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We will consider a five-zero texture non-Fritzsch like quark mass matrices that is completely valid
and generates all the physical quantities involved, including the quark masses, the Jarlskog invariant
quantity and the inner angles of the Cabibbo-Kobayashi-Maskawa unitarity triangle, and explaining
the charge parity violation phenomenon at 1σ confidence level. To achieve this, non-physical phases
must be included in the unitary matrices used to diagonalize the quark mass matrices, in order to
put the Cabibbo-Kobayashi-Maskawa matrix in standard form. Besides, these phases can be rotated
away so they do not have any physical meaning. Thus, the model has a total of nine parameters
to reproduce ten physical quantities, which implies physical relationships between the quark masses
and/or mixings.

I. INTRODUCTION

In the Standard Model (SM), the quark mass matrices
are introduced into the Lagrangian by means of Higgs-
fermion couplings

− LM = ūRMuuL + d̄RMddL + h.c. (1.1)

Here, the three-dimensional complex quark mass matri-
ces Mu and Md are arbitrary, and contain 36 real pa-
rameters, which are larger than the ten physical observ-
ables to describe: six quark masses, three flavor mix-
ing angles and one charge parity (CP) violating phase.
However, models like the SM or its extensions, where
the right-handed fields are SU(2) singlets, it is always
possible to choose a suitable basis for the right-handed
quarks by using the unitary matrix coming from the po-
lar decomposition theorem of matrix algebra, such that
the resultant up- and down-type mass matrices become
hermitian. For this reason, without losing generality, the
quark mass matrices Mu and Md can be assumed to be
hermitian [11, 13, 16, 19, 22, 28, 32].

M †
u = Mu, and M †

d = Md. (1.2)

Another consequence for models like the SM is that one
has the freedom to make a unitary transformation for
left- and right-handed quarks under which the gauge cur-
rents are invariant, and as a result the mass matrices
transform to new equivalent mass matrix pictures. It
consists basically of a common unitary transformation
applied to Mu and Md known as a “Weak Basis” (WB)
Transformation [1, 11, 33, 36], as follows

Mu → M ′
u = U †MuU, Md → M ′

d = U †MdU, (1.3)

where U is an arbitrary unitary matrix which pre-
serves the hermiticity of the mass matrices, Eqs. (1.2),
and leaves the physics invariant, including the Cabibbo-
Kobayashi-Maskawa (CKM) mixing matrix. Addition-
ally, an important result established by me [16, 18] is
that the WB transformations not only generates new
equivalent mas matrix pictures but also these transfor-
mations are “complete” in the sense that any physical

viable mass matrices can be derived from specific quark
mass matrices. So WB transformations have been used
in quark mass matrices to obtain either non-physical zero
textures [1] or physical zero textures by using experimen-
tal data [16].

1. Fritzsch six-zero textures

The hermiticity of quark mass matrices Mu and Md

brings down the number of free parameters from 36
to 18, which however, is still a large number com-
pared to the number of observables. With the idea
of reduce the number of free parameters Weinberg and
Fritzsch [9, 10, 30] initiated the idea of texture specific
mass matrices which on the one hand can result in self-
consistent and experimentally-favored relations between
quark masses and flavor mixing parameters, while on the
other hand, the discrete flavor symmetries hidden in such
mass matrix textures might finally provide useful hints
towards the dynamics of quark mass generation and CP
violation in a more fundamental theoretical framework.
To define the various texture specific cases, we present
the typical Fritzsch-like texture hermitian quark mass
matrices with six-zero textures [10], e.g.,

Mu =





0 AU 0
A∗

U 0 BU

0 B∗
U CU



 ,Md =





0 AD 0
A∗

D 0 BD

0 B∗
D CD



 , (1.4)

where both matrices have the up-down parallelism and
each one is a three-zero texture type. This Fritzsch
ansätze were ruled out because of the large value of
’t’ quark mass, such that the predicted |Vcb| is far off
from the experimental data [7, 19]. Additionally, the

predicted magnitude of |Vub/Vcb| =
√

mu/mc is too low
(Vub/Vcb ≈ 0.05 or smaller for reasonable values of the
quark masses mu and mc [13]) to agree with the actual
experimental result (|Vub/Vcb|ex ≈ 0.09 [24]).

