ESTUDIO EXPERIMENTAL DE SEDIMENTADORES EN TUBOS CIRCULARES CON FLUJO A PRESIÓN

YURI BIBIANA NARVÁEZ ROSERO ANAMARIA SANTACRUZ LASSO

UNIVERSIDAD DE NARIÑO FACULTAD DE INGENIERÍA PROGRAMA DE INGENIERÍA CIVIL SAN JUAN DE PASTO 2007

ESTUDIO EXPERIMENTAL DE SEDIMENTADORES EN TUBOS CIRCULARES CON FLUJO A PRESIÓN

YURI BIBIANA NARVÁEZ ROSERO ANAMARIA SANTACRUZ LASSO

Presentado como PROYECTO DE GRADO

Director de Investigación HERNÁN JAVIER GÓMEZ ZAMBRANO Ingeniero Civil Magíster en Recursos Hidráulicos

UNIVERSIDAD DE NARIÑO FACULTAD DE INGENIERÍA PROGRAMA DE INGENIERÍA CIVIL SAN JUAN DE PASTO 2007

LISTA DE SÍMBOLOS

- D: Diámetro de la tubería
- *L:* Longitud de la tubería
- T: Temperatura del agua
- Ad: Área de drenaje del sedimentador
- A_o : Área del orificio de drenaje de las tolvas
- h : Altura de presión sobre el punto de drenaje de las tolvas
- K: Rugosidad del material de la tubería
- ρ_{ω} : Densidad del fluido
- *µ:* Viscosidad dinámica
- v_f: Viscosidad cinemática
- γ_{ω} : Peso específico del líquido
- *ρ*_s: Densidad de los sólidos
- d: Tamaño de las partículas sólidas
- V's: Velocidad de sedimentación de las partículas afectada por la concentración
- *V_m:* Velocidad de la mezcla
- QL: Caudal Líquido
- Qs: Caudal de sólidos
- *Q_m*: Caudal de la mezcla
- g: Aceleración de la gravedad
- σ_s : Desviación estándar geométrica de los sedimentos
- Cu: Coeficiente de uniformidad
- C: Concentración volumétrica
- *θ* : Inclinación del tubo
- η: Eficiencia de remoción de partículas
- A_T: Área del tubo del sedimentador
- C_D: Coeficiente de fricción o de arrastre
- C'D: Coeficiente de fricción o de arrastre afectado por la concentración
- F_L: Número de Froude densimétrico
- F'_L: Número de Froude densimétrico afectado por la mezcla

- F_G : Relación entre F_L y F'_L
- *R*_{*S*}: Reynolds de la partícula
- *R_m*: Reynolds de la partícula afectado por la mezcla
- A: Sección proyectada de la partícula en la dirección del flujo
- S: Gravedad específica de los sólidos
- d+: Número adimensional de partícula
- d'₊: Número adimensional de partícula afectado por la concentración
- **Λ**: Número de Karman
- **Δ**: S 1
- Δ : Coeficiente de densidad de partículas dentro de una mezcla

- *t* : Exponente que cuantifica el efecto de la concentración sobre la velocidad de asentamiento de las partículas
- vm: Viscosidad cinemática de la mezcla
- r: Número de réplicas
- σ: Desviación estándar
- δ : Diferencia real, por la que el experimento tiene o no una alta probabilidad de mostrar una diferencia estadísticamente significativa entre las medias de cada ensayo.
- α_1 : Valor de significación
- \overline{X} : Media aritmética
- *X_i*: Dato obtenido de cada réplica menos el peso del recipiente
- α: Coeficiente para el cálculo de FL
- VCD: Velocidad crítica de depositación
- *n* : Valor numérico
- *G*: Función que depende de las características del fluído y de los sedimentos naturales
- Qo: Caudal que pasa por el orificio de drenaje de las tolvas
- C_d: Coeficiente para orificios circulares

LISTA DE TABLAS

Tabla 1. Variables que influyen en el análisis dimensional de la eficiencia	36
Tabla 2.1. Clasificación de sedimentos naturales según su tamaño	54
Tabla 2.2. Resumen de ecuaciones propuestas para el cálculo del coeficiente de arrastre C_D	63
Tabla 2.3. Ecuaciones propuestas para el cálculo de la velocidad de asentamiento $V_{\rm s}$	65
Tabla 2.4. Ecuaciones propuestas para cuantificar el exponente t	67
Tabla 2.5. Ecuaciones para el cálculo del número de Froude Densimétrico F_{L_1} que produjeron un error promedio por debajo del 25%	69
Tabla 3.1 Rangos de tamaño de sedimentos propuestos para preparar las mezclas sedimentables en agua clara	73
Tabla 3.2 Ecuaciones para el cálculo de la función G y exponente n.	75
Tabla 4.1. $(Z_{\alpha} + Z_{\beta})^2$ para algunos valores de α_1 y de β	92
Tabla 4.2. Toma de datos para d =0.074mm	95
Tabla 4.3. Toma de datos para d =0.125 mm	97
Tabla 4.4. Toma de datos para d =0.25 mm	99

Tabla 4.5 Media y desviación estándar d = 0.074 mm	103
Tabla 4.6 Media y desviación estándar d = 0.125 mm	105
Tabla 4.7 Media y desviación estándar d = 0.25 mm	108
Tabla 4.8 Cálculo de la eficiencia en relación con la longitud d = 0.074 mm	113
Tabla 4.9 Cálculo de la eficiencia en relación con la longitud d = 0.125 mm	114
Tabla 4.10 Cálculo de la eficiencia en relación con la longitud d = 0.25 mm	115
Tabla 4.11 Cálculo de variables de las partículas y del flujo, d=0.074 mm	116
Tabla 4.12 Cálculo de variables de las partículas y del flujo, d=0.125 mm	117
Tabla 4.13 Cálculo de variables de las partículas y del flujo, d=0.25 mm	118
Tabla 4.14 Parámetros adimensionales Ln (L/D) y A_d/D^2 según la concentración y la eficiencia d =0.074 mm	120
Tabla 4.15 Parámetros adimensionales Ln (L/D) y A_d/D^2 según la concentración y la eficiencia d =0.125 mm	120
Tabla 4.16 Parámetros adimensionales Ln (L/D) y A_d/D^2 según la concentración y la eficiencia d =0.25 mm	121

Tabla 4.17 Parámetros adimensionales Ln (L/d) y A_d/d^2 según la concentración y la eficiencia d =0.074 mm	121
Tabla 4.18 Parámetros adimensionales Ln (L/d) y A _d /d ² según la concentración y la eficiencia d =0.125 mm	122
Tabla 4.19 Parámetros adimensionales Ln (L/d) y A _d /d ² según Ia concentración y Ia eficiencia d =0.25 mm	122
Tabla 4.20 Parámetros adimensionales D/L y A _d /L ² según Ia concentración y Ia eficiencia d =0.074 mm	123
Tabla 4.21 Parámetros adimensionales D/L y A _d /L ² según la concentración y la eficiencia d =0.125 mm	123
Tabla 4.22 Parámetros adimensionales D/L y A_d/L^2 según la concentración y la eficiencia d =0.25 mm	124
Tabla 4.23 Parámetros adimensionales Ln(L/D) y A _d /A _T según la concentración y la eficiencia d =0.074 mm	124
Tabla 4.24 Parámetros adimensionales Ln(L/D) y A _d /A _T según Ia concentración y Ia eficiencia d =0.125 mm	125
Tabla 4.25 Parámetros adimensionales $Ln(L/D)$ y A_d/A_T según la concentración y la eficiencia d =0.25 mm	125
Tabla 4.26 Parámetros adimensionales en función de la eficiencia d=0.074 mm de acuerdo a la Ec. [1.12]	128
Tabla 4.27 Parámetros adimensionales en función de la eficiencia d=0.125 mm de acuerdo a la Ec. [1.12]	129
Tabla 4.28 Parámetros adimensionales en función de la	

eficiencia d=0.25 mm de acuerdo a la Ec. [1.12]	130
Tabla 4.29 Parámetros adimensionales en función de la eficiencia d=0.074 mm de acuerdo a la Ec. [1.21]	131
Tabla 4.30 Parámetros adimensionales en función de la eficiencia d=0.125 mm de acuerdo a la Ec. [1.21]	132
Tabla 4.31 Parámetros adimensionales en función de la eficiencia d=0.25 mm de acuerdo a la Ec. [1.21]	133
Tabla 4.32 Parámetros adimensionales en función de la eficiencia d=0.074 mm de acuerdo a la Ec. [1.30]	134
Tabla 4.33 Parámetros adimensionales en función de la eficiencia d=0.125 mm de acuerdo a la Ec. [1.30]	135
Tabla 4.34 Parámetros adimensionales en función de la eficiencia d=0.25 mm de acuerdo a la Ec. [1.30]	136
Tabla 4.35 Parámetros adimensionales en función de la eficiencia d=0.074 mm de acuerdo a la Ec. [1.39]	137
Tabla 4.36 Parámetros adimensionales en función de la eficiencia d=0.125 mm de acuerdo a la Ec. [1.39]	138
Tabla 4.37 Parámetros adimensionales en función de la eficiencia d=0.25 mm de acuerdo a la Ec. [1.39]	139
Tabla 4.38 Parámetros adimensionales en función de la eficiencia d=0.074 mm de acuerdo a la Ec. [1.48]	140

Tabla 4.39 Parámetros adimensionales en función de la eficiencia d=0.125 mm de acuerdo a la Ec. [1.48]	141
Tabla 4.40 Parámetros adimensionales en función de la eficiencia d=0.25 mm de acuerdo a la Ec. [1.48]	142
Tabla 4.41 Parámetros adimensionales en función de la eficiencia d=0.074 mm de acuerdo a la Ec. [1.57]	143
Tabla 4.42 Parámetros adimensionales en función de la eficiencia d=0.125 mm de acuerdo a la Ec. [1.57]	144
Tabla 4.43 Parámetros adimensionales en función de la eficiencia d=0.25 mm de acuerdo a la Ec. [1.57]	145
Tabla 4.44 Parámetros adimensionales en función de la eficiencia d=0.074 mm de acuerdo a la Ec. [1.66]	146
Tabla 4.45 Parámetros adimensionales en función de la eficiencia d=0.125 mm de acuerdo a la Ec. [1.66]	147
Tabla 4.46 Parámetros adimensionales en función de la eficiencia d=0.25 mm de acuerdo a la Ec. [1.66]	148
Tabla 4.47 Parámetros adimensionales en función de la eficiencia d=0.074 mm de acuerdo a la Ec. [1.75]	149
Tabla 4.48 Parámetros adimensionales en función de la eficiencia d=0.125 mm de acuerdo a la Ec. [1.75]	150
Tabla 4.49 Parámetros adimensionales en función de la eficiencia d=0.25 mm de acuerdo a la Ec. [1.75]	151

Tabla 4.50 Parámetros adimensionales en función de la eficiencia d=0.074 mm de acuerdo a la Ec. [1.82]	152
Tabla 4.51 Parámetros adimensionales en función de la eficiencia d=0.125 mm de acuerdo a la Ec. [1.82]	152
Tabla 4.52 Parámetros adimensionales en función de la eficiencia d=0.25 mm de acuerdo a la Ec. [1.82]	153
Tabla 4.53 Resumen ecuaciones que relacionan eficiencia con cada uno de los parámetros adimensionales.	192
Tabla 4.54 Cálculo del coeficiente a_o , d=0.074 mm de acuerdo a la Ec.[1.12]	200
Tabla 4.55 Cálculo del coeficiente a_o , d=0.125 mm de acuerdo a la Ec.[1.12]	203
Tabla 4.56 Cálculo del coeficiente a_o , d=0.25 mm de acuerdo a la Ec.[1.12]	205
Tabla 4.57 Cálculo del coeficiente a_o , d=0.074 mm de acuerdo a la Ec.[1.21]	207
Tabla 4.58 Cálculo del coeficiente a_o , d=0.125 mm de acuerdo a la Ec.[1.21]	208
Tabla 4.59 Cálculo del coeficiente a_o , d=0.25 mm de acuerdo a la Ec.[1.21]	209
Tabla 4.60 Cálculo del coeficiente a_o , d=0.074 mm de acuerdo a la Ec.[1.30]	210
Tabla 4.61 Cálculo del coeficiente a_o , d=0.125 mm de	

acuerdo a la Ec. [1.30]	211
Tabla 4.62 Cálculo del coeficiente a_o , d=0.25 mm de acuerdo a la Ec. [1.30]	212
Tabla 4.63 Cálculo del coeficiente a_o , d=0.074 mm de acuerdo a la Ec. [1.39]	213
Tabla 4.64 Cálculo del coeficiente a_o , d=0.125 mm de acuerdo a la Ec. [1.39]	214
Tabla 4.65 Cálculo del coeficiente a_o , d=0.25 mm de acuerdo a la Ec. [1.39]	215
Tabla 4.66 Cálculo del coeficiente a_o , d=0.074 mm de acuerdo a la Ec. [1.48]	216
Tabla 4.67 Cálculo del coeficiente a_o , d=0.125 mm de acuerdo a la Ec. [1.48]	217
Tabla 4.68 Cálculo del coeficiente a_o , d=0.25 mm de acuerdo a la Ec. [1.48]	218
Tabla 4.69 Cálculo del coeficiente a_o , d=0.074 mm de acuerdo a la Ec. [1.57]	219
Tabla 4.70 Cálculo del coeficiente a_o , d=0.125 mm de acuerdo a la Ec. [1.57]	220
Tabla 4.71 Cálculo del coeficiente a_o , d=0.25 mm de acuerdo a la Ec. [1.57]	221
Tabla 4.72 Cálculo del coeficiente a_o , d=0.074 mm de	

acuerdo a la Ec. [1.66]	222
Tabla 4.73 Cálculo del coeficiente a_o , d=0.125 mm de acuerdo a la Ec. [1.66]	223
Tabla 4.74 Cálculo del coeficiente a_o , d=0.25 mm de acuerdo a la Ec. [1.66]	224
Tabla 4.75 Cálculo del coeficiente a_o , d=0.074 mm de acuerdo a la Ec. [1.82]	225
Tabla 4.76 Cálculo del coeficiente a_o , d=0.125 mm de acuerdo a la Ec. [1.82]	226
Tabla 4.77 Cálculo del Coeficiente a_o , d=0.25 mm de acuerdo a la Ec. [1.82]	227
Tabla 4.78 Resumen de ecuaciones de eficiencia para cada diámetro.	240
Tabla 4.79 Cálculo de a_o para d=0.074, mm, d=0.125 mm y d=0.25 mm, según Ec. [1.12]. Método I.	243
Tabla 4.80 Cálculo de a_o para d=0.074, mm, d=0.125 mm y d=0.25 mm, según Ec. [1.21] Método I.	244
Tabla 4.81 Cálculo de a_o para d=0.074, mm, d=0.125 mm y d=0.25 mm, según Ec. [1.30] Método I.	245
Tabla 4.82 Cálculo de a_o para d=0.074, mm, d=0.125 mm y d=0.25 mm, según Ec. [1.39] Método I.	246
Tabla 4.83 Cálculo de a_o para d=0.074, mm, d=0.125 mm y	

d=0.25 mm, según Ec. [1.48] Método I.	247
Tabla 4.84 Cálculo de a_o para d=0.074, mm, d=0.125 mm y d=0.25 mm, según Ec. [1.57] Método I.	248
Tabla 4.85 Cálculo de a_o para d=0.074, mm, d=0.125 mm y d=0.25 mm, según Ec. [1.66] Método I.	249
Tabla 4.86 Cálculo de a_o para d=0.074, mm, d=0.125 mm y d=0.25 mm, según Ec. [1.82] Método I.	250
Tabla 4.87 Relación entre el diámetro de la partícula y los coeficientes y exponentes de las Ec. [4.38a], Ec.[4.38b] y Ec.[4.38c]	251
Tabla 4.88 Relación entre el diámetro de la partícula y los coeficientes y exponentes de las Ec. [4.39a], Ec.[4.39b] y Ec.[4.39c]	251
Tabla 4.89 Relación entre el diámetro de la partícula y los coeficientes y exponentes de las Ec. [4.40a], Ec.[4.40b] y Ec.[4.40c]	251
Tabla 4.90 Relación entre el diámetro de la partícula y los coeficientes y exponentes de las Ec. [4.41a], Ec.[4.41b] y Ec.[4.41c]	252
Tabla 4.91 Relación entre el diámetro de la partícula y los coeficientes y exponentes de las Ec. [4.42a], Ec.[4.42b] y Ec.[4.42c]	252
Tabla 4.92 Relación entre el diámetro de la partícula y los coeficientes y exponentes de las Ec. [4.43a], Ec.[4.43b] y Ec.[4.43c]	252
Tabla 4.93 Relación entre el diámetro de la partícula y los coeficientes y exponentes de las Ec. [4.44a], Ec.[4.44b] y Ec.[4.44c]	252

Tabla 4.94 Relación entre el diámetro de la partícula y los

coeficientes y exponentes de las Ec. [4.45a], Ec.[4.45b] y Ec.[4.45c]	253
Tabla 4.95 Ecuaciones para el cálculo de eficiencia, η .	270
Tabla 4.96. Ecuaciones propuestas para el cálculo de F_G	276
Tabla 4.97 Ecuaciones recomendadas para el calculo de eficiencia, η .	276

LISTA DE FIGURAS

Figura 2.1. Curva generalizada para la clasificación de mezclas y	
la determinación de la velocidad de asentamiento.	56
Figura 2.2. Comparación de regímenes en flujo de mezclas	59
Figura 2.3. Fuerzas que actúan sobre las partículas	62
Figura 2.4 Comparación entre valores de la velocidad de asentamiento reportadas por los autores y los valores experimentales dados por Cheng (1997a), con S=2.65.	64
Figura 3.1 Fotografía de la elaboración del ensayo de gravedad específica	74
Figura 3.2 Eficiencia de remoción vs. Relación longitud y diámetro	76
Figura 3.3 Relación de área de drenaje y área del sedimentador vs. Eficiencia de remoción	77
Figura 3.4 Curva de calibración del dosificador de sólidos, d = [0.074 mm -0.125 mm]	78
Figura 3.5 Curva de calibración del dosificador, d = [0.125mm - 0.25mm]	79
Figura 3.6 Curva de calibración del dosificador, d = [0.25mm - 0.6mm]	79

Figura 3.7 Variación de F _L con respecto a la concentración de sólidos y tamaño de partículas de arena y grava	81
Figura 3.8 Área de drenaje método geométrico	84
Figura 4.1. Instalación y sedimentador	88
Figura 4.2. Tanque de suministro y entrada al sedimentado	or 89
Figura 4.3. Caudal líquido de salida estabilizado	89
Figura 4.4. Dosificadores para suministrar el caudal sólido	90
Figura 4.5. Filtros para la recolección de sedimentos	90
Figura 4.6. Balanza de precisión para pesar el material sec	co 91

LISTA DE GRÁFICAS

Gráfica 4.1 Eficiencia vs. Concentración d=0.074 mm	154
Gráfica 4.2 Eficiencia vs. $Ln\left(\frac{L}{D}\right)$ Ln(L/D) d = 0.074mm	154
Gráfica 4.3 Eficiencia vs. $\frac{A_d}{D^2}$, d = 0.074 mm	154
Gráfica 4.4 Eficiencia vs. $\frac{\mu}{\rho_w V'_s D}$, d = 0.074 mm	155
Gráfica 4.5 Eficiencia vs. $\left(\frac{V_m}{V'_s}\right)$, d = 0.074 mm	155
Gráfica 4.6 Eficiencia vs. $\frac{gD}{V'_s^2}$, d = 0.074 mm	156
Gráfica 4.7 Eficiencia vs. $\frac{\mu}{\rho_w V_m D}$, d = 0.074 mm	156
Gráfica 4.8 Eficiencia vs. $\left(\frac{V'_s}{V_m}\right)$, d = 0.074 mm	157
Gráfica 4.9 Eficiencia vs. $\frac{gD}{V_m^2}$, d = 0.074 mm	157
Gráfica 4.10 Eficiencia vs. $Ln\left(\frac{L}{d}\right)$, d = 0.074 mm	158
Gráfica 4.11 Eficiencia vs. $\frac{A_d}{d^2}$, d = 0.074 mm	158
Gráfica 4.12 Eficiencia vs. $\frac{\mu}{\rho_w V_s d}$, d = 0.074 mm	159
Gráfica 4.13 Eficiencia vs. $\frac{gd}{{V'_s}^2}$, d = 0.074 mm	159
Gráfica 4.14 Eficiencia vs. $\frac{\rho_w V'_s d}{\mu}$, d = 0.074 mm	160
Gráfica 4.15 Eficiencia vs. $\frac{\rho_s V'_s d}{\mu}$, d = 0.074 mm	160

Gráfica 4.16 Eficiencia vs.
$$\frac{\rho_w V'_s D}{\mu}$$
, d = 0.074 mm 161

Gráfica 4.17 Eficiencia vs.
$$\frac{\rho_s V'_s D}{\mu}$$
, d = 0.074 mm 161

Gráfica 4.17 Eficiencia vs.
$$\frac{\rho_s V'_s D}{\mu}$$
, d = 0.074 mm 162

Gráfica 4.18 Eficiencia vs.
$$\left(\frac{D}{L}\right)$$
d = 0.074 mm 162

Gráfica 4.19 Eficiencia vs.
$$\frac{A_d}{L^2}$$
, d = 0.074 mm 163

Gráfica 4.20 Eficiencia vs.
$$\frac{\mu}{\rho_w V_m L}$$
, d = 0.074 mm 163

Gráfica 4.21 Eficiencia vs.
$$\frac{gL}{V_m^2}$$
, d = 0.074 mm 164

Gráfica 4.22 Eficiencia vs.
$$\frac{V'_s}{\sqrt{gd}}$$
, d = 0.074 mm 164

Gráfica 4.23 Eficiencia vs.
$$\frac{V_m}{\sqrt{gd}}$$
, d = 0.074 mm 165

Gráfica 4.24 Eficiencia vs.
$$\frac{A_d}{A_T}$$
, d = 0.074 mm 165

Gráfica 4.25 Eficiencia vs.
$$F_G$$
, d = 0.074 mm 166

Gráfica 4.26
$$F_G$$
 vs. F_L , d = 0.074 mm 166

Gráfica 4.28 Eficiencia vs.
$$Ln\left(\frac{L}{D}\right)$$
, d = 0.125 mm 167

Gráfica 4.29 Eficiencia vs.
$$\frac{A_d}{D^2}$$
, d = 0.125 mm 168

Gráfica 4.30 Eficiencia vs.
$$\frac{\mu}{\rho_w V_s D}$$
, d = 0.125 mm 168

Gráfica 4.31 Eficiencia vs.
$$\left(\frac{V_m}{V'_s}\right)$$
, d = 0.125 mm 169

Gráfica 4.32 Eficiencia vs.
$$\frac{gd}{{V'_s}^2}$$
, d = 0.125 mm 169

Gráfica 4.33 Eficiencia vs.
$$\frac{\mu}{\rho_w V_m D}$$
, d = 0.125 mm 170

Gráfica 4.34 Eficiencia vs.
$$\left(\frac{V'_s}{V_m}\right)$$
, d = 0.125 mm 170

Gráfica 4.35 Eficiencia vs.
$$\frac{gD}{V_m^2}$$
, d = 0.125 mm 171

Gráfica 4.36 Eficiencia vs.
$$\frac{\mu}{\rho_w V_s d}$$
, d = 0.125 mm 171

Gráfica 4.37 Eficiencia vs.
$$Ln\left(\frac{L}{d}\right)$$
, d = 0.125 mm 172

Gráfica 4.38 Eficiencia vs.
$$\frac{A_d}{d^2}$$
, d = 0.125 mm 172

Gráfica 4.39 Eficiencia vs.
$$\frac{gd}{V_s^{\prime}}$$
, d = 0.125 mm 173

Gráfica 4.40 Eficiencia vs.
$$\frac{\rho_w V'_s d}{\mu}$$
, d = 0.125 mm 173

Gráfica 4.41 Eficiencia vs.
$$\frac{\rho_s V_s d}{\mu}$$
, d = 0.125 mm 174

Gráfica 4.42 Eficiencia vs.
$$\frac{\rho_w V'_s D}{\mu}$$
, d = 0.125 mm 174

Gráfica 4.43 Eficiencia vs.
$$\frac{\rho_s V'_s D}{\mu}$$
, d = 0.125 mm 175

Gráfica 4.44 Eficiencia vs.
$$\left(\frac{D}{L}\right)$$
, d = 0.125 mm 175

Gráfica 4.45 Eficiencia vs.
$$\frac{A_d}{L^2}$$
, d = 0.125 mm 176

Gráfica 4.46 Eficiencia vs.
$$\frac{\mu}{\rho_w V_m L}$$
, d = 0.125 mm 176

Gráfica 4.47 Eficiencia vs.
$$\frac{gL}{V_m^2}$$
, d = 0.125 mm 177

Gráfica 4.48 Eficiencia vs.
$$\frac{V'_s}{\sqrt{gd}}$$
, d = 0.125 mm 177

Gráfica 4.49 Eficiencia vs.
$$\frac{V_m}{\sqrt{gd}}$$
, d = 0.125 mm 178

Gráfica 4.50 Eficiencia vs.
$$\frac{A_d}{A_T}$$
, d = 0.125 mm 178

Gráfica 4.51 Eficiencia vs.
$$F_G$$
, d = 0.125 mm 179

Gráfica 4.52
$$F_G$$
 vs. F_L , d = 0.125 mm 179

Gráfica 4.54 Eficiencia vs.
$$Ln\left(\frac{L}{D}\right)$$
, d = 0.25 mm 180

Gráfica 4.55 Eficiencia vs.
$$\frac{A_d}{D^2}$$
, d = 0.25 mm 181

Gráfica 4.56 Eficiencia vs.
$$\frac{\mu}{\rho_w V_s D}$$
, d = 0.25 mm 181

Gráfica 4.57 Eficiencia vs.
$$\left(\frac{V_m}{V'_s}\right)$$
, d = 0.25 mm 182

Gráfica 4.58 Eficiencia vs.
$$\frac{gD}{{V'_s}^2}$$
, d = 0.25 mm 182

Gráfica 4.59 Eficiencia vs.
$$\frac{\mu}{\rho_w V_m D}$$
, d = 0.25 mm 183

Gráfica 4.60 Eficiencia vs.
$$\left(\frac{V'_s}{V_m}\right)$$
, d = 0.25 mm 183

Gráfica 4.61 Eficiencia vs.
$$\frac{gD}{V_m^2}$$
, d = 0.25 mm 184

Gráfica 4.62 Eficiencia vs.
$$Ln\left(\frac{L}{d}\right)d = 0.25 \text{ mm}$$
 184

