Twisted partial actions of groups on semilattices of groups

Mikhailo Dokuchaev¹ and Mykola Khrypchenko²

Instituto de Matemática e Estatística Universidade de São Paulo ¹Partially supported by CNPq of Brazil: 307659/2009–7 ²Supported by FAPESP of Brazil: 12/01554–7

ALTENCOA6, Universidad de Nariño, San Juan de Pasto, Colombia, August 11–15, 2014

Dokuchaev and Khrypchenko (IME-USP)

3

Definition

A semigroup L is called a semilattice if

Definition

A semigroup L is called a semilattice if

(i) L is commutative;

Definition

A semigroup L is called a semilattice if

- (i) L is commutative;
- (ii) E(L) = L.

< 4 → <

Definition

A semigroup L is called a semilattice if

- (i) L is commutative;
- (ii) E(L) = L.

Definition

A semigroup A is called a semilattice of groups if

Definition

A semigroup L is called a semilattice if

- (i) L is commutative;
- (ii) E(L) = L.

Definition

A semigroup A is called a semilattice of groups if $A = \bigsqcup_{I \in L} A_I$, where

3

3 🕨 🖌 3

< 4 → <

Definition

A semigroup L is called a semilattice if

- (i) L is commutative;
- (ii) E(L) = L.

Definition

A semigroup A is called a semilattice of groups if $A = \bigsqcup_{I \in L} A_I$, where

(i) L is a semilattice;

3 🕨 🖌 3

< 4 → <

Definition

A semigroup L is called a semilattice if

- (i) L is commutative;
- (ii) E(L) = L.

Definition

A semigroup A is called a semilattice of groups if $A = \bigsqcup_{I \in L} A_I$, where

(ii) A_l is a group, $l \in L$;

A (10) A (10)

Definition

A semigroup L is called a semilattice if

- (i) L is commutative;
- (ii) E(L) = L.

Definition

A semigroup A is called a semilattice of groups if $A = \bigsqcup_{I \in L} A_I$, where

(ii)
$$A_l$$
 is a group, $l \in L$;

(iii)
$$A_I A_m \subseteq A_{Im}, I, m \in L.$$

3

A (10) A (10)

Definition

A semigroup L is called a semilattice if

- (i) L is commutative;
- (ii) E(L) = L.

Definition

A semigroup A is called a semilattice of groups if $A = \bigsqcup_{I \in L} A_I$, where

- (ii) A_l is a group, $l \in L$;
- (iii) $A_I A_m \subseteq A_{Im}$, $I, m \in L$.

All the semilattices of groups we consider contain identity.

・ロト ・聞ト ・ ヨト ・ ヨト

Dokuchaev and Khrypchenko (IME-USP)

• • • • • • • •

æ

Definition

A semigroup S is called inverse if

Definition

A semigroup S is called inverse if for any $s \in S$ there exists a unique $s^{-1} \in S$ (called the inverse of s) satisfying

Definition

A semigroup S is called inverse if for any $s \in S$ there exists a unique $s^{-1} \in S$ (called the inverse of s) satisfying (i) $ss^{-1}s = s$;

Definition

A semigroup S is called inverse if for any $s \in S$ there exists a unique $s^{-1} \in S$ (called the inverse of s) satisfying

(i)
$$ss^{-1}s = s$$
;
(ii) $s^{-1}ss^{-1} = s^{-1}$.

Definition

A semigroup S is called inverse if for any $s \in S$ there exists a unique $s^{-1} \in S$ (called the inverse of s) satisfying

(i)
$$ss^{-1}s = s;$$

(ii)
$$s^{-1}ss^{-1} = s^{-1}$$
.

Remark

If A is a semilattice of groups, then

Definition

A semigroup S is called inverse if for any $s \in S$ there exists a unique $s^{-1} \in S$ (called the inverse of s) satisfying

(i)
$$ss^{-1}s = s;$$

(ii)
$$s^{-1}ss^{-1} = s^{-1}$$
.

Remark

If A is a semilattice of groups, then (i) A is inverse;

Definition

A semigroup S is called inverse if for any $s \in S$ there exists a unique $s^{-1} \in S$ (called the inverse of s) satisfying

(i)
$$ss^{-1}s = s;$$

(ii)
$$s^{-1}ss^{-1} = s^{-1}$$
.

Remark

If A is a semilattice of groups, then

- (i) A is inverse;
- (ii) L can be chosen to be E(A);

Definition

A semigroup S is called inverse if for any $s \in S$ there exists a unique $s^{-1} \in S$ (called the inverse of s) satisfying

(i)
$$ss^{-1}s = s;$$

(ii)
$$s^{-1}ss^{-1} = s^{-1}$$
.

Remark

If A is a semilattice of groups, then

- (i) A is inverse;
- (ii) L can be chosen to be E(A);

(iii)
$$A_e = \{a \in A \mid aa^{-1} = a^{-1}a = e\}, e \in E(A).$$

Definition

A semigroup S is called inverse if for any $s \in S$ there exists a unique $s^{-1} \in S$ (called the inverse of s) satisfying

(i)
$$ss^{-1}s = s;$$

(ii)
$$s^{-1}ss^{-1} = s^{-1}$$
.