As a result, the next case to be considered is the five-
zero textures, which has been extensively studied by re-
searchers, but results have been mixed.

http://arxiv.org/abs/1511.08858v1
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2. Five-zero textures

In recent papers, several authors have explored the
five-zero texture quark mass matrices [1, 6, 8, 19, 22,
23, 25, 26, 28, 29]. A general conclusion given by them
is that five-zero textures are not viable models or they
have a limited viability. However, numerical examples
showing the viability of the model are given by me in
paper [16], where its validity is checked by adding non-
physical phases to the diagonalization matrices [17].

This paper is organized as follows: in Sect. II we give
the recent experimental data for quark masses and mix-
ing angles, we stablish the initial quark mass matrices
for the SM, and we give a better justification to assume
only a negative eigenvalue in each quark mass matrix.
So in Sect. III we explore all possible three-zero tex-
tures in each quark mass matrix, such that using the
WB transformation we obtain numerical five-zero tex-
ture non-Fritzsch like quark mass matrices. A first ana-
lytical study for a five-zero texture will be carried out in
Sect. IV, and our conclusions are presented in Sect. V.
An appendix at the end improves the mathematical tools
used.

II. DATA AND INITIAL CONDITIONS

Before getting numerical five-zero textures for quark
mass matrices, we need to give the recent experimental
data, like quark masses and CKM mixing angles. We
need to give the initial quark mass matrices on which
the WB transformation is applied. And we give a brief
reasoning about to assuming only a negative eigenvalue in
each quark mass matrix, in order to simplify calculations
without losing generality.

A. Quark masses and CKM

The observed CKM matrix parameters |Vij | are given
at µ = mZ , because of that, we summarize quark
masses (in MeV units) at µ = mZ [13, 24, 34, 35].

mu = 1.38+0.42
−0.41 , mc = 638+43

−84, mt = 172100 ± 1200 ,

md = 2.82 ± 0.48 , ms = 57+18
−12 , mb = 2860+160

−60 .
(2.1)

The CKM mixing matrix [3, 21, 24] is a 3 × 3 uni-
tary matrix, which can be parametrized by three mixing
angles and the CP-violating Kobayashi-Maskawa (KM)
phase [21]. Usually it has the following standard
choice [5]

V =





Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb



 =





c12 c13 s12 c13 s13 e
−iδ

−s12 c23 − c12 s23 s13 e
iδ c12 c23 − s12 s23 s13 e

iδ s23 c13
s12 s23 − c12 c23 s13 e

iδ −c12 s23 − s12 c23 s13 e
iδ c23 c13



 , (2.2)

where sij = sin θij , cij = cos θij , with the angles ly-
ing in the first quadrant, so sij , cij ≥ 0. And δ is
the phase responsible for all CP-violating phenomena in
flavor-changing processes in the SM.
The Wolfenstein parametrization [2, 4, 31]

s12 = λ, s23 = Aλ2,

s13 e
iδ =

Aλ3(ρ̄+ i η̄)
√
1−A2λ4

√
1− λ2 [1− A2 λ4(ρ̄+ i η̄)]

,
(2.3)

exhibits the experimental hierarchy s13 ≪ s23 ≪ s12 ≪ 1.
The small range allowed for some of the CKM elements

due to the unitarity of the three generation CKM matrix,
permits to fit, using the method of Refs. [2, 20, 31], the
Wolfenstein parameters defined in Eq. (2.3), giving

λ = 0.22537± 0.00061, A = 0.814+0.023
−0.024,

ρ̄ = 0.117± 0.021, η̄ = 0.353± 0.013.
(2.4)

The fit results for the values of all nine CKM elements
are

V =





0.974267 0.225369 0.00355431 e−i 1.25135

0.225222 e−i 3.14099 0.97343 e−i 3.23011×10−5

0.0413441
0.00886248 e−i 0.379708 0.0405392 e−i 3.12285 0.999139



 , (2.5)

with magnitudes

|V | =





0.97427 ± 0.00014 0.22536 ± 0.00061 0.00355 ± 0.00015
0.22522 ± 0.00061 0.97343 ± 0.00015 0.0414 ± 0.0012

