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Let A be an artin R-algebra. We denote by mod (A) the category of
finitely generated left A-modules We denote by add(M) the category of
all direct summands of (finite) direct sums of M .

mod (A) is the stable R-category modulo projectives, whose objects are
the same as in mod (A) and the morphisms are given by
HomA(M , N) := HomA(M , N)/P(M , N), where P(M , N) is the
R-submodule of HomA(M , N) consisting of the morphisms M → N

factoring through objects in proj (A).
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The finitistic dimension conjecture(Bass -1960)

fin.dim(A) = sup{pd(M)|M ∈ mod(A) with pd(M) < ∞} < ∞

The class of Igusa-Todorov algebras contain many others, for example:
algebras of representation dimension at most 3, algebras with radical
cube zero, monomial algebras and left serial algebras. In fact, it is
expected that all artin algebras are Igusa-Todorov.

The interest in the finitistic dimension is because of the “finitistic
dimension conjecture”, which is still open, and states that the finitistic

dimension of any artin algebra is finite. This conjecture is closely related
with several homological conjectures, and therefore it is a centrepiece for
the development of the representation theory of artin algebras.
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Igusa-Todorov function (φ : Obj (mod (A)) → N)

Let K (A) denote the quotient of the free abelian group generated by the
set of iso-classes {[M ] : M ∈ mod(A)} modulo the relations:

(a) [N ]− [S ]− [T ] if N ≃ S ⊕ T and

(b) [P] if P is projective.

The syzygy functor Ω : mod (A) → mod (A) gives rise to a group
homomorphism Ω : K (A) → K (A), where Ω([M ]) := [Ω(M)].

Let 〈M〉 = 〈add(M)〉 denote the Z-submodule of K (A) generated by the
indecomposable non-projective direct summands of M .

Since the rank of Ω(〈M〉) is less or equal than the rank of 〈M〉, which is
finite, it follows from the well ordering principle that there exists the
smallest non-negative integer φ(M) such that Ω : Ωn(〈M〉) → Ωn+1(〈M〉)
is an isomorphism for all n ≥ φ(M).
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Lemma

Let A be an artin R-algebra and M ,N ∈ mod(A). Then, the following

statements hold.

(a) φ (M) = pd M if pd M < ∞.

(b) φ (M) = 0 if M is indecomposable and pd M = ∞.

(c) φ (M) ≤ φ (N ⊕M).

(d) φ (M) = φ (N) if add (M) = add (N).

(e) φ (M ⊕ P) = φ (M) for any P ∈ proj (A).

(f) φ(M) ≤ φ(ΩM) + 1.

It follows, from the above properties, that φ is a good refinement of the
measure “projective dimension”. Indeed, for modules of finite projective
dimension both homological measures coincides; and in the case of
infinite projective dimension, φ gives a finite number as a measure.

Exemple
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Global dimension

Definition

gldim(A) = sup{pdM : M ∈ mod(A)}

gldim(A) = 0 if and only if semisimple algebra;
gldim(A) = 1 if and only if hereditary algebra.
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The φ-dimension

Definition

φdim(A) = sup{φ(M) : M ∈ mod(A)}

fin.dim(A) ≤ φdim(A) ≤ gldim(A)
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Recall that a algebra A is self-injective if seen as the left R-module is
injective. Note that every indecomposable module over a self-injective
algebra is either projective or has infinite projective dimension. However,
this property does not characterise self-injective rings.

Theorem (Huard, Lanzilotta)

Let A be an artin R-algebra. The algebra A is self-injective if and only if

φdim(A) = 0

Exemple

fin.dim(A) < φdim(A) < gldim(A)
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φ-dimension and the bi-functors Ext iA(−,−)

pdM = m se e somente se Extm+1(M ,−) = 0 e Extm(M ,−) 6= 0

Denotamos por CA a categoria abeliana de todos os R-funtores
F : mod(A) → mod(R). [F ] := {G ∈ CA : G ≃ F}.

