723 en Jamondino.

$$P = 1769 Matriculas * 6 hab = 10614 hab$$

Se hace una proyección de la población mediante el método geométrico. El consultor asume una rata de crecimiento de 1,52% correspondiente al Departamento de Nariño (fuente: DANE 2005), se tiene que la población futura para un periodo de diseño de 30 años es de:

$$Pf = Pp * (1+r)^T = 10614 \text{ hab} * (1+0.0152)^{30} = 16689 \text{ hab}$$

6.1.1.3 Justificación y descripción general del proyecto. Para esta consultoría, se llevó a cabo un aforo en el área de la bocatoma, determinando un caudal para época de invierno alta que depende de la variabilidad en las condiciones climatológicas que están afectando en todo el mundo.

Los resultados de este aforo, determinan que el caudal captado es de 48 lps, el cual debe procurar mantenerse a partir de la reforestación que será guiada por parte de la misma comunidad, como una manera de cuidar y preservar su patrimonio natural incalculable e invaluable.

Es conveniente actualizar todo el sistema de acueducto adaptándolo a las condiciones reales del caudal concedido para la población beneficiada. La vida útil de la bocatoma apenas se encuentra en un 30%, esta no posee ningún tipo de daño o alteraciones de origen patológico en la estructura, la recomendación que se hace es que para optimizar su funcionamiento debe considerarse el rediseño de la rejilla y una buena localización de la misma, con el fin de mejorar la captación de agua. Esto debido a que en temporada de verano no logra captar adecuadamente la cantidad de agua necesaria para satisfacer el consumo de las poblaciones afectadas. Además, se recomienda la construcción de dos pequeñas aletas para lograr un buen encauzamiento del flujo.

El sistema de acueducto cuenta con dos desarenadores, uno de estos fue construido a través del plan Colombia y tiene apenas un 30% de su vida útil proyectada, además cumple con la relación 1 a 3, quiere decir que tiene una buena sedimentación y para contribuir a la conservación de un buen funcionamiento.

El otro desarenador ya ha cumplido su vida útil y aunque se encuentra en buenas condiciones de funcionamiento se ha considerado rediseñar un desarenador que cumple con los requerimientos del nuevo acueducto.

Los tanques de almacenamiento de agua con que cuentan las comunidades, están en buenas condiciones, ya que éstos no presentan fisuras, ni ningún otro deterioro tanto de tipo estructural como patológico. Sin embargo, se recomienda realizar un mantenimiento más periódico, en cuanto al retiro de material proveniente de arbustos, así como de hierbas en el caso del tanque de Jamondino.

Aunque estos tanques poseen una vida útil bastante elevado (como es el caso del tanque de Jamondino), no presentan deterioro, ni fisuras. Los tanques del Barrio El Rosario presentan un buen estado.

En el caso de uno de los tanques del barrio El Rosario fue construido en conjunto con la bocatoma y el desarenador con recursos del Plan Colombia. Su estructura se conforma de concreto reforzado y mampostería. Con base en las anteriores observaciones no se hace necesario el diseño de un nuevo tanque, sin embargo el diseñador ha realizado la evaluación hidráulica de los tanques del barrio el Rosario y el Corregimiento de Jamondino para garantizar el comportamiento teórico en función de la curva de variaciones horarias de un día típico.

La red distribución del proyecto que se diseña con el QMH (Caudal Máximo Horario), debe tener en cuenta sus diámetros. Para el caso del proyecto, la red requiere un diámetro que por norma satisface las condiciones de presión (mínima de 15 m.c.a.) y velocidad de flujo adecuada en la tubería.

6.1.1.4 Descripción de los objetivos, productos y resultados que se esperan obtener con la alternativa.

Objetivo general. Mejorar el suministro de agua para el consumo humano a los habitantes del Corregimiento de Jamondino y el barrio El Rosario.

Objetivos específicos.

 Optimizar la infraestructura del sistema de acueducto (redes de distribución y acometidas domiciliarias.

- Mitigar los impactos negativos en las condiciones de salud de los habitantes
- Socializar el proyecto con la comunidad beneficiada e involucrarla en la etapa de ejecución del mismo.
- Socializar el proyecto con la comunidad beneficiada e involucrarla en la etapa del fortalecimiento institucional en sus comunidades

Productos.

- Optimización del funcionamiento de la bocatoma
- Construcción de un nuevo desarenador que cumpla con las características y requerimientos del sistema de abastecimiento actualizado en función del caudal de agua concedido
- Evaluación hidráulica de los tanques de almacenamiento.
- Instalación de las nuevas redes de distribución de agua para toda la población, garantizando la calidad de la presión en todas las viviendas beneficiadas.

Resultado. Un sistema de acueducto mejorado.

6.1.2 Análisis del diseño y metodología empleada. El consultor propone para el proyecto un nivel de complejidad alto sustentando que Jamondino se encuentra adosado a la ciudad de Pasto lo cual hace que esta zona se convierta en posible zona de expansión territorial de la ciudad, pero si se tiene en cuenta la población calculada el nivel de complejidad debería ser medio alto.

El nivel de complejidad alto implica que el análisis de la población se realice por lo menos con los métodos aritmético, geométrico y exponencial, ponderando los resultados de acuerdo al reglamento RAS - 2000 (B.2.2.4).

La dotación neta es de 150 L/hab·día RAS - 2000 (B.2.4.1) para nivel alto de complejidad; no se requiere corrección por temperatura. No se tienen en cuenta dotaciones por instituciones educativas o uso industrial.

El consultor tiene en cuenta un consumo público, equivalente a 1.50 L/hab·día que seria el 1% de la dotación neta RAS - 2000 (B.2.3.5)

Debido a que el nivel de complejidad del sistema es alto, el consultor asume un porcentaje de pérdidas del 20% RAS - 2000 (B.2.4).

$$d_{Bruta} = \frac{151.5L/hab*dia}{1 - 0.20} = 189.4 l/hab*dia$$

Caudal medio diario:

$$Q_{md} = \frac{16689hab*189.4 L/hab*dia}{86400} = 36.58 lps$$

Caudal Máximo Diario:

$$QMD = Qmd * k_1 = 36.58 * 1.2 = 43.90 lps$$

Caudal Máximo Horario:

$$QMH = QMD * k_2 = 43.90 * 1.5 = 61.45 lps$$

Estos cálculos fueron corregidos teniendo en cuenta que el consultor inicialmente no tuvo en cuenta un caudal para consumo público, los cambios se aplicaron en los diseños del desarenador y de la bocatoma, el diseño de la conducción se hizo con un caudal obtenido a partir de una dotación neta sin tener en cuenta el caudal para consumo público. Esta decisión se tomo ya que la diferencia de caudales era minima. Para el diseño del desarenador y la bocatoma el consultor no tuvo en cuenta perdidas por aducción, conducción y por la vado de una posible planta de tratamiento requeridas en RAS – 2000 (B.2.5)

Se debe recalcar que el consultor no solo debe tener en cuenta el caudal calculado, también debe analizar la verdadera capacidad de la fuente de agua y siempre diseñará de acuerdo a las concesiones de agua autorizadas por CORPONARIÑO, si el consultor no tiene presente esta recomendación estará diseñando un acueducto disfuncional en cuanto al comportamiento del sistema y el caudal real disponible.

El consultor hace el rediseño de la bocatoma para optimizar el funcionamiento de la captación.

Para el cálculo hidráulico de la red de conducción, se determinó la velocidad a partir del caudal máximo diario calculado, y un diámetro asumido por el consultor en PVC RDE 32.5 diámetro 4 pulgadas con presión máxima de servicio de 87.9 m.c.a. (fuente especificaciones técnicas de tuberías PVC PAVCO). En el diseño no se especificaron cámaras de quiebre ni válvulas a pesar de que en el perfil se encuentran diferencias de nivel pronunciadas, esta observación se le hizo conocer al consultor; además, esta puede ser una solución a las presiones elevadas que sobrepasan la resistencia de la tubería. En la figura 4 se expone el perfil de la red de conducción.

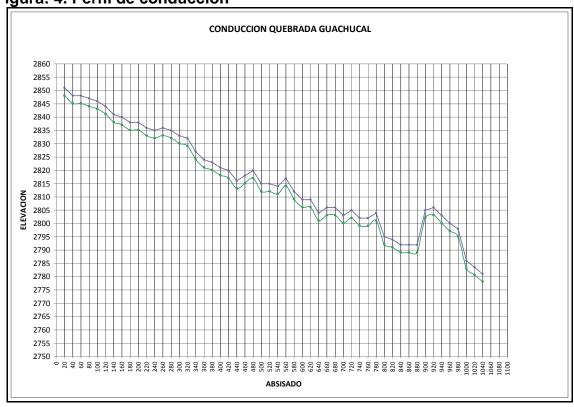


Figura: 4. Perfil de conducción

A pesar de que el consultor entregó el plano en perfil de la conducción diseñada, no presentó el plano de la vista en planta de la conducción, por lo tanto no se puede apreciar la orientación del proyecto ni la topografía ni los elementos que intervienen en esta sección del proyecto. Esta observación se dio a conocer a la Secretaria de Gestión Ambiental.

En la tabla 1 se presenta un resumen de los cálculos de la conducción diseñada para el acueducto de Jamondino:

Tabla: 1. Resumen hoja de cálculo red de conducción Jamondino

_	_	_	_	_		_	_	_	_	_	_	_	_				_	_	_	_
ISPON.	FINAL		98,02	96,42	98,02	98,41	99,32	108,41	140,42	164,14	147,14	137,14	126,14	117,14	101,14	108,14	97,14	84,14	80,75	77,14
PRES. DISPON.	INICIAL		1	6,76	66,3	6,66	100,29	100,2	143,07	168,02	151,02	141,02	130,02	121,02	105,02	112,02	101,02	88,02	84,63	81,02
PERDIDAS	UNIT.		0,13729	0,13729	0,13729	0,13729	0,13729	0,13729	0,13729	0,13729	0,13729	0,13729	0,13729	0,13729	0,13729	0,13729	0,13729	0,13729	0,13729	0,13729
ETRICA	FINAL		2.848,12	2.845,12	2.845,12	2.844,12	2.843,12	2.841,12	2.833,12	2.829,12	2.817,12	2.812,12	2.806,12	2.802,12	2.791,12	2.802,12	2.795,12	2.783,12	2.780,73	2.778,12
PIEZOMETRICA	INICIAL		2.851,00	2.848,00	2.848,00	2.847,00	2.846,00	2.844,00	2.836,00	2.832,00	2.820,00	2.815,00	2.809,00	2.805,00	2.794,00	2.805,00	2.798,00	2.786,00	2.783,61	2.781,00
VEL	(m/seg.)		4,53	4,53	4,53	4,53	4,53	4,53	4,53	4,53	4,53	4,53	4,53	4,53	4,53	4,53	4,53	4,53	4,53	4,53
חקם	NDE		32.5	32.5	32.5	32.5	32.5	32.5	32.5	32.6	32.11	32.16	32.21	32.26	32.31	32.35	32.39	32.40	32.41	32.42
DIAMETRO	PULG.		4"	4"	4"	4"	4"	4"	4"	4"	4"	4"	4"	4"	4"	4"	4"	4"	4"	4"
CAUDAL	DISEÑO		43,46	43,46	43,46	43,46	43,46	43,46	43,46	43,46	43,46	43,46	43,46	43,46	43,46	43,46	43,46	43,46	43,46	43,46
TUD	REAL		21	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21
LONGITUD	TOPOG.		20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20
RAMO	Α		-	2	3	4	9	9	11	16	21	26	31	98	14	46	51	25	53	54
TRA	DE		6	_	2	က	4	2	9	15	20	25	30	35	40	45	50	51	52	53

En el diseño del desarenador se recomienda que la pendiente de la zona de sedimentación tenga mínimo 30º de inclinación para evitar que las partículas no se desalojen adecuadamente. Por otro lado el desarenador se diseñó adecuadamente, pero no se presentaron los planos con el diseño estructural. La relación de longitud/ancho se encuentra entre 3/1 y 5/1 para una longitud útil de 4.0 m y un ancho útil de 1.33 m. Como se observa en las figuras 5 y 6, el desarenador cuenta con un vertedero de rebose, un orificio de entrada, una estructura de entrada, una canaleta de entrada, una canaleta de salida y un sistema de extracción de lodos.

Figura: 5. Vista en perfil desarenador

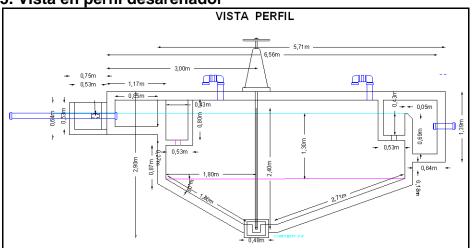
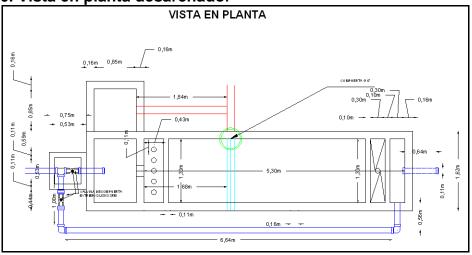



Figura: 6. Vista en planta desarenador

La capacidad portante se determino a partir de la expresión de Terzhagui obteniéndose un valor de 13.5 tn/m² en donde se recomienda que la cimentación debe dimensionarse conforme al área del desarenador y para evitar el remoldeo del suelo de la cimentación, es necesario colocar una capa de concreto de

limpieza. También se recomienda rigidizar la estructura para controlar posibles asentamientos diferenciales. Se encontraron suelos con comportamiento cohesivo y friccionante, con consistencia y compacidad media.

Debido a que el acueducto se diseña para dos localidades y por solicitud de los presidentes de la junta, la cantidad de agua obtenida debe ser dividida para cada zona a partir de una cámara de distribución con vertedero; las redes serán independientes y, por lo tanto, sus diseños.

Población Jamondino: 6821 Hab Caudal Medio Diario: 14.95 lps Caudal Máximo Diario: 17.94 lps Caudal Máximo Horario: 25.12 lps

Población El Rosario: 9868 Hab Caudal Medio Diario: 21.41 lps Caudal Máximo Diario: 25.70 lps Caudal Máximo Horario: 35.98 lps

Los anteriores valores se obtuvieron de acuerdo al Método de la longitud abastecida que consiste en la determinación de los caudales que le corresponden a cada tramo, con base en sus longitudes. Se considera que este método seleccionado por el consultor es adecuado ya que las características uniformes de los dos lugares (Jamondino y El Rosario) en cuestión de topografía permiten aplicar este mecanismo de cálculo. RAS - 2000 (B.7.4.9.1).

Para el cálculo hidráulico de la red de distribución se aplicó el método de Hardy-Cross para corrección de caudales en la red, ya que éste tiene en cuenta las pérdidas por fricción en tuberías a presión (ecuación de Darcy-Weisbach), en conjunto con la ecuación de Colebrook & White, para determinación del factor de fricción f. En la tabla 2 y la tabla 3, se presenta un resumen de los caudales corregidos por tramo para Jamondino y El Rosario:

Tabla: 2. Caudales corregidos Jamondino

TRAMO	Q (m³/s)	Q (LPS)
TQ - 1	0,0033	3,3468
1 - 2	0,0032	3,1799
2 - 3	0,0008	0,8288
3 - 4	0,0021	2,1347
4 - 1	0,0008	0,8389
3 - 5	0,0015	1,5168
5 - 6	0,0012	1,2275
6 - 4	0,0009	0,9296

Tabla: 3. Caudales corregidos El Rosario

TRA	AMO	Q (m³/s)	Q (LPS)
TA	T1-T2	0,000140	0,139678
T1-T2	1	0,003514	3,513552
1	2	0,000847	0,847354
2	3	0,002978	2,978223
3	4	0,000636	0,636187
4	1	0,001107	1,107268
2	5	0,002454	2,453953
5	6	0,000590	0,589679
6	3	0,000321	0,321345
3	2	0,002602	2,602459

Los diámetros de la tubería de 3 pulgadas RDE 26 fueron asumidos por el consultor. En las tablas 4 y 5 se presenta un resumen de las presiones entregadas. Las presiones se obtienen a partir del caudal calculado para cada tramo, el diámetro de la tubería, la longitud del tramo de tubería, las perdidas de altura y las diferencias de cotas rojas y piezométrica entre los nodos de la red:

Tabla: 4. Presiones Jamondino

oaiiioiiai			
TRAMO	Q (m ³ /s)	PRESIÓN	ESTÁTICA
IKAWO	Q (III /5)	INICIO	FIN
TQ - 1	3,35E-03	2,8	37,68
1 - 2	3,18E-03	37,68	46,00
2 - 3	8,29E-04	46,00	108,00
3 - 4	2,13E-03	108,00	111,23
4 - 1	8,39E-04	111,23	37,68
3 - 5	1,52E-03	108,00	92,13
5 - 6	1,23E-03	92,13	96,91
6 - 4	9,30E-04	96,91	111,23

Tabla: 5. Presiones El Rosario

TDAMO	Q (m ³ /s)	PRESIÓN	ESTÁTICA
IKANIO	Q (III /S)	INICIO	FIN
TA	T1-T2	2,80	65,24
T1-T2	1	65,24	78,03
1	2	78,03	100,21
2	3	100,21	159,70
3	4	159,70	138,66
4	1	138,66	78,03
2	5	100,21	112,20
5	6	112,20	179,66
6	3	179,66	159,70

Las presiones mínimas establecidas para nivel alto de complejidad son de 15 m.c.a. y las presiones máximas establecidas para nivel alto de complejidad son de 60 m.c.a. según RAS - 2000 (B.7.4.5.1). Como se puede observar en las tablas de presiones, no se cumple con los límites dispuestos por norma.

La presión máxima no debe superar la presión de trabajo máxima de las redes de distribución, establecidas en las normas técnicas correspondientes a cada material, teniendo en cuenta que la tubería PVC RDE 26 de 3 pulgadas acepta una presión máxima de servicio de 112.5 m.c.a. (fuente especificaciones técnicas de tuberías PVC PAVCO). El consultor debe revisar las presiones y determinar las medidas necesarias que afecten positivamente la eficiencia del diseño. En las figuras 7 y 8 se puede apreciar la vista en planta como resultado final del diseño de las redes de distribución.

Figura: 7. Vista en planta red Jamondino

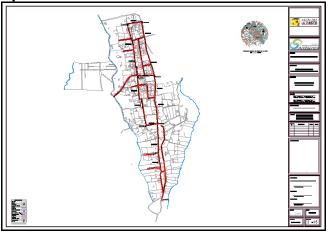



Figura: 8. Vista en planta red El Rosario

En la tabla 6 se presenta la evaluación hidráulica de acuerdo al RAS – 2000:

Tabla: 6. Revisión del diseño siguiendo parámetros RAS 2000

NOMBRE DEL PROYECTO:		OPTIMIZAC	ION SISTEM	DE ACUEDI	OPTIMIZACION SISTEMA DE ACUEDUCTO JAMONDINO Y BARRIO EL ROSARIO	EL ROSARIC	
		NIVEL DE C	NIVEL DE COMPLEJIDAD				
PARÁMETRO/CRITERIO/CARACTERISTICA	Bajo	Medio	M-Alto	Alto	Valor Proyecto	CUMP (SI/NO)	Referencia RAS 2000
			×				
GENERALES							
Nivel de complejidad asignado en el proyecto	Bajo	Medio	Med-Alto	Alto	Alto (Revisar)	S	A.3.1
Capacidad económica	Baja	Baja	Media	Alta	Baja	S	A.3.1
Población beneficiada con el Proyecto			30803		16689	S	B.2.1
ACUEDUCTO - GENERALES							
Método de cálculo de la Población Nota (1)	1, 2, 03	1, 2, 03	2,3,4 o 5	2,3,4 o 5	Exponencial	S	Tabla B.2.1
Ajuste por población flotante	sí	sí	sí	Sí	No	S	B.2.2.5
Dotación neta (I/h-d)	100-150	120-175	130	150	150	S	Tabla B.2.2
Correcciones máximas a dotación neta (%)	hasta 20	hasta 20	>20	>20	20	S	B.2.4.4
Variaciones a dotación neta por clima cálido (%)	+ 15	+ 15	+20	+20	0	S	Tabla B.2.3
Variaciones a dotación neta por clima templado (%)	+ 10	+ 10	+15	+15	0	SI	Tabla B.2.3
Variaciones a dotación neta por clima frío (%)	0	0	0	0	0	IS	Tabla B.2.3
Pérdidas en aducción (% de Qmd)	< 5	< 5	< 5	< 5	No se consideran		B.2.5.1
Consumo en Planta Potabilizadora (% de Qmd)	3a5	3a5	3a5	3a5	No tiene planta		B.2.5.2
Pérdidas en conducción de agua tratada (% de Qmd)	< 5	< 5	< 5	< 5	No		B.2.5.3
Total pérdidas técnicas admisibles (% de Qmd)	40	30	25	20	90	IS	Tabla B.2.4
Dotación bruta					187,5		B.2.6
Demanda					36,22		B.2.7
Coeficiente de consumo máx. diario (k1)	1.30	1.30	1.20	1.20	1,2	IS	Tabla B.2.5.
Coeficiente de consumo máx. horario (k2) -Red Matriz			1.40	1.40	1,5	S	Tabla B.2.6.
Coeficiente de consumo máx. horario (k2) -Red Secundaria		1.50	1.45	1.45	1,5	IS	Tabla B.2.6.
Coeficiente de consumo máx. horario (k2) -Red Menor	1.60	1.60	1.50	1.50	1,5	IS	Tabla B.2.6.

Número y capacidad de cada hidrante (lps) 1 (15) 3 (15) CLASIFICACION CALIDAD AGUA FUENTES Aceptable e pequilar Regular DBO₅ Promedio mensual (mg/L) ≤1.5 1.5 a 2.5 DBO₅ Máximo diario (mg/L) 1 a 3 3 a 4 Coliformes totales, promedio mensual (NMP/1.000 o a 50 51 a 500 mL) O D (mg/L) >= 4 >= 4 pH promedio 6.0 a 8.5 5.0 a 9.0		5) 4 (15)	C is	S	B282
Aceptabl Regues 21.5 1.5a 1.5a 1.5a 1.5a 1.5a 1.5a 1.5a 1					1.5.1
21.5 1.5a 1a3 3a .000 0a50 51a >=4 >= 6.0a8.5 5.0a		Deficiente Muy defic			
.000 0 a 50 >= 4 6.0 a 8.5	12.5 2.5 a	4 × 4	×		Tabla B.3.2
.000 0 a 50 >= 4 6.0 a 8.5	4 4a	9< 9	×		Tabla B.3.2
>= 4	500 501 a	a > 5000	1054		Tabla B.3.2
6.0 a 8.5	. 4 >= 4	4 < 4	×		Tabla B.3.2
	3.8 a 10.5	9.01	7,23		Tabla B.3.2
Turbiedad (UNT) < 2 2 a 4	40 40	a 150 > 150	2,16		Tabla B.3.2
Color verdadero (UPC) < 10	a 20 20 a 40	40 ≥ 40	Supera Valores limites		Tabla B.3.2
Gusto y olor Inofensiv	nsivo Inofensivo	sivo ceptable	No		Tabla B.3.2
Cloruros (mg/L) < 50 50 a 150	150 150 a 200	300	7,33		Tabla B.3.2
Fluoruros (mg/L) < 1.2 < 1.2	< 1.2	2 >1.7	No		Tabla B.3.2
Caudal mínimo de la fuente (95% del Q de estiaje) 2 veces Qmd para todos los nivles de compl	oara todos los n	nivles de compl	20	S	B.3.3.2.5
Concesiones para utilizar el agua		sí	Si	S	B.3.3.3.4
CAPTACIONES AGUA SUPERFICIAL N. Bajo N. Medio	edio N. Med-	ed- N. Alto	1		
Análisis de costo mínimo No se Recomen req d	men Obligat	jat Obligat	No	IS	Tabla B.4.1
Período de diseño (años) 15 20	0 25	30	30	SI	Tabla B.4.2
Caudal de diseño Captación (N° de veces el QMD) 1	1,5	2	is	IS	B.4.4.2
Velocidades máximas en canales de aducción (m/s)			4,33		Tabla B.4.3
Velocidades a través de filtros de toma (m/s) 0.10 a 0.19	0.10 a 0.15 para todos los niveles	os niveles	No hay planta	S	B.4.4.4
Separación entre barrotes (mm) 20-40 (grava fil	20-40 (grava fina) 75 a 150 (grava gruesa)	grava gruesa)	127	ON	B.4.4.5.3
Velocidad a través de la rejilla (m/s)	inferior a 0.15 m/s para todos los niveles	s los niveles	0,1	SI	B.4.4.5.5
Coeficiente de pérdidas en la rejilla 0.5-0.7 0.5-0.7	_	Fórmula de Kishmer	0,5		B.4.4.5.6
DESARENADORES					B.4.4.6
Capacidad Igual a QMD	Igual a QMD (Ips) para todos los niveles	s los niveles	Si 43,90	S	B.4.4.6.2

Velocidad horizontal/velocidad asentamiento	menor	o igual a 20 p	menor o igual a 20 para todos los niveles	niveles	Revisar	IS	B.4.4.6.3
Relación long útil / Profund. efectiva para arena		10:1 para tod	10:1 para todos los niveles		iS	S	B.4.4.6.4
Profundidad para almacenamiento de arena (m)	0.7	'5 a 1.50 para	0.75 a 1.50 para todos los niveles	səles	0,6 (Revisar)	S	
Veloc. Horiz. Máx. para aguas SIN tratamiento posterior	0.17 m	ı/s para parts	0.17 m/s para parts hasta 0.1 mm ef 75%	ef 75%	0,85 cm/s	S	B.4.4.6.5
eloc. horiz. máx. para aguas CON tratamiento posterior	0.25 m	ı/s para parts	0.25 m/s para parts hasta 0.2 mm ef 75%	ef 75%	0,25 cm/s		B.4.4.6.5
Volumen mínimo para almac. arenas (lodos)	10%	del volumen t	10% del volumen total del desarenador	enador	ïS	S	B.4.4.6.8
ADUCCIONES Y CONDUCCIONES							B.6
Análisis de costo mínimo	No obligat	sí	SÍ	SÍ	IS		B.6.2.2
Período de diseño (años)	15	20	25	30	30	S	Tabla B.6.1
Caudal de diseño	QMD	QMD	QMD+pér d	QMD+pér d	65,19	S	B.6.4.2
Diámetro mínimo para conducciones a presión	4" (F	(Flujo libre) o 2"	" (50 mm) a presión	resión	4	ON	B.6.4.8.1
Velocidad mínima en tuberías		0.60 m/s en t	0.60 m/s en todos los casos	6	4,53	NO	B.6.4.8.3
Velocidad máxima en tuberías		6.00 m/s en t	6.00 m/s en todos los casos	6	4,53	SI	B.6.4.8.4
Profundidad mínima de instalación de tuberías	0.6) m. En cruce	0.60 m. En cruces de tráfico 1.00 m	00 m	1		B.6.4.8.6
REDES DE DISTRIBUCIÓN							B.7
Análisis de costo mínimo	No se req	sí	sí	sí	iS	S	B.7.2.3
Período de diseño Redes matrices o primaria (> 12")	15	20	25	30	30		Tabla B.7.1
Período de diseño Redes secundario locales (6" a 12")	15	15	20	25	×		Tabla B.7.2
Período de diseño Redes terciarias o menor (<= 6")	15	20			×		Tabla B.7.3
Caudal de diseño	QMH	Qmd+ince n	Qmd+ince n	QMH	Jamondino 25,12 - El Rosario 35.98	S	B.7.4.2
Presión mínima en red (m.c.a.)	10	10	15	15	10	ON	Tabla B.7.4
Presión máxima en red (m.c.a.)	09	09	09	09	111,23	NO	B.7.4.5.2
Diámetros mínimos en red matriz	2.5 "	"4	9	12"	3		Tabla B.7.5
Diámetros mínimos en redes menores Zona Residencial	1.5 "	2"	2.5"	3"	ON	IS	Tabla B.7.6
Diámetros mín. en redes men. Zona Comerc. e Industrial	1.5 "	2"	4"	9	oN		Tabla B.7.6
Diámetros nominales admisibles (internos) (1.5" hasta 60")			VER TABLA		×	IS	Tabla B.7.7

Diámetros de hidrantes	3"	3"	4"	4"	3		B.7.4.6.5
Distancia mínima horizontal a redes alcantarillado (m)	1.00	1.00	1.50	1.50	2		Tabla B.7.9
Distancia mínima vertical a redes alcantarillado (m)	0:30	0:30	0.50	0.50	1		Tabla B.7.9
Distancia mínima horizontal a redes alcant. pluvial (m)	1.00	1.00	1.20	1.20	No hay		Tabla B.7.9
Distancia mínima vertical a redes alcant. pluvial (m)	0:30	0:30	0:00	0.50	No Hay		Tabla B.7.9
Profundidad mínima a lomo de tubería	1.00) m. desde su	1.00 m. desde superficie de terreno	rreno	1		B.7.5.10.1
Profundidad máxima a lomo de tubería	1.5) m. desde su	1.50 m. desde superficie de terreno	reno	Rojo		B.7.5.10.2
Colores de los hidrantes (Nota 2)							B.7.6.9.5
Presión para hidrantes (m.c.a.)	3	3	10 o 20	10 o 20	Si Cumple		B.7.6.9.6
TANQUES DE ALMACENAMIENTO O COMPENSACIÓN							B.9
Análisis de costo mínimo	No oblig	SÍ	sí	sí	No se Necesita		B.9.2.2
Compartimientos para mantenimiento	By-Pass	2	2	2	S	ON	B.9.3.2
Período de diseño (años)	20	25	30	30	30	SI	Tabla B.9.1
Caudal de diseño		Debe prov	Debe proveer el QMH		> QMH	IS	B.9.4.3
Volum. Distrib. a la zona en día de max. consumo	1/3	1/3	1/3	1/4	1/3		B.9.4.4
Borde libre de tanques	0	.30 metros er	0.30 metros en todos los casos	sos	6,0	ON	B.9.4.6
Tiempo de vaciado	иеш	or de 8 horas	menor de 8 horas en todos los casos	casos	3 Horas	IS	B.9.4.10
Entrada del agua al tanque	Po	r parte super	Por parte superior, si es bombeo	peo	Parte Superior		B.9.5.2
Salida del tanque	sendO	ta a la entrad	Opuesta a la entrada. Pérdidas <=0.50 m	=0.50 m	Parte inferior	IS	B.9.5.3

6.1.3 Presupuesto oficial. El Presupuesto oficial del proyecto determinado por el consultor esta estructurado de manera que se ponen los ITEMS de obra física y de suministro en una sola lista mas no tiene en cuenta un porcentaje adicional del 6% requerido por la Alcaldía Municipal de Pasto. Dependiendo de la magnitud del proyecto este porcentaje adicional puede representar un incremento importante en el presupuesto oficial. Estas observaciones se han dado a conocer al consultor. En la tabla 7 se presenta el presupuesto oficial del proyecto:

Tabla: 7. Presupuesto oficial

ITEM	DESCRIPCION	UNIDAD	CANTIDAD	V. UNITARIO	V. TOTAL
			_		_
1	LOCALIZACION Y REPLANTEO BARRIO EL ROSARIO	ML	5346,23	\$ 2.032	\$ 10.863.539
2	LOC. Y REPLANTEO CORREGIMIENTO JAMONDINO	ML	5973,29	\$ 2.032	\$ 12.137.725
3	EXCAVACION BARRIO EL ROSARIO	М3	4276,984	\$ 8.033	\$ 34.357.012
4	EXCAVACION CORREGIMIENTO JAMONDINO	М3	4778,632	\$ 8.033	\$ 38.386.751
3	TUBERIA DE 3" UP RDE 26 BARRIO EL ROSARIO	ML	5346,23	\$ 17.496	\$ 93.536.834
6	TUB. DE 3" UP RDE 26 CORR. JAMONDINO	ML	5346,23	\$ 17.496	\$ 93.536.834
7	CODO 3" 90° BARRIO EL ROSARIO	UND	3	\$ 75.019	\$ 225.057
8	CODO 3" 90°CORREGIMIENTO EL JAMONDINO	UND	6	\$ 75.019	\$ 450.114
9	CODO 3" 45°BARRIO EL ROSARIO GRAN RADIO	UND	1	\$ 32.777	\$ 32.777
10	CODO 3" 45°CORRJAMONDINO GRAN RADIO	UND	1	\$ 32.777	\$ 32.777
11	CODO 3" 11 1/4°BARRIO EL ROSARIO	UND	13	\$ 29.392	\$ 382.096
12	CODO 3" 11 1/4° CORR. JAMONDINO	UND	16	\$ 29.392	\$ 470.272
13	TEE 3" 11°BARRIO EL ROSARIO	UND	12	\$ 84.465	\$ 1.013.580
14	TEE 3" 11° CORREGIMIENTO EL JAMONDINO	UND	15	\$ 84.465	\$ 1.266.975
15	VALVULA SE 3" HF	UND	11	\$ 458.899	\$ 5.047.889
16	VALVULA SE 3" HF	UND	9	\$ 458.899	\$ 4.130.091
17	CAJAS PARA VALVULAS BARRIO EL ROSARIO	UND	11	\$ 437.656	\$ 4.814.216
18	CAJAS PARA VALVULAS JAMONDINO	UND	9	\$ 437.656	\$ 3.938.904
19	UNION DE REPARACION DE 3" BARRIO EL ROSARIO	UND	22	\$ 27.000	\$ 594.000
20	UNION DE REPARACION DE 3" CORR. JAMONDINO	UND	18	\$ 27.000	\$ 486.000
21	RELLENO COMPACTADO	МЗ	7200	\$ 15.672	\$ 112.835.813
22	CONCRETO DESARENADOR	МЗ	10,41	\$ 218.873	\$ 2.278.468
23	CONCRETO BOCATOMA	МЗ	1,8	\$ 218.873	\$ 393.971
24	VALVULA DE 6" CON RUEDA DE MANEJO	UND	1	\$ 1.657.500	\$ 1.657.500

	SUBTOTAL	\$ 422.869.196
ADMINISTRACION	15,00%	\$ 63.430.379
IMPREVISTOS	8,00%	\$ 33.829.536
UTILIDAD	7,00%	\$ 29.600.844
IVA SOBRE UTILIDAD (16%)	16,00%	\$ 4.736.135

TOTAL	\$ 554.466.090
-------	----------------

6.1.4 Observaciones adicionales.

El consultor no propone un sistema de micro medición para barrio El Rosario y el Corregimiento de Jamondino. Este proyecto es muy importante para promover el uso eficiente del agua, adelantado por del Plan Departamental de Agua y concientizar a la población del valor que tiene el agua desperdiciada.

El consultor no realizó un diseño estructural del desarenador para el acueducto de Jamondino, el diseño presentado fue el hidráulico.

Es muy importante emplear una simbología adecuada de los elementos dispuestos dentro de los planos del proyecto e identificar en los puntos críticos (altos y bajos) los accesorios que ayudaran a solucionar problemas en la conducción que implican un mal funcionamiento del elemento diseñado ya sea como estructura o como tubería para la red de aducción, la red de conducción o para la red de distribución.

6.1.5 Conclusiones

El consultor antes de empezar un diseño siempre deberá tener en cuenta las concesiones de la fuente de alimentación del sistema, si no se enfoca el diseño de acuerdo al caudal concedido, el sistema de acueducto no funcionara satisfactoriamente.

Es muy importante la localización y el replanteo de todos los elementos diseñados por el consultor, ya que se debe pensar en actividades de mantenimiento futuras teniendo en cuenta que el primer paso para diagnosticar una solución es con los diseños y si estos no corresponden a la realidad será improductiva cualquier actividad adelantada por el cuerpo técnico encargado.

6.2 EVALUACION TÉCNICA DEL SISTEMA DE ACUEDUCTO DISEÑADO PARA LA LOCALIDAD DE JUANOY

6.2.1 Resumen del proyecto entregado.

6.2.1.1 Descripción del problema. El acueducto de Juanoy, tiene aproximadamente 30 años de construido, por lo tanto existen estructuras como bocatoma, desarenador, cámaras de quiebre de presión y tanque de almacenamiento que ya han cumplido con su vida útil y que presentan agrietamientos.

Por otro lado CORPONARIÑO ha concedido un nuevo caudal de 1.10 lps, de la quebrada Pailón 2, con el fin de garantizar el servicio de acueducto en este sector. Por lo tanto se hace necesario rediseñar el sistema con el fin de optimizar las estructuras del mismo y adecuarlas al nuevo caudal el cual se suma al caudal ya existente.

- **6.2.1.2 Cuantificación de la población afectada por el problema.** La población que está siendo afectada por el problema de la deficiente prestación del servicio de acueducto es de 1932 habitantes proyectada a 15 años.
- **6.2.1.3** Justificación y descripción general del proyecto. El acueducto de Juanoy, tiene aproximadamente 30 años de construido, por lo tanto existen estructuras como bocatoma, desarenador y cámaras de quiebre de presión que ya han cumplido con su vida útil y que presentan agrietamientos considerables. Por lo tanto y con el fin de aumentar el nuevo caudal concedido por CORPONARIÑO, se hace necesario rediseñar el sistema con el fin de optimizar las estructuras del mismo y adecuarlas al nuevo caudal el cual se suma al caudal ya existente.

Cabe anotar que en la actualidad el Acueducto de Juanoy se abastece de la quebrada Pailón 1, con un caudal de 3.43 lps. Con la nueva concesión de aguas, se pretende aumentar este caudal en 1.10 lps, quedando un nuevo caudal de 4.53 lps.

Teniendo en cuenta la problemática planteada, se hace necesario realizar el chequeo hidráulico y el rediseño tanto de las estructuras como de las redes que conforman el sistema de acueducto de Juanoy.

El presente proyecto contempla la optimización del sistema de abastecimiento de Juanoy, mediante la reconstrucción de todos los componentes del sistema de acueducto (bocatoma, red de aducción, desarenador, red de conducción, cámaras distribuidoras de caudal, cámaras de quiebre de presión, tanque de almacenamiento y red de distribución), así mismo la construcción de la bocatoma y la red de aducción desde la quebrada el Pailón 2 (nueva concesión), hasta el desarenador existente.

6.2.1.4 Descripción de los objetivos, productos y resultados que se esperan obtener con la alternativa.

Objetivo general. El objetivo que se busca es la optimización del sistema de acueducto de Juanoy, mediante el aumento del caudal existente en 1.10 lps, el chequeo hidráulico de las estructuras y redes existentes y su rediseño.

Objetivos específicos.

- Optimizar la infraestructura del sistema de acueducto (bocatoma, red de aducción, desarenador, red de conducción, cámaras distribuidoras de caudal, cámaras de quiebre de presión, tanque de almacenamiento y red de distribución).
- Mitigar los impactos negativos en las condiciones de salud de los habitantes del sector.

Productos.

- Estructuras construidas (bocatoma, desarenador, cámaras de quiebre de presión, cámaras distribuidoras de caudal y tanque de almacenamiento)
- Redes construidas (de aducción, conducción y distribución)

Resultado. Un sistema de acueducto mejorado.

6.2.2 Análisis del diseño y metodología empleada. Para el calculo de la población futura proyectada a 15, 20 y 25 años el consultor emplea el método geométrico con una tasa de crecimiento de 1.54% propuesta en el censo realizado en el año 2005 por el DANE.

La población proyectada a 15 años es de 1932 habitantes, a 20 años es de 2085 habitantes y a 25 años es de 2251 habitantes, por lo tanto el consultor tiene razón en clasificar el nivel de complejidad como bajo de acuerdo al reglamento RAS – 2000. La dotación neta equivalente al nivel de complejidad es de 100 L/hab·día en donde no se admite corrección por clima. El consultor no tiene en cuenta la evaluación de la dotación neta de acuerdo a usos del agua requerido en el reglamento RAS – 2000 (B.2.3). Las instituciones educativas no se encuentran dentro del proyecto de cobertura, por eso no se tienen en cuenta para la demanda futura promedio por establecimientos.

El consultor asume un porcentaje de pérdidas de 30%, el cual se considera que debe disminuir constantemente una vez se efectué la optimización de todos sus componentes. La dotación bruta para un nivel bajo de complejidad será de 143 L/hab/día.

Ya que el consultor rediseño todo el sistema tuvo en cuenta caudales de diseño para 15 años, 20 años y 25 años. Las obras de captación, aducción y captación para un nivel de complejidad bajo requieren de un caudal máximo diario (CMD) calculado para un periodo de vida útil de 15 años, desarenadores y tanques para

un nivel de complejidad bajo requieren de un caudal máximo diario (CMD) calculado para un periodo de vida útil de 20 años y la red de distribución para un nivel de complejidad bajo requiere de un caudal máximo horario (CMH) calculado para un periodo de vida útil de 15 años.

Las captaciones de fondo para las fuentes Pailón 2 con una concesión de caudal de 1.10 lps y Pailón 1 con una concesión de caudal de 3.43 lps cuentan con un vertedero de rebose o de aguas medias, un vertedero de crecida, una área de captación determinada con la ecuación de orificio sumergido, un canal recolector, una cámara de derivación, y un aliviadero tipo WES. La salida a la aducción se calculó como un orificio sumergido según Francis, método adecuado ya que se debe tener en cuenta que en este tipo de salidas el nivel de agua cubre ambos lados.

Para el diseño de la captación de la fuente Pailón 2 y el rediseño de la captación de la fuente Pailón 1 se realizaron aforos de caudal y se determinó el mayor valor para que las bocatomas cumplan con una captación de caudal máximo aunque sea muy diferente del concedido por CORPONARIÑO. En las figuras 9 y 10 se puede apreciar el diseño en perfil de las bocatomas Pailón 1 y Pailón 2 respectivamente.

Figura: 9. Vista en perfil y planta bocatoma Pailón 1

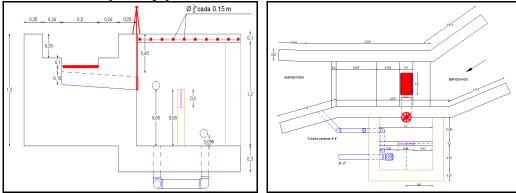
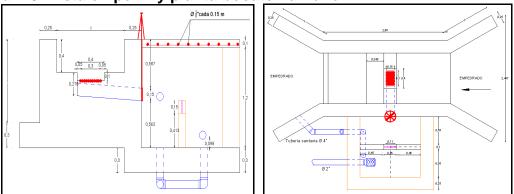



Figura: 10. Vista en perfil y planta bocatoma Pailón 2

La línea de aducción cuando funciona con flujo a superficie libre se diseña con la formula de Manning y para el funcionamiento a presión se evalúa con Hazen Williams, el diseño de la tubería de aducción es aceptable siempre y cuando se cumpla con que la velocidad debe estar entre 0,6 y 4,5 m/s. esta condición se cumple para un diámetro asumido de 4 pulgadas en PVC RDE 26, un caudal de diseño de 3.21 lps y una longitud de aducción de 6 m, esta línea de aducción hace la conexión entre la bocatoma Pailón 1 y el desarenador.

El caudal de diseño del desarenador es igual a 4.48 lps y equivale al caudal máximo diario calculado para un periodo de diseño de 20 años para nivel de complejidad bajo. Se asume la profundidad de 1.5 m.

En el diseño del desarenador se recomienda que la pendiente de la zona de sedimentación tenga mínimo 30° de inclinación para evitar que las partículas no se desalojen adecuadamente, en este caso no se cumple con ese requerimiento ya que el desarenador tiene poca pendiente de sedimentación. La relación de longitud/ancho no se encuentra entre 3/1 y 5/1 para una longitud útil de 5.30 m y un ancho útil de 1.00 m, esta recomendación se hace con el fin de acercar al flujo en pistón. Como se aprecia en las figuras 11 y 12 para la Bocatoma Pailón 1, el desarenador cuenta con una zona de sedimentación, un vertedero de rebose, una pantalla deflectora, una estructura de entrada, una canaleta de entrada, una canaleta de salida y un sistema de extracción de lodos. También cuenta con una tubería de desagüe en 4 pulgadas PVC y un By – Pass de 4 pulgadas en PVC RDE 26. Se especifica una capa de contacto en concreto ciclópeo de 2500 PSI y una zona de lodos en concreto simple de 3000 PSI. La tubería de salida es de 4 pulgadas en PVC RDE 26 asumida por el consultor.