0.00886+0.00033
−0.00032 0.0405+0.0011

−0.0012 0.99914 ± 0.00005



 ,

(2.6)

and the Jarlskog invariant is

J =
(

3.06+0.21
−0.20

)

× 10−5. (2.7)
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B. The initial quark mass matrices

In the quark-family basis, it is more convenient to use
either

Mu = Du =





λ1u 0 0
0 λ2u 0
0 0 λ3u



 ,

Md = V DdV
†,

(2.8a)

or

Mu = V †DuV,

Md = Dd =





λ1d 0 0
0 λ2d 0
0 0 λ3d



 ,
(2.8b)

as the initial general quark mass matrix bases [1, 13, 16–
18]; where V is the CKM mixing matrix, and the quark
mass eigenvalues |λiq| (i = 1, 2, 3) for up- (q = u) and
down- (q = d) satisfy

|λ1u| = mu, |λ2u| = mc, |λ3u| = mt,

|λ1d| = md, |λ2d| = ms, |λ3d| = mb.
(2.9)

Thus, λiq may be either positive or negative and obey
the hierarchy

|λ1q| ≪ |λ2q | ≪ |λ3q|. (2.10)

The bases (2.8a) or (2.8b) are identified as the diagonal-
up (quark) basis or the diagonal-down basis mass ma-
trix [16], respectively. They are obtained performing a
WB transformation on the general quark mass matrix
bases [17, 18].

C. A negative quark mass eigenvalue

Based on the completeness of WB transformations [16,
18], it permits us to use the diagonal-up basis (2.8a) (or
the diagonal-down basis (2.8b)) as the starting matri-
ces to generate any one of quark mass matrix pictures.
If there are zero textures in quark mass matrices, this
transformation is able to find them. Since some zero
textures must be located on the diagonal entries of her-
mitian up- and down-quark mass matrices, it implies
that at least one and at most two of their eigenvalues
be negative [1]. Furthermore, for the case of two nega-
tive eigenvalues, these mass matrices can be reduced to
have only one, by adding a minus sign to the mass matrix
basis (2.8a) (or (2.8b)) as follows:

Mu = −(−Mu) or/and Md = −(−Md),

and implementing the WB transformations for the terms
in parenthesis. Thus, zero textures in models can be
deduced by assuming that each quark mass matrix Mu

andMd contains exactly one negative eigenvalue [16], i.e.,

λiq < 0 (i = 1, 2 or 3) and λjq > 0 for j 6= i. (2.11)

Thus, we can assume without loss of generality that each
quark mass matrix contains only one negative eigenvalue.
And the minus sign in masses can be removed later by
redefining the right-handed field singlets.

III. NUMERICAL FIVE-ZERO TEXTURES

It is important to say that realistic quark mass matrix
may contain at most three-zero textures in their matrix
elements. Furthermore, we have only two realistic type
of patterns depending how the three-zero textures are
distributed in the mass matrix entries. In one case we
have a matrix with two zeros on its diagonal (two-zero
diagonal pattern) and the other one is a matrix with one
zero on its diagonal (one-zero diagonal pattern), as they
are indicated in each column of Table I. From which you
can observe that making WB transformations using the
permutation matrices p, we obtain all the possible viable
cases for each pattern. It is important to emphasize that
no more viable configurations with three zeros are possi-
ble to obtain. Hence, Table I summarizes all the viable
three-zero texture for up- and down-quark mass matri-
ces. These patterns are general and the phases are not
necessary to be included, as will be shown below when
the initial bases (2.8) be used. Let us study each pattern.

Permutation

matrices

two-zero diagonal

pattern (pi Mq pTi )
one-zero diagonal

pattern (pi Mq pTi )

p1 =





1
1

1









0 |ξq| 0
|ξq| 0 |βq|
0 |βq| αq









0 |ξq| 0
|ξq| γq 0
0 0 αq





p2 =





1
1

1









0 0 |ξq|
0 αq |βq|

|ξq| |βq| 0









0 0 |ξq|
0 αq 0

|ξq| 0 γq





p3 =





1
1

1









αq |βq| 0
|βq| 0 |ξq|
0 |ξq| 0









αq 0 0
0 γq |ξq|
0 |ξq| 0





p4 =





1
1

1









0 |ξq| |βq|
|ξq| 0 0
|βq| 0 αq









|γq| |ξq| 0
|ξq| 0 0
0 0 αq





p5 =





1
1

1









αq 0 |βq|
0 0 |ξq|

|βq| |ξq| 0









αq 0 0
0 0 |ξq|
0 |ξq| γq





p6 =





1
1

1









0 |βq| |ξq|
|βq| αq 0
|ξq| 0 0









γq 0 |ξq|
0 αq 0

|ξq| 0 0





TABLE I. One- and two-zero diagonal pattern. The phases
are not necessary to be included.

