Morfismos Irreducibles de Álgebras Repetitivas

Hernán Giraldo

Instituto de Matemáticas Facultad de Ciencias Exactas y Naturales Universidad de Antioquia

> ALTENCOA6-2014 Universidad de Nariño San Juan de Pasto

Colombia, Agosto 15 2014

Content

Irreducible Morphisms of Repetitive Algebras

2 Heart of Irreducible Morphisms of Complexes

References

Section

Irreducible Morphisms of Repetitive Algebras

2 Heart of Irreducible Morphisms of Complexes

References

Repetitive Algebras

- A is a finite dimensional k-algebra, with A basic and k is a field algebraically closed.
- A-mod the category of finitely generated left A-modules.
- $D = Hom_k(-, k)$ the standard duality on A-mod.

The **repetitive algebra** \widehat{A} of A (Hughes and Waschbusch).

 \bullet The underlying vector space of repetitive algebra \widehat{A} is given by

$$\widehat{A} = (\bigoplus_{i \in \mathbb{Z}} A) \oplus (\bigoplus_{i \in \mathbb{Z}} DA),$$

 $\widehat{a} = (a_i, \varphi_i)_{i \in \mathbb{Z}}$ with $a_i \in A$, $\varphi_i \in DA$ and almost all a_i, φ_i being zero.

• The multiplication is defined by

$$\widehat{a} \cdot \widehat{b} = (a_i, \varphi_i)_{i \in \mathbb{Z}} \cdot (b_i, \psi_i)_{i \in \mathbb{Z}} = (a_i b_i, a_{i+1} \psi_i + \varphi_i b_i)_{i \in \mathbb{Z}}.$$

An interpretation is to consider \widehat{A} as the doubly infinite matriz algebra, without identity

$$\begin{bmatrix} \ddots & & & & & & & & \\ \ddots & & & & & & & \\ (DA)_{i-1} & A_i & & & & \\ & & (DA)_i & A_{i+1} & & \\ & & & \ddots & \ddots \end{bmatrix},$$

in which matrices have only finite many non-zero entries, $A_i = A$ for all $i \in \mathbb{Z}$ is placed on the main diagonal, $(DA)_i = DA$ for all $i \in \mathbb{Z}$ and all the remaining entries are zero.

- A \widehat{A} -module. $M = (M_i, f_i)_{i \in \mathbb{Z}}$, where the M_i are A-modules, all but finitely many being zero, the f_i are A-homomorphims $f_i : DA \otimes_A M_i \longrightarrow M_{i+1}$, such that $f_{i+1}(1 \otimes f_i) = 0$ for all $i \in \mathbb{Z}$.
- A \widehat{A} -homomorphism $h: M = (M_i, f_i)_{i \in \mathbb{Z}} \longrightarrow N = (N_i, g_i)_{i \in \mathbb{Z}}$ between \widehat{A} -modules is a sequence $h = (h_i)_{i \in \mathbb{Z}}$ of A-homomorphims

$$DA \otimes_A M_i \xrightarrow{f_i} M_{i+1}$$

$$\downarrow^{1 \otimes h_i} \qquad \qquad \downarrow^{h_{i+1}}$$

$$DA \otimes_A N_i \xrightarrow{g_i} N_{i+1}.$$

- A \widehat{A} -module. $M = (M_i, f_i)_{i \in \mathbb{Z}}$, where the M_i are A-modules, all but finitely many being zero, the f_i are A-homomorphims $f_i : DA \otimes_A M_i \longrightarrow M_{i+1}$, such that $f_{i+1}(1 \otimes f_i) = 0$ for all $i \in \mathbb{Z}$.
- A \widehat{A} -homomorphism $h: M = (M_i, f_i)_{i \in \mathbb{Z}} \longrightarrow N = (N_i, g_i)_{i \in \mathbb{Z}}$ between \widehat{A} -modules is a sequence $h = (h_i)_{i \in \mathbb{Z}}$ of A-homomorphims

$$DA \otimes_A M_i \xrightarrow{f_i} M_{i+1}$$

$$\downarrow^{1 \otimes h_i} \qquad \qquad \downarrow^{h_{i+1}}$$

$$DA \otimes_A N_i \xrightarrow{g_i} N_{i+1}.$$

Let $M = (M_i, f_i)_{i \in \mathbb{Z}}$ be an \widehat{A} -module. For each $i \in \mathbb{Z}$, we fix $\varphi \in DA$, so we can define an A-homomorphims $f_i^{\varphi} : M_i \longrightarrow M_{i+1}$ by $f_i^{\varphi}(m) := f_i(\varphi \otimes m)$, for all $m \in M_i$.

