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A Quick Introduction to Quivers and Path Algelbras



SOME DEFINITIONS

Let k be an algebraically closed field.

e A quiver Q is a directed graph Q = (Qo, Q1,s,e) where Qy is the set of vertices, Q; is the
set of arrows and s,e : Q1 — Qp are maps such that for any arrow a € Q. s(a) is the vertex

where « starts and e(«) is the vertex where a ends.
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SOME DEFINITIONS

Let k be an algebraically closed field.

e A quiver Q is a directed graph Q = (Qo, Q1,s,e) where Qy is the set of vertices, Q; is the
set of arrows and s,e : Q1 — Qp are maps such that for any arrow a € Q. s(a) is the vertex
where « starts and e(«) is the vertex where a ends.

o leti,je Qp Apathoflengthl > 1fromitfo jis a composition of arrows a;a; 1 --- a1 such

that s(ag) =i, e(ag) = s(agy1) forallk with1 <k <I—1ande(a;) =j.
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SOME DEFINITIONS

Let k be an algebraically closed field.

e A quiver Q is a directed graph Q = (Qo, Q1,s,e) where Qy is the set of vertices, Q; is the
set of arrows and s,e : Q1 — Qp are maps such that for any arrow a € Q. s(a) is the vertex
where « starts and e(«) is the vertex where a ends.

o leti,je Qp Apathoflengthl > 1fromitfo jis a composition of arrows a;a; 1 --- a1 such
that s(ag) =i, e(ag) = s(agy1) forallk with1 <k <I—1ande(a;) =j.

e \We also define for any vertex i of Q a path of length zero (from i to itself), denoted by e;.
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SOME DEFINITIONS

Let k be an algebraically closed field.

e A quiver Q is a directed graph Q = (Qo, Q1,s,e) where Qy is the set of vertices, Q; is the
set of arrows and s,e : Q1 — Qp are maps such that for any arrow a € Q. s(a) is the vertex
where « starts and e(«) is the vertex where a ends.

o leti,je Qp Apathoflengthl > 1fromitfo jis a composition of arrows a;a; 1 --- a1 such
that s(ag) =i, e(ag) = s(agy1) forallk with1 <k <I—1ande(a;) =j.

e \We also define for any vertex i of Q a path of length zero (from i to itself), denoted by e;.

e The path algebra kQ of Q is defined to be the k-vector space with k-basis the set of all
paths in Q and the product of two paths is taken to be the composition if it exists, and zero

otherwise.
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Consider the quiver

Q:I ° ° °

e Qv=1{1,2,3,4} and Q; = {a,B,7}. Note that s(a) = 1,e(a) = 2 = s(B).
o Then {ey, ey, e3,e4,a, B, Ba,vB, vBa} is a k-basis of the path algebra kQ.

e Notethafay =0 = ap. Since fa # af then in parficular kQ is not a commutative k-algebra.
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MORITA EQUIVALENCE, BASIC ALGEBRAS AND GABRIEL'S THEOREM

Recall that k is an algebraically closed field.
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e For any finite dimensional k-algebra A, denote by A-mod the caftegory of all finitely gen-

erated A-modules.
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MORITA EQUIVALENCE, BASIC ALGEBRAS AND GABRIEL'S THEOREM

Recall that k is an algebraically closed field.

e For any finite dimensional k-algebra A, denote by A-mod the caftegory of all finitely gen-

erated A-modules.
e Let A and Ay be finite dimensional k-algebras. We say that A and A are Morita equivalent,

denoted by A ~,; Ay, if the categories A-mod and Ayp-mod are equivalent categories.
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Recall that k is an algebraically closed field.

e For any finite dimensional k-algebra A, denote by A-mod the caftegory of all finitely gen-
eratfed A-modules.

e Let A and Ay be finite dimensional k-algebras. We say that A and A are Morita equivalent,
denoted by A ~,; Ay, if the categories A-mod and Ayp-mod are equivalent categories.

e A is abasic k-algebra if all simple A-modules are one-dimensional over k.
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MORITA EQUIVALENCE, BASIC ALGEBRAS AND GABRIEL'S THEOREM

Recall that k is an algebraically closed field.

e For any finite dimensional k-algebra A, denote by A-mod the caftegory of all finitely gen-
eratfed A-modules.

e Let A and Ay be finite dimensional k-algebras. We say that A and A are Morita equivalent,
denoted by A ~,; Ay, if the categories A-mod and Ayp-mod are equivalent categories.

e A is abasic k-algebra if all simple A-modules are one-dimensional over k.

Theorem 1 (Morita). If A is a finite dimensionalk-algebra, then there is a unique basic algebra

Ao up fo isomorphism with A ~p; Ay. We call Ay the basic algebra of A.
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MORITA EQUIVALENCE, BASIC ALGEBRAS AND GABRIEL'S THEOREM

Recall that k is an algebraically closed field.

e For any finite dimensional k-algebra A, denote by A-mod the category of all finitely gen-
eratfed A-modules.

e Let A and Ay be finite dimensional k-algebras. We say that A and A are Morita equivalent,
denoted by A ~,; Ay, if the categories A-mod and Ayp-mod are equivalent categories.

e A is abasic k-algebra if all simple A-modules are one-dimensional over k.

Theorem 1 (Morita). If A is a finite dimensionalk-algebra, then there is a unique basic algebra

Ao up fo isomorphism with A ~p; Ay. We call Ay the basic algebra of A.

Theorem 2 (Gabriel). Any basic finite dimensional k-algebra is of the form kQ /I for a unique
quiver Q and some ideal I with J[* C I C J? forsomen > 2, where | is the ideal ofkQ generated

by all arrows of Q.
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DROZD’'S THEOREM

Theorem 3 (Drodz 1980). Suppose that A is a finite-dimensional k-algebra. Then A satisfies

either one of the following propertfies.
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DROZD’'S THEOREM

Theorem 3 (Drodz 1980). Suppose that A is a finite-dimensional k-algebra. Then A satisfies

either one of the following propertfies.

(D A is of finite representation type, i.e., there are at most finitely many isomorphism classes

of indecomposable A-modules.
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DROZD’'S THEOREM

Theorem 3 (Drodz 1980). Suppose that A is a finite-dimensional k-algebra. Then A satisfies

either one of the following propertfies.

(D A is of finite representation type, i.e., there are at most finitely many isomorphism classes
of indecomposable A-modules.

