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The basic elements to build a code are the following:

A finite set, A called the alphabet. We shall denote by
q = |A| the number of elements in A.

Finite sequences of elements of the alphabet, that are called
words. The number of elements in a word is called its length.
We shall only consider codes in which all the words have the
same length n.

A q-ary block code of length n is any subset of the set of
all words of length n, i.e., the code C is a subset:

C ⊂ An = A× A× · · · × A︸ ︷︷ ︸
n veces

.



Basic Facts
Group Codes

Essential idempotents
An application

Cyclic codes vs Abelian Codes
Group algebras over finite fields

The basic elements to build a code are the following:

A finite set, A called the alphabet. We shall denote by
q = |A| the number of elements in A.

Finite sequences of elements of the alphabet, that are called
words. The number of elements in a word is called its length.
We shall only consider codes in which all the words have the
same length n.

A q-ary block code of length n is any subset of the set of
all words of length n, i.e., the code C is a subset:

C ⊂ An = A× A× · · · × A︸ ︷︷ ︸
n veces

.



Basic Facts
Group Codes

Essential idempotents
An application

Cyclic codes vs Abelian Codes
Group algebras over finite fields

The basic elements to build a code are the following:

A finite set, A called the alphabet. We shall denote by
q = |A| the number of elements in A.

Finite sequences of elements of the alphabet, that are called
words. The number of elements in a word is called its length.
We shall only consider codes in which all the words have the
same length n.

A q-ary block code of length n is any subset of the set of
all words of length n, i.e., the code C is a subset:

C ⊂ An = A× A× · · · × A︸ ︷︷ ︸
n veces

.



Basic Facts
Group Codes

Essential idempotents
An application

Cyclic codes vs Abelian Codes
Group algebras over finite fields

The basic elements to build a code are the following:

A finite set, A called the alphabet. We shall denote by
q = |A| the number of elements in A.

Finite sequences of elements of the alphabet, that are called
words. The number of elements in a word is called its length.
We shall only consider codes in which all the words have the
same length n.

A q-ary block code of length n is any subset of the set of
all words of length n, i.e., the code C is a subset:

C ⊂ An = A× A× · · · × A︸ ︷︷ ︸
n veces

.



Basic Facts
Group Codes

Essential idempotents
An application

Cyclic codes vs Abelian Codes
Group algebras over finite fields

A classical scheme due to Shannon

Information −→ codification
signal
−→ channel

signal
−→ decodification −→ receiver

↑
noise

The basic idea in coding theory, is to add information to the
message, called redundancy, in such a way that it will turn
possible to detect errors and correct them.
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Linear Codes

We shall take, as an alphabet A, a finite field F.

In this case, Fn is an n-dimensional vector space over F.

We shall take, as codes, subespaces of Fn of dimensión m < n.

Definition

A code C as above is called a linear code over F.

If d the minimum distance of C, we shall call it a (n,m,d)-code.
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Definition

Given two elements x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) in
An, the number of coordinates in which the two elements differ is
called the Hamming distance from x to y ; i.e.:

d(x , y) = | {i | xi 6= yi , 1 ≤ i ≤ n} |

Definition

Given a code C ⊂ An the minimum distance of C is the number:

d = min{d(x , y) | x , y ∈ C, x 6= y }.
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Theorem

Let C be a code with minimum distance d and set

κ =

[
d − 1

2

]
where [x ] denotes the integral part of the real number x ; i.e., the
greatest integer smaller than or equal to x .

Then C is capable of detecting d − 1 errors and correcting κ
errores.

Definition

The number κ is called the capacity of the code C.
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Definition

A linear code C ⊂ Fn is called a cyclic code if for every vector
(a0, a1, . . . , an−2, an−1) in the code, we have that also the vector
(an−1, a0, a1, . . . , an−2) is in the code.

Notice that the definition implies that if (a0, a1, . . . , an−2, an−1) is in the

code, then all the vectors obtained from this one by a cyclic permutation

of its coordinates are also in the code.
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Let

Rn =
F[X ]

〈X n − 1〉
;

We shall denote by [f ] the class of the polynomial f ∈ F[X ] in Rn.

The mapping:

ϕ : Fn → F[X ]

〈X n − 1〉
(a0, a1, . . . , an−2, an−1) ∈ F[X ] 7→ [a0 + a1X + . . . + an−2X

n−2 + an−1X
n−1].