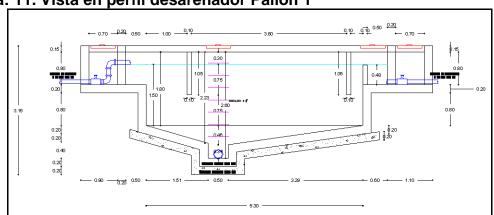
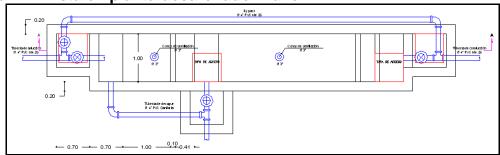



Figura: 11. Vista en perfil desarenador Pailón 1

Cálculo hidráulico de la red de conducción; se determinó la velocidad a partir del caudal máximo diario de 4.15 lps, Este cálculo se realiza con la fórmula de Hazén Williams de la perdida unitaria de carga, con esta fórmula se asume el diámetro de cada tramo y se calcula la pérdida unitaria. La pérdida unitaria multiplicada por la longitud de cada tramo obtiene la pérdida total. Este valor permite determinar la cota piezométrica y la presión en cada tramo. Se debe tener en cuenta que el diseño con Hazen Williams es recomendado para diámetros superiores a 2 pulgadas que no se cumple en el ramal Chimayoy, ramal B y el ramal Pinasaco pero se aceptan diámetros pequeños teniendo en cuenta las características secundarias de estas conducciones pequeñas.

A continuación se registran las observaciones de la red de conducción:

Conducción fuente Pailón 2 – desarenador: tubería de 2 pulgadas PVC RDE 26, una cámara de quiebre en la abscisa K0+550.00 m a 3167.91 m.s.n.m. – máxima presión de 67.47 m.c.a. la presión máxima que soporta la tubería es de 112.5 m.c.a. Este tramo si cumple con requisitos de diseño.

Conducción desarenador - tanque de almacenamiento: tubería de 3 pulgadas PVC RDE 26 – cámara de quiebre 1 en la abscisa K2+626.78 m a 3035 m.s.n.m., cámara repartidora de caudales 1 en la abscisa K5+681.16 m a 3000 m.s.n.m., cámara de quiebre 2 en la abscisa K6+231.16 m a 2940 m.s.n.m., cámara repartidora de caudales 2 en la abscisa K6+867.01 m a 2860 m.s.n.m., cámara de quiebre 3 en la abscisa K7+322.93 m a 2750.40 m.s.n.m., cámara de quiebre 4 en la abscisa K7+697.70 m a 2676.55 m.s.n.m. – máxima presión de 100.55 m.c.a. la presión máxima que soporta la tubería es de 112.5 m.c.a. Este tramo si cumple con requisitos de diseño.

Conducción ramal Chimayoy: tubería de ¾ de pulgada PVC RDE 21 – cámara de quiebre 1 en la abscisa K0+430.00 m a 2910.36 m.s.n.m., cámara de quiebre 2 en la abscisa K0+079.00 m a 2832.35 m.s.n.m. – máxima presión de 89.54 m.c.a. la presión máxima que soporta la tubería es de 140.6 m.c.a. Este tramo si cumple con requisitos de diseño.

Conducción ramal B: tubería de ¾ de pulgada PVC RDE 21 – cámara de quiebre 1 en la abscisa K0+326.00 m a 2919.54 m.s.n.m., cámara de quiebre 2 en la abscisa K0+696.00 m a 2825.72 m.s.n.m., cámara de quiebre 3 en la abscisa K1+420.00 m a 2773.43 m.s.n.m. – máxima presión de 88.57 m.c.a. la presión máxima que soporta la tubería es de 140.6 m.c.a. Este tramo si cumple con requisitos de diseño.

Conducción ramal Pinasaco: tubería de 1 pulgada PVC RDE 21 – cámara de quiebre 1 en la abscisa K0+648.88 m a 2769.43 m.s.n.m. – máxima presión estática de 77.65 m.c.a. la presión máxima que soporta la tubería es de 140.6 m.c.a. Este tramo si cumple con requisitos de diseño.

El rediseño del tanque de almacenamiento de agua se hace con un caudal máximo diario de 4.48 lps. El abastecimiento de este tanque es por gravedad y su volumen se determina a partir de la curva de variaciones horarias de un día típico.

Se debe notar que para poder hacer una evaluación hidráulica del diseño del tanque este se debe diseñar con caudal máximo diario como propone el consultor, pero, de acuerdo al reglamento RAS – 2000 (B.9.4.3) los tanques de almacenamiento se deben diseñar con el caudal máximo horario. Esta observación se le dio a conocer al consultor.

Las dimensiones del tanque calculadas por el consultor son:

Ancho: 6.00 m
Longitud: 6.00 m
Profundidad útil: 3.00 m
Borde libre: 0.30 m
Profundidad total: 3.50 m
Volumen útil: 108.0 m³
Volumen total: 126.0 m³

Se determino un tiempo de vaciado del tanque en minutos igual a, T = 107.74 y cumple con un tiempo inferior a las 8 horas requeridas por RAS - 2000 (B.9.4.10).

En el diseño del tanque de almacenamiento el consultor excluye un volumen para incendios y un volumen para emergencias. Este volumen se requiere teniendo encuentra la zona alta de Juanoy que es boscosa y siempre se han presentado problemas de incendios.

La tubería de lavado tiene un diámetro de 4 pulgadas, una longitud de 20 m y una altura disponible de descarga de 3 m. En las figuras 13 y 14 se pueden observar los detalles del tanque diseñado:

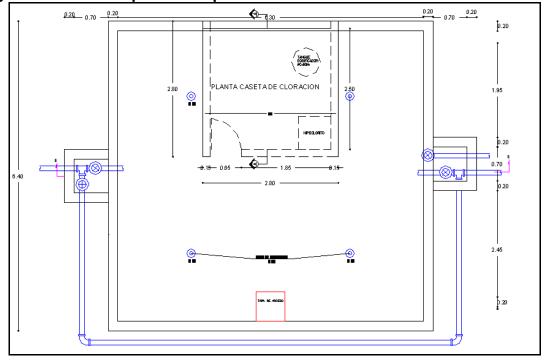



Figura: 14. Vista en planta tanque de almacenamiento

Para el tanque se ha dispuesto el diseño de una caseta de desinfección en la parte superior. Se debe elaborar un análisis de factibilidad estructural de acuerdo al reglamento técnico NSR-98 dispuesto para construcciones sismorresistentes en Colombia. Se debe justificar la ubicación de la caseta de desinfección. Las características de estas dos estructuras también influirán sobre la capacidad

portante del suelo, por lo tanto los cálculos se harán teniendo en cuenta las dos estructuras funcionando en estado de máxima capacidad.

El diseño de la red de distribución se hizo con la formula de Hazen Williams, con esta fórmula se asume el diámetro de cada tramo y se calcula la pérdida unitaria. La pérdida unitaria multiplicada por la longitud de cada tramo obtiene la pérdida total. Este valor permite determinar la cota piezométrica y la presión en cada tramo.

De acuerdo al diseño analizado el caudal en ruta en cada tramo se obtiene multiplicando el caudal máximo horario unitario por usuario por el número de usuarios en el tramo. El caudal de diseño del tramo se obtiene acumulando el caudal en ruta del tramo en cuestión con los caudales en transito por ese tramo.

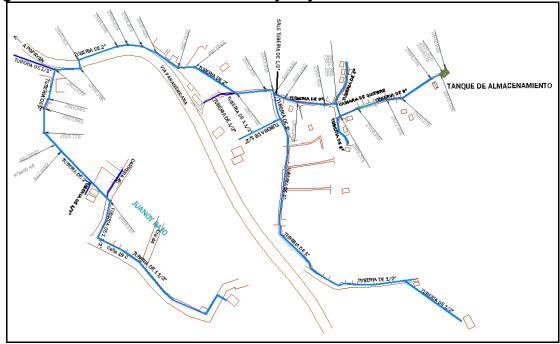
El consultor determina que la tubería se instalará a una profundidad de 1.0 m y que el ancho de la zanja esta determinado por el diámetro de la tubería.

El periodo de diseño de la red de distribución es de 15 años teniendo en cuenta el nivel bajo de complejidad y que esta es una red secundaria de acuerdo al reglamento RAS – 2000 (tabla B.7.2). La red de distribución para un nivel de complejidad bajo requiere de un caudal máximo horario (CMH), el caudal empleado en el diseño que es igual a 5.6 lps.

Este diseño cumple con requerimientos de presión minima de 10 m.c.a. de acuerdo al reglamento Ras – 2000 (tabla B.7.4) y un diámetro mínimo de acuerdo a RAS – 2000 (tabla B.7.6). La tabla 8 presenta un registro de los caudales y las velocidades calculados y la tabla 9 presenta las presiones finales calculadas.

Tabla: 8. Registro de caudales y velocidades red Juanoy

TDA	мо	ABSCT	SA (m)	LON	GITUD	DIAM	CAUDAL	VELOCIDAD	PRESION	(m.c.a.)	CLASE
1 1 1 1	AMO	Absci	SA (III)	Tramo	Acumulada	Nominal	DISEÑO	VLLOCIDAD	ESTÁ	ΓICA	DE
DE	Α	INICIAL	FINAL	(m)	(m)	(plg)	(l/s)	(m/s)	INICIAL	FINAL	TUBERÍA
					T			Г			
T519	600	K0+00.00	K0+003.90	4.86	4.86	3"	5.60	1.03	4.00	1.11	PVC RDE 32.5
600	601	K0+003.90	K0+015.43	13.31	18.17	3"	5.57	1.02	1.11	7.76	PVC RDE 32.5
601	602	K0+015.43	K0+056.53	43.44	61.60	3"	5.47	1.00	7.76	21.81	PVC RDE 32.5
602	603	K0+056.53	K0+074.21	18.34	79.95	3"	5.36	0.98	21.81	26.69	PVC RDE 32.5
603	604	K0+074.21	K0+109.19	36.51	116.46	3"	5.15	0.95	26.69	37.16	PVC RDE 32.5
604	605	K0+109.19	K0+131.14	23.09	139.55	3"	4.93	0.91	37.16	44.33	PVC RDE 32.5
605	CQ	K0+131.14	K0+146.02	15.12	154.67	3"	4.87	0.89	44.33	0.50	PVC RDE 32.5
CQ	607	K0+146.02	K0+159.04	13.53	168.20	3"	4.82	0.88	0.50	4.17	PVC RDE 32.5
607	608	K0+159.04	K0+190.66	33.34	201.54	3"	4.07	0.75	4.17	14.74	PVC RDE 32.5
608	609	K0+190.66	K0+206.04	16.14	217.68	3"	3.32	0.61	14.74	19.65	PVC RDE 32.5
609	610	K0+206.04	K0+219.35	13.75	231.43	3"	3.26	0.60	19.65	23.09	PVC RDE 32.5
610	611	K0+219.35	K0+224.37	5.16	236.59	3"	3.09	0.57	23.09	24.27	PVC RDE 32.5
611	612	K0+224.37	K0+232.18	8.14	244.72	3"	2.92	0.54	24.27	26.55	PVC RDE 32.5
612	615	K0+232.18	K0+266.59	36.21	280.94	2"	2.84	1.17	26.55	37.84	PVC RDE 26
615	616	K0+266.59	K0+323.05	59.47	340.41	2"	2.60	1.07	37.84	56.53	PVC RDE 26


Tabla: 9. Presiones red Juanoy

TD	AMO	ADSCI	SA (m)	LON	GITUD	DIAM	CAUDAL	VELOCIDAD	PRESION	(m.c.a.)	CLASE
IKA	AMO	ABSCI	5A (III)	Tramo	Acumulada	Nominal	DISEÑO	VELOCIDAD	ESTÁT	ICA	DE
DE	Α	INICIAL	FINAL	(m)	(m)	(plg)	(l/s)	(m/s)	INICIAL	FINAL	TUBERÍA
		1	1		1			1			
615	616	K0+266.59	K0+323.05	59.47	340.41	2"	2.60	1.07	37.84	56.53	PVC RDE 26
616	617	K0+323.05	K0+342.64	19.59	360.00	2"	2.39	0.99	56.53	56.33	PVC RDE 26
617	618	K0+342.64	K0+372.45	29.89	389.90	2"	2.31	0.95	56.33	54.10	PVC RDE 26
618	619	K0+372.45	K0+400.63	28.21	418.11	2"	2.21	0.91	54.10	52.71	PVC RDE 26
619	620	K0+400.63	K0+407.53	6.97	425.07	2"	2.15	0.88	52.71	51.76	PVC RDE 26
620	621	K0+407.53	K0+419.52	12.01	437.09	2"	2.11	0.87	51.76	51.05	PVC RDE 26
621	622	K0+419.52	K0+466.92	47.49	484.58	2"	2.01	0.83	51.05	48.07	PVC RDE 26
622	623	K0+466.92	K0+477.00	10.09	494.67	2"	1.91	0.79	48.07	47.60	PVC RDE 26
623	624	K0+477.00	K0+506.17	29.24	523.91	2"	1.84	0.76	47.60	45.55	PVC RDE 26
624	625	K0+506.17	K0+540.76	35.18	559.09	2"	1.64	0.68	45.55	39.12	PVC RDE 26
625	626	K0+540.76	K0+553.37	12.78	571.88	2"	1.47	0.61	39.12	37.04	PVC RDE 26
626	627	K0+553.37	K0+581.01	28.05	599.92	2"	1.40	0.58	37.04	41.81	PVC RDE 26
627	628	K0+581.01	K0+600.08	20.31	620.23	2"	1.31	0.54	41.81	48.79	PVC RDE 26
628	629	K0+600.08	K0+610.22	11.31	631.55	2"	1.26	0.52	48.79	53.81	PVC RDE 26
629	630	K0+610.22	K0+688.80	81.90	713.45	2"	0.68	0.28	53.81	76.90	PVC RDE 26

El consultor debe revisar la presión al final de la red de distribución ya que es superior a la presión máxima aceptada por el reglamento RAS – 2000 (B.7.4.5.2).

En la figura 15 se presenta la vista en planta de la red de distribución de Juanoy:

Figura: 15. Red de distribución Juanoy Bajo

La capacidad portante calculada para el suelo en donde se ubicará el desarenador es igual a 0.8 kg/cm². En la tabla 10 se presenta la evaluación hidráulica del proyecto teniendo en cuenta el reglamento RAS – 2000:

Tabla: 10. Revisión del diseño siguiendo parámetros RAS 2000

NOMBRE DEL PROYECTO:		OPT	IMIZACION SI	STEMA DE AB	OPTIMIZACION SISTEMA DE ABASTECIMIENTO JUANOY	ОУ	
PARÁMETRO/CRITERIO/CARACTERISTICA		NIVEL DE C	NIVEL DE COMPLEJIDAD		Valor Provecto	Cumple	Referencia
	Bajo	Medio	M-Alto	Alto		(SI/NO)	RAS 2000
GENERALES							
Nivel de complejidad asignado en el proyecto	Bajo	Medio	Med-Alto	Alto	BAJO		A.3.1
Capacidad económica	Baja	Baja	Media	Alta	BAJO		A.3.1
Población beneficiada con el Proyecto			30803		2085		B.2.1
ACUEDUCTO - GENERALES							
Método de cálculo de la Población	1, 2, o 3	1, 2, 03	2,3,4 o 5	2,3,4 o 5	GEOMETRICO	S	Tabla B.2.1
Ajuste por población flotante	Sí	sí	SÍ	SÍ	ON	SI	B.2.2.5
Dotación neta (I/h-d)	100-150	120-175	130	150	100	S	Tabla B.2.2
Correcciones máximas a dotación neta (%)	hasta 20	hasta 20	>20	>20	ON	S	B.2.4.4
Variaciones a dotación neta por clima cálido (%)	+ 15	+ 15	+20	+20	ON	IS	Tabla B.2.3
Variaciones a dotación neta por clima templado (%)	+ 10	+ 10	+15	+15	ON	SI	Tabla B.2.3
Variaciones a dotación neta por clima frío (%)	0	0	0	0	ON	IS	Tabla B.2.3
Pérdidas en aducción (% de Qmd)	< 5	< 5	< 5	< 5	2%		B.2.5.1
Consumo en Planta Potabilizadora (% de Qmd)	3a5	3a5	3a5	3 a 5	3%		B.2.5.2
Pérdidas en conducción de agua tratada (% de Qmd)	< 5	< 5	< 5	6 >	2%		B.2.5.3
Total pérdidas técnicas admisibles (% de Qmd)	40	30	25	20	30%	SI	Tabla B.2.4
Dotación bruta					143		B.2.6
Demanda					3.45		B.2.7
Coeficiente de consumo máx diario (k1)	1.30	1.30	1.20	1.20	1.3	SI	Tabla B.2.5.
Coeficiente de consumo máx horario (k2) -Red Matriz			1.40	1.40	1.6	SI	Tabla B.2.6.
Coeficiente de consumo máx horario (k2) -Red Secundaria		1.50	1.45	1.45	×	SI	Tabla B.2.6.
Coeficiente de consumo máx horario (k2) -Red Menor	1.60	1.60	1.50	1.50	×	SI	Tabla B.2.6.
Presentación curva de demanda	Referenc	Propia	Propia	Propia	SI	SI	B.2.7.7
Número y capacidad de cada hidrante (Ips)	1 (15)	3 (15)	3 (15)	4 (15)	ON	IS	B.2.8.2

CLASIFICACION CALIDAD AGUA FUENTES	Aceptable	Regular	Deficiente	Muy defic	UNIVERSIDAD DE NARIÑO, PAILON1 Y 2		
DBO ₅ Promedio mensual (mg/L)	<u><1.5</u>	1.5 a 2.5	2.5 a 4	>4	ON		Tabla B.3.2
DBO ₅ Máximo diario (mg/L)	1a3	3a4	4 a 6	9<	ON		Tabla B.3.2
Coliformes totales, promedio mensual (NMP/1.000 mL)	0 a 50	51 a 500	501 a 5000	> 5000	650		Tabla B.3.2
O D (mg/L)	>= 4	>= 4	>= 4	4 >	ON		Tabla B.3.2
pH promedio	6.0 a 8.5	5.0 a 9.0	3.8 a 10.5		7.2		Tabla B.3.2
Turbiedad (UNT)	< 2	2 a 40	40 a 150	> 150	1.075		Tabla B.3.2
Color verdadero (UPC)	< 10	10 a 20	20 a 40	> 40	APARENTE 4		Tabla B.3.2
Gusto y olor	Inofensivo	Inofensivo	Inofensivo	No ceptable	INOFENCIVO		Tabla B.3.2
Cloruros (mg/L)	< 50	50 a 150	150 a 200	300	0.5		Tabla B.3.2
Fluoruros (mg/L)	< 1.2	< 1.2	< 1.2	>1.7	ON		Tabla B.3.2
Caudal mínimo de la fuente (95% del Q de estiaje)	2 vece	s Qmd para to	2 veces Qmd para todos los nivles de compl	le compl	6.9 (LPS)	S	B.3.3.2.5
Concesiones para utilizar el agua	SÍ	SÍ	SÍ	SÍ	2 PALON 2 (1.1 LPS) Y PAILON 1, (3.43 LPS)	S	B.3.3.3.4
CAPTACIONES AGUA SUPERFICIAL	N. Bajo	N. Medio	N. Med-Alto	N. Alto	CONSTRUCCION		
Análisis de costo mínimo	No se req	Recomend	Obligat	Obligat	ON	SI	Tabla B.4.1
Período de diseño (años)	15	20	25	30	15	IS	Tabla B.4.2
Caudal de diseño Captación (N° de veces el QMD)	~	~	1,5	2	3.21 LPS PAILON 1	Ø	B.4.4.2
Velocidades máximas en canales de aducción (m/s)					2.05		Tabla B.4.3
Velocidades a través de filtros de toma (m/s)	0	.10 a 0.15 para	0.10 a 0.15 para todos los niveles	les	×	SI	B.4.4.4
Separación entre barrotes (mm)	20-40	(grava fina) 7	20-40 (grava fina) 75 a 150 (grava gruesa)	gruesa)	2 CM	ON	B.4.4.5.3
Velocidad a través de la rejilla (m/s)	inferi	or a 0.15 m/s _l	inferior a 0.15 m/s para todos los niveles	iveles	×	SI	B.4.4.5.5
Coeficiente de pérdidas en la rejilla	0.5-0.7	0.5-0.7	Fórmula d	Fórmula de Kishmer	×		B.4.4.5.6

Capacidad							0.4.
Velocidad horizontal/velocidad acentamiento	Igual	a QMD (lps) p	Igual a QMD (lps) para todos los niveles	iveles	4.48	S	B.4.4.6.2
Velocidad Holizolital/Velocidad asselltallicilio	menor	o igual a 20 p	menor o igual a 20 para todos los niveles	niveles		IS	B.4.4.6.3
Relación long útil / Profundidad efectiva para arena		10:1 para too	10:1 para todos los niveles		1:10.6	IS	B.4.4.6.4
Profundidad para almacenamiento de arena (m)	0.7	'5 a 1.50 para	0.75 a 1.50 para todos los niveles	les	0.5	S	
Veloc. horiz. máx. para aguas SIN tratamiento posterior	0.17 m	/s para parts	0.17 m/s para parts hasta 0.1 mm ef 75%	ef 75%	0.02	S	B.4.4.6.5
Veloc. horiz. máx. para aguas CON tratamiento posterior	0.25 m	/s para parts	0.25 m/s para parts hasta 0.2 mm ef 75%	ef 75%	0.02		B.4.4.6.5
Volumen mínimo para almac arenas (lodos)	10%	del volumen to	10% del volumen total del desarenador	nador	2 M3	S	B.4.4.6.8
ADUCCIONES Y CONDUCCIONES					INSTALACION		B.6
Análisis de costo mínimo	No obligat	SÍ	sí	sí	ON		B.6.2.2
Período de diseño (años)	15	20	25	30	20	S	Tabla B.6.1
Caudal de diseño	QMD	QMD	QMD+pérd	QMD+pérd		S	B.6.4.2
Diámetro mínimo para conducciones a presión	4" (F	(Flujo libre) o 2"	(50 mm) a presión	ssión	3/4"	ON.	B.6.4.8.1
Velocidad mínima en tuberías		0.60 m/s en to	0.60 m/s en todos los casos		0.3	ON.	B.6.4.8.3
Velocidad máxima en tuberías		6.00 m/s en to	6.00 m/s en todos los casos		.93	S	B.6.4.8.4
Profundidad mínima de instalación de tuberías	0.60) m. En cruce	0.60 m. En cruces de tráfico 1.00 m	0 m	_		B.6.4.8.6
REDES DE DISTRIBUCIÓN					INSTALACION		B.7
Análisis de costo mínimo	No se req	SÍ	sí	sí	ON		B.7.2.3
Período de diseño Redes matrices o primaria (> 12")	15	20	25	30	15		Tabla B.7.1
Período de diseño Redes secundarias o locales (6" a 12")	15	15	20	25	15		Tabla B.7.2
Período de diseño Redes terciarias o menor (<= 6")	15	20			15	IS	Tabla B.7.3
Caudal de diseño	QMH	Qmd+incen	Qmd+incen	QMH	6.64	IS	B.7.4.2
Presión mínima en red (m.c.a.)	10	10	15	15	0.5	ON	Tabla B.7.4
Presión máxima en red (m.c.a.)	09	09	09	09	76.9	ON	B.7.4.5.2
Diámetros mínimos en red matriz	2.5 "	4"	.9	12"	2"		Tabla B.7.5
Diámetros mínimos en redes menores Zona Residencial	1.5 "	2"	2.5"	3"	2"	SI	Tabla B.7.6
Diámetros mín. en redes men. Zona Comerc. e Industrial	1.5 "	2"	4"	.9	2"		Tabla B.7.6
Diámetros nominales admisibles (internos) (1.5" hasta 60")			VER TABLA		2"	SI	Tabla B.7.7
Diámetros de hidrantes	3"	3"	4"	4"	ON		B.7.4.6.5

TANQUES DE ALMACENAMIENTO O COMPENSACIÓN					OPTIMIZACION		B.9
Análisis de costo mínimo	No oblig	sí	SÍ	SÍ	ON		B.9.2.2
Compartimientos para mantenimiento	By-Pass	2	2	2	Si	NO	B.9.3.2
Período de diseño (años)	20	25	30	30	20	SI	Tabla B.9.1
Caudal de diseño		Debe prov	Debe proveer el QMH		4.48	SI	B.9.4.3
Volum. distrib a la zona en día de max. consumo	1/3	1/3	1/3	1/4	1/3		B.9.4.4
Borde libre de tanques		0.30 metros er	0.30 metros en todos los casos	SC	0.3	NO	B.9.4.6
Tiempo de vaciado	me	nor de 8 horas	menor de 8 horas en todos los casos	asos	1.80	SI	B.9.4.10
Entrada del agua al tanque	<u>a</u>	or parte super	Por parte superior, si es bombeo	090	SUPERIOR		B.9.5.2
Salida del tanque	endO	sta a la entrad	Opuesta a la entrada. Pérdidas <=0.50 m	0.50 m	OPUESTO	SI	B.9.5.3

6.2.3 Presupuesto oficial. El presupuesto oficial está bien estructurado y esta subdividido por suministro y obra física, además se presentó un registro de los precios unitarios que intervendrían en la obra de actualización. El A.U.I. es igual al 28% del presupuesto total pero no se calcula un porcentaje adicional por suministro, el cual es requerido por la alcaldía Municipal de Pasto y es igual al 6% del presupuesto total. En la tabla 11 se presenta un resumen para su entendimiento detallado:

Tabla: 11. Presupuesto oficial del proyecto

Resumen de Capítulos			
1. BOCATOMA EL PAILON 1	1.75 %		6,971,720
2. BOCATOMA EL PAILON 2	1.06 %		4,218,582
3. CAJA REPARTIDORA 1	0.96 %		3,801,297
4. CAJA REPARTIDORA 2	0.87 %		3,439,289
5. TANQUE DE ABASTECIMIENTO	13.31 %		52,916,357
6. DESARENADOR	6.16 %		24,494,536
7. CONDUCC. NUEVA QUEBARA EL PAILON	5.47 %		21,727,605
8. CONDUCCION EXISTENTE EL PAILON	36.75 %		146,088,711
9. CONDUCCION EXISTENTE RAMAL B	7.99 %		31,748,195
10. RED DE DISTRIBUCION	25.69 %		102,113,825
		Costo Directo	397,520,120

Costos Indirectos			
A.	17.37 %		69,049,245
I.	4.00 %		15,900,805
U.	6.63 %		26,355,584
		Total	508,825,754

6.2.4 Observaciones adicionales.

El diseño del acueducto está bien realizado y las observaciones realizadas en este documento para este acueducto no representan cambios sustanciales en el planteamiento del diseño.

Se recomienda a la consultoría disponer de un porcentaje del caudal de las fuentes para el caudal ecológico requerido en los términos de referencia.

6.2.5 Conclusiones.

El consultor antes de empezar un diseño siempre deberá tener en cuenta las concesiones de la fuente de alimentación del sistema, si no se enfoca el diseño de acuerdo al caudal concedido, el sistema de acueducto no funcionara satisfactoriamente.

Es muy importante la localización y el replanteo de todos los elementos diseñados por el consultor, ya que se debe pensar en actividades de mantenimiento futuras teniendo en cuenta que el primer paso para diagnosticar una solución es con los diseños y si estos no corresponden a la realidad será improductiva cualquier actividad adelantada por el cuerpo técnico encargado.

6.3 EVALUACION TECNICA DEL SISTEMA DE ACUEDUCTO DISEÑADO PARA LAS LOCALIDADES DE MOCONDINO CANCHALA Y PUERRES

6.3.1 Resumen del proyecto entregado.

6.3.1.1 Descripción del problema. Deficiencia en la prestación de servicio en sectores de gran población, la falta de recursos ha hecho que este acueducto se haya desarrollado en forma inadecuada, causando descompensaciones en el sistema. La situación actual trae como resultado una prestación deficiente del servicio de acueducto, contribuyendo al consumo de agua de mala calidad.

El sistema de acueducto corresponde a tres núcleos de población, estas poblaciones son Mocondino, Canchala y Puerres que poseen redes independientes para cada núcleo y sus respectivos tanques pero comparten cinco bocatomas, de estas la distribución para cada núcleo se realiza atreves de una cámara de reparto de caudal 1 por dos vertederos uno para Mocondino y otro para Puerres y Canchala. A su vez una distribución 2 independiente para Canchala y Puerres se realiza con otros dos vertederos en otro sector (tanque de almacenamiento).

La problemática radica en que Puerres se esta expandiendo y por ende sus redes, sin tener en cuenta que las instalaciones domiciliarias requieren de un proceso técnico de instalación para evitar la destrucción del funcionamiento de la red de distribución. El problema de Canchala radica en presiones bajas en algunas zonas. El problema de Mocondino es la carencia de desarenadores en dos fuentes y la falta de elementos indispensables para el funcionamiento de las redes como son las purgas ventosas y válvulas de corte y la mala distribución de redes abiertas.

6.3.1.2 Cuantificación de la población afectada por el problema. La población que está siendo afectada por el problema de la deficiente prestación del servicio de acueducto es de total de 4782 habitantes proyectada a 20 años.

6.3.1.3 Justificación del proyecto. Con el proyecto se pretende intervenir en el mejoramiento de las condiciones de vida de los habitantes que se localizan en los núcleos de Mocondino, Canchala y Puerres, que cuentan con una población beneficiaria de 4782 habitantes y que serán abastecidos con agua apta para consumo humano, así mismo se proyecta la dotación a futuro de agua apta para el consumo humano a través de la construcción de estructuras e instalaciones de nueva tubería en sectores específicos del acueducto del sector.

El proyecto consta de la construcción de dos desarenadores, el mejoramiento de dos aducciones (bocatomas Chorrera Negra y Motilón 1), la construcción de una cámara de quiebre sector Mocondino, la construcción de un tanque de almacenamiento para el sector de Puerres, actualizar la conducción del sistema, implementar una caseta de cloración y optimizar la red de distribución para Mocondino, Canchala y Puerres con instalaciones domiciliaras a todos los usuarios con sus respectivos medidores volumétricos.

6.3.1.4 Descripción general del proyecto. El acueducto esta siendo abastecido por las siguientes fuentes: Quebrada Toma alta, Quebrada Chorrera negra, Quebrada Motilón 2, Quebrada Tambillo y Quebrada Motilón 1.

Estas cinco bocatomas actualmente se encuentran en funcionamiento, estructuralmente están bien, el funcionamiento es bueno e hidráulicamente funcionan bien, a excepción de la bocatoma de la quebrada el motilón 2; en donde se a proyectado un cambo de tubería e instalación de ventosa y purgas.

De las fuentes mencionadas anteriormente, la quebrada Toma Alta, la quebrada Motilón 2 y la quebrada Tambillo disponen de desarenadores, por lo tanto se construirán desarenadores de tipo convencional para la quebrada Chorrera Negra y la quebrada Motilón 1

El sistema que conduce el agua de la quebrada de Tambillo tiene una cámara de quiebre 1 que está cumpliendo su función adecuadamente, hay una cámara de quiebre 2 ubicada en la conducción proveniente de las quebradas Motilón 1 y Tambillo y una cámara de quiebre 3 en el sector de Mocondino a 400 m del tanque de almacenamiento de Mocondino

Se propone la construcción de una cámara de quiebre a 100 m antes de la cámara de quiebre 3 que tendrá como función aumentar la presión para el núcleo de Mocondino Bajo.

En el acueducto se identifican tres tanques de almacenamiento; El acueducto de Mocondino tiene dos tanques de almacenamiento, el acueducto de Puerres tiene 1 tanque y el acueducto de Canchala tiene un tanque.

Se propone la construcción de un tanque de almacenamiento para el núcleo de Puerres el cual servirá de compensación para la dotación de agua en horas de bajo o nulo abastecimiento, que es el problema principal encontrado para las localidades de Puerres y Canchala teniendo en cuenta que los tanques existentes para estas dos comparten el mismo punto de dotación.

Mocondino tiene redes de distribución principal de 3 pulgadas, 4 pulgadas, 2 pulgadas y 1 pulgada de PVC y es de tipo abierta. En el acueducto de Puerres la red de distribución principal es de 2 pulgadas ,1 pulgada y 1½ pulgadas en PVC de tipo abierta. En el acueducto de Canchala la red principal es de 2 pulgadas en PVC.

Para el sector de Mocondino se plantea la sustitución de la tubería de 1 pulgada por una de 1½ pulgadas y la ubicación de la tubería de 3 pulgadas, 4 pulgadas y de 2 pulgadas en la red de distribución en el sector de Mocondino Medio.

Para el sector de Puerres se plantea la sustitución de la tubería de 1 pulgada por una de 1½ pulgadas y la redistribución de las redes por redes malladas de diámetro 2 pulgadas. Con el fin de lograr la recirculación del agua distribuida.

Para el sector de Canchala se plantea la sustitución de la tubería de 1 pulgada por una de 1½ pulgadas y la redistribución de las redes por redes malladas de diámetro 2 pulgadas.

El sistema de abastecimiento de Mocondino no cuenta con caseta de desinfección y no tiene ninguna clase de tratamiento, por otro lado el sistema de abastecimiento de Puerres y Canchala cuenta con caseta de desinfección pero no la tienen en funcionamiento. Se construirá una caseta de cloración en la cámara de reparto 1.

6.3.1.5 Descripción de los objetivos, productos y resultados que se esperan obtener con la alternativa.

Objetivo general. Mejorar el suministro de agua apto para el consumo humano a los habitantes de los núcleos de Mocondino, Canchala y Puerres.

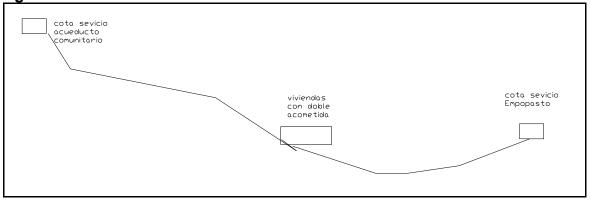
Objetivos específicos.

- Optimizar la infraestructura del acueducto (redes de distribución y acometidas domiciliarias.
- Mitigar los impactos negativos en las condiciones de salud de los habitantes
- Socializar el proyecto con la comunidad a beneficiar e involucrarla en la etapa de ejecución del proyecto.

- Socializar el proyecto con la comunidad a beneficiar e involucrarla en la etapa del fortalecimiento institucional en sus comunidades.

Productos.

- Cambio de tubería e instalación de ventosa y purgas a partir de la quebrada Motilón 2.
- Construcción de un desarenador de tipo convencional para la quebrada Chorrera Negra.
- Construcción de un desarenador de tipo convencional para la quebrada Motilón 1
- Una cámara de quiebre a 100 m antes de la cámara de quiebre 3 que aumentara la presión para el núcleo de Mocondino Bajo.
- Construcción de un tanque de almacenamiento para el núcleo de Puerres
- La sustitución de la tubería de 1 pulgada por una de 1½ pulgadas y la ubicación de la tubería de 3 pulgadas, 4 pulgadas y de 2 pulgadas en la red de distribución en el sector de Mocondino Medio.
- Sustitución de la tubería de 1 pulgada por una de 1½ pulgadas y la redistribución de las redes por redes malladas de diámetro 2 pulgadas para el sector de Canchala.
- Sustitución de la tubería de 1 pulgada por una de 1½ pulgadas y la redistribución de las redes por redes malladas de diámetro 2 pulgadas para el sector de Puerres.
- La instalación de micro medición en los tres sectores
- Construcción de una caseta de cloración en la cámara de reparto 1


Resultado. Un acueducto mejorado.

6.3.2 Análisis del diseño y metodología empleada. Debido al crecimiento del Perímetro Urbano de Pasto y los requerimientos de los ciudadanos del servicio de agua, EMPOPASTO ha dado el servicio de agua a algunas casas de los sectores de Puerres Y Canchala, siendo el primero el de mayor numero de matriculas.

El problema hidráulico que se genera por estas viviendas con servicio de agua de EMPOPASTO, es que estas mismas viviendas comparten servicio de esta empresa y del acueducto comunitario de Mocondino – Canchala – Puerres: es decir tienen dos acometidas de agua potable en sus viviendas que en el interior se combinan sus dos aguas, ya que nos cuentan en sus instalaciones internas de tubería, redes independientes para cada acometida.

No obstante la tenencia de estas dos matriculas de agua potable son legales ante EMPOPASTO y ante la JAA, este caso se agrava mas ya que la cota de servicio de esta entidad le permite que este servicio se de cuando los tanques que surten a este sector están llenos y cuando no existen serias deficiencia en este suministro por parte de EMPOPASTO; esto hace que cuando no haya agua de EMPOPASTO estas viviendas tomen agua del acueducto Comunitario. La figura 16 puede ilustrar el problema de distribución domiciliaria mencionado:

Figura: 16. Dotación de dos acueductos a una sola casa

El problema hidráulico que existe en el momento es que cada vez que EMPOPASTO deja de dar servicio a las viviendas con doble acometida por diferencia de cotas y presiones se genera flujo del agua proveniente de Mocondino por las redes de EMPOPASTO haciendo que la red del acueducto comunitario no tenga presión de agua y el liquido sea dirigido a otros sectores que no están cubiertos por el acueducto rural, esto genera desabastecimiento de la red de Puerres y Canchala ya que el tanque de almacenamiento se desocuparía rápidamente y no se podría cubrir a la comunidad con el servicio.

Los servicios prestados por el acueducto rural y por EMPOPASTO no presentarían problemas si se independizan uno del otro, separando el medio de distribución de agua sin que se empalmen en ningún punto.

El consultor asume las proyecciones de población para períodos de diseño de 5, 10, 15, 20, años a partir del año 2008, empleando el método geométrico con una tasa de crecimiento constante de 1.50% de acuerdo a censos del DANE comprendidos entre los años 1995 – 2005 que ofrecen datos de población

globales para la cabecera y resto del Municipio de Pasto. Entonces de acuerdo a este método se obtiene una población de 5504 habitantes para el año 2028.

Para la población calculada se asigna un nivel de complejidad medio; el consultor considera que la población de Mocondino, Canchala y Puerres por estar adosada a la ciudad y dentro de zona de expansión de la ciudad de Pasto por requerimiento debería subirse el nivel de complejidad a medio alto pero la dotación futura a la ciudad desde la fuente las Piedras no considera esta zona de expansión, y el nivel de sostenibilidad económica es bajo, por lo cual se decide dejar el nivel de complejidad en medio.

A continuación se presenta un resumen de dotaciones calculadas:

Dotación estimada por nivel de complejidad: 120 L/hab·día Corrección de la dotación por población: 0 % Corrección de la dotación por clima: 0% Dotación neta para el sistema: 120 L/hab·día

Teniendo en cuenta las características independientes de las localidades estudiadas, el consultor decide calcular caudales de diseño independientes para Mocondino, Puerres y Canchala.

$$d_{Bruta} = 171.4 l/hab*dia$$

Caudal medio diario Mocondino:

$$Q_{md} = 5.36 \, lps$$

El consultor descarta un caudal medio industrial. Este caudal se debe analizar teniendo en cuenta una proyección futura económica y de desarrollo de Mocondino, ya que en la población se esta haciendo producción avícola, además se esta desarrollando bastante actividad ganadera.

Caudal Máximo Diario Mocondino:

$$QMD = Qmd * k_1 = 6.97 \ lps$$

Caudal Máximo Horario Mocondino:

$$QMH = QMD * k_2 = 11.15 lps$$

Caudal medio diario Canchala:

$$Q_{md} = 5.36 \, lps$$

El consultor descarta un caudal medio escolar, se debe tener en cuenta que la población de Canchala tiene una escuela de educación pública.

Caudal Máximo Diario Canchala:

$$QMD = Qmd * k_1 = 1.25 lps$$

Caudal Máximo Horario Canchala:

$$QMH = QMD * k_2 = 2.00 lps$$

Caudal medio diario Puerres:

$$Q_{md} = 3.19 \ lps$$

Caudal Máximo Diario Puerres:

$$QMD = Qmd * k_1 = 4.14 lps$$

Caudal Máximo Horario Puerres:

$$QMH = QMD * k_2 = 6.63 lps$$

Por otro lado los aforos de las fuentes se registran en la tabla 12:

Tabla: 12. Caudales en época de alta v baia precipitación

	Periodo d	de baja pr	ecipitación	Periodo (de alta pr	ecipitación
Estaciones	Caudal entrante	Caudal saliente	Captación	Caudal entrante	Caudal saliente	Captación
Estación 1 (Desembocadura)	148.3		0	156.4		0
2 (Tambillo)	2,12	0	2,12	10,32	5.8	3,52
3 (Motilón 1)	0,823	0,709	0,114	1.97	1.54	0,44
4 (Motilón 2)	4,56	1,474	3	6.58	2.28	4,3
5 (Chorrera Negra)	1,278	0	1,278	2.43	1.3	1,13
6 (Toma Alta)	3,812	0	3,812	4.44	1.19	3,25
	Total	Captado	10,324	Total	Captado	12,64

El valor de caudales reales captados no se debe modificar para conveniencia del proyecto ya que entidades como CORPONARÑO son muy estrictas en

cuestión a concesiones de caudales y no se debe esperar un aumento de la dotación sin previa gestión y justificación.

Con el fin de optimizar las líneas de aducción, el consultor propone el diseño para la construcción del tramo bocatoma Chorrera Negra — Desarenador, siendo este desarenador nuevo también. Se diseñó una línea de aducción que comprende el tramo bocatoma Motilón 1 — Desarenador siendo este también diseñado completamente. En resumen el consultor considera que debe diseñar nuevas aducciones en función de los nuevos desarenadores que requiere el sistema, por lo cual yo considero que el consultor ya evaluó las aducciones existentes y concluyó que estas no requieren un proceso de optimización u actualización. De todas maneras se considera que esta decisión tomada por el consultor se debe hacer conocer a los representantes de la comunidad y determinar si es correcta o proponer lo más conveniente para el funcionamiento optimizado del acueducto. El consultor debe determinar si es conveniente por lo menos realizar mantenimiento a las tuberías de aducción correspondientes a loas otras bocatomas.

De acuerdo al cuadro de calculo presentado por el consultor la aducción del tramo bocatoma Chorrera Negra – Desarenador es diseñada con un caudal de 2.50 lps. No se especifica de donde se obtuvo el caudal, pero se supone como el valor redondeado del caudal saliente de la bocatoma; la aducción debe ser diseñada con un caudal máximo diario equivalente al caudal por bocatoma y debe ser adaptada al caudal concedido. El diseño cumple con requisitos de perdida de carga unitaria para una carga unitaria critica de 0.1031 m/m, especificaciones reglamento RAS – 2000 para diámetros mínimos y presión máxima para un diámetro de 2 pulgadas RDE 26.

La aducción del tramo bocatoma Motilón 1 – Desarenador es diseñada con un caudal de 4.50 lps. No se especifica de donde se obtuvo el caudal; la aducción debe ser diseñada con un caudal máximo diario equivalente al caudal por bocatoma que debe ser adaptada al caudal concedido más caudal acumulado por posibles puntos de llegada de otras conducciones. El diseño cumple con requisitos de perdida de carga unitaria para una carga unitaria critica de 0.17615 m/m, especificaciones reglamento RAS – 2000 para diámetros mínimos y presión máxima para un diámetro de 2 pulgadas RDE 26.

El caudal de diseño del desarenador para la bocatoma Motilón 1 es 4.00 lps pero no se especifica de donde se obtiene, si el consultor considera un calculo adicional debe exponer el proceso de calculo para que este sea analizado, el caudal de diseño debe ser equivalente al caudal máximo diario calculado para un periodo de diseño recomendado de 25 años para nivel de complejidad medio. Se asume la profundidad útil de 1.5 m

En el diseño del desarenador se recomienda que la pendiente de la zona de sedimentación tenga mínimo 30º de inclinación para evitar que las partículas no se

desalojen adecuadamente, en este caso si se cumple con ese requerimiento. La relación de longitud/ancho se encuentra aproximadamente entre 3:1 y 5:1 para una longitud útil de 4.00 m y un ancho útil de 1.20 m, esta recomendación se hace con el fin de acercar al flujo en pistón. Como se observa en las figuras 18 y 19 el desarenador cuenta con un vertedero triangular de rebose, una estructura de entrada con tubería sanitaria en PVC de 3 pulgadas, zona de sedimentación, una pantalla deflectora, una canaleta de entrada, una canaleta de salida con tubería sanitaria en PVC de 3 pulgadas RDE 26 y un sistema de extracción de lodos. También cuenta con una tubería de excesos y lavado en 6 pulgadas PVC y un By – Pass de 3 pulgadas en PVC RDE 26. Se especifica un cimiento en concreto con resistencia 3000 PSI para un 60% en rajón por 40% una capa de concreto de limpieza de 5 cm de espesor. Como se observa en la figura 17, el consultor presenta un detalle de construcción para protección de los muros del desarenador que consiste en colocar cinta flexible alrededor del perímetro diseñado.