Gráfica 4.63 Eficiencia vs.
$$\frac{A_d}{d^2}$$
, d = 0.25 mm 185

Gráfica 4.64 Eficiencia vs.
$$\frac{\mu}{\rho_w V'_s d}$$
, d = 0.25 mm 185

Gráfica 4.65 Eficiencia vs.
$$\frac{gd}{V'_s^2}$$
, d = 0.25 mm 186

Gráfica 4.66 Eficiencia vs.
$$\frac{\rho_w V_s d}{\mu}$$
, d = 0.25 mm 186

Gráfica 4.67 Eficiencia vs.
$$\frac{\rho_s V_s d}{\mu}$$
, d = 0.25 mm 187

Gráfica 4.68 Eficiencia vs.
$$\frac{\rho_w V'_s D}{\mu}$$
, d = 0.25 mm 187

Gráfica 4. 69 Eficiencia vs.
$$\frac{\rho_s V'_s D}{\mu}$$
, d = 0.25 mm 188

Gráfica 4.70 Eficiencia vs.
$$\left(\frac{D}{L}\right)$$
, d = 0.25 mm 188

Gráfica 4.71 Eficiencia vs.
$$\frac{\mu}{\rho_w V_m L}$$
, d = 0.25 mm 189

Gráfica 4.72 Eficiencia vs.
$$\frac{gL}{V_m^2}$$
, d = 0.25 mm 189

Gráfica 4.73 Eficiencia vs.
$$\frac{V'_s}{\sqrt{gd}}$$
, d = 0.25 mm 190

Gráfica 4.74 Eficiencia vs.
$$\frac{V_m}{\sqrt{gd}}$$
, d = 0.25 mm 190

Gráfica 4.75 Eficiencia vs.
$$\frac{A_d}{A_T}$$
, d = 0.25 mm 191

Gráfica 4.76 Eficiencia vs.
$$F_G$$
, d = 0.25 mm 191

Gráfica 4.77
$$F_G$$
 vs. F_L , d = 0.25 mm 192

Gráfica 4.78 Error Promedio (%) vs. a_o , d = 0.074 mm de acuerdo	
a la Ec. [1.12]	228
Gráfica 4.79 Error Promedio (%) vs. a_o , d = 0.125 mm de acuerdo	
a laEc. [1.12]	229
Gráfica 4.80 Error Promedio (%) vs a_o , d = 0.25 mm de acuerdo	

229

a la Ec. [1.12]

Gráfica 4.81 Error Promedio (%) vs. a_o , a la Ec. [1.21]	d = 0.074 mm de acuerdo 23	0
Gráfica 4.82 Error Promedio (%) vs. a _o , a la Ec. [1.21]	d = 0.125 mm de acuerdo 23	0
Gráfica 4.83 Error Promedio (%) vs. a _o , a la Ec. [1.21]	d = 0.25 mm de acuerdo 23	1
Gráfica 4.84 Error Promedio (%) vs. a_0 , a la Ec. [1.30]	d = 0.074 mm de acuerdo 23	1
Gráfica 4.85 Error Promedio (%) vs. a_o , a la Ec. [1.30]	d = 0.125 mm de acuerdo 23	2
Gráfica 4.86 Error Promedio (%) vs. a _o , a la Ec. [1.30]	d = 0.25 mm de acuerdo 23	2
Gráfica 4.87 Error Promedio (%) vs. a _o , a la Ec. [1.39]	d = 0.074 mm de acuerdo 23	3
Gráfica 4.88 Error Promedio (%) vs. a _o , a la Ec. [1.39]	d = 0.125 mm de acuerdo 23	3
Gráfica 4.89 Error Promedio (%) vs. a_o , a la Ec. [1.39]	d = 0.25 mm de acuerdo 23	4
Gráfica 4.90 Error Promedio (%) vs. a _o , a la Ec. [1.48]	d = 0.074 mm de acuerdo 23	4
Gráfica 4.91 Error Promedio (%) vs. a _o , a la Ec. [1.48]	d = 0.125 mm de acuerdo 23	5
Gráfica 4.92 Error Promedio (%) vs. a _o ,	d = 0.25 mm de acuerdo	

a la Ec. [1.48]	235
Gráfica 4.93 Error Promedio (%) vs. a_o , d = 0.074 mm de acuerdo a la Ec. [1.57]	236
Gráfica 4.94 Error Promedio (%) vs. a_o , d = 0.125 mm de acuerdo a la Ec. [1.57]	236
Gráfica 4.95 Error Promedio (%) vs. a_o , d = 0.25 mm de acuerdo a la Ec. [1.57]	237
Gráfica 4.96 Error Promedio (%) vs. a_o , d = 0.074 mm de acuerdo a la Ec. [1.66]	237
Gráfica 4.97 Error Promedio (%) vs. a_o , d = 0.125 mm de acuerdo a la Ec. [1.66]	238
Gráfica 4.98 Error Promedio (%) vs. a_o , d = 0.25 mm de acuerdo a la Ec. [1.66]	238
Gráfica 4.99 Error Promedio (%) vs. a_o , d = 0.074 mm de acuerdo a la Ec. [1.82]	239
Gráfica 4.100 Error Promedio (%) vs. a_o , d = 0.125 mm de acuerdo a la Ec. [1.82]	239
Gráfica 4.101 Error Promedio (%) vs. a_o , d = 0.25 mm de acuerdo a la Ec. [1.82]	240
Gráfica 4.102 a_{o1} vs. d	253
Gráfica 4.103 Exponente de Cvs. d	254

Gráfica 4.104 Exponente de
$$Ln\left(\frac{L}{D}\right)$$
 vs. d 254

Gráfica 4.105 Exponente de
$$\frac{A_d}{D^2}$$
 vs. *d* 255

Gráfica 4.106 Exponente de
$$\frac{\mu}{\rho_w V_s D}$$
 vs. *d* 255

Gráfica 4.107 Exponente de
$$\frac{V_m}{V'_s}$$
 vs. *d* 256

Gráfica 4.108 Exponente de
$$\frac{gD}{{V'_s}^2}$$
 vs. *d* 256

Gráfica 4.109
$$a_{o2}$$
 vs. d 257

Gráfica 4.110 Exponente
$$\frac{\mu}{\rho_w V_m D}$$
 vs *d* 257

Gráfica 4.111 Exponente
$$\frac{V'_s}{V_m}$$
 vs *d* 258

Gráfica 4.112 Exponente
$$\frac{gD}{V_m^2}$$
 vs. *d* 258

Gráfica 4.113
$$a_{o3}$$
 vs. d 259

Gráfica 4.114 Exponente
$$Ln\left(\frac{L}{d}\right)$$
 vs. *d* 259

Gráfica 4.115 Exponente
$$\frac{A_d}{d^2}$$
 vs. *d* 260

Gráfica 4.116 Exponente
$$\frac{\mu}{\rho_w V_s d}$$
 vs *d* 260

Gráfica 4.117 Exponente
$$\frac{gd}{V'_s}$$
 vs. d 261

Gráfica 4.119 Exponente
$$\frac{\rho_w V_s d}{\mu}$$
 vs. *d* 262

Gráfica 4.120 Exponente
$$\frac{\rho_s V_s d}{\mu}$$
 vs. d 262

Gráfica 4.121
$$a_{o5}$$
 vs. *d* 263

Gráfica 4.122 Exponente
$$\frac{\rho_w V_s D}{\mu}$$
 vs. *d* 263

Gráfica 4.123 Exponente
$$\frac{\rho_s V_s D}{\mu}$$
 vs. *d* 264

Gráfica 4.125 Exponente
$$\frac{D}{L}$$
 vs. *d* 265

Gráfica 4.126 Exponente
$$\frac{A_d}{L^2}$$
 vs. *d* 265

Gráfica 4.127 Exponente
$$\frac{\mu}{\rho_w V_m L}$$
 vs. *d* 266

Gráfica 4.128 Exponente
$$\frac{gL}{V_m^2}$$
 vs. *d* 266

Gráfica 4.130 Exponente
$$\frac{V_s}{\sqrt{gd}}$$
 vs. *d* 267

Gráfica 4.131 Exponente
$$\frac{V_m}{\sqrt{gd}}$$
 vs. *d* 268

Gráfica 4.133 Exponente
$$\frac{A_d}{A_t}$$
 vs. *d* 269

Gráfica 4.134 Exponente
$$F_G$$
 vs. d 269

LISTA DE ANEXOS

Anexo A. Ubicación general de la zona de extracción de sedimentos	291
Anexo B. Ubicación de la zona de extracción de sedimentos	292
Anexo C. Mapa topográfico de la ubicación de la zona de extracción de sedimentos	293
Anexo D. Fotografía de extracción de los sedimentos	294
Anexo E. Fotografía del lecho de la quebrada de la vereda Dolores	294
Anexo F. Fotografía de la quebrada de la vereda Dolores	295
Anexo G. Fotografía de sedimentos diámetro de partícula pasante tamiz No 16 y retenido en tamiz No 30	295
Anexo H. Fotografía de sedimentos diámetro de partícula pasante tamiz No 30 y retenido en tamiz No 60	296
Anexo I. Fotografía de sedimentos diámetro de partícula pasante tamiz No 60 y retenido en tamiz No 120	296
Anexo J. Ensayo de peso específico de sólidos- método del picnómetro d = 0,074 mm	297
Anexo K. Ensayo de peso específico de sólidos- método del	

picnómetro d = 0,125 mm	298
Anexo L. Ensayo de peso específico de sólidos- método del picnómetro d = 0,25 mm	299
Anexo M. Datos curva de calibración dosificador de sólidos d = [0.074 mm -0.125 mm]	300
Anexo N. Datos curva de calibración dosificador de sólidos d = [0.125 mm-0.25 mm]	301
Anexo O. Datos curva de calibración dosificador de sólidos d = [0.25 mm - 0.6 mm]	302
Anexo P. Sedimentador de sección circular instalado.	303
Anexo Q. Constante de sedimentos en las tolvas	303
Anexo R. Proceso de sedimentación	304
Anexo S. Flujo de mezcla (agua + sedimentos)	304
Anexo T. Detalle de sedimentación	305
Anexo U. Detalle de sedimentación en tolva	305
Anexo. V. Plano general del sedimentador	306

CONTENIDO

	pág.
INTRODUCCIÓN	30
OBJETIVOS	33
OBJETIVO GENERAL	33
OBJETIVOS ESPECÍFICOS	33
1. ANÁLISIS DIMENSIONAL DE LA EFICIENCIA	34
INTRODUCCIÓN	34
1.1. ANÁLISIS DIMENSIONAL	34
1.2 COMENTARIOS FINALES.	50
2. VELOCIDAD CRÍTICA DE DEPOSITACIÓN	53
INTRODUCCIÓN	53
2.1 SEDIMENTOS Y MEZCLAS	53
2.1.1 Características de los sedimentos	53
2.1.2 Características de las mezclas	55

2.2 CLASES DE FLUJO	57
2.3 VELOCIDAD DE SEDIMENTACIÓN	59
2.4 COEFICIENTE DE ARRASTRE PARA PARTÍCULAS INDIVIDUALES	62
2.5 VELOCIDAD DE SEDIMENTACIÓN EN PARTÍCULAS INDIVIDUALES	64
2.6 VELOCIDAD DE SEDIMENTACIÓN EN MEZCLAS	66
2.7 VELOCIDAD CRÍTICA DE DEPOSITACIÓN	68
2.8 PROCEDIMIENTO CÁLCULO DE LA VELOCIDAD DE DEPOSITACIÓN	70
2.9 EJEMPLO DE CÁLCULO DE VELOCIDAD DE DEPOSITACIÓN	70
2.10 COMENTARIOS FINALES	72
3. DISEÑO DE MONTAJES	73
3.1 SEDIMENTOS NATURALES	73
3.1.1 Gravedad específica de los sedimentos naturales	74
3.2 CÁLCULO DEL DIÁMETRO DEL SEDIMENTADOR	74
3.3 CÁLCULO DE LONGITUD DEL SEDIMENTADOR Y ÁREA DE DRENAJE	76

3.4 CÁLCULO DEL ÁREA DE DRENAJE DE LAS TOLVAS RECOLECTORAS	77
3.5 CÁLCULO DEL DIÁMETRO DE DOSIFICACIÓN DE SEDIMENTOS NATURALES	78
3.6 DIMENSIONAMIENTO DEL MODELO No.1	80
3.6.1 Características de partícula a sedimentar	80
3.6.2 Concentración	80
3.6.3 Eficiencia de remoción, η	80
3.7 COMENTARIOS FINALES	84
4. EXPERIMENTACIÓN	86
4.1 LABORATORIO	86
4.1.1 Nombre del ensayo	86
4.1.2 Objetivo	86
4.1.3 Marco Teórico	86
4.1.4 Descripción de la instalación	87
4.1.5 Desarrollo del experimento	88
4.1.6 Tamaño de muestras o número de réplicas	91
4.2 TOMA Y PRESENTACIÓN DE DATOS	93

4.3 PROCESAMIENTO DE DATOS	102
4.3.1 Media y desviación estándar	102
4.3.2 Cálculo de la eficiencia en relación con la longitud	112
4.3.3 Cálculo de Variables de las Partículas y del Flujo	116
4.3.4 Parámetros Adimensionales referentes al tubo principal del sedimentador, de acuerdo a la concentración en función de la Eficiencia	118
4.3.5 Parámetros Adimensionales en función de la eficiencia	126
4.3.6 Relaciones entre eficiencia con cada uno de los parámetros adimensionales	153
4.3.7 Deducción de funciones adimensionales	198
4.3.8 Ecuaciones de eficiencia en función de los parámetros adimensionales	240
4.4 COMENTARIOS FINALES	276
~ ~	
5. METODOLOGÍA DE DISEÑO	278
5.1 PROCEDIMIENTO I	278
5.2 DISEÑO PARA d = 0.074 mm	279
5.3 DISEÑO PARA d = 0.125 mm	279
5.4 DISEÑO PARA d = 0.25 mm	280

5.5 EJEMPLO DE DISEÑO	280
5.6 COMENTARIOS FINALES	283
6. CONCLUSIONES	284
7. RECOMENDACIONES	287
BIBLIOGRAFÍA	289
ANEXOS	291

"Las ideas y conclusiones aportadas en el Trabajo de grado, son responsabilidad exclusiva del Autor."

Artículo 1º del Acuerdo No 32 de Octubre 11 de 1966 emanado por el Honorable Concejo Directivo de la Universidad de Nariño.
Nota de aceptación:

Jurado

Jurado

San Juan de Pasto, Mayo 28 del 2006

AGRADECIMIENTOS

Al Ingeniero HERNÁN JAVIER GÓMEZ ZAMBRANO Magíster en Recursos Hidráulicos, director de esta investigación, quien además nos guió en el transcurso del desarrollo de nuestro trabajo, transmitiendo sus conocimientos, dedicación y voluntad.

Al Ingeniero Roberto, encargado del laboratorio de Hidráulica, por su apoyo, confianza y por su orientación.

A Gustavo Ponce, auxiliar del laboratorio de Suelos, por su apoyo y colaboración para el desarrollo de la experimentación.

A todos nuestros compañeros y amigos que nos brindaron una mano y un apoyo para continuar adelante.

A los ingenieros y docentes vinculados de alguna manera a la Universidad de Nariño, y en particular al Programa de Ingeniería Civil, por brindarnos las herramientas para la elaboración de este trabajo y para enfrentarnos a nuestra vida profesional.

Dedicado a:

Aquella fuerza suprahumana que me despierta todos los días, y que me ha hecho la mujer más afortunada.

Mis padres Amparo Rosero y Raymundo Narváez, quienes me brindaron todo lo que hoy soy y tengo. Y mi hermano, Victor Narváez, quien se convirtió en el hijo a quien guiar. La familia Casanova Rosero, por brindarme otro hogar y por demostrarme su apoyo incondicional.

Toda mi familia y a todos mis compañeros y amigos que siempre estuvieron ahí para mí.

Mi compañera de tesis y mi amiga Anamaría Santacruz, quien se convirtió en un motivo más, Yа su bella familia por acogerme y abrirme las puertas de su vida.

RESUMEN

El trabajo de investigación que se presenta acerca de sedimentadores de flujo a presión de sección circular, se reconoce como una innovación al tradicional proceso de sedimentación por medio de tanques convencionales, esta nueva propuesta se puede desarrollar gracias al análisis de las variables de influencia que se presentan en el flujo de fluidos a presión, las cuales son analizadas de manera detallada para su posterior estudio.

Se tiene como base la comprensión del fenómeno de la Velocidad crítica de depositación en flujos a presión, estudiada entre otros autores por Gómez, Kökpinar y Parzonka, y se combina con otro tipo de variables del fluido, sedimentos y tubería para conformar ecuaciones que expliquen el comportamiento que se tiene al someter una mezcla de sedimentos naturales y agua a presión en un conducto circular.

Después de la evaluación experimental de dichas ecuaciones se obtiene como resultado una metodología de diseño, valida para los sedimentadores en estudio, y se convierte en parte esencial para futuras investigaciones sobre el transporte de sedimentos naturales o de otro tipo de materiales.

ABSTRACT

The proposed present consists on the study of hydraulics separators of natural sands immersed in water, forming mixtures settling, transported in conduits of circular section under pressure. The base of this study is the critical deposit velocity VCD studied in circular conduits, which has been studied with enough depth and by means of which is possible to establish design parameters for the sand trap in flow under pressure with laminar and turbulent regimen.

Among the authors that have studied the separator's phenomenon Gómez (2006a) and Gómez (2006b) who carries out a preliminary investigation with small laboratory prototypes and realizes a mathematical model also. The study of the VCD in a pressure flow has also been studied by Gómez (2002) who carries out a theoreticalexperimental analysis of the VCD, outlining new equations with low errors in the prediction for natural sand. Kökpinar (2001) who to collect experimental data for natural sand and carries out experiments for other materials as, plastics, coal, tuffs, pvc, etc., proposing an empiric equation with very good results. Parzonka(1980), collects great information of experimental data of the VCD, Parzonka doesn't propose mathematical expressions, his analysis is very important for understanding this phenomenon.

The purpose of this investigation is the study of the variables that have influence in the process of deposit of solid particles immerse in water transported by pressure, with base in the equations proposed for the VCD, and to establish a relationship between the implied variables and the removal efficiency, η . For that, It will use the comparison among the equations for VCD proposed by diverse researchers with experimental data, found by Gómez (2006

The methodology consists on building several prototypes of small dimensions, in which the sedimentation efficiency is measured, in function of the properties of the

solids, the fluid and the main tube. As a result it is sought to obtain a design methodology from the sand tramp to pressure that it relate the different parameters dimensionless and which can be used with a good approach degree for the practical design in engineering

INTRODUCCIÓN

La presente propuesta consiste en el estudio de separadores hidráulicos de sedimentos naturales inmersos en agua, formando mezclas sedimentables, transportadas en conductos de sección circular sometidos a presión. La base de este estudio es la velocidad crítica de depositación VCD que se presenta en conductos circulares, la cual ha sido estudiada con suficiente profundidad y por medio de la cual es posible establecer parámetros de diseño para los separadores en flujo a presión con régimen laminar y turbulento.

El presente tema forma parte de una investigación más amplia, enmarcada en la línea de investigación de transporte de mezclas y flujo torrencial; donde para los separadores hidráulicos se usa la teoría de transporte de mezclas para explicar su comportamiento.

Entre los autores que han estudiado el fenómeno de separadores se encuentra Gómez (2006a)¹ y Gómez (2006b)², quien realiza una investigación preliminar con pequeños prototipos de laboratorio y logra plantear un modelo matemático. El estudio de la VCD en un flujo a presión también ha sido estudiada por Gómez (2002)³, quien realiza un análisis teórico-experimental de la VCD, planteando nuevas ecuaciones con bajos errores en la predicción para sedimentos naturales. Kökpinar (2001)⁴, quien recopila datos experimentales para sedimentos naturales y realiza experimentos para otros materiales como, plásticos, carbón, tobas volcánicas, pvc, etc., proponiendo a la vez una ecuación empírica con muy buenos

¹ GÒMEZ, Z. Hernán. J. (2006). "Separadores Hidráulicos de Partículas en Tubos con Flujo a Presión". XVII Seminario Nacional de Hidráulica e Hidrología". Popayán. Cauca. Universidad del Cauca. Colombia. 2006.

GÒMEZ, Z. Hernán. J. (2006). "estudio de separadores hidráulicos de partículas con flujo a presión en tubos rectos de sección circular". XXII Congreso Latinoamericano de Hidráulica". Guayana. Estado de Bolívar. Venezuela. 2006. ³ CÓMEZ 7 Lorgán L (2000). GÒMEZ, Z. Hernán. J. (2002). Hidrotransporte de sedimentos en tubos horizontales a presión: Estudio de la velocidad

crítica de depositación". Trabajo de investigación para optar el título de Magíster en Recursos Hidráulicos. ⁴ **KOKPINAR**, A.-M. & Gogus M. "Crítical Velocity in Slurry Transporting Horizontal Pipes". Journal of Hydraulic Engineering. Vol. 127. No 9. September. 2001. Pp 763-771. ASCE.

resultados. Parzonka $(1980)^5$, recopila gran información de datos experimentales de la **VCD**, analizando la variación del Número de Froude Densimétrico, (F_L), con la concentración volumétrica C de partículas sólidas; a pesar de que Parzonka no propone expresiones matemáticas, su análisis es muy importante para la comprensión de este fenómeno.

⁵ **PARZONKA**, W; Kenchington, Charles, J.M. (1981). "Hydrotransport of solids in horizontal pipes: effects of solids concentration and particle size on deposit velocity". Canadian Journal of Chemical Engineering. (Ottawa). 1981. Vol. 59, No. 3, pages 291.296. [6 pp.]

El propósito de esta investigación es el estudio de las variables que tienen influencia en el proceso de depositación de partículas sólidas inmersas en agua transportada a presión, con base en las ecuaciones propuestas para la VCD, y establecer una relación entre las variables implicadas y la eficiencia de remoción, **η**. Para ello se tomará la comparación entre las ecuaciones para VCD propuestas por diversos investigadores con datos experimentales, encontrados por Gómez (2006) quien encuentra errores de predicción entre los rangos de 15% hasta 158% y selecciona los procedimientos que producen errores por debajo de 25%.

La metodología consiste en construir varios prototipos de pequeñas dimensiones, en los cuales se mide la eficiencia de sedimentación, en función de las propiedades de los sólidos, del fluido y del tubo principal. Como resultado se pretende obtener una metodología de diseño de los desarenadores a presión, que relacionen los diferentes parámetros adimensionales y la cual puede ser usada con un buen grado de aproximación para el diseño práctico en ingeniería.

OBJETIVOS

OBJETIVO GENERAL

Estudiar las variables de influencia en la eficiencia de remoción en desarenadores con flujo a presión en conductos circulares, para sedimentos naturales en el rango de mezclas sedimentables, por medio de ensayos prácticos en laboratorio.

OBJETIVOS ESPECÍFICOS

- Identificar los procedimientos matemáticos existentes en el flujo de mezclas que puedan ser útiles en el proceso de separación de partículas.
- Diseño y construcción de pequeños prototipos que permitan la evaluación de la eficiencia de remoción en función de parámetros adimensionales.
- Elaborar una metodología de diseño para efectos prácticos en ingeniería de desarenadores a presión.

1. ANÁLISIS DIMENSIONAL DE LA EFICIENCIA

INTRODUCCIÓN

El análisis dimensional es una herramienta útil en la interpretación y análisis de cierto tipo de fluidos, llegando incluso a hablar de los fluidos complejos, los cuales pueden ser solucionados de manera aproximada por métodos analíticos como el que se trata en este capítulo.

Este análisis es una expresión adimensional básica, sistemática y matemáticamente ordenada, así mismo, toda vez que sea posible se desarrolla, al menos aproximadamente la interrelación funcional de los diferentes miembros de esta expresión.

Los principios del análisis dimensional llevan a incorporar las variables que la experiencia en determinado tema ha demostrado como esenciales en un máximo de información hasta llegar a la realización de un mínimo de experimentos, el cuál se denota como el principal objetivo reduciendo de esta manera significativamente los gastos en dinero y en tiempo.

En este capítulo se hace una análisis detallado, (usando la técnica del análisis dimensional), de las variables que influyen en la eficiencia de separadores en flujo a presión de partículas discretas inmersas en agua, encontrando diversos parámetros adimensionales, los cuales proporcionan las relaciones funcionales adimensionales que pueden ser calibradas con datos experimentales en laboratorio.

1.1 ANÁLISIS DIMENSIONAL

Siguiendo lo expuesto por Streeter (1996), Los parámetros adimensionales ayudan en forma significativa a dar mas luces acerca de los fenómenos que se suscitan alrededor del flujo de fluidos, es por ello que el *análisis dimensional* incluido dentro de esta investigación es de vital importancia antes de considerar las diferentes ecuaciones propuestas, porque es posible llevar a cabo un número menor de ensayos generalizando los resultados, lo que conlleva por supuesto a un ahorro significativo en tiempo y dinero, además permite una presentación compacta y fácil de entender.

El teorema fundamental en que se basa el análisis dimensional es el llamado teorema π (PI) o de Vaschy-Buckingham, el cual puede enunciarse así:

Toda relación dimensionalmente homogénea $F(A_1, A_2, A_3, ..., A_n) = 0$, que incluye *n* cantidades en las cuales hay *m* dimensiones susceptibles de ser ordenadas en *n* - *m* parámetros adimensionales, monómicas e independientes, implica la existencia de otra relación de la forma: $f(\pi_1, \pi_2, \pi_3, ..., \pi_{n-m})=0$, resultado de grupos distintos de la forma $\pi_1 = A_1^{xi} A_2^{yi} A_3^{zi} A_4$.