Remark

If A is a semilattice of groups, then

- (i) A is inverse;
- (ii) L can be chosen to be E(A);

(iii)
$$A_e = \{a \in A \mid aa^{-1} = a^{-1}a = e\}, e \in E(A).$$

It follows that

Definition

A semigroup S is called inverse if for any $s \in S$ there exists a unique $s^{-1} \in S$ (called the inverse of s) satisfying

(i)
$$ss^{-1}s = s;$$

(ii)
$$s^{-1}ss^{-1} = s^{-1}$$
.

Remark

If A is a semilattice of groups, then

- (i) A is inverse;
- (ii) L can be chosen to be E(A);

(iii)
$$A_e = \{a \in A \mid aa^{-1} = a^{-1}a = e\}, e \in E(A).$$

It follows that

(i)
$$aa^{-1} = a^{-1}a, a \in A;$$

Definition

A semigroup S is called inverse if for any $s \in S$ there exists a unique $s^{-1} \in S$ (called the inverse of s) satisfying

(i)
$$ss^{-1}s = s;$$

(ii)
$$s^{-1}ss^{-1} = s^{-1}$$
.

Remark

If A is a semilattice of groups, then

- (i) A is inverse;
- (ii) L can be chosen to be E(A);

(iii)
$$A_e = \{a \in A \mid aa^{-1} = a^{-1}a = e\}, e \in E(A).$$

It follows that

(i)
$$aa^{-1} = a^{-1}a$$
, $a \in A$;
(ii) $E(A) \subseteq C(A)$.

• G is a group;

- G is a group;
- A is a monoid.

- G is a group;
- A is a monoid.

Definition (Dokuchaev-Exel-Simón, 2008 [1])

A twisted partial action of G on A

- G is a group;
- A is a monoid.

Definition (Dokuchaev-Exel-Simón, 2008 [1])

- G is a group;
- A is a monoid.

Definition (Dokuchaev-Exel-Simón, 2008 [1])

A twisted partial action of G on A is a pair $\Theta = (\theta, f)$, where

• $\theta = \{\theta_x : 1_{x^{-1}}A \xrightarrow{\sim} 1_xA\}_{x \in G} \text{ with } 1_x \in E(C(A)), x \in G;$

- G is a group;
- A is a monoid.

Definition (Dokuchaev-Exel-Simón, 2008 [1])

- $\theta = \{\theta_x : 1_{x^{-1}}A \xrightarrow{\sim} 1_xA\}_{x \in G}$ with $1_x \in E(C(A))$, $x \in G$;
- $f: G^2 \rightarrow A$ with $f(x, y) \in \mathcal{U}(1_x 1_{xy} A)$, $x, y \in G$;

- G is a group;
- A is a monoid.

Definition (Dokuchaev-Exel-Simón, 2008 [1])

A twisted partial action of G on A is a pair $\Theta = (\theta, f)$, where

- $\theta = \{\theta_x : 1_{x^{-1}}A \xrightarrow{\sim} 1_xA\}_{x \in G}$ with $1_x \in E(C(A))$, $x \in G$;
- $f: G^2 \rightarrow A$ with $f(x, y) \in \mathcal{U}(1_x 1_{xy} A), x, y \in G$;

• the following properties are fulfilled:

- G is a group;
- A is a monoid.

Definition (Dokuchaev-Exel-Simón, 2008 [1])

- $\theta = \{\theta_x : 1_{x^{-1}}A \xrightarrow{\sim} 1_xA\}_{x \in G}$ with $1_x \in E(C(A))$, $x \in G$;
- $f: G^2 \rightarrow A$ with $f(x, y) \in \mathcal{U}(1_x 1_{xy} A)$, $x, y \in G$;
- the following properties are fulfilled:
 - (i) $\theta_1 = \mathrm{id}_A$;

- G is a group;
- A is a monoid.

Definition (Dokuchaev-Exel-Simón, 2008 [1])

- $\theta = \{\theta_x : 1_{x^{-1}}A \xrightarrow{\sim} 1_x A\}_{x \in G}$ with $1_x \in E(C(A))$, $x \in G$;
- $f: G^2 \rightarrow A$ with $f(x, y) \in \mathcal{U}(1_x 1_{xy} A)$, $x, y \in G$;
- the following properties are fulfilled:

(i)
$$\theta_1 = id_A;$$

(ii) $\theta_x(1_{x^{-1}}1_yA) = 1_x 1_{xy}A, x, y \in G;$

- G is a group;
- A is a monoid.

Definition (Dokuchaev-Exel-Simón, 2008 [1])

- $\theta = \{\theta_x : 1_{x^{-1}}A \xrightarrow{\sim} 1_xA\}_{x \in G}$ with $1_x \in E(C(A))$, $x \in G$;
- $f: G^2 \rightarrow A$ with $f(x, y) \in \mathcal{U}(1_x 1_{xy} A)$, $x, y \in G$;
- the following properties are fulfilled:

(i)
$$\theta_1 = id_A$$
;
(ii) $\theta_x(1_{x^{-1}}1_yA) = 1_x 1_{xy}A$, $x, y \in G$;
(iii) $\theta_x \circ \theta_y(a) = f(x, y)\theta_{xy}(a)f(x, y)^{-1}$, $x, y \in G$, $a \in 1_{y^{-1}}1_{y^{-1}x^{-1}}A$;

- G is a group;
- A is a monoid.