(i) A is of tame representation type, i.e., there are infinitely many isomorphism classes of
indecomposable A-modules such that for all integer d > 1, almost all indecomposable

modaules of dimension d belong fo finitely many 1-parameter families.
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DROZD’'S THEOREM

Theorem 3 (Drodz 1980). Suppose that A is a finite-dimensional k-algebra. Then A satisfies

either one of the following propertfies.

(D A is of finite representation type, i.e., there are at most finitely many isomorphism classes
of indecomposable A-modules.

(i) A is of tame representation type, i.e., there are infinitely many isomorphism classes of
indecomposable A-modules such that for all integer d > 1, almost all indecomposable
modaules of dimension d belong fo finitely many 1-parameter families.

(i) A is of wild type, i.e., there are infinitely many isomorphism classes of indecomposable

A-modules, and A-mod is comparable with k(x,y)-mod.
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SPECIAL BISERIAL ALGEBRAS

A finite dimensional k-algebra A is special biserial provided that its basic algebra is isomorphic

to kQ/ I satisfying the following conditions:
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SPECIAL BISERIAL ALGEBRAS

A finite dimensional k-algebra A is special biserial provided that its basic algebra is isomorphic

to kQ/ I satisfying the following conditions:

()  Any vertex of Q is starting point of at most two arrows. Any vertex of Q is the end point of

at most two arrows.
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SPECIAL BISERIAL ALGEBRAS

A finite dimensional k-algebra A is special biserial provided that its basic algebra is isomorphic

to kQ/ I satisfying the following conditions:

()  Any vertex of Q is starting point of at most two arrows. Any vertex of Q is the end point of

at most two arrows.

(i) Given an arrow B, there is at most one arrow  with s(8) = e(y) and By ¢ I. Given an arrow

7. there is at most one arrow B with s(8) = e(y) and By ¢ I.
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SPECIAL BISERIAL ALGEBRAS

A finite dimensional k-algebra A is special biserial provided that its basic algebra is isomorphic

to kQ/ I satisfying the following conditions:

()  Any vertex of Q is starting point of at most two arrows. Any vertex of Q is the end point of
at most two arrows.
(i) Given an arrow B, there is at most one arrow  with s(8) = e(y) and By ¢ I. Given an arrow

7. there is at most one arrow B with s(8) = e(y) and By ¢ I.

When A is special biserial k-algebra then all the indecomposable non-projective A-modules
can be described combinatorially from Q and I using so-called strings and bands. We call
the former string A-modules and the latter band A-modules( M.C.R BUTLER & C.M. RINGEL,
1987).
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A PARTICULAR EXAMPLE

Let A3 =kQ/I, where

0 Ot

and

I = {(Ba,oB,dp,E, AL, aA, ASB — &, BAS — p?, 6BA — &2) 2

The algebra Aj is a tfame symmetric special biserial algebra that is not Morita equivalent to a

block of a group algebra (Erdmann 1980, Holm 1999).
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A PARTICULAR EXAMPLE

Let A3 =kQ/I, where

0 Ot

and

I = {(Ba,oB,dp,E, AL, aA, ASB — &, BAS — p?, 6BA — &2) 2

The algebra Aj is a tfame symmetric special biserial algebra that is not Morita equivalent to a

block of a group algebra (Erdmann 1980, Holm 1999).

Denote by I's(A3) the stable Auslander-Reiten quiver of A;. Then the components of T's(Aj3)

are:
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Let A3 =kQ/I, where

0 Ot

and

I = {(Ba,oB,dp,E, AL, aA, ASB — &, BAS — p?, 6BA — &2) 2

The algebra Aj is a tfame symmetric special biserial algebra that is not Morita equivalent to a

block of a group algebra (Erdmann 1980, Holm 1999).

Denote by I's(A3) the stable Auslander-Reiten quiver of A;. Then the components of T's(Aj3)

are:

e infinitely many components of type ZAZ (consisting entirely of string modules);
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A PARTICULAR EXAMPLE

Let A3 =kQ/I, where

0 Ot

and

I = {(Ba,oB,dp,E, AL, aA, ASB — &, BAS — p?, 6BA — &2) 2

The algebra Aj is a tfame symmetric special biserial algebra that is not Morita equivalent to a

block of a group algebra (Erdmann 1980, Holm 1999).

Denote by I's(A3) the stable Auslander-Reiten quiver of A;. Then the components of T's(Aj3)

are:

e infinitely many components of type ZAZ (consisting entirely of string modules);

e two 3-fubes (consisting entirely of string modules);
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A PARTICULAR EXAMPLE

Let A3 =kQ/I, where

0 Ot

and

I = {(Ba,oB,dp,E, AL, aA, ASB — &, BAS — p?, 6BA — &2) 2

The algebra Aj is a tfame symmetric special biserial algebra that is not Morita equivalent to a
block of a group algebra (Erdmann 1980, Holm 1999).

Denote by I's(A3) the stable Auslander-Reiten quiver of A;. Then the components of T's(Aj3)

are:

e infinitely many components of type ZAZ (consisting entirely of string modules);
e two 3-fubes (consisting entirely of string modules);

e infinitely many 1-tubes (consisting enftirely of band modules).
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Figure 1: The stable Auslander-Reiten component of type ZA near M[C].
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Figure 2: The stable Auslander-Reiten component of type ZAZ near Sy.
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e Cis the category of all complete local commutative Noetherian k-algebras with residue field k. For

example, k[[t]] € Ob(C).
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e Cisthe full subcategory of C of Artinian objects.
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In this talk:

e kis afixed algebraically closed field of arbitrary characteristic.

e Cis the category of all complete local commutative Noetherian k-algebras with residue field k. For
example, k[[t]] € Ob(C).

e Cisthe full subcategory of C of Artinian objects.

e A is an arbitrary finite-dimensional k-algebra equipped with the discrete topology.
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SET UP

In this talk:

e kis afixed algebraically closed field of arbitrary characteristic.

e Cis the category of all complete local commutative Noetherian k-algebras with residue field k. For
example, k[[t]] € Ob(C).

e Cisthe full subcategory of C of Artinian objects.

e A is an arbitrary finite-dimensional k-algebra equipped with the discrete topology.

e ForallR € Ob(C), we denote by RA the tensor product of k-algebras R @, A. Note in particular that RA

is also a k-vector space.