Un sistema de unidades común utilizado generalmente en el **análisis dimensional** es el sistema MLTO donde **M** es la dimensión de masa, **L** la dimensión de longitud, **T** la dimensión de tiempo y **O** es la dimensión de temperatura.

Después de un análisis del problema se encuentra la siguiente lista de parámetros que podrían intervenir en la eficiencia de remoción en el flujo de una mezcla en tubos a presión de sección circular.

• Parámetros dimensionales

Variables de la tubería

- 1. Diámetro de la tubería, D
- 2. Longitud de la tubería, L
- 3. Área de drenaje del sedimentador, A_d
- 4. Rugosidad del material de la tubería, K

Variables del fluído

- 1. Densidad del fluído, ρ_{ω}
- 2. Viscosidad dinámica, *µ*
- 3. Viscosidad cinemática, v_f
- 4. Peso específico del líquido, γ_{ω}

Variables de los sedimentos

- 1. Densidad de los sólidos, ρ_s
- 2. Tamaño de las partículas sólidas, d.
- Velocidad de sedimentación de las partículas afectada por la concentración, V's

Variables del flujo

- 1. Velocidad de la mezcla, V_m
- 2. Caudal Líquido, QL
- 3. Caudal de sólidos, Qs
- 4. Caudal de la mezcla, Q_m
- Constantes dimensionales
- 1. Aceleración de la gravedad, g

• Parámetros adimensionales

- 1. Desviación estándar geométrica de los sedimentos, σ_s
- 2. Coeficiente de uniformidad, *C*_u
- 3. Concentración volumétrica, C
- 4. Inclinación del tubo, *θ*
- 5. Eficiencia de remoción de partículas, η

Se considera ciertas variables involucradas con otras por lo que se omitirán para el proceso del análisis dimensional, es el caso particular de las variables del fluido, la viscosidad cinemática v se relaciona directamente con la viscosidad dinámica μ y la densidad del fluido ρ_{ω} , ($v_f = \mu / \rho_{\omega}$), y el peso específico del líquido γ_{ω} que se puede obtener a partir de la densidad del fluido ρ_{ω} ; dentro de las variables del flujo se omitirá el caudal Q_m ya que esta variable está en función de la velocidad de la mezcla V_m ; por último en los parámetros adimensionales no se va a utilizar el coeficiente de uniformidad debido a que se puede cuantificar la uniformidad de los sedimentos con la desviación estándar σ_s .

En la siguiente tabla se muestra las variables dimensionales y adimensionales que se incluyen para el análisis dimensional y sus respectivas unidades de medida

 Tabla 1. Variables que influyen en el análisis dimensional de la eficiencia

Cantidad	Dimensiones
1. Diámetro de la tubería, D	L
2. Longitud de la tubería, <i>L</i>	L
3. Área de drenaje del sedimentador, A _d	L ²
4. Rugosidad del material de la tubería, <i>K</i>	L
5. Densidad del fluído, ρ_{ω}	ML ⁻³
6. Viscosidad dinámica, µ	ML ⁻¹ T ⁻¹
7. Densidad de los sólidos, ρ_s	ML ⁻³
8. Tamaño de las partículas sólidas, d	L
9. Velocidad de sedimentación de las partículas afectada por la	LT ⁻¹
concentración, V's	
10. Velocidad de la mezcla, V _m	LT ⁻¹
11. Fuerza gravitacional, <i>g</i>	LT ⁻²
12. Desviación estándar geométrica de los sedimentos, σ_s	[-]
13. Concentración volumétrica, C	[-]
14. Inclinación del tubo, <i>θ</i>	[-]
15. Eficiencia de remoción de partículas, η	[-]

Utilizando el teorema π o de Buckingham se tiene el siguiente procedimiento:

1. Se establece la relación funcional dimensional para la eficiencia η:

$$\eta = f(D, L, A_d, K, \rho_{\omega}, \mu, \rho_{s}, d, V'_{s}, V_m, g)$$
 [1.1]

Donde η está en función f de los parámetros adimensionales en mención, en la cuall además no se incluyen σ_s , C, θ , porque éstos por sí solos son parámetros adimensionales.

2. Se determina el número de parámetros adimensionales (N π).

$$N\pi = n - m$$
[1.2]

Donde *n* es el número de variables físicas, en este caso *n* = 11, debido a que σ_s , *C*, θ , η son variables adimensionales, cada una de ellas es un parámetro π ; *m* es igual al número de dimensiones fundamentales involucradas en los parámetros dimensionales, en este caso *m* = 3 (el problema incluye las dimensiones de masa *M*, longitud *L*, y tiempo *T*)

$$N\pi = 11 - 3 = 8$$
 [1.3]

3. Se eligen las variables repetitivas.

El número de variables repetitivas es igual al número de variables involucradas, es decir m = 3, las cuales deben contener en conjunto las tres (m) dimensiones básicas. Para este caso se toma: ρ_{ω} , una propiedad del fluido; V_s , una característica de los sedimentos y D, una dimensión geométrica importante, para combinarlos con los otros parámetros dimensionales y formar los parámetros adimensionales ($\pi 1... \pi 8$),

4. Se conforma cada uno de los parámetros adimensionales.

• Parámetro π 1: Usando la longitud de la tubería (L)

$$\pi 1 = \rho_{\omega}^{x1} V'_{s}^{y1} D^{z1} L \qquad [1.4a]$$

Sustituyendo las dimensiones se llega a:

$$\pi_1 = \left[\frac{M}{L^3}\right]^{x_1} \left[\frac{L}{T}\right]^{y_1} \left[L\right]^{z_1} \left[L\right] = M^{\circ} L^{\circ} T^{\circ}$$
[1.4b]

Igualando los exponentes: x1=0; -3x1+y1+z1+1=0; -y1=0; y solucionando el sistema se tiene: x1=0; y1=0 y z1=-1, obteniéndose el siguiente parámetro adimensional:

$$\pi_1 = \frac{L}{D}$$
[1.4c]

• Parámetro π2: Usando el área de drenaje del sedimentador (A_d)

$$\pi 2 = \rho_{\omega}^{x^2} V'_s^{y^2} D^{z^2} A_d$$
 [1.5a]

Sustituyendo las dimensiones se llega a:

$$\pi_{2} = \left[\frac{M}{L^{3}}\right]^{x^{2}} \left[\frac{L}{T}\right]^{y^{2}} [L]^{z^{2}} [L^{2}] = M^{o} L^{o} T^{o}$$
[1.5b]

Igualando los exponentes: x2=0; -3x2+y2+z2+2=0; -y2=0; y solucionando el sistema se tiene: x2=0; y2=0 y z2=-2, obteniéndose el siguiente parámetro adimensional:

$$\pi_2 = \frac{Ad}{D^2}$$
[1.5c]

Parámetro π 3: Usando la rugosidad del material de la tubería, (K)

$$\pi 3 = \rho_{\omega}^{x^{3}} V'_{s}^{y^{3}} D^{z^{3}} K$$
 [1.6a]

Sustituyendo las dimensiones se llega a:

$$\pi_{3} = \left[\frac{M}{L^{3}}\right]^{x_{3}} \left[\frac{L}{T}\right]^{y_{3}} [L]^{z_{3}} [L] = M^{o} L^{o} T^{o}$$
[1.6b]

Igualando los exponentes: x3=0; -3x3+y3+z3+1=0; -y3=0; y solucionando el sistema se tiene: x3=0; y3=0 y z3=-1, obteniéndose el siguiente parámetro adimensional:

$$\pi_3 = \frac{K}{D}$$
[1.6c]

Parámetro π4: Usando la viscosidad dinámica, μ

$$\pi 4 = \rho_{\omega}^{x4} V'_{s}^{y4} D^{z4} \mu$$
 [1.7a]

Sustituyendo las dimensiones se llega a:

$$\pi_{4} = \left[\frac{M}{L^{3}}\right]^{x4} \left[\frac{L}{T}\right]^{y4} \left[L\right]^{z4} \left[\frac{M}{LT}\right] = M^{\circ} L^{\circ} T^{\circ}$$
[1.7b]

Igualando los exponentes: x4+1=0; -3x4+y4+z4-1=0; -y4-1=0; y solucionando el sistema se tiene: x4=-1; y4=-1 y z4=-1, obteniéndose el siguiente parámetro adimensional:

$$\pi_4 = \frac{\mu}{\rho_w V'_s D}$$
[1.7c]

• Parámetro π5: Usando la densidad de los sólidos, ρ_s

$$\pi 5 = \rho_{\omega}^{x5} V'_{s}^{y5} D^{z5} \rho_{s}$$
 [1.8a]

Sustituyendo las dimensiones se llega a:

$$\pi_{5} = \left[\frac{M}{L^{3}}\right]^{x5} \left[\frac{L}{T}\right]^{y5} \left[L\right]^{z5} \left[\frac{M}{L^{3}}\right] = M^{\circ} L^{\circ} T^{\circ}$$
[1.8b]

Igualando los exponentes: x5+1=0; -3x5+y5+z5-3=0; -y5=0; y solucionando el sistema se tiene: x5=-1; y5 =0 y z5= 0, obteniéndose el siguiente parámetro adimensional:

$$\pi_5 = \frac{\rho_s}{\rho_w}$$
[1.8c]

• Parámetro π6: Usando el tamaño de las partículas sólidas, d

$$\pi 6 = \rho_{\omega}^{x6} V'_{s}^{y6} D^{z6} d \qquad [1.9a]$$

Sustituyendo las dimensiones se llega a:

$$\pi_{6} = \left[\frac{M}{L^{3}}\right]^{s6} \left[\frac{L}{T}\right]^{s6} [L]^{s6} [L] = M^{\circ} L^{\circ} T^{\circ}$$
[1.9b]

Igualando los exponentes: $x\vec{6}=0$; -3x6+y6+z6+1=0; -y6=0; y solucionando el sistema se tiene: x6=0; y6=0 y z6=-1, obteniéndose el siguiente parámetro adimensional:

$$\pi_6 = \frac{d}{D}$$
[1.9c]

• Parámetro π7: Usando la velocidad de la mezcla, V_m

$$\pi 7 = \rho_{\omega}^{x7} V_s^{y7} D^{z7} V_m$$
 [1.10a]

Sustituyendo las dimensiones se llega a:

$$\pi_{7} = \left[\frac{M}{L^{3}}\right]^{x7} \left[\frac{L}{T}\right]^{y7} \left[L\right]^{z7} \left[\frac{L}{T}\right] = M^{\circ} L^{\circ} T^{\circ}$$
[1.10b]

Igualando los exponentes: x7=0; -3x7+y7+z7+1=0; -y7-1=0; y solucionando el sistema se tiene: x7=0; y7=-1 y z7=0, obteniéndose el siguiente parámetro adimensional:

$$\pi_7 = \frac{V_m}{V'_s}$$
[1.10c]

• Parámetro π8: Usando la fuerza gravitacional, g

$$\pi 8 = \rho_{\omega}^{\ x8} V_{s}^{\prime \ y8} D^{x8} g \qquad [1.11a]$$

Sustituyendo las dimensiones se llega a:

adimensional:

$$\pi_{8} = \left[\frac{M}{L^{3}}\right]^{x8} \left[\frac{L}{T}\right]^{y8} [L]^{z8} \left[\frac{L}{T^{2}}\right] = M^{\circ} L^{\circ} T^{\circ}$$
[1.11b]
Igualando los exponentes: x8=0; -3x8+y8+z8+1=0; - y8- 2=0; y solucionando el
sistema se tiene: x8= 0; y8 =-2 y z8= 1, obteniéndose el siguiente parámetro

$$\pi_8 = \frac{gD}{{V'_s}^2}$$
[1.11c]

5. Se conforma la relación funcional adimensional resultante:

$$\eta = f\left(\frac{L}{D}, \frac{Ad}{D^2}, \frac{K}{D}, \frac{\mu}{\rho_w V'_s D}, \frac{\rho_s}{\rho_w}, \frac{d}{D}, \frac{V_m}{V'_s}, \frac{gD}{{V'_s}^2}, \sigma_s, C, \theta\right)$$
[1.12]

Con el propósito de encontrar otro tipo de parámetros adimensionales en función de la eficiencia de remoción se escoge otro tipo de variables repetitivas

Si se eligen como variables repetitivas: ρ_{ω} , V_m , y D, para combinarlos con los otros parámetros dimensionales y formar los parámetros adimensionales ($\pi 1...\pi 8$), se obtiene los siguientes parámetros:

Parámetro π1: Usando la longitud de la tubería, L

$$\pi_1 = \frac{L}{D}$$
[1.13]

• Parámetro $\pi 2$: Usando el área de drenaje del sedimentador, Ad

$$\pi_2 = \frac{Ad}{D^2}$$
[1.14]

• Parámetro π 3: Usando la rugosidad del material de la tubería, K

$$\pi_3 = \frac{K}{D}$$
[1.15]

Parámetro π4: Usando la viscosidad dinámica, μ

$$\pi_4 = \frac{\mu}{\rho_w V_m D}$$
[1.16]

• Parámetro $\pi 5$: Usando la densidad de los sólidos, ρ_s

$$\pi_5 = \frac{\rho_s}{\rho_w} \tag{1.17}$$

• Parámetro $\pi 6$: Usando el diámetro de la partícula, d

$$\pi_6 = \frac{d}{D}$$
[1.18]

 Parámetro π7: Usando la velocidad de sedimentación de las partículas afectada por la concentración, V's

$$\pi_7 = \frac{V'_s}{V_m}$$
[1.19]

• Parámetro π8: Usando la fuerza gravitacional, g

$$\pi_8 = \frac{gD}{V_m^2}$$
[1.20]

• Se conforma la relación funcional adimensional resultante:

$$\eta = f\left(\frac{L}{D}, \frac{Ad}{D^2}, \frac{K}{D}, \frac{\mu}{\rho_w V_m D}, \frac{\rho_s}{\rho_w}, \frac{d}{D}, \frac{V'_s}{V_m}, \frac{gD}{V_m^2}, \sigma_s, C, \theta\right)$$
[1.21]

Si ahora se toma como variables repetitivas: ρ_{ω} , V'_s , d, para combinarlos con los otros parámetros dimensionales y formar los parámetros adimensionales ($\pi 1...\pi 8$), se obtiene los siguientes parámetros:

• Parámetro π 1: Usando el diámetro del sedimentador, D

$$\pi_1 = \frac{D}{d}$$
[1.22]

Parámetro π2: Usando la longitud de la tubería, L

$$\pi_2 = \frac{L}{d}$$
[1.23]

• Parámetro π 3: Usando el área de drenaje del sedimentador, Ad

$$\pi_3 = \frac{Ad}{d^2}$$
[1.24]

• Parámetro π4: Usando la rugosidad del material de la tubería, K

$$\pi_4 = \frac{K}{d}$$
[1.25]

• Parámetro π5: Usando la viscosidad dinámica, μ

$$\pi_5 = \frac{\mu}{\rho_w V_s d}$$
[1.26]

• Parámetro π6: Usando la densidad de los sólidos, ρ_s

$$\pi_6 = \frac{\rho_s}{\rho_w}$$
[1.27]

• Parámetro π7: Usando la velocidad de la mezcla, V_m

$$\pi_7 = \frac{V_m}{V'_s}$$
[1.28]

• Parámetro π8: Usando la fuerza gravitacional, g

$$\pi_8 = \frac{gd}{{V'_s}^2}$$
[1.29]

• Se conforma la relación funcional adimensional resultante:

$$\eta = f\left(\frac{D}{d}, \frac{L}{d}, \frac{Ad}{d^2}, \frac{K}{d}, \frac{\mu}{\rho_w V_s' d}, \frac{\rho_s}{\rho_w}, \frac{V_m}{V_s'}, \frac{gd}{V_s'}, \sigma_s, C, \theta\right)$$
[1.30]

Si ahora se toma como variables repetitivas: μ , V'_s , d, para combinarlos con los otros parámetros dimensionales y formar los parámetros adimensionales ($\pi 1...\pi 8$), se obtiene :

• Parámetro π1: Usando el diámetro del sedimentador, D

$$\pi_1 = \frac{D}{d}$$
[1.31]

• Parámetro π2: Usando la longitud de la tubería, L

$$\pi_2 = \frac{L}{d}$$
[1.32]

• Parámetro π 3: Usando el área de drenaje del sedimentador, Ad

$$\pi_3 = \frac{Ad}{d^2}$$
[1.33]

• Parámetro π4: Usando la rugosidad del material de la tubería, K

$$\pi_4 = \frac{K}{d}$$
[1.34]

• Parámetro $\pi 5$: Usando la densidad del fluido, ρ_{ω}

$$\pi_5 = \frac{V_s' d\rho_w}{\mu}$$
[1.35]

Parámetro π6: Usando la densidad de los sólidos, ρ_s

$$\pi_6 = \frac{V_s' d\rho_s}{\mu}$$
[1.36]

• Parámetro π 7: Usando la velocidad de la mezcla, V_m

$$\pi_7 = \frac{V_m}{V'_s}$$
[1.37]

• Parámetro π8: Usando la fuerza gravitacional, g

$$\pi_8 = \frac{gd}{V'_s}$$
[1.38]

• Se conforma la relación funcional adimensional resultante:

$$\eta = f\left(\frac{D}{d}, \frac{L}{d}, \frac{Ad}{d^2}, \frac{K}{d}, \frac{V_s' d\rho_w}{\mu}, \frac{V_s' d\rho_s}{\mu}, \frac{V_m}{V_s'}, \frac{gd}{V_s'}, \sigma_s, C, \theta\right)$$
[1.39]

Si ahora se toma como variables repetitivas: μ , V'_s , D, para combinarlos con los otros parámetros dimensionales y formar los parámetros adimensionales ($\pi 1...\pi 8$), se obtiene:

• Parámetro π1: Usando la longitud de la tubería, L

$$\pi_1 = \frac{L}{D}$$
[1.40]

• Parámetro $\pi 2$: Usando el área de drenaje del sedimentador, Ad

$$\pi_2 = \frac{Ad}{D^2}$$
[1.41]

• Parámetro π 3: Usando la rugosidad del material de la tubería, K

$$\pi_3 = \frac{K}{D}$$
[1.42]

• Parámetro $\pi 4$: Usando la densidad del fluido, ρ_{ω}

$$\pi_4 = \frac{V'_s D\rho_w}{\mu}$$
[1.43]

• Parámetro $\pi 5$: Usando la densidad de los sólidos, ρ_s

$$\pi_5 = \frac{V'_s D\rho_s}{\mu}$$
[1.44]

• Parámetro π6: Usando el diámetro de la partícula, d

$$\pi_6 = \frac{d}{D}$$
[1.45]

• Parámetro *π*7: Usando la velocidad de la mezcla, V_m

$$\pi_7 = \frac{V_m}{V'_s}$$
[1.46]

• Parámetro π8: Usando la fuerza gravitacional, g

$$\pi_8 = \frac{gD}{{V'_s}^2}$$
[1.47]

• Se conforma la relación funcional adimensional resultante:

$$\eta = f\left(\frac{L}{D}, \frac{Ad}{D^2}, \frac{K}{D}, \frac{V'_s D\rho_w}{\mu}, \frac{V'_s D\rho_s}{\mu}, \frac{d}{D}, \frac{V_m}{V'_s}, \frac{gD}{V'_s}, \sigma_s, C, \theta\right)$$
[1.48]

Si se eligen como variables repetitivas: ρ_{ω} , V_m , y *L*, para combinarlos con los otros parámetros dimensionales y formar los parámetros adimensionales ($\pi 1...\pi 8$), se obtiene

• Parámetro *π*1: Usando el diámetro de la tubería, D

$$\pi_1 = \frac{D}{L}$$
[1.49]

• Parámetro π2: Usando el área de drenaje del sedimentador, Ad

$$\pi_2 = \frac{Ad}{L^2}$$
[1.50]

- Parámetro π 3: Usando la rugosidad del material de la tubería, K $\pi_3 = \frac{K}{L}$ [1.51]
- Parámetro π4: Usando la viscosidad dinámica, μ

$$\pi_4 = \frac{\mu}{\rho_w V_m L} \tag{1.52}$$

• Parámetro π5: Usando la densidad de los sólidos, ρ_s

$$\pi_5 = \frac{\rho_s}{\rho_w} \tag{1.53}$$

• Parámetro π6: Usando el diámetro de la partícula, d

$$\pi_6 = \frac{d}{L} \tag{1.54}$$

 Parámetro π7: Usando la velocidad de sedimentación de las partículas afectada por la concentración, V's

$$\pi_7 = \frac{V'_s}{V_m}$$
[1.55]

• Parámetro π8: Usando la fuerza gravitacional, g

$$\pi_8 = \frac{gL}{V_m^2}$$
[1.56]

• Se conforma la relación funcional adimensional resultante:

$$\eta = f\left(\frac{D}{L}, \frac{Ad}{L^2}, \frac{K}{L}, \frac{\mu}{\rho_w V_m L}, \frac{\rho_s}{\rho_w}, \frac{d}{L}, \frac{V'_s}{V_m}, \frac{gL}{V_m^2}, \sigma_s, C, \theta\right)$$
[1.57]

Si se toma como variables repetitivas: ρ_{ω} , g, d, se obtiene los siguientes parámetros adimensionales :

• Parámetro π 1: Usando el diámetro del sedimentador, D

$$\pi_1 = \frac{D}{d}$$
[1.58]

• Parámetro π2: Usando la longitud de la tubería, L

$$\pi_2 = \frac{L}{d}$$
[1.59]

• Parámetro π 3: Usando el área de drenaje del sedimentador, Ad

$$\pi_3 = \frac{Ad}{d^2}$$
[1.60]

• Parámetro π4: Usando la rugosidad del material de la tubería, K

$$\pi_4 = \frac{K}{d}$$
[1.61]

• Parámetro π5: Usando la viscosidad dinámica, μ

$$\pi_5 = \frac{\mu}{\rho_w \sqrt{gd^3}}$$
[1.62]

Parámetro π6: Usando la densidad de los sólidos, ρ_s

$$\pi_6 = \frac{\rho_s}{\rho_w}$$
[1.63]

 Parámetro π7: Usando la velocidad de sedimentación de las partículas afectada por la concentración, V's

$$\pi_{\gamma} = \frac{V'_s}{\sqrt{gd}}$$
[1.64]

• Parámetro π8: Usando la velocidad de la mezcla, V_m

$$\pi_8 = \frac{V_m}{\sqrt{gd}}$$
[1.65]

• Se conforma la relación funcional adimensional resultante:

$$\eta = f\left(\frac{D}{d}, \frac{L}{d}, \frac{Ad}{d^2}, \frac{K}{d}, \frac{\mu}{\rho_w \sqrt{gd^3}}, \frac{\rho_s}{\rho_w}, \frac{V_s}{\sqrt{gd}}, \frac{V_m}{\sqrt{gd}}, \sigma_s, C, \theta\right)$$
[1.66]

Si ahora se toma como variables repetitivas: μ , g, d, para combinarlos con los otros parámetros dimensionales y formar los parámetros adimensionales ($\pi 1...\pi 8$), se obtiene:

• Parámetro π 1: Usando el diámetro del sedimentador, D

$$\pi_1 = \frac{D}{d}$$
[1.67]

• Parámetro π2: Usando la longitud de la tubería, L

$$\pi_2 = \frac{L}{d}$$
[1.68]

• Parámetro π 3: Usando el área de drenaje del sedimentador, Ad

$$\pi_3 = \frac{Ad}{d^2}$$
[1.69]

• Parámetro π4: Usando la rugosidad del material de la tubería, K

$$\pi_4 = \frac{K}{d}$$
[1.70]

• Parámetro $\pi 5$: Usando la densidad del fluido, ρ_{ω}

$$\pi_5 = \frac{\rho_w \sqrt{gd^3}}{\mu}$$
[1.71]

Parámetro π6: Usando la densidad de los sólidos, ρ_s

$$\pi_6 = \frac{\rho_s \sqrt{gd^3}}{\mu}$$
[1.72]

 Parámetro π7: Usando la velocidad de sedimentación de las partículas afectada por la concentración, V's

$$\pi_7 = \frac{V'_s}{\sqrt{gd}}$$
[1.73]

• Parámetro $\pi 8$: Usando la velocidad de la mezcla, V_m $\pi_8 = \frac{V_m}{\sqrt{gd}}$ [1.74]

Se conforma la relación funcional adimensional resultante:

$$\eta = f\left(\frac{D}{d}, \frac{L}{d}, \frac{Ad}{d^2}, \frac{K}{d}, \frac{\rho_w \sqrt{gd^3}}{\mu}, \frac{\rho_s \sqrt{gd^3}}{\mu}, \frac{V'_s}{\sqrt{gd}}, \frac{V'_s}{\sqrt{gd}}, \sigma_s, C, \theta\right)$$
[1.75]

Se selecciona de cada una de las relaciones funcionales adimensionales resultantes anteriores aquellos parámetros más importantes y únicos.

1.2 COMENTARIOS FINALES.

Lo máximo que se puede obtener con la técnica del análisis dimensional son las relaciones funcionales adimensionales, dadas en las ecuaciones [1.75], [1.66], [1.57], [1.48], [1.39], [1.30], [1.21], [1.12], las cuales serán evaluadas con los datos experimentales y se seleccionarán aquellas que produzcan menores errores de predicción de la eficiencia comparadas con los datos de laboratorio.