ϕ is an isomorphism of F-vector spaces. Hence A code C ⊂ Fn is
cyclic if and only if ϕ(C) is an ideal of Rn.
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In the case when Cn = 〈a | an = 1〉 = {1, a, a2, . . . , an−1} is a
cyclic group of order n, and F is a field, the elements of FCn are of
the form:

α = α0 + α1a + α2a
2 + · · ·+ αn−1a

n−1.

It is easy to show that

FCn
∼= Rn =

F[X ]

〈X n − 1〉
;

Hence, to study cyclic codes is equivalent to study
ideals of a group algebra of the form FCn.
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Definition

A group code is an ideal of a finite group algebra.

In what follows, we shall always assume that char(K ) |6 |G | so all
group algebras considered here will be semisimple and thus, all
ideals of FG are of the form I = FGe, where e ∈ FG is an
idempotent element.
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Idempotents from subgroups

Let H be a subgroup of a finite group G and let F be a field such
that car(F) |6 |G |. The element

Ĥ =
1

|H|
∑
h∈H

h

is an idempotent of the group algebra FG , called the idempotent
determined by H.

Ĥ is central if and only if H is normal in G .
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Ĥ =
1

|H|
∑
h∈H

h

is an idempotent of the group algebra FG , called the idempotent
determined by H.

Ĥ is central if and only if H is normal in G .



Basic Facts
Group Codes

Essential idempotents
An application

Cyclic codes vs Abelian Codes
Group algebras over finite fields

If H is a normal subgroup of a group G , we have that

FG · Ĥ ∼= F[G/H]

via the map ψ : FG · Ĥ → F[G/H] given by

g .Ĥ 7→ gH ∈ G/H.

so

dimF

(
(FG ) · Ĥ

)
= |G |
|H| = [G : H].

Set τ = {t1, t2, . . . , tk} a transversal of K in G (where k = [G : H]
and we choose t1 = 1), then

{ti Ĥ | 1 ≤ i ≤ k}

is a a basis of (FG ) · Ĥ.
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Let G be a finite group and let F be a field such that char(F) |6 |G |.
Let H and H∗ be normal subgroups of G such that H ⊂ H∗.
We can define another type of idempotents by:

e = Ĥ − Ĥ∗.
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Code Parameters

Theorem (R. Ferraz - P.M.)

Let G be a finite group and let F be a field such that
char(F) |6 |G |. Let H and H∗ be normal subgroups of G such that
H ⊂ H∗ and set . Then,

dimF (FG )e = |G/H| − |G/H∗| =
|G |
|H|

(
1− |H|
|H∗|

)
and

w((FG )e) = 2|H|

where w((FG )e) denotes the minimal distance of (FG )e.
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Theorem (R. Ferraz - P.M.)

Let G be a finite group and let F be a field such that
char(F) |6 |G |. Let H and H∗ be normal subgroups of G such that

H ⊂ H∗ and set e = Ĥ − Ĥ∗. Let A be a transversal of H∗ in G
and τ a transversal of H in H∗ containing 1. Then

B = {a(1− t)Ĥ | a ∈ A, t ∈ τ \ {1}}

is a basis of (FG )e over F.
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Let A be an abelian p-group. For each subgroup H of A such that
A/H 6= {1} is cyclic, we shall construct an idempotent of FA.
Since A/H is a cyclic subgroup of order a power of p, there exists
a unique subgroup H∗ of A, containing H, such that |H∗/H| = p.

We set
eH = Ĥ − Ĥ∗.

and also

eG =
1

|G |
∑
g∈G

g .

It is not difficult to see that this is a set of orthogonal idempotents
whose sum is equal to 1
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Definition

Letg be an element of a finite group G . The q-cyclotomic class of
g is the set

Sg = {gqj | 1 ≤ j ≤ tg − 1},

where tg is the smallest positive integer such that

qtg ≡ 1(mod o(g)).

Theorem

Let G be a finite group and F the field with q elements and assume
that gcd(q, |G |) = 1. Then, the number of simple components of
FG is equal to the number of q-cyclotomic classes of G .
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Theorem (Ferraz-PM (2007))

Let F be a finite field with |F| = q, and let A be a finite abelian
group, of exponent e. Then the primitive central idempotents can
be constructed as above if and only if one of the following holds:

(i) e = 2 and q is odd.

(ii) e = 4 and q ≡ 3 (mod 4).

(iii) e = pn and o(q) = ϕ(pn) in U(Zpn).

