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A model with fermion and scalar fields charged under a Peccei-Queen (PQ) symmetry is proposed.
The PQ charges are chosen in such a way that they can reproduce mass matrices with five texture
zeros, which can generate the fermion masses, the CKM matrix, and the PMNS matrix of the
Standard Model (SM). To obtain this result, at least 4 Higgs doublets are needed. As we will see in
the manuscript this is a highly non-trivial result since the texture zeros of the mass matrices impose
a large number of restrictions. This model shows a route to understand the different scales of the SM
by extending it with a multi-Higgs sector and an additional PQ symmetry. Since the PQ charges
are not universal, the model presents flavor-changing neutral currents (FCNC) at the tree level,
a feature that constitutes the main source of restrictions on the parameter space. We report the
allowed regions by lepton decays and compare them with those coming from the semileptonic decays
K± −→ πν̄ν. We also show the excluded regions and the projected bounds of future experiments
for the axion-photon coupling as a function of the axion mass and compare it with the parameter
space of our model.

PACS numbers:

I. INTRODUCTION

The discovery of the Higgs with a mass of 125 GeV, by the ATLAS [1] and CMS [2] collaborations, is very important
because it provides experimental support for spontaneous symmetry breaking, which is the mechanism that explains
the origin of the masses of fermions and gauge bosons. Additionally, it opens up the possibility of new physics in the
scalar sector, such as the two Higgs doublet model [3–15], models with additional singlet scalar fields [16], or scalar
fields that could be candidates for Dark Matter [15, 17–20]. On the other hand, in the Standard Model (SM) [21–23],
symmetry breaking generates a coupling of the Higgs to fermions, proportional to their masses, which is consistent
with experimental data. However, there are several orders of magnitude between the fermion mass hierarchies that
cannot be explained within the context of the SM. Six masses must be defined for the up and down quarks, three
Cabibbo-Kobayashi-Maskawa (CKM) mixing angles, and a complex phase that involves CP violation. On the other
hand, in the lepton sector, there are three masses for charged leptons, two squared mass differences for neutrinos,
three mixing angles, and a complex phase that involves CP violation in the lepton sector. In this case, it is necessary
to determine the mass of the lightest neutrino and the character of neutrinos, whether they are Dirac or Majorana
fermions.

In the Davis experiment [24], which was designed to detect solar neutrinos, a deficiency in the solar neutrino flux
was first observed. According to the results of Bahcall, only one-third of solar neutrinos would reach the Earth [25].
Neutrino oscillation was first proposed by Pontecorvo [26], and the precise mechanism of solar neutrino oscillations
was proposed by Mikheyev, Smirnov, and Wolfenstein, involving a resonant enhancement of neutrino oscillations due
to matter effects [27, 28]. These observations have been confirmed by many experiments from four different sources:
solar neutrinos as in Homestake [24], SAGE[24], GALLEX & GNO[29, 30], SNO[31], Borexino[32, 33] and Super-
Kamiokande[34, 35] experiments, atmospheric neutrinos as in IceCube[36], neutrinos from reactors as KamLAND[37],
CHOOZ[38], Palo Verde[39], Daya Bay[40], RENO[41] and SBL[42], and from accelerators as in MINOS[43], T2K[44]
and NOνA[45]. Neutrino oscillations depend on squared mass differences. On the other hand, the lightest neutrino
mass has not been determined yet, but from cosmological considerations, none of the neutrino masses can exceed
0.3 eV, which implies that the neutrino masses are much smaller than the charged fermion masses. However, unlike
quarks and charged leptons, in the SM the neutrinos are massless, which is explained by assuming that neutrinos
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are left-handed. Therefore, the discovery of neutrino masses implies new physics beyond the SM. By adding right-
handed neutrinos, the Higgs mechanism of the SM can give neutrinos the same type of mass acquired by charged
leptons and quarks. It is possible to add right-handed neutrinos νR to the SM, as long as they do not participate in
weak interactions. With the presence of right-handed neutrinos, it would be possible to generate Dirac masses mD,
similar to those of charged leptons and quarks. In principle, it is also possible to give Majorana masses to left-handed
neutrinos, and similarly, right-handed neutrinos can have Majorana masses MR. For a very large MR, it would give
effective Majorana masses for left-handed neutrinos as meff ≈ m2

D/MR. The presence of large Majorana masses allows
to explain the tiny neutrino masses compared to the charged fermion masses [38]. To explain the smallness of neutrino
masses, there are three types of seesaw mechanisms in the literature: type I with three electroweak neutrinos and
three heavy right-handed neutrinos, type II [46, 47], type III [48], and inverse seesaw [49, 50]. One way to explain
the fermion mass hierarchies and the CKM and PMNS mixing angles is through zeros in the Yukawa couplings of
fermions (this is known as texture-zeros or simply textures of the mass matrices, and these zeros are usually chosen
by hand). It is common in the literature to consider Fritzsch-type textures [51, 52], or similar [53–58], for the neutrino
and charged lepton mass matrices.

There is no theory that provides values for the entries of the Yukawa Lagrangian, and consequently, there is no a
first-principle explanation for the masses and their large differences in the SM. This lack of naturalness is known as
the hierarchy problem [59–63]. In this direction, a way that has been explored in the literature is to propose a sector
with multiple scalar doublets along with discrete symmetries [64, 65], to reduce the number of Yukawa couplings, or
equivalently, by introducing texture-zeros in the mass matrices [66–71]. It is also possible to consider global symmetry
groups that prohibit certain Yukawas, which somehow generate the texture-zeros mentioned [59–63]. Another way
of obtaining these textures is through horizontal gauge symmetries, with the assignment of quantum numbers to the
fermion sector, which can break the universality of the SM [68, 72–87]. This gauge symmetry generates textures that
produce flavor changes in the neutral currents and that, in principle, could be seen in future colliders. There are
models with electroweak extensions of the SM such as SO(14), SU(9), 3-3-1, U(1)X , etc. [88–103] that attempt to
explain the flavor and the mass hierarchy problem of the SM. Another mechanism to generate textures in the Yukawa
Lagrangian is through additional discrete or global symmetries. Some groups that have been used in the literature
are: S3, A4, ∆27, Z2, etc. [104–116]. The simplest symmetries are of abelian type, which can be used to impose
texture-zeros in the mass matrices to make them predictive. On the other hand, given fermion mass matrices with
texture-zeros, it is possible to find an extended scalar sector so that the texture-zeros can be generated from abelian
symmetries [64, 65].

Due to the fact that there are three up-type quarks and three down-type quarks, the mass operators are 3×3 complex
matrices with 36 degrees of freedom. If we consider these operators to be Hermitian [117–119], the number of free
parameters reduces to 18, which cannot be fully determined from the 10 available physical quantities, namely masses
and mixing angles [120]. This provides freedom to reduce the number of free parameters in the matrices and search
for matrix structures with zeros that provide eigenvalues and mixing angles consistent with the masses and mixing
matrices of the fermions. One way to find zeros in the mass matrices that is automatically consistent with experimental
data is based on weak basis transformations (WBT) for quarks and leptons [118, 119, 121, 122]. Fritzsch proposed an
ansatz with six zeros [123, 124, 124–128], but the value of |Vub/Vcb| ≈ 0.06 is too small compared to the experimental
value |Vub/Vcb|exp ≈ 0.09 [129]. For this reason, the use of 4 and 5 zero-textures was proposed [117, 118, 128, 130–
133]. Reference [117, 119] showed that matrices with five zero-textures could reproduce the mass hierarchy and mixing
angles of the CKM matrix.