Figura: 17. Contacto cimiento desarenador - suelo

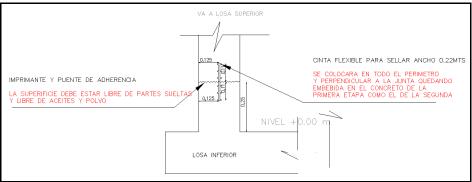
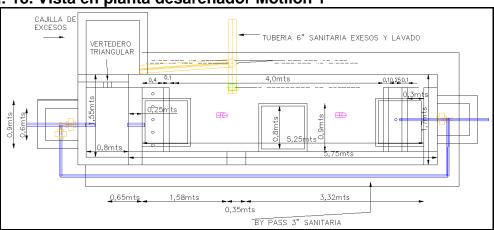
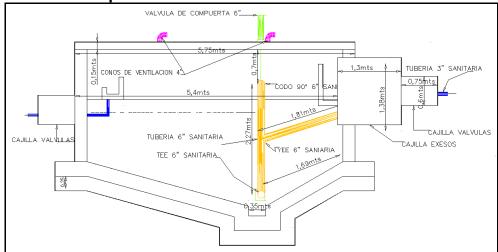




Figura: 18. Vista en planta desarenador Motilón 1



Por el momento se encuentra pendiente el diseño del desarenador que corresponde a la bocatoma Chorrera Negra. Se ha solicitado al consultor el diseño hidráulico, estructural y los planos de estos diseños con el fin de completar la entrega definitiva del trabajo.

En las figuras 20 y 21 se presenta la vista en planta de la aducción y la salida de los desarenadores diseñados, correspondientes a las bocatomas Motilón 1 y Chorrera Negra:

Figura: 20. Conducción tramo Motilón 1 a desarenador

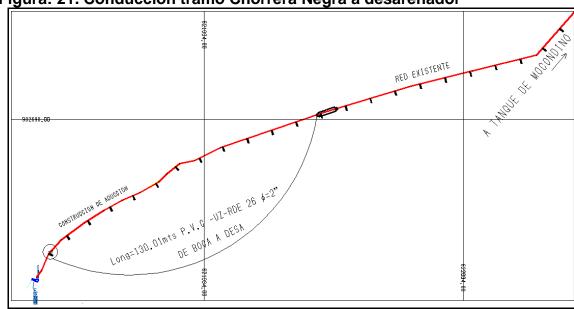
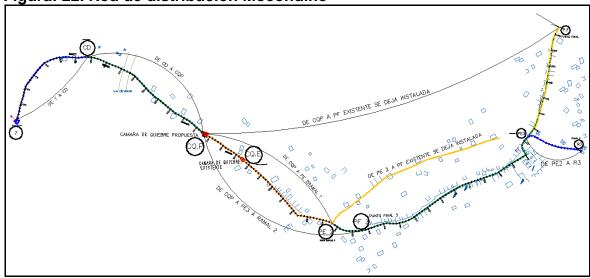


Figura: 21. Conducción tramo Chorrera Negra a desarenador


La conducción diseñada para el proyecto consistió en el tramo del desarenador de la bocatoma Motilón 1 a una cámara de quiebre y el tramo del desarenador de la bocatoma Chorrera Negra a una cámara de quiebre. A parte de los tramos de conducción que parten de los dos desarenadores diseñados, el consultor no especifica el rediseño de redes de conducción sino a partir del tanque de almacenamiento principal que abastece a Mocondino, Puerres y Canchala, pero teniendo en cuenta que a partir del tanque se distribuye a la zona dispersa de Mocondino alto, se diseñó esta como red de distribución.

El tramo del desarenador de la bocatoma Motilón 1 a una cámara de quiebre se diseñó con un caudal de 4.5 lps al igual que la aducción que llega al mismo desarenador por el método de Hazen Williams. El consultor estableció condiciones hidráulicas para la tubería de conducción con un diámetro PVC de 2 pulgadas RDE 26 cumpliéndose con condiciones de velocidad igual a 1.67 m/s, perdida de carga unitaria igual a 0.05 m/m y presión máxima de 38.91 m.c.a. para una longitud de tubería de 46 m.

El tramo del desarenador de la bocatoma Chorrera Negra a una cámara de quiebre se diseñó con un caudal de 2.5 lps al igual que la aducción que llega al mismo desarenador por el método de Hazen Williams. El consultor estableció condiciones hidráulicas para la tubería de conducción con un diámetro PVC de 2 pulgadas RDE 26 cumpliéndose con condiciones de velocidad igual a 0.93 m/s, perdida de carga unitaria igual a 0.02 m/m y presión máxima de 83.98 m.c.a. para una longitud de tubería de conducción de 1582 m comunicándose con el tanque de almacenamiento principal.

La red de distribución de Mocondino contada a partir del tanque de almacenamiento principal se diseñó con el método de Hazen Williams. Este diseño cumple con requerimientos de presión minima de 10 m.c.a. de acuerdo al reglamento Ras – 2000 (tabla B.7.4) y un diámetro mínimo de acuerdo a RAS – 2000 (tabla B.7.6). Para mejor entendimiento del sistema de distribución diseñado para Mocondino, se expone la figura 22.

El caudal de diseño pertenece al caudal máximo horario calculado para la población de Mocondino y es igual a 11.15 lps, la descripción del sistema es la siguiente:

A partir del tanque se diseña con un diámetro de 4 pulgadas en PVC RDE 21 y una presión máxima constante de 13 m.c.a. Este diámetro se diseña hasta la abscisa k0 + 340.0 m, a partir de este punto se cambia de diámetro a 2.5 pulgadas en PVC RDE 32.5 y con presión máxima de 31 m.c.a. pero se encuentra un problema de equivalencia entre el plano y el diseño hidráulico presentados ya que la cámara de quiebre nueva diseñada por el consultor según el diseño hidráulico se ubica en la abscisa k0 + 620.0 m mientras que en el plano se ubica en la abscisa k0 + 780.0 m y el diámetro en el plano es de 3 pulgadas lo cual se traduce en valores distintos si el calculo hidráulico se hace con este diámetro.

La principal función de la cámara de quiebre nueva es reutilizar el caudal de excesos que llega de la cámara de quiebre existente para mejorar las condiciones de presión hacia algunas viviendas dispersas de Mocondino como se puede apreciar en la figura anterior. A través de dos ramales conectados a partir de la cámara de quiebre nueva uno hacia el punto de derivación del ramal principal hacia las viviendas dispersas mencionadas, otro siguiendo el ramal principal y un

ramal paralelo que alimenta a otras viviendas dispersas de la localidad. A partir de la cámara de quiebre propuesta se diseñan 3 tramos, que son los siguientes:

A partir de la cámara de quiebre propuesta se diseña un ramal 3 de 800 m diseñado como tubería paralela para alimentar viviendas dispersas de Mocondino, este tramo está diseñado con un diámetro de 2 pulgadas en PVC RDE 21 y una presión máxima teórica de 46 m.c.a. y se une al ramal principal en la abscisa k1 + 420.0 m o punto final 3 (PF3).

De acuerdo al diseño hidráulico la cámara de quiebre existente se ubica en la abscisa k0 + 927.0 m y tiene una longitud de tubería de 307 m con respecto a la cámara de quiebre proyectada, la tubería diseñada tiene un diámetro de 2 pulgadas en PVC RDE 21 por la cual circula una presión teórica máxima de 25 m.c.a. A partir de la cámara de quiebre existente y hasta la abscisa k1 + 280.0 m (del cual se deriva un ramal secundario) se diseña un diámetro de 2 pulgadas en PVC RDE 26 y una presión máxima de 20 m.c.a. a partir de la abscisa k1 + 280.0 m se diseña un empalme que es el punto inicial del ramal que se desprende del principal para alimentar algunas viviendas fuera del alcance del ramal principal. Este ramal ya existe pero el consultor decide rediseñar para optimizar su funcionamiento. El tramo tiene una longitud de 592 m y se diseño con un diámetro de tubería de 2 pulgadas en PVC RDE 21 y una presión máxima teórica de 56 m.c.a.

A partir de la cámara de quiebre propuesta se diseña un tramo de 1397 m que equivale al ramal principal, este tramo está diseñado con un diámetro de 2 pulgadas en PVC RDE 21 y una presión máxima teórica de 63 m.c.a. este tramo llega hasta la abscisa k2 + 017.0 m de la cual se desprenden dos tramos; uno sigue el tramo principal hacia el núcleo de Mocondino y el otro es un ramal secundario hacia una zona dispersa. El ramal secundario se diseña a partir de la abscisa k2 + 017.0 m hasta la abscisa k2 + 194.0 m con 177 m de longitud de tubería con diámetro de 2 pulgadas en PVC RDE 21 y una presión máxima teórica de 81 m.c.a. Continuando con el ramal principal hacia el núcleo poblado de Mocondino el cual inicia en la abscisa k2 + 017.0 m se puede observar que el consultor no ha rediseñado para este tramo, por lo culas se entiende que adopta las instalaciones existentes, pero se recomendó una evaluación del sistema de tubería que garantice la satisfacción del servicio, ya que el consultor se apoyó en un censo realizado con los habitantes.

En el diseño de la red de Mocondino no se da a conocer si se requieren válvulas en las tuberías. Estas observaciones se hicieron conocer al consultor.

Para la población de Puerres se diseñó un tanque de almacenamiento complementario que cumpla con la optimización del servicio, así mismo se diseñó una red de distribución cerrada para garantizar la circulación del agua con una buena presión para todas las acometidas, esta medida es correcta ya que la

población sufría caídas de presión y en muchas ocasiones falta del servicio permanente debido a que se había instalado una red abierta que compartía tramos de tubería con instalaciones de EMPOPASTO, por lo cual se perjudicaba toda la población de Puerres y Canchala cuando faltaba la dotación por parte de la empresa mencionada sirviendo de dotación a casas que pertenecen a la ciudad de Pasto.

El tramo de unión entre el tanque existente y el tanque nuevo se diseñó con el método de Hazen Williams. Este diseño cumple con requerimientos de presión minima de 10 m.c.a. de acuerdo al reglamento Ras – 2000 (tabla B.7.4) y un diámetro mínimo de acuerdo a RAS – 2000 (tabla B.7.6). El caudal de diseño es de 6.63 lps equivalente al caudal máximo horario para un periodo de diseño de 20 años, la diferencia de alturas entre los dos tanques es de 35 m para una longitud de 887 m con pendiente constante de 4%. Se diseñan dos tramos, el primero con una longitud de 550 m, un diámetro de 4 pulgadas en PVC RDE 32.5 y una presión máxima teórica de 32 m.c.a. y el segundo tramo con una longitud de 337 m, un diámetro de 3 pulgadas en PVC RDE 32.5 y una presión máxima teórica de 31 m.c.a.

El tanque de compensación diseñado tiene un caudal máximo horario de diseño de 9.6 lps para un periodo de 25 años en nivel medio de complejidad, cumpliendo con el reglamento RAS – 2000 (tabla B.9.1 y titulo B.9.4.3). El volumen de diseño cumple y es equivalente a un volumen de regulación el cual es igual a 1/3 del volumen distribuido a la zona que va a ser abastecida en el día de máximo consumo de acuerdo a RAS – 2000 (B.9.4.4). En el diseño se cumple con un tiempo de vaciado de 4.28 horas inferior a las 8 horas requeridas por RAS – 2000 (B.9.4.10).

En las figura 23 y 24 se pueden apreciar los detalles del diseño del tanque de compensación el cual cuenta con un compartimiento, una altura útil asumida de 2.5 m, una altura libre de 0.30 m, una altura total de 2.8 m, el desagüe tiene una longitud de 2 m y un diámetro de 3 pulgadas, con pendiente 2%, el solado tiene un espesor de 0.15 m, la losa inferior un espesor de 0.2 m y una base en concreto ciclópeo de 0.3 m. Estos valores se obtuvieron del diseño hidráulico del tanque, pero el plano muestra otras dimensiones, las cuales deben ser atendidas y supervisadas por el consultor.

Debido a que las poblaciones de Mocondino, Puerres y Canchala carecen de recursos para el mantenimiento de un medio de desinfección no se requirió que el consultor lo diseñara para los tanques existentes.

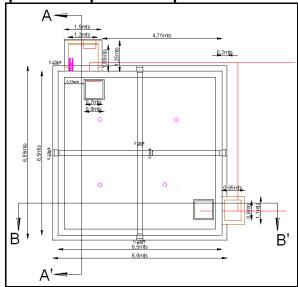
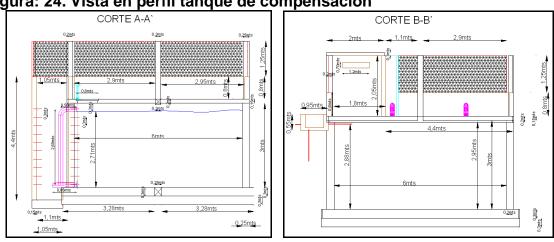



Figura: 24. Vista en perfil tanque de compensación

A partir del tanque de compensación, se diseña la red de distribución de Puerres. La red de distribución se diseña por el método de Hardy – Cross cuyas variables de entrada son el caudal inicial y el diámetro de cada tramo, en donde se hace un proceso iterativo para obtener el caudal final en cada tramo y la presión final en cada nodo. El sistema de distribución se dividió en 2 redes debido a las características de funcionamiento y del terreno, por lo tanto el tanque de compensación tiene dos salidas para cumplir con el abastecimiento de todo Puerres.

La observación mas importante que se debe tener en cuenta por el consultor es que el diseño hidráulico de la red de distribución tiene registrados valores diferentes a los que se encuentran en el plano entregado; las longitudes empleadas son diferentes a las registradas en el plano, el nombre en el plano de cada nodo no coincide con los nodos empleados en el diseño hidráulico, en el plano no se aprecia claramente la distribución de las mallas o redes secundarias conformadas por tramos de tubería calculados en el diseño hidráulico. Como se mencionó anteriormente el sistema se dividió en dos redes de distribución pero solo se encontró el diseño hidráulico de una de estas redes y además tiene los problemas mencionados anteriormente. Es muy importante que el consultor atienda estas observaciones y se recomienda a la Secretaría de Gestión Ambiental realizar un programa de localización y replanteo en el terreno haciendo un seguimiento con el consultor de las memorias entregadas.

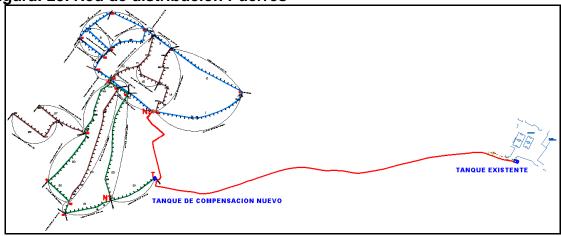

En el sistema de distribución diseñado el consultor logró obtener después de trece iteraciones los caudales definitivos de la red de distribución. El diseño también contiene las perdidas y presiones que se presentan en toda la red. Las presiones se obtienen a partir del caudal calculado para cada tramo, el diámetro de la tubería, la longitud del tramo de tubería, las perdidas de altura y las diferencias de cotas rojas y piezométrica entre los nodos de la red, los resultados finales se exponen en la tabal 13:

Tabla: 13. Caudales corregidos y presiones Puerres

MALLA		AMO	FINAL	PRESIÓN I	STÁTICA
WALLA	DE	Α	Q	INICIO	FIN
EMP.	Т	N1		0,00	30,05
	N2	N3	-1,25	30,05	36,30
	N3	N4	-1,02	36,30	47,96
	N4	N5	-0,64	47,96	58,96
'	N5	N6	-0,34	58,96	67,70
	N2*	N15*	0,87	30,05	48,75
	N15*	N6*	0,56	48,75	67,70
	N2*	N15*	-0,87	30,05	48,75
	N15*	N6*	-0,56	48,75	67,70
II	N2	N1	2,27	30,05	30,60
	N1	N14	1,49	30,60	47,30
	N14*	N8*	0,34	47,30	68,40
	N14*	N8*	-0,34	47,30	68,40
	N8	N9	-0,32	68,40	58,80
III	N14	N13	0,88	47,30	54,95
""	N13	N12	0,79	54,95	56,02
	N12*	N16*	0,41	56,02	56,70
	N16*	N9*	0,21	56,70	70,30
	N12*	N16*	-0,41	56,02	56,70
	N16*	N9*	-0,21	56,70	70,30
IV	N9	N10	-0,25	70,30	79,33
	N12	N11	0,30	56,02	70,97
	N11	N10	0,16	70,97	79,33

Las presiones mínimas establecidas para nivel medio de complejidad son de 10 m.c.a. y las presiones máximas establecidas para nivel medio de complejidad son de 60 m.c.a. según RAS - 2000 (B.7.4.5.1). El consultor debe instalar válvulas en donde sea conveniente para bajar la presión que pasa por los nodos de las tuberías. La vista en planta de la red de distribución para Puerres se observa en la figura 25.

Figura: 25. Red de distribución Puerres

La red de distribución de Canchala se diseñó por el método de Hardy – Cross y es de tipo serrada. El tramo de unión entre el tanque existente y la red de Canchala se diseñó con el método de Hazen Williams. Este diseño cumple con requerimientos de presión minima de 10 m.c.a. de acuerdo al reglamento Ras – 2000 (tabla B.7.4) y un diámetro mínimo de acuerdo a RAS – 2000 (tabla B.7.6). El caudal de diseño es de 2.0 lps equivalente al caudal máximo horario para un periodo de diseño de 20 años, la longitud es de 800 m con pendiente constante de 5%. Se diseñan dos tramos, el primero con una longitud de 290 m, un diámetro de 2 pulgadas en PVC RDE 26 y una presión máxima teórica de 40 m.c.a. a partir de este punto con abscisa k0 + 290 m se diseña una cámara de quiebre. El segundo tramo con una longitud de 511 m, un diámetro de 2 pulgadas en PVC RDE 26 y una presión máxima teórica de 32 m.c.a.

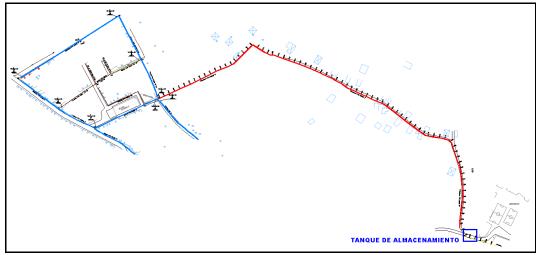

En el sistema de distribución diseñado el consultor obtuvo después de cuatro iteraciones los caudales de la red de distribución. El diseño también contiene las perdidas y presiones que se presentan en toda la red como se observa en la tabla 14:

Tabla: 14. Caudales corregidos y Presiones Canchala

MALLA	TRA	AMO	FINAL	PRESIÓN E	STÁTICA
WALLA	DE	Α	Q4	INICIO	FIN
EMP.	Т	N1		0,00	32,97
	N1	N2	1,09	32,97	34,07
	N2	N3	0,68	34,07	35,27
	N3	N4	0,37	35,27	42,27
I	N1	N7	-0,91	32,97	42,47
	N7*	N6*	-0,30	42,47	44,07
	N6*	N5*	-0,19	44,07	44,07
	N5*	N4*	-0,09	44,07	42,27
	N7*	N6*	0,30	42,47	44,07
	N6*	N5*	0,19	44,07	44,07
II	N5*	N4*	0,09	44,07	42,27
"	N4	N9	0,15	42,27	48,97
	N7	N8	-0,49	42,47	55,37
	N8	N9	-0,35	55,37	48,97

El sistema de distribución se aprecia en la figura 26:

Figura: 26. Red de distribución Canchala

La capacidad portante del lote en donde se ubicará el desarenador que capta agua desde la fuente Motilón, es igual a 0.77 kg/cm² y la del suelo en donde se ubicará el desarenador que pertenece a la fuente Chorrera Negra, es igual a 0.82 kg/cm². No hay observaciones ni recomendaciones con respecto a la interacción de estas estructuras con el suelo.

En la tabla 15 se presenta la evaluación hidráulica del proyecto teniendo en cuenta el reglamento RAS – 2000:

Tabla: 15. Revisión del diseño siguiendo parámetros RAS 2000

NOMBRE DEL PROYECTO:	DISEÑO	PARA LA OF	PTIMIZACIÓN	DEL SISTEMA CANCHA	DISEÑO PARA LA OPTIMIZACIÓN DEL SISTEMA DE ACUEDUCTO MOCONDINO, PUERRES Y CANCHALA	CONDINO, PI	JERRES Y
		NIVEL DE C	NIVEL DE COMPLEJIDAD				
PARÁMETRO/CRITERIO/CARACTERISTICA	Bajo	Medio	M-Alto	Alto	Valor Proyecto	CUMPLE	Referencia RAS 2000
			×				
GENERALES							
Nivel de complejidad asignado en el proyecto	Bajo	Medio	Med-Alto	Alto	Medio	S	A.3.1
Capacidad económica	Baja	Baja	Media	Alta	Baja	S	A.3.1
Población beneficiada con el Proyecto			30803		5504	S	B.2.1
ACUEDUCTO - GENERALES							
Método de cálculo de la Población Nota (1)	1, 2, 03	1, 2, 03	2,3,4 o 5	2,3,4 o 5	Geometrico	S	Tabla B.2.1
Ajuste por población flotante	sí	sí	sí	SÍ	is	S	B.2.2.5
Dotación neta (I/h-d)	100-150	120-175	130	150	120	IS	Tabla B.2.2
Correcciones máximas a dotación neta (%)	hasta 20	hasta 20	>20	>20	0	S	B.2.4.4
Variaciones a dotación neta por clima cálido (%)	+ 15	+ 15	+20	+20	%0	S	Tabla B.2.3
Variaciones a dotación neta por clima templado (%)	+ 10	+ 10	+15	+15	%0	IS	Tabla B.2.3
Variaciones a dotación neta por clima frío (%)	0	0	0	0	%0	SI	Tabla B.2.3
Pérdidas en aducción (% de Qmd)	< 5	< 5	< 5	5 >	5 (por planta)	IS	B.2.5.1
Consumo en Planta Potabilizadora (% de Qmd)	3a5	3a5	3a5	3a5	%0	SI	B.2.5.2
Pérdidas en conducción de agua tratada (% de Qmd)	< 5	< 5	< 5	< 5	%0	S	B.2.5.3
Total pérdidas técnicas admisibles (% de Qmd)	40	30	25	20	30%	S	Tabla B.2.4
Dotación bruta					171		B.2.6
Demanda					×		B.2.7
Coeficiente de consumo máx. diario (k1)	1.30	1.30	1.20	1.20	1,3	SI	Tabla B.2.5.
Coeficiente de consumo máx. horario (k2) -Red Matriz			1.40	1.40	×	SI	Tabla B.2.6.
Coeficiente de consumo máx. horario (k2) -Red Secundaria		1.50	1.45	1.45	×	IS	Tabla B.2.6.
Coeficiente de consumo máx. horario (k2) -Red Menor	1.60	1.60	1.50	1.50	1,6	SI	Tabla B.2.6.
Presentación curva de demanda	Referenc	Propia	Propia	Propia	Propia	SI	B.2.7.7
Número y capacidad de cada hidrante (lps)	1 (15)	3 (15)	3 (15)	4 (15)	×	SI	B.2.8.2
CLASIFICACION CALIDAD AGUA FUENTES	Aceptable	Regular	Deficiente	Muy defic	Para las 5 Fuentes		

DBO ₅ Promedio mensual (mg/L)	<u><1.5</u>	1.5 a 2.5	2.5 a 4	>4	1.5 a 2.5		Tabla B.3.2
DBO ₅ Máximo diario (mg/L)	1a3	3a4	4 a 6	9<	3a4		Tabla B.3.2
Coliformes totales, promedio mensual (NMP/1.000 mL)	0 a 50	51 a 500	501 a 5000	> 5000	A, R, D		Tabla B.3.2
O D (mg/L)	>= 4	>= 4	>= 4	< 4	>= 4		Tabla B.3.2
pH promedio	6.0 a 8.5	5.0 a 9.0	3.8 a 10.5		5.0 a 9.0		Tabla B.3.2
Turbiedad (UNT)	< 2	2 a 40	40 a 150	> 150	2 a 40		Tabla B.3.2
Color verdadero (UPC)	< 10	10 a 20	20 a 40	> 40	< 10		Tabla B.3.2
Gusto y olor	Inofensivo	Inofensivo	Inofensivo	No ceptable	Inofensivo		Tabla B.3.2
Cloruros (mg/L)	< 50	50 a 150	150 a 200	300	< 50		Tabla B.3.2
Fluoruros (mg/L)	< 1.2	< 1.2	< 1.2	2.1<	< 1.2		Tabla B.3.2
Caudal mínimo de la fuente (95% del Q de estiaje)	2 veces	dmd para to	2 veces Qmd para todos los nivles de compl	de compl	2'0	SI	B.3.3.2.5
Concesiones para utilizar el agua	SÍ	sí	SÍ	sí	SI	SI	B.3.3.3.4

DESARENADORES					Motilón 1		Chorrera Negra		B.4.4.6
Capacidad	Igual a ((sdl) QMC	Igual a QMD (lps) para todos los niveles	s niveles	4,00 LPS	NO	Pendiente	ON.	B.4.4.6.2
Velocidad horizontal/velocidad asentamiento	menor o	igual a 20	menor o igual a 20 para todos los niveles	s niveles	0,003	SI	Pendiente	9	B.4.4.6.3
Relación long útil / Profund. efectiva para arena	7):1 para t	10:1 para todos los niveles	Se	10%	S	Pendiente	9	B.4.4.6.4
Profundidad para almacenamiento de arena (m)	0.75	a 1.50 pa	0.75 a 1.50 para todos los niveles	veles	1,5	S	Pendiente	9	
Veloc. Horiz. Máx. para aguas SIN tratamiento posterior	0.17 m/s	para part	0.17 m/s para parts hasta 0.1 mm ef 75%	n ef 75%	0,002	S	Pendiente	QV	B.4.4.6.5
eloc. horiz. máx. para aguas CON tratamiento posterior	0.25 m/s	para part	0.25 m/s para parts hasta 0.2 mm ef 75%	n ef 75%	×		Pendiente	ON	B.4.4.6.5
Volumen mínimo para almac. arenas (lodos)	10% de	volumen	10% del volumen total del desarenador	renador	15%	SI	Pendiente	9N	B.4.4.6.8
ADUCCIONES Y CONDUCCIONES									B.6
Análisis de costo mínimo	No obligat	Sí	SÍ	sí	IS	SI	IS	S	B.6.2.2
Período de diseño (años)	15	20	25	30	20	SI	20	SI	Tabla B.6.1
Caudal de diseño	QMD	QMD	QMD+pérd	QMD+pérd	4,5	NO NO	2,5	S	B.6.4.2
Diámetro mínimo para conducciones a presión	4" (Fluj	o libre) o	4" (Flujo libre) o 2" (50 mm) a presión	presión	2	9	2	S	B.6.4.8.1
Velocidad mínima en tuberías	0.0	30 m/s en	0.60 m/s en todos los casos	so	1,67	SI	0,93	S	B.6.4.8.3
Velocidad máxima en tuberías	9.0	00 m/s en	6.00 m/s en todos los casos	so	1,67	SI	0,93	SI	B.6.4.8.4
Profundidad mínima de instalación de tuberías	0.60 n	n. En cruc	0.60 m. En cruces de tráfico 1.00 m	00 m	9,0	S	9,0	S	B.6.4.8.6

	Z	NIVEL DE COMPLEJIDAD	IPLEJIDAD			IdMI	Valor	IMPI		IdMI	Referenci
PARÁMETRO/CRITERIO/CARACTERISTICA	Bajo	Medio	M-Alto	Alto	Valor Provecto	Ш	Proyect		Valor Provecto		a RAS
		×			,	(SI/NO)	0	(SI/NO)	,	(SI/NO)	2000
REDES DE DISTRIBUCIÓN					Mocondin o		Puerre s		Canchal a		B.7
Análisis de costo mínimo	No se req	sí	sí	sí	S	S	S	SI	IS	SI	B.7.2.3
Período de diseño Redes matrices o primaria (> 12")	15	20	25	30	20	S	20	SI	20	SI	Tabla B.7.1
Período de diseño Redes secundario locales (6" a 12")	15	15	20	25	20	SI	20	SI	20	SI	Tabla B.7.2
Período de diseño Redes terciarias o menor (<= 6")	15	20			20	SI	20	SI	20	SI	Tabla B.7.3
Caudal de diseño	QMH	Qmd+ince n	Qmd+ince n	ММ	11,15	SI	6,63	SI	2	SI	B.7.4.2
Presión mínima en red (m.c.a.)	10	10	15	15	13	SI	30	SI	32	SI	Tabla B.7.4
Presión máxima en red (m.c.a.)	09	09	09	09	81	ON	70	ON	55	SI	B.7.4.5.2
Diámetros mínimos en red matriz	2.5 "	4"	9	12"	×		×		×		Tabla B.7.5
Diámetros mínimos en redes menores Zona Residencial	1.5 "	2"	2.5"	3"	2	SI	1,5	NO	1,5	NO	Tabla B.7.6
Diámetros mín. en redes men. Zona Comerc. e Industrial	1.5 "	2"	4"	9	NA		NA		NA		Tabla B.7.6

	NIVE	L DE COM	NIVEL DE COMPLEJIDAD				
PARÁMETRO/CRITERIO/CARACTERISTICA	Bajo	Medio	M-Alto	Alto	Valor Proyecto	CUMPLE (SI/NO)	Referencia RAS 2000
		×					
TANQUES DE ALMACENAMIENTO O COMPENSACIÓN					Puerres		B.9
Análisis de costo mínimo	No oblig	sí	sí	SÍ	SI	IS	B.9.2.2
Compartimientos para mantenimiento	By-Pass	2	2	2	SI	IS	B.9.3.2
Período de diseño (años)	20	25	30	30	25	IS	Tabla B.9.1
Caudal de diseño	De	Debe proveer el QMH	el QMH		9,6	IS	B.9.4.3
Volum. Distrib. a la zona en día de max. consumo	1/3	1/3	1/3	1/4	1/3	IS	B.9.4.4
Borde libre de tanques	0.30 me	etros en tod	0.30 metros en todos los casos	S	0,3	IS	B.9.4.6
Tiempo de vaciado	menor de	8 horas en	menor de 8 horas en todos los casos	asos	4,28	IS	B.9.4.10
Entrada del agua al tanque	Por part	e superior,	Por parte superior, si es bombeo	090	SI	IS	B.9.5.2
Salida del tanque	Opuesta a la entrada. Pérdidas <=0.50 m	ง entrada. F	>érdidas <=	0.50 m	SI	SI	B.9.5.3

6.3.3 Presupuesto oficial. Esta estructurado de manera que se registran los ITEMS de obra física y de suministro por separado para mayor comprensión en su consulta, tiene en cuenta un A.U.I. por suministros del 6% Y un A.U.I. por obra física del 30% aceptado por la Alcaldía Municipal de Pasto. El presupuesto y precios unitarios se discriminan por población y se presenta un registro total de las poblaciones unidas. En la tabla 16 se presenta un resumen del presupuesto oficial discriminado por suministro y por obra física:

6.3.4 Observaciones adicionales.

Ninguno de los tres sistemas tiene planta de tratamiento. Las tres comunidades no tienen unificada esta alternativa por diferencia de opiniones e intereses. La única alternativa que los habitantes ven viable es la construcción de una planta para cada sector, es decir tres plantas para Mocondino, Puerres y Canchala respectivamente pero esta propuesta no es técnica ni económicamente viable ya que la sostenibilidad de la planta se podría dar si estas tres comunidades se unen y tienen una sola junta administradora de acueducto. Por otro lado, Canchala tiene 72 matriculas en la actualidad, Puerres 243 matriculas y Mocondino 400 matriculas. Un análisis de sostenibilidad dará como conclusión que la capacidad de pago de cada comunidad es baja y no podrán mantener la planta en funcionamiento.

Es muy importante que el consultor sustente los diseños realizados con respecto a los planos entregados, se debe tener en cuenta que la construcción del acueducto con el diseño propuesto debe estar bien coordinada y siempre apoyada por las memorias escritas y los planos.

Debido a que la población tiene que utilizar todo el caudal disponible de las fuentes, no se puede cumplir con un porcentaje designado para un caudal ecológico, además el consultor debe hacer una evaluación de posibles fuentes que cubran la dotación diaria en un futuro cercano.

6.3.5 Conclusiones.

El consultor antes de empezar un diseño siempre deberá tener en cuenta las concesiones de la fuente de alimentación, si no se enfoca el diseño de acuerdo al caudal concedido, el sistema de acueducto no funcionara satisfactoriamente.

Es muy importante la localización y el replanteo de todos los elementos diseñados por el consultor, ya que se debe pensar en actividades de mantenimiento futuras teniendo en cuenta que el primer paso para diagnosticar una solución es con los diseños y si estos no corresponden a la realidad será improductiva cualquier actividad adelantada por el cuerpo técnico encargado.

Tabla: 16. Presupuesto oficial

COSTO DIRECTO		ACUEDUCTO CANCHALA	ACUEDUCTO PUERRES
	\$ 95.367.313	\$ 39.549.635	\$ 169.575.592
ADMINISTRACION 20%	\$ 19.073.463	\$ 7.909.927	\$ 33.915.118
UTILIDAD 5%	\$ 4.768.366	\$ 1.977.482	\$ 8.478.780
IMPREVISTO 5%	\$ 4.768.366	\$ 1.977.482	\$ 8.478.780
FORTACIMIENTO INSTITUCIONAL	\$ 24.970.000		
INTERVENTORIA TECNICA 6%	\$ 8.936.850	\$ 3.084.872	\$ 13.226.896
SEGUIMIENTO 2.00 %	\$ 3.157.687	\$ 1.089.988	\$ 4.673.503
TOTAL COSTO DIRECTO + COSTO INDIRECTO	\$ 161.042.046	\$ 55.589.386	\$ 238.348.670

\$ 454.980.101	
TOTAL	

	MEJORAMIENTO ACUEDUCTO MOCONDINO	MEJORAMIENTO ACUEDUCTO CANCHALA	MEJORAMIENTO ACUEDUCTO PUERRES
COSTO DIRECTO	\$ 23.646.941	\$ 32.992.687	\$ 39.549.635
AUI 6,06%	\$ 1.433.005	\$ 1.335.565	\$ 1.999.357
INTERVENTORIA TECNICA 2%	\$ 501.599	\$ 467.492	\$ 699.841
SEGUIMIENTO 2.00 %	\$ 511.631	\$ 476.842	\$ 713.838
TOTAL COSTO DIRECTO + COSTO INDIRECTO	\$ 26.093.176	\$ 35.272.585	\$ 42.962.671

\$ 104.328.432	TOTAL

6.4 EVALUACION TECNICA DEL SISTEMA DE ACUEDUCTO DISEÑADO PARA LA LOCALIDAD DE SAN CAYETANO CORREGIMIENTO DE MAPACHICO

6.4.1 Resumen del proyecto entregado.

- **6.4.1.1 Descripción del problema.** El mal funcionamiento del acueducto de San Cayetano Corregimiento de Mapachico, no ha permitido el abastecimiento normal del servicio contribuyendo al ofrecimiento de agua de consumo de mala calidad, por esta razón se ve necesario realizar la optimización del sistema de acueducto
- **6.4.1.2 Cuantificación de la población afectada por el problema.** Los datos de población se obtuvieron de la Junta Administrativa de Acueducto, son 84 usuarios con habitantes promedio en viviendas de 5 personas; En total son 420 habitantes. La población futura objeto del diseño en el año 2024 será de 579 habitantes
- **6.4.1.3 Justificación del proyecto.** Con el proyecto se pretende mejorar las condiciones de vida de los habitantes que se localizan en el sector de San Cayetano Corregimiento de Mapachico, que cuenta con una población beneficiaria de 579 habitantes que serán abastecidos de agua apta para consumo humano.
- **6.4.1.4 Descripción general del proyecto.** Se pretende mejorar el sistema de captación de agua, se levantará el muro 1 m más de altura, se le instalara la tubería de desagüe y rejilla para que detenga los sólidos de mayor tamaño y se le instalaran tapas de hierro fundido para evitar la contaminación adicional del agua y el taponamiento de la tubería por material vegetal.

Con el diseño se pretende cambiar la manguera de aducción existente por tubería PVC diámetro 2 pulgadas RDE 26 mas adecuada y de mayor resistencia para garantizar la permanencia en la dotación del servicio.

Se construirá un desarenador diseñado de acuerdo a la normatividad Colombiana vigente ya que el que actualmente funciona y que fue construido por la misma población sin supervisión técnica no cumple con especificaciones de funcionamiento adecuadas, además ya se encuentra en estado de deterioro avanzado.

Se cambiara la tubería de conducción existente por tubería PVC diámetro 2 pulgadas RDE 26.

Con este diseño se pretende cambiar y optimizar la red de distribución existente por tubería PVC diámetro 2 pulgadas RDE 26 debido al mal funcionamiento de la red de distribución ocasionado por la vigencia del periodo de diseño del presente sistema de acueducto.

Debido a las pendientes pronunciadas por las que pasa el sistema de acueducto de San Cayetano, se ve necesario diseñar una cámara de quiebre que garantice una presión que no rompa el sistema de tubería en la red de distribución. El diseño de esta cámara de quiebre se instalará en el ramal principal de la conducción.

6.4.1.5 Descripción de los objetivos, productos y resultados que se esperan obtener con la alternativa.

Objetivo general. Mejorar el suministro de agua apta para el consumo humano a los habitantes del sector de San Cayetano Corregimiento de Mapachico.

Objetivos específicos.

- Optimizar la infraestructura del acueducto
- Mitigar los impactos negativos en las condiciones de salud de los habitantes del sector
- Socializar el proyecto con la comunidad a beneficiar e involucrarla en la etapa de ejecución del proyecto.

Productos.

- Implementar un sistema de captación mejorado
- Construcción de un desarenador funcional
- Optimización e instalación de un sistema de aducción, red de conducción y red de distribución.

Resultado. Un acueducto mejorado.

6.4.2 Análisis del diseño y metodología empleada. La población futura proyectada a 20 años determinada por el consultor emplea el método geométrico con una tasa de crecimiento de 1.54% propuesta por el DANE. El nivel de complejidad es bajo determinado de acuerdo al número de usuarios proyectados

que son 637 para el año 2009. La dotación neta equivalente al nivel de complejidad es de 100 L/hab·día en donde no se admite corrección por clima.

La dotación bruta para un nivel bajo de complejidad será de 250 L/hab/DIA, teniendo en cuenta perdidas por aducción (3%), conducción (3%) y perdidas técnicas (34%)

Los caudales se han determinado para un periodo de 20 años, pero se deben tener en cuenta algunos criterios de diseño con respecto a la vida útil de los elementos del acueducto, tales como bocatomas, desarenadores y tanques de almacenamiento.

Caudal medio diario:

$$Qmd = \frac{637hab * 250 L/hab * dia}{86400} = 1.83 lps$$

Caudal Máximo Diario:

$$QMD = Qmd * k_1 = 1.83 * 1.3 = 2.2 lps$$

Caudal Máximo Horario:

$$QMH = QMD * k_2 = 1.83 * 1.6 = 3.6 lps$$

Dentro de las propuestas del consultor se encuentra diseñar la aducción, un desarenador, la red de conducción y la red de distribución, se recomienda al consultor determinar valores de caudal de diseño también para un periodo de 15 años ya que los elementos del acueducto tienen un periodo de vida útil diferente; para nivel bajo de complejidad en la aducción y la red de conducción se debe calcular un caudal máximo diario (CMD) proyectado a 20 años, para el desarenador se debe calcular un caudal máximo diario (CMD) proyectado a 15 años y para la red de distribución se debe calcular un caudal máximo horario (CMD) proyectado a 15 años.

El consultor no establece la curva de demanda que define la variación del consumo a lo largo del día, con el fin de establecer la necesidad y la magnitud de un posible almacenamiento a futuro.

La captación del acueducto de San Cayetano como se describió en el diagnostico oficial entregado a la Secretaria de Gestión Ambiental tiene buen funcionamiento pero esta incompleta en accesorios que optimizan su funcionamiento. Por otro lado el consultor después de evaluar las características de la bocatoma considera las siguientes mejoras: construcción o instalación de rejilla, levantar el muro a una

altura de 1 m, instalación de tapas en hierro fundido calibre 16 e instalación de un sistema de lavado. El consultor no da a conocer cálculos o especificaciones de origen de los elementos mencionados.

El cálculo de la línea de aducción se realizó con la fórmula de Hazén Williams de la perdida de carga unitaria, con esta fórmula se asume el diámetro de cada tramo y se calcula la pérdida unitaria. La pérdida unitaria multiplicada por la longitud de cada tramo obtiene la pérdida total. Este valor permite determinar la cota piezométrica y la presión en cada tramo. La aducción se diseñó con el caudal máximo diario de 2.2 lps determinado por el consultor. Se debe tener en cuenta que de acuerdo al reglamento RAS – 2000 (tabla B.6.1) las aducciones y conducciones se deben diseñar para un periodo de 15 años en nivel bajo de complejidad, ya que este es un requerimiento del reglamento colombiano y no se ha especificado una condición particular, se debe revisar con el consultor los aspectos mas importantes que influyan en la calidad del diseño para la optimización del acueducto. Los resultados se registran en las tablas 17, 18 y 19:

Tabla: 17. Caudales, diámetros de diseño y velocidades de la aducción

TRA	МО	ABS	CISA	LONGIT	UD (m)	Q	DIAMETRO		RDE	VEL.
INI	FIN	INICIAL	FINAL	TOPOG	CALC.	LPS	NOM.	REAL		m/seg
1	2	K0+000,00	K0+010,00	10,0	11,0	2,22	2,0	2,19	26,0	0,9
2	3	K0+010,00	K0+023,00	13,0	14,30	2,22	2,0	2,19	26,0	0,90
3	4	K0+023,00	K0+038,00	15,0	16,50	2,22	2,0	2,19	26,0	0,90
4	5	K0+038,00	K0+050,00	12,0	13,20	2,22	2,0	2,19	26,0	0,90
5	6	K0+050,00	K0+062,00	12,0	13,20	2,22	2,0	2,19	26,0	0,90
6	7	K0+062,00	K0+077,02	15,0	16,5	2,22	2,0	2,19	26,0	0,9
7	8	K0+077,02	K0+090,00	13,0	14,28	2,22	2,0	2,19	26,0	0,90
8	9	K0+090,00	K0+103,82	13,8	15,20	2,22	2,0	2,19	26,0	0,90
9	10	K0+103,82	K0+148,82	45,0	49,50	2,22	2,0	2,19	26,0	0,90
10	11	K0+148,82	K0+201,80	53,0	58,28	2,21	2,0	2,19	26,0	0,90

Tabla: 18. Cotas de la aducción

TRA	МО	COTATE	RRENO	C. PIEZO	METRICA	COTA CLAVE	
INI	FIN	INICIAL	FINAL	INICIAL	FINAL	INICIAL	FINAL
1	2	2610,00	2608,87	2610,20	2610,0	2609,40	2608,27
2	3	2608,87	2607,10	2610,03	2609,80	2608,27	2606,50
3	4	2607,10	2606,98	2609,80	2609,55	2606,50	2606,38
4	5	2606,98	2606,12	2609,55	2609,34	2606,38	2605,52
5	6	2606,12	2605,81	2609,34	2609,13	2605,52	2605,21
6	7	2605,81	2603,41	2609,13	2608,87	2605,21	2602,81
7	8	2603,41	2603,41	2608,87	2608,65	2602,81	2602,81
8	9	2603,41	2600,00	2608,65	2608,41	2602,81	2599,40
9	10	2600,00	2591,45	2608,41	2607,64	2599,40	2590,85
10	11	2591,45	2585,74	2607,64	2606,73	2590,85	2585,14

Tabla: 19. Presiones de la aducción

TRA	МО	PERD	IDAS	PRES. E	STATICA
INI	FIN	UNIT.	TOTAL	INICIAL	FINAL
1	2	0,0156	0,172	0,0	1,13
2	3	0,0156	0,224	1,13	2,90
3	4	0,0156	0,258	2,90	3,02
4	5	0,0156	0,207	3,02	3,88
5	6	0,0156	0,207	3,88	4,19
6	7	0,0156	0,259	4,2	6,59
7	8	0,0156	0,223	6,59	6,59
8	9	0,0156	0,238	6,59	10,00
9	10	0,0156	0,775	10,00	18,55
10	11	0,0155	0,906	18,55	24,26

Se puede observar que la aducción tendrá un diámetro de 2 pulgadas RDE 26 con una presión máxima de servicio de 112.5 m.c.a. Se puede apreciar que las cotas no pertenecen a las cotas reales del proyecto, ya que la bocatoma se ubica sobre los 2800 m.s.n.m. el consultor debe evaluar la magnitud del error, además esta cartera de calculo se debe diseñara adecuadamente teniendo en cuenta futuras actividades de mantenimiento del acueducto.

El consultor diseña el desarenador con un caudal máximo diario de 2.2 lps como lo estipula el reglamento RAS – 2000 (B.4.4.6.2) pero no tiene en cuenta que párale diseño de un desarenador en nivel de complejidad bajo se debe proyectar un caudal máximo diario a 15 años de vida útil y el caudal mencionado pertenece a un caudal medio diario proyectado a 20 años de vida útil. Esta observación se ha dado a conocer al consultor encargado del proyecto.