Deformations and Derived Equivalence over Symmetric Algebras José A. Vélez-Marulanda



Deformations and Derived Categories



HISTORICAL BACKGROUND

Let k be an algebraically closed field, and let G be a profinite group.

e Inthe 1980°s, B. MAZUR developed a deformation theory of finite dimensional representa-
fions of G over k. His work was based on that of M. SCHLESSINGER-1968. A more explicit
approach was latter described by B. DE SMITH and H.W. LENSTRA in the year 1995.
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HISTORICAL BACKGROUND

Let k be an algebraically closed field, and let G be a profinite group.

e Inthe 1980°s, B. MAZUR developed a deformation theory of finite dimensional representa-
fions of G over k. His work was based on that of M. SCHLESSINGER-1968. A more explicit
approach was latter described by B. DE SMITH and H.W. LENSTRA in the year 1995.

e Deformation theory has become a basic tool in arithmetic geometry (see e.g. CORNELL,
G., SILVERMAN, J.H., and STEVENS, G. (Eds.), "Modular Forms and Fermat’s Last Theorem”,
Springer-Verlag, 1997, and its references).

e The main motivation of this talk is that powerful tools from representation theory of finite
dimensional algebras, such as Auslander-Reiten quivers, stable equivalences, and com-
binatorial descriptions of modules has been used to have a better understanding of the
deformation theory of group representations.

e This approach has lead to the solufion of various open problems. For example, in 2006
F. BLEHER and T. CHINBURG successfully used this approach to construct representations
whose universal deformation ring is not a complete intersection.
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PSEUDOCOMPACT RA-MODULES AND COMPLETED TENSOR PRODUCTS

Let R € Ob(C).
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PSEUDOCOMPACT RA-MODULES AND COMPLETED TENSOR PRODUCTS

Let R € Ob(C).

Definition 4. An RA-module M is said to be pseudocompact provided that it is the projective
limit of RA-modules of finite length having the discrete topology. We denote by PCMod(RA)

the abelian category of pseudocompact RA-modules.
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PSEUDOCOMPACT RA-MODULES AND COMPLETED TENSOR PRODUCTS

Let R € Ob(C).

Definition 4. An RA-module M is said to be pseudocompact provided that it is the projective
limit of RA-modules of finite length having the discrete topology. We denote by PCMod(RA)

the abelian category of pseudocompact RA-modules.

e If Mis an RA-module with dimp M < oo, then M is pseudocompact. In partficular, every

finitely generated RA-module is also pseudocompact.
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PSEUDOCOMPACT RA-MODULES AND COMPLETED TENSOR PRODUCTS

Let R € Ob(C).

Definition 4. An RA-module M is said to be pseudocompact provided that it is the projective
limit of RA-modules of finite length having the discrete topology. We denote by PCMod(RA)

the abelian category of pseudocompact RA-modules.

e If Mis an RA-module with dimp M < oo, then M is pseudocompact. In partficular, every
finitely generated RA-module is also pseudocompact.

o IfM= 1<iLan- with M; an RA-module with dim, M; < oo, then M is pseudocompact.

1
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PSEUDOCOMPACT RA-MODULES AND COMPLETED TENSOR PRODUCTS

Let R € Ob(0).

Definition 4. An RA-module M is said to be pseudocompact provided that it is the projective
limit of RA-modules of finite length having the discrete topology. We denote by PCMod(RA)

the abelian category of pseudocompact RA-modules.

e If Mis an RA-module with dimp M < oo, then M is pseudocompact. In partficular, every
finitely generated RA-module is also pseudocompact.

o IfM= l(iLan- with M; an RA-module with dim, M; < oo, then M is pseudocompact.

1

Definition 5. Let M (resp. N) be a left (resp. right) pseudocompact R-module. The complete
tensor product of M and N is a pseudocompact R-module M&rN and a R-bilinear map
6 : Mx N — M&gN with the following property: given any R-bilinearmap f : M x N — L,
where L is a pseudocompact R-module, there exists a unigue morphism of pseudocompact
R-modules ¢ : M®rN — L such that ¢ = f.

See work of P GABRIEL and A. BRUMMER to get more details about pseudocompact modules.
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COMPLEXES OF PSEUDOCOMPACT RA-MODULES AND PSEUDOCOMPACT R-TOR DIMENSION

Definition 6. Let R € Ob(().
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COMPLEXES OF PSEUDOCOMPACT RA-MODULES AND PSEUDOCOMPACT R-TOR DIMENSION

Definition 6. Let R € Ob(().

e We denote by C~(PCMod(RA)) (resp. C?(PCMod(RA))) the abelian category of bounded

above (resp. bounded) complexes of pseudocompact RA-modules.
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COMPLEXES OF PSEUDOCOMPACT RA-MODULES AND PSEUDOCOMPACT R-TOR DIMENSION

Definition 6. Let R € Ob(().

e We denote by C~(PCMod(RA)) (resp. C?(PCMod(RA))) the abelian category of bounded
above (resp. bounded) complexes of pseudocompact RA-modules.

o Let K~ (PCMod(RA)) (resp. K?(PCMod(RA)) be the corresponding homotopy category,
and let D~ (PCMod(RA)) (resp. D?(PCMod(RA))) be the corresponding derived category.
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COMPLEXES OF PSEUDOCOMPACT RA-MODULES AND PSEUDOCOMPACT R-TOR DIMENSION

Definition 6. Let R € Ob(().

e We denote by C~(PCMod(RA)) (resp. C?(PCMod(RA))) the abelian category of bounded
above (resp. bounded) complexes of pseudocompact RA-modules.

o Let K~ (PCMod(RA)) (resp. K?(PCMod(RA)) be the corresponding homotopy category,
and let D~ (PCMod(RA)) (resp. D?(PCMod(RA))) be the corresponding derived category.

e We say that a complex M*® in K~ (PCMod(RA)) has finite pseudocompact R-tor dimen-
sion, if there exists an infeger N such that for all pseudocompact R-modules S, and for all

integers i < N, H (S&z M*) = 0, where &y denotes the left derived functor of &r.
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COMPLEXES OF PSEUDOCOMPACT RA-MODULES AND PSEUDOCOMPACT R-TOR DIMENSION

Definition 6. Let R € Ob(().

e We denote by C~(PCMod(RA)) (resp. C?(PCMod(RA))) the abelian category of bounded
above (resp. bounded) complexes of pseudocompact RA-modules.

o Let K~ (PCMod(RA)) (resp. K?(PCMod(RA)) be the corresponding homotopy category,
and let D~ (PCMod(RA)) (resp. D?(PCMod(RA))) be the corresponding derived category.

e We say that a complex M*® in K~ (PCMod(RA)) has finite pseudocompact R-tor dimen-
sion, if there exists an infeger N such that for all pseudocompact R-modules S, and for all

integers i < N, H (S&z M*) = 0, where &y denotes the left derived functor of &r.