Teniendo en cuenta que el análisis dimensional permite realizar operaciones entre parámetros adimensionales es posible hacer una transformación entre ellos, agrupándolos incluso de forma aleatoria, por lo tanto, seleccionando los parámetros adimensionales comunes de las anteriores ecuaciones es posible obtener una lista de parámetros que pueden influir en un mayor o menor grado sobre la eficiencia estudiada en esta investigación. Aunque es difícil incluir todos los parámetros, con base a los datos experimentales se puede incluir aquellos que tengan mayor influencia de los indicados en la relación dada en la Ec. [1.76]

$$f\left(\eta, \frac{L}{D}, \frac{Ad}{D^{2}}, \frac{K}{D}, \frac{\mu}{\rho_{w}V_{s}D}, \frac{\rho_{s}}{\rho_{w}}, \frac{d}{D}, \frac{V_{m}}{V_{s}'}, \frac{gD}{V_{s}'^{2}}, \frac{\mu}{\rho_{w}V_{m}D}, \frac{gD}{V_{m}^{2}}, \frac{\mu}{\rho_{w}V_{s}d}, \frac{V_{s}d\rho_{s}}{\mu}, \frac{A_{d}}{L^{2}}, \frac{K}{L}, \frac{\mu}{\rho_{w}V_{m}L}, \frac{gL}{V_{m}^{2}}, \frac{\mu}{\rho_{w}\sqrt{gd}^{3}}, \frac{V_{s}}{\sqrt{gd}}, \frac{A_{d}}{d}, \frac{A_{d}}{d}, \frac{A_{d}}{d}, \sigma_{s}, C, \theta\right) = 0$$
[1.76]

Reordenando los parámetros a una forma más conocida se tiene: Ec [1.77]

$$\eta = f\left(\frac{L}{D}, \frac{Ad}{D^2}, \frac{K}{D}, \frac{\mu}{\rho_w V_s D}, S, \frac{d}{D}, \frac{V_m}{V_s}, \frac{gD}{V_s^2}, \operatorname{Re}, F^2, \frac{V_s d\rho}{\mu}, \frac{V_s d\rho_s}{\mu}, \frac{A_d}{L^2}, \frac{K}{L}, \frac{\mu}{\rho_w V_m L}, \frac{gL}{V_m^2}, R_s, \frac{V_s}{\sqrt{gd}}, \frac{V_m}{\sqrt{gd}}, \frac{A_d}{d^2}, \frac{K}{d}, \sigma_s, C, \theta\right)$$
[1.77]

Donde **Re** es el número de Reynolds del flujo de mezclas ($Re=V_mD/\nu$), ν : viscosidad cinemática; **S** es la gravedad específica, ($S=\rho_s/\rho_w$) y $F^2=V_m^2/gD_es$ el cuadrado del número de Froude.

El parámetro $\frac{V'_s}{\sqrt{gd}}$ es igual a la relación obtenida entre:

$$\frac{\frac{V'_{s} d\rho_{w}}{\mu}}{\frac{\rho_{w} \sqrt{gd^{3}}}{\mu}} = \frac{V'_{s}}{\sqrt{gd}}$$
[1.78]

Cabe anotar que no todos los parámetros adimensionales que resultaron son relevantes en el transporte de mezclas y es posible agrupar unos con otros, que ya se conocen y se pueden estimar teóricamente, por ejemplo la mayoría de las ecuaciones incluyen la velocidad de sedimentación de las partículas afectada por la concentración (V'_s), o el coeficiente de fricción (C_D); como estas variables se relacionan entre si y dependen de un número importante de parámetros dimensionales de la ecuación [1.9]. V'_s y C_D se pueden expresar de la siguiente manera:

$$V's = f(g, S, d, CD, \sigma_S)$$
 [1.79]

$$\boldsymbol{C}_{D} = \boldsymbol{f}(\rho \boldsymbol{d} \boldsymbol{V}'_{s} / \boldsymbol{\mu}, \boldsymbol{\sigma}_{s})$$
[1.80]

Cualquiera de estas dos variables V'_s como C_D , pueden ser usados para transmitir el efecto de las variables básicas de la ecuación [1.1], sobre la variable dependiente (η).

Resumiendo, la ecuación [1.77] puede tomar la siguiente forma:

$$f\left(\eta, \frac{L}{D}, \frac{Ad}{D^{2}}, \frac{\mu}{\rho_{w}V'_{s}D}, S, \frac{gD}{V'_{s}^{2}}, F^{2}, \frac{V'_{s}d\rho_{s}}{\mu}\frac{A_{d}}{L^{2}}, \frac{\mu}{\rho_{w}V_{m}L}, \frac{gL}{V_{m}^{2}}, R_{s}, \frac{V'_{s}}{\sqrt{gd}}, \frac{V_{m}}{\sqrt{gd}}, \sigma_{s}, C_{D}, C, \theta\right) = 0$$
[1.81]

Como se observa en Ec. [1.81], aparecen los parámetros equivalentes del número de Reynolds y del número de Froude, como son el Número de Reynolds de partícula y el número de Froude de partícula, y otros parámetros desconocidos que tienen la forma del número de Reynolds como $\pi=\mu/(\rho_w V_m L)$, los cuales no se pueden descartar inicialmente, ya que no se sabe la influencia que tendrían en la eficiencia y que solo se podrían analizar con la información experimental en laboratorio.

Además, se cuenta con la Ec.[1.82] establecida por Gómez(2005), que relaciona el número de Froude densimétrico F_L , el número de Froude densimétrico afectado por la mezcla, F'_L , la longitud, L, el diámetro del sedimentador, D; y el área de drenaje A_d .

$$\eta = f(\frac{L}{D}, \frac{A_d}{A_T}, F'_L, F_L, \sigma_s, \theta)$$
[1.82]

3. DISEÑO DE MONTAJES

3.1 SEDIMENTOS NATURALES

<u>Descripción del material sólido</u>: El material sólido a usar será sedimentos naturales para preparar las diferentes mezclas como se indica a continuación.

Para mezclas **sedimentables** se usará sedimentos mayores a 0.074 mm (tamiz 200) hasta tamaño de arena media con diámetro de 0.6 mm, mezclados con agua limpia, extraídos de la Quebrada de la Vereda de Dolores ubicada en el sur oriente de la ciudad, en la vía que conduce al departamento del Putumayo (Ver Anexos A, B, C); el punto exacto de donde se obtuvo el sedimento natural se puede apreciar en los Anexos D, E, F. Los rangos de sedimentos propuestos para el estudio son los que se indican en la Tabla 3.1. Cada uno de estos rangos determina un tipo de mezcla, por lo tanto, se tendrán tres tipos de mezclas sedimentables. Cada uno de los tamaños de los sólidos se pueden observar en los anexos G, H, e I.

Tabla 3.1 Rangos	s de tamaño o	de sedimentos	propuestos	para preparar	las
	mezclas sed	imentables en	agua clara.		

DIÁMETRO	CLASE DE	Nº de TAMIZ	RANGO DE TAMAÑOS
DE PARTÍCULA	PARTÍCULA	Estándar	
[mm]			
0.6-0.25	Arena Media	60 - 30	Rango No 1
0.25-0.125	Arena Fina	120 – 60	Rango No 2
0.125-0.074	Arena Muy Fina	200 – 120	Rango No 3

3.1.1 Gravedad Específica de los Sedimentos Naturales. El valor de gravedad específica, S, es necesario para calcular la relación de vacíos de un suelo, se define como el peso unitario del material en cuestión dividido por el peso unitario del agua destilada a 4°C. Como se vió en los capítulos anteriores el valor de la gravedad específica de los sedimentos es una variable bastante importante e influyente para la eficiencia de remoción, para encontrar dicho valor se utilizó en laboratorio el método del picnómetro (ver figura 3.1) según como se describe en la Norma ASTM D 854-92, los resultados obtenidos se muestran en los anexos, J, K y L.

Figura 3.1 Fotografía de la elaboración del ensayo de gravedad específica

3.2 CÁLCULO DEL DIÁMETRO DEL SEDIMENTADOR

Para el cálculo del diámetro del tubo del sedimentador se ha usado la ecuación [3.1] dada por Gómez (2006), la ecuación es derivada a partir de la ecuación de de continuidad junto con la velocidad crítica de deposito (*VCD* = Q_m/A_T), Q_m es el caudal de la mezcla, A_T es el área de la sección transversal del tubo.
$$D = \left(\frac{4Q_m}{\pi G}\right)^n$$
[3.1]

Donde *n* es un valor numérico y *G* es una función que depende de las características del fluido y de los sedimentos naturales, cuyo valor se puede calcular con las ecuaciones indicadas en la Tabla 3.2, deducidas con base a las ecuaciones para \mathbf{F}_{L} . y \mathbf{Q}_{m} se puede encontrar con la Ec. [3.1a]

$$Q_m = \frac{Q_L}{1 - C}$$
[3.1a]

G	Ν	N⁰ EC.
$G = 4.2189 \left(\frac{C}{C_D}\right)^{1/4} \sqrt{g\Delta}$	n = 2/5. Deducida a partir de Ec. [2.39].	[3.2]
$G = \left[3.1548^{0.2263} \left(\boldsymbol{v}_f\right)^{-0.0584} C_D^{-0.384} g\Delta\right]^{0.5150}$	n = 0.3929. Deducida a partir de Ec. [2.40].	[3.3]
$G = 1.85C^{0.1536}(1-C)^{0.3564}d^{0.167}(g\Delta)^{0.545}V_f^{-0.09}X^{0.30}$	n = 0.4052. Deducida a partir de Ec. [2.41].	[3.4]
$G = (5 / 7CK_D)^{1/3} C_D^{*-1/4} \sqrt{g\Delta}$	n =0.3226. Deducida a partir de Ec. [2.42].	[3.5]
$G = 0.055d^{-0.6}C^{0.270}(\Delta)^{0.07} \left(\frac{V'_{s}d}{v_{f}}\right)^{0.30} \sqrt{g}$	n = 2/5. Deducida a partir de Ec. [2.43].	[3.6]
$G = \left[5 / 7CK_N V'_s g\Delta \right]^{1/3}$	n = 3/7. Deducida a partir de Ec. [2.44].	[3.7]
$G = 4(d)^{0.1016} (C)^{0.2819} (C'_{D})^{0.0127} \sqrt{g\Delta}$	n = 0.4169. Deducida a partir de Ec. [2.45].	[3.8]
$G = \left[\frac{3000}{791} \frac{C'_D {V'_s}^2}{dv_f^{1/8}} \frac{C(1+\alpha C^x)}{(1-C)}\right]^{8/15}$	n = 5/13. Deducida a partir de Ec. [2.46]. x=0	[3.9]

Tabla 3.2 Ecuaciones para el cálculo de la función G y exponente n.

Fuente Gómez (2006a, b)

3.3 CÁLCULO DE LONGITUD DEL SEDIMENTADOR Y ÁREA DE DRENAJE

Gómez (2006) construyó un modelo de sedimentador con flujo a presión y sección circular y realizó algunos ensayos para diferentes longitudes, diámetros y áreas de drenaje encontrando una función que relaciona estas variables con las diferentes eficiencias de remoción alcanzadas, gracias a este análisis se tiene un punto de referencia para calcular la longitud del sedimentador y el área de drenaje y así elaborar el primer modelo experimental a partir del cual se obtendrán nuevas funciones para las condiciones actuales, y de esta manera realizar las modificaciones y mejoras correspondientes a los posteriores modelos a diseñar, Dicho análisis se muestra en la Figura 3.2. y en la Figura 3.3.

Fuente Gómez (2006)

Figura 3.3 Relación de área de drenaje y área del sedimentador vs. Eficiencia de remoción

Fuente Gómez (2006)

3.4 CÁLCULO DEL ÁREA DE DRENAJE DE LAS TOLVAS RECOLECTORAS

Debido a la falta de experimentación con mezclas compuestas de sedimentos naturales y agua, se aplica la fórmula utilizada para flujo de agua limpia para el cálculo de caudal, área o cabeza de presión, de acuerdo a la Ec. 3.10

$$Q_o = C dAo \sqrt{2gh}$$
[3.10]

Donde:

- Q_o: Caudal que pasa por el orificio de drenaje de las tolvas, es igual al 5% del caudal de entrada al sedimentador dividido entre el número de tolvas.
- C_d : Coeficiente para orificios circulares, C_d =0.61.
- A_o: Área del orificio de drenaje de las tolvas.
- g : Aceleración de la gravedad.
- *h* : Altura de presión sobre el punto de drenaje de las tolvas.

3.5 CÁLCULO DEL DIÁMETRO DE DOSIFICACIÓN DE SEDIMENTOS NATURALES

Para encontrar el diámetro del orificio de dosificación de sedimentos se realizaron múltiples ensayos con los diferentes diámetros (0.074mm – 0.6 mm) de partícula con el fin de encontrar una relación entre el caudal de sólidos y el diámetro del dosificador. Los datos obtenidos se resumen en las Figuras 3.4, 3.5 y 3.6. Los datos para obtener dichas gráficas se encuentran en los Anexos M, N, y O.

Figura 3.4 Curva de calibración del dosificador de sólidos, d = [0.074 mm -0.125 mm]

Figura 3.5 Curva de calibración del dosificador, d = [0.125mm - 0.25mm]

Figura 3.6 Curva de calibración del dosificador, d = [0.25mm - 0.6mm]

3.6 DIMENSIONAMIENTO DEL MODELO No.1

Para el dimensionamiento del modelo experimental se debe tener en cuenta los siguientes parámetros: características de partícula a sedimentar, concentración,

eficiencia de remoción y temperatura del agua limpia. A continuación se indican las razones para la selección de dichos parámetros.

3.6.1 Características de Partícula a Sedimentar. De acuerdo a los rangos de tamaños de los sedimentos naturales escogidos para la experimentación de los sedimentadores, se toma como tamaño de partícula 0.074 mm, siendo esta la partícula más crítica a sedimentar.

El valor de la gravedad específica, S, de los sedimentos pasantes del tamiz No.120 y retenidos en el tamiz No.200 según el ensayo realizado siguiendo la Norma ASTM D 854-92 es de 2.87.

3.6.2 Concentración. Como se observa en la Figura 3.7 la concentración crítica es del 15%, resultado de las investigaciones de Parzonka (1981).

3.6.3 Eficiencia de Remoción, η . Para el cálculo de la longitud se trabaja con una eficiencia del 100% ya que con ella se logra una longitud que permite trabajar con eficiencias menores.

Para encontrar el área de drenaje se utiliza un valor de eficiencia del 100% porque este valor supera a la eficiencia mínima de los sedimentadores convencionales, además de considerarse el valor óptimo de trabajo.

Figura 3.7 Variación de F_L con respecto a la concentración de sólidos y tamaño de partículas de arena y grava.

Fuente Duckworth (1978)

Valores de Entrada

- Temperatura del agua limpia = 17°C.
- Diámetro de partícula, *d* = 0.074mm.
- Gravedad Específica, **S = 2.87.**
- Concentración, **C = 15%.**
- Aceleración de la Gravedad, g = 9.81 m/sg²
- Caudal Fluido Q_L= 0.00107 m³/sg
- Cabeza de Presión, *h* = 55.8 cm

Cálculos

1. Para una temperatura de 17°C la viscosidad cinemática es $v_f = 0.0195$

cm²/sg
2.
$$d_{+} = \left(\frac{(\Delta)g}{v_{f}^{2}}\right)^{1/3} d = \left(\frac{(2.87 - 1)981cm/sg^{2}}{(0.0195cm^{2}/sg)^{2}}\right)^{1/3} (0.0074cm) = 1.837$$

3. $R_{s} = \left(\sqrt{(25 + 1.2d_{+}^{2}) - 5}\right)^{1/5} = \left(\sqrt{(25 + 1.2(1.837)^{2}) - 5}\right)^{1/5} = 0.243$
4. $V_{s} = \frac{R_{s}v_{f}}{d} = \frac{0.243(0.0195cm^{2}/sg)}{0.0074cm} = 0.36cm/sg$
5. $\Delta' = \left[\frac{(1 - C)(S - 1)}{1 + C(S - 1)}\right] = \left[\frac{(1 - 0.15)(2.87 - 1)}{1 + 0.15(2.87 - 1)}\right] = 1.241$
6. $v_{m} = \frac{2v_{f}}{2 - 3C} = \frac{2(0.01095cm^{2}/sg)}{2 - 3(0.15)} = 0.0141cm^{2}/sg$
7. $d'_{+} = \left(\frac{\Delta'g}{v_{m}^{2}}\right)^{\left(\frac{1}{3}\right)} d = \left(\frac{1.241(981 cm/sg^{2})}{(0.0141 cm^{2}/sg)^{2}}\right)^{\left(\frac{1}{3}\right)} 0.0074 cm = 1.352$
8. $R_{m} = \left(\sqrt{(25 + 1.2(d_{+}^{2})^{2}) - 5}\right)^{1/3} = \left(\sqrt{(25 + 1.2(1.352)^{2}) - 5}\right)^{1/3} = 0.10$
9. $C_{D} = \left[\left(\frac{32}{R_{m}}\right)^{2/3} + 1\right]^{3/2} = \left[\left(\frac{32}{0.10}\right)^{2/3} + 1\right]^{3/2} = 331.721$
10. $t = \frac{Ln\left[\frac{(2 - 2C)}{(2 - 3C)}\right] + Ln\left[\frac{R_{m}}{R_{+}}\right]}{Ln\left[1 - C\right]} = \frac{Ln\left[\frac{(2 - 2(0.15))}{(2 - 3(0.15))}\right] + Ln\left[\frac{0.10}{0.243}\right]}{Ln\left[1 - 0.15\right]} = 4.933$
11. $V_{-s}^{*} = V_{s}\left(1 - C\right)^{t} = 0.36 cm/sg\left(1 - 0.15\right)^{4.933} = 0.16 cm/sg$
12. $\alpha = 0.3607R^{0.3295} = 0.3607(0.243)^{0.295} = 0.276$

12.
$$\alpha = 0.360/R_s = 0.360/(0.243)^{-1.00} = 0.226$$

13. $G = \left[\frac{3000}{791} \frac{C_D V_s^2}{dv_f^{1/8}} \frac{C(1+\alpha C^x)}{(1-C)}\right]^{8/15} = \left[\frac{3000}{791} \frac{(331.721)(0.161cm/sg)^2}{(0.0074cm)(0.01095cm^2/sg)^{1/8}} \frac{0.15(1+0.226(0.15)^0)}{(1-0.15)}\right] = 8.344$

$$14. \ Q_{m} = \frac{Q_{L}}{1-C} = \frac{0.00107m^{3}/sg}{1-0.15} = 0.00126m^{3}/sg$$

$$15. \ D = \left(\frac{4Q_{m}}{\pi G}\right)^{n} = \left(\frac{4(0.00126 \ m^{3}/sg)}{\pi (8.355)}\right)^{5/13} = 0.037 \ m = 1.5"$$

$$16. \ F_{L} = \left[\frac{3000}{791} \frac{C_{D}' V_{s}^{2} CD^{9/8}}{(1-C)dv_{f}^{1/8}} \frac{(1+\alpha C^{x})}{[2gD(S-1)]^{15/16}}\right]^{8/15}$$

$$F_{L} = \left[\frac{3000}{791} \frac{(331.721)(0.161cm/sg)^{2}(0.15)(3.72cm)^{9/8}}{(1-0.15)(0.0074cm)(0.01095cm^{2}/sg)^{1/8}} \frac{(1+(0.226)(0.15)^{0})}{[2(981cm/sg^{2})(3.72cm)(2.87-1)]^{15/16}}\right]^{8/15}$$

$$F_{L} = 0.987$$

$$17. \ VCD = F_{L}\sqrt{2gD\Delta} = 0.987\sqrt{2(981cm/sg^{2})(3.72cm)(1.87)} = 115.31cm/sg$$

17.
$$VCD = F_L \sqrt{2gD\Delta} = 0.987 \sqrt{2(981cm/sg^2)(3.72cm)(1.87)} = 115.31cm/sg^2$$

18.
$$L = \left[\frac{\eta}{4.0022}\right]^{\frac{1}{0.9674}} D = \left[\frac{100}{4.0022}\right]^{\frac{1}{0.9674}} (0.037m) = 1.04m$$

19.
$$Ad = \left[\frac{\eta}{49.463}\right]^{\frac{1}{0.254}} A = \left[\frac{100}{49.463}\right]^{\frac{1}{0.254}} \left(\frac{\pi(0.037m)^2}{4}\right) = 0.017m^2$$

El área de drenaje del sedimentador A_d también se puede encontrar de manera geométrica, teniendo en cuenta que el ángulo de reposo de los sedimentos es de 45º grados, esto quiere decir que la superficie sobre la cual se depositaría el sedimento debe ser mayor que dicho ángulo para evitar la depositación del mismo en las paredes del tubo; como se observa en la Figura 3.8.

Figura 3.8 Área de drenaje método geométrico

De donde $A_d = (0.0298 \text{ m})(1.03 \text{ m})=0.0308 \text{ m}^2$

18.
$$Q_o = C dAo \sqrt{2gh}$$

$$Ao = \frac{Qo}{Cd\sqrt{2gh}} = \frac{5.35x10^{-6}m^3/sg}{0.61\sqrt{2(9.81m/sg^2)0.558m}} = 2.65x10^{-6}m^2$$

$$d_0 = \sqrt{\frac{4(2.65x10^{-6}m^2)}{\pi}} = 1.846x10^{-3}m = 1.846mm$$

3.7 COMENTARIOS FINALES

Las figuras 3.4, 3.5, 3.6 encontradas facilitan el trabajo de la experimentación, porque agiliza el procedimiento al encontrar de una manera mas rápida el valor del peso del sólido a suministrar, las ecuaciones que resultan de estas gráficas son las que se utilizan posteriormente en la escogencia del caudal sólido.

Las dimensiones del sedimentador a construir son:

- Longitud, *L* = 1.04 m
- Diámetro del sedimentador, **D** = 1.5 "

- Área de drenaje, $A_d = 0.017 \text{ m}^2$,
- Área del orificio de drenaje de las tolvas, $A_0 = 2.65 \times 10^{-6} \text{ m}^2$

El área total de drenaje, A_{d} , del tubo principal se reparte equitativamente, en diez tolvas recolectoras de sedimentos, este valor se escoge por facilidad de construcción y porque este número de tolvas permite que el análisis a realizar se optimice por el volumen de sólidos que se recolecta.

4. EXPERIMENTACIÓN

4.3 LABORATORIO

4.1.1 Nombre del ensayo. Evaluación de la eficiencia de remoción en sedimentadores circulares con flujo a presión.

4.1.2 Objetivo. Encontrar la relación entre la eficiencia de remoción de sólidos y los parámetros adimensionales que intervienen en el proceso de sedimentación.

4.1.3 Marco teórico. Se define la "sedimentación" como el proceso natural por el cual las partículas más pesadas que el agua son removidas por la acción de la gravedad, después de haber realizado el análisis dimensional (Capitulo 1) de todas las variables que intervienen en el proceso de sedimentación de partículas se determino que los parámetros adimensionales a evaluar, que influyen en la eficiencia del sedimentador son: *L/D*, *L/d* Concentración, **C**, *Re*, *F'*_L, *F*_L, µ/($\rho_s V_s d$), V_m/V'_s , gd/V's², K/d, A_d/D², donde:

Diámetro de la tubería, DLongitud de la tubería, LÁrea de drenaje del desarenador, A_d Rugosidad del material de la tubería, KViscosidad dinámica, μ Tamaño de las partículas sólidas, d. Velocidad de sedimentación de las partículas, V'_s Velocidad de la mezcla, V_m Fuerza gravitacional, gConcentración volumétrica, CEficiencia de remoción de partículas, η

La velocidad de sedimentación es una propiedad básica de las partículas de sedimentos en un fluido. Esta depende no solamente de las características físicas de la partícula sino también de las propiedades del fluido y propiedades de la mezcla. La velocidad de sedimentación puede verse afectada por varios factores; como el tamaño, forma, densidad, rugosidad, rotación de las partículas, efectos de turbulencia, concentración y por fronteras de confinamiento, viscosidad y densidad del fluido.

La presencia de otras partículas en el fluido, modifica la velocidad de asentamiento de las partículas individuales, debido a la mutua interferencia

entre partículas. La velocidad de asentamiento de muchas partículas dispersas (concentración) moviéndose a través de un fluido será menor que la de una partícula individual en un fluido claro. Este caso es el que se presenta comúnmente en la práctica

La velocidad crítica de depositación, se define como la velocidad que se presenta entre el flujo correspondiente a flujo en saltación con lecho deslizante, (sliding bed), donde las partículas viajan en deslizamiento, arrastre y saltación junto a la pared del tubo y el flujo con lecho estacionario. El grupo de velocidades corresponde al límite entre la velocidad mas alta, (limite inferior de velocidad del flujo con lecho deslizante), en la cual el lecho deslizante continua moviéndose y la velocidad mas baja, (limite superior de velocidad del flujo con deposito), en la cual un hecho estacionario se consolide completamente o se identifique claramente, Gómez (2002)¹⁵.

4.1.4 Descripción de la instalación. El modelo del sedimentador esta montado sobre el aparato para el patronamiento calibración de boquillas y orificios que consta de un tanque de carga constante, con rebose para lograr cabeza constante, con alimentación por medio de recirculación o circuito cerrado y un canal receptor con vertedero en la parte final para medición de caudal. La recirculación se logra con una bomba principal con una potencia de 2HP de motor eléctrico 1 $\frac{1}{2}$ " x 1 $\frac{1}{2}$ ".

El sedimentador consta de un tubo principal al cual se le suministra un caudal líquido por medio del aparato descrito anteriormente, y diez tolvas que recogen el material que se sedimenta para llevarlo a los filtros removibles que se ubican debajo de cada una de ellas. Ver figura 4.1 y Anexo V.

¹⁵ **GÓMEZ**, Z. Hernán. J., Ordóñez. (2002) "Velocidad Critica de Depositación en el Transporte de Sedimentos en Tubos Horizontales a Presión", XX Congreso Latinoamericano de Hidráulica, La Habana, Cuba, Octubre de 2002

Figura 4.1. Instalación y sedimentador

El caudal sólido se suministra al modelo a través de un recipiente provisto de un orificio calibrado.