El desarenador tiene las siguientes características:

Velocidad de sedimentación:	0.66 cm/s
Velocidad de sedimentación:	0.71 cm/s
Tiempo de retención:	585 seg
Altura de zona de sedimentación:	1.50 m
Ancho útil:	1.00 m
Largo útil:	3.00 m
Altura de lodos:	0.30 m
Ancho pantalla deflectora:	0.40 m
Altura total tabique vertical:	0.25 m
Ancho canal de salida:	0.30 m

En el canal recolector de lodos, se dispondrá de un tubo sanitario de 4 pulgadas y una válvula de compuerta del mismo diámetro para permitir la limpieza del tanque y se prolongará hasta el cauce de la fuente que alimenta el acueducto. También se contará con una tubería de rebose en PVC sanitaria de 2 pulgadas que se conectará a la tubería de desagüe.

La profundidad para almacenamiento de lodos es 0.30 m, Para la entrada y salida del tanque se construirán cajillas de 0.60 m x 0.60 m x 0.60 m donde se ubicarán las válvulas y accesorios del BY PASS y de salida del tanque. La vista en perfil registrada en la figura 27 y la vista en planta registrada en la figura 28 permiten detallar las características geométricas del desarenador, con las cuales se pueden justificar las observaciones realizadas anteriormente.

Figura: 27. Vista en perfil desarenador

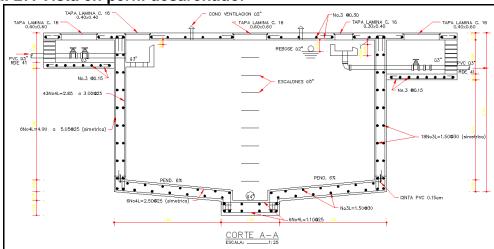
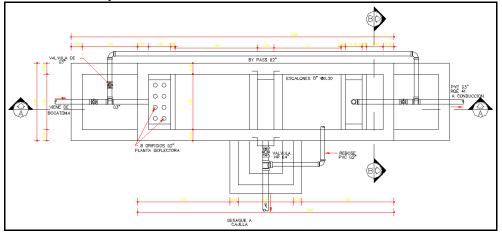



Figura: 28. Vista en planta desarenador

Cálculo hidráulico de la red de conducción; Se determinó la velocidad a partir del caudal máximo diario de 2.22 lps, Este cálculo se realiza con la fórmula de Hazén Williams de la perdida unitaria de carga, con esta fórmula se asume el diámetro de cada tramo y se calcula la pérdida unitaria. La pérdida unitaria multiplicada por la

longitud de cada tramo obtiene la pérdida total. Este valor permite determinar la cota piezométrica y la presión en cada tramo. El consultor debe analizar la magnitud del error cometido en las cotas del terreno y como puede afectar en el diseño del acueducto. También debe analizar las presiones máximas del proyecto teniendo en cuenta que para una tubería de 2 pulgadas RDE 26 la presión máxima de servicio es 112.5 m.c.a. siendo este valor sobrepasado como se puede apreciar en las carteras de calculo. Por otro lado no se establecen cámaras de quiebre o válvulas reguladoras de presión para la red de conducción. En las tablas 20, 21, 22 y 23 se registran los cálculos obtenidos por el consultor para el diseño de la red de conducción.

Para el cálculo hidráulico de la red de distribución se aplicó el método de Hazén Williams. Con esta fórmula se asume el diámetro de cada tramo y se calcula la pérdida unitaria. La pérdida unitaria multiplicada por la longitud de cada tramo obtiene la pérdida total. El caudal de diseño para los tramos que se consideren parte de la red de distribución debe ser de todas maneras el caudal máximo horario, este caudal se afectara por los caudales máximos horarios de los ramales si existen.

El consultor no especifica previamente por cálculos los caudales máximos horarios obtenidos para los tramos de la red, el sistema cuenta con 2 ramales pero no se presenta un registro de la población que se surte de ellos por lo tanto los caudales determinados para el diseño se consideran arbitrarios hasta que se determine su origen.

Tabla: 20. Longitudes y caudal de diseño de la conducción

TRA	МО	ABSO	CISA	LONGIT	UD (m)	Q
INI	FIN	INICIAL	FINAL	TOPOG	CALC.	LPS
1	2	K0+201,80	K0+301,33	99,5	109,5	2,22
2	3	K0+301,33	K0+344,45	43,1	47,43	2,22
3	4	K0+344,45	K0+387,85	43,4	47,74	2,22
4	5	K0+387,85	K0+444,54	56,7	62,36	2,22
5	6	K0+444,54	K0+541,31	96,8	106,45	2,22
6	7	K0+541,31	K0+637,26	96,0	105,5	2,22
7	8	K0+637,26	K0+651,45	14,2	15,61	2,22
8	9	K0+651,45	K0+684,00	32,6	35,80	2,22
9	10	K0+684,00	K0+697,54	13,5	14,89	2,22
10	11	K0+697,54	K0+747,61	50,1	55,08	2,21
11	12	K0+747,61	K0+758,11	10,5	11,55	2,21
12	13	K0+758,11	K0+781,03	22,9	25,21	2,21
13	14	K0+781,03	K0+844,01	63,0	69,28	2,21
14	15	K0+844,01	K0+867,68	23,7	26,04	2,21
15	16	K0+867,68	K0+894,92	27,2	29,96	2,21
16	17	K0+894,92	K0+941,23	46,3	50,94	2,21

Tabla: 21. Diámetros, velocidades y cotas de la conducción

TRA	МО	DIAN	IETRO	RDE	VEL.	COTA TE	RRENO
INI	FIN	NOM.	REAL		m/seg	INICIAL	FINAL
1	2	2,0	2,19	26,0	0,9	2585,74	2570,70
2	3	2,0	2,19	26,0	0,90	2570,70	2565,19
3	4	2,0	2,19	26,0	0,90	2565,19	2561,12
4	5	2,0	2,19	26,0	0,90	2561,12	2553,74
5	6	2,0	2,19	26,0	0,90	2553,74	2539,75
6	7	2,0	2,19	26,0	0,9	2539,75	2527,81
7	8	2,0	2,19	26,0	0,90	2527,81	2526,70
8	9	2,0	2,19	26,0	0,90	2526,70	2521,13
9	10	2,0	2,19	26,0	0,90	2521,13	2519,16
10	11	2,0	2,19	26,0	0,90	2519,16	2509,70
11	12	2,0	2,19	26,0	0,90	2509,70	2507,61
12	13	2,0	2,19	26,0	0,90	2507,61	2502,15
13	14	2,0	2,19	26,0	0,90	2502,15	2488,34
14	15	2,0	2,19	26,0	0,90	2488,34	2478,57
15	16	2,0	2,19	26,0	0,90	2478,57	2466,98
16	17	2,0	2,19	26,0	0,90	2466,98	2450,08

Tabla: 22. Pérdidas y cotas de la conducción

TRA	МО	PERD	ERDIDAS C. PIEZOMETRICA COTA CLAVE				
INI	FIN	UNIT.	TOTAL	INICIAL	FINAL	INICIAL	FINAL
1	2	0,0156	1,713	2585,94	2584,2	2584,94	2569,90
2	3	0,0156	0,742	2584,23	2583,48	2569,90	2563,49
3	4	0,0156	0,747	2583,48	2582,74	2563,49	2559,42
4	5	0,0156	0,976	2582,74	2581,76	2559,42	2552,04
5	6	0,0156	1,666	2581,76	2580,09	2552,04	2538,05
6	7	0,0156	1,652	2580,09	2578,44	2538,05	2526,11
7	8	0,0156	0,244	2578,44	2578,20	2526,11	2525,00
8	9	0,0156	0,560	2578,20	2577,64	2525,00	2519,43
9	10	0,0156	0,233	2577,64	2577,41	2519,43	2517,46
10	11	0,0155	0,856	2577,41	2576,55	2517,46	2508,00
11	12	0,0155	0,179	2576,55	2576,37	2508,00	2505,91
12	13	0,0155	0,392	2576,37	2575,98	2505,91	2500,45
13	14	0,0155	1,077	2575,98	2574,90	2500,45	2486,64
14	15	0,0155	0,405	2574,90	2574,50	2486,64	2476,87
15	16	0,0155	0,466	2574,50	2574,03	2476,87	2465,28
16	17	0,0155	0,792	2574,03	2573,24	2465,28	2448,38

Tabla: 23. Presiones de la conducción

TRA	МО	PRES. E	STATICA	PRESION	P. DIS	PONIBLE
INI	FIN	INICIAL	FINAL	DE TRAB.	INICIAL	FINAL
1	2	0,0	15,04	112,5	1,0	14,33
2	3	15,04	20,55	112,5	14,33	20,00
3	4	20,55	24,62	112,5	20,00	23,32
4	5	24,62	32,00	112,5	23,32	29,72
5	6	32,00	45,99	112,5	29,72	42,05
6	7	46,0	57,93	112,5	42,05	52,33
7	8	57,93	59,04	112,5	52,33	53,20
8	9	59,04	64,61	112,5	53,20	58,21
9	10	64,61	66,58	112,5	58,21	59,94
10	11	66,58	76,04	112,5	59,94	68,55
11	12	76,04	78,13	112,5	68,55	70,46
12	13	78,13	83,59	112,5	70,46	75,53
13	14	83,59	97,40	112,5	75,53	88,26
14	15	97,40	107,17	112,5	88,26	97,63
15	16	107,17	118,76	112,5	97,63	108,75
16	17	118,76	135,66	112,5	108,75	124,86

Resumen de las redes de distribución por tramos presentado en las tablas 24, 25, 26, 27 y 28; del tanque El Tinto al Tanque Tres vasos; Del tanque Tres Vasos – cámara de quiebre; de la cámara de quiebre hasta el final; Ramales 1 y 2.

Tabla: 24. Red de distribución tanque El Tinto – tanque Tres Vasos

TRA	AMO	Q	DIAM	ETRO	RDE	VEL.	P. DISI	PONIBLE
INI	FIN	LPS	NOM.	REAL		m/seg	INICIAL	FINAL
1	2	0,78	2,0	2,19	26,0	0,3	1,5	13,27
3	3	0,76	2,0	2,19	26,0	0,30	13,27	17,48
3	4	0,75	2,0	2,19	26,0	0,30	17,48	27,14
4	5	0,72	2,0	2,19	26,0	0,30	27,14	32,92
5	6	0,70	2,0	2,19	26,0	0,30	32,92	44,64
6	7	0,67	2,0	2,19	26,0	0,3	44,64	49,31
7	8	0,64	2,0	2,19	26,0	0,30	49,31	51,44
8	9	0,63	2,0	2,19	26,0	0,30	51,44	67,43

Tabla: 25. Red de distribución tanque Tres Vasos – cámara de quiebre

TRA	AMO	Q	DIAM	ETRO	RDE	VEL.	P. DISI	PONIBLE
INI	FIN	LPS	NOM.	REAL		m/seg	INICIAL	FINAL
9	10	0,59	2,0	2,19	26,0	0,20	1,20	7,72
10	11	0,57	2,0	2,19	26,0	0,20	7,72	12,36
11	12	0,56	2,0	2,19	26,0	0,2	12,36	17,44
12	13	0,55	2,0	2,19	26,0	0,20	17,44	32,74
13	14	0,53	2,0	2,19	26,0	0,20	32,74	48,02
14	15	0,50	1,5	1,50	26,0	0,40	48,02	64,10
15	16	0,46	1,5	1,50	26,0	0,40	64,10	63,54
16	17	0,45	1,5	1,50	26,0	0,40	63,54	64,50
17	18	0,45	1,5	1,50	26,0	0,40	64,50	67,21

Tabla: 26. Red de distribución cámara de quiebre – final

TRA	AMO	Q	DIAM	ETRO	RDE	VEL.	P. DISI	PONIBLE
INI	FIN	LPS	NOM.	REAL		m/seg	INICIAL	FINAL
18	19	0,45	1,5	1,50	26,0	0,40	1,00	21,43
19	20	0,38	1,5	1,50	26,0	0,30	21,43	23,55
20	21	0,36	1,5	1,50	26,0	0,30	23,55	33,27
21	22	0,33	1,5	1,50	26,0	0,3	33,27	35,10
22	23	0,32	1,0	1,00	26,0	0,60	35,10	38,44
23	24	0,30	1,0	1,00	26,0	0,60	38,44	40,00
24	25	0,27	1,0	1,00	26,0	0,50	40,00	7,27
25	26	0,26	1,0	1,00	26,0	0,50	7,27	37,43
26	27	0,21	1,0	1,00	26,0	0,4	37,43	36,60
27	28	0,20	1,0	1,00	26,0	0,40	36,60	34,45
28	29	0,20	1,0	1,00	26,0	0,40	34,45	36,29
29	30	0,18	1,0	1,00	26,0	0,40	36,29	39,57
30	31	0,16	1,0	1,00	26,0	0,30	39,57	42,44
31	32	0,14	1,0	1,00	26,0	0,3	42,44	46,45
32	33	0,12	1,0	1,00	26,0	0,20	46,45	51,63
33	34	0,10	1,0	1,00	26,0	0,20	51,63	54,93
34	35	0,09	1,0	1,00	26,0	0,20	54,93	59,96
35	36	0,06	1,0	1,00	26,0	0,10	59,96	64,08
36	37	0,05	1,0	1,00	26,0	0,1	64,08	67,20
37	38	0,03	1,0	1,00	26,0	0,10	67,20	70,49
38	39	0,02	1,0	1,00	26,0	0,00	70,49	75,34

Tabla: 27. Red de distribución ramal 1

TRA	AMO	Q	DIAM	ETRO	RDE	VEL.	P. DISI	PONIBLE
INI	FIN	LPS	NOM.	REAL		m/seg	INICIAL	FINAL
0	1	1,04	2,0	2,19	26,0	0,40	32,74	20,75
1	2	1,00	2,0	2,19	26,0	0,4	20,75	28,88
2	3	0,94	2,0	2,19	26,0	0,40	28,88	20,32
3	4	0,90	2,0	2,19	26,0	0,40	20,32	41,72
4	5	0,88	2,0	2,19	26,0	0,40	41,72	46,26
5	6	0,85	2,0	2,19	26,0	0,30	46,26	51,02
6	7	0,80	2,0	2,19	26,0	0,3	51,02	60,32

Tabla: 28. Red de distribución ramal 2

TRA	AMO	Q	DIAM	ETRO	RDE	VEL.	P. DISI	PONIBLE
INI	FIN	LPS	NOM.	REAL		m/seg	INICIAL	FINAL
0	1	1,78	2,00	2,00	26,0	0,90	1,50	3,69
1	2	1,65	2,00	2,00	26,0	0,8	3,69	7,39
2	3	1,43	2,00	2,00	26,0	0,70	7,39	9,86
3	4	1,30	2,00	2,00	26,0	0,60	9,86	28,20
4	5	1,07	2,00	2,00	26,0	0,50	28,20	57,63
5	6	0,65	2,00	2,00	26,0	0,30	57,63	58,94
6	7	0,49	2,00	2,00	26,0	0,2	58,94	62,32
7	8	0,37	2,00	2,00	26,0	0,2	62,32	74,10
8	9	0,11	2,00	2,00	26,0	0,1	74,10	79,71

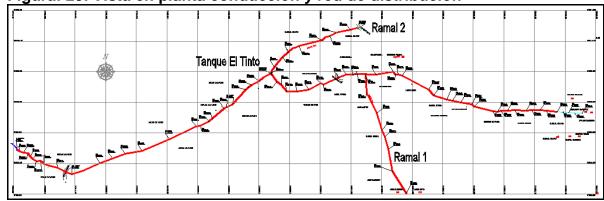
Según el diseño, la red de distribución del sistema cumple con la dotación a partir del tanque El Tinto ubicado en la abscisa k0 + 941.23, con un diámetro de 2 pulgadas en PVC RDE 26 y una presión máxima de 67 m.c.a. en la abscisa k1 + 326.65, se cambia el diámetro a 1½ pulgadas en PVC RDE 26 y una presión máxima de 67 m.c.a. se ubica una cámara de quiebre en la abscisa k1 + 417.32, con un diámetro de 1½ pulgadas en PVC RDE 26 y una presión máxima de 35 m.c.a. hasta la abscisa k1 + 604.09 en donde se cambia el diámetro a 1 pulgada con una presión máxima de 35 m.c.a.

El sistema cuenta con dos ramales; El ramal 1 cuenta con un diámetro de 2 pulgadas en PVC RDE 26 y una presión máxima de 60 m.c.a. El ramal 2 cuenta con un diámetro de 2 pulgadas en PVC RDE 26 y una presión máxima de 79 m.c.a.

El ramal 1 tiene una longitud de 1417 m y el ramal 2 tiene una longitud de 330 m.

El diseño de la red cumple con los requerimientos del reglamento RAS - 2000 (B.7.4.5.1) en donde se especifican las presiones mínimas de servicio. Se debe tener en cuenta el reglamento RAS - 2000 (B.7.4.6.2) en donde se especifica que

el diámetro mínimo para una red menor de distribución es de 1½ pulgadas, esta observación debe ser atendida por el consultor.


El diseñador determina según norma RAS - 2000 que las tuberías del sistema de acueducto deben ir enterradas 0.60 m.

En la red de distribución se ubicaron los elementos registrados en la tabla 29, por último se presenta la vista en planta de la red de distribución diseñada por el consultor como se aprecia en la figura 29:

Tabla: 29. Válvulas a lo largo de la red de distribución

ACCESORIO	ABSCISA	DIÁMETRO	
	K1 + 666,94	1½"	
	K1+743,42	1 /2	
Válvula purga	Ramal 1 K0+134,62	O"	
	Ramal 1 K0+417,92	2"	
	Ramal 2 K3+330,13	2"	
	K1+678, 36		
Válvula Ventosa	ula Ventosa Ramal 1 K0 + 59,47		
	Ramal 1 K0+192,17		

Figura: 29. Vista en planta conducción y red de distribución

La capacidad portante calculada para el suelo en donde se ubicará el desarenador es igual al 0.87 kg/cm². No hay recomendaciones ni observaciones con respecto a los estratos del suelo o si es recomendable hacer un reemplazo del suelo original.

En la tabla 30 se presenta la evaluación hidráulica del proyecto teniendo en cuenta el reglamento RAS – 2000:

Tabla: 30. Revisión del diseño siguiendo parámetros RAS 2000

NOMBRE DEL PROYECTO:	ACT	UALIZACION	Y OPTIMIZAC	ION DE ACUED	ACTUALIZACION Y OPTIMIZACION DE ACUEDUCTO SAN CAYETANO - MAPACHICO	NO - MAPAC	CHICO
		NIVEL DE (NIVEL DE COMPLEJIDAD			CUMPL	ojou ožojo
PARÁMETRO/CRITERIO/CARACTERISTICA	Bajo	Medio	M-Alto	Alto	Valor Proyecto	(SI/NO)	RAS 2000
GENERALES							
Nivel de complejidad asignado en el proyecto	Bajo	Medio	Med-Alto	Alto	BAJO		A.3.1
Capacidad económica	Baja	Baja	Media	Alta	BAJO		A.3.1
Población beneficiada con el Proyecto			30803		536		B.2.1
ACUEDUCTO - GENERALES							
Método de cálculo de la Población Nota (1)	1, 2, 03	1, 2, 03	2,3,4 o 5	2,3,4 o 5	GEOMETRICO	S	Tabla B.2.1
Ajuste por población flotante	SÍ	sí	Sí	SÍ	ON	IS	B.2.2.5
Dotación neta (l/h-d)	100-150	120-175	130	150	150	S	Tabla B.2.2
Correcciones máximas a dotación neta (%)	hasta 20	hasta 20	>20	>20	ON	S	B.2.4.4
Variaciones a dotación neta por clima cálido (%)	+ 15	+ 15	+20	+20	ON	S	Tabla B.2.3
Variaciones a dotación neta por clima templado (%)	+ 10	+ 10	+15	+15	ON	S	Tabla B.2.3
Variaciones a dotación neta por clima frío (%)	0	0	0	0	ON	S	Tabla B.2.3
Pérdidas en aducción (% de Qmd)	< 5	< 5	< 5	< 5	3%		B.2.5.1
Consumo en Planta Potabilizadora (% de Qmd)	3a5	3 a 5	3a5	3a5	ON		B.2.5.2
Pérdidas en conducción de agua tratada (% de Qmd)	< 5	< 5	< 5	< 5	3%		B.2.5.3
Total pérdidas técnicas admisibles (% de Qmd)	40	30	25	20	46%	S	Tabla B.2.4
Dotación bruta					277,78		B.2.6
Demanda					1.83		B.2.7
Coeficiente de consumo máx. diario (k1)	1.30	1.30	1.20	1.20		SI	Tabla B.2.5.
Coeficiente de consumo máx. horario (k2) -Red Matriz			1.40	1.40	1.6	S	Tabla B.2.6.
Coeficiente de consumo máx. horario (k2) -Red Secundaria		1.50	1.45	1.45	1.6	IS	Tabla B.2.6.
Coeficiente de consumo máx. horario (k2) -Red Menor	1.60	1.60	1.50	1.50	1.6	IS	Tabla B.2.6.
Presentación curva de demanda	Referenc	Propia	Propia	Propia	NO CUMPLE	S	B.2.7.7

Número y capacidad de cada hidrante (lps)	1 (15)	3 (15)	3 (15)	4 (15)	NO CUMPLE	S	B.2.8.2
CLASIFICACION CALIDAD AGUA FUENTES	Aceptabl e	Regular	Deficiente	Muy defic	INSTITUTO DEPARTAMENTA L DE SALUD Y DMS		
DBO ₅ Promedio mensual (mg/L)	≤1.5	1.5 a 2.5	2.5 a 4	>4	ON		Tabla B.3.2
DBO ₅ Máximo diario (mg/L)	1a3	3 a 4	4a6	9<	ON		Tabla B.3.2
Coliformes totales, promedio mensual (NMP/1.000 mL)	0 a 50	51 a 500	501 a 5000	> 2000	ON		Tabla B.3.2
O D (mg/L)	>= 4	7 =<	>= 4	4 >	ON		Tabla B.3.2
pH promedio	6.0 a 8.5	5.0 a 9.0	3.8 a 10.5		9.9		Tabla B.3.2
Turbiedad (UNT)	< 2	2 a 40	40 a 150	> 150	6.0		Tabla B.3.2
Color verdadero (UPC)	< 10	10 a 20	20 a 40	> 40	APARENTE 1		Tabla B.3.2
Gusto y olor	Inofens	suəjoul	Inofens	No Aceptable	INOFENCIVO		Tabla B.3.2
Cloruros (mg/L)	< 50	50 a 150	150 a 200	300	12.8		Tabla B.3.2
Fluoruros (mg/L)	< 1.2	< 1.2	< 1.2	>1.7	ON		Tabla B.3.2
Caudal mínimo de la fuente (95% del Q de estiaje)	2 vece	es Qmd para to	2 veces Qmd para todos los nivles de compl	de compl	NO HAY DATO	SI	B.3.3.2.5
Concesiones para utilizar el agua	SÍ	SÍ,	S,	SÍ,	1 EL BOLSON (TRAMITE)	S	B.3.3.3.4
CAPTACIONES AGUA SUPERFICIAL	N. Bajo	N. Medio	N. Med- Alto	N. Alto	OPTIMIZACION		
Análisis de costo mínimo	No se red	Recomend	Obligat	Obligat	ON	SI	Tabla B.4.1
Período de diseño (años)	15	20	25	30	15	IS	Tabla B.4.2
Caudal de diseño Captación (N° de veces el QMD)	1	1	1,5	2	2.2	IS	B.4.4.2
Velocidades máximas en canales de aducción (m/s)					1.8		Tabla B.4.3
Velocidades a través de filtros de toma (m/s))).10 a 0.15 par	0.10 a 0.15 para todos los niveles	sələ	ON	ON	B.4.4.4
Separación entre barrotes (mm)	20-4() (grava fina) 7	20-40 (grava fina) 75 a 150 (grava gruesa)	gruesa)	NO HAY REJILLA	ON	B.4.4.5.3
Velocidad a través de la rejilla (m/s)	infei	rior a 0.15 m/s	inferior a 0.15 m/s para todos los niveles	niveles	NO HAY REJILLA	S	B.4.4.5.5
Coeficiente de pérdidas en la rejilla	0.5-0.7	0.5-0.7	Fórmula	Fórmula de Kishmer	NO HAY REJILLA		B.4.4.5.6

DESARENADORES					CONSTRUCCION		B.4.4.6
Capacidad	enßl	l a QMD (lps)	Igual a QMD (lps) para todos los niveles	niveles	2.24	S	B.4.4.6.2
Velocidad horizontal/velocidad asentamiento	men	or o igual a 20	menor o igual a 20 para todos los niveles	niveles	0.21	S	B.4.4.6.3
Relación long útil / Profund. efectiva para arena		10:1 para to	10:1 para todos los niveles		8.5:1	S	B.4.4.6.4
Profundidad para almacenamiento de arena (m)	0	.75 a 1.50 par	0.75 a 1.50 para todos los niveles	seles	0.5	S	
Veloc. Horiz. Máx. para aguas SIN tratamiento posterior	0.17	m/s para parts	0.17 m/s para parts hasta 0.1 mm ef 75%	ef 75%	0.0014	S	B.4.4.6.5
eloc. horiz. máx. para aguas CON tratamiento posterior	0.25	m/s para parts	0.25 m/s para parts hasta 0.2 mm ef 75%	ef 75%	0.0014		B.4.4.6.5
Volumen mínimo para almac. arenas (lodos)	10%	del volumen	10% del volumen total del desarenador	enador	2.2	SI	B.4.4.6.8
ADUCCIONES Y CONDUCCIONES					INSTALACION		B.6
Análisis de costo mínimo	No obligat	SÍ	sí	Sĺ	ON		B.6.2.2
Período de diseño (años)	15	20	25	30	15	IS	Tabla B.6.1
Caudal de diseño	QMD	QMD	QMD+pérd	QMD+pérd	3.59 NO CUMPLE	S	B.6.4.2
Diámetro mínimo para conducciones a presión	-4	Flujo libre) o 2	4" (Flujo libre) o 2" (50 mm) a presión	resión	2"	ON	B.6.4.8.1
Velocidad mínima en tuberías		0.60 m/s en	0.60 m/s en todos los casos	(0)	1.8	ON.	B.6.4.8.3
Velocidad máxima en tuberías		6.00 m/s en	6.00 m/s en todos los casos	6	1.8	S	B.6.4.8.4
Profundidad mínima de instalación de tuberías	О .	60 m. En cruce	0.60 m. En cruces de tráfico 1.00 m	m 00	NO CUMPLE		B.6.4.8.6
REDES DE DISTRIBUCIÓN					INSTALACION		B.7
Análisis de costo mínimo	No se req	ŝĺ	SÍ	sí	ON		B.7.2.3
Período de diseño Redes matrices o primaria (> 12")	15	20	25	30	15		Tabla B.7.1
Período de diseño Redes secundario locales (6" a 12")	15	15	20	25	15		Tabla B.7.2
Período de diseño Redes terciarias o menor (<= 6")	15	20			15	SI	Tabla B.7.3
Caudal de diseño	ОМН	Qmd+ince n	Qmd+incen	QMH	3.59	S	B.7.4.2
Presión mínima en red (m.c.a.)	10	10	15	15	13	ON	Tabla B.7.4
Presión máxima en red (m.c.a.)	09	09	09	09	NO CUMPLE	ON.	B.7.4.5.2
Diámetros mínimos en red matriz	2.5 "	4"	9	12"	3"		Tabla B.7.5
Diámetros mínimos en redes menores Zona Residencial	1.5"	2"	2.5"	3"	1.5	S	Tabla B.7.6
Diámetros mín. en redes men. Zona Comerc. e Industrial	1.5."	2"	4	9	1" NO CUMPLE (VELOCIDADES)		Tabla B.7.6

Diámetros nominales admisibles (internos) (1.5" hasta 60")			VER TABLA			S	Tabla B.7.7
Diámetros de hidrantes	3"	3"	4"	4"	NO CUMPLE		B.7.4.6.5
Distancia mínima horizontal a redes alcantarillado (m)	1.00	1.00	1.50	1.50	AN		Tabla B.7.9
Distancia mínima vertical a redes alcantarillado (m)	0:30	0:30	0.50	0.50	NA		Tabla B.7.9
Distancia mínima horizontal a redes alcant. pluvial (m)	1.00	1.00	1.20	1.20	AN		Tabla B.7.9
Distancia mínima vertical a redes alcant. pluvial (m)	0:30	0:30	0.50	09'0	NA		Tabla B.7.9
Profundidad mínima a lomo de tubería	_	.00 m. desde s	1.00 m. desde superficie de terreno	reno	AN		B.7.5.10.1
Profundidad máxima a lomo de tubería	1	50 m. desde s	.50 m. desde superficie de terreno	reno	NA		B.7.5.10.2
Colores de los hidrantes (Nota 2)					NA		B.7.6.9.5
Presión para hidrantes (m.c.a.)	3	3	10 o 20	10 o 20	NA		B.7.6.9.6

6.4.3 Presupuesto oficial. El presupuesto del proyecto discrimina por ITEMS la obra física, pero no se entregó el suministro desglosado. Teniendo en cuenta que el proyecto cambiará gran parte del acueducto existente, es muy importante registrar los materiales que se tiene programado según el diseño emplear en una futura obra de construcción. Se tiene en cuenta un 30% por A.U.I. y un 6% por interventoría. El presupuesto se puede apreciar en la taba 31:

Tabla: 31. Presupuesto del proyecto

<u>ı apıa</u>	: 31. Presupuesto del proyecto				
A.1	RESUMEN OBRA FISICA				
ITEM	Nombre	Un	Cantidad	Precio [\$]	Total [\$]
1	PRELIMINARES	GLB	1,00	8.691.596	\$ 8.691.595,60
2	CAPTACION EL BOLSON	GLB	1,00	2.157.864	\$ 2.157.863,80
3	TUBERIA DE ADUCCION EL BOLSON	GLB	1,00	6.997.387	\$ 6.997.386,75
4	DESARENADOR EL BOLSON	GLB	1,00	8.446.075	\$ 8.446.075,43
5	CONDUCCION EL BOLSON	GLB	1,00	39.080.802	\$ 39.080.801,76
6	RED DE DISTRIBUCION EL BOLSON	GLB	1,00	102.136.080	\$ 102.136.080,35
7	CAMARA DE QUIEBRE	GLB	1,00	504.923	\$ 504.922,92
8	SEÑALIZACION	GLB	1,00		
	COSTOS DIRECTOS				\$ 168.014.727
	TOTAL COSTOS DIRECTOS OBRA FIS	SICA			\$ 168.014.727
	COSTOS INDIRECTOS				
	AUI		30%		\$ 50.404.418
	IVA SOBRE LA UTILIDAD		0%		
	TOTAL COSTO INDIRECTO +AUI				\$ 218.419.145
	VALOR TOTAL DEL PROYECTO				\$ 218.419.145
	INTERVENTORIA		6,06%		\$ 13.236.200

6.4.4 Observaciones adicionales.

El consultor no propone un sistema de micro medición para San Cayetano. Este proyecto es muy importante para promover el uso eficiente del agua, adelantado por del Plan Departamental de Agua y concientizar a la población del valor que tiene el agua desperdiciada.

El consultor no tiene presentes algunas condiciones con respecto al caudal de diseño.

El consultor propone un sistema de captación de agua subterránea a futuro nombrado nacedero Ojo de Agua, este proyecto se podría diseñar y ejecutar como una etapa complementaria del que se esta adelantando actualmente. No se opto por socializar este proyecto debido a que por el momento la fuente conocida como El Bolsón abastece adecuadamente a toda la población aledaña.

El diseñador no propone una alternativa de desinfección ya que expone que el agua que sale de la fuente El Bolsón no esta expuesta a sustancias toxicas y nocivas para la salud humana.

En el diseño no se tuvieron en cuenta los pasos directos para el tanque de almacenamiento 1 recomendado en el diagnostico del sistema de acueducto.

6.4.5 Conclusiones.

El consultor antes de empezar un diseño siempre deberá tener en cuenta las concesiones de la fuente de alimentación del sistema, si no se diseña de acuerdo al caudal concedido, el acueducto no funcionara satisfactoriamente.

Es muy importante la localización y el replanteo de todos los elementos diseñados por el consultor, ya que se debe pensar en actividades de mantenimiento futuras y el primer paso para diagnosticar una solución es con los diseños y si estos no corresponden a la realidad será improductiva cualquier actividad adelantada por el cuerpo técnico encargado.

La magnitud de un proyecto siempre estará influenciada por su ubicación territorial

6.5 EVALUACION TECNICA DEL DISEÑO DEL SISTEMA DE ALMACENAMIENTO DE SAN FERNANDO

6.5.1 Resumen del proyecto entregado.

- **6.5.1.1 Descripción del problema.** El acueducto del corregimiento de San Fernando cuenta con un tanque de almacenamiento que no abastece a la población en caso de un corte de servicio.
- **6.5.1.2 Cuantificación de la población afectada por el problema.** El sistema de acueducto del Corregimiento de San Fernando cuenta con 490 usuarios con una población actual de 2940 habitantes. La población futura beneficiada por el proyecto para el año 2028 será de 3991 habitantes.

6.5.1.3 Justificación del proyecto. Con el proyecto se pretende a mejoramiento de las condiciones de vida de los habitantes que se localizan en el corregimiento de San Fernando, que cuenta con una población beneficiaria de 3991 habitantes de para que serán abastecidos por agua para consumo humano, de manera normal y a futuro con agua para el consumo humano.

6.5.1.4 Descripción General del Proyecto. El actual tanque que abastece a la población de San Fernando no esta cumpliendo con toda la dotación requerida por la población debido al incremento de usuarios. Es necesario diseñar un tanque de abastecimiento que sirva de compensación en caso de corte del servicio de agua, con la construcción del tanque de almacenamiento de San Fernando: se pretende optimizar el funcionamiento del tanque de almacenamiento existente que tiene un volumen de 120.46 m³.

El nuevo tanque diseñado tendrá un volumen de 268.8 m³, estos tanques surtirán a la población durante 8 horas seguidas si se suspendería el servicio.

6.5.1.5 Descripción de los objetivos, productos y resultados que se esperan obtener con la alternativa.

Objetivo General. Construir un tanque de almacenamiento y compensación para el corregimiento de San Fernando.

Objetivos Específicos.

- Construir la infraestructura del acueducto (Tanque de almacenamiento)
- Mitigar los impactos negativos en las condiciones de dotación de agua para los habitantes del sector.
- Socializar el proyecto con la comunidad beneficiaria e involucrarla en la etapa de ejecución del mismo.

Productos.

Tanque de almacenamiento construido

Resultado. Un acueducto mejorado.

6.5.2 Análisis del diseño y metodología empleada. El consultor asigna un nivel de complejidad medio de acuerdo a la población de 3991 habitantes proyectada a 20 años y determinados por el método geométrico,

El caudal de diseño se calcula para un periodo de 20 años, pero se deben tener en cuenta algunos criterios de diseño con respecto a la vida útil del tanque de almacenamiento.

Caudal medio diario:

$$Qmd = \frac{3991 \, hab * 155.84 \, L/hab * dia}{86400} = 7.92 \, lps$$

Caudal Máximo Diario:

$$QMD = Qmd * k_1 = 7.92 * 1.3 = 10.29 lps$$

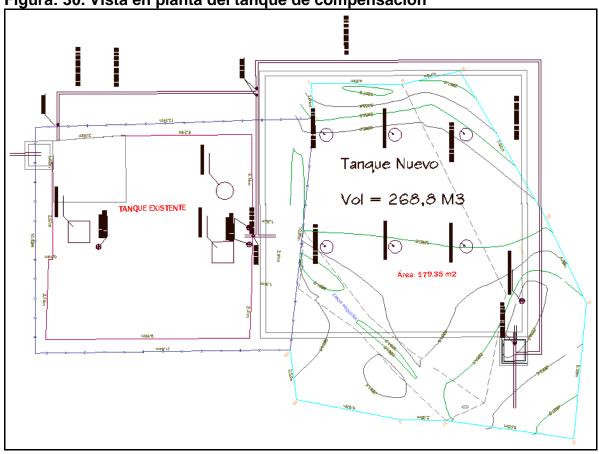
Caudal Máximo Horario:

$$QMH = QMD * k_2 = 7.92 * 1.6 = 16.47 lps$$

El consultor no establece la curva de demanda que define la variación del consumo a lo largo del día, con el fin de establecer la necesidad y la magnitud de un posible almacenamiento a futuro.

Teniendo en cuenta que arbitrariamente seleccionó un periodo de 20 años para el diseño del tanque y en función de este la población, llegando a obtener un nivel de complejidad medio, no sigue el reglamento RAS – 2000 (B.9.4.1) en donde se especifica que para nivel medio de complejidad el tanque se debe diseñar a 25 años de vida útil. Este error se debe a que empieza a diseñar el tanque como un acueducto sin tener en cuenta las condiciones anteriores; es así que los valores que se desprenden a partir del nivel de complejidad medio no cumplen para un periodo de diseño de 20 años del tanque. En otras palabras si el tanque se diseña a 20 años, el nivel de complejidad del proyecto seria nivel bajo.

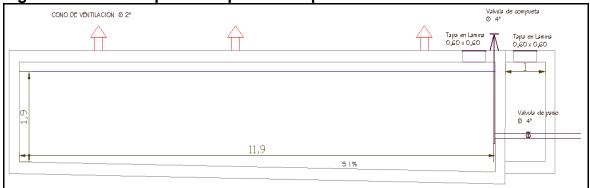
El caudal de diseño del tanque de compensación empleado por el consultor es igual al caudal máximo horario equivalente a 13.50 lps el cual no es el calculado anteriormente, el consultor debe atender esta observación y definir cual es el caudal definitivo.


El volumen de diseño calculado es igual a un volumen de regulación el cual es igual a 1/3 del volumen distribuido a la zona que va a ser abastecida en el día de máximo consumo de acuerdo a RAS – 2000 (B.9.4.4). Esta alternativa es

adecuada cuando no existen datos que describan las curvas de variación del consumo horario. El volumen de regulación calculado es igual a 269 m³

En el diseño se cumple con un tiempo de vaciado de 6.6 horas inferior a las 8 horas requeridas por RAS – 2000 (B.9.4.10).

El tanque cuenta con un compartimiento, una altura útil asumida de 1.60 m, una altura libre de 0.30 m, una altura total de 1.90 m, el desagüe tiene una longitud de 10 m incluyendo longitud por accesorios y un diámetro de 4 pulgadas, no se determina la pendiente de la tubería. Tiene 13.0 m de ancho x 13.0 m de largo para una relación ancho/largo igual a 1. El detalle de la vista en planta del tanque diseñado se aprecia en la figura 30:


Figura: 30. Vista en planta del tanque de compensación

No se especifica el diseño del by-pass pero en el plano si se ubica con un diámetro de 4 pulgadas en PVC RDE 21. Este paso directo comunica la entrada del tanque existente con la entrada del tanque nuevo y con la salida del mismo. Así mismo se puede observar una cajilla de salida de 1 m x 1 m.

El consultor no ha entregado memorias de cálculo estructural ni las especificaciones técnicas para la losa de fondo, el solado superior y muros laterales. En la figura 31 se observa la vista en perfil del tanque, en donde se puede apreciar el diámetro de 4 pulgadas de la tubería de llegada, la cámara de entrada, el sistema de ventilación y la pendiente de 5%.

Figura: 31. Vista en perfil tanque de compensación

De acuerdo al estudio de suelos se recomienda un mejoramiento del suelo en concreto ciclópeo de 0.3 m de espesor para un suelo de consistencia blanda pero no se considera el nivel freático, en donde según el estudio la capa vegetal tiene un profundidad de 1.70 m y un suelo limoso a partir de la profundidad de 1.7 m hasta los 3 m medidos verticalmente; se recomienda al consultor un análisis estructural del tanque lleno para analizar la interacción con el suelo de acuerdo a la capacidad portante de este que es igual a 2.05 kg/cm².

En la tabla 32 se presenta la evaluación hidráulica del proyecto teniendo en cuenta el reglamento RAS – 2000.

Tabla: 32. Revisión del diseño siguiendo parámetros RAS 2000

NOMBRE DEL PROYECTO:	DIS	EÑO ESTRU	CTURAL TAN	IQUE DE ALM	DISEÑO ESTRUCTURAL TANQUE DE ALMACENAMIENTO SAN FERNANDO ALTO	AN FERNAN	DO ALTO
		NIVEL DE C	NIVEL DE COMPLEJIDAD		;		
PARÁMETRO/CRITERIO/CARACTERISTICA	Bajo	Medio	M-Alto	Alto	Valor Proyecto	(SI/NO)	Referencia RAS 2000
GENERALES							
Nivel de complejidad asignado en el proyecto	Bajo	Medio	Med-Alto	Alto	MEDIO	S	A.3.1
Capacidad económica	Baja	Baja	Media	Alta	BAJA	S	A.3.1
Población beneficiada con el Proyecto			30803		3991	S	B.2.1
ACUEDUCTO - GENERALES							
Método de cálculo de la Población	1, 2, 03	1, 2, 03	2,3,4 o 5	2,3,4 o 5	GEOMETRICO	S	Tabla B.2.1
Ajuste por población flotante	Sí	Sí	Sí	s,	NO (CUMPLE)	S	B.2.2.5
Dotación neta (l/h-d)	100-150	120-175	130	150	120	S	Tabla B.2.2
Correcciones máximas a dotación neta (%)	hasta 20	hasta 20	>20	>20	ON	S	B.2.4.4
Variaciones a dotación neta por clima cálido (%)	+ 15	+ 15	+20	+20	ON	SI	Tabla B.2.3
Variaciones a dotación neta por clima templado (%)	+ 10	+ 10	+15	+15	ON	SI	Tabla B.2.3
Variaciones a dotación neta por clima frío (%)	0	0	0	0	ON	SI	Tabla B.2.3
Pérdidas en aducción (% de Qmd)	< 5	< 5	< 5	< 5	ON		B.2.5.1
Consumo en Planta Potabilizadora (% de Qmd)	3a5	3a5	3a5	3a5	1%		B.2.5.2
Pérdidas en conducción de agua tratada (% de Qmd)	< 5	< 5	< 5	< 5	1%		B.2.5.3
Total pérdidas técnicas admisibles (% de Qmd)	40	30	25	20	20%	SI	Tabla B.2.4
Dotación bruta					150		B.2.6
Demanda					6.93		B.2.7
Coeficiente de consumo máx diario (k1)	1.30	1.30	1.20	1.20	6	SI	Tabla B.2.5.
Coeficiente de consumo máx horario (k2) -Red Matriz			1.40	1.40	14,41	SI	Tabla B.2.6.
Coeficiente de consumo máx horario (k2) -Red Secundaria		1.50	1.45	1.45	×	SI	Tabla B.2.6.
Coeficiente de consumo máx horario (k2) -Red Menor	1.60	1.60	1.50	1.50	×	SI	Tabla B.2.6.
Presentación curva de demanda	Referenc	Propia	Propia	Propia	ON	SI	B.2.7.7
Número y capacidad de cada hidrante (lps)	1 (15)	3 (15)	3 (15)	4 (15)	ON	SI	B.2.8.2
CLASIFICACION CALIDAD AGUA FUENTES	Aceptable	Regular	Deficiente	Muy defic			
DBO ₅ Promedio mensual (mg/L)	<u>≤</u> 1.5	1.5 a 2.5	2.5 a 4	*	ON		Tabla B.3.2

DBO ₅ Máximo diario (mg/L)	1a3	3a4	4 a 6	9<	NO		Tabla B.3.2
Coliformes totales, promedio mensual (NMP/1.000 mL)	0 a 50	51 a 500	501 a 5000	> 5000	1 INFORME 399		Tabla B.3.2
O D (mg/L)	>= 4	>= 4	>= 4	4 >	ON.		Tabla B.3.2
pH promedio	6.0 a 8.5	5.0 a 9.0	3.8 a 10.5		8.1		Tabla B.3.2
Turbiedad (UNT)	< 2	2 a 40	40 a 150	> 150	2		Tabla B.3.2
Color verdadero (UPC)	< 10	10 a 20	20 a 40	> 40	APARENTE 21.4		Tabla B.3.2
Gusto y olor	Inofensivo	Inofensivo	Inofensivo	No ceptable	INOFENCIVO		Tabla B.3.2
Cloruros (mg/L)	< 50	50 a 150	150 a 200	300	4		Tabla B.3.2
Fluoruros (mg/L)	< 1.2	< 1.2	< 1.2	>1.7	ON		Tabla B.3.2
Caudal mínimo de la fuente (95% del Q de estiaje)	2 veces	Qmd para to	2 veces Qmd para todos los nivles de compl	de compl	ON	SI	B.3.3.2.5
Concesiones para utilizar el agua	S,	Š,	S,	,s	S	S	B.3.3.3.4
TANQUES DE ALMACENAMIENTO O COMPENSACIÓN							B.9
Análisis de costo mínimo	No oblig	SÍ	sí	sí	ON		B.9.2.2
Compartimientos para mantenimiento	By-Pass	2	2	2	2	ON	B.9.3.2
Período de diseño (años)	20	25	30	30	20	NO	Tabla B.9.1
Caudal de diseño		Debe pro	Debe proveer el QMH		13,5	SI	B.9.4.3
Volum. distrib. a la zona en día de máximo consumo	1/3	1/3	1/3	1/4	×		B.9.4.4
Borde libre de tanques	0	.30 metros er	0.30 metros en todos los casos	so	30	NO	B.9.4.6
Tiempo de vaciado	mem	ior de 8 horas	menor de 8 horas en todos los casos	asos	9,9	SI	B.9.4.10
Entrada del agua al tanque	Pc	ır parte super	Por parte superior, si es bombeo	oec	SUPERIOR		B.9.5.2
Salida del tanque	Opues	ita a la entrac	Opuesta a la entrada. Pérdidas <=0.50 m	-0.50 m	OPUESTA	S	B.9.5.3

6.5.3 Presupuesto oficial. El presupuesto oficial se discrimina por obra física y suministro. Este presupuesto contempla un A.U.I. del 30% y un 6% por interventoría como se puede apreciar en el resumen presentado en la tabla 33.