Lemma 7. A complex M* € Ob(K~ (PCMod(RA)) has finite pseudocompact R-tor dimension
if and only if there exists a complex P* € Ob(K?(PCMod(RA)) whose terms are topologically

free R-modules such that P*® is quasi-isomorphic fo M®.
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COMPLEXES OF PSEUDOCOMPACT RA-MODULES AND PSEUDOCOMPACT R-TOR DIMENSION

Definition 6. Let R € Ob(().

e We denote by C~(PCMod(RA)) (resp. C?(PCMod(RA))) the abelian category of bounded
above (resp. bounded) complexes of pseudocompact RA-modules.

o Let K~ (PCMod(RA)) (resp. K?(PCMod(RA)) be the corresponding homotopy category,
and let D~ (PCMod(RA)) (resp. D?(PCMod(RA))) be the corresponding derived category.

e We say that a complex M*® in K~ (PCMod(RA)) has finite pseudocompact R-tor dimen-
sion, if there exists an infeger N such that for all pseudocompact R-modules S, and for all

integers i < N, H (S&z M*) = 0, where &y denotes the left derived functor of &r.

Lemma 7. A complex M* € Ob(K~ (PCMod(RA)) has finite pseudocompact R-tor dimension
if and only if there exists a complex P* € Ob(K?(PCMod(RA)) whose terms are topologically

free R-modules such that P*® is quasi-isomorphic fo M®.

Example 8. If M is a pseudocompact RA-module, we regard M as a complex concentrated
in dimension 0. It follows that M has finite pseudocompact R-tor dimension if and only if M is

a free R-module.
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Quassi-lifts, Deformations and the Deformation Functor



QUASI-LIFTS AND THE DEFORMATION FUNCTOR

Definition 10. Let R € Ob(C).
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QUASI-LIFTS AND THE DEFORMATION FUNCTOR

Definition 10. Let R € Ob(C).

e A quasi-lift of V* over R is a pair (M®,¢) consisting of a complex M*® in D~ (PCMod(RA))
which has finite pseudocompact R-tor dimension together with an isomorphism ¢ :

k&EM® — V*in D~ (PCMod(A)).
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QUASI-LIFTS AND THE DEFORMATION FUNCTOR

Definition 10. Let R € Ob(C).

e A quasi-lift of V* over R is a pair (M®,¢) consisting of a complex M*® in D~ (PCMod(RA))
which has finite pseudocompact R-tor dimension together with an isomorphism ¢ :
k&EM® — V*in D~ (PCMod(A)).

e Two quasi-lifts of (M*®,¢) and (M’®,¢") of V* over R are isomorphic if there exists an isomor-

phism f : M® — M’® in D~ (PCMod(RA)) such that ¢/ o (k& f) = ¢.
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QUASI-LIFTS AND THE DEFORMATION FUNCTOR

Definition 10. Let R € Ob(C).

e A quasi-lift of V* over R is a pair (M®,¢) consisting of a complex M*® in D~ (PCMod(RA))
which has finite pseudocompact R-tor dimension together with an isomorphism ¢ :
k&EM® — V*in D~ (PCMod(A)).

e Two quasi-lifts of (M*®,¢) and (M’®,¢") of V* over R are isomorphic if there exists an isomor-
ohism £ : M® — M’® in D~ (PCMod(RA)) such that ¢’ o (k& f) = .

e A deformation of V* over R is an isomorphism class [M*®, ¢] of quasi-lifts of V* over R.
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QUASI-LIFTS AND THE DEFORMATION FUNCTOR

Definition 10. Let R € Ob(C).

e A quasi-lift of V* over R is a pair (M®,¢) consisting of a complex M*® in D~ (PCMod(RA))
which has finite pseudocompact R-tor dimension together with an isomorphism ¢ :
k&EM® — V*in D~ (PCMod(A)).

e Two quasi-lifts of (M*®,¢) and (M’®,¢") of V* over R are isomorphic if there exists an isomor-
ohism £ : M® — M’® in D~ (PCMod(RA)) such that ¢’ o (k& f) = .

e A deformation of V* over R is an isomorphism class [M*®, ¢] of quasi-lifts of V* over R.

e The deformation functor Fy. : ¢ — Sets associated to V* is defined as follows.
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QUASI-LIFTS AND THE DEFORMATION FUNCTOR

Definition 10. Let R € Ob(C).

e A quasi-lift of V* over R is a pair (M®,¢) consisting of a complex M*® in D~ (PCMod(RA))
which has finite pseudocompact R-tor dimension together with an isomorphism ¢ :
k&EM® — V*in D~ (PCMod(A)).

e Two quasi-lifts of (M*®,¢) and (M’®,¢") of V* over R are isomorphic if there exists an isomor-
ohism £ : M® — M’® in D~ (PCMod(RA)) such that ¢’ o (k& f) = .

e A deformation of V* over R is an isomorphism class [M*®, ¢] of quasi-lifts of V* over R.

e The deformation functor Fy. : ¢ — Sets associated to V* is defined as follows.

e ForallR € Ob(C), Fy«(R) is the set of all deformations of V* over R.
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QUASI-LIFTS AND THE DEFORMATION FUNCTOR

Definition 10. Let R € Ob(C).

e A quasi-lift of V* over R is a pair (M?®,¢) consisting of a complex M*® in D~ (PCMod(RA))
which has finite pseudocompact R-for dimension together with an isomorphism ¢ :
k&EM® — V*in D~ (PCMod(A)).

e Two quasi-lifts of (M*®,¢) and (M’®,¢") of V* over R are isomorphic if there exists an isomor-
ohism £ : M® — M’® in D~ (PCMod(RA)) such that ¢’ o (k& f) = .

e A deformation of V* over R is an isomorphism class [M*®, ¢] of quasi-lifts of V* over R.

e The deformation functor Fy. : ¢ — Sets associated to V* is defined as follows.

e ForallR € Ob(C), Fy.(R) is the set of all deformations of V* over R.
e For all morphism a : R — R’ in C, Fye«(a) is the set map Fy«(R) — Fy«(R’) such that for
all deformation [M®, ¢] of V* over R, Fye (a)([M®,¢]) = [M'*,¢'], where M'® = R’®kﬂM'

and ¢’ is the composition

k@& M = k& (R'QL M*) 2 kdsm* & ve.
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Versal (Universal) Deformation Rings



VERSAL (UNIVERSAL) DEFORMATION RINGS

The following result is proved similarly to the work of F. BLEHER and T. CHINBURG on "Deformations
and derived categories” in 2005.
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VERSAL (UNIVERSAL) DEFORMATION RINGS

The following result is proved similarly to the work of F. BLEHER and T. CHINBURG on "Deformations
and derived categories” in 2005.