(iv) e = 2pn and o(q) = ϕ(pn) in U(Z2pn).
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Essential idempotents
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Let H be a normal subgroup of G . Then, Ĥ is a central
idempotent and, as such, a sum of primitive central idempotents
called its constituents.

Let e be a primitive central idempotent of FG . Then:

If e is not a constituent of Ĥ we have that eĤ = 0.

If e is a constituent of Ĥ we have that eĤ = e.

In this last case, we have that FG · e ⊂ FG · Ĥ.



Basic Facts
Group Codes

Essential idempotents
An application

Cyclic codes vs Abelian Codes
Group algebras over finite fields

Let H be a normal subgroup of G . Then, Ĥ is a central
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Basic Facts
Group Codes

Essential idempotents
An application

Cyclic codes vs Abelian Codes
Group algebras over finite fields

Let H be a normal subgroup of G . Then, Ĥ is a central
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Denote by T a transversal of H in G . Then, an element α ∈ FG · e
can be written in the form

α =
∑
ν∈T

αννĤ.

If we denote T = {t1, t2, . . . , td} and H = {h1, h2, . . . , hm}, the
explicit expression of α is

α = α1t1h1+α2t2h1+· · ·+αd tdh1+· · ·+α1t1hm+α2t2hm+· · ·+αd tdhm.

The sequence of coefficients of α, when written in this order, is
formed by d repetitions of the subsequence α1, α2, · · ·αd . In terms
of coding theory, this means that the code given by the minimal
ideal FGe is a repetition code. We shall be interested in
idempotents that are not of this type.
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If we denote T = {t1, t2, . . . , td} and H = {h1, h2, . . . , hm}, the
explicit expression of α is

α = α1t1h1+α2t2h1+· · ·+αd tdh1+· · ·+α1t1hm+α2t2hm+· · ·+αd tdhm.

The sequence of coefficients of α, when written in this order, is
formed by d repetitions of the subsequence α1, α2, · · ·αd . In terms
of coding theory, this means that the code given by the minimal
ideal FGe is a repetition code. We shall be interested in
idempotents that are not of this type.



Basic Facts
Group Codes

Essential idempotents
An application

Cyclic codes vs Abelian Codes
Group algebras over finite fields

Denote by T a transversal of H in G . Then, an element α ∈ FG · e
can be written in the form

α =
∑
ν∈T

αννĤ.
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explicit expression of α is

α = α1t1h1+α2t2h1+· · ·+αd tdh1+· · ·+α1t1hm+α2t2hm+· · ·+αd tdhm.

The sequence of coefficients of α, when written in this order, is
formed by d repetitions of the subsequence α1, α2, · · ·αd . In terms
of coding theory, this means that the code given by the minimal
ideal FGe is a repetition code. We shall be interested in
idempotents that are not of this type.
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Definition

A primitive idempotent e in the group algebra FG , is an essential
idempotent if e · Ĥ = 0, for every subgroup H 6= (1) in G .

A minimal ideal of FG will be called essential ideal if it is
generated by an essential idempotent.

These idempotents were first considered by Bakshi, Raka and Sharma in

a paper from 2008, where they were called non-degenerate.

Lemma

Let e ∈ FG be a primitive central idempotent. Then e is essential
if and only if the map π : G → Ge, is a group isomorphism.

Corollary

If G is abelian and FG contains an essential idempotent, then G is
cyclic.
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Assume that G is cyclic of order n = pn1
1 · · · p

nt
t . Then, G can be

written as a direct product G = C1 × · · · × Ct , where Ci is cyclic,
of order pnii , 1 ≤ i ≤ t.

Let Ki be the minimal subgroup of Ci ; i.e. the unique subgroup of
order pi in Ci and denote by ai a generator of this subgroup,
1 ≤ i ≤ t. Set

e0 = (1− K̂1) · · · (1− K̂t)

Then e0 is a non-zero central idempotent.

Proposition

Let G be a cyclic group. Then, a primitive idempotent e ∈ FG is
essential if and only if e · e0 = e.
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Galois Descent

Let F be a field and Cn a cyclic group of order n such that char(F)
does not divide n. There is a well-known method to determine the
primitive idempotents os FCn.

If ζ denotes a primitive root of unity of order n, then F(ζ) is a
splitting field for Cn, and the primitive idempotents of FCn are
given by

ei =
1

n

n−1∑
j=0

ζ−ijg j , 0 ≤ i ≤ n − 1.