The strong CP problem arises from the fact that the QCD Lagrangian has a non-perturbative term (”θ-term”) that
explicitly violates CP in strong interactions. Peccei and Quinn proposed a solution to the strong CP problem [134, 135],
where it is assumed that the SM has an additional global chiral symmetry U(1), which is spontaneously broken at a
large energy scale fa. One consequence of this breaking is the existence of a particle called the axion, which is the
Goldstone boson of the broken U(1)PQ symmetry [136, 137]. Due to the fact that the PQ symmetry is not exact at
the quantum level, as a result of a chiral anomaly, the axion is massive and its mass (see Appendix D) is given by:

ma =
fπmπ

fa

√
z

1 + z
≈ 6µeV

(
1012GeV

fa

)
, (1)

where z = 0.56 is assumed for the up and down quark mass ratio, while fπ ≈ 92 MeV and mπ = 135 MeV are the
pion decay constant and mass, respectively.

The effective couplings of axions to ordinary particles are inversely proportional to fa, and also depend on the model.
It was originally thought that the PQ symmetry breaking occurred at the electroweak scale, but experiments have
ruled this out. The mass of the axion and its coupling to matter and radiation scale as 1/fa, making its direct detection
extremely difficult. The combined limits from unsuccessful searches in nuclear and particle physics experiments and
from stellar evolution imply that fa ≥ 3 × 109 GeV [138]. Furthermore, there is an upper limit of fa ≤ 1012GeV
that comes from cosmology, since light axions are produced in abundance during the QCD phase transition [139–
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143]. Hence, these models are generically referred to as ”invisible” axion models and remain phenomenologically
viable. There are two classes of invisible axion models in the literature: KSVZ (Kim, Shifman, Vainshtein, and
Zakharov) [138, 144] and DFSZ (Dine, Fischler, Srednicki, and Zhitnitsky) [145, 146]. The main difference between
KSVZ-type and DFSZ-type axions is that the former do not couple to ordinary quarks and leptons at tree level,
but instead require an exotic quark that ensures a nonzero QCD anomaly to generate CP violation. Depending on
the assumed value of fa, the existence of axions could have interesting consequences in astrophysics and cosmology.
The emission of axions produced in stellar plasma through their coupling to photons, electrons, and nucleons would
provide a new mechanism for energy loss in stars. This could accelerate the evolutionary process of stars and, therefore,
shorten their lifespan. Axions can also exist as primordial cosmic relics produced copiously in early times and could be
candidates for dark matter. Of course, if axions are candidates for dark matter [147–153], they should be very light,
with ma ≤ 10µeV . However, data from numerous laboratory experiments and astrophysical observations, together
with the cosmological requirement that the contribution to the mass density of the Universe from relic axions does
not saturate the Universe, restricts the allowed values of the axion mass to a range of 10−5eV < ma < 10−2 eV.
One source of axions would be the Sun, which, coupled to two photons, could be produced through the Primakoff
conversion of thermal photons in the electric and magnetic fields of the solar plasma. The limits are primarily useful
for complementing the arguments of stellar energy loss [154] and the searches for solar axions by CAST at CERN [155]
and the Tokyo axion helioscope [156].

The axion-photon coupling (see Appendix D) can be calculated in chiral perturbation theory as [134, 135].

gaγ = − α

2πfa

(
E

N
− 2

3

z + 4

z + 1

)
. (2)

This coupling and the axion mass are related to each other through the relation E/N , which depends on the model
and can be tested in experiments.

The strongest limits on the axion-electron coupling are derived from observations of stars with a dense core, where
bremsstrahlung is very effective. These conditions are realized in White Dwarfs and Red Giant Stars, where the
evolution of a White Dwarf is a cooling process by photon radiation and neutrino emission, with the possible addition
of new energy loss channels such as axions. Current numerical analysis suggest a limit of gae ≤ 2.8× 10−13 [157]. In
particular, using data from the Sloan Digital Sky Survey (SDSS) and SuperCOSMOS Sky Survey (SCSS) [158], they
showed that the axion-electron coupling is approximately 1.4× 10−13. More recent analysis of the data in Ref. [158]
found gae = 1.5+0.6

−0.9 × 10−13 (95% CL) [159, 160]. The two groups studying the axion-electron coupling are M5 [154]

and M3 [161]. Their combination yields the limit gae = 1.6+0.29
−0.34 × 10−13. For a recent and comprehensive review of

axion physics, see [157].
This document is organized as follows: In Section 2, we review the textures for the quark and lepton mass matrices

that will be used in this work. We also write the real parameters of these matrices in terms of the masses of the SM
fermions and two free parameters. In Section 3, we present the particle content of our model and the necessary PQ
charges to generate the mass matrix textures presented in Section 2. In Section 4, we adjust the Yukawa couplings
to obtain the masses of the charged leptons and neutrinos. It is important to note that we cannot use the VEVs
to adjust the lepton masses, as these were already adjusted to reproduce the quark masses. It is also important to
note that by using a seesaw mechanism, we can avoid adjusting the Yukawas, however, that is not our purpose in
the present work. In Section 5, we show the Lagrangian of our model. In Section 6, we present some constraints in
the parameter space, as well as projected constraints for upcoming experimental results, both for experiments under
construction and in the data-taking phase.

II. THE FIVE TEXTURE-ZERO MASS MATRICES

The reason for dealing with texture zeros in the Standard Model (SM) and its extensions is to simplify as much
as possible the number of free parameters that allow us to see relationships between masses and mixings present in
these models. The Yukawa Lagrangian is responsible for giving mass to SM fermions after spontaneous symmetry
breaking. A first simplification, without losing generality, is to consider that the fermion mass matrices are Hermitian,
so the number of free parameters for each sector of quarks and leptons is reduced to 18, but there is still an excess
of parameters to reproduce the experimental data provided in the literature. Due to the lack of a model to make
predictions, discrete symmetries can be used to prohibit some components in the Yukawa matrix, generating the
so-called texture zeros for the mass matrices. In many works, instead of proposing discrete symmetries, texture zeros
are proposed as practical and direct alternatives. The advantage of this approach is that it is possible to choose each
mass matrix in an optimal way for the analytical treatment of the problem, and at the same time adjust the mixing
angles and the masses of the fermions.
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A. Quark Sector

We should keep in mind that six-zero textures in the SM have already been discarded because their predictions
are outside the experimental ranges allowed; but, five-zero textures for quark mass matrices is a viable possibility
[61, 121, 162–165]. Specifically, we chose the following five-zero textures because they fit well with experimental quark
masses and mixing parameters [117, 119, 166]:

MU =

 0 0 Cu
0 Au Bu
C∗u B∗u Du

 ,

MD =

 0 Cd 0
C∗d 0 Bd
0 B∗d Ad

 .

(3)

In addition, the phases in MD can be removed by a weak basis transformation (WBT) [117, 118, 122], so that they
are absorbed by the off-diagonal terms in MU . In this way, the mass matrices (3) can be rewritten as:

MU =

 0 0 |Cu|eiφCu
0 Au |Bu|eiφBu

|Cu|e−iφCu |Bu|e−iφBu Du

 ,

MD =

 0 |Cd| 0
|Cd| 0 |Bd|

0 |Bd| Ad

 ,

(4)

By applying the trace and the determinant to the mass matrices (4), before and after the diagonalization process,
the free real parameters of MU and MD can be written in terms of their masses:

Du = mu −mc +mt −Au, (5a)

|Bu| =
√

(Au −mu)(Au +mc)(mt −Au)

Au
, (5b)

|Cu| =
√
mumcmt

Au
, (5c)

Ad = md −ms +mb, (5d)

|Bd| =
√

(mb −ms)(md +mb)(ms −md)

md −ms +mb
, (5e)

|Cd| =
√

mdmsmb

md −ms +mb
. (5f)

A possibility that works very well is to consider the second generation of quark masses to be negative, i.e., with
eigenvalues −mc and −ms. And Au is a free parameter, whose value, determined by the quark mass hierarchy, must
be in the following range:

mu ≤ Au ≤ mt. (6)

The exact analytical procedure for diagonalizing the mass matrices (4) is indicated in Appendix C.