Theorem 11. Denote by Fy. the restriction of Ey. to the subcategory C of Artinian objects in

A

C.
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VERSAL (UNIVERSAL) DEFORMATION RINGS

The following result is proved similarly to the work of F. BLEHER and T. CHINBURG on "Deformations
and derived categories” in 2005.

Theorem 11. Denote by Fy. the restriction of Ey. to the subcategory C of Artinian objects in

C.

() The functor Fye. has a pro-representable hull R(A, V*®) in the sense of Schlessinger, and the
functor Fy. is continuous, i.e., for all R € Ob(C),

Fye(R) = lim Fye (R/my),
1

where mi denofes the unique maximal ideal of R.
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VERSAL (UNIVERSAL) DEFORMATION RINGS

The following result is proved similarly to the work of F. BLEHER and T. CHINBURG on "Deformations
and derived categories” in 2005.

Theorem 11. Denote by Fy. the restriction of Fy. to the subcategory C of Artinian objects in

C.

() The functor Fye. has a pro-representable hull R(A, V*®) in the sense of Schlessinger, and the
functor Eye is continuous, i.e., for all R € Ob(C),

Fye(R) = Lim Fy . (R/my),
1

where myi denofes the unique maximal ideal of R.
(i) Lettp,, = Fye(k[e]), where k[e] is the ring of dual numbers overk, with e* = 0. Then, there
exists an isomorphism of k-vector spaces

hitp,.e — EXt%)—(PCMod(A)) (V*,V*) = Homp- (pcmod(a)) (T(V*®), V*),

where T denofes the franslation functor, i.e., T shifts complexes one place fo the leff and
changes the sign of the differential.
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VERSAL (UNIVERSAL) DEFORMATION RINGS

The following result is proved similarly to the work of F. BLEHER and T. CHINBURG on "Deformations
and derived categories” in 2005.

Theorem 11. Denote by Fy. the restriction of Fy. to the subcategory C of Artinian objects in

C.

() The functor Fye. has a pro-representable hull R(A, V*®) in the sense of Schlessinger, and the
functor Eye is continuous, i.e., for all R € Ob(C),

Fye(R) = Lim Fy . (R/my),
1

where myi denofes the unique maximal ideal of R.
(i) Lettp,, = Fye(k[e]), where k[e] is the ring of dual numbers overk, with e* = 0. Then, there
exists an isomorphism of k-vector spaces

hitp,.e — EXt%)—(PCMod(A)) (V*,V*) = Homp- (pcmod(a)) (T(V*®), V*),

where T denofes the franslation functor, i.e., T shifts complexes one place fo the leff and
changes the sign of the differential.
(i) If Homp- pemod(a)) (V*, V®) =k, then Fy. is represented by R(A, V*®).
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VERSAL (UNIVERSAL) DEFORMATION RINGS

Remark 12. 1. By Theorem 11 (. there exists a deformation [U(A,V*), ¢ya,ve)] Of V* over
R(A,V*) with the following property. For each R € Ob(C), the map Homgs(R(A,V*®),R) —
Fye(R) induced by a R&ga,ve)U(A,V*) is surjective, and this map is bijective if R s
the ring of dual numbers kle] over k, where € = 0. The ring R(A,V*®) and the deforma-
tion [U(A,V*®), pua,ve)| are uniquely determined up to non-canonical isomorphism. In this

situation, we call R(A, V*) the versal deformation ring of V°.
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VERSAL (UNIVERSAL) DEFORMATION RINGS

Remark 12. 1. By Theorem 11 (. there exists a deformation [U(A,V*), ¢ya,ve)] Of V* over
R(A,V*) with the following property. For each R € Ob(C), the map Homgs(R(A,V*®),R) —
Fye(R) induced by a R&ga,ve)U(A,V*) is surjective, and this map is bijective if R s
the ring of dual numbers kle] over k, where € = 0. The ring R(A,V*®) and the deforma-
tion [U(A,V*®), pua,ve)| are uniquely determined up to non-canonical isomorphism. In this
situation, we call R(A, V*) the versal deformation ring of V°.

2. IfR(A,V*) represents Eye, we call R(A, V*) the universal deformation ring of V°.
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VERSAL (UNIVERSAL) DEFORMATION RINGS

Remark 12. 1. By Theorem 11 (. there exists a deformation [U(A,V*), ¢ya,ve)] Of V* over
R(A, V*) with the following property. For each R € Ob(C), the map Homgs(R(A,V*),R) —
Fye(R) induced by a R&ga,ve)U(A,V*) is surjective, and this map is bijective if R s
the ring of dual numbers kle] over k, where € = 0. The ring R(A,V*®) and the deforma-
tion [U(A,V*®), pua,ve)| are uniquely determined up to non-canonical isomorphism. In this
situation, we call R(A, V*) the versal deformation ring of V°.

2. IfR(A,V*) represents Eye, we call R(A, V*) the universal deformation ring of V°.

Corollary 13. IfV* consists of a single A-module Vy of finite dimension over k, then the versal
deformation ring R(A,V*®) coincides with the versal deformation ring R(A, V) studied by F.