A. Two-zero diagonal pattern

In what follows, we work the diagonal-up and the
diagonal-down cases simultaneously, both patterns are
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indicated indistinctly with q, where q = u or q = d de-
pending if we are working either the up-quark mass ma-
trix or the down-quark mass matrix, respectively. The
standard representation for the two-zero diagonal pat-
tern, in Table I, is

Mq =





0 |ξq| 0
|ξq| 0 |βq|
0 |βq| αq



 , (3.1)

where its diagonalizing matrix Uq satisfies the following
relation

U †
qMqUq = Dq =





λ1q

λ2q

λ3q



 , (3.2)

with the diagonal quark mass matrix Dq containing the
quark mass eigenvalues |λiq|. The invariant matrix oper-

ators “det” and “trace” applied on (3.2), gives us

αq = λ1q + λ2q + λ3q, (3.3)

|βq| =
√

− (λ1q + λ2q)(λ1q + λ3q)(λ2q + λ3q)

αq

, (3.4)

|ξq| =
√

−λ1qλ2qλ3q

αq

. (3.5)

The expression (3.5) must be a real number, and because
only one λiq eigenvalue is assumed negative (Eq. (2.11)),
we have that

αq > 0, (3.6)

that together with (3.4) and the hierarchy (2.10) we find
that only a possibility is allowed

λ1q, λ3q > 0 and λ2q < 0. (3.7)

According to (A9), and assuming γq = 0 in (A1), we have
the diagonalizing matrix for (3.1)

Uq =















eix
√

λ2qλ3q(αq−λ1q)
αq(λ2q−λ1q)(λ3q−λ1q)

−eiy
√

λ1qλ3q(λ2q−αq)
αq(λ2q−λ1q)(λ3q−λ2q)

√

λ1qλ2q(αq−λ3q)
αq(λ3q−λ1q)(λ3q−λ2q)

eix
√

λ1q(λ1q−αq)
(λ2q−λ1q)(λ3q−λ1q)

eiy
√

λ2q(αq−λ2q)
(λ2q−λ1q)(λ3q−λ2q)

√

λ3q(λ3q−αq)
(λ3q−λ1q)(λ3q−λ2q)

−eix
√

λ1q(αq−λ2q)(αq−λ3q)
αq(λ2q−λ1q)(λ3q−λ1q)

−eiy
√

λ2q(αq−λ1q)(λ3q−αq)
αq(λ2q−λ1q)(λ3q−λ2q)

√

λ3q(αq−λ1q)(αq−λ2q)
αq(λ3q−λ1q)(λ3q−λ2q)















, (3.8)

where αq is given in (3.3).

1. The diagonal-down basis

Performing a WB transformation for the diagonal-
down basis (2.8b), using this time the unitary matrix
given in (3.8) with q = d, i.e., Ud, we have

M ′
d = Ud(Dd)U

†
d =





0 |ξd| 0
|ξd| 0 |βd|
0 |βd| αd



 , (3.9)

M ′
u = Ud (V

†DuV )U †
d , (3.10)

where (3.2) was used. According to (3.6) and (3.7), in
this case we have

λ1d, λ3d > 0, λ2d < 0, αd = λ1d+λ2d+λ3d > 0. (3.11)

The computation is facilited defining the following new
variables for the phases introduced in (3.8)

eix = x1 + ix2, with x2
1 + x2

2 = 1,

eiy = y1 + iy2, with y21 + y22 = 1.
(3.12)

Hence, the variabbles satisfies

|x1|, |x2| ≤ 1, and |y1|, |y2| ≤ 1. (3.13)

