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Basic Concepts Groups

De�nition

A group is a non empty set G together with a binary operation, denoted

by ·, called multiplication, such that (or +, called addition) such that for all

a, g , h ∈ G , the following proprieties hold:

(i) (a · g) · h = a · (g · h);

(ii) There exists an element, that we we will denoted by 1 ∈ G , such that

g · 1 = 1 · g = g ;

(iii) For each element g ∈ G there exists an element, which we will

denoted by g−1 ∈ G , such that g · (g−1) = (g−1) · g = 1.

If G is a �nite group, then the number of elements of G is called order of
G and it is denoted by |G |.
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Basic Concepts Groups

If, in addition, the following propriety is veri�ed

(iv) g · h = h · g
for all g , h ∈ G then the group is said to be abelian (or commutative).

De�nition

Let G be a group. A non empty subset H of G is called subgroup of G ,
and we denoted by H < G , when with the operation of G , the set H is a

group.

Proposition

Let H be a non empty subset of G . Then H < G if, and only if, the

following conditions hold:

(i) a · b ∈ H, ∀ a, b ∈ H;

(ii) h−1 ∈ H, ∀ h ∈ H.
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Basic Concepts Groups

Let g be an element of a group (G , ·) and let n ∈ Z. We de�ne the power

if g as:

gn =



g−1 · g−1 · · · g−1︸ ︷︷ ︸
|n| times

if n < 0

1 if n = 0

g · g · · · g︸ ︷︷ ︸
n times

if n > 0

Since gn · gm = gn+m, we have that the set 〈g〉 = {gn : n ∈ Z} is a

subgroup of G , called cyclic subgroup of G generated by g .

If this group 〈g〉 is �nite, then there exists distinct integers numbers n and

m such that gn = gm, and therefore, gm−n = 1.
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Basic Concepts Groups

The least positive integer number n such that gn = 1 is said to be order of
g and it is denoted by o(g). If 〈g〉 is not �nite we say that g is an element

of in�nite order.

De�nition

Let G be a group. If there exists an element g in G such that G = 〈g〉,
then we say that G is a cyclic group and g is a generator of G . Observe
that, if G is �nite, then o(g) = |G |.
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Basic Concepts Groups

De�nition

Let (G , .) and (H, ∗) be groups. A map

G
f→ H

g 7−→ f (g)

satisfying f (g1.g2) = f (g1) ∗ f (g2) is called homomorphism of groups.

We can easily check that if f : G → H is a group homomorphism, then

f (1G ) = 1H and f (g−1) = f (g)−1.
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Basic Concepts Groups

De�nition

Let (G , .) and (H, ∗) be groups. By f : G → H denote the group

homomorphism. The subset

Ker(f ) := {g ∈ G : f (g) = 1H},

is called kernel of f .

De�nition

Let (G , .) and (H, ∗) be groups and let f : G → H be the group

homomorphism. The subset

Im(f ) := {h ∈ H : exists g ∈ G such that f (g) = h},
is called image of f .
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Basic Concepts Groups

Proposition

Let (G , ·) and (H, ∗) be groups and let f : G → H be a group

homomorphism. Then:

(i) f is injector if, and only if, Ker(f ) = {1}. In this case, f is called

monomorphism;

(ii) f is surjective if, and only if, Im(f ) = H. In this case, f is called a

epimorphism.

If the group homomorphism f is injective and subjective, then f is called

isomorphism. Besides that, given two groups G and H, if there exists a

isomorphism f between then we shall say that G and H are isomorphic and

write G ' H.

Example

Let (G , ·) be a group and take h ∈ G . We de�ne a map σh : G → G given

by σh(g) = h−1 · g · h, ∀ g ∈ G . σh is a group homomorphism, known as

conjugation.
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Basic Concepts Groups

De�nition

A ring (R,+, ·) is a non empty set R together with two binary operations,

that we shall denote by + and · and called addition and multiplication

respectively, such that the following proprieties hold:

A1 (r + s) + t = r + (s + t), ∀ r , s, t ∈ R

A2 There exists an element 0 ∈ R such that 0 + r = r = r + 0, ∀ r ∈ R

A3 ∀ r ∈ R, there exists an element −r ∈ R such that

r + (−r) = 0 = (−r) + r

A4 r + s = s + r , ∀ r , s ∈ R

M1 r · (s · t) = (r · s) · t, ∀ r , s, t ∈ R

D1 r · (s + t) = r · s + r · t, ∀ r , s, t ∈ R

D2 (r + s) · t = r · t + s · t, ∀ r , s, t ∈ R
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Basic Concepts Groups

If the proprieties of the de�nition hold and

M2 ∃ 1 ∈ R such that 1 · r = r = r · 1,
then (R,+, ·) is called ring with unity.