Definition (Dokuchaev-Exel-Simón, 2008 [1])

- $\theta = \{\theta_x : 1_{x^{-1}}A \xrightarrow{\sim} 1_xA\}_{x \in G}$ with $1_x \in E(C(A))$, $x \in G$;
- $f: G^2 \rightarrow A$ with $f(x, y) \in \mathcal{U}(1_x 1_{xy} A)$, $x, y \in G$;
- the following properties are fulfilled:

(i)
$$\theta_1 = id_A$$
;
(ii) $\theta_x(1_{x^{-1}}1_yA) = 1_x 1_{xy}A$, $x, y \in G$;
(iii) $\theta_x \circ \theta_y(a) = f(x, y)\theta_{xy}(a)f(x, y)^{-1}$, $x, y \in G$, $a \in 1_{y^{-1}}1_{y^{-1}x^{-1}}A$;
(iv) $f(1, x) = f(x, 1) = 1_x$, $x \in G$;

- G is a group;
- A is a monoid.

Definition (Dokuchaev-Exel-Simón, 2008 [1])

- $\theta = \{\theta_x : 1_{x^{-1}}A \xrightarrow{\sim} 1_xA\}_{x \in G}$ with $1_x \in E(C(A))$, $x \in G$;
- $f: G^2 \rightarrow A$ with $f(x, y) \in \mathcal{U}(1_x 1_{xy} A)$, $x, y \in G$;
- the following properties are fulfilled:

(i)
$$\theta_1 = id_A$$
;
(ii) $\theta_x(1_{x^{-1}}1_yA) = 1_x 1_{xy}A$, $x, y \in G$;
(iii) $\theta_x \circ \theta_y(a) = f(x, y)\theta_{xy}(a)f(x, y)^{-1}$, $x, y \in G$, $a \in 1_{y^{-1}}1_{y^{-1}x^{-1}}A$;
(iv) $f(1, x) = f(x, 1) = 1_x$, $x \in G$;
(v) $\theta_x(1_{x^{-1}}f(y, z))f(x, yz) = f(x, y)f(xy, z)$, $x, y, z \in G$.
Twisted partial actions of groups on monoids

- G is a group;
- A is a monoid.

Definition (Dokuchaev-Exel-Simón, 2008 [1])

A twisted partial action of G on A is a pair $\Theta = (\theta, f)$, where

- $\theta = \{\theta_x : 1_{x^{-1}}A \xrightarrow{\sim} 1_xA\}_{x \in G}$ with $1_x \in E(C(A))$, $x \in G$;
- $f: G^2 \rightarrow A$ with $f(x, y) \in \mathcal{U}(1_x 1_{xy} A)$, $x, y \in G$;

• the following properties are fulfilled:

(i)
$$\theta_1 = id_A$$
;
(ii) $\theta_x(1_{x^{-1}}1_yA) = 1_x 1_{xy}A$, $x, y \in G$;
(iii) $\theta_x \circ \theta_y(a) = f(x, y)\theta_{xy}(a)f(x, y)^{-1}$, $x, y \in G$, $a \in 1_{y^{-1}}1_{y^{-1}x^{-1}}A$;
(iv) $f(1, x) = f(x, 1) = 1_x$, $x \in G$;
(v) $\theta_x(1_{x^{-1}}f(y, z))f(x, yz) = f(x, y)f(xy, z)$, $x, y, z \in G$.

If A is a semilattice of groups, then we assume that $E(A) = \langle 1_x \mid x \in G \rangle$.

4 / 18

Equivalent twisted partial actions of groups on monoids

Definition (Dokuchaev-Exel-Simón, 2010 [2])

 Θ and Θ' are called equivalent if

Definition (Dokuchaev-Exel-Simón, 2010 [2])

 Θ and Θ' are called equivalent if

•
$$1_x = 1'_x$$
, $x \in G$;

Definition (Dokuchaev-Exel-Simón, 2010 [2])

 Θ and Θ' are called equivalent if

•
$$1_x = 1'_x$$
, $x \in G$;

• there exists a map g: G o A with $g(x) \in \mathcal{U}(1_x A)$, satisfying

Definition (Dokuchaev-Exel-Simón, 2010 [2])

 Θ and Θ' are called equivalent if

•
$$1_x = 1'_x$$
, $x \in G$;

• there exists a map $g : G \to A$ with $g(x) \in \mathcal{U}(1_x A)$, satisfying (i) $\theta'_x(a) = g(x)\theta_x(a)g(x)^{-1}$, $x \in G$, $a \in 1_{x^{-1}}A$;

Definition (Dokuchaev-Exel-Simón, 2010 [2])

 Θ and Θ' are called equivalent if

•
$$1_x = 1'_x$$
, $x \in G$;

• there exists a map $g: G \to A$ with $g(x) \in \mathcal{U}(1_x A)$, satisfying (i) $\theta'_x(a) = g(x)\theta_x(a)g(x)^{-1}$, $x \in G$, $a \in 1_{x^{-1}}A$; (ii) $f'(x,y) = g(x)\theta_x(1_{x^{-1}}g(y))f(x,y)g(xy)^{-1}$, $x, y \in G$.