With the former definitions and using data from the
CKM mixing matrix V in (2.5), the matrix entries of
M ′

u in (3.10), become hypersurfaces for the set of points
(x1, x2, y1, y2) in R

4 for each case to be considered:
λ1u = −mu or λ2u = −mc or λ3u = −mt. The analysis
of these hypersurfaces, by considering conditions (3.13),
shows that only the entries (1,2) and (1,3) of M ′

u could
have possible zero (texture) solutions.

a. λ1u = −mu: In this case the best results are ob-
tained by considering the following quark masses (in MeV
units): mu = 1.71604, md = 2.9042, ms = 65, mc = 567,
mb = 2860, mt = 172100 which are close to the cen-
tral values and are within the allowable range permitted
by (2.1). The variables (x1, x2, y1, y2) satisfy the implicit
equations
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Re[M ′

u(1, 2)] = −138.321 + 201.317x1 − 80.6426x2 + 204.719y1

− 164.358x1y1 + 21.6323x2y1 + 3.85055y2 − 21.6323x1y2

− 164.358x2y2 = 0,

Im[M ′

u(1, 2)] = 80.479x1 + 200.909x2 − 4.02965y1 − 23.6558x1y1

− 179.732x2y1 + 214.241y2 + 179.732x1y2

− 23.6558x2y2 = 0,

whose solutions are

x1 = 0.684994, y1 = −0.500433,

x2 = 0.728548, y2 = −0.865775,

such that M ′
u(1, 1) = 0. The corresponding numerical

five-zero texture quark mass matrices obtained are

M ′

u =





0 0 −79.32299208381 + 154.7195315i
0 5539.23021 28125.945500584217 + 6112.7938593i

−79.32299208381 − 154.7195315i 28125.9455 − 6112.7938593i 167126.0537497



MeV, (3.14a)

M ′

d =





0 13.891097 0
13.891097 0 421.41405

0 421.41405 2797.9042



MeV, (3.14b)

and their diagonalizing matrices are respectively:

Uu =





0.6762634914995 + 0.734812367i −0.050244372843746 + 0.01389198632i −0.0004494994264332 + 0.00088826384734i
0.027504657705 − 0.0431835830349i −0.4970428606 − 0.849312285i 0.1665852443687 + 0.03528548775i

−0.00340858221659 + 0.00924818235635i 0.1150663143 + 0.12513711i 0.98538127634 − 0.00519998920457i



 ,

(3.15a)

Ud =





0.67017852 + 0.71279034i 0.10351850 + 0.17909241i 0.00070804245
0.14011366 + 0.14902248i −0.48438959 − 0.83801926i 0.14577693

−0.021125534 − 0.022468754i 0.071301225 + 0.12335484i 0.98931723



 , (3.15b)

which gives the exact CKM mixing matrix (2.5) U †
uUd =

V and the CP violating phase, in agreement with the
measured values up to 1σ [25, 29]; although a large num-
ber of significant digits were required.

b. λ2u = −mc: For this case the quark masses that
best fit results are (in MeV units): mu = 1.38, md =
2.82, ms = 70.8356, mc = 592.3, mb = 2860, mt =
172100, where the implicit equations

Re[M ′

u(1, 2)] = 69.8779 + 212.583x1 − 84.5059x2 + 203.455y1

+ 66.7775x1y1 + 21.9698x2y1 + 3.80114y2

− 21.9698x1y2 + 66.7775x2y2 = 0,

Im[M ′

u(1, 2)] = 84.3394x1 + 212.165x2 − 3.99422y1 − 23.7916x1y1

+ 72.3149x2y1 + 213.789y2 − 72.3149x1y2

− 23.7916x2y2 = 0

have the solutions x1 = −0.99609, x2 = −0.0883441,
y1 = 0.949769, y2 = 0.312952, such that M ′

u(1, 1) =
0. The corresponding numerical five-zero texture quark
mass matrices obtained are

M ′
u =





0 0 101.16321− 273.96222i
0 1649.3286 19419.195− 2159.2334i

101.16321+ 273.96222i 19419.195+ 2159.2334i 169859.75.