Proposition (-,Lanzilotta, Mendonça)

Let A be an artin R-algebra and M ,N ∈ mod(A). Then, the following

conditions are equivalent.

(a) [ΩnM ] = [ΩnN ] in K (A).

(b) Ext iA(M ,−) ≃ Ext iA(N ,−) in CA for any i ≥ n + 1.

(c) Extn+1
A (M ,−) ≃ Extn+1

A (N ,−) in CA.

The proof follows the Auslander-Reiten formulas and Yoneda’s Lemma
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Definition

Let A be an artin R-algebra, d be a positive integer and M in mod (A).
A pair (X ,Y ) of objects in add (M) is called a d-Division of M if the

following three conditions hold:

(a) add (X ) ∩ add (Y ) = {0},

(b) ExtdA(X ,−) 6≃ ExtdA(Y ,−) in CA,

(c) Extd+1
A (X ,−) ≃ Extd+1

A (Y ,−) in CA.

Theorem (-,Lanzilotta, Mendonça)

Let A be an artin R-algebra and M in mod (A). Then

φ (M) = max ({d ∈ N : there is a d-Division of M} ∪ {0}).
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Remark

Observe that φ (M) = 0 if and only if for any pair (X ,Y ) of objects in
add (M), which are not projective and add (X )∩ add (Y ) = {0}, we have
that ExtdA(X ,−) 6≃ ExtdA(Y ,−) in CA for any d ≥ 1. Thus, in this case,

the following set is empty

{d ∈ N : there is a d-Division of M}.
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For any non-negative integer i and any M ,N ∈ mod (A), it is well
known the existence of an isomorphism

Tor
A
i (D(M),N)) ≃ D Ext iA(N ,M),

which is natural in both variables. Hence, a d-Division can be given in
terms of Tor’s functors as follows.

Remark

Let A be an artin R-algebra, d be a positive integer and M in mod (A).
Then, a pair (X ,Y ) of objects in add (M) is a d-Division of M if the

following three conditions hold:

(a) add (X ) ∩ add (Y ) = {0};

(b) Tor
A
d (−,X ) 6≃ Tor

A
d (−,Y ) in CAop ;

(c) Tor
A
d+1(−,X ) ≃ Tor

A
d+1(−,Y ) in CAop .

As a consequence of Remark and Theorem, we get that the
Igusa-Todorov function Φ can also be characterised by using the Tor’s
bi-functors TorAi (−,−).
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Theorem (-, Lanzilotta, Mendonça)

Let A and B be artin algebras, which are derived equivalent. Then,

φdim (A) < ∞ if and only if φdim (B) < ∞. More precisely, if T • is a

tilting complex over A with n non-zero terms and such that

B ≃ EndD (A)(T
•), then

φdim (A)− n ≤ φdim (B) ≤ φdim (A) + n.
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Generalisation of the classic Bongartz’s-1981

Following Y. Miyashita in, it is said that an A-module T ∈ mod (A) is
a tilting module, if T satisfies the following properties:

(1) pdT is finite

(2) Ext iA(T ,T [i ]) = 0 for i 6= 0.

(3) there is an exact sequence 0 → AA → T0 → T1 → · · · → Tm → 0 in
mod (A), with Ti ∈ add (T ) for any 0 ≤ i ≤ m.

Corollary

Let A be an artin algebra, and let T ∈ mod (A) be a tilting A-module.

Then, for the artin algebra B := EndA(T )op, we have that

φdim (A)− pd T ≤ φdim (B) ≤ φdim (A) + pd T .
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Corollary

Let A and B be two finite-dimensional k-algebras, M ∈ mod (A) and
N ∈ mod (B). Let A[M ] and B[N ] be the respective one-point

extensions. If A and B are derived-equivalent, then the finiteness of the

φ-dimension of one of the algebras A,B,A[M ] and B[N ] implies that all

of them have finite φ-dimension.
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