Dokuchaev and Khrypchenko (IME-USP)

- 一司

• *S* is an inverse monoid.

• S is an inverse monoid.

Definition (see Lausch, 1975 [4])

By a twisted S-module

Image: A matrix of the second seco

• *S* is an inverse monoid.

Definition (see Lausch, 1975 [4])

By a twisted S-module we mean a semilattice of groups A

< 67 ▶

• S is an inverse monoid.

Definition (see Lausch, 1975 [4])

By a twisted *S*-module we mean a semilattice of groups *A* together with a triple $\Lambda = (\lambda, \alpha, f)$, where

< 🗗 🕨

• S is an inverse monoid.

Definition (see Lausch, 1975 [4])

By a twisted *S*-module we mean a semilattice of groups *A* together with a triple $\Lambda = (\lambda, \alpha, f)$, where

• λ is a map $S \to \operatorname{End} A$, $s \mapsto \lambda_s$;

• S is an inverse monoid.

Definition (see Lausch, 1975 [4])

By a twisted *S*-module we mean a semilattice of groups *A* together with a triple $\Lambda = (\lambda, \alpha, f)$, where

- λ is a map $S \to \operatorname{End} A$, $s \mapsto \lambda_s$;
- α is an isomorphism $E(S) \rightarrow E(A)$;

• S is an inverse monoid.

Definition (see Lausch, 1975 [4])

By a twisted *S*-module we mean a semilattice of groups *A* together with a triple $\Lambda = (\lambda, \alpha, f)$, where

- λ is a map $S \to \operatorname{End} A$, $s \mapsto \lambda_s$;
- α is an isomorphism $E(S) \rightarrow E(A)$;
- $f: S^2 \rightarrow A$ is a map with $f(s, t) \in A_{\alpha(stt^{-1}s^{-1})}$;

< 🗗 🕨

• S is an inverse monoid.

Definition (see Lausch, 1975 [4])

By a twisted *S*-module we mean a semilattice of groups *A* together with a triple $\Lambda = (\lambda, \alpha, f)$, where

- λ is a map $S \to \operatorname{End} A$, $s \mapsto \lambda_s$;
- α is an isomorphism $E(S) \rightarrow E(A)$;
- $f: S^2 \to A$ is a map with $f(s, t) \in A_{\alpha(stt^{-1}s^{-1})}$;
- the following properties are fulfilled:

• S is an inverse monoid.

Definition (see Lausch, 1975 [4])

By a twisted *S*-module we mean a semilattice of groups *A* together with a triple $\Lambda = (\lambda, \alpha, f)$, where

- λ is a map $S \to \operatorname{End} A$, $s \mapsto \lambda_s$;
- α is an isomorphism $E(S) \rightarrow E(A)$;
- $f: S^2 \to A$ is a map with $f(s, t) \in A_{\alpha(stt^{-1}s^{-1})}$;
- the following properties are fulfilled:

(i)
$$\lambda_e(a) = \alpha(e)a$$
, $e \in E(S)$, $a \in A$;

• • • •

• S is an inverse monoid.

Definition (see Lausch, 1975 [4])

By a twisted *S*-module we mean a semilattice of groups *A* together with a triple $\Lambda = (\lambda, \alpha, f)$, where

- λ is a map $S \to \operatorname{End} A$, $s \mapsto \lambda_s$;
- α is an isomorphism $E(S) \rightarrow E(A)$;
- $f: S^2 \to A$ is a map with $f(s, t) \in A_{\alpha(stt^{-1}s^{-1})}$;
- the following properties are fulfilled:

(i)
$$\lambda_e(a) = \alpha(e)a, e \in E(S), a \in A;$$

(ii)
$$\lambda_s(\alpha(e)) = \alpha(ses^{-1}), s \in S, e \in E(S);$$

• • • •

• S is an inverse monoid.

Definition (see Lausch, 1975 [4])

By a twisted *S*-module we mean a semilattice of groups *A* together with a triple $\Lambda = (\lambda, \alpha, f)$, where

- λ is a map $S \to \operatorname{End} A$, $s \mapsto \lambda_s$;
- α is an isomorphism $E(S) \rightarrow E(A)$;
- $f: S^2 \to A$ is a map with $f(s, t) \in A_{\alpha(stt^{-1}s^{-1})}$;
- the following properties are fulfilled:

(i)
$$\lambda_e(a) = \alpha(e)a, e \in E(S), a \in A;$$

(ii) $\lambda_s(\alpha(e)) = \alpha(ses^{-1}), s \in S, e \in E(S);$
(iii) $\lambda_s \circ \lambda_t(a) = f(s, t)\lambda_{st}(a)f(s, t)^{-1}, s, t \in S, a \in A;$

< 4 ₽ × <

• S is an inverse monoid.