MeV, (3.16a)

M ′
d =





0 14.304633 0
14.304633 0 441.0438

0 441.0438 2791.9844



MeV, (3.16b)

and their respective diagonalizing matrices are

Uu =





−0.99358138− 0.098207896i 0.039092042− 0.040251962i 0.0005870283− 0.0015803942i
0.020016032+ 0.052233615i 0.94574516+ 0.29911097i 0.11321111− 0.012367896i

−0.0011910042− 0.0045650693i −0.10404534− 0.046096344i 0.99349071+ 0.0019085337i



 , (3.17a)

Ud =





−0.97682387− 0.086635334i −0.18589492− 0.061253052i 0.0007623121
−0.19257000− 0.017079196i 0.92053883+ 0.30332089i 0.15241321
0.030450627+ 0.0027006918i −0.14181749− 0.046729377i 0.98831656



 , (3.17b)
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which gives the exact CKM matrix (2.5): U †
uUd = V . A

complete analysis for this last case was already made in
paper [16].
We must say that we have taken into account all pos-

sibilities, but at most five-zero textures were found. As
a result, textures with six zeros are not realistic models.
Additionally, for the diagonal-up basis (2.8a) no five-zero
textures were found. Similarly, for the one-zero diagonal
pattern case (Table I), no solutions with five-zeros were
found.

IV. ANALYTICAL FIVE-ZERO TEXTURE

NON-FRITZSCH-LIKE QUARK MASS MATRIX

It is well known that certain relationship exists be-
tween the quark mass matrices and the CKM mixing
angles and CP violating phase, so an analytical study
unraveling the deeper aspects of flavor physics must be
done. For our case, the numerical five-zero textures for
quark mass matrices given in Eqs. (3.14) and (3.16) are
viable models according with the latest low energy data.
Thus, let us consider the following analytical five-zero
textures model

Mu = P †





0 0 |ξu|
0 αu |βu|

|ξu| |βu| γu



P,

Md =





0 |ξd| 0
|ξd| 0 |βd|
0 |βd| αd



 ,

(4.1)

where all the phases are reduced to those included in
P = diag(e−iφξu , e−iφβu , 1) (with φβu ≡ arg(βu) and
φξu ≡ arg(ξu)) which was achieved by making a WB
transformation, in such a way that the phases for Md are

not necessary to be considered. So we have nine free pa-
rameters, to reproduce ten physical quantities: 6 quark
masses and 3 mixing angles and 1 phase from the CKM
matrix, which implies physical relationships between the
quark masses and/or mixings. The five-zero texture (4.1)
is a non-Fritzsch-like due to their zero patterns do not fit
with those zero textures proposed by Fritzsch in (1.4).

Making the permutation P2 = [(1, 0, 0), (0, 0, 1), (0, 1, 0)],
the matrix Mu in (4.1), can be written as

Mu = P †P2





0 |ξu| 0
|ξu| γu |βu|
0 |βu| αu



P2P, (4.2)

such that the permuted matrix has the same structure
of (A1) with q = u. Thus, considering the case

λ1u = −mu, λ2u = mc, and λ3u = mt,
we have from (A3) through (A5) that

γu = mt +mc −mu − αu,

|βu| =
√
αu −mc

√
mt − αu

√
αu +mu√

αu

,

|ξu| =
√
mc

√
mt

√
mu√

αu

,

(4.3)

and using (A6), we obtain

mc < αu < mt. (4.4)

According to (4.2) and (A9), an approach to diagonaliz-
ing Mu is the unitary matrix Uu (→ P † P2 Uu), giving
by

Uu ≈









ei (φξu )
√
αu−mc

√
mue

i (φξu
)

√
αu

√
mc

√
mc

√
mt−αu

√
mue

i (φξu
)

√
αu mt√

αu−mc
√
mt−αu

√
mu e

i(φβu
)

√
αu

√
mc

√
mt

−
√
mt−αu e

i(φβu
)

√
mt

√
αu−mc e

i(φβu
)

√
mt

−
√
αu

√
mu√

mc
√
mt

√
αu−mc√

mt

√
mt−αu√

mt









, (4.5)

where the hierarchy established in (2.10) and Eq. (4.4)
were considered. The phases x and y are not included
because we are only interested in magnitudes.