If all previous conditions hold and, in addition,

M3 r · s = s · r , ∀ r , s ∈ R,

then (R,+, ·) is called commutative ring. The set Z together with its usual

operations is a commutative ring with unity.

Example

Let n ∈ N. The set of all integers which have the same remainder as a
when divided by n is called the congruence class of a modulo n, and is

denoted by a. The set Zn := {0, 1, 2, · · · , n − 1} with the operations:

+ : a + b = a + b (mod m)

· : a · b = a · b (mod m)

is an example of commutative ring with unity, called ring of integers
modulo m.
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Basic Concepts Groups

De�nition

Let (R,+R , .R) and (S ,+S , .S) be rings. A ring homomorphism is a map

f : R → S that satis�es:

(i) f (r1 +R a2) := f (r1) +S f (r2);

(ii) f (r1.R r2) := f (r1).S f (r2);

for all r1, r2 ∈ R.

De�nition

An element r of a ring with unity (R,+, ·) is called invertible if there

exists an element, which we shall denote by r−1 ∈ R, and call its inverse,
such that r · r−1 = r−1 · r = 1.
The set

U(R) = {r ∈ R : r is invertivel }

is called the group of units of R.
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Basic Concepts Groups

De�nition

Let R be a ring with unity and let G be a group. We de�nite the group
ring

RG :=

∑
g∈G

agg : ag ∈ R and ag = 0 almost everywhere

 .

together with the operations:

(i) + :
∑
g∈G

agg +
∑
g∈G

bgg :=
∑
g∈G

(ag + bg )g ;

(ii) · :

∑
g∈G

agg

 ·(∑
h∈G

bhh

)
:=

∑
g∈G

∑
h∈G

(agbh)gh

 .
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Basic Concepts Groups

In our case, the ring R will be the Z and ZG are called integral group
rings.

Example

Let C5 = 〈g〉 = {1, g , g2, g3, g4} be the cyclic group of order 5. We have

ZC5 =
{
a0 + a1g + a2g

2 + a3g
4 + a4g

4 : ai ∈ Z, ∀ 1 ≤ i ≤ 4
}
,

the group ring ZC5.

De�nition

Let R be a ring with unity and let G be a group. Consider its group ring

RG . The homomorphism of rings: ε : RG → R de�ne as

ε

∑
g∈G

agg

 :=
∑
g∈G

ag is called the augmentation mapping of RG .
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Basic Concepts Groups

De�nition

Let RG be a group ring. Consider the map ∗ : RG → RG de�ne as∑
g∈G

agg

∗ =
∑
g∈G

agg
−1. Such map is called the classical involution.

We recall that we denote by U(R) the of units of R. That is

U(R) = {r ∈ R : ∃s ∈ R such that r · s = s · r = 1}.

In Particular, given a group G and a ring with unity R,U(RG ) denotes the

group of units of the group ring RG .
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Basic Concepts Groups

De�nition

The set

U1(RG ) := {u ∈ U(RG ) : ε(u) = 1}

is the a subgroup of units augmentation 1 in U(RG ), known as the group

of normalized units.

Let u ∈ U(ZG ). Then exists v 6= 0 ∈ ZG such that uv = 1 = vu.
Hence, ε(uv) = 1 and, since ε is a ring homomorphism ε(u)ε(v) = 1.
Since ε(u), ε(v) ∈ Z, ε(u) = 1 and ε(v) = 1 or ε(u) = −1 e ε(v) = −1.
Therefore, U(ZG ) ⊆ ±U1(ZG ). We conclude U(ZG ) = ±U1(ZG ).
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Basic Concepts Groups

De�nition

The set U∗1 (RG ) := {u ∈ U1(RG ) : u∗ = u} is called the set of normalized
symmetric units of RG , where ∗ denotes the classical involution.