Definition (see Lausch, 1975 [4])

By a twisted *S*-module we mean a semilattice of groups *A* together with a triple $\Lambda = (\lambda, \alpha, f)$, where

- λ is a map $S \to \operatorname{End} A$, $s \mapsto \lambda_s$;
- α is an isomorphism $E(S) \rightarrow E(A)$;
- $f: S^2 \to A$ is a map with $f(s, t) \in A_{\alpha(stt^{-1}s^{-1})}$;
- the following properties are fulfilled:

(i)
$$\lambda_e(a) = \alpha(e)a, e \in E(S), a \in A;$$

(ii) $\lambda_s(\alpha(e)) = \alpha(ses^{-1}), s \in S, e \in E(S);$
(iii) $\lambda_s \circ \lambda_t(a) = f(s,t)\lambda_{st}(a)f(s,t)^{-1}, s, t \in S, a \in A;$
(iv) $f(se,e) = \alpha(ses^{-1}), f(e,es) = \alpha(ss^{-1}e), s \in S, e \in E(S);$

• S is an inverse monoid.

Definition (see Lausch, 1975 [4])

By a twisted *S*-module we mean a semilattice of groups *A* together with a triple $\Lambda = (\lambda, \alpha, f)$, where

- λ is a map $S \to \operatorname{End} A$, $s \mapsto \lambda_s$;
- α is an isomorphism $E(S) \rightarrow E(A)$;
- $f: S^2 \to A$ is a map with $f(s, t) \in A_{\alpha(stt^{-1}s^{-1})}$;
- the following properties are fulfilled:

(i)
$$\lambda_{e}(a) = \alpha(e)a, e \in E(S), a \in A;$$

(ii) $\lambda_{s}(\alpha(e)) = \alpha(ses^{-1}), s \in S, e \in E(S);$
(iii) $\lambda_{s} \circ \lambda_{t}(a) = f(s, t)\lambda_{st}(a)f(s, t)^{-1}, s, t \in S, a \in A;$
(iv) $f(se, e) = \alpha(ses^{-1}), f(e, es) = \alpha(ss^{-1}e), s \in S, e \in E(S);$
(v) $\lambda_{s}(f(t, u))f(s, tu) = f(s, t)f(st, u), s, t, u \in S.$

< 4 ∰ > <

Partial homomorphisms

Dokuchaev and Khrypchenko (IME-USP)

3

Image: Image:

• *G* is a group;

- ∢ ⊢⊒ →

- G is a group;
- S is a monoid.

- *G* is a group;
- S is a monoid.

A map $\Gamma: G \rightarrow S$ is called a partial homomorphism if

- *G* is a group;
- S is a monoid.

A map $\Gamma : G \to S$ is called a partial homomorphism if (i) $\Gamma(1_G) = 1_S$;

- *G* is a group;
- S is a monoid.

A map $\Gamma : G \to S$ is called a partial homomorphism if (i) $\Gamma(1_G) = 1_S$; (ii) $\Gamma(x^{-1})\Gamma(x)\Gamma(y) = \Gamma(x^{-1})\Gamma(xy), x, y \in G$;

- *G* is a group;
- S is a monoid.

A map $\Gamma : G \to S$ is called a partial homomorphism if (i) $\Gamma(1_G) = 1_S$; (ii) $\Gamma(x^{-1})\Gamma(x)\Gamma(y) = \Gamma(x^{-1})\Gamma(xy), x, y \in G$; (iii) $\Gamma(x)\Gamma(y)\Gamma(y^{-1}) = \Gamma(xy)\Gamma(y^{-1}), x, y \in G$.

Admissible partial homomorphisms

- ∢ 🗇 እ

A partial homomorphism $\Gamma: G \rightarrow S$ is called admissible if

A partial homomorphism $\Gamma: G \to S$ is called admissible if

(i) $\langle \Gamma(G) \rangle = S;$

A partial homomorphism $\Gamma : G \to S$ is called admissible if

(i) $\langle \Gamma(G) \rangle = S;$

(ii) there exists a homomorphism $\eta: S \to G$ such that $\eta \circ \Gamma = id_G$.

A partial homomorphism $\Gamma: G \to S$ is called admissible if

(i) $\langle \Gamma(G) \rangle = S;$

(ii) there exists a homomorphism $\eta: S \to G$ such that $\eta \circ \Gamma = id_G$.

Remark

If such a partial homomorphism $\Gamma: G \to S$ exists, then (i) guarantees that S is inverse.

Dokuchaev and Khrypchenko (IME-USP)

э

• • • • • • • •

æ

• $\Gamma: G \to S$ and $\Gamma': G \to S'$ are admissible partial homomorphisms;

< 4 ► >
- $\Gamma: G \to S$ and $\Gamma': G \to S'$ are admissible partial homomorphisms;
- Λ = (λ, α, f) and Λ' = (λ', α', f') are twisted module structures on a semilattice A over S and S', respectively.