Taking into account (3.3) through (3.8) for the down

mass matrix Md case (q = d) in (4.1), we have that

αd = md +mb −ms,

|βd| =
√
md +mb

√
mb −ms

√
ms −md√

md +mb −ms

,

|ξd| =
√
mb

√
md

√
ms√

md +mb −ms

.

(4.6)

And the unitary matrix Ud, which diagonalizes Md, ac-
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cording to (3.7) and (3.8) for q = d is given by the ap-
proach

Ud ≈









1 −
√
md√
ms

√
md ms

(mb)3/2√
md√
ms

1
√
ms√
mb

−
√
md√
mb

−
√
ms√
mb

1









, (4.7)

where the hierarchy (2.10) was considered and the phases
x and y be omitted.
Now, we can easily find the CKMmatrix V = U †

uUd. In
particular, using the matrix form (4.5) and (4.7) for Uu,
Ud respectively, can survive current experimental tests.
To leading order, we obtain.

|Vud| ≈ |Vcs| ≈ |Vtb| ≈ 1, (4.8a)

|Vus| ≈

∣

∣

∣

∣

√

αu −mc

αu

√

mu

mc

− e
i(φβu−φξu )

√

md

ms

∣

∣

∣

∣

, (4.8b)

|Vcd| ≈

∣

∣

∣

∣

√

αu −mc

αu

√

mu

mc

− e
i(φξu−φβu )

√

md

ms

∣

∣

∣

∣

, (4.8c)

|Vcb| ≈

∣

∣

∣

∣

√

ms

mb

− e
iφβu

√

αu −mc

mt

∣

∣

∣

∣

, (4.8d)

|Vts| ≈

∣

∣

∣

∣

√

ms

mb

− e
−iφβu

√

αu −mc

mt

∣

∣

∣

∣

, (4.8e)

|Vub|

|Vcb|
≈

√

mu

mc

∣

∣

∣

∣

∣

∣

∣

√

αu
mt

− e−iφβu

√

αu−mc
αu

√

ms
mb

√

αu−mc
mt

− e−iφβu

√

ms
mb

∣

∣

∣

∣

∣

∣

∣

, (4.8f)

|Vtd|

|Vts|
≈

√

md

ms

, (4.8g)

where αu ≪ mt was assumed. Hence, αu is an appar-
ently free parameter that must be adjusted to give phys-

ical quantities. Note that if αu ≫ mc then
|Vub|
|Vcb| ≈

√

mu

mc
,

but we shall consider αu & mc in order to fit experimental
data. Also, as you can observe the famous Gatto-Sartori-
Tonin (GST) relation sin θ12 ≈ md/ms is maintained [14].
It is obvious that Eqs. (4.8a), (4.8b), (4.8c) and (4.8g)

are consistent with the previous results [12, 15, 33]. A
good fit of Eqs. (4.8) and the CKM to the experimental
data suggests

αu = 5539.2302MeV, φβu = 0.214008, φξu = 2.044543, (4.9)

which does not differ from the values given in [12, 15, 33]
for φ1 ≈ −π/2 ∼ (φβu − φξu), which it is an impor-
tant contribution term for CP-violation in the context of
present mass matrices, and φ2 ≈ π/15 ∼ φβu → 0.

V. CONCLUSIONS

We have made a complete survey of zero textures in
general quark mass matrices based on the completeness
of the WB transformation [16, 18]. We are being able to
reproduce all possible zero textures, by starting from spe-
cific quark mass matrices bases, like (2.8a) or (2.8b). In
that way, we just find only two different numerical five-
zero texture patterns: they are the matrices bases (3.14)

and (3.16), which gives precise quark masses, CKM mix-
ing angles, and the Jarlskog quantity, at 1σ confidence
level (C.L.). We must stress that only these zero patterns
are possible, including their permutations, in the two-
zero diagonal pattern, something indicated in Table I. A
standard five-zero texture basis for this viable model is
giving in (4.1). It has nine free parameters to reproduce
ten physical quantities: 6 quark masses, 3 mixing angles
and 1 phase from the CKM matrix, which implies phys-
ical relationships between the quark masses and/or mix-
ings, summarized in the approach relations (4.8), which
have not been studied before; though, their structures are
not so simple as presented by Fritzsch according to (1.4);
and they depend from a parameter αu. However, the
GST relation is maintained, and an important contri-
bution for CP violation is still presented in the context
of the model. Additionally, our five-zero texture model
is a non-Fritzsch like quark mass matrices, because it
does not have the same zero texture distribution as given
in (1.4).
A recent aspect being claimed by some authors is about