For each element σ ∈ Gal(F(ζ i ) : F) set

σ(ei ) =
1

n

n−1∑
j=0

σ(ζ−i )jg j , 0 ≤ i ≤ n − 1.
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Galois Descent

Two primitive idempotents of F(ζ)Cn are equivalent if there exists
σ ∈ Gal(F(ζ i ) : F) which maps one to the other. Let e1, . . . , et be
a set of representatives of classes of primitive idempotents
(reordering, if necessary).

Then, the set of primitive elements of FCn is given by the formulas

εi =
∑

σ∈Gal(F(ζ i ):F)

σ(ei ) =
1

n

n−1∑
j=0

trF(ζ i )|F(ζ−ij)g j , 1 ≤ i ≤ t,

where trF(ζ i )|F denotes the trace map of F(ζ i ) over F.



Basic Facts
Group Codes

Essential idempotents
An application

Cyclic codes vs Abelian Codes
Group algebras over finite fields

Galois Descent

Two primitive idempotents of F(ζ)Cn are equivalent if there exists
σ ∈ Gal(F(ζ i ) : F) which maps one to the other. Let e1, . . . , et be
a set of representatives of classes of primitive idempotents
(reordering, if necessary).

Then, the set of primitive elements of FCn is given by the formulas

εi =
∑

σ∈Gal(F(ζ i ):F)

σ(ei ) =
1

n

n−1∑
j=0

trF(ζ i )|F(ζ−ij)g j , 1 ≤ i ≤ t,

where trF(ζ i )|F denotes the trace map of F(ζ i ) over F.



Basic Facts
Group Codes

Essential idempotents
An application

Cyclic codes vs Abelian Codes
Group algebras over finite fields

Theorem

The element εi = 1
n

∑n−1
j=0 trF(ζ i )|F(ζ−ij)g j is an essential

idempotent if and only if ζ i is a primitive root of unity of order
precisely equal to n.

Let C = 〈g〉 denote a cyclic group of order n. If i is a positive
integer such that (n, i) = 1, then the map ψi : C → C defined by
g 7→ g i is an automorphism of C that extends linearly to an
automorphism of FC , which we shall also denote by ψi .

Theorem

Let C be a cyclic group of order n and F a field such that char(F)
does not divide n. Given two essential idempotents εh, εk ∈ FC ,
there exists an integer i with (n, i) = 1 and the automorphism
ψi : FC → FC defined as above is such that ψi (εh) = εk .
Conversely, if ε is an essential idempotent and ψi is an
automorphism as above, then ψi (ε) is also an essential idempotent.
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Theorem

The number of essential idempotents in the group algebra FCn is
precisely

ϕ(n)

|Gal(F(ζ) : F)|
.



Basic Facts
Group Codes

Essential idempotents
An application

Cyclic codes vs Abelian Codes
Group algebras over finite fields

An application



Basic Facts
Group Codes

Essential idempotents
An application

Cyclic codes vs Abelian Codes
Group algebras over finite fields

Let F be a field, A be a finite abelian group such that char(F)
does not divide |A| and e 6= Â an idempotent in FA. Let

He = {H < A | eĤ = e}

and set
He =

∏
H∈He

H.

Then e.Ĥe = e and thus He ∈ He so H ⊂ He , for all H ∈ He .
Hence He is the maximal subgroup of A such that eĤ = Ĥ.
Actually, the converse also holds:

Proposition

Let F be a field, A an abelian group and e an idempotent in FA.
Let K be a subgroup of A. Then, eK̂ = e if and only if K ⊂ He .
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He = {H < A | eĤ = e}

and set
He =

∏
H∈He

H.
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Remark

Let α be in FA · Ĥe , and T be a transversal of He in A. Then α
can be written in the form

α =
∑
τ∈T

∑
h∈He

ατhτh.

As α ∈ FA · Ĥe , then for every τ ∈ T and h ∈ He we have
ατh = ατ .
So

α = |He |
∑
τ∈T

αττ · Ĥe .

Thus, if ψ denotes natural projection, we have

ψ(α) = |He |
∑
τ̄∈ A

He

ατ τ̄ .
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Corollary

Let e 6= Â be a primitive idempotent of FA. Then, the factor group
A/He is cyclic.