- $\Gamma: G \to S$ and $\Gamma': G \to S'$ are admissible partial homomorphisms;
- Λ = (λ, α, f) and Λ' = (λ', α', f') are twisted module structures on a semilattice A over S and S', respectively.

Definition

The pairs (Γ, Λ) and (Γ', Λ') are called equivalent, if there are

- Γ : $G \rightarrow S$ and Γ' : $G \rightarrow S'$ are admissible partial homomorphisms;
- Λ = (λ, α, f) and Λ' = (λ', α', f') are twisted module structures on a semilattice A over S and S', respectively.

Definition

The pairs (Γ, Λ) and (Γ', Λ') are called equivalent, if there are • an isomorphism $\phi : S \to S'$;

- Γ : $G \rightarrow S$ and Γ' : $G \rightarrow S'$ are admissible partial homomorphisms;
- Λ = (λ, α, f) and Λ' = (λ', α', f') are twisted module structures on a semilattice A over S and S', respectively.

Definition

The pairs (Γ, Λ) and (Γ', Λ') are called equivalent, if there are

- an isomorphism $\phi: S \to S'$;
- a map g:S
 ightarrow A with $g(s)\in A_{lpha(ss^{-1})}$, $s\in S$, such that

- Γ : $G \rightarrow S$ and Γ' : $G \rightarrow S'$ are admissible partial homomorphisms;
- Λ = (λ, α, f) and Λ' = (λ', α', f') are twisted module structures on a semilattice A over S and S', respectively.

Definition

The pairs (Γ,Λ) and (Γ',Λ') are called equivalent, if there are

• an isomorphism $\phi: S \to S'$;

- Γ : $G \rightarrow S$ and Γ' : $G \rightarrow S'$ are admissible partial homomorphisms;
- Λ = (λ, α, f) and Λ' = (λ', α', f') are twisted module structures on a semilattice A over S and S', respectively.

Definition

The pairs (Γ, Λ) and (Γ', Λ') are called equivalent, if there are • an isomorphism $\phi : S \to S'$;

• a map
$$g: S \to A$$
 with $g(s) \in A_{\alpha(ss^{-1})}$, $s \in S$, such that
(i) $\Gamma' = \phi \circ \Gamma$ on G ;
(ii) $\alpha' \circ \phi = \alpha$ on $E(S)$;

- Γ : $G \rightarrow S$ and Γ' : $G \rightarrow S'$ are admissible partial homomorphisms;
- Λ = (λ, α, f) and Λ' = (λ', α', f') are twisted module structures on a semilattice A over S and S', respectively.

Definition

The pairs (Γ, Λ) and (Γ', Λ') are called equivalent, if there are • an isomorphism $\phi : S \to S'$; • a map $g : S \to \Lambda$ with $g(g) \in \Lambda$ are $g \in S$ such that

(i)
$$\Gamma' = \phi \circ \Gamma$$
 on G ;

(ii)
$$\alpha' \circ \phi = \alpha$$
 on $E(S)$;
(iii) $\lambda'_{\phi(s)}(a) = g(s)\lambda_s(a)g(s)^{-1}$, $s \in S$, $a \in A$;

イロト 不得下 イヨト イヨト

• Γ : $G \rightarrow S$ and Γ' : $G \rightarrow S'$ are admissible partial homomorphisms;

Λ = (λ, α, f) and Λ' = (λ', α', f') are twisted module structures on a semilattice A over S and S', respectively.

Definition

The pairs (Γ, Λ) and (Γ', Λ') are called equivalent, if there are • an isomorphism $\phi : S \to S'$; • a map $g : S \to A$ with $g(s) \in A_{\alpha(ss^{-1})}$, $s \in S$, such that (i) $\Gamma' = \phi \circ \Gamma$ on G; (ii) $\alpha' \circ \phi = \alpha$ on E(S); (iii) $\lambda'_{\phi(s)}(a) = g(s)\lambda_s(a)g(s)^{-1}$, $s \in S$, $a \in A$; (iv) $f'(\phi(s), \phi(t)) = g(s)\lambda_s(g(t))f(s, t)g(st)^{-1}$, $s, t \in S$.

イロト 不得下 イヨト イヨト

Correspondence

Dokuchaev and Khrypchenko (IME-USP)

∃ → (∃ →

• • • • • • • •

æ

• G is a group;

э

- ∢ 🗗 ト

æ

- G is a group;
- A is a semilattice of groups.

э

- *G* is a group;
- A is a semilattice of groups.

- G is a group;
- A is a semilattice of groups.

There is a one-to-one correspondence between the sets of equivalence classes

• of twisted partial actions Θ of G on A;

- *G* is a group;
- A is a semilattice of groups.

- of twisted partial actions Θ of G on A;
- of pairs (Γ, Λ) , where

- G is a group;
- A is a semilattice of groups.

- of twisted partial actions Θ of G on A;
- of pairs (Γ, Λ) , where
 - Γ is an admissible partial homomorphism from G to S,

- G is a group;
- A is a semilattice of groups.