the viability of the five-zero texture models. According to
these authors the five-zero texture models have a limited
viability into the Fritzsch-like model context, and as a
result they recommend working only four-zero texture
models [8, 19, 22, 26–28]. However, there have been many
five-zero textures proposed by other authors [6, 8, 22, 23,
25], although most of them are like-Fritzsch zero textures,
so they do not coincide with that configuration obtained
by me in Eq. (4.1). In that sense we have found new
five-zero texture non-Fritzsch like quark mass matrices
which are viable models reproducing experimental data.
Even further, our models are the unique viable models
that can accommodate data at 1σ C.L.
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Appendix A: Four-zero textures

Let us start by implementing a method that we shall
apply later to special cases. Let us consider the following
structure for the up- (q = u) and/or down- (q = d) quark
mass matrix 1

Mq =





0 |ξq| 0
|ξq| γq |βq|
0 |βq| αq



 , (A1)

1 The phases in parameters can be included later by means of a
WB transformation.
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where γq and αq are real numbers because of the hemitic-
ity of Mq. The mass matrix Mq can be diagonalized by
using the transformation

U †
qMqUq =





λ1q

λ2q

λ3q



 , (A2)

where λiq (i = 1, 2, 3) are defined in (2.9). Note that γq,
|βq| and |ξq| can be expressed in terms of λiq and αq,
by using the invariant matrix functions, trMq, trM

2
q and

detMq as follows

γq = λ1q + λ2q + λ3q − αq, (A3)

|βq| =
√

(αq − λ1q)(αq − λ2q)(λ3q − αq)

αq

, (A4)

|ξq| =
√

−λ1qλ2qλ3q

αq

. (A5)

The Eqs. (A3) through (A5) are real numbers, because of
that, the parameter αq must lie within an interval. Let

us see the different possibilities.

• If λ1q < 0, λ2q > 0 and λ3q > 0 then

|λ2q| < αq < |λ3q|. (A6)

• If λ1q > 0, λ2q < 0 and λ3q > 0 then

|λ1q| < αq < |λ3q|. (A7)

• If λ1q > 0, λ2q > 0 and λ3q < 0 then

|λ1q| < αq < |λ2q|. (A8)

In the analysis, the hierarchy (2.10) was taken into ac-
count, and only a negative eigenvalue was considered ac-
cording to the justification given in Sect. II C.

The exact analytical result for the diagonalizing ma-
trix Uq given in (A2) is [12, 16, 33]

Uq =















eix
|λ3q|
λ3q

√

λ2qλ3q(αq−λ1q)
αq(λ2q−λ1q)(λ3q−λ1q)

eiy
|λ2q|
λ2q

√

λ1qλ3q(λ2q−αq)
αq(λ2q−λ1q)(λ3q−λ2q)

√

λ1qλ2q(αq−λ3q)
αq(λ3q−λ1q)(λ3q−λ2q)

−eix
|λ2q|
λ2q

√

λ1q(λ1q−αq)
(λ2q−λ1q)(λ3q−λ1q)

eiy
√

λ2q(αq−λ2q)
(λ2q−λ1q)(λ3q−λ2q)

|λ3q |
λ3q

√

λ3q(λ3q−αq)
(λ3q−λ1q)(λ3q−λ2q)

eix
|λ2q|
λ2q

√

λ1q(αq−λ2q)(αq−λ3q)
αq(λ2q−λ1q)(λ3q−λ1q)

−eiy
|λ3q |
λ3q

√

λ2q(αq−λ1q)(λ3q−αq)
αq(λ2q−λ1q)(λ3q−λ2q)

√

λ3q(αq−λ1q)(αq−λ2q)
αq(λ3q−λ1q)(λ3q−λ2q)















, (A9)

where we have added phases to make compatible the gen-
erated CKM matrix with the chosen convention (2.2),

somethig justified in [17]. The phase in third column is
not necessary to be included because it can be absorbed
into the remaining phases.
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