Lemma

Let $M = (M_i, f_i)_{i \in \mathbb{Z}}$ be an \widehat{A} -module. $f_{i+1}(1 \otimes f_i) = 0$ for all $i \in \mathbb{Z}$ if and only $f_{i+1}^{\varphi'} f_i^{\varphi} = 0$ for all $i \in \mathbb{Z}$ and $\varphi', \varphi \in DA$.

Lemma

Let $h: M = (M_i, f_i)_{i \in \mathbb{Z}} \longrightarrow N = (N_i, g_i)_{i \in \mathbb{Z}}$ be \widehat{A} -homomorphism. The following diagram is commutative

$$DA \otimes_A M_i \xrightarrow{f_i} M_{i+1}$$

$$\downarrow^{1 \otimes h_i} \qquad \qquad \downarrow^{h_{i+1}}$$

$$DA \otimes_A N_i \xrightarrow{g_i} N_{i+1},$$

for all $i \in \mathbb{Z}$ if and only if the following diagram is commutative

$$M_{i} \xrightarrow{f_{i}^{\varphi}} M_{i+1}$$

$$\downarrow^{h_{i}} \qquad \downarrow^{h_{i+1}}$$

$$N_{i} \xrightarrow{g_{i}^{\varphi}} N_{i+1}.$$

for all $i \in \mathbb{Z}$ and $\varphi \in DA$.

Definition

Let $h: M = (M_i, f_i)_{i \in \mathbb{Z}} \longrightarrow N = (N_i, g_i)_{i \in \mathbb{Z}}$ be an \widehat{A} -homomorphism, then h is called **smonic** (resp. **sepic**) if all its components h_i are split mono (resp. split epi).

Proposition (Standard forms)

If $h: M = (M_i, f_i)_{i \in \mathbb{Z}} \longrightarrow N = (N_i, g_i)_{i \in \mathbb{Z}}$ is a smonic, (up to isomorphism) we can and will assume that $N_i = M_i \oplus N'_i$, and that $h_i = (1,0)^t$, and, if it is sepic we will write $M_i = N_i \oplus M'_i$, and $h_i = (1,0)$. Forthermore, if h is split mono (resp. split epi) the A-homomorphisms f_i (resp. g_i) are of the form $f_i = \begin{pmatrix} f_i & 0 \\ 0 & e_i \end{pmatrix}$ (resp. $g_i = \begin{pmatrix} g_i & 0 \\ 0 & \epsilon_i \end{pmatrix}$).

Proposition (Induced factorization)

Let $h: M = (M_i, f_i)_{i \in \mathbb{Z}} \longrightarrow N = (N_i, g_i)_{i \in \mathbb{Z}}$ be a \widehat{A} -homomorphism, J = [a, b] be a finite interval of \mathbb{Z} and h_J be the truncation of h to J. Supose that $h_J: M_J \to N_J$ admits a factorization $h_J = m_J n_J$. (In other words, there is a truncated \widehat{A} -module $L_J = (L_i, d_i)_{i \in J}$ and truncated \widehat{A} -morphisms $n_J: M_J \to L_J$, $m_J: L_J \to N_J$, such that $h_J = m_J n_J$). Then, this factorization can be extended to h, that is, there is a \widehat{A} -module (whose truncation to J is L_J) and \widehat{A} -homomorphism n, m, whose truncation to J are n_J , m_J , respectively, such that h = mn.

Corollary

Let $h: M = (M_i, f_i)_{i \in \mathbb{Z}} \longrightarrow N = (N_i, g_i)_{i \in \mathbb{Z}}$ be an irreducible \widehat{A} -homomorphism and J = [a, b] be a finite interval of \mathbb{Z} . If h_J is not split mono, then h_{J_-} is a split epi. If h_J is not split epi, then h_{J_+} split mono.

Lemma

Let $h: M = (M_i, f_i)_{i \in \mathbb{Z}} \longrightarrow N = (N_i, g_i)_{i \in \mathbb{Z}}$ be a \widehat{A} -homomorphism and J be an interval of \mathbb{Z} . Then $h_J: M_J \to N_J$ is irreducible if and only if $h_J: M_J \to N_J$ is not split.

Corollary

Let $h: M = (M_i, f_i)_{i \in \mathbb{Z}} \longrightarrow N = (N_i, g_i)_{i \in \mathbb{Z}}$ be an irreducible \widehat{A} -homomorphism, J be an interval of \mathbb{Z} and h_J be the truncation of h to J. Supose that $h_J: M_J \to N_J$ is irreducible. If $J \subset I$, then h_I is an irreducible \widehat{A} -homomorphism.