Example (Trivial Units)

Let RG be the group ring. An element rg ∈ RG such that r ∈ U(R), has a
inverse, given by r−1g−1. Elements of this form are called trivial units of
RG . Therefore the elements ±g are trivial units of the integral group ring

ZG . If F is a �eld, then elements if the form kg , where k 6= 0 ∈ K are

trivial units.
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Basic Concepts Groups

Example (Unipotent Units)

If r ∈ R is such that rk = 0 for some positive integer k , then we have that

1− r , 1 + r ∈ U(R). The elements 1± r are called unipotent units of R.

Example (Bicyclic Units)

Let g be an element of �nite order n > 1 of the group G , i. e., gn = 1 and

let h ∈ G . The element ug ,h = 1 + (g − 1)hĝ , where
ĝ = 1 + g + g2 + . . .+ gn−1 is a unit of RG namely as bicyclic unit of
the group ring RG .
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Basic Concepts Groups

Example (Bass Cyclic Units)

Let g be an element of �nite order n in a group G . A Bass cyclic unit is
an element of the group ring ZG of the form:

ui = (1 + g + g2 + · · ·+ g i−1)φ(n) +

(
1− iφ(n)

n

)
ĝ ,

where i is an integer such that 1 < i < n, gcd(i , n) = 1 and φ denotes the

Euler's totient function.

Example (Hoechsmann's Units)

Let G = Cn = 〈g〉 be the cyclic group of order n. Then

u =
1 + g j + · · ·+ g j(i−1)

1 + g + · · ·+ g i−1 ,

where gcd(i , n) = 1 and gcd(j , n) = 1 is a unit, call Hoechsmann's unit.
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Example (Hoechsmann's Units)

Let G = Cn = 〈g〉 be the cyclic group of order n. Then

u =
1 + g j + · · ·+ g j(i−1)

1 + g + · · ·+ g i−1 ,

where gcd(i , n) = 1 and gcd(j , n) = 1 is a unit, call Hoechsmann's unit.
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Basic Concepts Groups

De�nition

Let G = Cp
∼= 〈g〉 . For each i such that 1 ≤ i ≤ p−3

2
we de�ne:

ui =
(
1 + g t + . . .+ g t(r−1)

)(
1 + g t i + . . .+ g t i (t−1)

)
− kĝ

where t ∈ Z is such that t generates U(Zp), r is the least positive integer

satisfying tr ≡ 1 (mod p) and k =
rt − 1

p
.

Theorem (Ferraz)

If
〈
−1, θ, µ2, · · · , µ p−3

2

〉
generates U(Z[θ]), then the set

S :=
〈
u1, u2, u3, · · · , u p−3

2

〉
is a multiplicatively independent subset of

U1(ZCp) such that

U1(ZCp) = 〈g〉 × 〈S〉 .
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Basic Concepts Groups

Consider the integral group ring Z(Cp ×C2), where Cp
∼= 〈g〉 and C2

∼= 〈a〉.

Every element α of Z(Cp × C2) can be written as

α = x + yan,

with x , y ∈ ZCp.

Therefore

u ∈ U(Z(Cp × C2))⇔ u = u1

[(
1 + u2

2

)
+

(
1− u2

2

)
a

]
where u1, u2 ∈ U(ZCp) and u2 ≡ 1 (mod 〈2〉).

Consider the following ring homomorphism φ : ZCp → Z2Cp and de�ne

Φ := φ|U(Z(Cp)) .
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Basic Concepts Groups

Then

u ∈ U(Z(Cp × C2))⇔ u = u1

[(
1 + u2

2

)
+

(
1− u2

2

)
a

]
where u1, u2 ∈ U(Z(Cp) and u2 ∈ Ker(Φ).

So in order to �nd the units of Z(Cp × C2) we must describe the units of

ZCp and the kernel of Φ.

Let ρ := Φ|U∗1 (ZCp).

Since U(ZCp) = 〈−1〉 × U1(ZCp) and −1 ∈ Ker(ψ) we have Ker(Φ) =
〈−1〉×Ker(Φ|U1(ZCp)). Because p is an odd prime number, we obtain U1(ZCp) =
Cp ×U∗1 (ZCp). Thus, we can easily see that Ker(Φ|U(ZCp)) = 〈−1〉×Ker(ρ).
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Basic Concepts Groups

Suppose that 2 generates U(Zp) or 2 generates U(Zp)2 and −1 /∈ U(Zp)2.
Based on the Hoeschmann's units, we build

w1 = u1

wi = g ( p−1
2

)·t i · g ( p+1
2

)·t i−1uiu
−1
i−1

where t is such that U(Zp) = 〈t〉 and

ui =
(
1 + g t + . . .+ g t(r−1)