Definition (Sabin and Lomonaco (1995))

Let G1 and G2 denote two finite groups of the same order and let F
be a field. Two ideals (codes) I1 ⊂ FG1 and I2 ⊂ FG2 are said to be
combinatorially equivalent if there exists a bijection γ : G1 → G2

whose linear extension γ : FG1 → FG2 is such that γ(I1) = I2. The
map γ is called a combinatorial equivalence between I1 and I2.
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Theorem (G. Chalom, R. Ferraz and PM)

Every minimal ideal in the group algebra of a finite abelian group is
combinatorially equivalent to a minimal ideal in the group algebra
of a cyclic group of the same order.
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We shall compare cyclic and Abelian codes of length p2 under the
hypotheses that o(q) = ϕ(p2) in U(Zpn).

Remark

Note that in FCp2 there exist precisely three primitive idempotents,
namely:

e0 = Ĝ , e1 = Ĝ1 − Ĝ e e2 = Ĝ2 − Ĝ1.

Ideals of maximum dimension for each possible weight are:

I = I0 ⊕ I1 e J = I1 ⊕ I2

with dim(I ) = p, w(I ) = p e dim(J) = p2 − 1, w(J) = 2.
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Now we consider Abelian non-cyclic codes of length p2; i.e., ideals
of FG where

G = (Cp × Cp) =< a > × < b > .

To find the primitive idempotents of FG , we need to find
subgroups H of G such that G/H is cyclic.

The idempotents of FG are:

e0 = Ĝ , e1 = <̂ a >− Ĝ , e2 = <̂ b >− Ĝ ,

fi = <̂ abi >− Ĝ , 1 ≤ i ≤ p − 1.
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Weights and dimensions of minimal codes are:

dim(FG )e0 = 1 e dim(FG )e1 = dim(FG )fi = p − 1,

w((FG )e0) = p2 e w((FG )e1) = w((FG )fi ) = 2p.

Given any two subgroups H, K as above, then G = H × K .
Write H =< h > and K =< k >. The corresponding central
idempotents are e = Ĥ − Ĝ , f = K̂ − Ĝ . Consider

I = (FG )e ⊕ (FG )f ,
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Teorema (F. Melo e P.M)

The weight and dimension of I = (FG )e ⊕ (FG )f are

w(I ) = dim(I ) = 2p − 2,

Definition

The convenience of a code C is the number

conv(C) = w(C)dim(C).
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For the cyclic non-minimal codes we have:

conv(I0 ⊕ I1) = p2 e conv(I1 ⊕ I2) = 2(p2 − 1).

For the sum of two minimal Abelian (non-cyclic) codes we have:

conv(N) = 4(p − 1)2.

Hence, if p > 3, we have that conv(N) is bigger than conv(I ) for
any proper ideal I of FqCp2 .
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any proper ideal I of FqCp2 .
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In this section, Fq will always denote a finite field with q elements,
C = Cn the cyclic of order n, with generator g and we shall
assume that (q, n) = 1.

Proposition

Let C be a cyclic group of order n and let m be the multiplicative
order of q in the unit group U(Zn). If e is an essential idempotent,
then the dimension of FqC · e is precisely m.

Theorem

Let Cn denote a cyclic group of order n and generator g . Then:
(i) dim(FqCn)e0 = ϕ(n) where ϕ denotes Euler’s Totient function.
(ii) There exist precisely ϕ(n)/m essential idempotents in FqC .
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Since Fq contains q elements and dimFqCn · e = m, it follows that
FqCn · e is a field with qm elements. If we denote by
Ue = U(FqC · e), the group of invertible elements of FqC · e, we
have that Ue is a cyclic group of order |Ue | = qm − 1 = N.

As e is essential, we have that C ∼= C · e, so C · e is a subgroup of
order n of Ue . Set ` = N/n.
Denote by Cn and CN the cyclic groups of orders n and N, with
generators g and h respectively.

Note that N = `n and thus 〈h`〉 is a subgroup of CN of order n,
hence isomorphic to Cn. Let σ be such an isomorphism and denote
also by σ : Fq〈h`〉 → FqCn the isomorphism induced linearly by σ.
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Theorem

With the notations above, given an essential idempotent e ∈ FqCn

there exists an element β ∈ Ue such that {e, β, . . . β`−1} is a
transversal of Cn · e in Ue and the element

eN =
1

`

`−1∑
i=0

σ−1(βi )hi

is an essential idempotent of FqCN .

Conversely if eN =
∑`−1

i=0 αih
i is an essential idempotent of FqCN ,

then e = `.σ(α0) is an essential idempotent of FqCn and the set
{σ(α0), σ(α1), . . . , σ(α`−1)} is a transversal of Cn · e in Ue .
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