4.1.5 Desarrollo del experimento. Después de que el sistema de circulación del flujo se estabilice, aprox. 2 min., se procede a:

1. Regular el caudal líquido por medio de la válvula de compuerta tomando mínimo tres (3) mediciones del caudal líquido de salida Q_L , utilizando una probeta y un cronómetro. Ver figura 4.2. y 4.3

Figura 4.2. Tanque de suministro y entrada al sedimentador

Figura 4.3. Caudal líquido de salida estabilizado

2. Escoger los dosificadores que se van a utilizar para suministrar el caudal sólido, Q_s , al modelo de acuerdo a las Figuras 3.4, 3.5 y 3.6. Ver figura 4.4

Figura 4.4. Dosificadores para suministrar el caudal sólido

- 3. Hacer mediciones de caudal sólido, ${f Q}_s$, de cada uno de los orificios escogidos para el ensayo.
- 4. Enumerar los filtros y ubicarlos correctamente debajo de cada una de las tolvas de recolección de sólido. Ver Figura 4.5

Figura 4.5. Filtros para la recolección de sedimentos

- 5. Pesar el material sólido necesario a suministrar y vaciarlo en el recipiente dosificador.
- 6. Ubicar el recipiente dosificador en el montaje, esperar que todo el material sólido entre al sedimentador.
- 7. Dejar que todo el material sólido posible se recolecte en los filtros, para luego llevarlos al horno por 24 horas
- 8. Pesar el material de cada tolva que se depositó en los filtros y anotar los resultados. Ver Figura 4.6

Figura 4.6. Balanza de precisión para pesar el material seco

NOTA: El modelo del sedimentador y los fenómenos que se presentan en el proceso de sedimentación de partículas sólidas con flujo a presión se pueden observar de manera clara y detallada en los Anexos P, Q, R, S, T, y U.

4.1.6 Tamaño de muestras o número de réplicas. Al planear el experimento una decisión importante es la selección del tamaño de la muestra o la

determinación del numero r de réplicas que deben hacerse por cada experimento¹⁶.

$$r = 2\left(\frac{\sigma}{\delta}\right)^2 (Z_{\alpha} + Z_{\beta})^2$$
 Ec.[4.1]

Donde:

r: Número de réplicas

σ: Desviación estándar

 δ : Diferencia real, por la que el experimento tiene o no una alta probabilidad de mostrar una diferencia estadísticamente significativa entre las medias de cada ensayo. $\delta = Error(\sigma)$

 α_1 : Valor de significación

 $1 - \beta$: Probabilidad.

Los valores de $(Z_{\alpha} + Z_{\beta})^2$ se obtienen de la Tabla 4.1

Tabla 4.1. $(Z_{\alpha} + Z_{\beta})^2$ para algunos valores de α_1 y de β

$1-\beta$	β		$\alpha_{\rm l}$	
		0.01	0.05	0.10
0.80	0.20	11.63	7.84	6.15
0.90	0.10	14.82	10.50	8.53
0.95	0.05	17.72	12.96	10.76

Fuente Jiménez, Luisa (1997)

Para encontrar el número de réplicas adecuadas para cada ensayo se supone un número de réplicas igual a tres, tomándolas como pruebas piloto para posteriormente aceptar o rechazar dicho número, de acuerdo a la Ec. [4.1]

El mayor σ de acuerdo a las Tablas 4.5., 4.6., 4.7. es: 0.916, obtenido para los ensayos realizados con los sólidos de diámetro de partícula d =0.074 mm, con una concentración C =1.22 %.

 $\sigma=30.931 gr$

¹⁶ JIMÉNEZ, Luisa. Análisis estadístico para algunas pruebas biológicas, 2000.

Asumiendo un porcentaje de error del diez por ciento (10%),

 $\delta = 0.1(30.93) = 3.09$

Para una probabilidad $(1-\beta)$, del 90% y un valor de significación α_1 , del 1%, según la Tabla 4.1. se tiene un valor para $(Z_{\alpha} + Z_{\beta})^2 = 14.82$

Remplazando estos valores en la Ec. [4.1] se tiene:

$$r = 2 \left(\frac{0.916}{3.09}\right)^2 (14.82) = 2.6$$

Por lo tanto se asume un número de réplicas para cada uno de los ensayos r = 3, para que los resultados sean estadísticamente aceptables.

4.2 TOMA Y PRESENTACIÓN DE DATOS

El valor número de ensayos escogido a realizar para cada tamaño de partícula es de 10 veces, es decir mínimo se realizaron 10 diferentes concentraciones por cada partícula.

La variación de concentración, como se ve en la Ec. [4.2], depende indiscutiblemente de la variación, tanto del caudal sólido suministrado, Q_s , como del caudal líquido de salida del sedimentador Q_L . De tal manera que durante la experimentación se alcanzó diferentes concentraciones, C, haciendo varios ensayos, con un caudal sólido constante, Q_s , y un caudal líquido variable, Q_L , desde el Q_L más bajo hasta el Q_L más alto que se pudo lograr en el montaje bajo las condiciones del experimento. Y posteriormente, se mantuvo el caudal líquido constante, Q_L , para poder disminuir o aumentar el caudal sólido, Q_s .

El suministro del caudal sólido, Q_s , en los dos casos mencionados, se consiguió gracias a la calibración hecha a los diferentes orificios del dosificador de sólidos, según se puede observar en las Figuras 3.4, 3.5 y 3.6 de esta investigación.

Después de realizado el procedimiento como se indicó anteriormente en el literal 4.1.5, se anotan los datos obtenidos como se muestra en las Tablas 4.2, 4.3, y 4.4 para los diámetros de partícula d =0.074 mm, d =0.125 mm, d =0.25 mm, respectivamente.

La columna [1] es el peso del sólido que se afora con el dosificador en un

minuto en gr/min, Q_s , la columna [2] es el caudal liquido promedio, Q_L , de tres mediciones aforadas a la salida del sedimentador en L/s, la columna [3] es la concentración calculada con la Ec.[4.2]

$$C = \frac{Qs}{Qm} x 100 = \frac{Col.[1]}{(Col.[1] + 60000\rho_s Co.l[2])} x 100$$
 Ec.[4.2]

Donde

 Q_s : Caudal Sólido en L/s Q_m : Caudal de la mezcla en L/s.

Q_L: Caudal Líquido de salida del sedimentador, en L/s.

$$Q_m = \frac{Col[1]}{100000\rho_s} + Col[2]$$
 Ec.[4.4]

Tabla 4.2. Toma de datos para d =0.074mm

Diámetro de los Sólidos, d (mm)	0.074
Gravedad Específica, S	2.87
Temperatura del Agua, T (ºC)	17
Densidad del agua, ρ _w (gr/cm³)	0.99874
Viscosidad Dinámica, μ (gr/cm*s)	0.01086
Densidad de los Sólidos, ρ _s gr/cm³)	2.866
Diámetro del Sedimentador, D (cm)	4.4
Longitud del Sedimentador, L (mts)	1.04
Área de Drenaje, A _d (m2)	0.01735
Rugosidad, K (mm)	0.0015
Tiempo de Ensayo (sg)	60
Peso del Recipiente (gr)	1.0744
Aceleración de la gravedad, $ m g$ (cm/s 2)	981

[1]	[2]	[3]					[4]					
Caudal Sólido	Caudal Líquido	С			Peso de	e Sólidos	Tolva No.	[gr] + R	ecipien	te		
Qs [g/min]	Q _L [l/s]	[%]	1	2	3	4	5	6	7	8	9	10
			14.670	10.600	7.800	4.500	2.550	1.640	1.320	1.250	1.150	1.100
46.8	0.03548	0.7611	14.620	10.580	7.910	4.550	2.650	1.610	1.290	1.240	1.160	1.095
			14.610	10.490	7.560	4.380	2.540	1.600	1.330	1.210	1.190	1.080
			36.497	29.214	17.912	9.391	4.747	2.747	1.736	1.365	1.269	1.199
126.8	0.03548	2.0357	36.405	29.281	17.902	9.047	4.274	2.441	1.605	1.295	1.205	1.177
			36.082	29.260	17.908	9.305	4.510	2.615	1.608	1.255	1.267	1.176
			37.000	30.000	18.640	9.600	4.350	2.160	1.680	1.310	1.190	1.160
130.45	0.03400	2.1822	37.010	29.860	18.590	9.540	4.670	2.150	1.650	1.260	1.210	1.100
			36.810	30.220	18.570	9.590	4.290	2.250	1.620	1.300	1.220	1.170

			100.099	61.381	44.486	27.437	14.439	7.495	3.242	1.660	1.425	1.246
263.57	0.02997	4.8648	100.479	62.459	44.185	27.452	14.406	7.193	3.300	1.702	1.458	1.232
			101.370	62.408	44.120	27.387	14.419	7.187	3.279	1.646	1.431	1.255
			141.373	98.819	66.680	43.229	26.385	15.655	7.702	3.899	2.783	1.342
399.43	0.03335	6.5106	141.174	99.052	66.543	43.285	26.008	15.498	7.694	3.948	2.836	1.332
			141.031	98.384	67.366	43.028	26.837	15.711	6.952	3.773	2.770	1.337
			212.282	148.857	113.964	82.287	59.356	37.667	19.735	10.364	5.919	3.657
679.74	0.03098	11.3143	212.243	149.028	114.154	82.569	59.065	38.069	19.658	10.694	5.472	3.975
			211.954	148.599	113.488	82.456	59.271	37.488	19.923	10.583	5.234	4.198
			314.905	268.600	206.084	159.059	118.831	86.289	42.315	20.637	10.156	5.275
1243.67	0.02414	23.0479	314.570	268.625	206.589	158.782	118.821	86.285	42.285	20.605	10.215	5.258
			314.796	268.789	206.001	159.118	118.725	86.192	42.215	20.430	9.997	5.296
			100.520	64.030	52.530	31.670	12.680	6.370	3.630	2.410	1.850	1.290
399.43	0.01338	14.7906	100.650	64.256	52.450	31.046	12.436	6.124	3.909	2.590	1.956	1.450
			100.903	64.029	52.790	31.009	12.876	6.530	3.780	2.189	1.630	1.670
			74.440	61.840	45.590	28.430	15.920	6.610	4.180	2.310	1.720	1.550
399.43	0.04882	4.5416	74.478	61.854	46.193	28.696	16.319	6.870	4.544	2.230	1.716	1.960
			74.234	61.609	46.012	28.844	15.607	7.187	4.374	2.734	1.970	1.834
			73.810	57.000	44.830	32.790	21.220	12.770	8.000	3.960	2.480	2.070
399.43	0.08337	2.7103	73.908	56.908	44.907	33.205	21.178	12.925	7.915	3.756	2.627	2.001
			73.389	57.371	44.927	32.913	20.900	12.590	7.545	4.190	2.704	1.870
			71.570	53.530	43.690	33.440	23.980	15.310	11.140	6.160	3.290	2.750
399.43	0.09987	2.2727	71.190	53.650	43.867	33.140	23.767	15.447	11.008	6.147	3.464	2.976
			71.850	53.950	43.439	32.990	23.699	15.190	11.397	5.700	3.412	3.067
			29.060	32.320	32.950	28.650	26.450	25.210	22.000	17.420	13.770	12.860
399.43	0.18792	1.2208	28.900	32.680	31.945	28.650	26.560	25.386	21.943	17.500	13.450	12.532
			28.704	32.430	31.121	28.960	25.897	25.490	21.430	17.732	13.980	12.324
			11.210	14.410	17.650	17.700	17.790	17.820	18.340	18.310	18.300	17.970
399.43	0.56033	0.4128	11.010	14.650	17.210	17.520	17.580	17.700	18.280	18.220	18.080	17.850
			11.870	14,750	17,450	17.610	17.810	17.850	18,590	18,450	18,190	17,690

Continuación Tabla 4.2. Toma de datos para d =0.074mm

Tabla 4.3. Toma de datos para d =0.125 mm

Diámetro de los Sólidos, d (mm)	0.125
Gravedad Específica, S	2.84
Temperatura del Agua, T (ºC)	17
Densidad del agua, ρ _w (gr/cm³)	0.9987
Viscosidad Dinámica, μ (gr/cm*s)	0.01086
Densidad de los Sólidos, ρ _s (gr/cm³)	2.836
Diámetro del Sedimentador, D (cm)	4.4
Longitud del Sedimentador, L (mts)	1.04
Área de Drenaje, A _d (m²)	0.0173
Rugosidad, K (mm)	0.0015
Tiempo de Ensayo (sg)	60
Peso del Recipiente (gr)	1.0744
Aceleración de la gravedad, g (cm/s²)	981

[1]	[2]	[3]		[4]											
Caudal Sólido	Caudal	C		Peso de Sólidos Tolva No. [gr] + Recipiente											
		0													
Qs [g/min]	Q _L [I/s]	[%]	1	2	3	4	5	6	7	8	9	10			
			5.540	7.900	9.740	9.270	9.210	8.540	8.340	7.430	6.590	5.830			
104.8	0.5603	0.1098	5.120	7.600	9.480	9.120	9.000	8.550	8.300	7.520	6.850	5.580			
			6.020	8.120	9.710	9.350	9.330	8.570	8.420	7.390	6.480	5.950			
			18.490	27.200	16.570	12.170	9.790	8.200	6.540	4.910	3.460	2.540			
104.8	0.2563	0.2397	18.660	27.120	16.460	12.027	9.610	8.200	6.390	4.850	3.230	2.430			
			18.410	27.427	16.720	12.240	9.790	8.300	6.430	5.101	3.350	2.610			
			38.210	22.640	16.000	10.130	7.020	4.480	3.140	2.090	1.740	1.430			
104.8	0.1616	0.3796	38.130	22.440	15.930	10.003	7.122	4.560	3.030	2.120	1.890	1.310			
			38.430	22.770	15.650	10.210	7.290	4.230	3.180	2.170	1.690	1.350			

Caudal Sólido	Caudal Líquido	С	Peso de Sólidos Tolva No. [gr] + Recipiente											
Qs [g/min]	Q _L [l/s]	[%]	1	2	3	4	5	6	7	8	9	10		
			26.900	11.150	4.600	2.190	1.300	1.220	1.210	1.200	1.150	1.100		
46	0.04765	0.5640	27.420	11.010	4.550	2.220	1.310	1.180	1.200	1.180	1.160	1.090		
			25.820	11.480	4.650	2.180	1.290	1.260	1.220	1.210	1.140	1.120		
			49.110	22.240	10.640	5.460	2.760	1.730	1.310	1.270	1.230	1.190		
104.8	0.0868	0.7044	49.228	22.102	10.640	5.240	2.540	1.520	1.430	1.390	1.380	1.250		
			48.940	21.967	10.320	5.270	2.690	1.660	1.550	1.410	1.260	1.310		
			20.100	8.790	3.030	1.635	1.350	1.250	1.220	1.200	1.180	1.165		
60.8	0.04765	0.7442	19.700	8.700	3.100	1.610	1.520	1.111	1.160	1.126	1.121	1.134		
			20.013	9.001	3.130	1.379	1.290	1.290	1.352	1.250	1.253	1.200		
			50.020	20.030	6.550	2.740	1.550	1.290	1.180	1.150	1.140	1.130		
104.8	0.0555	1.0974	49.678	20.012	6.770	2.540	1.480	1.330	1.290	1.145	1.232	1.232		
			49.830	20.256	6.420	2.550	1.560	1.254	1.250	1.124	1.129	1.122		
			115.510	31.610	14.620	5.820	2.200	1.410	1.240	1.220	1.190	1.160		
182.9	0.04765	2.2057	114.612	31.891	14.347	5.893	2.563	1.678	1.347	1.345	1.234	1.123		
			114.567	31.351	14.740	5.900	2.400	1.480	1.360	1.430	1.280	1.210		
			49.710	14.870	4.950	1.870	1.330	1.210	1.190	1.170	1.150	1.145		
104.8	0.0253	2.3762	49.157	14.399	4.917	1.564	1.150	1.430	1.260	1.230	1.340	1.353		
			49.789	15.012	4.686	1.892	1.352	1.149	1.231	1.153	1.350	1.249		
			176.976	52.090	23.820	10.310	4.640	2.320	1.700	1.380	1.280	1.200		
289.4	0.04765	3.4458	177.017	52.168	23.895	10.380	4.349	2.280	1.360	1.340	1.248	1.346		
			176.780	51.989	23.570	10.240	4.890	2.500	1.650	1.136	1.380	1.232		
			128.981	43.156	17.220	5.180	2.220	1.460	1.315	1.310	1.250	1.200		
104.8	0.011	5.3014	129.130	43.110	17.290	5.360	2.180	1.510	1.290	1.280	1.260	1.220		
			129.280	43.350	16.590	5.450	1.980	1.470	1.320	1.300	1.270	1.170		
			265.626	154.326	65.820	38.970	17.680	7.220	3.405	1.920	1.560	1.340		
611.8	0.04765	7.0151	265.460	154.120	65.680	38.720	17.450	7.160	3.250	2.100	1.910	1.440		
			265.289	154.530	65.530	38.680	17.720	7.190	3.530	2.092	1.786	1.560		

Continuación Tabla 4.3. Toma de datos para d =0.125 mm

Tabla 4.4. Toma de datos para d =0.25 mm

Diámetro de los Sólidos, d (mm)	0.25
Gravedad Específica, S	2.81
Temperatura del Agua, T (ºC)	17
Densidad del agua, ρ _w (gr/cm³)	0.9987
Viscosidad Dinámica, μ (gr/cm*s)	0.01086
Densidad de los Sólidos, ρ _s (gr/cm³)	2.8064
Diámetro del Sedimentador, D (cm)	4.4
Longitud del Sedimentador, L (mts)	1.04
Área de Drenaje, A _d (m²)	0.017356
Rugosidad, K (mm)	0.0015
Tiempo de Ensayo (sg)	60
Peso del Recipiente (gr)	1.0744
Aceleración de la gravedad, g (cm/s²)	981

[1]	[2]	[3]		[4]										
Caudal Sólido	Caudal	C		Peso de Sólidos Tolva No. [ɑr] + Recipiente										
Qs [g/min]	Q _L [l/s]	[%]	1	2	3	4	5	6	7	8	9	10		
			13.410	2.090	1.320	1.240	1.200	1.150	1.100	1.074	1.074	1.074		
38.5	0.04615	0.4930	13.480	2.150	1.290	1.220	1.180	1.160	1.110	1.074	1.074	1.074		
			13.260	2.010	1.350	1.240	1.190	1.160	1.080	1.074	1.074	1.074		
			19.010	2.330	1.410	1.200	1.200	1.180	1.120	1.074	1.074	1.074		
39.6	0.04615	0.5070	19.090	2.070	1.360	1.160	1.210	1.238	1.155	1.074	1.074	1.074		
			19.130	2.190	1.340	1.220	1.205	1.270	1.125	1.074	1.074	1.074		
			58.550	4.920	1.680	1.230	1.230	1.200	1.200	1.185	1.074	1.074		
97	0.04615	1.2328	58.243	4.730	1.530	1.119	1.199	1.310	1.183	1.154	1.074	1.074		
			58.348	4.840	1.750	1.290	1.290	1.189	1.240	1.176	1.074	1.074		

Caudal Sólido	Caudal Líquido	С	Peso de Sólidos Tolva No. [gr] + Recipiente											
Qs [g/min]	Q _L [l/s]	[%]	1	2	3	4	5	6	7	8	9	10		
	_		104.040	7.800	2.330	1.580	1.260	1.260	1.215	1.190	1.170	1.165		
127.1	0.04615	1.6092	103.903	7.650	2.350	1.490	1.190	1.190	1.115	1.230	1.240	1.152		
			104.153	7.790	2.270	1.620	1.320	1.220	1.195	1.350	1.120	1.174		
			139.140	12.000	3.310	1.750	1.275	1.230	1.230	1.220	1.190	1.180		
175.8	0.04615	2.2122	139.010	12.150	3.230	1.560	1.230	1.190	1.330	1.280	1.140	1.230		
			139.230	11.970	3.480	1.670	1.310	1.340	1.370	1.180	1.229	1.190		
			207.060	28.930	7.570	3.650	2.360	1.670	1.300	1.360	1.250	1.180		
285.5	0.04615	3.5437	206.990	28.700	7.650	3.530	2.310	1.610	1.267	1.289	1.360	1.298		
			207.010	28.910	7.760	3.690	2.212	1.730	1.380	1.324	1.200	1.150		
			176.906	13.150	3.860	2.000	1.520	1.510	1.290	1.074	1.074	1.074		
124.8	0.0043	14.7020	176.450	13.110	3.920	2.210	1.650	1.450	1.220	1.074	1.074	1.074		
			177.100	13.160	3.900	1.980	1.450	1.570	1.270	1.074	1.074	1.074		
			75.680	4.030	1.875	1.440	1.295	1.170	1.190	1.074	1.074	1.074		
124.8	0.0254	2.8352	75.530	3.990	1.725	1.390	1.302	1.210	1.270	1.074	1.074	1.074		
			75.510	4.140	1.864	1.530	1.329	1.290	1.139	1.074	1.074	1.074		
			90.420	8.020	2.230	1.420	1.350	1.230	1.210	1.190	1.170	1.074		
124.8	0.0542	1.3490	90.130	8.020	2.180	1.340	1.278	1.233	1.260	1.240	1.190	1.074		
			90.270	8.015	2.310	1.460	1.395	1.240	1.310	1.160	1.200	1.074		
			98.080	7.880	2.500	1.430	1.210	1.200	1.180	1.170	1.150	1.150		
124.8	0.1017	0.7235	97.960	7.650	2.389	1.350	1.190	1.290	1.199	1.130	1.195	1.190		
			98.112	7.780	2.350	1.450	1.260	1.330	1.250	1.210	1.250	1.200		
			90.310	19.570	5.680	2.510	1.600	1.350	1.280	1.270	1.250	1.230		
124.8	0.1227	0.6004	91.520	20.010	6.110	2.231	1.490	1.530	1.320	1.250	1.210	1.250		
			91.650	20.250	5.140	2.890	1.720	1.470	1.300	1.310	1.290	1.170		
			92.000	23.200	8.000	3.180	1.850	1.540	1.280	1.190	1.190	1.180		
124.8	0.1533	0.4811	91.790	23.150	8.110	3.231	1.740	1.530	1.320	1.210	1.210	1.250		
			91.650	23.250	8.140	3.165	1.720	1.470	1.300	1.210	1.198	1.170		

Continuación Tabla 4.4. Toma de datos para d =0.25 mm

Caudal Sólido	Caudal Líquido	С		Peso de Sólidos Tolva No. [gr] + Recipiente								
Qs [g/min]	Q _∟ [l/s]	[%]	1	2	3	4	5	6	7	8	9	10
			45.010	38.870	18.200	9.240	5.120	3.000	2.090	1.660	1.220	1.300
124.8	0.2706	0.2731	44.920	38.450	18.100	9.160	5.070	3.120	1.970	1.530	1.190	1.330
			44.850	38.640	18.300	9.290	5.180	3.150	2.130	1.720	1.280	1.260
			14.840	20.970	22.000	18.910	13.600	9.230	6.550	4.700	3.260	2.380
124.8	0.5603	0.1321	14.950	20.680	22.280	18.750	13.920	9.110	6.740	4.760	3.100	2.590
			14.900	20.870	21.790	19.010	13.500	9.360	6.320	4.720	3.190	2.270

Continuación Tabla 4.4. Toma de datos para d =0.25 mm

4.3 PROCESAMIENTO DE DATOS

4.3.1 Media y desviación estándar. Con el fin de obtener una idea del error que se maneja en la elaboración de las replicas y en general del experimento se realiza el cálculo de la desviación estándar, σ , para cada uno de los ensayos, que según el literal 4.1.6 se trabaja con un error del 10% y una probabilidad de acierto del 90%.

En las Tablas 4.5, 4.6 y 4.7, la columna [1] es igual a la columna [2] de las Tablas 4.2, 4.3, 4.4 respectivamente, se calcularon la media aritmética, \overline{X} , y la desviación estándar , σ , de acuerdo a la Ec. [4.3].

Los datos de la columna [3] son los datos de la columna [4] de las Tablas 4.5, 4.6, 4.7 menos el peso del recipiente, o sea el peso neto del sedimento seco de cada tolva del sedimentador.

Todos los cálculos y procedimientos siguientes se trabajan con la media aritmética de los pesos del suelo de cada tolva, \overline{X} .

$$\sigma = \sqrt{\frac{\sum_{i=1}^{r} (\overline{X} - X_i)^2}{r - 1}}$$
 Ec. [4.5]

Donde

 \overline{X} : Media aritmética X_i : Dato obtenido de cada réplica menos el peso del recipiente r: Número de réplicas

El valor de la desviación estándar, σ , se halla en las Tablas 4.5, 4.6 y 4.7 con el fin de establecer el numero de réplicas, *r*, como se puede observar en el literal 4.1.6.