- of twisted partial actions Θ of G on A;
- of pairs (Γ, Λ) , where
 - Γ is an admissible partial homomorphism from G to S,
 - Λ is a twisted S-module structure on A.

イロト イ団ト イヨト イヨト

æ

• *S* is an inverse semigroup;

Image: Image:

э

- *S* is an inverse semigroup;
- A is a semilattice of groups.

- *S* is an inverse semigroup;
- A is a semilattice of groups.

Definition (Lausch, 1975 [4])

An extension of A by S

- *S* is an inverse semigroup;
- A is a semilattice of groups.

Definition (Lausch, 1975 [4])

An extension of A by S is an inverse semigroup U with

- *S* is an inverse semigroup;
- A is a semilattice of groups.

Definition (Lausch, 1975 [4])

An extension of A by S is an inverse semigroup U with

• a monomorphism $i : A \rightarrow U$,

- *S* is an inverse semigroup;
- A is a semilattice of groups.

Definition (Lausch, 1975 [4])

An extension of A by S is an inverse semigroup U with

- a monomorphism $i : A \rightarrow U$,
- an idempotent-separating epimorphism $j: U \rightarrow S$, such that

- *S* is an inverse semigroup;
- A is a semilattice of groups.

Definition (Lausch, 1975 [4])

An extension of A by S is an inverse semigroup U with

- a monomorphism $i: A \rightarrow U$,
- an idempotent-separating epimorphism $j: U \rightarrow S$, such that
- $i(A) = \{ u \in U \mid j(u) \in E(S) \}.$

- *S* is an inverse semigroup;
- A is a semilattice of groups.

Definition (Lausch, 1975 [4])

An extension of A by S is an inverse semigroup U with

- a monomorphism $i: A \rightarrow U$,
- an idempotent-separating epimorphism $j: U \rightarrow S$, such that

•
$$i(A) = \{ u \in U \mid j(u) \in E(S) \}.$$

Two extensions U and U' of A by S are called equivalent

- *S* is an inverse semigroup;
- A is a semilattice of groups.

Definition (Lausch, 1975 [4])

An extension of A by S is an inverse semigroup U with

- a monomorphism $i: A \rightarrow U$,
- an idempotent-separating epimorphism $j: U \rightarrow S$, such that

•
$$i(A) = \{ u \in U \mid j(u) \in E(S) \}.$$

Two extensions U and U' of A by S are called equivalent if there is a homomorphism $\mu: U \to U'$ such that

- *S* is an inverse semigroup;
- A is a semilattice of groups.

Definition (Lausch, 1975 [4])

An extension of A by S is an inverse semigroup U with

- a monomorphism $i: A \rightarrow U$,
- an idempotent-separating epimorphism $j: U \rightarrow S$, such that

•
$$i(A) = \{ u \in U \mid j(u) \in E(S) \}.$$

Two extensions U and U' of A by S are called equivalent if there is a homomorphism $\mu : U \to U'$ such that the following diagram commutes:

$$\begin{array}{ccc} A \xrightarrow{i} U \xrightarrow{j} S \\ \| & & \downarrow \mu \\ A \xrightarrow{i'} U' \xrightarrow{j'} S \end{array}$$

Dokuchaev and Khrypchenko (IME-USP)

• G is a group;

- *G* is a group;
- A is a monoid;

- *G* is a group;
- A is a monoid;
- $\Theta = (\theta, f)$ is a twisted partial action of G on A.

- *G* is a group;
- A is a monoid;
- $\Theta = (\theta, f)$ is a twisted partial action of G on A.

Definition (Dokuchaev-Exel-Simón, 2008 [1])

The crossed product of A and G by Θ

- *G* is a group;
- A is a monoid;
- $\Theta = (\theta, f)$ is a twisted partial action of G on A.

Definition (Dokuchaev-Exel-Simón, 2008 [1])

The crossed product of A and G by Θ is the set $A *_{\Theta} G$ of $a\delta_x$,

- *G* is a group;
- A is a monoid;
- $\Theta = (\theta, f)$ is a twisted partial action of G on A.

Definition (Dokuchaev-Exel-Simón, 2008 [1])

The crossed product of A and G by Θ is the set $A *_{\Theta} G$ of $a\delta_x$, where $x \in G$, $a \in 1_x A$

- *G* is a group;
- A is a monoid;
- $\Theta = (\theta, f)$ is a twisted partial action of G on A.

Definition (Dokuchaev-Exel-Simón, 2008 [1])

The crossed product of A and G by Θ is the set $A *_{\Theta} G$ of $a\delta_x$, where $x \in G$, $a \in 1_x A$ and δ_x is a symbol.

- *G* is a group;
- A is a monoid;
- $\Theta = (\theta, f)$ is a twisted partial action of G on A.

Definition (Dokuchaev-Exel-Simón, 2008 [1])

The crossed product of A and G by Θ is the set $A *_{\Theta} G$ of $a\delta_x$, where $x \in G$, $a \in 1_x A$ and δ_x is a symbol. It is a monoid under multiplication $a\delta_x \cdot b\delta_y = a\theta_x(1_{x^{-1}}b)f(x, y)\delta_{xy}$.
The crossed products by twisted partial actions

- *G* is a group;
- A is a monoid;
- $\Theta = (\theta, f)$ is a twisted partial action of G on A.