B. Lepton sector

In this work, we will consider Dirac neutrinos. This is achieved, in part, by extending the SM with right-handed
neutrinos. In this way, we can carry out a treatment similar to that of the quark sector, that is, the mass matrices
of the lepton sector can be considered Hermitian and the weak basis transformation (WBT) can be applied [117,
118]. In the literature, work has been done considering various texture-zeros for the Dirac mass matrices of the
lepton sector [59, 167–178]. In our treatment, we are going to consider the following five-zero texture model studied
in the paper [132], which can accurately reproduce the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) mixing matrix
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VPMNS (mixing angles and the CP violating phase), the charged lepton masses, and the squared mass differences in
the normal mass ordering.

MN =

 0 |Cν |eicν 0
|Cν |e−icν Eν |Bν |eibν

0 |Bν |e−ibν Aν

 ,

ME =

 0 |C`| 0
|C`| 0 |B`|

0 |B`| A`

 .

(7)

Without loss of generality, by using a WBT, the phases of the charged lepton mass matrix, ME , can be absorbed into
the entries Cν and Bν of the neutrino mass matrix, MN . Similarly, as was done in the case of the quark sector, the
parameters present in the mass matrices of the lepton sector (7) can be expressed in terms of the masses of the charged
leptons me,mµ and mτ and the masses of the neutrinos m1,m2 and m3, in the normal ordering (m1 < m2 < m3):

A` = me −mµ +mτ , (8a)

|B`| =
√

(mτ −mµ)(me +mτ )(mµ −me)

me −mµ +mτ
, (8b)

|C`| =
√

memµmτ

me −mµ +mτ
, (8c)

Eν = m1 −m2 +m3 −Aν , (8d)

|Bν | =
√

(Aν −m1)(Aν +m2)(m3 −Aν)

Aν
, (8e)

|Cν | =
√
m1m2m3

Aν
, (8f)

where the values of the masses and the parameter Aν are given in Table V. Furthermore, for the adjustment of
the mass matrices (7) it is very convenient to assume that the eigenvalues associated with the masses of the second
family, −m2 and −mµ, are negative quantities. The exact diagonalizing matrices of the mass matrices (7) are shown
in appendix C, equations (C6) and (C5).

III. PQ SYMMETRY AND THE MINIMAL PARTICLE CONTENT

A. Yukawa Lagrangian and the PQ symmetry

The texture-zeros of the mass matrices defined in the equations (4) and (7) can be generated by imposing a Peccei-
Queen symmetry U(1)PQ on the Lagrangian model, Eq. (9) [65, 179, 180]. As will be explained below, the minimal
Lagrangian that allows us to implement this symmetry is given by [64, 181]

LLO ⊃ (DµΦα)†DµΦα +
∑
ψ

iψ̄γµDµψ +

2∑
i=1

(DµSi)
†DµSi

−
(
q̄Liy

Dα
ij ΦαdRj + q̄Liy

Uα
ij Φ̃αuRj

+ ¯̀
Liy

Eα
ij ΦαeRj + ¯̀

Liy
Nα
ij Φ̃ανRj + h.c

)
+(λQQ̄RQLS2 + h.c)− V (Φ, S1, S2) . (9)

As it was shown in reference [64], at least four Higgs doublets are required to generate the quark mass textures,
therefore α = 1, 2, 3, 4. In (9) i, j are family indices (there is an implicit sum over repeated indices). The superscripts
U , D, E, N refer to up-type quarks, down-type quarks, electron-like and neutrino-like fermions, respectively; and
Dµ = ∂µ + iΓµ is the covariant derivative in the SM. The scalar potential V (Φ, S1, S2) is shown in appendix A (for
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further details, see reference [64]). In Eq. (9) ψ stands for the SM fermion fields plus the heavy quark Q (see Tables I
and II). As it is shown in Table II the PQ charges of the heavy quark can be chosen in such a way that only the
interaction with the scalar singlet S2 is allowed. We assign QPQ charges for the left-handed quark doublets (qL):
xqi , right-handed up-type quark singlets (uR): xui , right-handed down-type quark singlets (dR): xdi , left-handed
lepton doublets (`L): x`i , right-handed charged leptons (eR): xei and right-handed Dirac neutrinos (νR): xνi for each
family (i = 1, 2, 3). We follow a similar notation for the scalar doublets, xφα (α = 1, 2, 3, 4), and the scalar singlets
x
S1,2

.

In this work, the PQ charges assigned to the quark sector and the scalar sector, as well as the VEVs assigned to the
scalar doublets, will be the same as those assigned in [64] (Tables (I) and (II)), and we will adjust the PQ charges of
the lepton sector to reproduce the texture-zeros given in Eq. (7). To forbid a given entry in the lepton mass matrices,
the corresponding sum of PQ charges must be equal to zero, so that we can obtain texture-zeros by imposing the
following conditions:

MN =


0 x 0

x x x

0 x x

 −→

SNα11 6= 0 SNα12 = 0 SNα13 6= 0

SNα21 = 0 SNα22 = 0 SNα23 = 0

SNα31 6= 0 SNα32 = 0 SNα33 = 0

 , (10)

ME =


0 x 0

x 0 x

0 x x

 −→

SEα11 6= 0 SEα12 = 0 SEα13 6= 0

SEα21 = 0 SEα22 6= 0 SEα23 = 0

SEα31 6= 0 SEα32 = 0 SEα33 = 0

 , (11)

where SNαij = (−x`i + xνj − xφα) and SEαij = (−x`i + xej + xφα).
Since the PQ charges of the Higgs doublets (α = 1, 2, 3, 4) are already given, the possible solutions of (10) and (11)

are strongly constrained. Table I provides a solution for the PQ charges of the lepton sector.

Particles Spin SU(3)C SU(2)L U(1)Y UPQ(i = 1) UPQ(i = 2) UPQ(i = 3) QPQ

qLi 1/2 3 2 1/6 −2s1 + 2s2 + αq −s1 + s2 + αq αq xqi
uRi 1/2 3 1 2/3 s1 + αq s2 + αq −s1 + 2s2 + αq xui
dRi 1/2 3 1 −1/3 2s1 − 3s2 + αq s1 − 2s2 + αq −s2 + αq xdi
`Li 1/2 1 2 −1/2 −2s1 + 2s2 + α` −s1 + s2 + α` α` x`i
eRi 1/2 1 1 −1 2s1 − 3s2 + α` s1 − 2s2 + α` −s2 + α` xei
νRi 1/2 1 1 0 −4s1 + 5s2 + α` −s1 + 2s2 + α` s2 + α` xνi

TABLE I: Particle content. The subindex i = 1, 2, 3 stand for the family number in the interaction basis. Columns 6-8 are the
Peccei-Quinn charges, QPQ, for each family of quarks and leptons in the SM. s1, s2 and α are real parameters, with s1 6= s2.

Particles Spin SU(3)C SU(2)L U(1)Y UPQ QPQ

Φ1 0 1 2 1/2 s1 xφ1

Φ2 0 1 2 1/2 s2 xφ2

Φ3 0 1 2 1/2 −s1 + 2s2 xφ3

Φ4 0 1 2 1/2 −3s1 + 4s2 xφ4

QL 1/2 3 0 0 xQL xQL
QR 1/2 3 0 0 xQR xQR
S1 0 1 1 0 s1 − s2 xS1

S2 0 1 1 0 xQR − xQL xS2

TABLE II: Beyond the SM fields and their respective PQ charges. The parameters s1, s2 are reals, with s1 6= s2 and xQR 6= xQL .