[1]	[2]	[2] [3] DLVA No 1 2 3 4 5 6 7 8 9 10 1 13.596 9.526 6.726 3.426 1.476 0.566 0.246 0.176 0.076 0.026										
Concentración	TOLVA N	0	1	2	3	4	5	6	7	8	9	10
		1	13.596	9.526	6.726	3.426	1.476	0.566	0.246	0.176	0.076	0.026
4	PESO (gr)	2	13.546	9.506	6.836	3.476	1.576	0.536	0.216	0.166	0.086	0.021
7611		3	13.536	9.416	6.486	3.306	1.466	0.526	0.256	0.136	0.116	0.006
0	MEDIA (g	r)	13.559	9.482	6.682	3.402	1.506	0.542	0.239	0.159	0.092	0.017
	σ		0.032	0.059	0.179	0.087	0.061	0.021	0.021	0.021	0.021	0.010
		1	35.423	28.140	16.838	8.317	3.673	1.673	0.662	0.291	0.195	0.124
4	PESO (gr)	2	35.331	28.207	16.828	7.972	3.200	1.367	0.531	0.221	0.131	0.103
357		3	35.007	28.186	16.834	8.231	3.435	1.540	0.534	0.181	0.193	0.102
2.0	MEDIA (g	r)	35.254	28.177	16.833	8.173	3.436	1.526	0.575	0.231	0.173	0.110
	σ		0.218	0.034	0.005	0.179	0.237	0.153	0.075	0.056	0.036	0.013
		1	35.926	28.926	17.566	8.526	3.276	1.086	0.606	0.236	0.116	0.086
2	PESO (gr)	2	35.936	28.786	17.516	8.466	3.596	1.076	0.576	0.186	0.136	0.026
82:		3	35.736	29.146	17.496	8.516	3.216	1.176	0.546	0.226	0.146	0.096
Ň	MEDIA (g	r)	35.866	28.952	17.526	8.502	3.362	1.112	0.576	0.216	0.132	0.069
	σ		0.113	0.181	0.036	0.032	0.204	0.055	0.030	0.026	0.015	0.038
		1	99.025	60.307	43.412	26.363	13.365	6.420	2.168	0.586	0.350	0.172
80	PESO (gr)	2	99.405	61.384	43.110	26.378	13.332	6.119	2.225	0.627	0.384	0.157
864		3	100.296	61.334	43.046	26.312	13.345	6.113	2.204	0.571	0.356	0.181
4.9	MEDIA (g	r)	99.575	61.008	43.189	26.351	13.347	6.217	2.199	0.595	0.363	0.170
	σ	-	0.653	0.608	0.195	0.034	0.017	0.176	0.029	0.029	0.018	0.012
		1	140.299	97.744	65.605	42.154	25.310	14.581	6.627	2.824	1.709	0.268
61	PESO (gr)	2	140.100	97.977	65.469	42.210	24.934	14.424	6.620	2.874	1.762	0.257
210		3	139.957	97.309	66.292	41.953	25.762	14.637	5.878	2.698	1.696	0.263
9	MEDIA (g	r)	140.118	97.677	65.789	42.106	25.335	14.547	6.375	2.799	1.722	0.263
	σ		0.172	0.339	0.441	0.135	0.415	0.110	0.431	0.090	0.035	0.005

 Tabla 4.5
 Media y desviación estándar
 d = 0.074 mm

Concentración	TOLVA N	0	1	2	3	4	5	6	7	8	9	10
		1	210.133	146.709	111.815	80.138	57.208	35.518	17.586	8.215	3.770	1.508
34	PESO (gr)	2	210.094	146.879	112.005	80.420	56.916	35.920	17.509	8.545	3.323	1.826
314		3	209.805	146.450	111.339	80.307	57.123	35.339	17.774	8.434	3.085	2.049
7	MEDIA (g	r)	210.011	146.679	111.720	80.288	57.082	35.592	17.623	8.398	3.393	1.794
	σ		0.179	0.216	0.343	0.142	0.150	0.298	0.136	0.168	0.348	0.272
		1	313.831	267.525	205.010	157.985	117.756	85.214	41.240	19.562	9.081	4.201
88	PESO (gr)	2	313.495	267.550	205.514	157.708	117.746	85.210	41.211	19.530	9.141	4.184
047		3	313.721	267.715	204.927	158.043	117.650	85.118	41.140	19.355	8.922	4.221
23.(MEDIA (g	r)	313.683	267.597	205.150	157.912	117.718	85.181	41.197	19.483	9.048	4.202
	σ		0.171	0.103	0.318	0.179	0.059	0.055	0.051	0.111	0.113	0.019
		1	99.446	62.956	51.456	30.596	11.606	5.296	2.556	1.336	0.776	0.216
.79062	PESO (gr)	2	99.576	63.182	51.376	29.972	11.362	5.050	2.835	1.516	0.882	0.376
062		3	99.829	62.955	51.716	29.935	11.802	5.456	2.706	1.115	0.556	0.596
14.	MEDIA (g	r)	99.617	63.031	51.516	30.167	11.590	5.267	2.699	1.322	0.738	0.396
	σ		0.195	0.131	0.178	0.371	0.220	0.205	0.140	0.201	0.166	0.191
		1	73.366	60.766	44.516	27.356	14.846	5.536	3.106	1.236	0.646	0.476
00	PESO (gr)	2	73.404	60.780	45.119	27.622	15.245	5.796	3.470	1.156	0.642	0.886
1416		3	73.160	60.535	44.938	27.770	14.533	6.113	3.300	1.660	0.896	0.760
4.5	MEDIA (g	r)	73.310	60.693	44.857	27.582	14.874	5.815	3.292	1.350	0.728	0.707
	σ		0.131	0.138	0.309	0.210	0.357	0.289	0.182	0.271	0.146	0.210
		1	72.736	55.926	43.756	31.716	20.146	11.696	6.926	2.886	1.406	0.996
PI	PESO (gr)	2	72.834	55.834	43.833	32.131	20.104	11.851	6.841	2.682	1.553	0.927
102		3	72.315	56.297	43.853	31.839	19.826	11.516	6.471	3.116	1.630	0.796
2.7	MEDIA (g	r)	72.628	56.019	43.814	31.895	20.025	11.687	6.746	2.894	1.529	0.906
	σ		0.276	0.245	0.051	0.213	0.174	0.168	0.242	0.217	0.114	0.102

Continuación Tabla 4.5 Media y desviación estándar d = 0.074 mm

Concentración	TOLVA N	0	1	2	3	4	5	6	7	8	9	10
		1	70.496	52.456	42.616	32.366	22.906	14.236	10.066	5.086	2.216	1.676
4	PESO (gr)	2	70.116	52.576	42.793	32.066	22.693	14.373	9.934	5.073	2.390	1.902
1727		3	70.776	52.876	42.365	31.916	22.625	14.116	10.323	4.626	2.338	1.993
2.2	MEDIA (g	r)	70.462	52.636	42.591	32.116	22.741	14.241	10.107	4.928	2.314	1.857
	σ		0.331	0.216	0.215	0.229	0.147	0.129	0.198	0.262	0.089	0.163
		1	27.986	31.246	31.876	27.576	25.376	24.136	20.926	16.346	12.696	11.786
5	PESO (gr)	2	27.826	31.606	30.871	27.576	25.486	24.312	20.869	16.426	12.376	11.458
506		3	27.630	31.356	30.047	27.886	24.823	24.416	20.356	16.658	12.906	11.250
1.2	MEDIA (g	r)	27.814	31.402	30.931	27.679	25.228	24.288	20.717	16.476	12.659	11.498
	σ		0.178	0.184	0.916	0.179	0.355	0.142	0.314	0.162	0.267	0.270
		1	10.136	13.336	16.576	16.626	16.716	16.746	17.266	17.236	17.226	16.896
8	PESO (gr)	2	9.936	13.576	16.136	16.446	16.506	16.626	17.206	17.146	17.006	16.776
1127		3	10.796	13.676	16.376	16.536	16.736	16.776	17.516	17.376	17.116	16.616
0.4	MEDIA (g	r)	10.289	13.529	16.362	16.536	16.652	16.716	17.329	17.252	17.116	16.762
	σ		0.450	0.175	0.220	0.090	0.127	0.079	0.164	0.116	0.110	0.140

Continuación Tabla 4.5 Media y desviación estándar d = 0.074 mm

 Tabla 4.6
 Media y desviación estándar d = 0.125 mm

[1]	[2]						[3	3]				
Concentración	TOLVA N	о	1	2	3	4	5	6	7	8	9	10
		1	4.466	6.826	8.666	8.196	8.136	7.466	7.266	6.356	5.516	4.756
8	PESO (gr)	2	4.046	6.526	8.406	8.046	7.926	7.476	7.226	6.446	5.776	4.506
1097		3	4.946	7.046	8.636	8.276	8.256	7.496	7.346	6.316	5.406	4.876
ö	MEDIA (g	r)	4.486	6.799	8.569	8.172	8.106	7.479	7.279	6.372	5.566	4.712
	σ		0.450	0.261	0.142	0.117	0.167	0.015	0.061	0.067	0.190	0.189

Concentración	TOLVA N	lo	1	2	3	4	5	6	7	8	9	10
		1	17.416	26.126	15.496	11.096	8.716	7.126	5.466	3.836	2.386	1.466
6	PESO (gr)	2	17.586	26.046	15.386	10.953	8.536	7.126	5.316	3.776	2.156	1.356
336		3	17.336	26.353	15.646	11.166	8.716	7.226	5.356	4.027	2.276	1.536
0.2	MEDIA (g	ır)	17.446	26.175	15.509	11.071	8.656	7.159	5.379	3.879	2.272	1.452
	σ		0.128	0.159	0.131	0.109	0.104	0.058	0.078	0.131	0.115	0.091
		1	37.136	21.566	14.926	9.056	5.946	3.406	2.066	1.016	0.666	0.356
22	PESO (gr)	2	37.056	21.366	14.856	8.929	6.048	3.486	1.956	1.046	0.816	0.236
196		3	37.356	21.696	14.576	9.136	6.216	3.156	2.106	1.096	0.616	0.276
0.3	MEDIA (g	jr)	37.182	21.542	14.786	9.040	6.070	3.349	2.042	1.052	0.699	0.289
	σ		0.155	0.166	0.185	0.104	0.136	0.172	0.078	0.040	0.104	0.061
		1	25.826	10.076	3.526	1.116	0.226	0.146	0.136	0.126	0.076	0.026
0.56405 M	PESO (gr)	2	26.346	9.936	3.476	1.146	0.236	0.106	0.126	0.106	0.086	0.016
5640		3	24.746	10.406	3.576	1.106	0.216	0.186	0.146	0.136	0.066	0.046
3.0	MEDIA (g	ır)	25.639	10.139	3.526	1.122	0.226	0.146	0.136	0.122	0.076	0.029
	σ		0.816	0.241	0.050	0.021	0.010	0.040	0.010	0.015	0.010	0.015
		1	48.036	21.166	9.566	4.386	1.686	0.656	0.236	0.196	0.156	0.116
1 5	PESO (gr)	2	48.154	21.028	9.566	4.166	1.466	0.446	0.356	0.316	0.306	0.176
04		3	47.866	20.893	9.246	4.196	1.616	0.586	0.476	0.336	0.186	0.236
0.7	MEDIA (g	ır)	48.018	21.029	9.459	4.249	1.589	0.562	0.356	0.282	0.216	0.176
	σ		0.145	0.137	0.185	0.119	0.112	0.107	0.120	0.076	0.079	0.060
		1	19.026	7.716	1.956	0.561	0.276	0.176	0.146	0.126	0.106	0.091
2	PESO (gr)	2	18.626	7.626	2.026	0.536	0.446	0.037	0.086	0.052	0.047	0.060
744		3	18.939	7.927	2.056	0.305	0.216	0.216	0.278	0.176	0.179	0.126
0.1	MEDIA (g	ır)	18.863	7.756	2.012	0.467	0.312	0.143	0.170	0.118	0.110	0.092
	σ		0.210	0.155	0.051	0.141	0.119	0.094	0.098	0.062	0.066	0.033

Continuación Tabla 4.6 Media y desviación estándar d = 0.125 mm

Concentración	TOLVA N	lo	1	2	3	4	5	6	7	8	9	10
		1	48.946	18.956	5.476	1.666	0.476	0.216	0.106	0.076	0.066	0.056
25	PESO (gr)	2	48.604	18.938	5.696	1.466	0.406	0.256	0.216	0.071	0.158	0.158
526		3	48.756	19.182	5.346	1.476	0.486	0.180	0.176	0.050	0.055	0.048
1.0	MEDIA (g	yr)	48.768	19.025	5.506	1.536	0.456	0.217	0.166	0.065	0.093	0.087
	σ		0.171	0.136	0.177	0.113	0.044	0.038	0.056	0.014	0.057	0.061
		1	114.436	30.536	13.546	4.746	1.126	0.336	0.166	0.146	0.116	0.086
ω	PESO (gr)	2	113.538	30.817	13.273	4.819	1.489	0.604	0.273	0.271	0.160	0.049
056		3	113.493	30.277	13.666	4.826	1.326	0.406	0.286	0.356	0.206	0.136
2.2	MEDIA (g	jr)	113.822	30.543	13.495	4.797	1.313	0.448	0.241	0.257	0.160	0.090
	σ		0.532	0.270	0.201	0.044	0.182	0.139	0.066	0.106	0.045	0.044
		1	48.636	13.796	3.876	0.796	0.256	0.136	0.116	0.096	0.076	0.071
2.37615	PESO (gr)	2	48.083	13.325	3.843	0.490	0.076	0.356	0.186	0.156	0.266	0.279
761		3	48.715	13.938	3.612	0.818	0.278	0.075	0.157	0.079	0.276	0.175
5.3	MEDIA (g	yr)	48.478	13.686	3.777	0.701	0.203	0.189	0.153	0.110	0.206	0.175
	σ		0.344	0.321	0.144	0.183	0.111	0.148	0.035	0.040	0.113	0.104
		1	175.902	51.016	22.746	9.236	3.566	1.246	0.626	0.306	0.206	0.126
<u>و</u>	PESO (gr)	2	175.943	51.094	22.821	9.306	3.275	1.206	0.286	0.266	0.174	0.272
457		3	175.706	50.915	22.496	9.166	3.816	1.426	0.576	0.062	0.306	0.158
3.4	MEDIA (g	jr)	175.850	51.008	22.687	9.236	3.552	1.292	0.496	0.211	0.228	0.185
	σ		0.127	0.090	0.170	0.070	0.271	0.117	0.184	0.131	0.069	0.077
		1	127.907	42.082	16.146	4.106	1.146	0.386	0.241	0.236	0.176	0.126
6 PI	PESO (gr)	2	128.056	42.036	16.216	4.286	1.106	0.436	0.216	0.206	0.186	0.146
013		3	128.206	42.276	15.516	4.376	0.906	0.396	0.246	0.226	0.196	0.096
5.3	MEDIA (g	yr)	128.056	42.131	15.959	4.256	1.052	0.406	0.234	0.222	0.186	0.122
	σ		0.150	0.127	0.386	0.137	0.129	0.026	0.016	0.015	0.010	0.025

Continuación Tabla 4.6 Media y desviación estándar d = 0.125 mm

Concentración	TOLVA N	0	1	2	3	4	5	6	7	8	9	10
		1	264.552	153.252	64.746	37.896	16.606	6.146	2.331	0.846	0.486	0.266
2	PESO (gr)	2	264.386	153.046	64.606	37.646	16.376	6.086	2.176	1.026	0.836	0.366
1151		3	264.215	153.456	64.456	37.606	16.646	6.116	2.456	1.018	0.712	0.486
7.0	MEDIA (g	r)	264.384	153.251	64.602	37.716	16.542	6.116	2.321	0.963	0.678	0.372
	σ		0.169	0.205	0.145	0.157	0.146	0.030	0.140	0.102	0.177	0.110

Continuación Tabla 4.6 Media y desviación estándar d = 0.125 mm

Tabla 4.7	Media y c	lesviación	estándar	d = 0.25 mm
-----------	-----------	------------	----------	-------------

[1]	[2]				2 3 4 5 6 7 8 9 1.016 0.246 0.166 0.126 0.076 0.026 0.000 0.000 1.076 0.216 0.146 0.106 0.086 0.036 0.000 0.000 0.936 0.276 0.166 0.116 0.086 0.006 0.000 0.000 0.936 0.276 0.166 0.116 0.086 0.006 0.000 0.000 1.009 0.246 0.159 0.116 0.082 0.022 0.000 0.000 0.070 0.030 0.012 0.010 0.006 0.015 0.000 0.000 1.256 0.336 0.126 0.126 0.106 0.046 0.000 0.000 1.256 0.336 0.126 0.136 0.164 0.081 0.000 0.000 1.256 0.336 0.146 0.131 0.196 0.051 0.000 0.000 1.116 0.									
Concentración	TOLVA No	D	1	2	3	4	5	6	7	8	9	10		
		1	12.336	1.016	0.246	0.166	0.126	0.076	0.026	0.000	0.000	0.000		
8	PESO (gr)	2	12.406	1.076	0.216	0.146	0.106	0.086	0.036	0.000	0.000	0.000		
4929		3	12.186	0.936	0.276	0.166	0.116	0.086	0.006	0.000	0.000	0.000		
0.	MEDIA (gr	.)	12.309	1.009	0.246	0.159	0.116	0.082	0.022	0.000	0.000	0.000		
	σ		0.112	0.070	0.030	0.012	0.010	0.006	0.015	0.000	0.000	0.000		
		1	17.936	1.256	0.336	0.126	0.126	0.106	0.046	0.000	0.000	0.000		
8	PESO (gr)	2	18.016	0.996	0.286	0.086	0.136	0.164	0.081	0.000	0.000	0.000		
020		3	18.056	1.116	0.266	0.146	0.131	0.196	0.051	0.000	0.000	0.000		
0.5	MEDIA (gr	.)	18.002	1.122	0.296	0.119	0.131	0.155	0.059	0.000	0.000	0.000		
	σ		0.061	0.130	0.036	0.031	0.005	0.046	0.019	0.000	0.000	0.000		
		1	57.476	3.846	0.606	0.156	0.156	0.126	0.126	0.111	0.000	0.000		
ŝ	PESO (gr)	2	57.169	3.656	0.456	0.045	0.125	0.236	0.109	0.080	0.000	0.000		
328		3	57.274	3.766	0.676	0.216	0.216	0.115	0.166	0.102	0.000	0.000		
1.2	MEDIA (gr	.)	57.306	3.756	0.579	0.139	0.165	0.159	0.133	0.097	0.000	0.000		
	σ		0.156	0.095	0.112	0.087	0.046	0.067	0.029	0.016	0.000	0.000		

Concentración	TOLVA No	D	1	2	3	4	5	6	7	8	9	10
		1	102.966	6.726	1.256	0.506	0.186	0.186	0.141	0.116	0.096	0.091
33	PESO (gr)	2	102.829	6.576	1.276	0.416	0.116	0.116	0.041	0.156	0.166	0.078
600		3	103.079	6.716	1.196	0.546	0.246	0.146	0.121	0.276	0.046	0.100
1.6	MEDIA (gr	.)	102.958	6.672	1.242	0.489	0.182	0.149	0.101	0.182	0.102	0.089
	σ		0.125	0.084	0.042	0.067	0.065	0.035	0.053	0.083	0.060	0.011
		1	138.066	10.926	2.236	0.676	0.201	0.156	0.156	0.146	0.116	0.106
6	PESO (gr)	2	137.936	11.076	2.156	0.486	0.156	0.116	0.256	0.206	0.066	0.156
121		3	138.156	10.896	2.406	0.596	0.236	0.266	0.296	0.106	0.155	0.116
2.2	MEDIA (gr	.)	138.052	10.966	2.266	0.586	0.197	0.179	0.236	0.152	0.112	0.126
	σ		0.111	0.096	0.128	0.095	0.040	0.078	0.072	0.050	0.045	0.026
		1	205.986	27.856	6.496	2.576	1.286	0.596	0.226	0.286	0.176	0.106
88	PESO (gr)	2	205.916	27.626	6.576	2.456	1.236	0.536	0.193	0.215	0.286	0.224
1436		3	205.936	27.836	6.686	2.616	1.138	0.656	0.306	0.250	0.126	0.076
3.5	MEDIA (gr	.)	205.946	27.772	6.586	2.549	1.220	0.596	0.241	0.250	0.196	0.135
	σ		0.036	0.127	0.095	0.083	0.075	0.060	0.058	0.036	0.082	0.078
		1	175.832	12.076	2.786	0.926	0.446	0.436	0.216	0.000	0.000	0.000
96	PESO (gr)	2	175.376	12.036	2.846	1.136	0.576	0.376	0.146	0.000	0.000	0.000
701		3	176.026	12.086	2.826	0.906	0.376	0.496	0.196	0.000	0.000	0.000
14.	MEDIA (gr	.)	175.744	12.066	2.819	0.989	0.466	0.436	0.186	0.000	0.000	0.000
	σ		0.334	0.026	0.031	0.127	0.101	0.060	0.036	0.000	0.000	0.000
		1	74.606	2.956	0.801	0.366	0.221	0.096	0.116	0.000	0.000	0.000
œ	PESO (gr)	2	74.456	2.916	0.651	0.316	0.228	0.136	0.196	0.000	0.000	0.000
351		3	74.436	3.066	0.790	0.456	0.255	0.216	0.065	0.000	0.000	0.000
2.8	MEDIA (gr	.)	74.499	2.979	0.747	0.379	0.234	0.149	0.125	0.000	0.000	0.000
	σ		0.093	0.078	0.084	0.071	0.018	0.061	0.066	0.000	0.000	0.000

Continuación Tabla 4.7 Media y desviación estándar d = 0.25 mm

Concentración	TOLVA N	0	1	2	3	4	5	6	7	8	9	10
		1	89.346	6.946	1.156	0.346	0.276	0.156	0.136	0.116	0.096	0.000
88	PESO (gr)	2	89.056	6.946	1.106	0.266	0.204	0.159	0.186	0.166	0.116	0.000
486		3	89.196	6.941	1.236	0.386	0.321	0.166	0.236	0.086	0.126	0.000
1.3	MEDIA (gi	r)	89.199	6.944	1.166	0.332	0.267	0.160	0.186	0.122	0.112	0.000
	σ		0.145	0.003	0.066	0.061	0.059	0.005	0.050	0.040	0.015	0.000
		1	97.006	6.806	1.426	0.356	0.136	0.126	0.106	0.096	0.076	0.076
ଗୁ	PESO (gr)	2	96.886	6.576	1.315	0.276	0.116	0.216	0.125	0.056	0.121	0.116
234		3	97.038	6.706	1.276	0.376	0.186	0.256	0.176	0.136	0.176	0.126
0.7	MEDIA (gr	·)	96.976	6.696	1.339	0.336	0.146	0.199	0.135	0.096	0.124	0.106
	σ		0.080	0.115	0.078	0.053	0.036	0.067	0.036	0.040	0.050	0.026
		1	89.236	18.496	4.606	1.436	0.526	0.276	0.206	0.196	0.176	0.156
5	PESO (gr)	2	90.446	18.936	5.036	1.157	0.416	0.456	0.246	0.176	0.136	0.176
004		3	90.576	19.176	4.066	1.816	0.646	0.396	0.226	0.236	0.216	0.096
0.6	MEDIA (gi	r)	90.086	18.869	4.569	1.469	0.529	0.376	0.226	0.202	0.176	0.142
	σ		0.739	0.345	0.486	0.331	0.115	0.092	0.020	0.031	0.040	0.042
		1	90.926	22.126	6.926	2.106	0.776	0.466	0.206	0.116	0.116	0.106
4	PESO (gr)	2	90.716	22.076	7.036	2.157	0.666	0.456	0.246	0.136	0.136	0.176
811		3	90.576	22.176	7.066	2.091	0.646	0.396	0.226	0.136	0.124	0.096
0.4	MEDIA (gi	r)	90.739	22.126	7.009	2.118	0.696	0.439	0.226	0.129	0.125	0.126
	σ		0.176	0.050	0.074	0.035	0.070	0.038	0.020	0.012	0.010	0.044
14		1	43.936	37.796	17.126	8.166	4.046	1.926	1.016	0.586	0.146	0.226
273	PESO (gr)	2	43.846	37.376	17.026	8.086	3.996	2.046	0.896	0.456	0.116	0.256
0		3	43.776	37.566	17.226	8.216	4.106	2.076	1.056	0.646	0.206	0.186
	MEDIA (gr	-)	43.852	37.579	17.126	8.156	4.049	2.016	0.989	0.562	0.156	0.222
	σ		0.080	0.210	0.100	0.066	0.055	0.079	0.083	0.097	0.046	0.035

Continuación Tabla 4.7 Media y desviación estándar d = 0.25 mm
Concentración	ntración TOLVA No		1	2	3	4	5	6	7	8	9	10
		4	13.766	19.896	20.926	17.836	12.526	8.156	5.476	3.626	2.186	1.306
0	PESO (gr)	5	13.876	19.606	21.206	17.676	12.846	8.036	5.666	3.686	2.026	1.516
321		6	13.826	19.796	20.716	17.936	12.426	8.286	5.246	3.646	2.116	1.196
0.1	MEDIA (gr)		13.822	19.766	20.949	17.816	12.599	8.159	5.462	3.652	2.109	1.339
	σ		0.055	0.147	0.246	0.131	0.219	0.125	0.210	0.031	0.080	0.163

Continuación Tabla 4.7 Media y desviación estándar d = 0.25 mm

4.3.2 Cálculo de la eficiencia en relación con la longitud. En las Tablas 4.8, 4.9 y 4.10 la columna [1] es igual a la columna [2] de las Tablas 4.2, 4.3, 4.4 respectivamente, la columna [2] es el peso suministrado en el ensayo según el caudal sólido calculado.

El valor de la longitud es igual a la longitud acumulada de cada una de las tolvas. Si se sabe que la longitud total del sedimentador es de 1.04 m, y el modelo consta de 10 tolvas, la primera longitud anotada en la tabla debe ser 1.04m/10 =0.104 m, el segundo dato de longitud por consiguiente es dos veces el primero (0.208m) y así hasta obtener finalmente la longitud de todo el sedimentador.

Los valores escritos en las col [4] hasta la col[13] corresponden a la eficiencia de cada una de las tolvas, se calcula con la Ec. [4.4]

$$\eta = \frac{PesoSolidoDeCadaTolva}{PesoSu\min istrado} x100 = \frac{Media}{Col[2]} x100$$
 Ec.[4.6]

La media se obtiene de las Tablas 4.5, 4.6 y 4.7, según como corresponda el diámetro de la partícula.