)(
1 + g t i + . . .+ g t i (t−1)

)
− kĝ

These wi are an symmetric normalized unit of ZCp such that

U1(ZCp) = 〈g〉 ×
〈
w1, · · ·w p−3

2

〉
and the set {wi : 1 ≤ i ≤ p−3

2
} is multiplicatively independent.
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Basic Concepts Groups

De�nition

Let θ be the p-th primitive roof of the unity. An odd prime number p is

called a nice prime if
〈
−1, θ, µ2, · · · , µ p−3

2

〉
generates U(Z[θ]) where

µi = 1 + θ + · · ·+ θi−1 and

(i) U(Zp) ∼=
〈
2
〉

(ii) or U(Zp)2 ∼=
〈
2
〉
and −1 /∈ U(Zp)2.

From now on p will be a nice prime.
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Basic Concepts Groups

De�nition

Let p be an odd prime number. By δ we denote the ring isomorphism

δ : ZCp → ZCp
p−1∑
i=0

aig
i 7−→

p−1∑
i=0

aig
2i .

Lemma

Let p be a nice prime. δn−1(w1) = wn.
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Basic Concepts Groups

Lemma

ρ(w1)2
n

= ĝ + g ( p−1
2

)·2n(1 + g2n), ∀ n ∈ N.

Corollary

ρ(w1)2
n

= ρ(wn+1). In particular, Im(ρ) = 〈ρ(w1)〉 .

It follows from this result that ρ(w2n

1 w−1n−1) = 1, i.e., w2n

1 w−1n−1 ∈ Ker(ρ), 1 ≤
n ≤ p−3

2
.

Lemma

ρ(w1)2
p−1
2 −1 = 1.

By the above Lemma, we deduce that ord(ρ(w1)) ≤ 2
p−1
2 − 1.
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Basic Concepts Groups

Lemma

If ord(ρ(w1)) = 2
p−1
2 − 1, then S1 generates the kernel of ρ, where

S1 = {w2
1w
−1
2 ,w4

1w
−1
3 ,w8

1w
−1
4 , · · · ,w2i

i w−1i+1, · · · ,w
2
p−3
2

1 w−1p−1
2

}

Corollary

If ord(ρ(w1)) = 2
p−1
2 − 1, then Ker(ρ) = 〈S4〉 , where

S4 = {w2
1w
−1
2 ,w2

2w
−1
3 , · · · ,w2

i w
−1
i+1, · · · ,w

2
p−3
2

w−1p−1
2

}

This set has the very interesting property that each element is taken into its

successor via δ.
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Basic Concepts Groups

Theorem

If ord(ρ(w1)) = 2
p−1
2 − 1, then

U(ZC2p) =

〈−1〉 × 〈g , a〉 ×
〈{

wi : 1 ≤ i ≤ p−3
2

}〉
×
〈{

ui (a) : 1 ≤ i ≤ p−3
2

}〉
.

Furthermore, the set
{
w1,w2, . . . ,w p−3

2
, u1(a), u2(a), . . . , u p−3

2
(a)
}

is

multiplicatively independent.
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Example

Assume that C7
∼= 〈g〉 and C2

∼= 〈a〉 . We want to �nd U(ZC14).

We already know that

U1(ZC7) = 〈g〉 × 〈w1,w2〉

where w1 = 1− g + g2 + g5 − g6 and w2 = 1− g2 + g3 + g4 − g5.

Since 23 − 1 = 7 is a prime number, we get that ord(ρ(w1)) = 7.

β1 =
1− w3

1w
−1
2

2
= 4− 3g + 2g2 − g3 − g4 + 2g5 − 3g6

β2 =
1− w1w

2
2

2
= 4− g − 3g2 + 2g3 + 2g4 − 3g5 − g6
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Basic Concepts Groups

u1(a) = (1− β1) + β1a = (−3 + 3g − 2g2 + g3 + g4 − 2g5 + 3g6) + (4−
3g + 2g2 − g3 − g4 + 2g5 − 3g6)a

u2(a) = (1− β2) + β2a = (−3 + g + 3g2 − 2g3 − 2g4 + 3g5 + g6) + (4−
g − 3g2 + 2g3 + 2g4 − 3g5 − g6)a

It follows from Theorem 24 that

U(ZC14) = 〈−1〉 × 〈g , a〉 × 〈w1,w2〉 × 〈u1(a), u2(a)〉
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