BLEHER & J. V-M. in 2012.
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PRO-REPRESENTABILITY OF Fye

As in BLEHER and CHINBURG s work, the proof of the pro-representabilty of Fy. consists of check-
iNng Schlessinger’s criteria for Fye.
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PRO-REPRESENTABILITY OF Fye

As in BLEHER and CHINBURG s work, the proof of the pro-representabilty of Fy. consists of check-
iNng Schlessinger’s criteria for Fye.
More precisely, consider diagrams of Artinian objects in C of the form

Fa
A

where D = A x¢c B and B is a surjective small extension, i.e., the kernel of B is a principal
ideal tB = k that is annihilated by mg. For each such diagrams, consider the natural map of
pulllbacks

Xve : Fye (D) — Fye (A) XEye (C) Fye(B). 4)

Deformations and Derived Equivalence over Symmetric Algebras José A. Vélez-Marulanda



PRO-REPRESENTABILITY OF Fye

As in BLEHER and CHINBURG s work, the proof of the pro-representabilty of Fy. consists of check-
iNng Schlessinger’s criteria for Fye.
More precisely, consider diagrams of Artinian objects in C of the form

Fa
oA

where D = A x¢c B and B is a surjective small extension, i.e., the kernel of B is a principal
ideal tB = k that is annihilated by mg. For each such diagrams, consider the natural map of
pulllbacks

Xve : Fye (D) — Fye (A) XEye (C) Fye(B). 4)

(H1) xve is surjective for all diagrams as above.
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PRO-REPRESENTABILITY OF Fye

As in BLEHER and CHINBURG s work, the proof of the pro-representabilty of Fy. consists of check-
iNng Schlessinger’s criteria for Fye.
More precisely, consider diagrams of Artinian objects in C of the form

Fa
A

where D = A x¢c B and B is a surjective small extension, i.e., the kernel of B is a principal
ideal tB = k that is annihilated by mg. For each such diagrams, consider the natural map of
pulllbacks

Xve : Fye (D) — Fye (A) XEye (C) Fye(B). 4)

(H1) xve is surjective for all diagrams as above.
(H2) xvy- is bijective if C = k and B = kl[e] with €2 = 0.
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PRO-REPRESENTABILITY OF Fye

As in BLEHER and CHINBURG s work, the proof of the pro-representabilty of Fy. consists of check-
iNng Schlessinger’s criteria for Fye.
More precisely, consider diagrams of Artinian objects in C of the form

Fa
A

where D = A x¢c B and B is a surjective small extension, i.e., the kernel of B is a principal
ideal tB = k that is annihilated by mg. For each such diagrams, consider the natural map of
pulllbacks

Xve : Fye (D) — Fye (A) XEye (C) Fye(B). 4)

(H1) xve is surjective for all diagrams as above.
(H2) xvy- is bijective if C = k and B = kl[e] with €2 = 0.

(H3) The tangent space tg,, = Fy+(kle]) is a finife dimensional k-vector space.
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PRO-REPRESENTABILITY OF Fye

As in BLEHER and CHINBURG s work, the proof of the pro-representabilty of Fy. consists of check-
iNng Schlessinger’s criteria for Fye.
More precisely, consider diagrams of Artinian objects in C of the form

Fa
A

where D = A x¢c B and B is a surjective small extension, i.e., the kernel of B is a principal
ideal tB = k that is annihilated by mg. For each such diagrams, consider the natural map of
pulllbacks

Xve : Fye (D) — Fye (A) XEye (C) Fye(B). 4)

(H1) xve is surjective for all diagrams as above.

(H2) xvy- is bijective if C = k and B = kl[e] with €2 = 0.

(H3) The tangent space tg,, = Fy+(kle]) is a finife dimensional k-vector space.
(H4) xve is bijective if A = Band a = B.
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THE TANGENT SPACE tFV'

We sketch the proof of Theorem 11 (ii) as follows:

e Suppose that (M*, ¢) is a quasi-lift of V* over k|e]|.

Deformations and Derived Equivalence over Symmetric Algebras José A. Vélez-Marulanda



THE TANGENT SPACE tFV'

We sketch the proof of Theorem 11 (ii) as follows:

e Suppose that (M*, ¢) is a quasi-lift of V* over k|e]|.
e We can assume that M* is a bounded above complex of fopologically free pseudocom-
pact k[e] A-modules.
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THE TANGENT SPACE tFV'

We sketch the proof of Theorem 11 (ii) as follows:

e Suppose that (M*, ¢) is a quasi-lift of V* over k|e]|.
e We can assume that M* is a bounded above complex of fopologically free pseudocom-
pact k[e] A-modules.

e \We have a short exact sequence

0— eM® M5 M I M® /eM® — 0 (5)

in C~ (PCMod(k[e]A)).
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THE TANGENT SPACE tFV'

We sketch the proof of Theorem 11 (ii) as follows:

e Suppose that (M*, ¢) is a quasi-lift of V* over k|e]|.

e We can assume that M* is a bounded above complex of fopologically free pseudocom-
pact k[e] A-modules.

e \We have a short exact sequence

0— eM® M5 M I M® /eM® — 0 (5)

in C~ (PCMod (k[e]A)).
e The mapping cone of iy is C(ipe)® = T(eM®) & M*® with i-th differential

Z [ ]
5C<‘M‘). — i+l ot ]
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THE TANGENT SPACE tFV'

We sketch the proof of Theorem 11 (ii) as follows:

e Suppose that (M*, ¢) is a quasi-lift of V* over k|e]|.

e We can assume that M* is a bounded above complex of fopologically free pseudocom-
pact k[e] A-modules.

e \We have a short exact sequence

0— eM® M5 M I M® /eM® — 0 (5)

in C~ (PCMod (k[e]A)).
e The mapping cone of iy is C(ipe)® = T(eM®) & M*® with i-th differential

Z [ ]
5C<‘M‘). — i+l ot ]

e We obtain a triangle in K~ (PCMod (k[e]A))

eM® % Mo 8y Clipe)® LM% T(eM®), ©)
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THE TANGENT SPACE tg,, (CONT.)

e We then get a triangle in K~ (PCMod (k[e]A))

Clipe)® ik > T(eM®) > C(fae)® ———> T(Ctpe)®) (7)
(O/ 7TM'> — Y T(O, 7TM0)
M® /eM® T(eM®) T(M*) T(M®/eM®)

where the downward arrows are quasi-isomorphisms in C— (PCMod (k[e]A)).
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THE TANGENT SPACE tg,, (CONT.)

e We then get a triangle in K~ (PCMod (k[e]A))

Clipe)® ik > T(eM®) > C(fae)® ———> T(Ctpe)®) (7)
(O/ 7TM'> — Y T(O, 7TM0)
M® /eM® T(eM®) T(M*) T(M®/eM®)

where the downward arrows are quasi-isomorphisms in C— (PCMod (k[e]A)).
e Hence the diagram