La columna [14] equivale a la eficiencia total de sedimentador por cada ensayo o por cada concentración, es igual a la suma de las eficiencias de cada una de las tolvas, encontradas para las col[4] hasta col[13]. Se encuentra con:

$$Col[14] = Col[4] + Col[5] + Col[6] + Col[7] + Col[8] + Col[9] + Col[10] + Col[11] + Col[12] + Col[13] +$$

[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]	[11]	[12]	[13]	[14]
Concentración	Peso sum.	No tolva	1	2	3	4	5	6	7	8	9	10	Total
(%)	(g)	Longitud	0.104	0.208	0.312	0.416	0.520	0.624	0.728	0.832	0.936	1.040	Total
0.76	46.80		28.97	20.26	14.28	7.27	3.22	1.16	0.51	0.34	0.20	0.04	76.24
2.04	126.80		27.80	22.22	13.28	6.45	2.71	1.20	0.45	0.18	0.14	0.09	74.52
2.18	130.45		27.49	22.19	13.43	6.52	2.58	0.85	0.44	0.17	0.10	0.05	73.83
4.86	263.57		37.78	23.15	16.39	10.00	5.06	2.36	0.83	0.23	0.14	0.06	96.00
6.51	399.43		35.08	24.45	16.47	10.54	6.34	3.64	1.60	0.70	0.43	0.07	99.32
11.31	679.74	0/	30.90	21.58	16.44	11.81	8.40	5.24	2.59	1.24	0.50	0.26	98.95
23.05	1243.67	% Eficiencia	25.22	21.52	16.50	12.70	9.47	6.85	3.31	1.57	0.73	0.34	98.19
14.79	399.43		24.94	15.78	12.90	7.55	2.90	1.32	0.68	0.33	0.18	0.10	66.68
4.54	399.43		18.35	15.19	11.23	6.91	3.72	1.46	0.82	0.34	0.18	0.18	58.39
2.71	399.43		18.18	14.02	10.97	7.99	5.01	2.93	1.69	0.72	0.38	0.23	62.12
2.27	399.43		17.64	13.18	10.66	8.04	5.69	3.57	2.53	1.23	0.58	0.46	63.59
1.22	399.43		6.96	7.86	7.74	6.93	6.32	6.08	5.19	4.12	3.17	2.88	57.25
0.41	399.43		2.58	3.39	4.10	4.14	4.17	4.18	4.34	4.32	4.29	4.20	39.69

Tabla 4.8 Cálculo de la eficiencia en relación con la longitudd = 0.074 mm

[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]	[11]	[12]	[13]	[14]
Concentración	Peso sum.	No tolva	1	2	3	4	5	6	7	8	9	10	Total
(%)	(g)	Longitud	0.104	0.208	0.312	0.416	0.520	0.624	0.728	0.832	0.936	1.040	TOtal
0.11	104.80		4.28	6.49	8.18	7.80	7.73	7.14	6.95	6.08	5.31	4.50	64.45
0.24	104.80		16.65	24.98	14.80	10.56	8.26	6.83	5.13	3.70	2.17	1.39	94.46
0.38	104.80		35.48	20.56	14.11	8.63	5.79	3.20	1.95	1.00	0.67	0.28	91.65
0.56	46.00		55.74	22.04	7.66	2.44	0.49	0.32	0.29	0.27	0.16	0.06	89.48
0.70	104.80		45.82	20.07	9.03	4.05	1.52	0.54	0.34	0.27	0.21	0.17	82.00
0.74	60.80	%	31.03	12.76	3.31	0.77	0.51	0.23	0.28	0.19	0.18	0.15	49.41
1.10	104.80	Eficiencia	46.53	18.15	5.25	1.47	0.43	0.21	0.16	0.06	0.09	0.08	72.44
2.21	182.90		62.23	16.70	7.38	2.62	0.72	0.25	0.13	0.14	0.09	0.05	90.30
2.38	104.80		46.26	13.06	3.60	0.67	0.19	0.18	0.15	0.10	0.20	0.17	64.58
3.45	289.40		60.76	17.63	7.84	3.19	1.23	0.45	0.17	0.07	0.08	0.06	91.48
5.30	209.60		61.10	20.10	7.61	2.03	0.50	0.19	0.11	0.11	0.09	0.06	91.90
7.02	611.80		43.21	25.05	10.56	6.16	2.70	1.00	0.38	0.16	0.11	0.06	89.40

Tabla 4.9 Cálculo de la eficiencia en relación con la longitudd = 0.125 mm

[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]	[11]	[12]	[13]	[14]
Concentración	Peso sum.	No tolva	1	2	3	4	5	6	7	8	9	10	Total
(%)	(g)	Longitud	0.104	0.208	0.312	0.416	0.520	0.624	0.728	0.832	0.936	1.040	TOtal
0.49	38.50		31.97	2.62	0.64	0.41	0.30	0.21	0.06	0.00	0.00	0.00	36.21
0.51	39.60		45.46	2.83	0.75	0.30	0.33	0.39	0.15	0.00	0.00	0.00	50.21
1.23	97.00		59.08	3.87	0.60	0.14	0.17	0.16	0.14	0.10	0.00	0.00	64.26
1.61	127.10		81.01	5.25	0.98	0.38	0.14	0.12	0.08	0.14	0.08	0.07	88.25
2.21	175.80		78.53	6.24	1.29	0.33	0.11	0.10	0.13	0.09	0.06	0.07	86.96
3.54	285.50		72.14	9.73	2.31	0.89	0.43	0.21	0.08	0.09	0.07	0.05	85.99
14.70	249.6	%	70.41	4.83	1.13	0.40	0.19	0.17	0.07	0.00	0.00	0.00	77.21
2.84	124.80	Eficiencia	59.69	2.39	0.60	0.30	0.19	0.12	0.10	0.00	0.00	0.00	63.39
1.35	124.80		71.47	5.56	0.93	0.27	0.21	0.13	0.15	0.10	0.09	0.00	78.92
0.72	124.80		77.71	5.37	1.07	0.27	0.12	0.16	0.11	0.08	0.10	0.08	85.06
0.60	124.80		72.18	15.12	3.66	1.18	0.42	0.30	0.18	0.16	0.14	0.11	93.46
0.48	124.80		72.71	17.73	5.62	1.70	0.56	0.35	0.18	0.10	0.10	0.10	99.14
0.27	124.80		35.14	30.11	13.72	6.53	3.24	1.62	0.79	0.45	0.12	0.18	91.91
0.13	124.80		11.08	15.84	16.79	14.28	10.10	6.54	4.38	2.93	1.69	1.07	84.67

 Tabla 4.10
 Cálculo de la eficiencia en relación con la longitud
 d = 0.25 mm

4.3.3 Cálculo de variables de las partículas y del flujo. Para el cálculo de los parámetros adimensionales que se encontraron en el Análisis Dimensional (Capitulo I) es necesario calcular las variables propias de las partículas y del flujo como son: d+, R_s, V_s, Δ ', v_m , d'+, R_m, *n*, V'_s, C'_D, Qm, Vm que se muestran en las Tablas 4.11, 4.12 y 4.13. La columna [1] es igual a la columna [3] de las Tablas 4.2, 4.3 y 4.4, la columna [8] se calcula con la Ec. [4.4] y la columna [9] con la Ec. [4.8].

$$V_m = \frac{Q_m}{A_T}$$
 Ec.[4.7]

$$Col[9] = \frac{4Col[8]}{\pi D^2}$$
 Ec.[4.8]

- Δ ': Coeficiente de densidad de la partícula con mezcla. Calculado con la Ec [2.34]
- v_m : Viscosidad Cinemática de la mezcla [cm²/s]. Calculado con la Ec [2.36]
- d'+:Parámetro adimensional de la partícula afectado por la mezcla. Calculado con la Ec [2.33]
- R_m: Número de Reynolds de la partícula afectado por la mezcla. Calculado con la Ec [2.32]
- *n*: Exponente que cuantifica el efecto de la concentración sobre la velocidad de asentamiento de las partículas. Calculado con la Ec [3.31]
- V's: Velocidad de sedimentación de la partícula afectada por la concentración [cm/s]. Calculado con la Ec [2.30]
- d+: Parámetro adimensional de la partícula individual. Calculado con la Ec [2.8c]
- R_s: Número de Reynolds de la partícula individual. Calculado con la Ec [2.2.8b]
- Vs: Velocidad de sedimentación de la partícula [cm/s]. Calculado con la Ec [2.18]
- α: Coeficiente para el cálculo de F_L. Tomado de la Tabla 2.4
- C'_D: Coeficiente de arrastre de los sólidos afectado por la concentración. Calculado con la Ec [2.35]
- Q_m: Caudal de la mezcla [l/s].
- V_m: Velocidad de la mezcla [cm/s].

Tabla 4.11 Cálculo de variables de las partículas y del flujo, d=0.074 mm

v_f (cm ² /s)	0.0109484
d+	1.8372
Rs	0.2434
Vs (cm/s)	0.3601
CD	139.1586
α	0.2264

[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]
Concentración %	Δ'	v _m (cm²/s)	d'+	R _m	n	V' _s (cm/s)	Q _m (I/s)	V _m (cm/sg)
0.76	1.8297	0.0111	1.81	0.23	5.14	0.35	0.035	2.35127
2.04	1.7648	0.0113	1.76	0.217	5.12	0.32	0.036	2.38186
2.18	1.7575	0.0113	1.76	0.215	5.12	0.32	0.035	2.28595
4.86	1.6307	0.0118	1.67	0.184	5.07	0.28	0.031	2.07181
6.51	1.5585	0.0121	1.61	0.167	5.04	0.26	0.036	2.34606
11.31	1.3688	0.0132	1.46	0.125	4.98	0.20	0.035	2.29738
23.05	1.0056	0.0167	1.13	0.058	4.85	0.11	0.031	2.06345
14.79	1.2482	0.0141	1.36	0.100	4.93	0.16	0.016	1.0327
4.54	1.6453	0.0117	1.68	0.187	5.078	0.28	0.051	3.36319
2.71	1.7316	0.0114	1.74	0.208	5.11	0.31	0.085	5.6357
2.27	1.7530	0.0113	1.76	0.213	5.12	0.32	0.102	6.72065
1.22	1.8059	0.0112	1.79	0.227	5.13	0.34	0.190	12.5116
0.41	1.8480	0.0110	1.82	0.237	5.15	0.35	0.562	37.0035

Continuación Tabla 4.11 Cálculo de variables de las partículas y del flujo, d=0.074 mm

 Tabla 4.12
 Cálculo de variables de las partículas y del flujo, d=0.125 mm

v_f (cm ² /s)	0.0109484
d+	3.0868
Rs	1.0546
Vs (cm/s)	0.9237
CD	35.1416
α	0.3671

[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]
Concentración %	Δ'	v _m (cm²/s)	d'+	R _m	п	V' _s (cm/s)	Q _m (I/s)	V _m (cm/sg)
0.11	1.8343	0.0110	3.080	1.0483	4.837	0.918	0.560	36.889
0.24	1.8275	0.0110	3.072	1.041	4.835	0.912	0.256	16.896
0.38	1.8203	0.0110	3.064	1.033	4.833	0.906	0.162	10.668
0.56	1.8108	0.0110	3.053	1.023	4.831	0.898	0.047	3.1515
0.70	1.8037	0.0111	3.044	1.015	4.829	0.892	0.087	5.749
0.74	1.8016	0.0111	3.042	1.013	4.828	0.890	0.0480	3.157
1.10	1.7838	0.0111	3.021	0.994	4.824	0.875	0.056	3.690
2.21	1.7292	0.0113	2.956	0.936	4.810	0.829	0.048	3.204
2.38	1.7210	0.0114	2.946	0.927	4.808	0.822	0.025	1.704
3.45	1.6707	0.0115	2.885	0.875	4.795	0.780	0.049	3.245
5.30	1.5876	0.0119	2.780	0.790	4.773	0.712	0.011	0.763
7.02	1.5153	0.0122	2.686	0.718	4.755	0.653	0.051	3.370

Tabla 4.13 Cálculo de variables de las partículas y del flujo, d=0.25 mm

v_f (cm ² /s)	0.0109484
d+	6.1398
Rs	6.2161
Vs (cm/s)	2.7223
CD	7.9443
α	0.6586

[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]
Concentración	Δ'	v_m	d'+	Rm	п	V's	Qm	Vm
%		(cm ⁻ /s)				(cm/s)	(I/S)	(cm/sg)
0.49	1.7851	0.0110	6.081	6.075	4.134	2.667	0.0463	3.050
0.51	1.7844	0.0110	6.079	6.071	4.1348	2.665	0.0463	3.050
1.23	1.7487	0.0112	5.994	5.868	4.129	2.586	0.0467	3.073
1.61	1.7305	0.0112	5.950	5.765	4.127	2.545	0.0469	3.084
2.21	1.7018	0.0113	5.881	5.604	4.123	2.482	0.04712	3.103
3.54	1.6406	0.0116	5.729	5.259	4.115	2.346	0.0478	3.146
14.70	1.2194	0.0140	4.558	2.971	4.075	1.423	0.0050	0.331
2.84	1.6728	0.0114	5.809	5.441	4.119	2.418	0.0261	1.719
1.35	1.7430	0.0112	5.981	5.836	4.128	2.573	0.0549	3.613
0.72	1.7737	0.0111	6.054	6.010	4.133	2.641	0.1024	6.737
0.60	1.7798	0.0110	6.068	6.044	4.133	2.655	0.12345	8.118
0.48	1.7857	0.0110	6.082	6.0789	4.134	2.668	0.1540	10.130
0.27	1.7962	0.0110	6.107	6.137	4.136	2.691	0.2713	17.84
0.13	1.8033	0.0110	6.124	6.178	4.137	2.707	0.5610	36.89

4.3.4 Parámetros adimensionales referentes al tubo principal del sedimentador, de acuerdo a la concentración en función de la eficiencia. Como se vió anteriormente algunos de los parámetros adimensionales a encontrar eran $\frac{L}{D}$, $\frac{L}{d}$, pero con el propósito de lograr una mayor exactitud en las graficas de

estos parámetros vs. la eficiencia, η , se opto cambiarlos por $Ln\left(\frac{L}{D}\right)$ y $Ln\left(\frac{L}{d}\right)$ logrando

así un valor de correlación (R) mayor, sin embargo, este cambio no altera su propiedad adimensional.

La columna [1] de las Tablas 4.14, 4.15 y 4.16 es el resultado de el logaritmo natural de la relación entre la longitud, L, acumulada de cada una de las tolvas entre el diámetro del sedimentador, D.

La columna [2] de las Tablas 4.14, 4.15 y 4.16 es la relación entre la variable del área de drenaje acumulado de las tolvas, A_d , y el cuadrado el diámetro del sedimentador, D.

La columna [1] de las Tablas 4.17, 4.18 y 4.19 es el resultado de el logaritmo natural de la relación entre la Longitud, L, acumulada de cada una de las tolvas entre el diámetro de la partícula, d.

La columna [2] de las Tablas 4.17, 4.18 y 4.19 es la relación entre la variable del área de drenaje acumulado de las tolvas, A_{d} , y el cuadrado el diámetro de la partícula correspondiente, d.

La columna [1] de las Tablas 4.20, 4.21 y 4.22 es el resultado de la relación entre el diámetro del sedimentador, D, y la Longitud acumulada de cada una de las tolvas, L.

La columna [2] de las Tablas 4.20, 4.21 y 4.22 es la relación entre la variable del área de drenaje acumulado, A_d , y el cuadrado de la longitud acumulada de las tolvas, L.

La columna [2] de las Tablas 4.23, 4.24 y 4.25 es la relación entre la variable del área de drenaje acumulado, A_d , y el área total del tubo principal del sedimentador, A_T que permanece constante a lo largo del mismo.

L es una variable que se obtiene de las Tablas 4.8, 4.9 y 4.10, d es una variable que permanece constante para cada ensayo y D es una variable que permanece constante para todo el experimento.

Los datos correspondientes a la columna [3] de las Tablas 4.14 a 4.25, corresponden a la eficiencia acumulada para las tolvas, tomadas de las Tablas 4.8, 4.9 y 4.10 según como corresponda.

*F*_L de las Tablas 4.50, 4.51 y 4.52 se calcula con la Ec. [2.46].

Para encontrar el valor de F'_L se utiliza la Ec. [4.9].

$$F'_{L} = \frac{V_{m}}{\sqrt{2gD\Delta}}$$
 Ec. [4.9]

V_m se toma de las Tablas 4.11, 4.12 y 4.13.

[1]	[2]		[3]												
L n/L /D)	² ۸./D					E	FICIENC	IA ACUM	ULADA %	6					
		0.76	2.04	2.18	4.86	6.51	11.31	23.05	14.79	4.54	2.71	2.27	1.22	0.41	
0.860	0.896	28.972	27.802	27.494	37.779	35.080	30.896	25.222	24.940	18.354	18.183	17.641	6.963	2.576	
1.553	1.793	49.233	50.024	49.688	60.926	59.534	52.475	46.739	40.720	33.549	32.208	30.818	14.825	5.963	
1.959	2.689	63.512	63.299	63.123	77.313	76.004	68.910	63.235	53.617	44.779	43.177	41.481	22.569	10.059	
2.246	3.586	70.781	69.745	69.640	87.310	86.546	80.722	75.932	61.170	51.684	51.162	49.522	29.498	14.199	
2.470	4.482	73.999	72.455	72.218	92.374	92.889	89.119	85.397	64.071	55.408	56.175	55.215	35.814	18.368	
2.652	5.379	75.157	73.659	73.070	94.733	96.531	94.356	92.246	65.390	56.864	59.101	58.780	41.895	22.553	
2.806	6.275	75.668	74.112	73.512	95.567	98.127	96.948	95.559	66.065	57.688	60.790	61.311	47.082	26.891	
2.940	7.172	76.007	74.294	73.677	95.793	98.827	98.184	97.125	66.396	58.026	61.514	62.545	51.207	31.211	
3.057	8.068	76.205	74.430	73.778	95.931	99.258	98.683	97.853	66.581	58.208	61.897	63.124	54.376	35.496	
3.163	8.965	76.241	74.517	73.831	95.995	99.324	98.947	98.191	66.680	58.385	62.124	63.589	57.254	39.692	

Tabla 4.14 Parámetros adimensionales Ln (L/D) y A_d/D^2 según a la concentración y la eficiencia d =0.074 mm

Tabla 4.15 Parámetros adimensionales Ln (L/D) y A_d/D² según a la concentración y la eficiencia d =0.125 mm

[1]	[2]						[3	5]					
In(I/D)						EFICI	ENCIA AG	CUMULAD	A %				
11(L/D)	Ad/D	0.11	0.24	0.38	0.56	0.70	0.74	1.10	2.21	2.38	3.45	5.30	7.02
0.860	0.896	4.280	16.647	35.479	55.737	45.819	31.025	46.535	62.232	46.257	60.764	61.095	43.214
1.553	1.793	10.768	41.622	56.035	77.778	65.884	43.782	64.688	78.931	59.316	78.389	81.196	68.263
1.959	2.689	18.944	56.421	70.143	85.442	74.910	47.091	69.942	86.309	62.920	86.228	88.810	78.823
2.246	3.586	26.742	66.985	78.769	87.882	78.964	47.859	71.407	88.932	63.589	89.420	90.840	84.987
2.470	4.482	34.476	75.244	84.561	88.372	80.481	48.373	71.842	89.650	63.782	90.647	91.342	87.691
2.652	5.379	41.613	82.075	87.756	88.689	81.017	48.607	72.049	89.895	63.962	91.094	91.536	88.691
2.806	6.275	48.558	87.208	89.705	88.984	81.356	48.886	72.207	90.027	64.108	91.265	91.648	89.070
2.940	7.172	54.639	90.909	90.709	89.250	81.626	49.080	72.269	90.167	64.213	91.338	91.754	89.228
3.057	8.068	59.949	93.078	91.376	89.414	81.831	49.261	72.357	90.255	64.409	91.417	91.842	89.338
3.163	8.965	64.446	94.463	91.652	89.477	81.999	49.412	72.440	90.304	64.576	91.481	91.900	89.399

[1]	[2]							[3]						
In(I/D)							EFIC	IENCIA A	CUMULA	DA %					
(L/D)	Α _α νυ	0.49	0.51	1.23	1.61	2.21	3.54	14.70	2.84	1.35	0.72	0.60	0.48	0.27	0.13
0.860	0.896	31.971	45.460	59.078	81.005	78.528	72.135	70.410	59.695	71.474	77.705	72.184	72.707	35.138	11.076
1.553	1.793	34.592	48.294	62.950	86.255	84.766	81.863	75.244	62.082	77.038	83.070	87.303	90.436	65.249	26.913
1.959	2.689	35.230	49.041	63.547	87.232	86.054	84.169	76.374	62.680	77.972	84.143	90.964	96.052	78.972	43.699
2.246	3.586	35.643	49.341	63.690	87.617	86.387	85.062	76.770	62.984	78.238	84.412	92.142	97.749	85.507	57.975
2.470	4.482	35.943	49.671	63.860	87.760	86.500	85.489	76.956	63.171	78.451	84.529	92.565	98.307	88.751	68.070
2.652	5.379	36.157	50.062	64.024	87.877	86.601	85.698	77.131	63.291	78.580	84.688	92.866	98.658	90.366	74.608
2.806	6.275	36.214	50.211	64.161	87.957	86.735	85.782	77.205	63.391	78.728	84.796	93.047	98.839	91.159	78.984
2.940	7.172	36.214	50.211	64.261	88.100	86.822	85.870	77.205	63.391	78.826	84.873	93.209	98.942	91.609	81.911
3.057	8.068	36.214	50.211	64.261	88.180	86.886	85.938	77.205	63.391	78.916	84.972	93.350	99.043	91.734	83.601
3.163	8.965	36.214	50.211	64.261	88.251	86.957	85.986	77.205	63.391	78.916	85.057	93.464	99.143	91.912	84.674

Tabla 4.16Parámetros adimensionales Ln (L/D) y A_d/D^2 según a la concentración y la eficiencia d =0.25 mm

Tabla 4.17 Parámetros adimensionales Ln (L/d) y A_d/d^2 según a la concentración y la eficiencia d =0.074 mm

[1]	[2]							[3]						
l n(l /d)	Λ /d^2					E	FICIENC	IA ACUM	ULADA %	6				
	Adru	0.76	2.04	2.18	4.86	6.51	11.31	23.05	14.79	4.54	2.71	2.27	1.22	0.41
7.248	316950.953	28.972	27.802	27.494	37.779	35.080	30.896	25.222	24.940	18.354	18.183	17.641	6.963	2.576
7.941	633901.905	49.233	50.024	49.688	60.926	59.534	52.475	46.739	40.720	33.549	32.208	30.818	14.825	5.963
8.347	950852.858	63.512	63.299	63.123	77.313	76.004	68.910	63.235	53.617	44.779	43.177	41.481	22.569	10.059
8.634	1267803.811	70.781	69.745	69.640	87.310	86.546	80.722	75.932	61.170	51.684	51.162	49.522	29.498	14.199
8.858	1584754.763	73.999	72.455	72.218	92.374	92.889	89.119	85.397	64.071	55.408	56.175	55.215	35.814	18.368
9.040	1901705.716	75.157	73.659	73.070	94.733	96.531	94.356	92.246	65.390	56.864	59.101	58.780	41.895	22.553
9.194	2218656.669	75.668	74.112	73.512	95.567	98.127	96.948	95.559	66.065	57.688	60.790	61.311	47.082	26.891
9.328	2535607.621	76.007	74.294	73.677	95.793	98.827	98.184	97.125	66.396	58.026	61.514	62.545	51.207	31.211
9.445	2852558.574	76.205	74.430	73.778	95.931	99.258	98.683	97.853	66.581	58.208	61.897	63.124	54.376	35.496
9.551	3169509.527	76.241	74.517	73.831	95.995	99.324	98.947	98.191	66.680	58.385	62.124	63.589	57.254	39.692

[1]	[2]						[;	3]					
$\ln(1/d)$	Δd^2					EFIC	ENCIA A	CUMULA	DA %				
	τ _α /α	0.11	0.24	0.38	0.56	0.70	0.74	1.10	2.21	2.38	3.45	5.30	7.02
6.724	111075.100	4.280	16.647	35.479	55.737	45.819	31.025	46.535	62.232	46.257	60.764	61.095	43.214
7.417	222150.201	10.768	41.622	56.035	77.778	65.884	43.782	64.688	78.931	59.316	78.389	81.196	68.263
7.822	333225.301	18.944	56.421	70.143	85.442	74.910	47.091	69.942	86.309	62.920	86.228	88.810	78.823
8.110	444300.402	26.742	66.985	78.769	87.882	78.964	47.859	71.407	88.932	63.589	89.420	90.840	84.987
8.333	555375.502	34.476	75.244	84.561	88.372	80.481	48.373	71.842	89.650	63.782	90.647	91.342	87.691
8.516	666450.603	41.613	82.075	87.756	88.689	81.017	48.607	72.049	89.895	63.962	91.094	91.536	88.691
8.670	777525.703	48.558	87.208	89.705	88.984	81.356	48.886	72.207	90.027	64.108	91.265	91.648	89.070
8.803	888600.804	54.639	90.909	90.709	89.250	81.626	49.080	72.269	90.167	64.213	91.338	91.754	89.228
8.921	999675.904	59.949	93.078	91.376	89.414	81.831	49.261	72.357	90.255	64.409	91.417	91.842	89.338
9.026	1110751.004	64.446	94.463	91.652	89.477	81.999	49.412	72.440	90.304	64.576	91.481	91.900	89.399

Tabla 4.18 Parámetros adimensionales Ln (L/d) y A_d/d^2 según a la concentración y la eficiencia d =0.125 mm

Tabla 4.19Parámetros adimensionales Ln (L/d) y A_d/d^2 según a la concentración y la eficiencia d =0.25 mm

[1]	[2]							[3	5]						
In(L/d)	۸./d ²						EFICI	ENCIA AG	CUMULAI	DA %					
m(E/G)	Adia	0.49	0.51	1.23	1.61	2.21	3.54	14.70	2.84	1.35	0.72	0.60	0.48	0.27	0.13
6.031	27769.975	31.971	45.460	59.078	81.005	78.528	72.135	70.410	59.695	71.474	77.705	72.184	72.707	35.138	11.076
6.724	55539.949	34.592	48.294	62.950	86.255	84.766	81.863	75.244	62.082	77.038	83.070	87.303	90.436	65.249	26.913
7.129	83309.924	35.230	49.041	63.547	87.232	86.054	84.169	76.374	62.680	77.972	84.143	90.964	96.052	78.972	43.699
7.417	111079.899	35.643	49.341	63.690	87.617	86.387	85.062	76.770	62.984	78.238	84.412	92.142	97.749	85.507	57.975
7.640	138849.873	35.943	49.671	63.860	87.760	86.500	85.489	76.956	63.171	78.451	84.529	92.565	98.307	88.751	68.070
7.822	166619.848	36.157	50.062	64.024	87.877	86.601	85.698	77.131	63.291	78.580	84.688	92.866	98.658	90.366	74.608
7.977	194389.823	36.214	50.211	64.161	87.957	86.735	85.782	77.205	63.391	78.728	84.796	93.047	98.839	91.159	78.984
8.110	222159.797	36.214	50.211	64.261	88.100	86.822	85.870	77.205	63.391	78.826	84.873	93.209	98.942	91.609	81.911
8.228	249929.772	36.214	50.211	64.261	88.180	86.886	85.938	77.205	63.391	78.916	84.972	93.350	99.043	91.734	83.601
8.333	277699.747	36.214	50.211	64.261	88.251	86.957	85.986	77.205	63.391	78.916	85.057	93.464	99.143	91.912	84.674