Tabla: 33. Presupuesto oficial del proyecto OBRA FISICA

ITEM	Nombre	Un	Cantidad	Precio (\$)	Total (\$)
1	PRELIMINARES			T0TAL	395.949,00
2	TANQUE DE ALMACENAMIENTO				,
				T0TAL	91.266.761
	COSTOS DIRECTOS				91.662.710
	AUI		30%		27.380.028
	COSTOS INDIRECTOS				27.380.028
	TOTAL PROYECTO				119.042.738
	INTERVENTORIA		6%		7.118.807

6.5.4 Observaciones adicionales.

El consultor debe estar atento a las observaciones ya que hacen falta documentos especificados en los términos de referencia, lo que se traduce en incumplimiento y por lo tanto un diseño defectuoso.

6.5.5 Conclusiones.

Los tanques de almacenamiento complementarios deben ser funcionales y garantizar un servicio continuo para la población creciente.

6.6 EVALUACION TECNICA DEL DISEÑO DEL SISTEMA DE TRATAMIENTO DE AGUAS RESIDUALES EN LOS BARRIOS POPULAR Y ROSAL DE ORIENTE

6.6.1 Resumen del proyecto entregado.

6.6.1.1 Descripción del problema. En el sector del barrio La Estrella aguas abajo de la bocatoma del acueducto Centenario y antes de la urbanización El Pinar del Río, existe un punto de vertimiento de las aguas residuales provenientes

de los barrios Popular y Rosal de Oriente. Esta descarga se hace sobre el río Pasto, aportando a su contaminación. La población que genera estas aguas residuales está ubicada en los límites del perímetro urbano, en la vía a Oriente, y se podría decir que por su ubicación geográfica es un área suburbana.

El problema radica en que el vertimiento viene causando inconvenientes de calidad en la fuente hídrica pues aporta contaminantes de origen domestico a las aguas que lo reciben. Por otra parte disminuye la calidad de vida de la población cercana al vertimiento de manera directa y a aquellos que están un poco más alejados de manera indirecta, por la sumatoria de características organolépticas que se aportan al río Pasto después del vertimiento.

Por esto se hace necesario tratar estas aguas residuales y cumplir con la normatividad para vertimientos, de tal manera que el aporte de contaminantes sea mucho menor que el que se esta entregando hoy en día al recurso hídrico.

6.6.1.2 Cuantificación de la población afectada por el problema. Debido a que el vertimiento se hace en el ingreso del río Pasto a la cabecera municipal, se puede considerar que la población beneficiada estaría diferenciada en dos grupos, la directamente beneficiada, aquella que tiene contacto y percepción inmediata de los impactos provocados por el vertimiento y la indirectamente beneficiada representada por toda aquella que aguas abajo pueda tener alguna relación de uso con el río Pasto.

La población cercana al vertimiento se identifica en dos grupos: la primera catalogada como rural, con viviendas aisladas pertenecientes al corregimiento de Buesaquillo y la segunda catalogada como suburbana, con viviendas concentradas como lo son las del barrio Popular, Rosal de Oriente, La Estrella y Pinar del Río, las cuales geográficamente se encuentran aparentemente separadas del casco urbano municipal y en las cuales predominan las características socioeconómicas bajas.

Su población proyectada es de 3681 habitantes, teniendo en cuenta un nivel de complejidad medio, y un periodo de diseño de 20 años, datos con los cuales se realizó el diseño.

6.6.1.3 Justificación y descripción general del proyecto. Los beneficios del proyecto se centran en la disminución de la carga contaminante de los vertimientos al río Pasto en el sector del Barrio Popular y Rosal de Oriente. Con el funcionamiento de la Planta de tratamiento de aguas residuales en este sector se podrá dar inicio al proceso de descontaminación del río Pasto.

Por otra parte, en el sector del vertimiento se podrían apreciar mejores condiciones ambientales, las cuales directa o indirectamente mejorarían la calidad de vida de los habitantes del sector principalmente y de alguna manera la de los habitantes aguas abajo del punto de vertimiento.

Se pretende dar solución al vertimiento de aguas residuales sobre el río Pasto, provenientes del barrio Popular y Rosal de Oriente, mediante la construcción de una planta de tratamiento de aguas residuales, con la cual se pretende cumplir con la normatividad ambiental vigente en torno a descontaminación de aguas antes de ser vertidas a una fuente hídrica. Estos barrios y otros aledaños, han presentado justificadas quejas sobre el vertimiento y los inconvenientes sociales y ambientales que les ha generado, por eso es preciso dar una solución a este problema.

El proyecto consiste en adecuar el alcantarillado desde la vía que conduce al departamento del Putumayo, de tal manera que se pueda conducir las aguas residuales del barrio Popular y Rosal de Oriente, hasta el lote asignado para la planta de tratamiento. En este lugar se trabajara con pretratamiento, tratamiento primario y secundario, y posteriormente el vertimiento al río Pasto pero cumpliendo con parámetros de remoción según la normatividad vigente.

6.6.1.4 Descripción de los objetivos, productos y resultados que se esperan obtener con la alternativa.

Objetivo general. Construir un sistema de tratamiento para las aguas residuales provenientes del sector de los barrios Popular y Rosal de Oriente en San Juan de Pasto.

Objetivos específicos.

- Diseñar el sistema de tratamiento de aguas residuales del sector de los barrios Popular y Rosal de Oriente
- Adecuar el sistema de alcantarillado para dirigir las aguas provenientes del barrio Popular hacia el terreno donde se ubicará la planta de tratamiento
- Poner en marcha el sistema de tratamiento

Productos.

- Empalme del alcantarillado existente a la planta de tratamiento de aguas residuales
- Construcción de un sistema de tratamiento de aguas residuales

Resultado. Disminuir la carga contaminante del agua en algunos sectores del Municipio de Pasto.

6.6.2 Análisis del diseño y metodología empleada. Se debe mencionar que de acuerdo al apoyo bibliográfico el estudiante hizo notar al diseñador la importancia de tener en cuenta que la planta de tratamiento debía ser funcional para la población proyectada de 3681 habitantes y que el sistema mencionado a continuación era empleado para pequeñas concentraciones de habitantes debido a las características funcionales y eficiencia de los materiales que conforman el sistema de tratamiento.

El consultor diseña de acuerdo al modelo conceptual de selección de tecnología para el control de contaminación por aguas residuales SELTAR, el cual esta conformado por bloques de evaluación enfocados en: priorización y factibilidad del proyecto, objetivos ambientales, aspectos socioculturales, aspectos tecnológicos, aspectos ambiental, reuso y aprovechamiento de subproductos, manejo de lodos, costos de inversión administración operación y mantenimiento, y tarifas capacidad y disponibilidad a pagar.

A través de este método se puede determinar la alternativa más conveniente de acuerdo a las características del agua a tratar.

El diseño propuesto para el tratamiento de aguas residuales tiene los siguientes elementos:

Canal de entrada y cribado. El canal de rejillas contara con rejas una para gruesos y otra para finos, las cuales detendrán el material sólido de gran tamaño que se encuentre en el agua residual. Estas se dispondrán en un canal longitudinal en el cual se instalaran las dos rejillas.

"Este sistema es apropiado ya que si se ubica una sola rejilla con separaciones pequeñas se saturara la materia transportada y se estancará el flujo hacia el desarenador".

Desarenador. Se diseña un desarenador de flujo constante el cual está compuesto por 3 canales. Cada uno de los cuales funcionara de manera independiente para la extracción de material similar a la arena.

Tanques de digestión de doble cámara. Se adoptan dos unidades en paralelo para el manejo de 410 m³ cada una.

Filtros anaerobios. Se diseñan 2 reactores de flujo ascendente de 111 m³ cada uno.

El sistema de alcantarillado que proviene de los barrios Popular y Rosal de Oriente esta vertiendo residuos en el tramo del río Pasto en donde aguas abajo es captada una cantidad de caudal para dotar algunos barrios del núcleo de la ciudad, este sistema de alcantarillado no ha sido terminado adecuadamente y por lo tanto necesita de una estructura adicional que empalme el colector de aguas negras al sistema de tratamiento de aguas residuales. El consultor ha especificado el diseño de la planta pero no ha especificado la unión que se hará para conducir las aguas negras, es así que el descole del alcantarillado existente requiere de una estructura o pozo de caída que facilite la conducción evitando los asentamientos de la materia orgánica. Se recomienda al consultor que de acuerdo a la localización del descole del alcantarillado existente se evalúe si es necesario diseñar una estructura de unión con caída de acuerdo al reglamento RAS - 2000 anexo D.1.

Por otro lado si el consultor decide diseñar la estructura de caída se recomienda una estructura de unión con pozo de inspección para facilitar el mantenimiento en el futuro.

El nivel de complejidad del proyecto de acuerdo a la población proyectada es medio, se asume una dotación neta de 175 L/hab·día y un coeficiente de retorno de 0.8.

Caudal Doméstico:

Caudal Medio Diario, que es la suma de los aportes domésticos, industriales, comerciales e institucionales, es igual a 5.96 lps.

Caudal Máximo Horario: el consultor ha determinado un Factor de Mayoración de 1.58 de acuerdo a RAS - 2000 (D.3.2.4)

$$QMH = F * QMD = 9.429 lps$$

Caudal de Diseño Final, que tiene en cuenta el caudal máximo horario y los caudales de infiltración y conexiones erradas, los cuales se asumen como nulos:

$$QDF = QMH + QINF + QCE = 9.429 lps$$

Caracterización de aguas residuales. Para el diseño de la planta de tratamiento el consultor asume valores típicos en los parámetros representativos del agua residual domestica, registrados en la tabla 34:

Tabla: 34. Características asumidas del agua a tratar

PARAMETRO	mg/l
DBO ₅	220
SST	250

De acuerdo a los métodos de evaluación SELTAR el consultor propone la eficiencia de remoción registrada en la tabla 35:

Tabla: 35. Eficiencia de remoción del sistema

	UNIDADES DE TRATAMIENTO		DE REMOCION %)
		DBO	SST
Pre-tratamiento	Rejillas	Desp	Desp.
Tro tratamento	Desarenadores	5	10
Tratamiento primario	Tanque de digestión de doble cámara	40	60
Tratamiento secundario	Filtros anaerobios	80	70

Se debe tener en cuenta que el diseñador se apoya en rendimientos estándar medidos individualmente en la practica experimental para cada uno de los elemento de la planta.

Rejillas. Se diseñaron dos tipos de rejillas de acuerdo al reglamento RAS - 2000 (E.4.4.2). Una rejilla es para separación de gruesos y otra para separación de finos, en donde se asumen el tipo de limpieza, ancho de barras, espaciamiento y velocidad minima de aproximación. Por otro lado se calcula la lámina de agua en la rejilla, se hace chequeo de velocidades, se determina la velocidad a través de las barras, las pérdidas en la rejilla y la longitud mínima de la rejilla, en la tabla 36 se presentan las dimensiones:

Tabla: 36. Rejilla para gruesos

<u> </u>	
Tipo de limpieza	manual
Ancho de barras	12 mm
Espaciamiento	50 mm
Pendiente de la rejilla	45°
Velocidad de aproximación a las rejillas (Va)	0,30 m/s
Factor de forma de las barras (rectangulares de caras rectas): β	2,42
Lámina de agua en la rejilla	0,287 m
Velocidad a través de las barras	0,372 m/s
Perdidas en la rejilla	0.08 m
Longitud mínima de la rejilla	0.405 m

El diseñador dispone 8 barras de 12 mm de espesor, espaciadas en los dos extremos con 27 mm y en los espacios internos 5 con 50 mm. En la tabla 37 se aprecia la geometría de la rejilla para finos:

Tabla: 37. Rejilla para finos

Tipo de limpieza	manual
Ancho de barras	12 mm
Espaciamiento	25 mm
Pendiente de la rejilla	45°
Velocidad de aproximación a las rejillas (Va)	0,30 m/s
Factor de forma de las barras (rectangulares de caras rectas): β	0,087 m
Lámina de agua en la rejilla	0,087 m
Velocidad a través de las barras	0,444 m/s
Perdidas en la rejilla	0.045 m
Longitud mínima de la rejilla	0.405 m

El diseñador dispone 12 barras de 12 mm de espesor, espaciadas en los dos extremos con 15 mm y en los espacios internos 9 con 25 mm.

El sistema cuenta con By-Pass que comunica la entrada del canal a la salida del desarenador

Para el diseño del desarenador se deben atender las recomendaciones de la norma RAS - 2000 (E.4.4.4.1) y se debe revisar la geometría del desarenador de acuerdo a las dimensiones registradas en la tabla 38:

Tabla: 38. Geometría recomendada para desarenadores de diferente tipo

Parámetro	Desarenador de flujo horizontal	Desarenador aireado	Desarenador tipo vórtice
Profundidad (m)	2 - 5	2 - 5	2.5 - 5
Longitud (m)		8 - 20	
Ancho (m)		2.5 - 7	
Relación Largo : Ancho	2.5 : 1 - 5 : 1	3:1-5:1	
Relación Ancho : Profundidad	1:1-5:1	1:1-5:1	
Diámetro (m)			
Cámara superior			1 - 7
Cámara inferior			1 - 2

Esta observación se dio a conocer a la Secretaria de Gestión Ambiental y al consultor.

Se diseñó un desarenador de flujo constante de 3 canales, por lo tanto se divide el caudal de diseño en tres partes; entonces el caudal de diseño para cada canal es de 3.143 lps. La geometría presentada se registra en la tabla 39:

Tabla: 39. Geometría del desarenador

Ancho cada canal	0,40 m
Caudal	0.003143 m ³ /s
Velocidad	0.2 m/s
Volumen	0.09429 m ³
Área transversal	0.0157 m ²
Longitud	6 m
Área superficial	2.4 m ²
Profundidad canal	0.40 m
Prof. de almacenamiento de arenas	0.50 m
Carga individual de arenas	67.88 kg/día
Carga total de arenas	203.66 kg/día
Espesor de muros divisorios	0.20 m
Espesor de canales	0.40 m
Ancho total desarenador	(3*0.40) + (4*0.20) = 2.0 m

El consultor solamente se apoya en los planos para dar a conocer los detalles del desarenador, como dimensiones de tuberías, compartimientos, válvulas, materiales y accesorios característicos de este tipo de desarenadores, tampoco especifica requerimientos de refuerzo mínimo del concreto e impermeabilización teniendo en cuenta que esta es una estructura que tiene contacto permanente con el suelo y el agua. La vista en perfil y en planta del sistema de desarenado se puede apreciar a través de la figura 32 y la figura 33:

Figura: 32. Vista en perfil Desarenador

SUN DIALLY TO SUN ATRO-DUMN K MARIO DESIRO MARIO DELLO MARIO DELLO

DIVINE IT TORONG TO STATE OF THE PARTY OF TH

Figura: 33. Vista en planta Desarenador

En este punto se instalan tres derivaciones. La primera es la llegada del by pass numero uno proveniente desde antes de las rejillas. La segunda es efluente hacia el tanque de digestión de doble cámara. Y finalmente se acondiciona una tercera como by pass numero 2 para mantenimiento del tanque séptico.

Se determina el volumen útil de los tanques de digestión de doble cámara mediante la formula:

$$V_u = 1000 + N_c(CT + KL_f)$$

En donde C es la contribución de aguas residuales, L_f es el lodo fresco, T es el tiempo de retención, K representa los valores de acumulación de lodos digeridos y Nc es la población proyectada. Parámetros encontrados de acuerdo al titulo E de la norma RAS - 2000.

Para el diseño de estos tanques el consultor cambió la población proyectada por 4849 habitantes, este valor no corresponde al de 3681 habitantes empleado para determinar el caudal de diseño y para diseñar el desarenador. Esta observación se dio a conocer al consultor.

El volumen útil obtenido es de 820 m^3 . Como son dos tanques el volumen para cada uno es de 410 m^3 .

"la opción de dos tanques conectados en ves de uno es acertada por que así se favorece la sedimentación de las partículas mas ligeras, debido a que se aumenta la separación hidráulica y se reduce el mezclado".

El diseñador recomienda que el primer depósito tenga una capacidad igual a dos tercios de la del segundo.

La profundidad de los tanques es 2.5 m por recomendación RAS - 2000 (E.4.5.1.3), el área es de 164 m 2 , el largo es de 21.0 m y el ancho es de 7.8 m. Para la propuesta del consultor la dimensión largo x ancho del tanque 1 seria de 14.0 m x 7.8 m y del tanque 2 seria de 7.0 m x 7.8 m.

El dispositivo de entrada estará conformado por un tubo localizado a 0,075 m mínimo por encima del nivel normal del líquido; así mismo se colocará una Tee ventilada de 4 pulgadas de diámetro que penetrará 0,8 m bajo el nivel normal de líquido, el dispositivo de salida estará a la altura del nivel normal del líquido, contará con una Tee ventilada de 4 pulgadas de diámetro que penetrará 0,70 m bajo la superficie del líquido. Los tanques disponen de puntos de inspección y conexiones roscadas para motobomba, determinadas en los planos del proyecto

Ya que este tipo de tanques es de un diseño sencillo y su funcionamiento es adaptable a todo tipo de tratamiento de aguas residuales, no se hacen observaciones notables, pero se debe tener en cuenta el caudal de diseño y la conformación estructural del tanque. Si el tanque ya esta prefabricado se debe especificar.

Los filtros anaerobios de flujo ascendente son diseñados de acuerdo al reglamento RAS - 2000 (E.4.7.9). Para su diseño se tiene en cuenta el tiempo de retención hidráulica de acuerdo a la tabla 4.29 del titulo E del RAS - 2000.

El consultor asume una carga orgánica teórica a la entrada de los filtros anaerobios igual a 102.15 kg/día y una concentración teórica (DBO₅) igual a 125 mg/L.

El tiempo de retención es de 5.25 horas. Se recomienda utilizar tiempos de retención hidráulica entre 2.5 y 12 horas, por lo tanto el diseñador considera mantener 5.25 horas. Los resultados son los siguientes:

En el diseño se calculó un tiempo de retención de 0.21875 días, se determinó un volumen del tanque vacío de 178 m³ y un volumen del tanque mas medio de soporte de 222 m³.

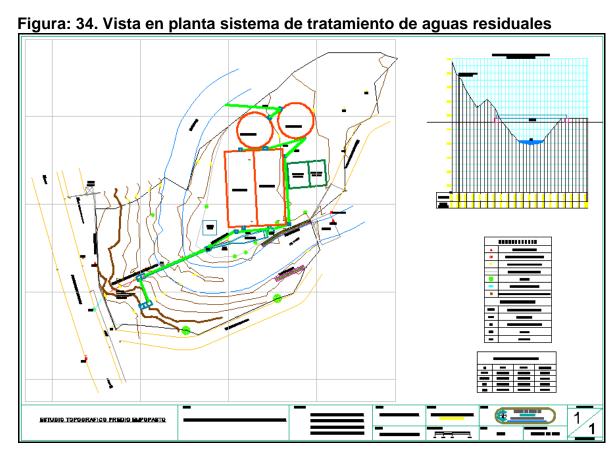
Para el diseño se adoptaron 2 reactores de 111 m³ cada uno con altura útil de 1.5 m y un área de base igual a 74 m².

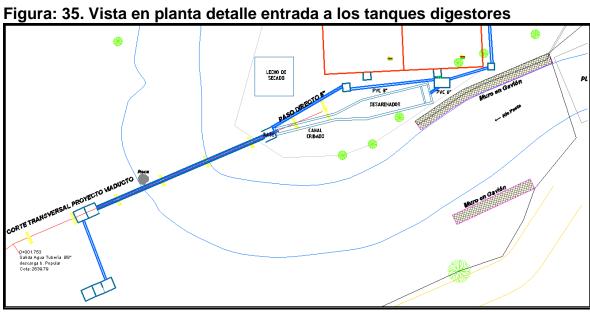
El diámetro de cada tanque será de 9.7 m y circulará un caudal teórico por cada unidad de 407.3 m³/día.

Se recomienda al consultor emplear un medio de soporte sintético con alta porosidad ya que un medio mineral con una baja porosidad aumentaría el volumen del tanque lo cual seria inadecuado debido a la poca disponibilidad de espacio.

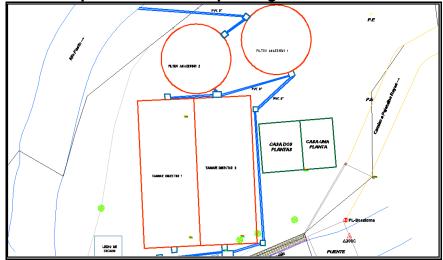
El consultor propone unas remociones teóricas las cuales satisfacen las exigencias del decreto 1594 de 1984, estas remociones se registraron en la tabla 40:

Tabla: 40. Remociones esperadas en la PTAR


	CARGAS R	EMOVIDAS	CARGAS EFLUENTE		
ELEMENTO	kg/día (DBO)	kg/día (SST)	kg/día (DBO)	kg/día (SST)	
AGUA RESIDUAL			179.22	203.66	
REJILLA	179.22	203.66	179.22	203.66	
DESARENADOR	8.96	20.37	170.26	183.29	
TANQUE DE DIGESTION DE DOBLE CAMARA	68.10	109.97	102.15	73.32	
FILTRO ANAEROBIO DE FLUJO ASCENDENTE	81.72	51.32	20.43	21.99	


Remociones teóricas obtenidas por el consultor:

Para la carga relacionada a DBO = 88.6% Para la carga relacionada a SST = 89.2%


El diseño de la planta de tratamiento requiere de un viaducto el cual le dará paso al agua captada del río Pasto, este viaducto fue diseñado teniendo en cuenta máximos caudales históricos para evitar un posible acarreo por crecida del río. El viaducto tiene una base en cada extremo en concreto reforzado de 3000 PSI. El medio de protección de la tubería es con cercha metálica.

Es necesario que en los planos entregados por el consultor se dimensionen correctamente todos los elementos de la planta. La vista en planta del sistema de tratamiento se presenta en las figuras 34, 35 y 36:

De acuerdo al análisis de suelos el lote de la planta tiene tres estratos identificados dentro de una profundidad total de 4.0 m; con suelo orgánico de espesor 0.2 m, suelo limo arenoso con profundidad de 0.8 m y conglomerado grueso a partir de 1.0 m de profundidad. De acuerdo al estudio no hay nivel de aguas freáticas. El estudio recomienda cimentar a 1.2 m de profundidad y cambiar el material retirado por recebo bien gradado con un 90% de compactación. El análisis recomienda un solado de fondo en concreto pobre de 0.10 m de espesor. Se recomienda a la consultoría realizar un ensayo teórico de los tanques funcionando a máxima capacidad para analizar su interacción con el suelo ya que se ha determinado que este tiene una capacidad portante de 1 kg/cm².

6.6.3 Presupuesto oficial. El presupuesto oficial está bien estructurado y esta subdividido por suministro y obra física. El A.U.I. es igual al 30% del presupuesto total pero no se calcula un porcentaje adicional por suministro, el cual es requerido por la alcaldía Municipal de Pasto y es igual al 6% del presupuesto total. En la tabla 41 se presenta un resumen para su entendimiento detallado:

Tabla: 41. Presupuesto oficial del proyecto

OBJETIVOS ESPECIFICOS	METAS	INDICADOR DE LA META	CANT	ACTIVIDAD	UNIDAD DE MEDIDA	CANT	TOTAL
				Const. de aliviadero	pun	-	2.234,412
				Const. bases viaducto	pun	2	1.114,900
Adecuar el sistema de alcantarillado para dirigir las aguas provenientes del barrio	Construir el alcantarillado desde el Barrio Popular a la		-	Const. de estructura metálica viaducto	pun	-	6.993,260
Popular hacia la PTAR	PTAR			Const. loza base de viaducto	Im.	20	631,360
				Inst. tubería y accesorios	E	82,6	2.483,438
	Verificar diseños en planta		-	Loc. y replanteo	m ²	3.030	1.711,950
				Const. de Campamento	pun	-	500,000
	Realizar las obras		•	Excavaciones	m ³	1.168	12.034,31
	preliminares			Retiro material sobrante	m	1.168	17.817,79
				Rellenos	m	804	17.481,99
		% de obra		Const. canal de cribado	pun	-	1.175,142
		terminada		Const. desarenador	pun	-	5.204,726
				Const. cámara de distribución de caudal	pun	-	369,279
Construir la planta de tratamiento de aguas residuales				Const. tanques de digestión	pun	2	143.372,98
			La .	Const. filtros de flujo ascendente	pun	2	83.063,834
	Realizar la obra civil		_	Inst. de codos de 8"	pun	4	365,300
				Inst. de válvulas de 8"	pun	2	7.113,750
				Inst. de tee de 4"	pun	6	1.481,240
			51	Inst. de tubería de 4"	m	24	413,580
				Col. lecho filtrante	m³	110	30.800,000
				Inst. de motobombas	pun	2	3.311,238
				Aseo general	qlb	1	1.312,972
				AUI	dlg	1	102.296,24
	TOTAL	AL					443.283,71

6.6.4 Observaciones adicionales.

El seguimiento del diseño se hizo de acuerdo al reglamento técnico RAS – 2000 titulo E ya que el consultor hizo un seguimiento de este manual. El diseño está bien realizado y no presenta deficiencias en su conceptualización.

6.6.5 Conclusiones.

Se debe garantizar un alto porcentaje de remoción de materia orgánica contaminante en este tipo de tratamientos ya que esta agua proveniente del río Pasto es re-usada para consumo humando en algunos sectores de la ciudad.

La inversión en proyectos de tratamiento de aguas residuales debe ser asumida y abarcada en todo el departamento, y se debe promover la concientización de las personas para evitar la contaminación de nuestros recursos naturales.

El reglamento Ras – 2000 es también un manual de diseño técnico con el cual se puede diseñar un buen sistema de tratamiento de aguas residuales siempre y cuando se tenga el criterio suficiente para asumir las características de los elementos a diseñar.

6.7 INTERVENTORÍA DE LA OBRA DE CONSTRUCCION PLANTA SEMICOMPACTA DE TRATAMIENTO DE AGUA POTABLE PARA LOS BARRIOS POPULAR Y ARNULFO GUERRERO

La secretaria de Gestión Ambiental bajo la supervisión oficial del Ingeniero Álvaro Martínez como funcionario representante y en colaboración del estudiante Julián Pascuaza Dulce realizó el seguimiento y la interventoría al proceso constructivo de la planta de tratamiento de agua potable para los barrios Popular y Arnulfo Guerrero. Teniendo en cuenta la naturaleza del proyecto, clasificado dentro de Licitación Pública, se realizó el contrato a un interventor externo para la ejecución de esta obra, identificándose tres partes en interacción permanente; el contratista, el interventor y el supervisor del proyecto.

6.7.1 Justificación del proyecto. Se tiene el compromiso de reducir en dos terceras partes la mortalidad infantil y disminuir a la mitad el déficit de coberturas en los servicios de agua potable y saneamiento básico, mejorando considerablemente la calidad de vida de los habitantes del sector.

En el mundo mas de 1000 millones de personas no tienen acceso a agua limpia y 2600 millones no tienen acceso a saneamiento adecuado, cada año mueren cerca

de 1.8 millones de niños menores de cinco años por diarrea y se constituye en la segunda causa de muerte infantil en el mundo.

En América Latina el 7% de las muertes de niños menores de cinco años son causadas por enfermedades asociadas con el agua No potable. En Colombia aproximadamente 25 de cada mil niños que nacen vivos no llegan a la edad de cinco años, 9% de las muertes son causadas por enfermedades asociadas con el agua.

Un incremento de un punto porcentual en cobertura reduce la tasa de mortalidad de menores en aproximadamente 5.5%

Por todas estas razones se hace latente la necesidad de dar soluciones rápidas y lo más efectivas para proporcionar un agua microbiológicamente segura y con bajos costos de operación

6.7.2 Descripción de los objetivos.

Objetivo general. Lograr una calidad de agua tratada apta para el consumo de todos los habitantes de los barrios Popular y Arnulfo Guerrero.

Objetivos específicos.

- Mejorar la calidad y condiciones de vida de la población.
- Implementar un sistema de tratamiento que garantice la remoción de microorganismos y componentes del agua nocivos para la salud.
- **6.7.3 Funcionamiento del sistema de potabilización.** Para comprender el funcionamiento de la planta, es necesario primero identificar cada uno de los procesos desde que entra el agua a tratar hasta que sale. En el sistema de tratamiento se identifican cinco procesos básicos, que son: sistema de tubería de entrada al sistema de tratamiento, canal de mezcla, floculador sedimentador, filtración y Desinfección. Cada uno de estos procesos se puede apreciar en la figura 37:

El anterior esquema muestra los equipos que componen la planta y el recorrido del caudal a tratar a través de todo el sistema de potabilización (flechas rojas); La planta esta conformada por:

- 1) Tubería entrada al sistema de tratamiento: Es una tubería o línea de conducción del agua cruda (sin tratar y no apta para consumo humano) desde la estructura de captación; la cual recolecta el agua a tratar desde la fuente natural superficial.
- **2) Canal de mezcla**: Es una pequeña estructura rectangular, destapada; la cual tiene en su interior unos pequeños bafles que obligan al agua a realizar un recorrido horizontal en zig zag. Posteriormente se encuentra un vertedero triangular a 90°; donde la agitación hidráulica producida por la pequeña caída de agua, combinada con el movimiento horizontal en zig zag; previo al vertedero; colaboran para una adecuada dilución de los químicos a emplear en el tratamiento de potabilización: coagulante y alcalinizante (o regulador de ph).
- **3) Floculador sedimentador**: Es un tanque con un compartimiento interno; donde el agua realiza un recorrido en zig zag, pero en sentido vertical; Esta nueva agitación de tipo hidráulico, sirve para que las partículas disueltas en el agua reaccionen con el químico coagulante y formen partículas más grandes llamadas flocs; por lo que el compartimiento interno se denomina compartimiento de floculación.

En el segundo compartimiento esta el compartimiento de sedimentación; donde se encuentran instalados los módulos de sedimentación acelerada tipo colmena. Tal como se observa en el esquema; el agua ingresa por la parte inferior al compartimiento de sedimentación proveniente del compartimiento de floculación.

Los módulos de sedimentación acelerada con inclinación a 45°; desvían las partículas o flocs formados en el proceso de floculación; hacia el fondo del tanque, a esto se le conoce como proceso de sedimentación ya que los flocs tienden a seguir la dirección del agua a 90°.

Una vez el agua atraviesa el compartimiento de sedimentación, de forma ascendente; se recolecta por rebose en la parte superior; ingresando a la canaleta perimetral de recolección instalada internamente en el perímetro externo del tanque; para ingresar al tanque – filtro.

4) Filtración: El agua ingresa al filtro, proveniente del tanque floculador – sedimentador; a través del tanque de carga (cilindro localizado en la parte superior del filtro).

El tanque de carga, conduce el agua a la parte inferior del filtro; donde el agua atraviesa un lecho filtrante; de forma descendente, compuesto por una capa de antracita, arena y grava.

El lecho filtrante retiene las partículas suspendidas más pequeñas que hubieran podido evadir el proceso de floculación – sedimentación. En la base del filtro se encuentra un sistema de recolección, compuesto por una red de tuberías perforadas; lo que garantiza recolección de agua y no arrastre de lecho filtrante.

El agua filtrada, se almacena en la parte superior del filtro y esta puede ser enviada al tanque de almacenamiento.

5) Desinfección: Para garantizar la total potabilización del agua tratada; se le aplica al agua una solución de cloro; la cual eliminará por completo cualquier rastro de microorganismos patógenos presentes en el agua (bacterias, algas, hongos, protozoos, virus, etc.). Este tipo de microorganismos por su microscópico tamaño; evaden fácilmente el proceso de filtración, por lo que es necesario eliminarlos mediante la aplicación de cloro.

Dosificación y aplicación de químicos. Para el tratamiento de agua potable, en esta planta se manejarán tres químicos:

Coagulante. Aglomera las partículas disueltas del agua; cambiando la polaridad de los iones que las componen; de esta forma hace que las partículas se unan entre ellas formando partículas aun más grandes y más fáciles de remover del agua. El coagulante utilizado es sulfato de aluminio (Al₂SO₄).

Desinfectante. Elimina el contenido de microorganismos patógenos en el agua, los cuales pueden llegar a causar graves enfermedades.

Se utilizarán soluciones de cloro como hipoclorito de sodio, por tener efecto residual en el agua; es decir que seguirá actuando una vez aplicado en el agua; lo que garantizará una acción desinfectante en el recorrido desde el tanque de almacenamiento hasta cada una de las viviendas.

Alcalinizante o nivelador de PH. Para una óptima reacción del coagulante, es necesario que el agua tenga un PH ligeramente básico; es decir, por encima de 7 unidades de pH; teniendo en cuenta que muchas aguas crudas pueden llegar a tener PH acido (por debajo de 7); es necesario subir el PH mediante la aplicación de una solución alcalinizante.

La aplicación de coagulante y desinfectante, tienden a disminuir el PH natural del agua, por lo tanto es necesario neutralizar la acidificación por la aplicación de dichos químicos, mediante la dosificación de una sustancia alcalinizante.

Como solución alcalinizante o niveladora de PH, se empleará la soda cáustica.

Punto de aplicación. El coagulante y el alcalinizante (o nivelador de PH); se aplican en la caja de mezcla; donde la agitación hidráulica allí generada, diluye uniformemente la dosis de químicos uniformemente en todo el caudal a tratar.

Dosificación. Si el agua llega con un alto grado de turbiedad será necesario aumentar la dosis de coagulante; si el agua cruda llega a la entrada de la planta con muy baja turbiedad, puedo disminuir la dosificación de coagulante.

Funcionamiento. Las bombas dosificadoras se encuentran conectadas a unos tanques plásticos, donde se preparan cada una de las soluciones a inyectarle al agua cruda para el proceso de potabilización, a través de unas mangueras plásticas por donde el químico es succionado.

La salida de las bombas, esta conectada a una segunda manguera, la cual conduce el químico hacia el punto de aplicación, según la dosificación seleccionada, dependiendo de la calidad y características del agua cruda.

6.7.4 Descripción del proceso. Las operaciones básicas del agua realizadas en la planta son las siguientes:

Sistema de llegada del agua cruda a la cámara de aforo y mezcla

- Cámara de Aforo, mezcla de productos químicos y agua cruda en un compartimiento de agitación hidráulica.
- Floculación o formación de flóculos en una cámara de aquietamiento de flujo ascendente.
- Sedimentación de las partículas pesadas y livianas (lodos) en un compartimiento dotado de módulos tipo TAS (Tubos inclinados) para acelerar el precipitado y el clarificado del agua.
- Filtración sobre lechos de arena y carbón activado alojados en un compartimiento dotado con boquillas fabricadas en polipropileno con ranuras de 0.4 mm para evitar el paso de arenas al tanque de almacenamiento.
- Sistema de auto lavado con agua tratada para la zona de filtración.
- Sistema de dosificación de químicos por medio de bombas de dosificación tipo diafragma.

6.7.5 Localización del proyecto. La planta de tratamiento se ubica 300 m arriba del barrio Popular, salida al oriente de la ciudad de San Juan de Pasto con una cota de terreno de 2666.80 m.s.n.m. y una cota piezométrica de 2680.50 m.s.n.m. con una presión de servicio de 13 m.c.a. En la tabla 42 se registra un resumen del proyecto en cuanto al tipo de contrato, su valor y objeto.

Tabla: 42. Referencias del contrato para el proyecto

TIPO DE CONTRATO	De invitación publica Nº. MP – DAIM – 096 – 2007 de fecha 14 de Diciembre				
	de 2008.				
ENTIDAD GESTORA	Secretaria de Gestión Ambiental.				
OBJETO DEL CONTRATO	Construcción del sistema de potabilización de agua para los barrios Popular y Arnulfo Guerrero.				
VALOR DEL CONTRATO	Doscientos veinte millones veinte y siete mil doscientos doce mda/cte. (\$220.027.212)				
DURACIÓN	Tres (3) meses.				

6.7.6 Personal en obra.

1 Ingeniero residente de obra.

- 1 Ingeniero residente de Interventoría.
- 1 Maestro de obra.
- 6 Oficiales

6.7.7 Maquinaria y equipo utilizado.

- 1 Tractor.
- 1 Volqueta (7m³).
- 1 Mezcladora de concreto.
- 1 Buggy.

Herramienta menor

Cascos, chalecos y demás equipos de seguridad y prevención.

El almacenamiento de equipo y materiales se hizo en una bodega temporal fabricada en madera.

6.7.8 Presupuesto oficial. El presupuesto presentado en la tabla 43 fue elaborado por la empresa Plantas de Tratamiento de Aguas y servicios LTDA de Bogotá, en donde la misma empresa tomó parte del suministro previo al contrato realizado en la Secretaria de Gestión Ambiental.

Tabla: 43. Presupuesto del proyecto

,	"DISEÑO, CONSTRUCCIÓN Y PUESTA EN MARCHA DE PLANTA DE TRATAMIENTO DE AGUA POTABLE COMPACTA DEL BARRIO POPULAR DEL MUNICIPIO DE PASTO - DEPARTAMENTO DE NARIÑO",						
ITEM	DESCRIPCION	UND	CANT.	VR UNITARIO	VR PARCIAL		
1	EQUIPOS Y TANQUES EN P.R.F.V.						
1.1	CAJA DE MEZCLA RÁPIDA Y AFORO CON VERTEDERO TRIANGULAR 90°	UN	1	1.693.750	1.693.750		
1.2	TANQUE FLOCULACIÓN - SEDIMENTACIÓN	UN	1	45.336.600	45.336.600		
1.3	MODULOS DE SEDIMENT. ACELERADA	M2	11	665.000	7.315.000		
1.4	TANQUES DE FILTRACIÓN DE CAPACIDAD 6.0 lps.	UN	2	25.079.400	50.158.800		
			SUBTOTAL	CAPITULO 1	104.504.150		
2	EQUIPOS METALMECÁNICA						

	T		1		
2.1	ESCALERA TUBO CON GUARDA-HOMBRE	ML	9	217.653	1.958.877
2.2	PASARELAS LÁMINA ALFAJOR 1/4"	ML	9	377.151	3.394.359
2.3	BARANDA TUBULAR	ML	16	89.013	1.424.208
			SUBTOTAL	CAPITULO 2	6.777.444
3	SISTEMA DE DOSIFICACIÓN DE QUÍMICOS			, ,	
3.1	SISTEMA DE DOSIFICACIÓN DE Al ₂ (SO ₄) ₃	UN	1	1.348.750	1.348.750
3.2	SISTEMA DE DOSIFICACIÓN DE CAL	UN	1	1.348.750	1.348.750
3.3	SISTEMA DE DOSIFICACIÓN DE CLORO	UN	1	9.868.750	9.868.750
3.4	KIT DE CLORO Y PH PARA 500 DETERMINACIONES	UN	1	855.000	855.000
			SUBTOTAL	CAPITULO 3	13.421.250
4	INSTALACIÓN, MONTAJE Y PUESTA EN MARCHA	1	T	1	
4.1	INSTALACIÓN Y MONTAJE	GL	1	12.508.000	12.508.000
4.2	PUESTA EN MARCHA	GL	1	5.700.000	5.700.000
			SUBTOTAL	CAPITULO 4	18.208.000
5	PLACA SOPORTE				
5.1	LOCALIZACIÓN Y REPLANTEO	M2	63	1.210	76.230
5.2	DESCAPOTE MANUAL	M2	63	1.385	87.255
5.3	EXCAVACIÓN MANUAL EN CONGLOMERADO	МЗ	31,5	11.025	347.288
5.4	RELLENOS RECEBO	МЗ	31,5	47.775	1.504.913
5.5	SOLADO EN CONCRETO 2500 P.S.I	МЗ	63	12.673	798.399
5.6	CONCRETO 3500 P.S.I IMP. PLACA DE	М3	10,8	304.007	3.283.276
5.7	ACERO DE REFUERZO PDR-60 (Fy 4200 kg/Cm²)	kg.	1.188,00	2.789	3.313.332
			SUBTOTAL	CAPITULO 5	9.410.692
6	CASETA DE CONTROL Y CERRAMIENTO				
7.1	CASETA CONTROL	M2	6	824.706	4.948.236
7.2	CERRAMIENTO EN MALLA ESLABONADA CON MURO ANTEPECHO Y VIGA DE AMARRE	ML	120	129.625	15.555.000
7.3	LUMNINARIA EXTERNA DOS LAMPARAS.	ML	1	1.800.000	1.800.000
			SUBTOTAL	CAPITULO 6	22.303.236
			TOTAL COS	STO DIRECTO	174.624.772
			ADMINISTRA	ACIÓN (12%)	20.954.973
			IMPRE	VISTOS (8%)	13.969.982
UTILIDAD (6%)				10.477.486	
COSTO TOTAL					220.027.212

6.7.9 Seguimiento de la obra de construcción. Empieza la etapa de construcción de la planta, para ello es necesario preparar el terreno, hacer el descapote y hacer el trazado del lote para empezar la construcción del paramento. Se instaló un By-Pass para la dotación del agua a los barrios. En esta semana se empezó a realizar el figurado del hierro de refuerzo las vigas de cimentación y las columnas del muro para todo el lote las vigas tienen un refuerzo longitudinal a flexión de ½ pulgada y un refuerzo a cortante de 3/8 de pulgada. Las columna tienen un refuerzo longitudinal de ½ pulgada y un refuerzo a cortante de 3/8 de pulgada.

La etapa de construcción empieza con el descapote del terreno y limitación del área de trabajo para lo cual fue necesario emplear maquinaria pesada como se observa en la fotografía 48:

Foto: 48. Actividades de descapote del terreno

A medida que se iba avanzando en la etapa de excavación y se iba transportando el material de construcción inicial como se aprecia en la figura 49, se despejaba y afirmaba el camino de acceso y el área de construcción de la futura planta.

Foto: 49. Transporte de materiales y equipo de trabajo

Cuando ya se finalizó la etapa de preparación del terreno, se procedió a trazar las áreas de cercamiento del sistema de tratamiento y de la caseta de desinfección, así mismo se realizó el figurado del hierro de refuerzo de las vigas de cimentación y las columnas del muro para todo el lote. Es recomendable hacer el seguimiento a los obreros para que realicen una buena limitación de lote y no se presenten problemas cuando empiece la construcción. Las vigas tienen un refuerzo longitudinal a flexión de 3/8 de pulgada y un refuerzo a cortante de 3/8 de pulgada. Las columnas tienen un refuerzo longitudinal de ½ pulgada y un refuerzo transversal de 3/8 de pulgada. Cuando ya se obtuvo el figurado del refuerzo de las vigas de los muros estas fueron las primeras en fundirse. Después de esta actividad se empieza a construir los muros en ladrillo tolete fino macizo en tizón para el perímetro del lote como se muestra en la foto 50.

Foto: 50. Construcción de muros perimetrales

La siguiente etapa consistió en realizar el figurado del área destinada para la construcción de la losa de cimentación del sistema de tratamiento, luego se fundió concreto ciclópeo para mejorar las condiciones del suelo de contacto y finalmente se realizó el figurado de las dos parrillas de la losa. La parrilla inferior tiene un diámetro de 3/8 de pulgada en las dos direcciones y la superior tiene un diámetro de ½ pulgada en las dos direcciones. La losa tiene 0.30 m de altura y el área de la losa es de 10.0 m x 6.0 m, en concreto reforzado de 3000 PSI. En la fotografía 51 se muestra el proceso de armado y construcción de la losa:

Foto: 51. Detalle de la losa del sistema de tratamiento

La caseta de desinfección esta conformada por un sistema aporticado en concreto reforzado con vigas de cimentación. Se procedió a realizar las excavaciones para fundir las zapatas de cimentación de la caseta de desinfección; las zapatas son aisladas cuadradas de dimensiones 0.8 m x 0.8 m de sección y 0.35 m de altura, ubicadas en las cuatro esquinas de la caseta, tienen un nivel de desplante de 0.5 m y una parrilla para retracción y variación por temperatura. La parrilla tiene un refuerzo de 3/8 de pulgada en las dos direcciones. Las zapatas se fundieron sobre una capa fina de concreto ciclópeo de limpieza.