In our model we include two scalar singlets S1 and S2 that break the global symmetry U(1)PQ. The QCD anomaly
of the PQ charges is

N = 2

3∑
i

xqi −
3∑
i

xui −
3∑
i

xdi +AQ , (12)

where AQ = xQL − xQR is the contribution to the anomaly of the heavy quark Q, which is a singlet under the
electroweak gauge group, with left (right) Peccei-Quinn charges xQL,R, respectively. We can write the charges as a
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function of N (since N must be different from zero), such that

s1 =
N

9
ŝ1, s2 =

N

9
(ε+ ŝ1) , with ε = 1− AQ

N
, (13)

where ŝ1 and ε are arbitrary real numbers. To solve the strong CP problem with N 6= 0 and simultaneously generate

the texture-zeros in the mass matrices, it is necessary to maintain ε = 9(s1−s2)
N 6= 0. With these definitions for

Flavor-Changing Neutral Currents (FCNC) observables, the relevant parameters are ŝ1 and ε. This parameterization
is quite convenient (for those cases where the parameters αq and α` are not relevant) because by fixing N and fa, we
can vary ŝ1 and ε for a fixed ΛPQ = faN in such a way that the parameter space naturally reduces to two dimensions.

IV. NATURALNESS OF YUKAWA COUPLINGS

A. The mass matrices in the quark sector

In reference [64], it was shown that to generate five texture zeros in the quark mass matrices (3), as a consequence
of a PQ symmetry, it is necessary to include at least four scalar doublets in the model. After spontaneous symmetry
breaking, the quark sector mass matrices take on the following form:

MU = v̂αy
Uα
ij =

 0 0 yU1
13 v̂1

0 yU1
22 v̂1 yU2

23 v̂2

yU1∗

13 v̂1 yU2∗

23 v̂2 yU3
33 v̂3

 , MD = v̂αy
Dα
ij =

 0 |yD4
12 |v̂4 0

|yD4
12 |v̂4 0 |yD3

23 |v̂3

0 |yD3
23 |v̂3 yD2

33 v̂2

 , (14)

where the v̂i are defined in terms of the vacuum expectation values, v̂i = vi/
√

2. In [64] it was shown that the
five-texture zeros (4) are flexible enough to set the quark Yukawa couplings close to 1 for most of them (except for
yU2

23 , yD3
23 and yU1

13 ), in this way we obtain:

v̂1 = 1.71 GeV, v̂2 = 2.91 GeV, v̂3 = 174.085 GeV, v̂4 = 13.3 MeV. (15)

As we can see, the hermiticity of the mass matrices is not fully achieved, but it is good to impose it for several reasons:
(i) In the SM and its extensions, in which the right chirality fields are singlets under SU(2), the mass matrices can
be assumed Hermitian without losing generality, (ii) the previous fact allows us to consider Hermitian mass matrices,
even after imposing an additional PQ symmetry in the model, (iii) we can implement the WBT method [117], and
(iv) there is an extensive literature on physically viable Hermitian mass matrices. It is important to noticing that the
mass matrices in Eq. (14) are Hermitian.

B. The mass matrices in the lepton sector

We can obtain the lepton mass matrices by starting from the Yukawa Lagrangian (9), which is invariant under
the Peccei-Quinn U(1)PQ symmetry, and taking into account the Yukawa parameters and expectation values (15).
After the spontaneous symmetry breaking, the mass matrices for neutral and charged leptons are given respectively
by [132]:

MN = v̂αy
Nα
ij =

 0 yN1
12 v̂1 0

yN4
21 v̂4 yN2

22 v̂2 yN1
23 v̂1

0 yN3
32 v̂3 yN2

33 v̂2

 , ME = v̂αy
Eα
ij =

 0 |yE4
12 |v̂4 0

|yE4
12 |v̂4 0 |yE3

23 |v̂3

0 |yE3
23 |v̂3 yE2

33 v̂2

 . (16)

As we previously mentioned, at least four Higgs doublets are needed to obtain the five texture-zeros for the chosen
quark mass matrices. Our goal in this work is to keep the same number of Higgs doublets and their respective PQ
charges to generate the mass matrices and texture zeros for the lepton sector, Eq. (7). To get an Hermitian mass
matrix MN , it is necessary to impose yN4

21 /y
N1∗
12 = v̂1/v̂4 and yN3

32 /y
N1∗
23 = v̂1/v̂3, requiring that the diagonal elements

be real, i.e., yN2
22 = yN2∗

22 and yN2
33 = yN2∗

33 . On the other hand, to obtain a symmetric mass matrix, ME , for the
charged leptons, it is sufficient to assume that the Yukawa couplings are Hermitian. Through these choices it is
possible to avoid additional Higgs doublets.
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Based on the results of Table V, Appendix C, and the relationships established in (8), we find the following values
for the Yukawa couplings of the lepton sector:

|yE4
12 | = 0.569582, |yE3

23 | = 0.00248291, yE2
33 = 0.574472,

|yN1
12 | = 4.74362× 10−6, |yN4

21 | = 0.000609894, yN2
22 = 6.68808× 10−6,

|yN1
23 | = 0.0000159881, |yN3

32 | = 1.57047× 10−7, yN2
33 = 8.65364× 10−6.

(17)

To reproduce the neutrino masses quoted in [132], in the SM is required a Yukawa coupling around 10−14. In our
case, the smallest Yukawa coupling is 10−7, which significantly reduces the fine-tuning in comparison to that given
by the SM.

V. THE EFFECTIVE LAGRANGIAN

The strongest constraints on non-universal PQ charges come from the FCNC. To determine these constraints, we
start by writing the most general next-to-leading order (NLO) effective Lagrangian as [182, 183]:

LNLO = caΦαOaΦα + c1
α1

8π
OB + c2

α2

8π
OW + c3

α3

8π
OG, (18)

caΦα and c1,2,3 are Wilson coefficients; α1,2,3 =
g2
1,2,3

4π , where g1,2,3 are the coupling strengths of the electroweak
interaction in the interaction basis; and the Wilson operators are:

OaΦ =i
∂µa

ΛPQ

(
(DµΦα)†Φα − Φα†(DµΦα)

)
, OB = − a

ΛPQ
BµνB̃

µν ,

OW =− a

ΛPQ
W a
µνW̃

aµν , OG = − a

ΛPQ
GaµνG̃

aµν , (19)

where B, W a and Ga correspond to the gauge fields associated with the SM gauge groups U(1)Y , SU(2)L and SU(3)C ,
respectively. a is the axion field which corresponds to the CP odd component of S1. It is possible to redefine the
fields by multiplying by a phase

Φα −→ e
i
x
Φα

ΛPQ
a
Φα,

ψL −→ e
i
xψL
ΛPQ

a
ψL,

ψR −→ e
i
xψR
ΛPQ

a
ψR,

Si −→ e
i
x
Si

ΛPQ
a
Si. (20)

In this expression, xψ corresponds to the PQ charges of the SM fermions, i.e., {xψL,R} = {xqi , xui , xdi , xli , xei , xνi}
and {xΦα} are the PQ charges of the Higgs doublets {Φα}. Replacing these definitions in the kinetic terms of Eq. (9),
we obtain new contributions to the effective Lagrangian Eq. (18) (the NLO contributions in the non-derivative terms
cancel out). The leading order (LO) terms in Λ−1

PQ can be written as [181, 182]:

LNLO −→ LNLO + ∆LNLO, (21)

where

∆LNLO = ∆LKΦ + ∆LKψ + ∆LKS + ∆L(Fµν), (22)

with

∆LKΦ =ixΦα
∂µa

ΛPQ

[
(DµΦα)†Φα − Φα†(DµΦα)

]
,

∆LKψ =
∂µa

2ΛPQ

∑
ψ

(xψL − xψR)ψ̄γµγ5ψ − (xψL + xψR)ψ̄γµψ,

∆LKS =ix
Si

∂µa

ΛPQ

[
(DµSi)

†Si − S†i (DµSi)
]

+ h.c . (23)
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The field redefinitions (20) induce a modification in the measure of the functional path integral whose effects can be
obtained from the divergence of the axial-vector current: JPQ5

µ =
∑
ψ(xψL − xψR)ψ̄γµγ

5ψ [184],

∂µJPQ5
µ =

∑
ψ

2imψ(xψL − xψR)ψ̄γ5ψ −
∑
ψ

(xψL − xψR)
α1Y

2(ψ)