Let $h: M = (M_i, f_i)_{i \in \mathbb{Z}} \longrightarrow N = (N_i, g_i)_{i \in \mathbb{Z}}$ be an irreducible \widehat{A} -homomorphism. Then one of the next conditions hold:

- (I) h_i is a split monomorphism $\forall i \in \mathbb{Z}$, that is h is smonic;
- (II) h_i is a split epimorphism $\forall i \in \mathbb{Z}$, that is h is sepic;
- (III) there exists $k \in \mathbb{Z}$ such that h_k is not split. In this case, k is unique and h_k is irreducible A-homomorphism.

joint Merklen (2009), [3

Let $h: M = (M_i, f_i)_{i \in \mathbb{Z}} \longrightarrow N = (N_i, g_i)_{i \in \mathbb{Z}}$ be an irreducible \widehat{A} -homomorphism. Then one of the next conditions hold:

- (I) h_i is a split monomorphism $\forall i \in \mathbb{Z}$, that is h is smonic;
- (II) h_i is a split epimorphism $\forall i \in \mathbb{Z}$, that is h is sepic;
- (III) there exists $k \in \mathbb{Z}$ such that h_k is not split. In this case, k is unique and h_k is irreducible A-homomorphism.

joint Merklen (2009), [3]

Section

1 Irreducible Morphisms of Repetitive Algebras

2 Heart of Irreducible Morphisms of Complexes

References

Form pm

For $0 \le i \le b$, the differential maps ∂^i are of the form:

$$\partial^i = \begin{pmatrix} d^i & a^i \\ 0 & e^i \end{pmatrix}$$
, with $a^i \neq 0$ for some $0 \leq i \leq b$.

For $\forall i \geq b, i \in J$, the differential maps ∂^i are of the form:

$$\partial^i = \left(\begin{array}{cc} d^i & 0 \\ 0 & e^i \end{array} \right)$$

Forma pe

For $0 \le i \le b$, the differential maps d^i are of the form

$$d^i = \begin{pmatrix} \partial^i & 0 \\ c^i & e^i \end{pmatrix}$$
, with $c^i \neq 0$ for some $0 \leq i \leq b$.

For $\forall i \leq -1, i \in J$, the differential maps d^i are form:

$$d^i = \left(\begin{array}{cc} \partial^i & 0 \\ 0 & e^i \end{array}\right)$$

Forma nsp

$$Y^{-2} \oplus X'^{-2} \xrightarrow{d^{-2}} Y^{-1} \oplus X'^{-1} \xrightarrow{d^{-1}} X^0 \xrightarrow{d^0} X^1 \xrightarrow{d^1} X^2 \cdots$$

$$\downarrow^{(1,0)} \qquad \downarrow^{(1,0)} \qquad \downarrow^{f_0} \qquad \downarrow^{(1,0)^t} \qquad \downarrow^{(1,0)^t}$$

$$\cdots Y^{-2} \xrightarrow[\partial^{-2}]{} Y^{-1} \xrightarrow[\partial^{-1}]{} Y^0 \xrightarrow[\partial^{0}]{} X^1 \oplus Y'^1 \xrightarrow[\partial^{1}]{} X^2 \oplus Y'^2$$

With f_0 irreducible.

For $i \leq -2$, the differential maps d^i are of the form

$$d^i = \left(\begin{array}{cc} \partial^i & 0\\ 0 & e^i \end{array}\right)$$

For $i \geq 1$, the differential maps ∂^i are of the form:

$$\partial^i = \left(\begin{array}{cc} d^i & 0 \\ 0 & e^i \end{array} \right)$$

joint Marcos, [2]

Definition

Let $f: X \to Y$ be an morphism of complexes.

- (a) If for all J a finite interval of Z the morphism f_J splits, then f is called locally split.
- (b) f is called monster if f is locally split and f does not split.

joint Marcos, [2]

Definition

Let $f: X \to Y$ be an morphism of complexes.

- (a) If for all J a finite interval of \mathbb{Z} the morphism f_J splits, then f is called locally split.
- (b) f is called monster if f is locally split and f does not split.

Lemma

Let $f: X \to Y$ be a smonic, irreducible morphism of complexes, which is not a monster then there is unique integer $l_m(f)$ such that $f^{l_m(f)}$ is not isomorphism and $f_{]-\infty,l_m(f)[}$ is an isomorphism.

Lemma

Let $f: X \to Y$ be a smonic morphism of complexes and J = [a, b] a finite interval of \mathbb{Z} . If f_J is irreducible morphism, then $f^a: X^a \to Y^a$ is an isomorphism if and only if $f_{[a+1,b]}$ is an irreducible morphism.

Corollary

Let $f: X \to Y$ be a smonic morphism of complexes and J = [a, b] a finite interval of \mathbb{Z} . If f_J is irreducible morphism and $f^a: X^a \to Y^a$ is not isomorphism, then $a = l_m(f)$.

Definition

Let $f: X \to Y$ be an not monster, smonic, irreducible morphism of complexes and $r_m(f)$ the smallest integer such that $f_{[l_m(f),r_m(f)]}$ is a irreducible morphism. $f_{[l_m(f),r_m(f)]}$ is called the **monic heart** of f.