Cuando se acabo de fundir las vigas de cimentación de los muros, se procedió a realizar el figurado de las vigas de amarre y las columnas de la caseta de desinfección y a construir las formaletas para empezar a fundir el concreto. Las columnas tienen una sección cuadrada de 0.20 x 0.20 m y las vigas una sección de 0.25 x 0.30 m. Las vigas tienen un refuerzo longitudinal a flexión de ½ pulgada y un refuerzo a cortante de ½ pulgada. Las columnas tienen un refuerzo longitudinal de ½ pulgada y un refuerzo a cortante de 3/8 de pulgada. El detalle de la etapa de figurado, la construcción de formaletas y la fundición inicial en las vigas de cimentación se muestra en las fotografías 52 y 53:

Foto: 52. Figurado, formaletas y fundición de las vigas de cimentación

Foto: 53. Preparación para fundición de losa

Montaje de la Planta de tratamiento de agua. En la foto 54 se muestra el montaje inicial de los elementos prefabricados componentes de la planta de tratamiento:

Foto: 54. Compartimentos de floculación y sedimentación de la planta

La principal característica de estas plantas semicompactas es que son prefabricadas y se pueden transportar e instalar fácilmente debido a las buenas características de los materiales que las componen, sin perder la calidad del tratamiento.

Se suministra e instala una plataforma con escalera de acceso a la parte superior de cada uno de los compartimientos que conforman la Planta de Tratamiento, construida en perfil estructural de acero, pintada con pintura epóxica.

Como se aprecia en la fotografía 55, el tanque de filtración es de forma cilíndrica y construido en PRFV (Poliéster Reforzado con Fibra de Vidrio), con una capacidad de hasta 3.75 lps, con un área de filtración de 2.55 m², 1.80 m de diámetro y 3.0 m de altura. Esta conformado internamente por un tanque de carga, lechos de arena, grava y antracita y un sistema de tubos ranurados recolectores de agua filtrada de 4 pulgadas de diámetro en PVC, recubiertos con PRFV

Foto: 55. Entrada al filtro

Los filtros cuentan con dos orificios de acceso para mantenimiento, uno exterior y otro ubicado en el falso fondo al interior para realizar el mantenimiento del colector estos accesos tienen un diámetro de 0.60 m.

Los cascos de los filtros de longitud igual al perímetro del cilindro se anclaron entre si a través de tornillos pasantes y la unión se selló interiormente con una resina isoftálica reforzada con tres capas de tela Matt y una de tela "Bowen Roving".

Estos cascos se transportaron al sitio, donde se cerraron a tope conformando anillos, los cuales se acoplaron unos sobre estos hasta configurar la altura del tanque.

El fondo se fabricó en sitio, se ensambló sobre la base de concreto, y posteriormente se construyó un extrarefuerzo como acople del fondo y la porción cónica.

La tapa se conforma por doce cascos independientes, los cuales se acoplan en el sitio mediante tortillería de acero galvanizado, se izó completa y se colocó sobre la porción cilíndrica ya ensamblada. Las fotografías 56, 57, 58, 59 y 60 registran los detalles del interior de los filtros.

Foto: 56. Detalle del interior del filtro, tubería de distribución por gravedad

Foto: 57. Salida del agua filtrada a la cámara repartidora de caudales

Foto: 58. Falso fondo y colector

Foto: 59. Falso fondo y orificio central para el flujo ascendente

Foto: 60. Tubo de distribución de agua

Las válvulas instaladas son tipo mariposa en hierro fundido con discos en acero. La tubería de salida de uno de los filtros se registra en las fotografías 61 y 62.

Foto: 61. Tubería de retrolavado y desagüe del compartimiento superior

Foto: 62. Tubería de lavado y desagüe del tanque Floculador - Sedimentador

Los tubos aceleradores de sedimentación dispuestos para el sistema de sedimentación, debido a su capacidad de resistencia y a las características del material se colocan cuando ya se acople todo el equipo prefabricado de floculación – sedimentación. Como se muestra en la foto 63, estos tubos que tienen forma de colmena están fabricados en acrilonitrilo butadieno stireno o ABS, los cuales son polímeros de alta resistencia mecánica e inertes a ataques químicos.

Foto: 63. Almacenamiento de los tubos aceleradores de sedimentación

Foto: 64. Caseta de desinfección

La losa de cubierta de la caseta tiene una área de 2.0 m x 5.0 m y un espesor de 0.15 m con refuerzo longitudinal de ½ pulgada en el sentido longitudinal y 3/8 de pulgada en sentido transversal. Los principales detalles tanto del interior como del exterior de la caseta se muestran en las fotografías 64 y 65.

Foto: 65. Tanques de preparación de soluciones y bomba centrifuga

Presentación de la Planta de tratamiento. En la fotografía 66 se observan los representantes de la Secretaria de Gestión Ambiental que estuvieron directamente relacionados con su ejecución. Como se muestra en la foto 67 destaca la construcción en poliéster reforzado con fibra de vidrio.

Foto: 66. Planta de tratamiento Popular – Arnulfo Guerrero

Foto: 67. Detalle planta fabricada en poliéster reforzado con fibra de vidrio

La cámara de medición fabricada en fibra de vidrio tiene un vertedero triangular y reglilla para aforar el caudal de entrada a la planta de tratamiento. Servirá para efectuar la mezcla y homogeneización del Floculante y el Alcalinizante, las dimensiones largo x ancho x alto son 1.80 m x 0.60 m x 0.60 m con un diámetro de entrada de 4 pulgadas y de 6 pulgadas de salida.

La floculación y sedimentación se hace en una unidad compacta de forma troncocónico con compartimientos dotada de un sistema de agitación de productos químicos hidráulico, floculador de flujo ascendente y sedimentador de alta tasa con flujo laminar. La unidad cónica tiene un a altura de 4.0 m, un diámetro de 4.50 m, una altura de cono de 2.0 m y una altura recta de 2.0 m. Esta unidad contiene el floculador y el sedimentador; el floculador de flujo ascendente tiene una altura de 4.0 m, un diámetro de 2.75 m y su funcionamiento es de agitación hidráulica con vértice. El sedimentador de alta tasa tiene una entrada por rebose laminar, con altura de 4.0 m, diámetro interno de 2.75 m y diámetro externo de 4.40 m. Los detalles de los elementos mencionados se muestran en la fotografía 68:

Foto: 68. Canal de mezcla, tanque floculador y tubos de sedimentación

Foto: 69. Salida del agua filtrada a la red de distribución

En la fotografía 70 se puede apreciar la tubería de lavado (izquierda), desagüe del compartimiento superior (superior derecha) y el desagüe del colector de fondo (inferior derecha).

Foto: 70. Detalle tuberías de salida de los filtros

Todo el sistema de dosificación fue diseñado para ser manejado mediante un tablero de control para así asegurar la dosificación exacta de los químicos en el momento indicado por el técnico como se indica en la fotografía 71.

En la fotografía 72 se puede observar la conexión del cilindro contenedor de cloro gaseoso y la salida por manguera a los filtros.

Foto: 71. Conexión de los tanques a las bombas dosificadoras

Foto: 72. Conexión de la bomba al cilindro de cloro gaseoso

Ensayo hidráulico de la planta. En el ensayo hidráulico mostrado en la fotografía 73 se puede apreciar el sistema de dosificación del alcalinizante hidróxido de calcio $(Ca(OH)_2)$ y del coagulante sulfato de aluminio (Al_2SO_4) a través de mangueras que se conectan desde la caseta.

Foto: 73. Circulación del agua cruda por el canal de mezcla

En la fotografía 73 también se puede apreciar que la presión de servicio del agua es de 10 lps, este valor se pudo obtener después de arreglar un problema en una válvula ventosa que se encontraba mas abajo del nivel dispuesto por diseño, lo cual causaba que esta funcionara mal y que se perdiera fuerza en la circulación del agua.

6.7.10 Actividades desarrolladas por la interventoría técnica. La Interventoría se desarrolló conforme a las especificaciones técnicas, pliegos de condiciones y demás recomendaciones suministradas por la Alcaldía Municipal de Pasto – Departamento de Infraestructura Municipal.

Esta labor esta orientada a ejercer el control y vigilancia de los aspectos técnicos, administrativos, financieros y ambientales de la ejecución del contrato celebrado entre el Municipio de Pasto y el Ingeniero Consultor. Así mismo se desarrollaron las siguientes funciones específicas:

- Programación de actividades desarrolladas para el cumplimiento del objeto del contrato.
- Análisis de planos, diseños y especificaciones del proyecto, el plan y programa del trabajo de los equipos y personal con que cuenta el contratista.
- Verificación de las inversiones realizadas por el contratista con los dineros recibidos en calidad de anticipo.
- Vigilancia de las normas establecidas para el medio ambiente y en particular revisión de que el contratista no cause perjuicios o daños a los ecosistemas en zonas próximas o adyacentes al sitio de la obra.
- Control sobre la calidad de los materiales y sistemas de construcción a fin de que se empleen los pactados y que se cumplan las condiciones de calidad.
- Medición de cantidades de obras ejecutadas en este periodo.
- Dar a conocer a la entidad contratante sobre las situaciones o hechos que afecten el desarrollo de los contratos.

6.7.11 Observaciones adicionales.

Se recomendó realizar el acoplaje de los elementos del desarenador de manera que no se presenten problemas de filtración ya que se presentó este problema en la instalación del primer desarenador. Para solucionar problemas de adherencia entre las partes de los elementos fue necesario emplear una resina poliéster catalizada de uso industrial.

Se recomendó reemplazar la llave de cierre para el acceso de agua a la planta por una válvula de cierre progresivo para evitar problemas de golpe de ariete los cuales se generaron por presiones elevadas las cuales también fueron reguladas por mantenimiento.

6.7.12 Conclusiones.

Hoy en día existen sistemas de tratamiento prefabricados de óptima calidad, relativamente fáciles de instalar y con óptimos resultados.

Es muy importante saber manipular la mayor cantidad de componentes de una planta de tratamiento ya que son indispensables para lograr un buen mantenimiento y para que esta trabaje en óptimas condiciones.

Aunque siempre saldrán al mercado nuevas estructuras con nuevos materiales fáciles de manipular siempre existirá una constante interacción de estos materiales con los materiales de ingeniería tradicionales.

El éxito del buen funcionamiento de una planta de tratamiento de estas características siempre depende de una óptima dotación de caudal para que la mezcla con los químicos se pueda hacer satisfactoriamente y evitar estancamientos en los tanques sedimentadores.

6.8 SEGUIMIENTO DE LA OBRA CONSTRUCCIÓN DE LA SEGUNDA FASE DEL SISTEMA DE ABASTECIMIENTO RURAL DE SANTA TERESITA.

La secretaria de Gestión Ambiental bajo la supervisión oficial del Ingeniero Álvaro Martínez como funcionario representante y en colaboración del estudiante Julián Pascuaza Dulce realizó el seguimiento y la interventoría al proceso constructivo de la segunda fase del sistema de abastecimiento para la vereda Santa Teresita – corregimiento de El Encano. Teniendo en cuenta la naturaleza del proyecto, clasificado dentro de Licitación Pública, se realizo el contrato a un interventor externo para la ejecución de esta obra, identificándose tres partes en interacción permanente; el contratista, el interventor y el supervisor del proyecto.

6.8.1 Justificación del proyecto. La comunidad de Santa Teresita, conformada por 104 familias, carecía de un sistema de agua potable; en su defecto, la gran

mayoría de los vecinos del sector acarreaban artesanalmente el agua desde varias fuentes dependiendo de la proximidad a los sitios de habitación. Ante la ausencia de un sistema de acueducto calificado para el consumo humano, el agua se tomaba sin ningún tipo de tratamiento.

La población hacia uso de la quebrada San Antonio la cual tiene un caudal de abastecimiento de 9 lps según aforos de CORPONARIÑO.

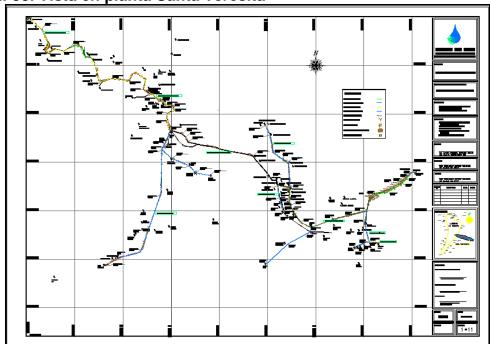
Teniendo en cuenta las anteriores consideraciones, fue necesario implementar un sistema de conducción del agua e instalación de tubería domiciliaria con cobertura para todos los habitantes de Santa teresita.

6.8.2 Descripción de los objetivos.

Objetivo general. Dotación permanente de agua potable a la población de Santa Teresita.

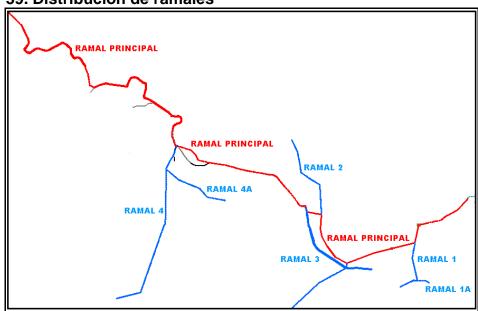
Objetivos específicos.

- Mejorar la calidad y condiciones de vida de la población.
- Instalación de la red de distribución de agua potable y las acometidas domiciliarias que cumplan con el abastecimiento a las 104 familias de Santa Teresita.
- Garantizar presiones adecuadas de servicio en todos los sectores en donde se requiera el uso del agua.
- **6.8.3** Descripción del proceso de construcción. El inicio del proyecto de instalación de la red de distribución de agua potable a la población de Santa Teresita e instalación de acometidas domiciliarias para 104 familias resumido en "Construcción de la segunda fase del acueducto de Santa Teresita" se realizó el 15 de Diciembre de 2008 efectuándose inicialmente el transporte y almacenamiento de la tubería requerida para la instalación de la red de distribución. Previamente se programaron reuniones con toda la comunidad ya que la excavación del suelo para la instalación y adecuación de la red de distribución y las acometidas domiciliarias la haría la población estableciendo un acuerdo económico con todas las personas que intervendrían prestando el servicio de mano de obra.


Foto: 74. Almacenamiento de tubería en Santa Teresita

6.8.4 Localización del proyecto.

Figura: 38. Vista en planta Santa Teresita



La vereda de Santa Teresita, pertenece al corregimiento de El Encano en el Municipio de Pasto. Carta Catastral 429 – IV – D – 2 del Instituto Geográfico Agustín Codazzi y tiene una altura promedio de 2870 m.s.n.m.

El proceso de ejecución de la segunda fase del acueducto empieza con la instalación de la red de distribución. Como se observa en las figuras 38 y 39, la red de distribución se divide en cuatro ramales y empieza en la abscisa k_0 + 578.02 m. El ramal principal que sigue el tramo de la carretera se diseño para una tubería RDE 26 y un diámetro de 3 pulgadas hasta la abscisa k_2 + 192.55, diámetro de 2.5 pulgadas hasta la abscisa k_3 + 558.7 y diámetro de 2 pulgadas

hasta la abscisa k_6 + 360.04. El ramal 1 con tubería de 1½ pulgadas y longitud de 448.7 m. El ramal 1A con tubería de ¾ pulgadas y longitud de 107.1 m. El ramal 2 con tubería de 1½ pulgadas y longitud de 742.06 m. El ramal 3 con tubería de 1½ pulgadas y longitud de 178.7 m. El ramal 4 con tubería de 1½ pulgadas y longitud de 1638.65 m. El ramal 4A con tubería de 1½ pulgadas y longitud de 576.46 m. La instalación de la tubería se hace siguiendo el tramo del ramal principal, los ramales secundarios se instalaron y empalmaron cuando acabó la instalación del ramal principal.

Figura: 39. Distribución de ramales

En la tabla 44 se registra un resumen del proyecto en cuanto al tipo de contrato, su valor y objeto.

Tabla: 44. Referencias del contrato para el proyecto

Tabla: 44. Referencias del contrato par	p
TIPO DE CONTRATO:	De invitación publica Nº. MP – DAIM –
	099 – 2007 de fecha 15 de Diciembre
	de 2008.
ENTIDAD GESTORA	Secretaria de Gestión Ambiental.
OBJETO DEL CONTRATO:	Construcción del sistema de
	abastecimiento Rural en la vereda
	Santa Teresita segunda etapa del Cgto.
	del Encano del Municipio de Pasto.
VALOR DEL CONTRATO:	Ciento doce millones seiscientos
	noventa mil ochocientos noventa y uno
	con sesenta y dos pesos mda/cte.
	(\$112.690.891.62)
DURACIÓN:	Tres (3) meses.

6.8.5 Personal en obra.

- 1 Ingeniero residente de obra.
- 1 Ingeniero residente de Interventoría.

Contrato a la población de Santa Teresita para mano de Obra e instalación de tubería.

6.8.6 Maquinaria y equipo utilizado.

1 Equipo de topografía.

Herramienta menor.

Se arrendó un garaje en una finca cercana para el almacenamiento de maquinaria, equipo y materiales de construcción.

6.8.7 Presupuesto, especificaciones, cantidades y acta de modificación.

El presupuesto oficial se realizó teniendo en cuenta la longitud total concebida en el diseño del acueducto, el cual se altero después de hacer un replanteo en el terreno cambiándose las cantidades en materiales como válvulas. La construcción de la cámara de quiebre no fue necesaria, ya que después de haber instalado la tubería completamente notamos que la presión no excedía los valores permitidos para la distribución del agua potable. También se realizaron cambios en el presupuesto calculado para instalaciones domiciliarias, ya que este gasto seria compartido por la comunidad y por el Municipio de Pasto. Se adicionaron gastos en la construcción de viaductos provisionales en madera, suministro e instalación de registros de incorporación para las acometidas y válvulas de control requeridas en la red de distribución. El siguiente presupuesto también fue modificado por el estudiante, ya que para la segunda fase era necesario actualizar el valor de los precios unitarios y también se requería aumentar ítems no contemplados en el suministro original. El resultado se registró en la tabla 45.

Estos documentos fueron firmados por el Ing. Hugo Ramiro Rosero Ortiz en calidad de Secretario de Gestión Ambiental, el Arq. Jorge Enríquez García en calidad de interventor delegado por la Secretaria de Gestión Ambiental, el Ing. Edgar Igua Paz en calidad de Sub-secretario de Gestión Ambiental y por el Ing. Carlos Castañeda en calidad de Contratista de la obra.

Tabla: 45. Presupuesto del proyecto

PROCESO DE SELECCIÓN ABREVIADA NUMERO MP-DAIM-2008-046 OBJETO:

EJECUCION DE LA OBRA DE CONSTRUCCION DE LA SEGUNDA FASE DEL ACUEDUCTO DE SANTA TERESITA CORREGIMIENTO EL ENCANO DEL MUNICIPIO DE PASTO

PRESUPUESTO, ESPECIFICACIONES Y CANTIDADES

	OBRA FISIO	A			
ITEM	DESCRIPCION	UND	CANT	VALOR UNT.	VALOR TOTAL
1	PRELIMINARES				
1.1	Localización y replanteo	ml	9.810,00	1.148,51	11.266.883,10
	SUBTOTAL				11.266.883,10
8	TUBERIA				
8.1	Excavación material común, 1.0 m profundidad	m3	5.365,78	9.579,13	51.399.504,17
8.4	Válvulas				
8.5	Válvula ventosa Ø=2" incluye accesorios y cajilla de inspección en ladrillo y tapa en Ccto de 0,60x0,60x0,60	und	9,00	362.684,88	3.264.163,92
8.6	Válvula ventosa Ø=1 1/2"" incluye accesorios y cajilla de inspección en ladrillo y tapa en Ccto de 0,60x0,60x0,60	und	8,00	362.684,88	2.901.479,04
8.7	Válvula de drenaje o purga Ø=3", incluye accesorios y cajilla de inspección en ladrillo y tapa en Ccto de 0,60x0,60x0,60	und	1,00	632.234,07	632.234,07
8.8	Válvula de drenaje o purga Ø=2 1/2", incluye accesorios y cajilla de inspección en ladrillo y tapa en Ccto de 0,60x0,60x0,60	und	2,00	536.941,23	1.073.882,46
8.9	Válvula de drenaje o purga Ø=2", incluye accesorios y cajilla de inspección en ladrillo y tapa en Ccto de 0,60x0,60x0,60	und	5,00	340.210,14	1.701.050,70
8.10	Válvula de drenaje o purga Ø=1 1/2", incluye accesorios y cajilla de inspección en ladrillo y tapa en Ccto de 0,60x0,60x0,61	und	8,00	326.593,50	2.612.748,00
	TOTAL VALVULA				12.185.558,19
9	CAMARA DE QUIEBRE				
9.1	Excavación	m3	8,00	9.579,13	76.633,04
9.2	Concreto 3000 PSI (losas)	m3	1,62	333.290,51	539.930,63
9.3	Mampostería en tizón	m2	6,00	54.590,67	327.544,02
9.4	Mampostería en soga	m2	1,50	26.723,05	40.084,58
9.5	Hierro 3/8"	kg	15,00	4.334,00	65.010,00
9.6	Hierro 1/2"	kg	190,00	4.334,00	823.460,00
9.7	Repello impermeabilizado 1:2	m3	0,50	522.302,16	261.151,08
9.8	Esmaltado impermeabilizado	m2	6,00	3.391,36	20.348,16
9.9	Coladera en lamina Ø=3"	und	1,00	109.964,42	109.964,42
9.10	Válvula de paso Ø=3"	und	3,00	60.597,20	181.791,60

10.	INSTALACION ACOMETIDAS	und	104,00	15.699,92	1.632.791,68
	SUBTOTAL				6.647.644,44
8.3.5	Instalación tubería PVC presión RDE 21 Ø = 3/4" US	ml	830,00	669,80	555.934,00
8.3.4	Instalación tubería PVC presión RDE 21 Ø = 1 1/2" US	ml	3.891,61	669,80	2.606.600,38
8.3.3	Instalación tubería PVC presión RDE 26 Ø = 2" UM	ml	2.973,25	669,80	1.991.482,85
8.3.2	Instalación tubería PVC presión RDE 26 \emptyset = 2 1/2" UM	ml	1.416,00	669,80	948.436,80
8.3.1	Instalación tubería PVC presión RDE 26 Ø = 3" UM	ml	813,96	669,80	545.190,41
8.3					
8	SUMINISTRO ACCESORIOS DOMICILIARIAS				
	RED DE DISTRIBUCION				
	TOTAL CAMARA DE QUIEBRE				3.552.919,67
9.17	Suministro e instalación válvula flotador para tanque de almacenamiento Ø=2"	und	1,00	347.498,15	347.498,15
9.16	Sistema de lavado incluye accesorios de 4"	und	1,00	31.187,07	31.187,07
9.15	Escalones en varilla 3/4"	und	4,00	10.457,75	41.831,00
9.14	Cono de ventilación Ø=2"	und	1,00	66.770,20	66.770,20
9.13	By - Pass en PVC 3" incluye accesorios	und	1,00	229.988,64	229.988,64
9.12	Rebose en PVC sanitaria Ø=2"	und	1,00	74.893,49	74.893,49
9.11	Tapa en lámina calibre 16 0.60x0.60	und	4,00	78.708,40	314.833,60

COSTO TOTAL DIRECTO OBRA FISICA		86.685.301,25
COSTO TOTAL DIRECTO AUI 30%		26.005.590,37
TOTAL		112.690.891,62

SON: Ciento doce millones seiscientos noventa mil ochocientos noventa y un pesos con sesenta y dos centavos moneda legal.

El presupuesto y precios unitarios del proyecto fueron actualizados de acuerdo a la lista de precios vigente facilitada por Infraestructura en donde también se requirió adicionar algunos elementos que no se contemplaron por el diseño original. Para registrar los ítems contemplados adicionalmente durante la obra se elaboró un documento oficial llamado **Acta de Modificación**, la cual se presenta en la tabla 46:

Tabla: 46. Acta de modificación del proyecto

	ALCALDIA de DASTO		BJETC	OBJETO DEL CONTRATO:	NTRATO:				<u>#</u>	CONTI	CONTRATO DE OBRA No 083316 DEL 2008 PROCESO DE SELECCIÓN ABREVIADA No. MP-DAIM- 2008-046	Jo 083316 DE BREVIADA N 46	il 2008 o. MP-DAIM-
			SECUC SEL ACI SEL MU	SION DE L UEDUCTO NICIPIO E	EJECUCION DE LA OBRA DE O DEL ACUEDUCTO DE SANTA ' DEL MUNICIPIO DE PASTO.	EJECUCION DE LA OBRA DE CONSTRUCCION DE LA SEGUNDA FASE DEL ACUEDUCTO DE SANTA TERESITA CORREGIMIENTO EL ENCANO DEL MUNICIPIO DE PASTO.	LA SEGUN MIENTO EL	DA FAS ENCA		VALOR TOTAL DEL CONTRATO:	L DEL	\$ 112.690.891,62	11,62
	Secretal de Gestión y Sancemiento Ambiental		ONTR	CONTRATISTA: II	NG. CARLOS	NG. CARLOS E. CASTAÑEDA C.			INIC FEC	FECHAS: INICIACION DE OBRA: PLAZO DEL CONTRAT FECHA DE TERMINAC	FECHAS: INICIACION DE OBRA: PLAZO DEL CONTRATO: FECHA DE TERMINACION	Diciembre 15 de 2008 Hasta diciembre 30 de	Diciembre 15 de 2008 Hasta diciembre 30 de 2008
		_	VTEVE	NTOR: AF	RQ. JORGE E	INTEVENTOR: ARQ. JORGE ENRIQUEZ GARCIA			INICIAL	A DE SUS	INICIAL ACTA DE SUSPENSIÓN No.	Diciembre 30 del 2008) del 2008
AC.	ACTA DE MODIFICACION No. 01	70000	SUPERVISOR: FECHA PRESE	SUPERVISOR: FECHA PRESENT	IE ACTA: Ma	E ACTA: Marzo 6 de 2009			91: 91:	A DE REII	01: ACTA DE REINICIACION No. 01:	Diciembre 19 del 2008 Marzo 5 de 2009	9 del 2008 2009
	CONDIC	CIONE	SORI	CONDICIONES ORIGINALES		CONDICIONES ANTERIORES	ERIORES				OBRA EJECUTADA	Ą	
			-	PRECIO	VALOR		10	OBRA	OBRA DE MAS	OBF	OBRA DE MENOS	CONDICIONE	CONDICIONES ACTUALIZADAS
E E	DESCRIPCION		CAN I	TINO		CAN	VALOR	CAN	VALOR	CANT	VALOR	CANT	VALOR
1	PRELIMINARES												
1,1	Localización y replanteo	Ē	9.810	1.148	11.266.883	9.810,00	11.266.883	1.064	1.222.703	00,00	0,00	10.874,60	12.489.586
		×			11.266.883		11.266.883		1.222.703		00'0		12.489.586
8	TUBERIA	9											
8,1	Excavación material comun, 1.0 mt profundidad	m3 £	5.365	9.579	51.399.504	5.365,78	51.399.504	00'0	0,00	300,88	2.882.168	5.064,90	48.517.335
					51.399.504		51.399.504	00,00	00'0		2.882.168		48.517.335
8,4	VALVULAS												
8.5	Valvula ventosa Ø=2" incluye accesorios y cajilla de inspección en ladrillo y tapa en Ccto de 0,60x0,60x	pun	00'6	362.684	3.264.163	00'6	3.264.163	00,0	00'0	9,00	3.264.163	00'0	0,00
8.6	Valvula ventosa Ø=1 1/2"'' incluye accesorios y cajilla de inspección en ladrillo y tapa en Ccto de 0,60x0,60x0,60	pun	8,00	362.684	2.901.479	8,00	2.901.479	13,00	4.714.903	00'0	00'0	21,00	7.616.382

<u> </u>			<u> </u>	_														_	_		
632.234	00'0	2.041.260,84	1.632.967,50	11.922.844		00'0	00'0	0,00	00'0	00'0	00'0	00'0	00'0	0,00	00'0	00'0	00'0	00'0	00'0	00'0	00'0
1,00	00'0	6,00	5,00			00'0	00'0	0,00	0,00	00'0	00'0	00'0	00'0	0,00	00'0	00'0	00'0	00'0	00'0	00'0	00,00
00,0	1.073.882	00.0	979.780	5.317.826		76.633	539.930	327.544	40.084	65.010	823.460	261.151	20.348	109.964	181.791	314.833	74.893	229.988	66.770	41.831	31.187
00'0	2,00	00.0	3,00			8,00	1,62	00'9	1,50	15,00	190,00	0,50	00'9	1,00	3,00	4,00	1,00	1,00	1,00	4,00	1,00
00'0	00'0	340.210	00'0	5.055.113		00'0	00'0	00'0	00'0	00'0	00'0	00'0	00'0	00'0	00'0	00,00	00'0	00'0	00,00	00'0	00,00
0,00	00'0	1,00	00'0			00'0	00'0	00'0	00'0	00'0	00'0	00'0	00'0	00'0	00'0	00'0	00'0	00'0	00'0	00'0	00,0
632.234	1.073.882	1.701.050	2.612.748	12.185.558		76.633	539.930	327.544	40.084	65.010	823.460	261.151	20.348	109.964	181.791	314.833	74.893	229.988	66.770	41.831	31.187
1,00	2,00	5,00	8,00			8,00	1,62	6,00	1,50	15,00	190,00	0,50	00'9	1,00	3,00	4,00	1,00	1,00	1,00	4,00	1,00
632.234	1.073.882	1.701.050	2.612.748	12.185.558		76.633	539.930	327.544	40.084	65.010	823.460	261.151	20.348	109.964	181.791	314.833	74.893	229.988	02.770	41.831	31.187
632.234	536.941	340.210	326.593			9.579	333.290	54.590	26.723	4.334	4.334	522.302	3.391	109.964	60.597	78.708	74.893	229.988	022.99	10.457	31.187
1,00	2,00	5,00	8,00			8,00	1,62	00'9	1,50	15	190	0,50	00'9	1,00	3,00	4,00	1,00	1,00	1,00	4,00	1,00
pun	pun	pun	pun			т3	m3	m2	m2	kg	kg	m3	m2	pun	pun	pun	pun	pun	pun	pun	pun
Válvula de drenaje o purga Ø=3", incluye accesorios y cajilla de inspección en ladrillo y tapa en Ccto de 0,60x0,60x0,60	Válvula de drenaje o purga Ø=2 1/2", incluye accesorios y cajilia de inspección en ladrillo y tapa en Ccto de 0,60x0,60x0,60x0,60	Válvula de drenaje o purga Ø=2", incluye accesorios y cajilla de inspección en ladrillo y tapa en Ccto de 0,60x0,60x0,60	Válvula de drenaje o purga Ø=1 1/2", incluye accesorios y cajilia de inspección en ladrillo y tapa en Ccto de 0,60x0,60x0,61		CAMARA DE QUIEBRE	Excavación	Concreto 3000 PSI (losas)	Mamposteria en tizón	Mamposteria en soga	Hierro 3/8"	Hierro 1/2"	Repello impermeabilizado 1:2	Esmaltado impermeabilizado	Coladera en lamina Ø=3"	Válvula de paso Ø=3"	Tapa en lámina cálibre 16 0.60x0.60	Rebose en PVC sanitaria Ø=2"	By - Pass en PVC 3" incluye accesorios	Cono de ventilación Ø=2"	Escalones en varilla 3/4"	Sistema de lavado incluye accesorios de 4"
8.7	8.	8.9	8.10		6	9.1	9.2	9.3	9.4	9.5	9.6	9.7	9.8	6.6	9.10	9.11	9.12	9.13	9.14	9.15	9.16
								_													

válvula flotador para tanque de almacenamiento Ø=2"	pun	1,00	347.498	347.498	1,00	347.498	00'0	0,00	1,00	347.498	00°0	0,00
				3.552.919		3.552.919		0,00		3.552.919		0,00
RED DE DISTRIBUCION												
SUMINISTRO ACCESORIOS DOMICILIARIAS												
Instalación tubería PVC presión RDE 26 Ø = 3" UM	E 8	813,96	08'699	545.190,41	813,96	545.190,41	00'0	0,00	21,96	14.708,81	792,00	530.481,60
Instalación tubería PVC presión RDE 26 Ø = 2 1/2" UM	E	1.416,00	08'699	948.436,80	1.416,00	948.436,80	00'0	00'0	24,00	16.075,20	1.392,00	932.361,60
Instalación tubería PVC presión RDE 26 Ø = 2" UM	ml 2.9	2.973,25	08'699	1.991.482,85	2.973,25	1.991.482,85	00'0	0,00	21,25	14.233,25	2.952,00	1.977.249,60
Instalación tubería PVC presión RDE 21 Ø = 1 1/2" US	ml 3.8	3.891,61	08'699	2.606.600,38	3.891,61	2.606.600,38	00'0	0,00	21,61	14.474,38	3.870,00	2.592.126,00
Instalación tubería PVC presión RDE 21 Ø = 3/4" US	lm 8	830,00	08,80	555.934,00	830,00	555.934,00	00'0	0,00	710,00	475.558,00	120,00	80.376,00
				6.647.644,44		6.647.644,44		0,00		535.049,64		6.112.594,80
	1 pun	104,00	15.699,92	1.632.791,68	104,00	1.632.791,68	00'0	0,00	104,00	1.632.791,68	00,00	0,00
ITEM NUEVOS												
Viaductos provicionales en madera rollisa	E		30.050,10		00'0	00'0	86,00	2.584.308,6 0	00,00	00'0	86,00	2.584.308,60
Suministro e instalción Registro de incorporación	pun		31.175,92		00'0	00'0	104,0 0	3.242.295,6 8	00,00	00'0	104,00	3.242.295,68
Válvula de control de \emptyset Let \mathbb{Z} Le	pun		518.423,06		00'0	00'0	1,00	518.423,06	00'0	0,00	1,00	518.423,06
Válvula de control de Ø = 21/2"	pun	.,	330.976,64		00'0	00'0	2,00	661.953,27	00'0	0,00	2,00	661.953,27
Válvula de control de Ø = 11/2"	pun	.,	317.979,28		00'0	00'0	2,00	635.958,56	00'0	00'0	2,00	635.958,56
								7.642.939,1 7		0,00		7.642.939,17
соѕто рівесто				86.685.301,25		86.685.301,2 5		13.920.756, 50		13.920.756,50		86.685.301,25
A.U.I. 30 %				26.005.590,37		26.005.590,3 7		4.176.226,9 5		4.176.226,95		26.005.590,37
COSTO TOTAL DEL				112.690.891,6 2		112.690.891, 62		18.096.983, 45		18.096.983,45		112.690.891,62

6.8.8 Localización y replanteo. El proyecto sigue de acuerdo a las especificaciones del diseño oficial y el replanteamiento encontrado de la construcción de la primera fase del acueducto.

Se encontraron problemas en algunos pasos de quebradas y acequias, en donde no era posible pasar la tubería sin la ayuda de un viaducto o una estructura que sirviera de soporte a la tubería, pues si no se acondicionaban estructuras de este tipo se reduciría la calidad de conducción del agua y se expondría a las instalaciones a daño permanente por las condiciones naturales del terreno. Este problema se considero un imprevisto ya que el diseñador no tuvo en cuenta las condiciones del terreno en que se ubicaría la tubería y por lo tanto no diseño o planeo un sistema adecuado para su instalación, entonces fue necesario analizar y optar por la alternativa mas viable y económica teniendo en cuenta que el presupuesto destinado era el justo y no alcanzaría para una inversión grande como lo implica la construcción y adecuación de viaductos a lo largo de la red de distribución obedeciendo así a lo planteado por el reglamento RAS 2000 B.7.5.6.

Como se menciono anteriormente los problemas de paso de tubería se identificaron en los siguientes puntos:

Dentro del ramal principal en la abscisa K2+680 m a 2808.81 m.s.n.m. medidos con GPS, en donde se debe tener en cuenta que el Pontón (puente en madera) construido por la comunidad y ya con mucho uso afecta por su ubicación a la tubería a instalar y al alcantarillado de la Población. En la abscisa K3+044.06 m a 2800.21 m.s.n.m. medidos con GPS.

Dentro del ramal dos en la abscisa K0+164.52 m a 2837.45 m.s.n.m. medidos con GPS se requiere una estructura de paso que cubra 8 m de longitud ya que aunque la longitud a cuidar es de 20 m se podría enterrar la tubería 12 m siguiendo la trayectoria del terreno. En la abscisa K0+525.07 m a 2832.1 m.s.n.m. medidos con GPS se requiere una cercha de 10 m.

Dentro del ramal cuatro en la abscisa K0+264 m se requiere una cercha de 6 m. En la abscisa K2+680 m se requiere una cercha de 4 m. En la abscisa K0+954.53 m se requiere una cercha de 6 m. En la abscisa K1+205.76 m se requiere una cercha de 6 m. En la abscisa K1+395.62 m se requiere una cercha de 6 m.

Para la solución de viaductos se analizaron dos alternativas: La primera consistía en optar por enterrar la tubería y hacer un tramo corto de cercha ya que las condiciones topográficas lo permitían y no se interfería con la calidad de la conducción del agua. La otra opción era construir viaductos provisionales en madera rolliza. Así mismo se descarto una propuesta del ingeniero contratista que consistía en hacer viaductos para tramos completos debido al costo de la propuesta.

Debido a la falta de disponibilidad presupuestal le fue imposible a la Comunidad de Santa Teresita y al Municipio contar un sistema de viaductos en todos los puntos mencionados, ya que la inversión implicaría para cada caso cerchas metálicas triangulares con anticorrosivo en varilla de diámetro ½ pulgada, transporte e instalación, así mismo el cimiento y el apoyo en concreto simple de 3000 PSI. Se optó como medida provisional realizar en colaboración con la comunidad viaductos en madera rolliza los cuales reducirían en la mitad el valor de la inversión estimada para estos sistemas de protección y paso de tubería.

6.8.9 Acarreo de materiales. La comunidad asume las actividades de acarreo de materiales, excavación y relleno de las zanjas para la instalación de las tuberías, estas funciones fueron acordadas en las mingas organizadas por la Secretaria de Gestión Ambiental antes de empezar la construcción de la primera fase del acueducto en donde se establecieron los valores para el pago de mano de obra, con estos valores y determinando un rendimiento de una persona del sector y la cantidad que se logra acarrear por esta en un día se obtiene un total del costo general de esta actividad.

6.8.10 Proceso de excavación. El proceso de instalación de la tubería se realizó en un ramal principal y cuatro ramales secundarios. El ramal principal sigue el trayecto de la vía Pasto – Santa Teresita borde derecho.

La tubería se ubicó a una profundidad de 1.20 m bajo la superficie para tramos rectos teniendo en cuenta las características del terreno de naturaleza húmeda debido a la pluviosidad de la zona. La localización de los tramos se realizó con la guía de los planos de diseño y las carteras de campo registradas por la topografía contratada para el proyecto, la responsabilidad de la excavación y el control de mano de obra la ejerció el ing. Contratista Carlos Castañeda.

En la visita y recorrido al tramo del acueducto junto con el contratista se pudo observar la carencia del diseño de viaductos en algunos pasos de tubería proyectada en el diseño, y la tubería y manguera vieja a la intemperie expuesta al paso del ganado y al maltrato por el trancito obligado de los ganaderos en épocas de lluvia. En las fotografías 75 y 76 se muestran algunas de las condiciones defectuosas encontradas en el tramo que comprende el paso de la red de distribución proyectada por el diseño del acueducto de Santa Teresita. Las actividades iniciales de excavación para la instalación de los primeros tramos de tubería se coordinaron gracias a la colaboración de la población de Santa Teresita, algunos detalles se muestran el la fotografía 77 y 78.

Foto: 75. Tubería y manguera expuesta al transito

Foto: 76. Pasos obligados de la tubería nueva

Foto: 77. Actividades de excavación iniciales

El objetivo de la instalación de tubería, es garantizar una presión de agua que sea suficiente para abastecer a las casas beneficiadas.

Foto: 78. Tubería transportada al lugar de trabajo

Como se había mencionado anteriormente, se encontraron algunas depresiones que debido a la topografía afectarían el paso adecuado de la tubería, en algunos casos se pudo evitar la construcción de viaductos enterrando la tubería para evitar su rompimiento por falta de apoyo en puntos intermedios, estas actividades se observan en la fotografía 79.

Foto: 79. Tubería enterrada de acuerdo a la topografía del terreno

Estas alternativas fueron supervisadas en su totalidad por representantes de la Secretaria de Gestión Ambiental para garantizar la calidad del trabajo evitando fallas prematuras en la conducción del agua.

Los trabajos de excavación e instalación de tubería proyectados como se muestra en la fotografía 80, se realizaron sin inconvenientes ya que el proyecto tiene tramos rectos de gran longitud, reduciéndose así la dificultad del trabajo para la comunidad.

Foto: 80. Proceso de instalación de tubería

Debido a las condiciones de la topografía fue necesario hacer construcciones alternas para garantizar la instalación adecuada de la tubería como viaductos en madera rolliza para garantizar la vida útil de la tubería. En la fotografía 81 se puede apreciar que la tubería ya se instalo lo cual no fue problema por que no estaba habilitada para el paso del agua potable.

Foto: 81. Medición para construcción de viaductos

Durante el proceso de instalación de la tubería, la manguera de conducción existente se corrió a un costado de la excavación para así permitir la dotación continua del agua a las viviendas de Santa Teresita. Se anclaron soportes provisionales en madera para evitar el desbordamiento de la excavación, debido a la naturaleza húmeda del suelo.

La excavación para instalar la tubería se alterno con la excavación de cajillas de protección de las válvulas propuestas en el diseño como se muestra en la fotografía 82:

Foto: 82. Excavación para construcción de cajillas de seguridad

En la fotografía 83 se muestra una solución provisional para proteger la tubería expuesta al medio:

Foto: 83. Viaductos en madera rolliza

Instalación y ensayo de válvulas. Las válvulas ventosas se ensayaron y se obtuvo una presión aceptable en los puntos críticos de la conducción. Se emplearon unas válvulas purga y ventosas plásticas, debido a las condiciones de humedad que caracterizan al Corregimiento del Encano. Estas válvulas plásticas de marca PAVCO tienen un buen rendimiento y resistencia a altas presiones. El detalle de las válvulas y las cajillas de seguridad se aprecia en la fotografía 84.

Foto: 84. Válvula ventosa protegida por cajilla

También se evaluó el funcionamiento de las válvulas purga como se indica en la fotografía 85:

Foto: 85. Ensayo de válvula purga

Las válvulas de control, las válvulas ventosa que no se encontraban en los viaductos y las válvulas purga se protegieron con cajillas de 0.60 m x 0.60 m.

6.8.11 Actividades desarrolladas por la interventoría técnica. La Interventoría se desarrolló conforme a las especificaciones técnicas, pliegos de condiciones y demás recomendaciones suministradas por la Alcaldía Municipal de Pasto – Departamento de Infraestructura Municipal.

Esta labor esta orientada a ejercer el control y vigilancia de los aspectos técnicos, administrativos, financieros y ambientales de la ejecución del contrato celebrado entre el Municipio de Pasto y el Ingeniero Consultor. Así mismo se desarrollaron las siguientes funciones específicas:

- Programación de actividades desarrolladas para el cumplimiento del objeto del contrato.
- Análisis de planos, diseños y especificaciones del proyecto, el plan y programa del trabajo de los equipos y personal con que cuenta el contratista.
- Verificación de las inversiones realizadas por el contratista con los dineros recibidos en calidad de anticipo.
- Vigilancia de las normas establecidas para el medio ambiente y en particular revisión de que el contratista no cause perjuicios o daños a los ecosistemas en zonas próximas o adyacentes al sitio de la obra en colaboración con la población de Santa Teresita.

- Control sobre la calidad de los materiales y sistemas de construcción a fin de que se empleen los pactados y que se cumplan las condiciones de calidad.
- Medición de cantidades de obras ejecutadas en este periodo.
- Dar a conocer a la entidad contratante sobre las situaciones o hechos que afecten el desarrollo de los contratos.

6.8.12 Observaciones adicionales.

Debido a que no se había perforado el desagüe de una de las cajillas antes de poner a circular el agua se inundaron debido a que se accionó una válvula purga, este hecho se indica en la fotografía 86.