C(LMO). (8)
(O/ v ) fM'
M®/eM® T(eM®)

defines a morphism fuge : M*/eM® — T(eM®) in D~ (PCMod (k[e]A)).
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THE TANGENT SPACE tg,, (CONT.)

e Thus, we get a friangle in D~ (PCMod (k[e]A)):

A

M®/eM® 225 T(eM®) ——> T(M®) ——> T(M®/eM*) 9
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THE TANGENT SPACE tg,, (CONT.)

e Thus, we get a friangle in D~ (PCMod (k[e]A)):

A

M®/eM® 225 T(eM®) ——> T(M®) ——> T(M®/eM*) 9

e Using the isomorphism ¢ : M*/eM*®* — V*in D~ (PCMod(kle]A)), we obtain a morphism

fume 1 € Homp— pengod(kielay (VS T(V®))

associated to fys, where fy 1 is as in the diagram (10).

A

M®/eM® fﬁ> T(eM®) —> T(M®) - T(M*/eM®*) (10)

Ve T(M®/eM®)

N T
fmeq s J, ¢)

§
T(V®)
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THE TANGENT SPACE tg,, (CONT.)

e We get an association /i defined by

A~

fi: Fye(kle]) = Homp- pemod(kiela) (V*, T(V*)) an

[M®, ]} > fme 1
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THE TANGENT SPACE tg,, (CONT.)

e We get an association /i defined by

fi: Fye(kle]) = Homp- pcmod(feja)) (VS T(V*)) an

A

[M®, ]} > fme 1

e We prove that 1 is an isomorphism of k-vector spaces.
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Versal (Universal) Deformation Rings and Derived
Equivalence



VERSAL (UNIVERSAL) DEFORMATION RINGS AND DERIVED EQUIVALENCE

Recall that for any ring S, we denote by S-mod the category of finitely generated left S-modules.
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VERSAL (UNIVERSAL) DEFORMATION RINGS AND DERIVED EQUIVALENCE

Recall that for any ring S, we denote by S-mod the category of finitely generated left S-modules.
We say that two k-algebras A and I' are derived equivalent, if the derived categories D?(A-mod) and

D! (I'-mod) are equivalent as triangulated categories.
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VERSAL (UNIVERSAL) DEFORMATION RINGS AND DERIVED EQUIVALENCE

Recall that for any ring S, we denote by S-mod the category of finitely generated left S-modules.
We say that two k-algebras A and I' are derived equivalent, if the derived categories D?(A-mod) and

D! (I'-mod) are equivalent as triangulated categories.

Theorem 14 (J. RICKARD, 1991). The k-algebras A and I' are derived equivalent if and only if there is a
bounded complex P* of finitely generated A — I'-bimodules and a bounded complex Q* of finitely gener-
ated A — I'-bimodules such that

P*@LQ® = A in DY ((A ®, A°)-mod), and (12)

Q* @k P =T in DY ((T ® T°P)-mod).
If P* and Q° exists, then the functors

P* ®L — : D*(I'-mod) — DY(A-mod) and (13)

Q* ®% — : D’(A-mod) — D’ (I-mod)

are equivalences of derived categories, and Q°® is isomorphic to RHomy (P°®, A) in the derived category of

I' — A-bimodules.
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VERSAL (UNIVERSAL) DEFORMATION RINGS AND DERIVED EQUIVALENCE

Recall that for any ring S, we denote by S-mod the category of finitely generated left S-modules.
We say that two k-algebras A and I' are derived equivalent, if the derived categories D?(A-mod) and

D! (I'-mod) are equivalent as triangulated categories.

Theorem 14 (J. RICKARD, 1991). The k-algebras A and I' are derived equivalent if and only if there is a
bounded complex P* of finitely generated A — I'-bimodules and a bounded complex Q* of finitely gener-
ated A — I'-bimodules such that

P*@LQ® = A in DY ((A ®, A°)-mod), and (12)
Q* L pe~T in DY ((T ®; T°)-mod).

If P* and Q° exists, then the functors
P* ®L — : D*(I'-mod) — DY(A-mod) and (13)
Q* ®% — : D’(A-mod) — D’ (I-mod)

are equivalences of derived categories, and Q°® is isomorphic to RHomy (P°®, A) in the derived category of

I' — A-bimodules.

If A and I' are derived equivalent k-algebras, then we say that the complexes P* and Q°® in Theorem 14
are called two-sided tilting complexes.
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VERSAL (UNIVERSAL) DEFORMATION RINGS AND DERIVED EQUIVALENCE

Definition 15. A finife-dimensional k-algebra A is said to be symmetric, provided that A and

A" = Homy (A, k) are isomorphic as A — A-bimodules.

Corollary 16 (J. RICKARD, 1996). Left A and I' be symmetric finite dimensional k-algebras.
Then A and T' are derived equivalent if and only if there exists a bounded complex P* of
finitely generated A — I'-bimodules such that all of the terms of P* are projective as left and

right modules and such that

A = P* ®@r (P*)* = Homr(P®, P*) in K?((A @, A°P)-mod), and (14)

I > (P*)* ®, P* =~ Homy (P®, P*) in Kb ((T @ I'°P)-mod),

where (P*)* = Homy (P°*, k).
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VERSAL (UNIVERSAL) DEFORMATION RINGS AND DERIVED EQUIVALENCE

Definition 15. A finife-dimensional k-algebra A is said to be symmetric, provided that A and

A" = Homg (A, k) are isomorphic as A — A-bimodules.

Corollary 16 (J. RICKARD, 1996). Left A and I' be symmetric finite dimensional k-algebras.
Then A and T are derived equivalent if and only if there exists a bounded complex P® of
finitely generated A — I'-bimodules such that all of the terms of P* are projective as left and

right modules and such that

A = P* ®@r (P*)* = Homr(P°®, P*) in K?((A @, A°P)-mod), and (14)

I > (P*)* ®, P* =~ Homy (P®, P*) in Kb ((T @ I'°P)-mod),

where (P*)* = Homy (P°*, k).

Definition 17. RICKARD calls a complex P* as in Corollary 16 a split-endomorphism two-sided

tilting complex.
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VERSAL (UNIVERSAL) DEFORMATION RINGS AND DERIVED EQUIVALENCE

The following result is proved similarly to the work of F. BLEHER on "Deformations and derived

equivalence" in 2006.