2π
BµνB̃

µν

−
∑

SU(2)L doublets

xψL
α2

4π
W a
µνW̃

aµν −
∑

SU(3) triplets

(xψL − xψR)
α3

4π
GaµνG̃

aµν , (24)

where the hypercharge is normalized by Q = T3L + Y . The relation (24) is an on-shell relation, which is consistent

with the momentum of an on-shell axion. Substituting this result into LKψ = ∂µa
2ΛPQ

JPQ5
µ = − a

2ΛPQ
∂µJPQ5

µ we obtain

new contributions to the leading-order Wilson coefficients [185]

c1 −→ c1 −
1

3
Σq +

8

3
Σu+

2

3
Σd− Σ`+ 2Σe,

c2 −→ c2 − 3Σq − Σ`,

c3 −→ c3 − 2Σq + Σu+ Σd−AQ, (25)

where Σq ≡ xq1 + xq2 + xq3 . The corresponding NLO Lagrangian is

∆L(Fµν) =
a

ΛPQ

α1

8π
BµνB̃

µν

(
1

3
Σq − 8

3
Σu− 2

3
Σd+ Σ`− 2Σe

)
+

a

ΛPQ

α2

8π
W a
µνW̃

aµν (3Σq + Σ`)

+
a

ΛPQ

α3

8π
GaµνG̃

aµν (2Σq − Σu− Σd+AQ) . (26)

It is convenient to define ceff
3 = c3 − 2Σq + Σu + Σd − AQ = −N . In our case, ci = 0 and the only contributions to

ceff
i come from the anomaly. It is customary to define ΛPQ = fa|ceff

3 | to include the factor ceff
3 in the normalization

of the PQ charges. From now on, we will assume that all the PQ charges are normalized in this way, so that xψ
corresponds to xψ/c

eff
3 . For normalized charges, ceff

3 = 1, therefore, we still maintain the general form despite writing
all the expressions in terms of the effective scale fa.

The scalar fields and their PQ charges are the same as in the reference [64], so the scalar potential V (Φ, S) is
identical to that of the mentioned reference. With the VEVs and couplings given in [64], the model reproduces
the mass of the SM Higgs, while the masses of the exotic scalars are above the TeV scale. This potential has the
appropriate number of Goldstone bosons to give masses to the SM gauge bosons Z0,W± and has an extra field that
can be identified with the axion a.

VI. LOW ENERGY CONSTRAINTS

A. Flavor changing neutral currents

Due to the non-universal PQ charges in our model, a tree-level analysis of flavor-changing neutral currents is
necessary. As mentioned in reference [157], the strongest limits on the axion-quark FCNC couplings come from meson
decays in light mesons and missing energy. The decays K± → π±a provide the tightest limits (NA62 Collaboration
[186]) for the axion mass [157]. Currently the most restrictive limits come from the semileptonic decays of kaons
K± → π±ν̄ν and leptons `1 → `2+missing energy. From the term ∆LKψ , we obtain the vector and axial couplings
for a multi-Higgs sector model, as shown in references [64, 157]

∆LKψ = −∂µaf̄iγµ
(
gVafifj + γ5gAafifj

)
fj , (27)

where

gV,Aafifj =
1

2faceff
3

∆Fij
V,A, (28)
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Collaboration Upper bound

N62 Collaboration[186] B
(
K+ → π+a

)
< (10.6+4.0

−3.4

∣∣
stat
± 0.9syst)× 10−11

TRIUMF [189] B
(
µ+ → e+a

)
< 2.6× 10−6

Crystal Box [190] B
(
µ+ → e+γa

)
< 1.1× 10−9

ARGUS [191] B
(
τ+ → e+a

)
< 1.5× 10−2

ARGUS [191] B
(
τ+ → µ+a

)
< 2.6× 10−2

TABLE III: These inequalities come from the window for new physics in the branching ratio uncertainty of the meson decay
in a pair ν̄ν.

where ∆Fij
V,A = ∆Fij

RR(d)±∆Fij
LL (q) with ∆Fij

LL (q) =
(
UFL xq U

F†
L

)ij
and ∆Fij

RR(d) =
(
UFRxd U

F†
R

)ij
. In these expressions,

F stands for U,D,N or E and the UFL,R are de diagonalizing matrices (see Appendix C). In Eq. (28), we normalize

the charges using ceff
3 , as explained in the last paragraph of section V (in other references |ceff

3 | = |N | is considered,
corresponding to the SU(3)× U(1)PQ anomaly). The branching ratio for lepton decays `i → `j a is given by [187]

Br(`1 → `2 a) =
m3
`1

16πΓ(`1)

(
1− m2

`2

m2
`1

)3

|ga`1`2 |2,

in this expression, the vector and axial couplings contribute in the same way

|ga`1`2 |2 = |gVa`1`2 |2 + |gAa`1`2 |2.
where m is the mass of the leptons and Γ(`i) is the total decay width of the particle `j .

For the lepton decay `i → `j a γ, we can relate this branching ratio to the branching ratio of the process without
the photon in the final state, according to the expression:

Br(`1 → `2 a γ) =

(
α

2π

∫
dx dyf(x, y)

)
Br(`1 → `2 a),

where α is the fine structure constant, and the function, f(x, y) = (1−x)(2−y−xy)
y2(x+y−1) , depends on the mass and the

energies x = 2E`2/m`1 and y = 2Eγ/m`1 . For the lepton decay µ → e a γ, the constraints come from the Crystal

Box experiment [188], with cut energies Eγ , Ee > 30 MeV, θeγ > 140◦, where cos θeγ = 1 + 2(1−x−y)
xy , so that∫

dx dyf(x, y) ≈ 0.011. In our model, there is a natural alignment between the Φ3 (which is quite similar to H1 in
the Georgi basis [192]) and the standard model Higgs boson as a consequence of the large suppression of the VEVs
of the scalar doublets vi, with i = 1, 2, 4, respect to v3, the VEV of Φ3. To some extent, this alignment avoids FCNC
involving the SM Higgs boson [192]; however, after alignment, there are other sources of FCNC associated with the
additional scalar doublets, which cannot be avoided by any means; however, as argued in Ref. [64] they are suppressed
by a factor 1/M4 (where M > 1TeV is the mass of the exotic scalar doublets), and therefore, our model avoids these
potential sources of FCNC in agreement with the general argument presented in [192].

From astrophysical considerations we have: bounds from black holes superradiance and the SN 1987A upper limit
on the neutron electric dipole moment, which, when combined, impose a constraint on the axion decay constant in
the range [157] (see Figure 1) : 0.8× 106GeV ≤ fa ≤ 2.8× 1017GeV.

B. Constraints on the axion-photon coupling

There are several experiments designed to look for exotic particles. The sources studied in the search for axions
are: the solar axion flux (helioscopes experiments), dark matter halo (haloscopes experiments), and axions produced
in the laboratory.

Among the experiments with the potential to search for evidence of axions in regions that cover areas within the
limits established by the parameters of our model are: DM-Radio [193], KLASH [194, 195], ADMX [196], ALPHA
[197], MADMAX [198], IAXO [199, 200] and ABRACADABRA [201]. Similarly, some experiments have already
ruled out regions established by the parameters of our model, among which are: ADMX [202–204], CAST [205, 206],
CAPP[207–209], HAYSTACK [210, 211], Solar ν [212], Horizontal Branch [213], MUSE [214] and VIMOS [215]
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FIG. 1: Allowed regions by lepton decays.