Foto: 86. Inundación de la cajilla por que no se instaló un desagüe

Como se aprecia en la fotografía 87, se presentaron inconvenientes como el rompimiento de un tramo de tubería debido a que se instalo un codo de 90º para hacer un cambio de dirección, ya que este codo era de radio corto y se contaba con una alta presión de agua, se produjo un golpe de ariete ocasionando el rompimiento de la tubería, para solucionar este problema se cortó el flujo de agua y se cambio el codo por un codo de radio amplio suavizando así el cambio de dirección.

Foto: 87. Rompimiento de tubería

Se recomendó a la población cubrir los viaductos con pintura epóxica para prevenir ataques químicos y para mayor resistencia a la humedad y la abrasión.

Foto: 88. Viaductos con pintura epóxica

Presiones. La instalación de la tubería para Santa Teresita garantizó presiones de agua óptimas medidas en los puntos críticos de la red (estos son los puntos ubicados a mayor altura). Con estas presiones se garantiza la buena calidad y continuidad del servicio a todas las viviendas consideradas durante el proyecto. Se revisaron todas las presiones a lo largo del acueducto, en la fotografía 89 se pueden apreciar algunos valores medidos:

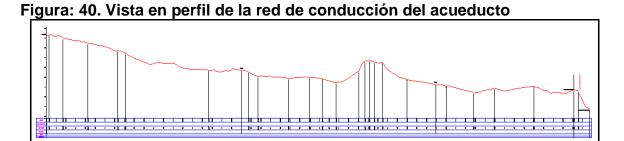
Foto: 89. Registro de presiones en varios puntos

6.8.11 Conclusiones.

Se deben hacer los anclajes de tubería necesarios para garantizar una buena sujeción de esta cuando existan presiones altas de servicio. También se deben instalar uniones de excelente calidad y siempre pensando en que codos de radio corto pueden perjudicar a la tubería hasta llegar al rompimiento.

Se debe reiterar a los obreros hacer las construcciones de los diferentes componentes del acueducto siempre con un orden determinado para evitar contratiempos o daño permanente de los materiales recién instalados.

Siempre que sea necesario aunque no lo determine el diseño se debe optar por construir estructuras como cámaras de quiebre o viaductos que garanticen la preservación de la tubería de conducción.


6.8.12 Recomendaciones.

El diseñador de todo proyecto de acueducto o alcantarillado siempre debe tener una referencia detallada del terreno y su topografía, ya que se debe analizar el paso adecuado de la tubería y contemplar las depresiones naturales del suelo.

6.9 ASISTENCIA TÉCNICA ACUEDUCTO POPULAR - ARNULFO GUERRERO

- **6.9.1 Problema.** Se presentaron problemas de presión y abastecimiento. Este tipo de deficiencia es notable ya que no se cumple con el abastecimiento a las poblaciones del popular y Arnulfo Guerrero. Se debe tener en cuenta que este acueducto transporta un caudal máximo de 10 lps y se esta acondicionando una planta de tratamiento para agua potable que beneficiará a los dos barrios y que la evaluación hidráulica no se podrá hacer hasta que se obtenga una presión característica del acueducto funcionando en optimas condiciones.
- **6.9.1.1 Solución parcial.** El procedimiento fue revisar los componentes de la conducción como válvulas y tubería para determinar el origen del problema. A continuación se expone una descripción del proceso el cual es entregado como informe a la Secretaria de Gestión Ambiental.

6.9.1.2 Visita técnica 1. Los datos de entrada son los siguientes:

La planta de tratamiento a la cual llega la conducción de agua requiere de una buena dotación de caudal para poder realizar el ensayo hidráulico por lo tanto la solución de este problema se vio como una etapa complementaria a la puesta en marcha de la planta indicada en la fotografía 90.

Foto: 90. Planta para los barrios Popular y Arnulfo Guerrero

6.9.1.3 Procedimiento. El procedimiento inicial como se aprecia en la fotografía 91, fue hacer un recorrido de la línea de conducción desde la planta hacia la quebrada Dolores que es paso de la conducción, revisando el estado y funcionamiento de todas las válvulas ventosas que se encontraban en la conducción. La primera válvula encontrada en este sentido se referencia a continuación.

Foto: 91. Revisión de válvula ventosa

Debido a que la cantidad de agua que circulaba era minima, no se pudo determinar si esta válvula se encontraba funcionando correctamente, ya que un primer paso seria revisar la salida de aire cuando el viento aumenta, pues esta debe actuar de inmediato para repeler el aire generado en el interior de la tubería.

Seguidamente revisamos la llave de paso encontrada a 20 m de la primera válvula; esta llave se encontraba sumergida en lodo y por lo tanto fue necesaria la ayuda del fontanero para revisar si esta se encontraba en condiciones adecuadas de trabajo.

La siguiente válvula encontrada fue destapada para revisión ya que posiblemente no había salida de aire, por este motivo fue destapada, desarmada y revisada, encontrándose que esta estaba cubierta de barro seco y por lo tanto el flotador no podía ascender para eliminar el aire. Se dejó lavar la carcasa de la válvula y luego se armo, después pudimos notar que la salida de aire era adecuada. Esta válvula indicada en la fotografía 92, se ubica en el punto más alto de la conducción y según el plano debe estar ubicada en la abscisa k1 + 650.00 m.

Foto: 92. Revisión de válvula ventosa

Esta válvula no se encontraba en el punto mas alto de esa zona de la conducción por lo tanto este puede ser un motivo por el cual no se elimina adecuadamente el aire de la tubería y se produce la retención del flujo de agua.

Aunque este tipo de defectos en la válvula entorpece el funcionamiento del sistema, no hace que se corte completamente el abastecimiento, por lo tanto decidimos seguir con el recorrido para así ubicar el punto exacto en donde pudo haberse perdido la presión del agua.

La siguiente válvula encontrada era una purga la cual se destapó y reviso para evaluar su funcionamiento. Esta válvula hace el desagüe sobre una depresión natural paralela a la vía de acceso por donde circulan también aguas subterráneas. El procedimiento para revisar la presión fue derivar la conducción de

agua al desagüe y medir la presión con un manómetro, esta actividad se observa en la fotografía 93. La presión medida con dificultad no era suficiente por lo que seguimos el recorrido hacia la quebrada Dolores.

Foto: 93. Revisión de válvula purga

La presión de agua encontrada en el siguiente punto era buena por lo que se concluyó que el error estaba o en una tubería perforada o en la válvula ventosa ubicada en el punto más alto del recorrido mencionada anteriormente.

6.9.1.4 Diagnóstico inicial. Si existe una tubería perforada y por lo tanto una filtración del agua (de ahí la perdida de agua y de presión) es necesario hacer una revisión del tramo de conducción y evaluar el error se recomendó hacer excavaciones para revisar el estado de la tubería.

6.9.1.5 Visita técnica 2. Como se aprecia en las fotografías 94 y 95, se adelantaron las excavaciones para revisar el estado de la tubería de conducción en el tramo quebrada Dolores – planta de tratamiento. Debido a las diferente profundidades se contrató un tractor para agilizar la excavación y encontrar la tubería mas rápidamente. Este proceso fue supervisado casi en su totalidad ya que era muy importante evitar un daño en la red principal o en alguna acometida por el mal uso de la maquinaria.

Foto: 94. Excavaciones para revisión de tubería

Foto: 95. Excavación mecánica para revisión de tubería

En los tramos en donde la tubería estaba enterrada más de 2 m, fue necesario emplear un tractor para realizar la excavación mecánica y garantizar la eficiencia de la actividad. Para evitar el rompimiento de la tubería se continuaba la excavación manualmente como se indica en la fotografía 96.

Foto: 96. Excavación manual complementaria

Con las actividades de excavación se concluyó que el error de conducción no se daba por falla en perforación de tubería.

La otra alternativa es la reubicación de la válvula ventosa ubicada en la abscisa k1 + 650.00 m.

Esta válvula por requerimiento se debe ubicar en el punto mas alto de la conducción pero en terreno se observa que no es así, entonces se ve necesario reubicar la válvula al lugar dispuesto por el diseño originalmente como se indica en la figura 41:

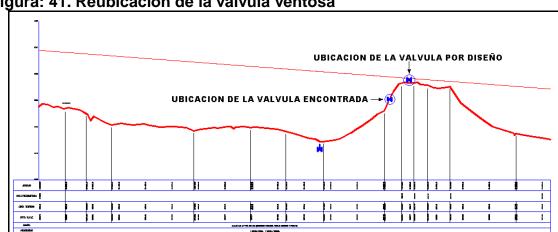


Figura: 41. Reubicación de la válvula ventosa

La reubicación de la válvula cumplió con las expectativas esperadas para la dotación de agua. La garantía del éxito del trabajo radica en que se pudo realizar el ensayo hidráulico de la planta de tratamiento con un caudal de dotación de 10 lps indicado en la fotografía 97.

6.9.1.6 Conclusiones.

Es muy importante la supervisión técnica permanente de un ingeniero residente en obras de construcción de sistemas de acueducto, siempre guiada por las especificaciones de diseño del proyecto.

Se debe hacer un mantenimiento periódico uniformemente de todo el sistema de acueducto para evitar el desgaste y el mal funcionamiento de los elementos que lo conforman.

Cuando se realicen actividades de excavación mecánica se debe complementar con excavación manual para evitar el rompimiento de la tubería.

Las actividades de mantenimiento se deben efectuar en el menor tiempo posible para garantizar el retorno del servicio a la población que hace uso continuo del recurso hídrico.

Las fichas componentes de la Metodología General Aplicada, resumido en ficha MGA, se presentan en los anexos como ANEXO A. Ficha MGA.

El registro y concepto de viabilidad presupuestal de los proyectos adelantados en la preinversión, se presenta en los anexos como ANEXO B. Registro y concepto de viabilidad.

Se presentan las actas de inicio, final y de liquidación bilateral, así como la factura del contrato de suministro de tubería y materiales para la segunda fase del sistema de abastecimiento rural de Santa Teresita. Para los demás proyectos se realizó el mismo procedimiento, por lo cual solo se adjuntaran las actas de inicio como constancia de su contratación. Se presentan en los anexos como ANEXO C, ANEXO D, ANEXO E, ANEXO F, ANEXO G, ANEXO H, ANEXO I y ANEXO J.

7. CONCLUSIONES

La Alcaldía del Municipio de Pasto está interesada en mejorar y cubrir en su totalidad el abastecimiento de agua potable y el saneamiento básico para los sectores rurales y suburbanos, para lo cual ha implementado un sistema de cofinanciación con entidades prestantes como el Banco Interamericano de desarrollo.

Los sistemas de acueducto que hoy en día se encuentran en la zona rural del Municipio de Pasto aún tienen construcciones de tipo artesanal adelantadas por la misma población ya que anteriormente estos acueductos no recibían una supervisión técnica continua descuidando aspectos como la funcionalidad del acueducto o el tipo de agua que se estaba transportando por este medio.

Las plantas de tratamiento de aguas residuales son obras que se deben implementar inmediatamente para el Municipio de Pasto ya que los sistemas de alcantarillado que se encuentran hoy en día tienen un funcionamiento deficiente y hacen los vertimientos en causes naturales que pueden ser usados como dotación para otras poblaciones, generándose enfermedades mortales por su uso inadecuado carente de asistencia y supervisión especializada. Además, se debe promover la concientización de las personas para evitar la contaminación de nuestros recursos naturales.

La comunidad rural se está dando cuenta de que la dotación de una buena calidad de agua es muy importante para la vida, por ello se encuentra participando activamente en la consecución de recursos económicos para optimizar o construir sistemas de acueducto que transporten agua apta para el consumo humano.

Es muy importante implementar la micro medición en el Municipio de Pasto, ya que a través de este sistema se puede controlar el uso inadecuado de un recurso tan valioso como lo es el agua potable.

Durante la etapa de construcción de toda obra civil es muy importante guiarse por pautas fruto de la experiencia que garantizan una ejecución efectiva y dentro de los parámetros estipulados en un contrato.

La revisión de los diseños de todo tipo de obra civil presentados a una empresa es muy importante ya que de esta manera se evitan improvisaciones cuando se requiera materializar el proyecto. Un claro ejemplo es el acueducto de Santa Teresita ya que el consultor contratado para el diseño no contempló el uso de viaductos para proteger la tubería y los imprevistos calculados dentro del presupuesto oficial del proyecto no alcanzaron a cubrir su construcción ya que se

había destinado para otros elementos requeridos anteriormente, por lo que fue necesario construir viaductos provisionales para evitar el estancamiento de la puesta en marcha del sistema de acueducto.

Es muy importante contar con mano de obra capacitada y cualificada para la construcción de todo tipo de proyectos civiles, ya que la calidad del trabajo depende del equipo humano contratado lo cual se refleja en la magnitud del respaldo efectuado como garantía después de poner en marcha la obra entregada.

El grado de implementación de la planeación técnica y funcional de un proyecto dependerá siempre de las condiciones de disposición de la población a beneficiar, ya que se debe tener en cuenta el factor social en donde muchas veces las prioridades de la comunidad no siempre obedecen a la magnitud de los problemas que requieran una solución inmediata.

La contratación de un profesional que ha sido sometido a evaluación de acuerdo a su experiencia y el valor de su propuesta no siempre garantiza el éxito de los resultados proyectados, por ello, siempre es necesario implementar un control en la calidad del trabajo entregado.

Si la población tiene que utilizar todo el caudal disponible de las fuentes de abastecimiento, no se puede cumplir con un porcentaje designado para un caudal ecológico, además el consultor debe hacer una evaluación de posibles fuentes que cubran la dotación diaria en un futuro cercano.

Durante el montaje de los elementos seguidos en obra, fue necesaria la supervisión permanente para garantizar su buen funcionamiento durante la puesta en marcha y la vida útil del sistema trabajado.

8. RECOMENDACIONES

Hacer la localización y el replanteo de todos los elementos diseñados por el consultor, ya que se debe pensar en actividades de mantenimiento futuras teniendo en cuenta que el primer paso para diagnosticar una solución es con los diseños y si estos no corresponden a la realidad será improductiva cualquier actividad adelantada por el cuerpo técnico encargado.

Tener siempre en cuenta las concesiones de la fuente de alimentación del sistema antes de empezar un diseño hidráulico, si no se enfoca el diseño de acuerdo al caudal concedido, el sistema de acueducto no funcionará satisfactoriamente.

Conocer todos los detalles topográficos antes de proceder al diseño de un determinado proyecto y así evitar la construcción de un sistema disfuncional debido al medio cambiante y de difícil acceso constructivo.

Analizar el número de habitantes beneficiados con un proyecto y escoger la alternativa más adecuada y conveniente para garantizar el éxito de un proyecto. Un claro ejemplo es cuando se hace el diseño de un sistema que tiene como fin el tratamiento de una cantidad determinada de material como en el caso de una planta de tratamiento de aguas residuales en la cual se mide su eficiencia de acuerdo a la cantidad de agua contaminada que entra y la calidad del agua que sale.

Seguir un cronograma previamente determinado cuando se adelante un proyecto de construcción y evitar su incumplimiento en cualquier aspecto, de esta manera es mas fácil lidiar con contratiempos adicionales e imprevistos evitando la sobrecarga de problemas en el tiempo limite programado.

BIBLIOGRAFIA

INSTITUTO COLOMBIANO DE NORMAS TÉCNICAS. Normas Colombianas para la presentación de trabajos de investigación. Santafé de Bogotá D.C.: ICONTEC, 2009, 128p. NTC 1486.

LÓPEZ CUALLA, Ricardo Alfredo. Elementos de diseño para acueductos y alcantarillados; Editorial Escuela Colombiana de Ingeniería; Segunda edición. Colombia, 2004.

METCALF y HEDÍ. Ingeniería de aguas residuales, Tratamiento, Vertido y Reutilización. Editorial Mc Graw Hill; Tercera Edición, Volumen 1, 2. 2004.

REGLAMENTO TÉCNICO DEL SECTOR DE AGUA POTABLE Y SANEAMIENTO BÁSICO – RAS. República de Colombia; Ministerio de Desarrollo Económico; Dirección de Agua Potable y Saneamiento Básico; Santafé de Bogota D.C., Noviembre de 2000.

ANEXOS

	Módulo 1: Identificación									
Formato	Descripción	Estado								
<u>ID-01</u>	Identificación y Descripción del Problema o Necesidad	С								
<u>ID-02</u>	Características Demográficas de los Habitantes Directamente Afectados por el Problema o Necesidad	V								
<u>ID-03</u>	Zona o Área Afectada por el Problema o Necesidad	С								
<u>ID-04</u>	Caracterización del Uso del Suelo de la Zona Afectada por el Problema o Necesidad	V								
<u>ID-05</u>	Caracterización Económica de la Zona Afectada por el Problema o Necesidad	V								
<u>ID-06</u>	Analisis de Participaciones	V								
<u>ID-07</u>	Características Demográficas de la Población Objetivo	С								
<u>ID-08</u>	Zona o Área donde se Ubica la Población Objetivo	С								
<u>ID-09</u>	Caracterización del Uso del Suelo de la Zona donde se Ubica la Población Objetivo	V								
<u>ID-10</u>	Caracterización Económica de la Zona donde se Ubica la Población Objetivo	٧								
<u>ID-11</u>	Descripción del Objetivo	С								
<u>ID-12</u>	Listado y Descripción de las Alternativas de Solución	С								
Convencio	nes:									
C Comple	to I Incompleto V Vacío									
	os ID-01, ID-03, ID-07, ID-08, ID-11 e ID-12 deben cambiar a C 'Completo', así el sistema habilitará de Preparación									

Formato ID-01: Identificación y descripción del problema o necesidad

Identifique el problema central o la necesidad en los términos más concretos posibles:

Carencia de estudios de Preinversión de los proyectos del programa Agua y Saneamiento Básico para el Campo, en los sectores rurales y suburbanos del municipio de

1. Efectos directos:

- 1.1. Proyectos de acueductos, alcantarillados saneamiento básico en deficientes condiciones de infraestructura.
 1.2. Proyectos priroirzado en los cabildos sin ejecutar.
- 2. Efectos indirectos:
- 2.1. Baias condiciones de vida de los habitantes del sector rural y suburbano del Municipio
- 3. Causas directas:
- 3.1. Limitados recursos económicos para estudios ya que los mismos resultan costosos.
- 3.2. Débilidad en la planeación de los proyectos identificados en cabildos (sin respaldo de estudios técnicos y viables).
- 4. Causas indirectas:
- 4.1. Alta demanda de proyectos de apoyo para construcciones, mejoramiento, optimizaciones de infraestructura de acueductos, alcantarillados y saneamiento básico.
- 5. Describa la situación existente con relación al problema o necesidad:

La Carencia de estudios de Preinversión de los proyectos del programa Agua y Saneamiento Básico para el Campo en el sector rural y suburbano del Municipio de Pasto, especialmente para aquellos proyectos priorizado por las comunidades en cabildos, ya que las comunidades los solicitaron sin tener en cuenta el respaldo técnico consignado en estudios yło memorias, además del limitante de los recursos económicos ya que por la alta demanda de solicitudes resultan insuficientes, sumado al desconocimiento por parte de las comunidades de que todo proyecto de infrestructura debe contar con estudios que permitan dar mayor agilidad a la ejecución de los mismos. Esta situación hace que los sistemas de acueducto y abastecimiento de agua en el sector rural y suburbano en el Municipio de Pasto, cuentan con infraestructuras inadecuadas e inconclusas (autodiagnóstico: Universidad Mariana. Alcaldía en el 2.005), en aprovimadamente el 90% de los sistemas de acuadusto han cumplido su vida útil, que están auudando a la mala calidad del acua nara. 6. Indicadores Iniciales ¿Cuál es la magnitud, del problema actualmente?

2698 viviendas afectadas por la las deficiencia en las infraestructuras de los sistemas de aceuductotos vlo alcantarillados en el sector rural y suburbano del municipio de Pasto, que requeririan a posterior gestionar recrusos para apoyar la ejecución de los proyectos que tengan estudios de preinversión.

	Formato ID-03: Zona o área afectada por el problema o necesidad										
Región	Departamento	Localización Específica	Otros								
Occidente	Nariño	Pasto	C-Corregimiento		Sector rural y suburbano						

Formato ID)-07: Características demográfic	as de la Población Obiet	ivo
			Fuente:
		16.105	SECRETARIA DE GESTION Y SANEAMIENTO AMBIENTAL
Necesidad	es básicas insatisfechas (NBI)	27,00%	PLAN VISION NARIÑO 2030
Producto II	nterno Bruto (PIB) Regional	35,00%	CEDRE PIB COLOMBIA
PIB Percap	oita Regional	\$ 224.417	CEDRE PIB COLOMBIA
Tasa de De	esempleo Regional	16,00%	DANE
Descrinció	n de la Población Objetivo	Participación	
Descripcio	•	Nro. de Personas	Fuente:
	0 a 14 años		SECRETARIA DE GESTION Y SANEAMIENTO AMBIENTAL
	15 a 19 años		SECRETARIA DE GESTION Y SANEAMIENTO AMBIENTAL
Edad	20 a 59 años		SECRETARIA DE GESTION Y SANEAMIENTO AMBIENTAL
	Mayor de 60 años		SECRETARIA DE GESTION Y SANEAMIENTO AMBIENTAL
	Total Población por Edad		SECRETARIA DE GESTION Y SANEAMIENTO AMBIENTAL
	Masculino		SECRETARIA DE GESTION Y SANEAMIENTO AMBIENTAL
Género	Femenino	9.663	SECRETARIA DE GESTION Y SANEAMIENTO AMBIENTAL
	Total Población por Género		
	1		
	2		
	3		
Estrato	4		
	5		
	6		
	Total Población por Estrato		
	Población Indígena		
_	Población Afrocolombiana		
Grupos	Población Raizal		
Étnicos	Población ROM		
	Población Mayoritaria		
Total Grupos Étnicos			
Población Infantil			
Tercera Ec			
	on Discapacidades		
	Desplazados		
Otros			

Formato ID-08: Zona o área donde se ubica la población objetivo											
Región	Departamento Municipio/Distrito		Clase del Centro de Poblado	Resguardo Indígena	Localización Específica	Otros					
Occidente	Nariño	Pasto	C-Corregimiento		Sector rural y suburbano						

Formato ID-11: Objetivos
Objetivo General - Descripción
Realizar los estudios de Preinversión de los proyectos del programa Agua y Saneamiento Básico para el Campo.
Descripción de Ia(s) Meta(s) del Objetivo General
14840 beneficarios a futuro de la ejecución de los proyectos.
Objetivo Específico -Descripción
Contar con las memorias de diseño y específicaciones necesarias y los planos, para la ejecución de los proyectos.
Descripción de la(s) Meta(s) del Objetivo Específico
13 Estudios de preinversión de proyectos de acueductos, alcantarillado , planta de tratamientos.
Objetivo Específico -Descripción
Gestionar los recursos económicos para la ejecución de los proyectos en el marco del Programa Água y Saneamiento Básico para el Campo.
Descripción de Ia[s] Meta[s] del Objetivo Específico
13 Estudios de preinversión de proyectos de acueductos, alcantarillado , planta de tratamientos que se gestionarán recursos.

Formato ID-12: Listado y descripción de las Alternativas de solución											
		Alternativas									
Nro	Nombre de la Alternativa	Descripción	Selecciona								
1	en cabildos 2.005 del Programa Agua y Saneamiento Básico del	Realización de estudios de preinversión de los proyectos priorizados en cabildos 2.005 del Programa Agua y Saneamiento Básico del Campo, en sectores rurales y suburbanos del Municipio de Pasto.									

	Módulo 2: Preparación								
Formato	Descripción	Estado							
PE-01	Estudio Legal	T v							
PE-02	Estudio de la demanda y oferta del bien y/o servicio en una serie histórica	Ť							
PE-03	Proyección de la Demanda y Oferta del Bien y / o Servicio en Cantidades.	V							
PE-04	Estudio de Localización	С							
PE-05	Estudio Técnico - Descripción	V							
PE-06	Estudio Técnico - Cuantificación de Capacidad y Nro de Beneficiarios	С							
PE-07	Depreciación de los Activos Fijos	V							
PE-08	Estudio Institucional	V							
PE-09	Efecto Ambiental	С							
PE-10	Análisis de Riesgos.	V							
PE-11	Aspectos Comunitarios (Veeduría, Participación y Aportes de la Comunidad)	V							
PE-12	Cuadro de Costos	С							
PE-13	Cuantificación y Valoración de los Ingresos y Beneficios	С							
PE-14	Amortización de Crédito y Pago de Capital	V							
PE-15	Amortización de Crédito Extranjero y Pago a Capital	V							
PE-16	Total Amortización de Crédito y Pago a Capital	С							

	Formato PE-04: Localización de la Alternativa de Solución No. 1												
Realización de	Realización de estudios de preinversión de los proyectos priorizados en cabildos 2.005 del Programa Agua y Saneamiento Básico del Campo,												
	Zona (Ubicación) Factores												
Región	Departament	Municipio / Distrito	Clase del Centro de	Resguardo	Localización	Otros	Analizados	Comentarios					
riegion	0	Mariicipio i Distrito	Poblado	Indígena	Específica	Outos	Tinditedado						
Occidente	Nariño	Pasto	C-Corregimiento		Sector rural y								
Occidente	Ivaniio Fasto	r astu	C-Corregimiento		suburbano								

Formata DE 60 Fotostia Titoria a Como				
Formato PE-06 Estudio Técnico - Capa Beneficiarios Parte II de la Alternativa de So	-			
Beneficiarios Parte II de la Alternativa de So	DIUCION NO. 1			
Realización de estudios de preinversión de los proyectos	priorizados en cab	ildos 2.005 del Programa Ag	gua y Saneamiento Básico	del Campo,
Capacidad (metro cuadrado, metro cúbico, kilómetro cuadrado, tonelada, etc)				
Descripción	Unidad	Total		
Realización de estudios de preinversión de los proyectos priorizados en cabildos 2.005 del Programa Agua y Saneamiento Básico del Campo en el sector rural y suburbano del Municipio de Pasto	número	1,00		
		100		
Total por Periodo		1,00		
Número de beneficiarios			2009	
Descripción	Unidad	0	1	Total
Realización de estudios de preinversión de los proyectos priorizados en cabildos 2.005 del Programa Agua y Saneamiento Básico del Campo en el sector rural y suburbano del Municipio de Pasto	número	1,00		1,00
T. I. D. C.		100		100
Total por Período		1,00	0,00	1,00

Formato PE-09 Efecto Ambiental de la Alternativa de Solución No. 1										
Realización de estudios de preinversión de los proyectos priorizados en cabildos 2.005 del Programa Aqua y Saneamiento Básico del Campo,										
Conteste las Siguientes Preguntas:	Conteste las Siguientes Preguntas:									
¿Se requiere Licencia Ambiental?	No									
¿Se requiere Diagnóstico Ambiental de Alternativas?	No									
¿Se requiere Plan de Manejo Ambiental?	No									
¿Se requieren otros permisos ambientales?	No									
Si las preguntas fueron negativas continúe al siguiente formato, de ser afim	Si las preguntas fueron negativas continúe al siguiente formato, de ser afirmativa alguna de las anteriores complete la información solicitada a continuación.									

	Forma	nto PE-12: Cuadro de	Costos de la Alternativa N	o. 1 (Cifra	s en M	iles de Po	esos)						
Etapa de Inversión													
Componente o Categoría del I	Gasto	Otros						2008	2009		otal Miles de Pesos		
Relación de Actividades	Unidades	Cantidades	Insumos	Valor Uni	itario	Unidad	Cantidad(Meta)	0	1				
Tieldoloff de Motifidades	Orlidades	Carillades		* alor or i	Kano	Orlidad	Carkidad(:icta)	TOTAL	TOTAL		OTAL		
			1. Mano de Obra					\$ -	\$ -	\$			
			1.1. Mano Obra Calificada							1			
	de				1.2. Mano Obra No Calificada								
Realización de estudios de			2. Transporte							\$	-		
preinversión de los proyectos			3. Materiales							\$	-		
priorizados en cabildos 2.005 del			4. Servicios					\$ -	\$ -	\$	-		
Programa Agua y Saneamiento		1.00	4.1. Servicios Domiciliarios										
Básico del Campo en el sector rural		l *	4.2. Otros Servicios							1			
v suburbano del Municipio de			5. Activo Fijo					\$ -	\$ -	\$	-		
Pasto			5.1. Terreno										
			5.2. Edificio										
			5.3. Maq. y Equipo							1			
			5.4. Mantenimiento,							1			
			Maquinaria y Equipo							1			
			6. Otros Gastos Generales	\$ 156.	.000,000		1,00	156.000,00		\$	156.000,00		
		·					Total Actividad	156.000,00	-	\$	156.000,00		
<u> </u>			<u> </u>				tal Componente	156.000,00	-	\$	156.000,00		
						Valor	Total por Etapa	\$ 156.000,00	\$ -	\$	156.000,00		

	Formato PE-13 Cuantificación y Valoración de los Ingresos y Beneficios de la Alternativa de Solución No. 1 (Cifras en Miles de Pesos)												
						s en Milles de Pesos)							
Healización de estudios	s de preinversión de los proyectos priorizados en cabildos : Ventas	2.005 del Program	na Agua y Saneam	iento Básico del U	ampo,	2008			2009				
	Ventas		-										
Concepto	Descripción	Unidad	Bienes	BPC		0			1				
		0.11444	Producidos		Cantidad	Valor Unitario	Valor Total	Cantidad	Valor Unitario	Valor Total			
							\$ -			\$			
Vr de Salvamento										\$0,0			
Valor Total Ventas +			1	L ,			-			\$			
	Beneficios				2008			2009					
Concepto	Descripción	Unidad	Bienes	BPC		0		1					
			Producidos		Cantidad	Valor Unitario	Valor Total	Cantidad	Valor Unitario	Valor Total			
	L												
	Realización de estudios de preinversión de los												
Beneficios Ambientales	proyectos priorizados en cabildos 2.005 del Programa Agua y Saneamiento Básico del Campo en el sector	número	Otros	0,8	1,00	\$ 156,000,00	\$ 156.000,00	1,00		\$			
	rural v suburbano del Municipio de Pasto												
Valor Total Beneficios							\$ 156,000,00			\$			
					\$ 156,000,00								

	Módulo 3: Evaluación Exante							
Formato	Descripción	Estado						
	Flujo de Caja a Precios Constantes (en Miles de Pesos) de la Alternativa de Solución	С						
EV-02 EV-03	Costo de oportunidad de la Alternativa de Solución VPN Financiero a Precios de Mercado, VPNF de la Alternativa de Solución	C						
EV-04	Tasa Interna de Retorno Financiera de la Alternativa de Solución	C						
EV-05 EV-06	CAE Financiero a Precios de Mercado de la Alternativa Indicadores de Costo Eficiencia Financiero de la Alternativa	C						
EV-07	Flujo de Caja a Precios Económicos o Sociales (en Miles de Pesos) de la Alternativa de Solución	C						
EV-08	VPN a Precios Económicos o Sociales (VPNES) de la Alternativa de Solución	С						
EV-09 EV-10	Cálculo de la Tasa Interna de Retorno Económica o Social de la Alternativa de Solución Indicadores de Costo Eficiencia Económicos y/o Sociales de la Alternativa	C						
<u>EV-11</u>	Costo Anual Equivalente a Precios Económicos o Sociales, CAEES, de la Alternativa de Solución	С						
EV-12 Convencio	Ponderación en el Uso de los Factores de Origen Nacional de la Alternativa de Solución	C						
C Comple								
El formato	EV-02 debe cambiar a C 'Completo', así el sistema habilitará Decisión							

Módulo 3: Evaluación Exante							
Formato EV-02 Costo de oportunidad a Precios o	de Mercado de I	a Alternativa de Solución No 1					
Realización de estudios de preinversión de los proye	ctos priorizados e	en cabildos 2.005 del Programa Agua y Saneamiento					
Tasa de descuento para D	esarrollar la Ev	aluación Financieга (го) %					
	7,50%						
Criterio de Selección (Explique	e brevemente el p	orque de la selección de la tasa)					
DEPOSITO A TERMINO FIJO							

Módulo 3: Evaluación Exante								
Formato	Descripción	Estado						
<u>EV-23</u>	Resumen Comparativo - Descripción de las Alternativas	V						
EV-24	Resumen Comparativo - Costos de las Alternativas							
EV-25	Resumen Evaluación Financiera, Económica o Social y Ponderación del Uso de Factores de Origen Nacional de las Alternat	С						
EV-26	Selección y Justificación de la Alternativa de Solución	С						
EV-27	Selección del Nombre del Proyecto	С						
EV-28	EV-28 Datos Complementarios del Proyecto							
Convencio	nes:							
C Comple	to I Incompleto V Vacío							
Los formato EV-26, EV-27 y EV-28 deben cambiar a C 'Completo', así el sistema habilitará Programación								

Formato EV-26 Selección y Justificación de la Alternativa de Solución

Alternativa seleccionada

Alternativa 1: Realización de estudios de preinversión de los proyectos priorizados en cabildos 2.005 del Programa Agua y Ser

Descripción:

Realización de estudios de preinversión de los proyectos priorizados en cabildos 2.005 del Programa Agua y Saneamiento Básico del Campo, en sectores rurales y suburbanos del Municipio de Pasto.

Justificación:

Considerando que los proyectos identificados y priorizados en cabildos 2.005, para la construcción, optimización de sistemas de acueducto y alcantarillado y en desarrollo del Programa de de Agua Potable y Saneamiento Básico en el sector rural y suburbano del Municipio de Pasto que adelanta la presente administración, se requiere de la contratación de los estudios de preinversión, como propuesta establecida en el Presupuesto por Resultado PPR 2.008 de la Secretaria de Gestión y Saneamiento Ambiental. Los estudios permitirían y son necesarios para la gestión de los recursos para futuras vigencias y ayudarían a que la ejecución de los proyectos sea más ágil y ejecutable, buscando así, mejorar la calidad de agua de consumo humano y la infraestructura de los acueductos y de

Formato EV-27 Selección del Nombre del Proyecto									
Proceso	Objeto	Localización							
ESTUDIOS	DE PREINVERSION DE PROYECTOS DE AGUA Y SANEAMIENTO BASICO	SECTOR RURAL Y SUBURBANO DEL MUNICIPIO DE PASTO							
Tipo Específico de Gasto		Código							
0420 Estudios de Preinversión		0420							
Sector		Código							
0900 Intersubsectorial Medio Ambiente		0900							
Programa del Plan de Desarrollo Nacio	nal	Código							
020802 b. Manejo integral del agua		020802							
Programa del Plan de Desarrollo Depar	tamental	Código (Máximo de 6 dígitos)							
ADELANTE NARIÑO 2.008 - 2.011		123456							
Programa del Plan de Desarrollo Munic	ipal	Código (Máximo de 6 dígitos)							
PASTO PUEDE Y QUIERE MAS 2.008 - 2.011		123456							

Nombre del Proyecto:					
ESTUDIOS DE PREINVERSION I	DE PROYECTOS DE AGUA Y	SANEAMIENTO BASICO	SECTOR RURAL Y SUB	URBANO DEL MUNICIPIO DE	PASTO
Formato EV-28 Datos Cor	nplementarios del Proy	ecto			
	Date	os Guia Sectorial de la N	letodología Utilizada		
	Nombre	•	Número	Fecha	
	Estudios Ad	icionales que Respaldar	la Formulación del Proye	cto.	
Título	Autor	Entidad	Fecha DD/MM/AAAA	Se Pueden Consultar en	Observaciones
PRESUPUESTO 2.008	HUGO RAMIRO	SECRETARIA DE			
	ROSERO ORTIZ	GESTION Y			
		SANEAMIENTO			
		AMBIENTAL			
		Licencias y Pe	ermisos		
Descripción	Estado	Fecha solicitud	Fecha aprobación	Entidad emisora	Observaciones
		DD/MM/AAAA	DD/MM/AAAA		
Estado del Proyecto	Nro. de Años				
Ejecución		1			

Módulo 4: Programación								
Formato	Descripción	Estado						
PR-01	Programación Físico - Financiera	С						
PR-02	Programación Fuentes de Financiación	С						
<u>PR-03</u>	Información de las Entidades Solicitantes y Ejecutoras del Proyecto - FNR	V						
<u>PR-04</u>	Programación de Metas	С						
Convencione	Convenciones:							
C Completo I Incompleto V Vacío								
Los formatos PR-01, PR02 y PR-04 deben cambiar a C 'Completo', así el sistema habilitará la ficha EBI								

Formato PR-81 Programación F	ísico - Financiera																
•		,									2008		2009				
							Participació				0				1		
Componente o Categoría del Gasto	Relación de Actividades	Unidades	Cantidad	Valor Unita	rio	Valor Total	n [%] del		Meta Física	Meta Física	Vr. Total Meta Financiera	Meta Financiera	Meta Física	Meta Física	Vr. Total Meta Financiera	Meta F	inanciera
							total		%	Acum %		Acumulada	%	Acum %		Acus	mulada
				Etapa de Prei	inversión												
						2	0,00%	Р	0,00%	0.00%		4		0,00%		Ф	
						Ψ -	0,0070		0,0070	0,00%		Ψ -		0,00%		Ψ	-
E. Total Preinversión Program																	
E. Total Freinversion Frogram	800					\$ -	0,00%		0,00%	0,00%	\$ -	\$-	0,00%	0,00%	\$ -	\$	-
				Etapa Invi	ersion												
Otros	Realización de estudios de preinversión de	número			2000.00	* 450,000,00	100.000	Р	100.000	100.00%	A 150,000,00	t 150,000,00	0.000/	400.000		A .	FO 000 00
Utros	los proyectos priorizados en cabildos 2.005	numero	1,00	D 150	6.000,00	\$ 156,000,00	100,00%	٠.	100,00%	100,00%	\$ 156.000,00	\$ 156.000,00	0,00%	100,00%	\$ -	Ф 1	156.000,00
G. Total Ejecución Programad	0					\$ 156,000,00	100,00%		100,00%	100,00%	\$ 156.000,00	\$ 156,000,00	0,00%	100,00%	\$ -	\$ 1	156.000,00
			Etar	oa Mantenimien	nto v Ope	ración											
					, -,-												
						s -	0,00%	Р	0,00%	0.00%		\$ -	0,00%				
				1		ν	0,0010	<u> </u>	0,0010	0,000		*	0,0010				
I. Total Mantenimiento y Opera	sción Programado					s -	0,00%		0,00%	0,00%	\$.	\$.	0,00%	0,00%	\$.	\$	
K. Total Programado (E+G+I)						\$ 156.000,00		_	-,	100,00%		\$ 156,000,00		100,00%		• 1	156,000,00
						5 136.000,00	100,00%			100,00%	\$ 100,000,00	\$ 100,000,00		100,00%		> 1	.00.000,00

SUBUR Fuente de Financiación	OND YVECTOS DE AGUA Y SANEAMIENTO BASICO SECTOR RURAL Y BANO DEL MUNICIPIO DE PASTO				
SUBUR Fuente de Financiación					
Fuente de Financiación	BANO DEL HIONIGITIO DE FASTO				
			2008	2009	Totales
			0	1	
Etapa de Preinversión			\$ -		
Tipo de Entidad En	ntidad	Tipo de Recurso			
					\$ -
					A
Total Etapa de			s -		-
Preinversión					
Etapa de Inversión			\$ 156,000,00	-	
Tipo de Entidad En	ntidad	Tipo de Recurso			
Municipal Pas	sto	Recursos Propios	\$ 156,000,00		\$ 156,000,0
			\$ 156,000,00	A	\$ 156,000,0
Total Etapa de Inversión			\$ 156,000,00	3 -	\$ 156,000,0
Etapa de Operación y				-	
Mantenimieto					
Tipo de Entidad En	ntidad	Tipo de Recurso			
,					\$ -
Total Etapa de Mant.y				-	-
Operación					
Total de la Alternativa			\$ 156,000,00	\$ -	\$ 156,000,0

Formato PR	-04 Programación de Metas de Indcadores							
. Indicado	res de Impacto							
Criterio	Nombre	Código	Descripción	Formula	Unidad de Hedida	Periodicidad de Medición	Progr. Meta	2008 2009 0 1
	1200K36 POBLACION BENEFICIADA POR LOS PROYECTOS DE ACUEDUCTO Y ALCANTARILLADO ESECUTADOS CON RECURSOS DEL GOBIERNO NACIONAL	12001036	PBP. POBLACION EENEFICIADA POR LOS PROVECTOS DE ACUEDUCTO Y ALCANTARILADO EJECUTADOS CON RECURS DEL GOBIERNO NAL EN UN PER N. PTB, POBLACION BENEFICICADA POR LOS PROVECTOS DE ACUEDUCTO Y ALCANTARILADO CON RECURS DEL GOBIERNO NAL, PT, POBLACION TOTAL SEG	PBP = PTB • 100 / PT	%	Anual	E	100,00
2. Indicado	res de Producto				matara ar	Dod-alita a a	D	one 2009
Criterio	Nombre	Código	Descripción	Formula	Unidad de Hedida	Periodicidad de Hedición	Progr. Meta	2008 2009 0 1
Obligatorio	1100PV22 ESTUDIOS Y DISEÑOS REALIZADOS	1100P022	NRO ESTUDIOS Y DISEÑOS ELABORADOS PARA. PROYS PEQUEÑA ESCALA EN UN per TI - TO, DONDE, NE, WARI EN EL NRO ESTUDIOS DISEÑOS ELABORADOS PARA PROYS PEQUEÑA ESCALA, NEI, NRO ESTUDIOS Y DISEÑOS ELABORADOS FINAL, NEO, NRO ESTUDIOS Y DISEÑ	NE = NE1 - NE0	No	Anual	P E	14,00
3. Indicado	res de Gestión							<u> </u>
Criterio	Nombre	Código	Descripción	Formula	Unidad de Hedida	Periodicidad de Hedición	Progr. Meta	2008 2009 0 1
Obligatorio	06000006 SEQUIMIENTO A LA PROGRAMACION DE PROYECTOS	0600 G005	CUMPLIMIENTO A LA PROGRAMACION EN TIEMPO LOS PROYS EN UN PER N. DONDE, PP, AVANCE EN LA PROGRAMACION DEL PROY, TEP, TIEMPO EJECUCION AL MOMENTO CORTE (EJECUTADO); TEEP, TIEMPO ESTIMADO TOT EJECUCION DEL PROY	PP = TEP * 100 / TEEP	%	Anual	E	100,00
I. Indicado	res de Ciencia y Tecnología							
Criterio	Nombre	Código	Descripción	Formula	Unidad de Medida	Periodicidad de Hedición	Progr. Meta	2008 2009 0 1
Obligatorio	CYTOO EL PROYECTO NO REALIZARA NINGUNA ACTIVIDAD DE CIENCIA, TECNOLOGIA O INNOVACION	CYT000	0	0	%	Anual	P E	100,00
5. Indicado	res de Generación de Empleo	011000						
Criterio	Nombre	Código	Descripción	Formula	Unidad de Medida	Periodicidad de Medición	Progr. Meta	2008 2009 0 1
-	GEI004 EMPLEOS INFORMALES GENERADOS	GE1004	EI=EMPLEOS INFORMALES; EIG=EMPLEOS INFORMALES GENERADOS; TE=TOTAL EMPLEOS	EI=EIG/TE	No.	Anual	P E	1,00
i. Indicado	res de Eficiencia (Ejecución Presupuestal)				n-ta-a-	n	D	2009 2009
Criterio	Nombre	Código	Descripción	Formula	Unidad de Medida	Periodicidad de Medición	Progr. Meta	0 1
Obligatorio	Cumplimiento del gasto público	FIC001	Cumplimiento del gasto público	CGP = RE * 100 / RP	%	Anual	P E	100,00
. Otros Ind	licadores							
Criterio	Nombre	Código	Descripción	Formula	Unidad de Medida	Periodicidad de Medición	Progr. Meta	2008 2009 0 1
Opcional	SIN NOMBRE		SIN DESCRIPCION		número	Anual	P E	1,00

República de Colombia Departamento Nacional de Planeación

Dirección de Inversiones y Finanzas Públicas Grupo Asesor de la Gestión de Programas y Proyectos de Inversión Pública, Gapi

Metodología General para la Identificación, Preparación y Evaluación de Proyectos

			1.ldent	tificación	del Pr	oyecto)							
Codigo Banco de Proyectos														
Nombre del Proyecto				RSION DE I DEL MUNIC				GRAMA	AGUA`	/ SANE	AMIENT	O BASI	CO SEC	CTOR
			1.1 Entida	nd Propone	nte del	Proyec	to							
Nombre Entidad	SECRE.	TARIA	DE GESTI	ON Y SANE.	AMIEN:	ТО АМЕ	IENTAI							
Persona Responsable	HUGO F	RAMIR	O ROSERO) ORTIZ										
Cargo	SECRE:	TARIO	DE GESTI	ON Y SANE	AMIEN	TO AME	BIENTA	L						
Teléfono	7220093	:												
Dirección	CAM AN	IGANO	Υ											
Localidad	PASTO			Indicative)	27			Teléfo	no	722009	93		
E-Mail	ambiente	@past	o.gov.co											
Fecha de Elaboración del Estudio ddimmiaaaa	SEPTIE	MBRE:	2.00\$											
			1.2 Entid	lad Ejecuto	ra del	Provect	0							
Nombre Entidad	SECRE"	TARIA	DE GESTI	ON Y SANE	AMIEN'	TO AME	IENTAI							
Persona Responsable	HUGO F	RAMIRO	0 ROSERO) ORTIZ										
Cargo	SECRE.	TARIO	DE GESTI	ON Y SANE	AMIEN	ТО АМЕ	BIENTA	L						
Teléfono	7220093	:												
Dirección	CAM AN	IGANO	Υ											
Localidad	PASTO			Indicative)	27			Teléfo	no	722009	93		
E-Mail	ambiente	@past	o.gov.co											
Fecha de Elaboración del Estudio ddmm/aaaa	SEPTIE	MBRE:	2.00\$											

2. Clasificación del Proyecto		
2.1 Presupuestal		
2.1.1 Tipo Específico de Gasto de Inversión	0420	0420 Estudios de Preinversión
2.1.2 Sector	0900	0900 Intersubsectorial Medio Ambiente
	•	
2.2 Plan de Desarrollo (Programa)	020802	020802 b. Manejo integral del agua
	•	
2.3 Plan de Desarrollo Departamental	123456	ADELANTE NARIÑO 2.008 - 2.011
_	•	
2.4 Plan de Desarrollo Municipal	123456	PASTO PUEDE Y QUIERE MAS 2.008 - 2.011

3. Clasificación Fondo Nacional de Regalías

Código del FNR

3.1 Entidades Solicitantes y Ejecutadoras del Proyecto

o: r Erkidadoo oonokarkoo j Ejoodkadora	0 401 110 90000			
S/E*	Entidad	Región	Departamento	Municipio
Entidad Solicitante	0	0	0	0
Entidad Ejecutora	0	0	0	0

^{*} S- Entidad solicitante; E- Entidad ejecutora.