Definition (Dokuchaev-Exel-Simón, 2008 [1])

The crossed product of A and G by Θ is the set $A *_{\Theta} G$ of $a\delta_x$, where $x \in G$, $a \in 1_x A$ and δ_x is a symbol. It is a monoid under multiplication $a\delta_x \cdot b\delta_y = a\theta_x(1_{x^{-1}}b)f(x, y)\delta_{xy}$.

Remark

If A is inverse, then $A *_{\Theta} G$ is inverse.

Dokuchaev and Khrypchenko (IME-USP)

• G is a group;

- *G* is a group;
- A is a semilattice of groups;

- G is a group;
- A is a semilattice of groups;
- Θ is a twisted partial action of G on A.

- *G* is a group;
- A is a semilattice of groups;
- Θ is a twisted partial action of G on A.

There exist

- *G* is a group;
- A is a semilattice of groups;
- Θ is a twisted partial action of G on A.

There exist

• an inverse monoid S,

- *G* is a group;
- A is a semilattice of groups;
- Θ is a twisted partial action of G on A.

There exist

- an inverse monoid S,
- an admissible partial homomorphism $\Gamma: G \to S$

- *G* is a group;
- A is a semilattice of groups;
- Θ is a twisted partial action of G on A.

There exist

- an inverse monoid S,
- an admissible partial homomorphism $\Gamma: G \to S$

making $A *_{\Theta} G$ to be an extension of A by S.

Partial extensions of A by G

э

æ

Partial extensions of A by G

• G is a group;

Image: Image:

э

- G is a group;
- A is a semilattice of groups.

- G is a group;
- A is a semilattice of groups.

A partial extension of A by G

- G is a group;
- A is a semilattice of groups.

A partial extension of A by G is a pair (Γ, U) , where

- G is a group;
- A is a semilattice of groups.

- A partial extension of A by G is a pair (Γ, U) , where
 - Γ is an admissible partial homomorphism $G \rightarrow S$;

- G is a group;
- A is a semilattice of groups.

- A partial extension of A by G is a pair (Γ, U) , where
 - Γ is an admissible partial homomorphism $G \rightarrow S$;
 - U is an extension of A by S.

Image: Image:

3

Definition

Two partial extensions $(\Gamma : G \to S, A \xrightarrow{i} U \xrightarrow{j} S)$ and $(\Gamma' : G \to S', A \xrightarrow{i'} U' \xrightarrow{j'} S')$ of A by G are called equivalent

Definition

Two partial extensions ($\Gamma : G \to S, A \xrightarrow{i} U \xrightarrow{j} S$) and ($\Gamma' : G \to S', A \xrightarrow{i'} U' \xrightarrow{j'} S'$) of A by G are called equivalent if there are isomorphisms

Definition

Two partial extensions ($\Gamma : G \to S, A \xrightarrow{i} U \xrightarrow{j} S$) and ($\Gamma' : G \to S', A \xrightarrow{i'} U' \xrightarrow{j'} S'$) of A by G are called equivalent if there are isomorphisms

•
$$\mu: U \rightarrow U'$$
,

Definition

Two partial extensions ($\Gamma : G \to S, A \xrightarrow{i} U \xrightarrow{j} S$) and ($\Gamma' : G \to S', A \xrightarrow{i'} U' \xrightarrow{j'} S'$) of A by G are called equivalent if there are isomorphisms

- $\mu: U \rightarrow U'$,
- $\nu: S \to S'$,

Definition

Two partial extensions ($\Gamma : G \to S, A \xrightarrow{i} U \xrightarrow{j} S$) and ($\Gamma' : G \to S', A \xrightarrow{i'} U' \xrightarrow{j'} S'$) of A by G are called equivalent if there are isomorphisms

• $\mu: U \rightarrow U'$,

•
$$u : S \to S'$$
,

such that the following diagrams commute:

Dokuchaev and Khrypchenko (IME-USP)

• G is a group;

- G is a group;
- A is a semilattice of groups.

- G is a group;
- A is a semilattice of groups.

Theorem

Any partial extension of A by G is equivalent to $A *_{\Theta} G$ for some twisted partial action Θ of G on A.

References

DOKUCHAEV, M., EXEL, R., AND SIMÓN, J. J. Crossed products by twisted partial actions and graded algebras. *J. Algebra 320*, 8 (2008), 3278–3310.

DOKUCHAEV, M., EXEL, R., AND SIMÓN, J. J. Globalization of twisted partial actions. *Trans. Amer. Math. Soc. 362*, 8 (2010), 4137–4160.

EXEL, R.

Partial actions of groups and actions of inverse semigroups. *Proc. Amer. Math. Soc. 126*, 12 (1998), 3481–3494.

LAUSCH, H.

Cohomology of inverse semigroups.

J. Algebra 35 (1975), 273–303.

THANK YOU!

・ロト ・四ト ・ 回ト ・ 回

æ