VII. SUMMARY AND CONCLUSIONS

We have presented a model in which the fermion and scalar fields are charged under a U(1)PQ Peccei-Quinn
symmetry. A recent work [64] showed that at least four Higgs doublets are required to generate Hermitian mass
matrices in the quark sector with five texture-zeros, reproducing the quark masses, the mixing angles, and the CP-
violating phase of the CKM mixing matrix. In this work, we show that using the same number of Higgs doublets,
without changing the PQ charges in the quark and Higgs sectors, it is possible to generate Hermitian mass matrices
in the lepton sector that reproduce the neutrino mass-squared differences in the normal mass ordering, the mixing
angles, and the CP-violating phase of the PMNS mixing matrix. This result is quite non-trivial as we maintain the
same four Higgs doublets required in the quark sector to generate a different texture pattern in the lepton sector.
When compared to the SM, our model has almost all Yukawa couplings close to 1 in the quark sector. In the neutrino
sector, the smallest Yukawa coupling is of the order of 1.6× 10−7, which is seven orders of magnitude larger than the
corresponding Yukawa coupling in the SM, so it requires less fine-tuning than the SM.

The polar decomposition theorem [216, 217] allows any matrix to be written as the product of a Hermitian matrix
and a unitary matrix. In the SM and in theories where the right-handed fermion fields are singlets under the gauge
group, it is possible to absorb the unitary matrix into the right-handed fields by redefining them; from this procedure,
we can write any mass matrix as a Hermitian matrix. In our work, we assume that the mass matrices are Hermitian
in the interaction space, this hypothesis has been used in previous studies on textures [61, 117, 121, 218–220], and it is
quite useful for studying the flavor problem. In our work, we have normalized the PQ charges with the QCD anomaly
−N in such a way that by keeping the parameter ε 6= 0, we obtain the textures of the mass matrices, addressing the
flavor and strong CP problems simultaneously.

If nature is not fine-tuned in a more fundamental high-energy theory, we expect that, eventually, it will be possible
to find a texture that allows us to obtain all the scales of the SM from the VEVs of a Higgs sector with a minimal
scalar content without the need to adjust the Yukawa couplings.

In our analysis, we report the constraints from lepton decays and compare them with the constraints from the
search for neutrino pairs in charged Kaon decays K± −→ π±ν̄ν. The results are shown in figure 1, where the allowed
region in the parameter space generated by ε and the axion decay constant fa is displayed. This figure shows that
the strongest constraints come from the semileptonic meson decay K± → πνν̄. It is important to note that the
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FIG. 2: The excluded parameter space by various experiments corresponds to the colored regions, the dashed-lines correspond
to the projected bounds of coming experiments looking for axion signals. The gray region corresponds to the parameter space
scanned by our model.

lepton decays do not further constrain the parameter space of our model (compared to the region excluded by the
meson decay). We also show the excluded regions for the axion-photon coupling as a function of the axion mass;
these results are summarized in Figure 2; the gray region corresponds to the parameter space of our model in the
interval −1 < ε < 1.

In this article, we have demonstrated that with four Higgs doublets, it is possible to fit the textures of the mass
matrices, both in the lepton and quark sectors. These matrices generate the masses and the mixing matrices for quarks
and leptons within the experimentally reported values in the literature. The introduction these doublets improves
the fine-tuning problem of the Yukawa couplings and shows that this approach is a viable way to tackle the flavor
problem. We hope to improve our results in future work by using the Seesaw mechanism in the lepton sector.

Acknowledgments

We thank Financial support from “Patrimonio Autónomo Fondo Nacional de Financiamiento para la Ciencia, la
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Appendix A: The mass operator matrices

The most general Yukawa Lagrangian for the interaction of four Higgs doublets Φα with the SM fermions is given
by

L = −q̄′iLΦαy
Dα
ij d′jR − q̄′iLΦ̃αy

Uα
ij u

′j
R − ¯̀′i

LΦαy
Eα
ij e′jR − ¯̀′i

LΦ̃αy
Nα
ij ν′jR + h.c, (A1)
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where a sum is assumed on repeated indices. Here i, j run over 1, 2, 3 and α over 1, 2, 3, 4. The Higgs boson doublet
fields are parameterized as follows:

Φα =

(
φ+
α

vα+hα+iηα√
2

)
, Φ̃α = iσ2Φ∗α. (A2)

Similar to the two Higgs doublet model [221] we rotate the Higgs fields to the (generalized) Georgi basis, that is,H1

H2

H3

H4

 = R1(β1)R2(β2)R3(β3)

Φ1

Φ2

Φ3

Φ4

 ≡ RβαΦα, (A3)

where the orthogonal matrices

R1(β1) =

 cosβ1 sinβ1 0 0
− sinβ1 cosβ1 0 0

0 0 1 0
0 0 0 1

 , (A4a)

R2(β2) =

1 0 0 0
0 cosβ2 sinβ2 0
0 − sinβ2 cosβ2 0
0 0 0 1

 , (A4b)

R3(β3) =

1 0 0 0
0 1 0 0
0 0 cosβ3 sinβ3

0 0 − sinβ3 cosβ3

 , (A4c)

where tanβ1 =

√
v2
2+v2

3+v2
4

v1
, tanβ2 =

√
v2
3+v2

4

v2
and tanβ3 = v4

v3
, and Hβ = (H+

β , (H
0
β + iHodd

β )/
√

2)T. This basis is
chosen in such a way that only the neutral component of H1 acquires a vacuum expectation value

〈H0
1 〉 =

√
v2

1 + v2
2 + v2

3 + v2
4 ≡ v,

〈H0
2 〉 = 0, 〈H0

3 〉 = 0, 〈H0
4 〉 = 0. (A5)

In this way Φαy
Fα
ij = yFαij R

T
αβRβγΦγ = YFβij Hβ , and F = U,D,N,E; where we have defined

YFβij = Rβαy
Fα
ij . (A6)

With these definitions, equation (A1) becomes

L = −q̄′iLHβYDβij d′jR − q̄′iLH̃βYUβij u′jR − ¯̀′i
LHβYEβij e′jR − ¯̀′i

LH̃βYNβij ν′jR + h.c. (A7)

It is necessary to rotate to the fermion mass eigenstates, i.e.,

fL,R = UFL,Rf
′
L,R, (A8)

where the diagonalization matrices UL,R are defined below, in section C. From the Lagrangian for the charged currents

LCC =− g√
2
ū′Liγ

µd′LiW
+ − g√

2
ē′Liγ

µν′LiW
− + h.c

=− g√
2
ūLiγ

µ (V
CKM

)ij dLjW
+ − g√

2
ēLiγ

µ (V
PMNS

)ij νLjW
− + h.c, (A9)
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it is possible to obtain the CKM (V
CKM

= UUL U
D†
L ) and PMNS (V

PMNS
= UEL U

ν†
L ) mixing matrices by rotating to the

fermion mass eigenstates. In particular, we are interested in the coupling of the axial neutral current to the axion in
the mass eigenstates.

LH0 =− 1√
2
d̄′iLH

0
βYDβij d′jR −

1√
2
ū′iLH

0∗
β YUβij u′jR −

1√
2
ē′iLH

0
βYEβij e′jR −

1√
2
ν̄′iLH

0∗
β YNβij ν′jR + h.c,

=− 1√
2
d̄iLH

0
βY

Dβ
ij djR −

1√
2
ūiLH

0∗
β Y

Uβ
ij ujR −

1√
2
ēiLH

0
βY

Eβ
ij ejR −

1√
2
ν̄iLH

0∗
β Y

Nβ
ij νjR + h.c,

where Y Fβij =
(
UFL YFβUF†R

)
ij

. In these expressions the mass functions in the interaction basis are:

MD
ij =

v√
2
YD1
ij , MU

ij =
v√
2
YU1
ij , ME

ij =
v√
2
YE1
ij , MN

ij =
v√
2
YN1
ij , (A10)

where v = 〈H0
1 〉 is the Higgs vacuum expectation value.