3.2 Tipo de Regalías

3.2 TIPO DE REYALIAS		
Origen Recurso* / Código Presupuestal	Valor en Miles de Pesos	Descripción / Nombre

^{*} El origen del recurso puede ser: Regalías Directas, de escalonamiento o partida presupuestal

4. Problema o Necesidad

Descripción de la situación existente en relación con el problema

La Carencia de estudios de Preinversión de los proyectos del programa Agua y Saneamiento Básico para el Campo en el sector rural y suburbano del Municipio de Pasto, especialmente para aquellos proyectos priorizado por las comunidades en cabildos, ya que l

5. Objetivo General del Proyecto

Realizar los estudios de Preinversión de los proyectos del programa Agua y Saneamiento Básico para el Campo.

6. Información Ambiental				
¿Se requiere Licencia Ambiental?	No			
No. Licencia Ambiental	0			
Fecha de Aprobación	0/01/1900			
Entidad que expide la Licencia				

0

7. Descripción del Proyecto

Realización de estudios de preinversión de los proyectos priorizados en cabildos 2.005 del Programa Agua y Saneamiento Básico del Campo, en sectores rurales y suburbanos del Municipio de Pasto.

8. Zona o á	B. Zona o área afectada por el problema o necesidad										
Región	Departamento	Municipio/Distrito	Clase del Centro de Poblado	Resguardo Indígena	Localización Específica	Otros					
Occidente	Nariño	Pasto	C-Corregimiento	0	Sector rural y suburbano	0					

9. Caracte	erísticas demográficas de l	la Población Objetivo	
			Fuente:
Nro. Habitan	tes afectados por el problema.	16.125	SECRETARIA DE GESTION Y SANEAMIENTO AMBIENTAL
Necesidades básicas insatisfechas (NBI) %		27,00%	PLAN VISION NARIÑO 2030
Producto Interno Bruto (PIB) Regional PIB Percapita Regional Fasa de Desempleo Regional		35,00%	CEDRE PIB COLOMBIA
		\$ 224.417	CEDRE PIB COLOMBIA
		16,00%	DANE
Descripción de la Población			Participación Participación
		Nro. de Personas	Fuente:
	0 a 14 años	4.000	SECRETARIA DE GESTION Y SANEAMIENTO AMBIENTAL
	15 a 19 años	1.210	SECRETARIA DE GESTION Y SANEAMIENTO AMBIENTAL
Edad	20 a 59 años	7.395	SECRETARIA DE GESTION Y SANEAMIENTO AMBIENTAL
	Mayor de 60 años	3.525	SECRETARIA DE GESTION Y SANEAMIENTO AMBIENTAL
	Total Población por Edad	16.125	SECRETARIA DE GESTION Y SANEAMIENTO AMBIENTAL
	Masculino	6.450	SECRETARIA DE GESTION Y SANEAMIENTO AMBIENTAL
Género	Femenino	9.675	
	Total Población por Género	0	0
	1	0	0
	2	0	0
	3	0	0
Estrato	4	0	0
	5	0	0
	6	0	
	Total Población por Estrato	0	0
	Población Indígena	0	0
	Población Afrocolombiana	0	0
Grupos	Población Raizal	0	0
Étnicos	Población ROM	0	0
	Población Mayoritaria	0	
Total Grupos Étnicos		0	l.
Población In		· · · · · · · · · · · · · · · · · · ·	0
Tercera Edac		· ·	0
	n Discapacidades	· ·	0
Población D	esplazados	· ·	0
Otros		0	0

10. Zona o área donde se ubica la población objetivo										
Región	Departamento	Municipio/Distrito	Clase del Centro de Poblado	Resguardo Indígena	Localización Específica	Otros				
Occidente	Nariño	Pasto	C-Corregimiento	ID.	Sector rural y suburbano	0				

1	11. Localización Geográfica del Proyecto										
	Zona (Ubicación)										
	Región	Departamento	Municipio <i>I</i> Distrito	Clase del Centro de Poblado	Resguardo Indígena	Localización Específica	Otros				
0	ccidente	Nariño	Pasto	C-Corregimiento	0	Sector rural y suburbano	0				

12. Ingresos Anua	les de Operación (en Miles de Pe	sos)								
	Ventas					2008			2009	
Concepto	Descripción	Unidad	Bienes	RPC		0			1	
Concepto	Descripcion	Olliudu	Producidos	NO	Cantidad	Valor Unitario	Valor Total	Cantidad	Valor Unitario	Valor Total
0	0	0	0	0	0	\$ -	\$ -	0	s -	\$ -
Vr de Salvamento										\$ -
Valor Total Ventas +Sa	Ivamento			`			\$ -			\$ -
	Beneficios					2008			2009	
Concepto	Descripción	Unidad	Bienes	RPC		0		1		
Concepto	Descripcion	Uniuau	Producidos	NFC	Cantidad	Valor Unitario	Valor Total	Cantidad	Valor Unitario	Valor Total
Beneficios Ambientales	Realización de estudios de preinversión de los proyectos priorizados en cabildos 2.005	número	Otros	0,8	1	\$ 156,000,00	\$ 156,000,00	0	\$ -	\$ -
Valor Total Beneficios							\$ 156,000,00			\$ -
Valor Total Ingresos y E	Reneficios		-	,			\$ 156,000,00			\$ -

13. Fuentes de Financiación	ı (en Miles de Pesos)			2008	2009		Totales
Etapa de Preinversión	,			U	•		
Tipo de Entidad	Entidad	Tipo de Recurso					
0	0	0	\$	-		\$	-
Total Etapa de Preinversión	<u>'</u>	'	4			\$	
Etapa de Ejecución						i .	
Tipo de Entidad	Entidad	Tipo de Recurso					
Municipal	Pasto	Recursos Propios	\$	156.000,00	\$ -	\$	156.000,00
Total Etapa de Ejecución	<u>'</u>	'	4	156,000,00	s -	\$	156.000,00
Etapa de Mant.y Operación				100.000,00			
Tipo de Entidad	Entidad	Tipo de Recurso					
0	0	0			\$ -	\$	
		1					
Total Etapa de Mant.y Operació	on				\$ -	\$	
Total de la Alternativa	·	·	\$	156.000,00	\$ -	\$	156.000,00

Años Calendario	2008	2009		
Periodos	0	1		
Ingresos de Operación (+)	\$ 156.000,00	\$	-	
Costos de Operación (-)		\$	-	
Intereses sobre Créditos (-)	\$ -	\$	-	
Costos de Preinversión y Ejecución (-)	\$ 156.000,00	\$	-	
Preinversión	\$ -			
Ejecución	\$ 156.000,00	\$	-	
Créditos (+)	\$ -	\$	-	
Amortización a Créditos (-)	\$ -	\$	-	
Flujo de Caja a Precios Constantes	\$ -	\$	-	

ALCALDIA MUNICIPAL DE PASTO DEPARTAMENTO ADMINISTRATIVO DE PLANEACION MUNICIPAL SUBDIRECCION DE PROYECTOS

REGISTRO Y CONCEPTO DE VIABILIDAD

- 1. NOMBRE DEL PROYECTO: Estudios de preinversión de proyectos de agua y saneamiento básico sector rural y suburbano del Municipio de Pasto.
- 2. NUMERO DE RADICACION: 2008520010191

3. COSTO TOTAL:	\$ 156.000.000		
RESPECTO A LA IDENTIFICACION, PREPARACION Y EVALUACION DEL PROYECTO	SI	NO	
4.1. EL PROBLEMA ESTA BIEN DEFINIDO	X	Maria Maria	
4.2. LA ALTERNATIVA SELECCIONADA SOLUCIONA EL PROBLEMA DEFINIDO	X		
4.3. LOS COSTOS ESTIMADOS SON RAZONABLES	X		
5. ES FUNCION DE LA ENTIDAD RESPONSABLE SOLUCIONAR ESTE PROBLEMA	X		
6. LA FICHA ESTA CORRECTAMENTE DILIGENCIADA	X		
7. EL PROYECTO ES CONSISTENTE CON LOS PLANES, POLITICAS Y PROGRAMAS DEL DESARROLLO SECTORIAL	Х		
8. EL PROYECTO ES VIABLE	X		

9. CONCEPTO Y OBSERVACIONES

Son productos del proyecto: Estudios de preinversión realizados: CATORCE. Correspondientes a: Actualización acueducto Aranda - Villa Nueva (\$5,000,000). Construcción acueducto vereda San Cayetano (\$3,000,000). Actualñización acueducto vereda Juanoy (\$22,000,000). Optimización acueducto vereda Bella Vista Catambuco (\$6,000,000). Optimización acueducto vereda Castillo Loma (\$10,000.000). Optimización acueducto sectores Mocondino - Puerres - Canchala (\$25,000,000): Actualización acueducto Encano Centro (\$8,000.000). Optimización acueducto veredas Alto San Pedro y El Barbero (\$20,000,000). Construcción alcantarillado Genoy (\$5,000,000). Construcción alcantarillado sector San Diego - Catambuco (\$6,000,000). Construcción alcantarillado San Miguel de Jongovito (\$3,000,000). Construcción planta de tratamiento de aguas siduales barrio Popular y Rosal de Oriente (\$19.000,000). Construcción planta de tratamiento de aguas residuales vereda El erto (\$15,000,000). Construcción tanque de almacenamiento de aguas vereda San Fernando (\$5,000,000).

_					
0.	INFORMACION PL	AN DE DESARROL	LO "Queremos m	nás - Podemos más"	2008 - 2011.

- 10.1. Eje: Ambiente, servicios públicos y gestión del riesgo.
- 10.2. Programa: Agua potable y saneamiento básico para el campo.

 11. PERSONA RESPONSABLE DE LA EJECUCION DEL PROYECTO
- 11.1. NOMBRE: HUGO RAMIRO ROSERO ORTIZ.
- 11.2. CARGO: Secretario
- 11.3. DEPENDENCIA: Secretaria de Gestión y Saneamiento Ambiental
- 11. FUNCIONARIO RESPONSABLE REGISTRO DEL PROYECTO.
- 11.1. NOMBRE: NELSON HERNAN ROSERO E. 11.2. CARGO: Subdirector de Proyectos
- 11.3. DEPENDENCIA: Planeación Municipal
- FECHA: 03/09/08

FIRMA

12. FUNCIONARIO RESPONSABLE CONCEPTO DE VIABILIDAD

FUNCIONARIO: RICARDO ALIRIO PUPIALES RUEDA. CARGO: Profesional Universitano Proyectos

DEPENDENCIA: Planeacion Municipal

FECHA: 03/09/08

ACTA DE INICIO

CLASE DE CONTRATO: CONTRATO DE OBRA

CONTRATANTE: OFICINA DE CONTRATACION MUNICIPAL

CONTRATISTA: CARLOS EDGAR CASTAÑEDA

CEDULA DE CIUDADANIA: 10.539.723. DE POPAYAN - CAUCA

INTERVENTOR: JORGE ENRIQUEZ GARCIA

DELEGADO S.G.S.A.

OBJETO DEL CONTRATO: CONSTRUCCIÓN DE LA SEGUNDAD FASS DEL

ACUEDUCTO VEREDA SANTA TERESITA DEL

CORREGIMIENTO DEL ENCANO.

PLAZO DE EJECUCION: LA TOTALIDAD DE LA OBRA DISJETO DEL

PRESENTE CONTRATO, SE ENTREGARA

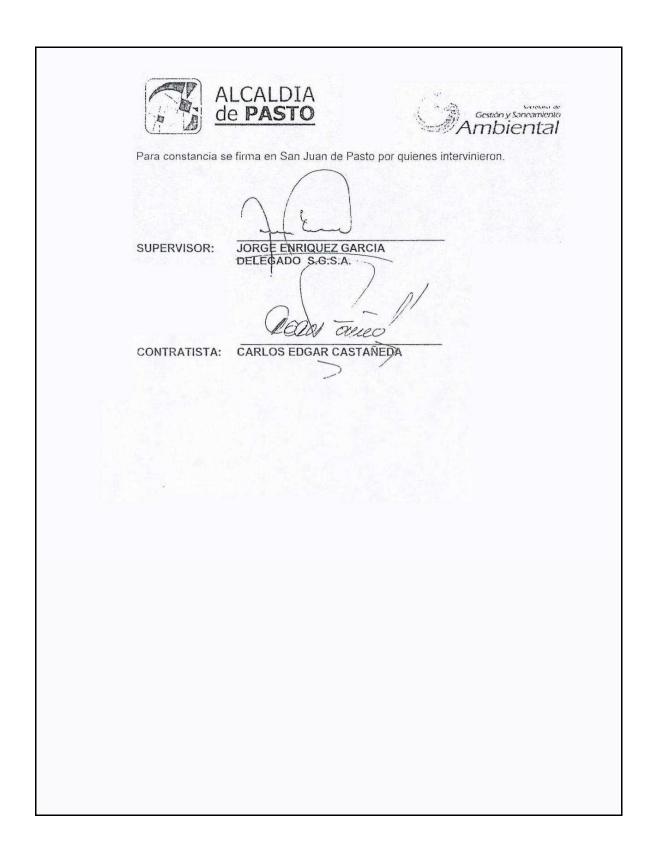
HASTA EL 31 DE DICIEMBRE DE 2008.

REQUISITOS DE EJECUCION:

* Registro Presupuestal del Compromiso Nº 2008004636

Fecha: 03/12/2008

Resolución de Aprobación de Garantías No. 200


Fecha: 04/12/2008

· Fecha de Suscripción del contrato de obra civil.

Fecha MA BIC Z-

PECHA DEL ACTA: 1/5 1910 (2014)

En la Secretaria de Gestión y Saneamiento Ambiental y en la fecha antea señaledas, se reunieron el Supervisor y el Contratista, con el fin de suscribir la presente Acta de Inicio para la ejecución del contrato antes referido.

ACTA DE LIQUIDACIÓN BILATERAL CONTRATO DE OBRA No 083316 DE 2 DE DICIEMBRE DE 2008

CONTRATISTA

CARLOS EDGAR CASTAÑEDA CORAL C.C. No. 10.539.723 de Popayán

CONTRATANTE

MUNICIPIO DE PASTO

OBJETO DEL CONTRATO

EJECUCION DE LA OBRA DE CONSTRUCCION DE LA SEGUNDA FASE DEL ACUEDUCTO DE SANTA TERESITA CORREGIMIENTO EL ENCANO DEL MUNICIPIO DE PASTO.

V/R CONTRATO INICIAL

CIENTO DOCE MILLONES SEICIENTOS NOVENTA MIL OCHOCIENTOS NOVENTA Y UN PESOS CON SESENTA Y DOS CENTAVOS (\$ 112.690.891.62) MONEDA CORRIENTE.

DURACION

A PARTIR DE ACTA DE INICIO HASTA EL 30 DE DICIEMBRE

DE 2008.

En San Juan de Pasto a los 6 dias del mes de abril de 2009, se reunieron en la Secretaria de Gestión Ambiental, CARLOS EDGAR CASTAÑEDA CORAL en calidad de Contratista, y el ING. HUGO RAMIRO ROSERO ORTIZ como Secretario de Gestión Ambiental a fin de realizar, de común acuerdo, la liquidación del contrato de Obra No. 083316, que tiene por objeto lo señalado en el encabezado, conforme a las siguientes consideraciones:

Primera: Que a la diligencia se hace presente el Arquitecto JORGE ENRIQUEZ GARCIA, quien llevó a cabo la interventoría del contrato de la referencia.

Segunda: Que el Municipio de Pasto y CARLOS EDGAR CASTAÑEDA CORAL, celebraron el día 2 de diciembre de 2008, el contrato de obra No.083316 cuyo por objeto lo señalado en el encabezado.

Tercera: Que de común acuerdo entre las partes se firmaron las siguientes actas para la ejecución del proyecto:

- Acta de Inicio: Con fecha del quince (15) del mes de diciembre de 2008.
- 2. Acta de recibo final: Con fecha dieciséis (16) del mes de marzo del 2009.

Cuarta: Que de común acuerdo se verifico mediante certificación acta de recibo final de fecha 16 de marzo del 2009, la terminación del contrato por extinción de la vigencia contractual y cumplimiento efectivo de las obligaciones contraídas en el acuerdo contractual, suscrita por las partes contratantes el día 2 de diciembre del 2008.

Quinta: Que la Ley 80 de 1993 en su artículo 60, prevé la liquidación de los contratos en relación con los contratos similares a la del objeto contractual pactado.

Sexta: Que la ley 80 de 1993 se estipula: "Liquidación del contrato: el presente contrato se liquidara de común acuerdo por las partes contratantes dentro de los cuatro (4) meses calendario contados a partir de la Finalización del contrato o de la expedición del acto administrativo que ordene la terminación o la fecha del acuerdo que lo disponga. También en esta etapa las partes acordaran los ajustes, revisiones y reconocimientos a que haya lugar. En el Acta de Liquidación constaran los acuerdos, conciliaciones y transacciones a que llegaren las partes para poner fin a las divergencias presentadas y poder declararse a paz y salvo. Para la liquidación se exigirá al contratista la extensión o ampliación, si es del caso, de la garantía del contrato a la estabilidad de la obra, a la calidad del bien o servicio suministrado, a la provisión de repuestos y accesorios, al pago de salarios, prestaciones e indemnizaciones, a la responsabilidad civil y,

CONTINUA ACTA DE LIQUIDACION BILATERAL CONTRATO DE OBRA No.083042 DE 29-10-2008 HOJA 2 DE 3

en general, para avalar las obligaciones que deba cumplir con posterioridad a la extinción del contrato", y por tanto, se da a través de la presente acta, cumplimiento efectivo a lo allí previsto.

Séptima: Que el interventor del contrato, presentó oportunamente a la administración el proyecto de liquidación del contrato objeto de la presente diligencia, en los términos y condiciones aquí previstas, y que expresa:

1. Balance financiero del contrato

- 1.1 Valor inicial del contrato; Ciento doce millones seiscientos noventa mil ochocientos noventa y un pesos con sesenta y dos centavos (\$ 112.690.891.62) Mda Cte.
- 1.2 Obra Original; Ciento doce millones seiscientos noventa mil ochocientos noventa y un pesos con sesenta y dos centavos (\$ 112.690.891.62) Mda Cte.
- 1.3 Valores adicionales y/o extras o no contempladas en el contrato original: Cero pesos moneda corriente. (\$ 0,00).

2. Valor Ejecutado

- 2.1 Por obra ejecutada: Ciento doce millones seiscientos ochenta y nueve mil seiscientos cuarenta y seis pesos con treinta y tres centavos (\$ 112.689.646.33) Mda Cte.
- Valor del anticipo: Cuarenta y cinco millones setenta y seis mil trescientos cincuenta y seis pesos con sesenta y cuatro centavos (\$ 45.076.356.64) Mda Cte.

4. Valor de reajustes o actualizaciones:

- 4.1 Modificaciones: (\$ 0.00) MDA CTE.
- 4.2 Subtotal: (\$ 0.00) MDA CTE.

5. Pagos efectuados al contratista

- 5.1 Anticipo: Cuarenta y cinco millones setenta y seis mil trescientos cincuenta y seis pesos con sesenta y cuatro centavos (\$ 45.076.356.64) Mda Cte.
- 5.2 Pago Acta final: Sesenta y siete millones seiscientos trece mil doscientos ochenta y nueve pesos con sesenta y nueve centavos (\$ 67.613.289.69) Mda Cte.
- 5.3 Subtotal: Ciento doce millones seiscientos ochenta y nueve mil seiscientos cuarenta y seis pesos con treinta y tres centavos (\$ 112.689.646.33) Mda Cte.

6. Resultados

6.1 Saldo a favor del contratista: ninguno \$ 0.00

6.2 Saldo a favor de la entidad: \$ 1.245.29

Frente a este informe otorgado por parte de El Municipio de Pasto- Secretaria de Gestión Ambiental, el respectivo visto bueno, y estando la parte Contratante de acuerdo se pone en consideración

CONTINUA ACTA DE LIQUIDACION BILATERAL CONTRATO DE OBRA No.083042 DE 29-10-2008 HOJA 3 DE 3

del contratista, representado por CARLOS EDGAR CASTAÑEDA CORAL, quién obra en calidad de Contratista del mismo, quien luego de estudiar el contenido de lo expuesto en la presente manifiesta que: El balance económico del contrato se encuentra acorde con el contenido y cumplimiento de las obligaciones pactadas, y por tanto existe equilibrio económico del contrato.

Octava: De conformidad con lo anterior las partes contratantes imparten su aprobación a la presente liquidación

Novena: En atención a lo previsto en la presente acta, las partes contratantes dan por liquidado el contrato de Obra No. 083316 del 2 de DICIEMBRE del 2008, cuyo objeto es: EJECUCION DE LA OBRA DE CONSTRUCCION DE LA SEGUNDA FASE DEL ACUEDUCTO DE SANTA TERESITA CORREGIMIENTO EL ENCANO DEL MUNICIPIO DE PASTO, declarándose las partes a Paz y Salvo entre ellas, libres de todo apremio o desavenencia, por lo cual no se consignan observaciones u objeciones. Se cancelan los recursos.

Se suscribe siendo las diez (10) horas, dando por concluida la presente diligencia.

CARLOS EDGAR CASTAÑEDA CORAL

ARQ. JORGE ENRIQUEZ GARCIA. Interventor Delegado S. G. A.

ING. HUGO RAMIRO ROSERO ORTIZ Secretario Gestión Ambiental

ACTA FINAL DEL CONTRATO DE OBRA No 083316 DEL 2 DE DICIEMBRE DE 2008

CONTRATISTA

CARLOS EDGAR CASTAÑEDA CORAL

C.C. No. 10.539,723 de Popayán

CONTRATANTE

MUNICIPIO DE PASTO

CBJETO DEL CONTRATO

EJECUCION DE LA OBRA DE CONSTRUCCION DE LA SEGUNDA FASE DEL ACUEDUCTO DE SANTA TERESITA CORREGIMIENTO EL ENCANO DEL MUNICIPIO DE PASTO.

WR CONTRATO INICIAL

CIENTO DOCE MILLONES SEISCIENTOS NOVENTA MIL OCHOCIENTOS NOVENTA Y UN PESOS CON SESENTA Y DOS

CENTAVOS (\$ 112.690.891.62) MONEDA CORRIENTE.

V/R A CANCELAR PRESENTE ACTA:

SESENTA Y SIETE MILLONES SEISCIENTOS CATORCE MIL QUINIENTOS TREINTA Y CUATRO PESOS CON SESENTA Y SIETE CENTAVOS (\$ 67.614.534.67) MONEDA CORRIENTE.

DURACION

A PARTIR DE ACTA DE INICIO HASTA EL 30 DE DICIEMBRE DE

2008

"ECHA ACTA DE INICIO

DICIEMBRE 15 DE 2008

FECHA ACTA DE SUSPENCION 01

DICIEMBRE 19 DE 2008

FECHA ACTA DE REINICIO 01

MARZO 5 DE 2009

FECHA ACTA DE MODIFICACION 01

MARZO 6 DE 2009

En la Vereda Santa Teresita, Corregimiento del Encano a los dieciséis (16) días del mes de marzo de 2009, se reunieron en el sitio de la obra, CARLOS EDGAR CASTAÑEDA CORAL en calidad de Contratista, el !NG. HUGO RAMIRO ROSERO ORTIZ como Socretario de Gestión Ambiental y el Arquitecto JORGE ENRIQUEZ GARCIA, en calidad de Supervisor Delegado de la Secretaria de Gestión Ambiental, con el fin de suscribir la presente Acta de Recibo Final del contrato de Obra que se menciona en el encabezado, de acuerdo al siguiente cuadro:

> TOTAL EJECUTADO EN PRESENTE ACTA..... MENOS VALOR ENTREGADO ANTICIPO 40%... VALOR A CANCELAR AL CONTRATISTA PRESENTE ACTA \$ 67.613.289.69

112 689 646 33 45.076.356.64

Según lo estipulado en el Contrato, se establece que el contratista ha cumplido con lo pactado, y el proyecto se recibe a Satisfacción del Municipio de acuerdo al cuadro adjunto de cantidades de obra ejecutada, que se anexa y el cual es parte integral de la presente acta.

Be firma por los que en ella intervienen

EEER auco CARLOS EDGAR CASTAÑEDA CORAL

Contratista

ING. EDGAR IGUA PAZ Bubsocretario Sector Rural S. G. A. ARQ. JORGE ENRIQUEZ GARCIA. Interventor Delegado S. G. A.

ING HUGO RAMIRO ROSERO ORTIZ Socretario Gestión Ambiental

NIT. 860.030.360-5

BOGOTA, D.C. SEÑOR(ES): DFICINA	MUNICIPIO	DE 200 FACTURA DE VENTA FM 4937 MUNICIPIO DE PASTO NIT 891.280.000 CONTRATO DE SUMINISTRO DE TEL REF								
OBRA	TUBERIA EN	PVC VENDEDOR 40	REMISI	ON						
CODIGO	CANTIDAD	ARTICULO	Vr. UNITARIO	VALOR TOTAL						
	813.96	SUMINISTRO TUBERIA PVC PRESION RDE26 DE 3"." UM.	8.212.10	6.684.320.92						
	1416,36	SUMINISTRO TUBERIA PVC PRESION RDE26 DE	5.931.03	8.400.473.65						
	2973.25	SUMINISTRO TUBERIA PVC PRESION RDE26 DE	4.139.65	12.308.214.36						
********	3891,61	SUMINISTRO TUBERIA PVC PRESION RDE21 DE 1 1/2'' UM.	679.74	2.645.282.98						
***************************************	104.00	ACOMETIDA EN TUBERIA PVC DE 1/2'' RDE 13.5. US, 30 ML, UNIONES PVC DE 1/2'', TEE PVC	35.705.19	.3.713.339.76						
		DE 1 1/2", BUJE DE 1 1/2", CODO PVC DE								
		1/2''.								
			SUB-TOTAL I.V.A.	33.751.631.68 5.400.261.07						
			TOTAL	39.151.892.75						

ACTA DE LIQUIDACIÓN BILATERAL

CONTRATO DE CONSULTORIA No. 083168 DE 25-11-2008

OBJETO: REALIZAR EL DISEÑO, ACTUALIZACION Y OPTIMIZACION DEL SISTEMA DE ACUEDUCTO PARA VEREDA JUANOY CORREGIMIENTO DE MORASURCO, SECTOR SUBURBANO MUNICIPIO DE PASTO.

CONTRATANTE: ING. HUGO RAMIRO ROSERO ORTIZ - SECRETARIA DE GESTION AMBIENTAL.

CONTRATISTA: HOMERO ARMANDO ROSERO ORTIZ

En San Juan de Pasto a los veintiséis (26) días del mes de Marzo de 2009, se reunieron en el despacho de la Secretaria de Gestión Ambiental, el Ing. HUGO RAMIRO ROSERO ORTIZ Secretario de Gestión Ambiental, el Arq. JORGE ENRIQUEZ GARCIA Supervisor delegado S.G.A.. y HOMERO ARMANDO MEJIA SANTACRUZ en calidad de Contratista, a fin de realizar, de común acuerdo, la liquidación del contrato de Consultoría No. 083168, que tiene por objeto la REALIZAR EL DISEÑO, ACTUALIZACION Y OPTIMIZACION DEL SISTEMA DE ACUEDUCTO PARA VEREDA JUANOY CORREGIMIENTO DE MORASURCO, SECTOR SUBURBANO MUNICIPIO DE PASTO , conforme a las siguientes consideraciones:

Primera: Que a la diligencia se hace presente el Arquitecto JORGE ENRIQUEZ GARCIA, quien llevó a cabo la supervisión del contrato de la referencia.

Segunda: Que el Municipio de Pasto y HOMERO ARMANDO MEJIA ORTIZ, celebraron el día 25 de Noviembre de 2008, el contrato de consultoría No.083168 cuyo objeto fue: REALIZAR EL DISEÑO, ACTUALIZACION Y OPTIMIZACION DEL SISTEMA DE ACUEDUCTO PARA VEREDA JUANOY CORREGIMIENTO DE MORASURCO, SECTOR SUBURBANO MUNICIPIO DE PASTO.

Tercera: Que de común acuerdo entre las partes se firmaron las siguientes actas para la ejecución del proyecto:

- 1. Acta de Inicio: Con fecha del veintiocho (28) días del mes de Noviembre de 2008
- 2. Acta de recibo final: Con fecha del treinta (30) días del mes de Diciembre del 2008.

Cuarta: Que de común acuerdo se verifico mediante certificación acta de recibo final de fecha 30 de Diciembre del 2008, la terminación del contrato por extinción de la vigencia contractual y cumplimiento efectivo de las obligaciones contraídas en el acuerdo contractual, suscrita por las partes contratantes el día 25 de Noviembre del 2008.

Quinta: Que la Ley 80 de 1993 en su artículo 60, prevé la liquidación de los contratos en relación con los contratos similares a la del objeto contractual pactado.

Sexta: Que en el numeral 18 del contrato Nº 083168 de 2008, se estipuló: "El secretario de Gestión y Saneamiento Ambiental o su delegado quien suscribirá el acta de inicio, previa verificación de los requisitos para la ejecución del contrato, verificará el cumplimiento del objeto contractual y proyectará la liquidación del contrato", y por tanto, se da a través de la presente acta, cumplimiento efectivo a lo allí previsto.

CONTINUA ACTA LIQUIDACION BILATERAL CONTRATO CONSULTORIA No.083168 HOJA 2 DE 3

Séptima: Que el supervisor del contrato, presentó oportunamente a la administración el proyecto de liquidación del contrato objeto de la presente diligencia, en los términos y condiciones aquí previstos, y que expresa:

1. Balance financiero del contrato

- 1.1 Valor inicial del contrato: Veintiún millones novecientos veinte mil ochocientos cincuenta pesos (\$21.920.850) MDA CTE.
- 1.2 Contrato Original: Veintiún millones novecientos veinte mil ochocientos cincuenta pesos (\$21.920.850) MDA CTE.
- 1.3 Valores adicionales y/o extras o no contempladas en el contrato original: Cero pesos mda cte. (\$ 0,00).

2. Valor Ejecutado

- 2.1 Por contrato original: Veintiún millones novecientos veinte mil ochocientos cincuenta pesos (\$21.920.850) MDA CTE.
- Valor del anticipo: Ocho millones setecientos sesenta y ocho mil trescientos cuarenta pesos. (\$8.768.340.00) MDA. CTE.
- 4. Valor de reajustes o actualizaciones:
- 4.1 Modificaciones: Cero Pesos. (\$0,00)
- 4.2 Subtotal: Cero Pesos (0,00)

5. Pagos efectuados al contratista

- 5.1 Anticipo : Ocho millones setecientos sesenta y ocho mil trescientos cuarenta . pesos. (\$8.768.340.00) MDA. CTE.
- 5.2 Pago Acta Parcial: \$(000)
- 5.3 Pago Acta final: Trece millones ciento cincuenta y dos mil quinientos diez pesos (\$13.152.510) MDA CTE.
- 5.4 Subtotal: Veintiún millones novecientos veinte mil ochocientos cincuenta pesos (\$21.920.850) MDA CTE.

6. Resultados

- 6.1 Saldo a favor del contratista: ninguno \$ 0.00
- 6.2 Saldo a favor de la entidad: ninguno \$ 0.00

4

CONTINUA ACTA DE LIQUIDACION BILATERAL CONTRATO DE CONSULTORIA No.083168 HOJA 3

Frente a este informe otorgado por parte de El Municipio de Pasto- Secretaria de Gestión Ambiental, el respectivo visto bueno, y estando la parte Contratante de acuerdo se pone en consideración del contratista, representado por HOMERO ARMANDO MEJIA SANTACRUZ, quién obra en calidad de Contratista del mismo, quien luego de estudiar el contenido de lo expuesto en la presente manifiesta que: El balance económico del contrato se encuentra acorde con el contenido y cumplimiento de las obligaciones pactadas, y por tanto existe equilibrio económico del contrato.

Octava: De conformidad con lo anterior las partes contratantes imparten su aprobación a la presente liquidación.

Novena: En atención a lo previsto en la presente acta, las partes contratantes dan por liquidado el contrato de Consultoría No. 083168 del 25 de Noviembre del 2008, cuyo objeto es: REALIZAR EL DISEÑO, ACTUALIZACION Y OPTIMIZACION DEL SISTEMA DE ACUEDUCTO PARA VEREDA JUANOY CORREGIMIENTO DE MORASURCO, SECTOR SUBURBANO MUNICIPIO DE PASTO declarándose las partes a Paz y Salvo entre ellas, libres de todo apremio o desavenencia, por lo cual no se consignan observaciones u objeciones. Se cancelaron los recursos.

> ARQ. JORGE ENRIQUEZ GARCIA Supervisor Delegado S.G.A.

Se suscribe siendo las diez (10) horas, dando por concluida la presente diligencia.

ING. HOGO RAMIRO ROSERO ORTIZ

HOMERO ARMANDO MEJIA SANTACRUZ

Contratista

ACTA DE INICIO

CLASE DE CONTRATO:	CONSULTORIA

CONTRATANTE: MUNICIPIO DE PASTO - SECRETARIA DE

GESTION Y SANEAMIENTO AMBIENTAL

SECRETARIO : HUGO RAMIRO ROSERO ORTIZ

CONTRATISTA: OSCAR ARMANDO YEPEZ VILLOTA

CEDULA DE CIUDADANIA: 98.390.448 DE PASTO - NARIÑO

SUPERVISOR: JORGE ENRIQUEZ GARCIA
DELEGADO S.G.S.A.

OBJETO DEL CONTRATO: En calidad de contratista se obliga a hacer el

diseño para la Actualización y Optimización del sistema de Acueducto para el sector Mocondino

- Puerres - Canchala.

PLAZO DE EJECUCION: Uno (1) mes, contado a partir de la fecha de

suscripción del acta de inicio.

REQUISITOS DE EJECUCION:

Registro Presupuestal del Compromiso No.

Fecha _ 25 NOV 2008 /

· Resolución de Aprobación de Garantías No.

Fecha 27 707 2008

Fecha de Suscripción del Contrato:

Fecha ______ 24 1167 2009 V

FECHA DEL ACTA: 20 1.... 20

En la Secretaria de Gestión y Saneamiento Ambiental y en la fecha antes señalados, se reunierón el Supervisor y el Contratista, con el fin de suscribir la presente Acta de inicio para la ejecución del contrato antes referido.

A

Para constancia se firma en San Juan de Pasto por quienes intervinieron.

SUPERVISOR:

JORGE ENRIQUEZ GARCIA
DELEGADO S.G.S.A.

CONTRATISTA: OSCAR ARMANDO YEPEZ VILLOTA

ACTA DE INICIO

CLASE DE CONTRATO:	CONSULTORIA	
CONTRATANTE:	MUNICIPIO DE PASTO - SECRETARIA GESTION Y SANEAMIENTO AMBIENTAL	DE
SECRETARIO:	HUGO RAMIRO ROSERO ORTIZ	

CONTRATISTA: ALVARO MILTON AREVALO CASTILLO

SUPERVISOR: JORGE ENRIQUEZ GARCIA DELEGADO S.G.S.A.

OBJETO DEL CONTRATO: En calidad de contratista se obliga a hacer el los diseños de actualización y optimización de los sistemas de Acueducto para los Sectores

San Cayetano Corregimiento de Mapachico y Aranda - Villa Nueva Sector Suburbano.

15.811.635 DE LA UNION - NARIÑO

PLAZO DE EJECUCION: Uno (1) mes, contado a partir de la fecha de suscripción del acta de inicio.

REQUISITOS DE EJECUCION:

Fecha

CEDULA DE CIUDADANIA:

, togica	o i robuj	Jucota	l del Com	promis	0 140.2	000004)
Fecha	176	· Dr	2000	26	MOA	2008
						1
Pocolu	rión da	Anroha	clón de G	Parantis	e No	107

· Fecha de Suscripción del Contrato: 126 NOV 2003 Fecha

ACTA DE INICIO

CLASE DE CONTRATO:	CONSULTORIA					
CONTRATANTE:	MUNICIPIO	DE	PASTO	_	SECRETARIA	DI

GESTION Y SANEAMIENTO AMBIENTAL

SECRETARIO: HUGO RAMIRO ROSERO ORTIZ

CONTRATISTA: DIANA CAROLINA MORALES PABON

CEDULA DE CIUDADANIA: 1.085.244.648 DE PASTO - NARIÑO

SUPERVISOR: JORGE ENRIQUEZ GARCIA DELEGADO S.G.S.A.

En calidad de contratista se obliga a hacer el diseño estructural del Tanque de OBJETO DEL CONTRATO:

Almacenamiento de Agua Potable para San Fernando, y los diseños de actualización y optimización de los sistemas de Acueducto para los Sectores Encano - Centro y Bella Vista

- Catambuco.

PLAZO DE EJECUCION: Uno (1) mes, contado a partir de la fecha de

suscripción del acta de inicio.

REQUISITOS DE EJECUCION:

Fecha

· regione			del Compromi	
Fecha	20	1:07	2663	
	NOT THE	,		
		-		4
Resoluci	ón de Ap	orobac	ión de Garant	ías
Resoluci	ón de Ap	orobac	ión de Garant 2003	ías

20 1111 2003

FECHA DEL ACTA:

120 :13/ 2008

En la Secretaria de Gestión y Saneamiento Ambiental y en la fecha antes señalados, se reunieron el Supervisor y el Contratista, con el fin de suscribir la presente Acta de inicio para la ejecución del contrato antes referido.

Para constancia se firma en San Juan de Pasto por quienes intervinieron.

SUPERVISOR:

JORGE ENRIQUEZ GARCIA DELEGADO S.G.S.A.

Diana Morales P.

CONTRATISTA: DIANA CAROLINA MORALES PABON

ACTA DE INICIO

CLASE DE CONTRATO: CONSULTORIA

CONTRATANTE: MUNICIPIO DE PASTO - SECRETARIA DE

GESTION Y SANEAMIENTO AMBIENTAL

SECRETARIO: HUGO RAMIRO ROSERO ORTIZ

CONTRATISTA: EVA SANTA CASTRILLON

CEDULA DE CIUDADANIA: 27.068.117 DE PASTO (NARIÑO)

SUPERVISOR: JORGE ENRIQUEZ GARCIA

Delegado S.G.S.A.

OBJETO DEL CONTRATO: En calidad de contratista se obliga a hacer el

diseño del sistema de tratamiento de aguas residuales dispuesto para el Barrio Popular y

Rosal de Oriente.

PLAZO DE EJECUCION: Uno (1) mes, contado a partir de la fecha de

suscripción del acta de inicio.

REQUISITOS DE EJECUCION:

0	Registro	Presupuestal de	el Compromiso	No.	1	17	3	4
		07	10.10					

Fecha 27 0CT 2008

• Resolución de Aprobación de Garantías No. 11 / 6

Fecha 20 NOV 2008

Fecha de Suscripción del Contrato:

Fecha 27 0CT 2008

20 NOV 2008

FECHA DEL ACTA:

En la Secretaria de Gestión y Saneamiento Ambiental y en la fecha antes señalados, se reunieron el Supervisor y el Contratista, con el fin de suscribir la presente Acta de inicio para la ejecución del contrato antes referido.

Para constancia se firma en San Juan de Pasto por quienes intervinieron.

SUPERVISOR:

JORGE ENRIQUEZ GARCIA Delegado S.G.S.A.

CONTRATISTA: EVA SANTA CASTRILLON

ACTA DE INICIO

CLASE DE CONTRATO: SUMINISTRO Y MONTAJE

CONTRATANTE: OFICINA DE CONTRATACION PÚBLICA

SECRETARIO: HUGO RAMIRO ROSERO ORTIZ

CONTRATISTA: JAVIER ROSERO ROSERO

CEDULA DE CIUDADANIA: 12.981.032 DE PASTO - NARIÑO

SUPERVISOR: JORGE ENRIQUEZ GARCIA

DELEGADO S.G.S.A.

OBJETO DEL CONTRATO: SUMINISTRO MONTAJE Y PUESTA EN MARCHA DE UNA PLANTA DE TRATAMIENTO

DE AGUA POTABLE SEMICOMPACTA, PARA LOS BARRIOS POPULAR Y ARNULFO

GUERRERO.

PLAZO DE EJECUCION: A partir de la fecha de suscripción del acta de

inicio Hasta el 31 de diciembre de 2008

REQUISITOS DE EJECUCION:

Registro Presupuestal del Compromiso No. 2008004873

Fecha: 10/12/2008

· Resolución de Aprobación de Garantías No. 224

Fecha: 11/12/2008

Fecha de Suscripción del contrato de suministro de instalación.

Fecha 11/12/2008

FECHA DEL ACTA:

111 DIC 2008

En la Secretaria de Gestión y Saneamiento Ambiental y en la fecha antes señaladas, se reunieron el Supervisor y el Contratista, con el fin de suscribir la presente Acta de inicio para la ejecución del contrato antes referido.

Para constancia se firma en San Juan de Pasto por quienes intervinieron.

SUPERVISOR:

JORGE ENRIQUEZ GARCIA. DELEGADO S.G.S.A.

CONTRATISTA: JAVIER ROSERO ROSERO

ACTA DE INICIO

CLASE DE CONTRATO:	CONSULTORIA	
CONTRATANTE:	MUNICIPIO DE PASTO – SECRETARIA GESTION Y SANEAMIENTO AMBIENTAL	DE

SECRETARIO: HUGO RAMIRO ROSERO ORTIZ

CONTRATISTA: ANDRES FERNANDO GUERRERO CABRERA

CEDULA DE CIUDADANIA: 98.389.601 DE PASTO - NARIÑO

SUPERVISOR: JORGE ENRIQUEZ GARCIA DELEGADO S.G.S.A.

OBJETO DEL CONTRATO: En calidad de contratista se obliga a hacer el

diseño para la optimización del sistema de Acueducto en el Corregimiento de Jamondino.

PLAZO DE EJECUCION: Uno (1) mes, contado a partir de la fecha de

suscripción del acta de inicio.

REQUISITOS DE EJECUCION:

0	Registro P	resupue	estal d	el Compr	omiso No.	4 4 2 0
	Fecha	20	h. i	2008		
0	Resolució	n de Apı	robaci	óŋ de Ga	ranţias No.	0.80
	Fecha	25	1; ;;;; ;;;;;;	2008	_ /	
0	Fecha de	Suscrip	ción de	el Contrat	:0:	
	Fecha	28	1101	Zuul	-	

FECHA DEL ACTA:

28 NOV 2000

En la Secretaria de Gestión y Saneamiento Ambiental y en la fecha antes señalados, se reunieron el Supervisor y el Contratista, con el fin de suscribir la presente Acta de inicio para la ejecución del contrato antes referido.

Para constancia se firma en San Juan de Pasto por quienes intervinieron.

SUPERVISOR:

JORGE ENRIQUEZ GARCIA DELEGADO S.G.S.A.

CONTRATISTA: LANDRES FERNANDO GUERRERO CABRERA