Corollary

Let $f: X \to Y$ be a smonic morphism of complexes and J = [a, b] a finite interval of \mathbb{Z} . If f_J is irreducible morphism and $f^a: X^a \to Y^a$ is not isomorphism, then $a = l_m(f)$.

Definition

Let $f: X \to Y$ be an not monster, smonic, irreducible morphism of complexes and $r_m(f)$ the smallest integer such that $f_{[l_m(f),r_m(f)]}$ is a irreducible morphism. $f_{[l_m(f),r_m(f)]}$ is called the **monic heart** of f.

Let $f: X \to Y$ be a smonic and irreducible morphism of complexes. Then f does not have a monic heart if and only if f is monster morphism.

Theorem

Let $f: X \to Y$ be a smonic, irreducible and not monster morphism of complexes. Then $f_{[a,b]}$ is an irreducible morphism if and only if $f_{[a,b]}$ contains the monic heart of f.

Let $f: X \to Y$ be a smonic and irreducible morphism of complexes. Then f does not have a monic heart if and only if f is monster morphism.

Theorem

Let $f: X \to Y$ be a smonic, irreducible and not monster morphism of complexes. Then $f_{[a,b]}$ is an irreducible morphism if and only if $f_{[a,b]}$ contains the monic heart of f.

Let $f: X \to Y$ be a sepic and irreducible morphism of complexes. Then f does not have epic heart if and only if f is monster morphism.

Theorem

Let $f: X \to Y$ be an not monster, sepic and irreducible morphism of complexes. Then $f_{[a,b]}$ is an irreducible morphism if and only if $f_{[a,b]}$ contains the epic heart of f.

 $\mathcal{A} = \Lambda$ -proj, with Λ an Artin algebra over the commutative Artinian ring k. Let S be a simple Λ -module and let

$$\cdots \longrightarrow P^s \longrightarrow \cdots \longrightarrow P^{-1} \longrightarrow P^0 \longrightarrow S \longrightarrow 0 \longrightarrow \cdots,$$

be a minimal projective resolution of the simple S.

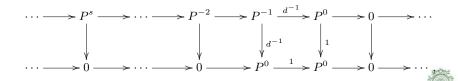
The morphism $u: P_S \to J_{-1}(P^0)$ is an irreducible morphism (Bautista and Salorio [1]).

 $\mathcal{A} = \Lambda$ -proj, with Λ an Artin algebra over the commutative Artinian ring k. Let S be a simple Λ -module and let

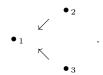
$$\cdots \longrightarrow P^s \longrightarrow \cdots \longrightarrow P^{-1} \longrightarrow P^0 \longrightarrow S \longrightarrow 0 \longrightarrow \cdots,$$

be a minimal projective resolution of the simple S.

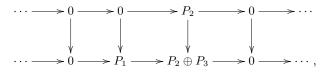
The morphism $u: P_S \to J_{-1}(P^0)$ is an irreducible morphism (Bautista and Salorio [1]).



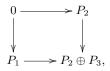
We consider hereditary algebra A defined by the quiver



The morphism f given by:

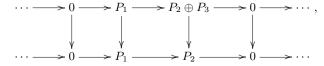


is an irreducible morphism.



is the monic heart of f.

The morphism g given by:



is an irreducible morphism.

$$P_1 \longrightarrow P_2 \oplus P_3 ,$$

$$\downarrow \qquad \qquad \downarrow$$

$$\downarrow \qquad \qquad \downarrow$$

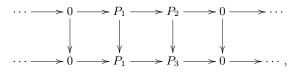
$$P_1 \longrightarrow P_2$$

is the epic heart of g.

We considere the hereditary algebra A defined by the quiver

$$\bullet_1 \leftarrow \bullet_2 \leftarrow \bullet_3$$

The morphism f given by:

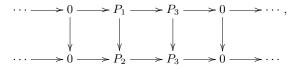


is an irreducible morphism, so

4□ > 4₫ > 4 ½ > 4 ½ > ½ 9 9 0

is the line heart of f.

The morphism g given by:



is an irreducible morphism, so

is the line heart of g.

Section

Irreducible Morphisms of Repetitive Algebras

Heart of Irreducible Morphisms of Complexes

3 References

Bautista, R., and Salorio, M. J. S. Irreducible morphisms in the bounded derived category. Journal of Pure and Applied Algebra 215, 5 (2011), 866 – 884.

GIRALDO, H., AND MARCOS, E. Heart of irreducible morphisms of complexes. *Preprint*.

GIRALDO, H., AND MERKLEN, H. Irreducible morphisms of categories of complexes. Journal of Algebra 321, 10 (2009), 2716 – 2736.