Appendix B: Scalar potential

As studied in [64], the scalar sector requires four scalar doublets φα to reproduce the mass textures of the fermion
sector correctly, and two scalar singlets S1 and S2 that break the PQ symmetry while generating a phenomenologically
viable scalar mass spectrum. The S2 singlet also gives mass to the heavy quark. The most general potential allowed
by the PQ symmetry according to the charges established in Table II is:

V (Φ, Si) =

4∑
i=1

µ2iΦ
†
iΦi +

2∑
k=1

µ2skS
∗
kSk +

4∑
i=1

λi

(
Φ†iΦi

)2
+

2∑
k=1

λsk (S∗kSk)2 +

4∑
i=1

2∑
k=1

λisk

(
Φ†iΦi

)
(S∗kSk)

+

4∑
i, j = 1︸ ︷︷ ︸
i<j

(
λij

(
Φ†iΦi

)(
Φ†jΦj

)
+ Jij

(
Φ†iΦj

)(
Φ†jΦi

))

+ λs1s2 (S∗1S1) (S∗2S2)

+ K1

((
Φ†1Φ2

)(
Φ†3Φ2

)
+ h.c.

)
+ K2

((
Φ†3Φ4

)(
Φ†3Φ1

)
+ h.c.

)
+ F1

((
Φ†2Φ3

)
S1 + h.c.

)
+ F2

((
Φ†1Φ2

)
S1 + h.c.

)
+

1

2

(
mζS2

)2
SB
ζ2S2

+
1

2

(
mξS2

)2
SB
ξ2S2

. (B1)

where the terms proportional to Fi are allowed by the particular choice of PQ charges and these couplings Fi have
units of mass. After spontaneous symmetry breaking (SSB), the four Higgs doublets acquire VEVs that give mass to
all the SM particles. The scalar doublets and singlets are written as follows:

Φα =

(
φ+
α

vα+hα+iηα√
2

)
, Φ̃α = iσ2Φ∗α, α = 1, 2, 3, 4,

Si =
v
Si

+ ξSi + iζSi√
2

; i = 1, 2, (B2)

where the VEVs satisfy the following hierarchy: v4 � v1, v2 � v3 � vS1
∼ vS2

. The scalar singlets S1 and S2 break the
PQ symmetry at the high energy scale given by vs1 ≈ vs2 . The last two terms in equation (B1) correspond to the soft-
breaking masses of the imaginary and the real parts of S2, which are generated at one loop in the Coleman-Weinberg
potential from the interaction term λQS2Q̄RQL + h.c. Additionally, we choose numerical values for the parameters of
the potential (B1) in order to obtain a scalar sector mass spectrum consistent with the existing phenomenology. The
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values of these parameters are:

λ1 = λ2 = λ4 = λs1 = λs2 = λs1s2 = 1,

λ3 = 0.463

λij = 1 for any i, j,

λjs1 = λjs2 = 1 for any j,

J12 = J13 = J23 = J24 = −1, otherwise Jij = 1,

K1 = K2 = −1,

F1 = F2 = −1GeV. (B3)

In particular, the value of λ3 adjusts the SM Higgs mass. The vi are determined from the SM fermion masses and the
quark mass matrix textures, Eq. (15). The VEV vs1 remains a free parameter; however, this parameter is important
for the axion physics due to the relationship [159],

fa =
vs1
2N

. (B4)

In our calculations we took vs1 ≈ vs2 ≈ 106GeV. It is important to emphasize that in our model, fa can take arbitrary
values; nevertheless, a small fa restricts ε (Eq. 13) to values close to zero. Taking into account all these considerations,
including Eq. (B3), the scalar mass spetrum (in GeV) is:

CP even = {1.73× 106, 1.× 106, 6.54× 103, 1.97× 103,

1.09× 103, 125},

CP odd = {6.54× 103, 1.97× 103, 1.09× 103, 0, 0,mζS2
},

Charged fields = {6.54× 103, 1.97× 103, 1.11× 103, 0}. (B5)

The mass spectrum of the scalar fields is above the TeVs scale, except for the SM Higgs, which is at 125 GeV. The
pseudoscalar sector (CP odd fields) have two massless eigenstates, the axion field and the Goldstone boson which is
absorbed by the longitudinal component of the SM Z boson. A similar result is obtained in the charged sector, where
it is possible to identify the two Goldstone bosons required to give mass to the SM W± fields.

Appendix C: diagonalization matrices

To compare with physical quantities, it is necessary to rotate fields to the mass eigenstates, i.e., fL,R = UFL,Rf
′
L,R,

where the prime symbol stands for the interaction basis. In our formalism the quark mass matrices are Hermitian, so
the right- and left-handed diagonalizing matrices are identical; additionally, we establish that the eigenvalues of the
second family of quarks are negative in order to generate texture-zeros in some diagonal terms of the mass matrices,
as indicated in [118]. This sign is taken into account by introducing the identity matrix written as I2I2 = 1 with
I2 = diag(1,−1, 1), i.e.,

MF
ij =

(
UF†λFUF

)
ij

=
(
UF†L mFUFR

)
ij

=
v√
2
YF1
ij =

v√
2
R1αy

Fα
ij , (C1)

where YFβij and Rαβ were defined in section A, λU,D = diag(mu,d,−mc,s,mt,b) and mU,D = diag(mu,d,mc,s,mt,b),

with similar definitions in the lepton sector, i.e., λN,E = diag(m1,e,−m2,µ,m3,τ ), mN,E = diag(m1,e,m2,µ,m3,τ ), and

UFL = UF , UFR = I2U
F , (C2)

where the UF diagonalization matrices are defined below. It is important to stress that the texture-zeros pattern in
the matrix YF1

ij are identical to those in the original Yukawa couplings yFαij , since the sum over α does not mix the

i, j indices. In fact, according to equations (14) and (16), MF = vα√
2
yFαij = v√

2
R1αy

Fα
ij , therefore R1α = vα

v . The

diagonalization matrices are:

UU† =


ei(φCu+θ1u)

√
mcmt(Au−mu)

Au(mc+mu)(mt−mu) −ei(φCu+θ2u)
√

(Au+mc)mtmu
Au(mc+mt)(mc+mu) ei(φCu+θ3u)

√
mc(mt−Au)mu

Au(mc+mt)(mt−mu)

−ei(φBu+θ1u)
√

(Au+mc)(mt−Au)mu
Au(mc+mu)(mt−mu) −ei(φBu+θ2u)

√
mc(mt−Au)(Au−mu)
Au(mc+mt)(mc+mu) ei(φBu+θ3u)

√
(Au+mc)mt(Au−mu)
Au(mc+mt)(mt−mu)

eiθ1u
√

mu(Au−mu)
(mc+mu)(mt−mu) eiθ2u

√
mc(Au+mc)

(mc+mt)(mc+mu) eiθ3u
√

mt(mt−Au)
(mc+mt)(mt−mu)

 ,

(C3)
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UD† =


eiθ1d

√
mb(mb−ms)ms

(mb−md)(md+ms)(mb+md−ms) −eiθ2d
√

mb(mb+md)md
(md+ms)(mb+md−ms)(mb+ms)

√
md(ms−md)ms

(mb−md)(mb+md−ms)(mb+ms)

eiθ1d
√

md(mb−ms)
(mb−md)(md+ms)

eiθ2d
√

(mb+md)ms
(md+ms)(mb+ms)

√
mb(ms−md)

(mb−md)(mb+ms)

−eiθ1d
√

md(mb+md)(ms−md)
(mb−md)(md+ms)(mb+md−ms) −e

iθ2d

√
(mb−ms)ms(ms−md)

(md+ms)(mb+md−ms)(mb+ms)

√
mb(mb+md)(mb−ms)

(mb−md)(mb+md−ms)(mb+ms)

 ,

(C4)
where θ1u, θ2u, θ3u, θ1d and θ2d are arbitrary phases (a third phase for the diagonalization matrix (C4) can be absorbed

by the remaining phases) that are useful for conforming to the VCKM = UUL U
D†
L matrix convention. Taking as input

the SM parameters at the Z pole, the best fit values are given in Table IV.