Theorem 18. Let A and T be symmetric finite dimensional k-algebras, and lef Q°* be a split-
endomorphism two-sided tilting complex in D (T @, A°P-mod). Let V* be a bounded com-
plex of finitely generated A-modules, and let V'* = Q®* @ V°*. Then R(A,V*®) and R(T,V'®) are

isomorphic.
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An Example: Four Algebras of Dihedral Type



THE ALGEBRAS D(3%)5**, D(32)y***, D(3.2)%*?2 AND D(3%)"*??

Consider the algebras Ay, A1, Ay, and Az, where

p 5
No= DB =kl « (e e a1/, B, 0B, vy, (B — (10, (1) — )
1 ” 0 ” 2
P s
A= DB =kl « (e e e Y&/ {wy, Pu,oB,m, 80,15 1B — o (1)} — 8,6y — (16)°)
i n

Ao =DE2P22 k[« Se—————seT Yo 1/(pa,a,pf, 00, (ASB)? — o2, (BAD) ~ 47)
:

A3 = D(3%)*** = /{Ba, 0B, 60, &8, A&, aA, A6B — a?, BAS — p?,6BA — &%)

\/
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THE ALGEBRAS D(3%)5°*, D(32)y>**, D(3.2)%**? AND D(3%)'?%? (CONT.)

e The algebras Ay, A1, Ay, and Az are all k-algebras of dihedral type (K. ERDMANN, 1990),

hence they are symmetric k-algebras.
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THE ALGEBRAS D(3%)5°*, D(32)y>**, D(3.2)%**? AND D(3%)'?%? (CONT.)

e The algebras Ay, A1, Ay, and Az are all k-algebras of dihedral type (K. ERDMANN, 1990),
hence they are symmetric k-algebras.

e None of the algebras Ag. A1, Ay, Az is Morita equivalent to a block of a group algebra.
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THE ALGEBRAS D(3%)5°*, D(32)y>**, D(3.2)%**? AND D(3%)'?%? (CONT.)

e The algebras Ay, A1, Ay, and Az are all k-algebras of dihedral type (K. ERDMANN, 1990),
hence they are symmetric k-algebras.

e None of the algebras Ag. A1, Ay, Az is Morita equivalent to a block of a group algebra.

e The isomorphism classes of the universal deformation rings of finitely generated Aj-
modules V with End (V) = k lying in a connected component of the stable Auslander-
Reiten quiver of Az have been completely classified by F. M. BLEHER & J.V-M in 2012. The

universal deformation rings are either isomorphic to k, or to k[[t]] / (#?), or to Kk[[t]].
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THE ALGEBRAS D(3%)5°*, D(32)y>**, D(3.2)%**? AND D(3%)'?%? (CONT.)

e The algebras Ay, A1, Ap and Az are all k-algebras of dihedral type (K. ERDMANN, 1990),
hence they are symmetric k-algebras.

e None of the algebras Ay, A1, Ay, Az is Morita equivalent to a block of a group algebra.

e The isomorphism classes of the universal deformation rings of finitely generated Aj-
modules V with End (V) = k lying in a connected component of the stable Auslander-
Reiten quiver of Az have been completely classified by F. M. BLEHER & J.V-M in 2012. The

universal deformation rings are either isomorphic to k, or to k[[t]]/(t?), or to k[[t]].

Lemma 19 (T. HowM, 1999). The k-algebras Ag = D(3%8)5**, Ay = D(32)y***, Ay = D(3.2)%%?

and As = D(3%)V**? are derived equivalent.
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THE ALGEBRAS D(3%)5°*, D(32)y>**, D(3.2)%**? AND D(3%)'?%? (CONT.)

e The algebras Ay, A1, Ap and Az are all k-algebras of dihedral type (K. ERDMANN, 1990),
hence they are symmetric k-algebras.

e None of the algebras Ay, A1, Ay, Az is Morita equivalent to a block of a group algebra.

e The isomorphism classes of the universal deformation rings of finitely generated Aj-
modules V with End (V) = k lying in a connected component of the stable Auslander-
Reiten quiver of Az have been completely classified by F. M. BLEHER & J.V-M in 2012. The

universal deformation rings are either isomorphic to k, or to k[[t]]/(t?), or to k[[t]].

Lemma 19 (T. HowM, 1999). The k-algebras Ag = D(3%8)5**, Ay = D(32)y***, Ay = D(3.2)%%?

and As = D(3%)V**? are derived equivalent.

Remark 20. Although the algebras Ay, A1, Ap and Az are derived equivalent, they are not

Morita equivalent,
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THE ALGEBRAS D(3%)5°*, D(32)y>**, D(3.2)%**? AND D(3%)'?%? (CONT.)

By Corollary 16, for all i € {0,1,2}, there is a split-endomorphism two-sided filting complex Q?

in DY (A; ®, AP — mod) that realizes the derived equivalence in Lemma 19.
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THE ALGEBRAS D(3%)5°*, D(32)y>**, D(3.2)%**? AND D(3%)'?%? (CONT.)

By Corollary 16, for all i € {0,1,2}, there is a split-endomorphism two-sided filting complex Q?
in DY (A; ®, AP — mod) that realizes the derived equivalence in Lemma 19.

Hence we obtain (by Theorem 18) that for every bounded complex V* of finitely generated
Az-modules,

R(A3,V®) = R(A;,Q° ®p, V*).
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THE ALGEBRAS D(3%)5°*, D(32)y>**, D(3.2)%**? AND D(3%)'?%? (CONT.)

By Corollary 16, for all i € {0,1,2}, there is a split-endomorphism two-sided filting complex Q?
in DY (A; ®, AP — mod) that realizes the derived equivalence in Lemma 19.

Hence we obtain (by Theorem 18) that for every bounded complex V* of finitely generated
Az-modules,

R(A3,V®) = R(A;,Q° ®p, V*).
Since derived equivalences induce stable equivalences, we get the following result:

Theorem 21. Let A € {D(3%)y>*, D(32)y***, D(32)**2,D(3%)"**?}, and let V a A-module
such thatEnd , (V) = k lying in a connected component of the stable Auslander-Reiten quiver
of A. Then, the universal deformation ring R(A, V) of V is isomorphic either tok, or tok|[t]]/ (%),

or fo k[[t]].
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