θ1u θ2u θ3u θ1d θ2d φCu φBu
−2.84403 1.85606 −0.00461668 1.93013 −0.976639 −1.49697 0.301461

Au mu mc mt md ms mb

1690.29 MeV 1.2684 MeV 633.197 MeV 171268 MeV 3.14751 MeV 56.1169 MeV 2910.01 MeV

TABLE IV: Best-fit point of the mass matrix parameters with respect to experimental data for the masses and mixing angles
of the quark sector at the Z pole.

Similarly, in the lepton sector, the diagonalization matrices of the mass matrices (7) are:

UN† =


ei(θ1ν+cν)

√
m2m3(Aν−m1)

Aν(m2+m1)(m3−m1) −ei(θ2ν+cν)
√

m1m3(m2+Aν)
Aν(m2+m1)(m3+m2) ei(θ3ν+cν)

√
m1m2(m3−Aν)

Aν(m3−m1)(m3+m2)

eiθ1ν
√

m1(Aν−m1)
(m1+m2)(m3−m1) eiθ2ν

√
m2(Aν+m2)

(m2+m1)(m3+m2) eiθ3ν
√

m3(m3−Aν)
(m3−m1)(m3+m2)

−ei(θ1ν−bν)
√

m1(Aν+m2)(m3−Aν)
Aν(m1+m2)(m3−m1) −ei(θ2ν−bν)

√
m2(Aν−m1)(m3−Aν)
Aν(m2+m1)(m3+m2) ei(θ3ν−bν)

√
m3(Aν−m1)(Aν+m2)
Aν(m3−m1)(m3+m2)

 ,

(C5)

UE† =


eiθ1`

√
mµmτ (mτ−mµ)

(me−mµ+mτ )(mµ+me)(mτ−me) −eiθ2`
√

memτ (me+mτ )
(me−mµ+mτ )(mµ+me)(mτ+mµ)

√
memµ(mµ−me)

(me−mµ+mτ )(mτ−me)(mτ+mµ)

eiθ1`
√

me(mτ−mµ)
(mµ+me)(mτ−me) eiθ2`

√
mµ(me+mτ )

(mµ+me)(mτ+mµ)

√
mτ (mµ−me)

(mτ−me)(mτ+mµ)

−eiθ1`
√

me(me+mτ )(mµ−me)
(me−mµ+mτ )(mµ+me)(mτ−me) −e

iθ2`

√
mµ(mτ−mµ)(mµ−me)

(me−mµ+mτ )(mµ+me)(mτ+mµ)

√
mτ (mτ−mµ)(me+mτ )

(me−mµ+mτ )(mτ−me)(mτ+mµ)

 ,

(C6)

where θ1`, θ2`, θ1ν , θ2ν , θ3ν are necessary phases in order to adjust to the established convention for the PMNS mixing
matrix [222] 1; and cν and bν are the phases of Cν and Bν in the neutral mass matrix MN in Eq. (7). The best fit
values for these quantities are shown in Table V.

θ1` θ2` θ1ν θ2ν θ3ν cν bν

0.154895 2.01797 −0.835504 2.21169 1.81786 1.01608 2.03726

Aν (eV) me (MeV) mµ (MeV) mτ (MeV) m1 (eV) m2 (eV) m3 (eV)

0.0251821 0.5109989461 105.6583745 1776.86 0.00353647 0.00929552 0.0504034

TABLE V: Best fit values.

1 NuFIT collaboration (http://www.nu-fit.org/?q=node/211)(with SK atmospheric data).
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Appendix D: Axion decay into photons

In the SM, Bµ = cos θWA
µ − sin θWZ

µ and W 3µ = sin θWA
µ + cos θWZ

µ, where Aµ and Zµ are the SM fields for
the photon and Z gauge bosons, replacing these expresions in Eq. (26) we obtain

L ⊃ −ceff
1

α1

8π

a

ΛPQ
BµνB̃

µν − ceff
2

α2

8π

a

ΛPQ
W 3
µνW̃

3µν

= − α

8π
(ceff

1 + ceff
2 )

a

ΛPQ
Fµν F̃

µν

− α

8πc2W s
2
W

(s4
W c

eff
1 + c4W c

eff
2 )

a

fa
ZµνZ̃

µν

− 2α

8πcW sW
(c2W c

eff
2 − c2W ceff

1 )
a

ΛPQ
FµνZ̃

µν

= e2Cγγ
a

ΛPQ
Fµν F̃

µν +
e2CZZ
c2W s

2
W

a

ΛPQ
ZµνZ̃

µν +
2e2CγZ
cW sW

a

ΛPQ
FµνZ̃

µν (D1)

ceff
1 = c1 −

1

3
Σq +

8

3
Σu+

2

3
Σd− Σl + 2Σe (D2)

ceff
2 = c2 − 3Σq − Σl (D3)

where Σf ≡ f1 + f2 + f3 is the sum of the PQ charges of the three families. There are similar definitions for the
interaction of the axion with the gluons

−ceff
3

α3

8π

a

ΛPQ
GaµνG̃

aµν = g2
sCGG

a

ΛPQ
GaµνG̃

aµν , (D4)

where ceff
3 = c3 − 2Σq + Σu+ Σd−AQ, in our particular case ci = 0. In axion phenomenology, it is usual to define

Cγγ =− 1

32π2
(ceff

1 + ceff
2 ), CZZ = − 1

32π2
(s4
W c

eff
1 + c4W c

eff
2 ),

CγZ =− 1

32π2
(c2W c

eff
2 − c2W ceff

1 ), CGG = − 1

32π2
ceff
3 . (D5)

The decay widths of an axion decaying in two photons and a Z decaying in an axion and a photon are [184]

Γ(a→ γγ) =
4πα2m3

a

Λ2
PQ

|Ceff
γγ |2,

Γ(Z → γa) =
8πα(mZ)m3

Z

3s2
W c

2
WΛ2

PQ

|Ceff
γZ |2

(
1− m2

a

m2
Z

)3

. (D6)

Another possible decay channel of the axion in two photons is due to the mixing between the axion and the pion
since the latter can decay in two photons, this decay mode generates an additional correction that only depends on
the couplings of the axion to the gluons [223]

Ceff
γγ =− ceff

3

32π2

(
ceff
1 + ceff

2

ceff
3

− 2.03

)
,

Ceff
γZ =− ceff

3

32π2

(
c2W c

eff
2 − c2W ceff

1

ceff
3

− 0.74/2

)
. (D7)

It is usual to define ΛPQ = |ceff
3 |fa.

E

N
=
ceff
1 + ceff

2

ceff
3

. (D8)

The axion-photon interaction is given by

gaγγ =
4e2Ceff

γγ

ΛPQ
= − α

2πfPQ

(
E

N
− 2.03

)
(D9)
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where α = e2

4π . Due to the gluon-axion interaction, the axion gets a mass term, which is described at low energies as
an axion-pion interaction [224]

ma = 5.7(7)µeV

(
1012GeV

fa

)
. (D10)
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[160] J. Isern, E. Garćıa-Berro, S. Torres, R. Cojocaru, and S. Catalán, “Axions and the luminosity function of white dwarfs:

the thin and thick discs, and the halo,” Monthly Notices of the Royal Astronomical Society, vol. 478, pp. 2569–2575, 05
2018.

[161] O. Straniero, I. Dominguez, M. Giannotti, and A. Mirizzi, “Axion-electron coupling from the RGB tip of Globular
Clusters,” arXiv e-prints, p. arXiv:1802.10357, Feb. 2018.

[162] R. Verma, “Exploring the predictability of symmetric texture zeros in quark mass matrices,” Phys. Rev. D, vol. 96, no. 9,
p. 093010, 2017.

[163] Z.-z. Xing, “Flavor structures of charged fermions and massive neutrinos,” Phys. Rept., vol. 854, pp. 1–147, 2020.
[164] B. R. Desai and A. R. Vaucher, “Quark mass matrices with four and five texture zeroes, and the CKM matrix, in terms

of mass eigenvalues,” Phys. Rev. D, vol. 63, p. 113001, 2001.
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