[1]	[2]							[3]						
ו/ח	۸./I ²					E	FICIENC	IA ACUM	ULADA %	6				
DIL		0.76	2.04	2.18	4.86	6.51	11.31	23.05	14.79	4.54	2.71	2.27	1.22	0.41
0.423	0.160	28.972	27.802	27.494	37.779	35.080	30.896	25.222	24.940	18.354	18.183	17.641	6.963	2.576
0.212	0.080	49.233	50.024	49.688	60.926	59.534	52.475	46.739	40.720	33.549	32.208	30.818	14.825	5.963
0.141	0.053	63.512	63.299	63.123	77.313	76.004	68.910	63.235	53.617	44.779	43.177	41.481	22.569	10.059
0.106	0.040	70.781	69.745	69.640	87.310	86.546	80.722	75.932	61.170	51.684	51.162	49.522	29.498	14.199
0.085	0.032	73.999	72.455	72.218	92.374	92.889	89.119	85.397	64.071	55.408	56.175	55.215	35.814	18.368
0.071	0.027	75.157	73.659	73.070	94.733	96.531	94.356	92.246	65.390	56.864	59.101	58.780	41.895	22.553
0.060	0.023	75.668	74.112	73.512	95.567	98.127	96.948	95.559	66.065	57.688	60.790	61.311	47.082	26.891
0.053	0.020	76.007	74.294	73.677	95.793	98.827	98.184	97.125	66.396	58.026	61.514	62.545	51.207	31.211
0.047	0.018	76.205	74.430	73.778	95.931	99.258	98.683	97.853	66.581	58.208	61.897	63.124	54.376	35.496
0.042	0.016	76.241	74.517	73.831	95.995	99.324	98.947	98.191	66.680	58.385	62.124	63.589	57.254	39.692

Tabla 4.20 Parámetros adimensionales D/L y A_d/L^2 según a la concentración y la eficiencia d =0.074 mm

Tabla 4.21 Parámetros adimensionales D/L y A_d/L^2 según a la concentración y la eficiencia d =0.125 mm

[1]	[2]						[3	8]					
D/I	۸./I ²					EFICI	ENCIA A	CUMULAD)A %				
D/L	Kd/∟	0.11	0.24	0.38	0.56	0.70	0.74	1.10	2.21	2.38	3.45	5.30	7.02
0.423	0.160	4.280	16.647	35.479	55.737	45.819	31.025	46.535	62.232	46.257	60.764	61.095	43.214
0.212	0.080	10.768	41.622	56.035	77.778	65.884	43.782	64.688	78.931	59.316	78.389	81.196	68.263
0.141	0.053	18.944	56.421	70.143	85.442	74.910	47.091	69.942	86.309	62.920	86.228	88.810	78.823
0.106	0.040	26.742	66.985	78.769	87.882	78.964	47.859	71.407	88.932	63.589	89.420	90.840	84.987
0.085	0.032	34.476	75.244	84.561	88.372	80.481	48.373	71.842	89.650	63.782	90.647	91.342	87.691
0.071	0.027	41.613	82.075	87.756	88.689	81.017	48.607	72.049	89.895	63.962	91.094	91.536	88.691
0.060	0.023	48.558	87.208	89.705	88.984	81.356	48.886	72.207	90.027	64.108	91.265	91.648	89.070
0.053	0.020	54.639	90.909	90.709	89.250	81.626	49.080	72.269	90.167	64.213	91.338	91.754	89.228
0.047	0.018	59.949	93.078	91.376	89.414	81.831	49.261	72.357	90.255	64.409	91.417	91.842	89.338
0.042	0.016	64.446	94.463	91.652	89.477	81.999	49.412	72.440	90.304	64.576	91.481	91.900	89.399

[1]	[2]							[3]							
ו/ח	Δ./Ι ²						EFICIENC		ILADA %						
DIL	Ad L	0.49	0.51	1.23	1.61	2.21	3.54	14.70	2.84	1.35	0.72	0.60	0.48	0.27	0.13
0.423	0.160	31.971	45.460	59.078	81.005	78.528	72.135	70.410	59.695	71.474	77.705	72.184	72.707	35.138	11.076
0.212	0.080	34.592	48.294	62.950	86.255	84.766	81.863	75.244	62.082	77.038	83.070	87.303	90.436	65.249	26.913
0.141	0.053	35.230	49.041	63.547	87.232	86.054	84.169	76.374	62.680	77.972	84.143	90.964	96.052	78.972	43.699
0.106	0.040	35.643	49.341	63.690	87.617	86.387	85.062	76.770	62.984	78.238	84.412	92.142	97.749	85.507	57.975
0.085	0.032	35.943	49.671	63.860	87.760	86.500	85.489	76.956	63.171	78.451	84.529	92.565	98.307	88.751	68.070
0.071	0.027	36.157	50.062	64.024	87.877	86.601	85.698	77.131	63.291	78.580	84.688	92.866	98.658	90.366	74.608
0.060	0.023	36.214	50.211	64.161	87.957	86.735	85.782	77.205	63.391	78.728	84.796	93.047	98.839	91.159	78.984
0.053	0.020	36.214	50.211	64.261	88.100	86.822	85.870	77.205	63.391	78.826	84.873	93.209	98.942	91.609	81.911
0.047	0.018	36.214	50.211	64.261	88.180	86.886	85.938	77.205	63.391	78.916	84.972	93.350	99.043	91.734	83.601
0.042	0.016	36.214	50.211	64.261	88.251	86.957	85.986	77.205	63.391	78.916	85.057	93.464	99.143	91.912	84.674

Tabla 4.22 Parámetros adimensionales D/L y A_d/L^2 según a la concentración y la eficiencia d =0.25 mm

Tabla 4.23 Parámetros adimensionales Ln(L/D) y A_d/A_T según a la concentración y la eficiencia d =0.074 mm

[1]	[2]							[3]						
	۸./۸-					E	FICIENC	IA ACUM	ULADA %	6				
		0.76	2.04	2.18	4.86	6.51	11.31	23.05	14.79	4.54	2.71	2.27	1.22	0.41
0.860	1.141	28.972	27.802	27.494	37.779	35.080	30.896	25.222	24.940	18.354	18.183	17.641	6.963	2.576
1.553	2.283	49.233	50.024	49.688	60.926	59.534	52.475	46.739	40.720	33.549	32.208	30.818	14.825	5.963
1.959	3.424	63.512	63.299	63.123	77.313	76.004	68.910	63.235	53.617	44.779	43.177	41.481	22.569	10.059
2.246	4.566	70.781	69.745	69.640	87.310	86.546	80.722	75.932	61.170	51.684	51.162	49.522	29.498	14.199
2.470	5.707	73.999	72.455	72.218	92.374	92.889	89.119	85.397	64.071	55.408	56.175	55.215	35.814	18.368
2.652	6.849	75.157	73.659	73.070	94.733	96.531	94.356	92.246	65.390	56.864	59.101	58.780	41.895	22.553
2.806	7.990	75.668	74.112	73.512	95.567	98.127	96.948	95.559	66.065	57.688	60.790	61.311	47.082	26.891
2.940	9.132	76.007	74.294	73.677	95.793	98.827	98.184	97.125	66.396	58.026	61.514	62.545	51.207	31.211
3.057	10.273	76.205	74.430	73.778	95.931	99.258	98.683	97.853	66.581	58.208	61.897	63.124	54.376	35.496
3.163	11.415	76.241	74.517	73.831	95.995	99.324	98.947	98.191	66.680	58.385	62.124	63.589	57.254	39.692

[1]	[2]						[3	3]					
	A ./A-					EFIC	ENCIA A	CUMULA	DA %				
	Ad/ AT	0.11	0.24	0.38	0.56	0.70	0.74	1.10	2.21	2.38	3.45	5.30	7.02
0.860	1.141	4.280	16.647	35.479	55.737	45.819	31.025	46.535	62.232	46.257	60.764	61.095	43.214
1.553	2.283	10.768	41.622	56.035	77.778	65.884	43.782	64.688	78.931	59.316	78.389	81.196	68.263
1.959	3.424	18.944	56.421	70.143	85.442	74.910	47.091	69.942	86.309	62.920	86.228	88.810	78.823
2.246	4.566	26.742	66.985	78.769	87.882	78.964	47.859	71.407	88.932	63.589	89.420	90.840	84.987
2.470	5.707	34.476	75.244	84.561	88.372	80.481	48.373	71.842	89.650	63.782	90.647	91.342	87.691
2.652	6.848	41.613	82.075	87.756	88.689	81.017	48.607	72.049	89.895	63.962	91.094	91.536	88.691
2.806	7.990	48.558	87.208	89.705	88.984	81.356	48.886	72.207	90.027	64.108	91.265	91.648	89.070
2.940	9.131	54.639	90.909	90.709	89.250	81.626	49.080	72.269	90.167	64.213	91.338	91.754	89.228
3.057	10.273	59.949	93.078	91.376	89.414	81.831	49.261	72.357	90.255	64.409	91.417	91.842	89.338
3.163	11.414	64.446	94.463	91.652	89.477	81.999	49.412	72.440	90.304	64.576	91.481	91.900	89.399

Tabla 4.24 Parámetros adimensionales Ln(L/D) y A_d/A_T según a la concentración y la eficiencia d =0.125 mm

Tabla 4.25Parámetros adimensionales Ln(L/D) y A_d/A_T según a la concentración y la eficiencia d =0.25 mm

[1]	[2]							[:	3]						
	A ./A-					E	FICIENC	IA ACUM	ULADA %	6					
	Ad/ AT	0.49	0.51	1.23	1.61	2.21	3.54	14.70	2.84	1.35	0.72	0.60	0.48	0.27	0.13
0.860	1.141	31.971	45.460	59.078	81.005	78.528	72.135	70.410	59.695	71.474	77.705	72.184	72.707	35.138	11.076
1.553	2.283	34.592	48.294	62.950	86.255	84.766	81.863	75.244	62.082	77.038	83.070	87.303	90.436	65.249	26.913
1.959	3.424	35.230	49.041	63.547	87.232	86.054	84.169	76.374	62.680	77.972	84.143	90.964	96.052	78.972	43.699
2.246	4.566	35.643	49.341	63.690	87.617	86.387	85.062	76.770	62.984	78.238	84.412	92.142	97.749	85.507	57.975
2.470	5.707	35.943	49.671	63.860	87.760	86.500	85.489	76.956	63.171	78.451	84.529	92.565	98.307	88.751	68.070
2.652	6.849	36.157	50.062	64.024	87.877	86.601	85.698	77.131	63.291	78.580	84.688	92.866	98.658	90.366	74.608
2.806	7.990	36.214	50.211	64.161	87.957	86.735	85.782	77.205	63.391	78.728	84.796	93.047	98.839	91.159	78.984
2.940	9.132	36.214	50.211	64.261	88.100	86.822	85.870	77.205	63.391	78.826	84.873	93.209	98.942	91.609	81.911
3.057	10.273	36.214	50.211	64.261	88.180	86.886	85.938	77.205	63.391	78.916	84.972	93.350	99.043	91.734	83.601
3.163	11.415	36.214	50.211	64.261	88.251	86.957	85.986	77.205	63.391	78.916	85.057	93.464	99.143	91.912	84.674

4.3.5 Parámetros adimensionales en función de la eficiencia. En las Tablas 4.26, 4.27 y 4.28 se muestra el cálculo de los parámetros adimensionales: C, η , $Ln\left(\frac{L}{D}\right), \frac{A_d}{D^2}, \frac{K}{D}, \frac{\mu}{\rho_w V'_s D}, \left(\frac{\rho_s}{\rho_w}\right), \frac{d}{D}, \left(\frac{V_m}{V'_s}\right), \frac{gD}{{V'_s}^2}$, para cada uno de los diámetros de partícula, **d**, con el fin de conformar una relación funcional adimensional resultante del análisis dimensional, véase Ec. [1.12].

En las Tablas 4.29, 4.30 y 4.31 se muestra el cálculo de los parámetros adimensionales: C, $Ln\left(\frac{L}{D}\right)$, $\frac{A_d}{D^2}$, $\frac{K}{D}$, $\frac{\mu}{\rho_w V_m D}$, $\left(\frac{\rho_s}{\rho_w}\right)$, $\frac{d}{D}$, $\left(\frac{V'_s}{V_m}\right)$, $\frac{gD}{V_m^{-2}}$, para cada uno de los diámetros de partícula, **d**, con el fin de conformar una relación funcional adimensional resultante del análisis dimensional, véase Ec. [1.21].

En las Tablas 4.32, 4.33 y 4.34 se muestra el cálculo de los parámetros adimensionales: C, $\frac{D}{d}$, $Ln\left(\frac{L}{d}\right)$, $\frac{A_d}{d^2}$, $\frac{K}{d}$, $\frac{\mu}{\rho_w V'_s d}$, $\left(\frac{\rho_s}{\rho_w}\right)$, $\left(\frac{V_m}{V'_s}\right)$, $\frac{gd}{{V'_s}^2}$, para cada uno de los diámetros de partícula, **d**, con el fin de conformar una relación funcional adimensional resultante del análisis dimensional, véase Ec. [1.30].

En las Tablas 4.35, 4.36 y 4.37 se muestra el cálculo de los parámetros adimensionales: C, $\frac{D}{d}$, $Ln\left(\frac{L}{d}\right)$, $\frac{A_d}{d^2}$, $\frac{K}{d}$, $\frac{\rho_w V'_s d}{\mu}$, $\frac{\rho_s V'_s d}{\mu}$, $\left(\frac{V_m}{V'_s}\right)$, $\frac{gd}{{V'_s}^2}$, para cada uno de los diámetros de partícula, **d**, con el fin de conformar una relación funcional adimensional resultante del análisis dimensional, véase Ec. [1.39].

En las Tablas 4.38, 4.39 y 4.40 se muestra el cálculo de los parámetros adimensionales: C, $Ln\left(\frac{L}{D}\right)$, $\frac{A_d}{D^2}$, $\frac{K}{D}$, $\frac{\rho_w V'_s D}{\mu}$, $\frac{\rho_s V'_s D}{\mu}$, $\frac{d}{D}$, $\left(\frac{V_m}{V'_s}\right)$, $\frac{gD}{{V'_s}^2}$, para cada uno de los diámetros de partícula, **d**, con el fin de conformar una relación funcional adimensional resultante del análisis dimensional, véase Ec. [1.48].

En las Tablas 4.41, 4.42 y 4.43 se muestra el cálculo de los parámetros adimensionales: C, $\left(\frac{D}{L}\right)$, $\frac{A_d}{L^2}$, $\frac{K}{L}$, $\frac{\mu}{\rho_w V_m L}$, $\frac{\rho_s}{\rho_w}$, $\frac{d}{L}$, $\left(\frac{V'_s}{V_m}\right)$, $\frac{gL}{V_m^2}$, para cada uno de los diámetros de partícula, **d**, con el fin de conformar una relación funcional adimensional resultante del análisis dimensional, véase Ec. [1.57].

En las Tablas 4.44, 4.45 y 4.46 se muestra el cálculo de los parámetros adimensionales: C, $\left(\frac{D}{d}\right)$, $Ln\left(\frac{L}{d}\right)$, $\frac{A_d}{d^2}$, $\frac{K}{d}$, $\frac{\mu}{\rho_w\sqrt{gd^3}}$, $\frac{\rho_s}{\rho_w}$, $\frac{V'_s}{\sqrt{gd}}$, $\frac{V_m}{\sqrt{gd}}$, para cada uno de los diámetros de partícula, **d**, con el fin de conformar una relación funcional adimensional resultante del análisis dimensional, véase Ec. [1.66].

En las Tablas 4.47, 4.48 y 4.49 se muestra el cálculo de los parámetros adimensionales: C, $\left(\frac{D}{d}\right)$, $Ln\left(\frac{L}{d}\right)$, $\frac{A_d}{d^2}$, $\frac{K}{d}$, $\frac{\rho_w \sqrt{gd^3}}{\mu}$, $\frac{\rho_s \sqrt{gd^3}}{\mu}$, $\frac{V'_s}{\sqrt{gd}}$, $\frac{V_m}{\sqrt{gd}}$, para cada uno de los diámetros de partícula, **d**, con el fin de conformar una relación funcional adimensional resultante del análisis dimensional, véase Ec. [1.75].

En las Tablas 4.50, 4.51 y 4.52 se muestra el cálculo de los parámetros adimensionales: C, , $Ln\left(\frac{L}{D}\right)$, $\frac{A_d}{A_T}$, F_G , para cada uno de los diámetros de partícula, *d*, con el fin de conformar una relación funcional adimensional resultante del análisis dimensional, véase Ec. [1.82].

Los valores de: $Ln\left(\frac{L}{d}\right)$, $Ln\left(\frac{L}{D}\right)$, $\left(\frac{D}{L}\right)$, $\frac{A_d}{A_T}$, $\frac{A_d}{D^2}$, $\frac{A_d}{L^2}$, $\frac{A_d}{d^2}$ se toman de las Tablas 4.14 a 4.25 con la eficiencia que le corresponde.

Tanto la longitud, *L*, como el área de drenaje, A_d , para los ensayos realizados con diferentes concentraciones a los diámetros de partícula d=0.074 mm y d=0.125mm, permanecen constantes, contrario a lo que sucede con el diámetro de partícula d=0.25 mm.

La eficiencia de las Tablas 4.26 a 4.52, son las registradas en la columna [14] de las Tablas 4.8, 4.9 y 4.10 según el diámetro de partícula.

Concentración	Eficiencia	$\langle \mathbf{r} \rangle$		K	Ц	()	1		۳D
%	%	$Ln\left(\frac{L}{D}\right)$	$\frac{A_d}{D^2}$	$\frac{n}{D}$	$\frac{\rho}{\rho_w V'_s D}$	$\left(rac{oldsymbol{ ho}_s}{oldsymbol{ ho}_w} ight)$	$\frac{d}{D}$	$\left(\frac{V_m}{V'_s}\right)$	$\frac{gD}{V'_s^2}$
0.76	76.24	3.163	8.965	0.000034	0.007	2.870	0.002	6.790	35,999.433
2.04	74.52	3.163	8.965	0.000034	0.008	2.870	0.002	7.348	41,081.081
2.18	73.83	3.163	8.965	0.000034	0.008	2.870	0.002	7.106	41,710.743
4.86	96.00	3.163	8.965	0.000034	0.009	2.870	0.002	7.409	55,196.926
6.51	99.32	3.163	8.965	0.000034	0.010	2.870	0.002	9.150	65,659.171
11.31	98.95	3.163	8.965	0.000034	0.012	2.870	0.002	11.598	110,000.990
23.05	98.19	3.163	8.965	0.000034	0.024	2.870	0.002	20.433	423,233.922
14.79	66.68	3.163	8.965	0.000034	0.015	2.870	0.002	6.318	161,547.213
4.54	58.39	3.163	8.965	0.000034	0.009	2.870	0.002	11.824	53,355.873
2.71	62.12	3.163	8.965	0.000034	0.008	2.870	0.002	18.007	44,064.944
2.27	63.59	3.163	8.965	0.000034	0.008	2.870	0.002	20.990	42,104.862
1.22	57.25	3.163	8.965	0.000034	0.007	2.870	0.002	37.002	37,752.795
0.41	39.69	3.163	8.965	0.000034	0.007	2.870	0.002	104.958	34,726.657

Tabla 4.26 Parámetros adimensionales en función de la eficiencia d=0.074 mm de acuerdo a la Ec. [1.12]

Concentración	Eficiencia					(a)	_		D
%	%	$Ln\left(\frac{L}{D}\right)$	$\frac{A_d}{D^2}$	$\frac{K}{D}$	$\frac{\mu}{\rho_{w}V'_{s}D}$	$\left(\frac{\boldsymbol{\rho}_s}{\boldsymbol{\rho}_w}\right)$	$\frac{d}{D}$	$\left(\frac{V_m}{V'_s}\right)$	$\frac{gD}{V'_{s}^{2}}$
0.11	64.45	3.163	8.965	0.000034	0.00269	2.8400	0.0028	40.1515	5113.533
0.24	94.46	3.163	8.965	0.000034	0.002707	2.8400	0.0028	18.5066	5178.275
0.38	91.65	3.163	8.965	0.000034	0.002725	2.8400	0.0028	11.7645	5248.975
0.56	89.48	3.163	8.965	0.000034	0.00275	2.8400	0.0028	3.5066	5343.707
0.70	82.00	3.163	8.965	0.000034	0.002768	2.8400	0.0028	6.4404	5417.024
0.74	49.41	3.163	8.965	0.000034	0.002774	2.8400	0.0028	3.5438	5437.960
1.10	72.44	3.163	8.965	0.000034	0.002822	2.8400	0.0028	4.2141	5627.873
2.21	90.30	3.163	8.965	0.000034	0.002979	2.8400	0.0028	3.8623	6270.404
2.38	64.58	3.163	8.965	0.000034	0.003004	2.8400	0.0028	2.0715	6375.896
3.45	91.48	3.163	8.965	0.000034	0.003166	2.8400	0.0028	4.1573	7082.024
5.30	91.90	3.163	8.965	0.000034	0.00347	2.8400	0.0028	1.0727	8510.890
7.02	89.40	3.163	8.965	0.000034	0.003781	2.8400	0.0028	5.1566	10104.990

 Tabla 4.27
 Parámetros adimensionales en función de la eficiencia d=0.125 mm de acuerdo a la Ec. [1.12]

Concentración	Eficiencia	L	Ad	(I)	4	K		(ρ_s)	d	(V)	σD
				$Ln\left(\frac{L}{D}\right)$	$\frac{A_d}{D^2}$	$\frac{\Lambda}{D}$	$\frac{\mu}{O V' D}$	$\left(\frac{r_{s}}{\rho_{m}}\right)$	$\frac{u}{D}$	$\frac{V_m}{U!}$	$\frac{8^{2}}{U^{12}}$
%	%	(m)	(m2)	(D)	D^2	D	$p_{w}r_{s}D$		D	(V_s)	V s
0.49	36.21	0.73	0.01215	2.806	6.275	0.000034	0.00092655	2.8100	0.0057	1.1436	606.754
0.51	50.21	0.73	0.01215	2.806	6.275	0.000034	0.00092709	2.8100	0.0057	1.1444	607.461
1.23	64.26	0.83	0.01388	2.940	7.172	0.000034	0.00095553	2.8100	0.0057	1.1882	645.296
1.61	88.25	1.04	0.01736	3.163	8.965	0.000034	0.00097067	2.8100	0.0057	1.2116	665.916
2.21	86.96	1.04	0.01736	3.163	8.965	0.000034	0.00099553	2.8100	0.0057	1.2503	700.454
3.54	85.99	1.04	0.01736	3.163	8.965	0.000034	0.00105312	2.8100	0.0057	1.3409	783.839
14.70	77.21	0.73	0.01215	2.806	6.275	0.000034	0.00173561	2.8100	0.0057	0.2328	2129.001
2.84	63.39	0.73	0.01215	2.806	6.275	0.000034	0.001022	2.8100	0.0057	0.7110	738.197
1.35	78.92	0.94	0.01562	3.057	8.068	0.000034	0.00096017	2.8100	0.0057	1.4039	651.585
0.72	85.06	1.04	0.01736	3.163	8.965	0.000034	0.00093547	2.8100	0.0057	2.5503	618.488
0.60	93.46	1.04	0.01736	3.163	8.965	0.000034	0.0009307	2.8100	0.0057	3.0574	612.192
0.48	99.14	1.04	0.01736	3.163	8.965	0.000034	0.0009261	2.8100	0.0057	3.7964	606.158
0.27	91.91	1.04	0.01736	3.163	8.965	0.000034	0.00091814	2.8100	0.0057	6.6299	595.787
0.13	84.67	1.04	0.01736	3.163	8.965	0.000034	0.00091279	2.8100	0.0057	13.6284	588.864

Tabla 4.28 Parámetros adimensionales en función de la eficiencia d=0.25 mm de acuerdo a la Ec. [1.12]

Concentración	Eficiencia	(L)	A ,	K	μ	$(\rho_{\rm s})$	d	$\left(V'_{s}\right)$	gD
%	%	$Ln(\overline{D})$	$\frac{D^2}{D^2}$	\overline{D}	$\frac{1}{\rho_{w}V_{m}D}$	$\left(\frac{r_{s}}{\rho_{w}}\right)$	\overline{D}	$\left(\frac{3}{V_m}\right)$	$\overline{V_m^2}$
0.76	76.24	3.163	8.965	0.000034	0.001051	2.8700	0.0017	0.1473	780.761
2.04	74.52	3.163	8.965	0.000034	0.001038	2.8700	0.0017	0.1361	760.834
2.18	73.83	3.163	8.965	0.000034	0.001081	2.8700	0.0017	0.1407	826.019
4.86	96.00	3.163	8.965	0.000034	0.001193	2.8700	0.0017	0.1350	1005.590
6.51	99.32	3.163	8.965	0.000034	0.001053	2.8700	0.0017	0.1093	784.233
11.31	98.95	3.163	8.965	0.000034	0.001076	2.8700	0.0017	0.0862	817.817
23.05	98.19	3.163	8.965	0.000034	0.001198	2.8700	0.0017	0.0489	1013.759
14.79	66.68	3.163	8.965	0.000034	0.002393	2.8700	0.0017	0.1583	4047.387
4.54	58.39	3.163	8.965	0.000034	0.000735	2.8700	0.0017	0.0846	381.610
2.71	62.12	3.163	8.965	0.000034	0.000439	2.8700	0.0017	0.0555	135.902
2.27	63.59	3.163	8.965	0.000034	0.000368	2.8700	0.0017	0.0476	95.565
1.22	57.25	3.163	8.965	0.000034	0.000198	2.8700	0.0017	0.0270	27.574
0.41	39.69	3.163	8.965	0.000034	6.68E-05	2.8700	0.0017	0.0095	3.152

Tabla 4.29 Parámetros adimensionales en función de la eficiencia d=0.074 mm de acuerdo a la Ec. [1.21]

Concentración	Eficiencia	L(L)	Α.	K	μ	$(\rho_{\rm c})$	d	$\left(V'_{\cdot}\right)$	gD
%	%	$Ln(\overline{D})$	$\frac{n_d}{D^2}$	$\frac{1}{D}$	$\overline{\rho_{w}V_{m}D}$	$\left(\frac{P_s}{\rho_w}\right)$	$\frac{\pi}{D}$	$\left(\frac{V_m}{V_m}\right)$	$\frac{U}{V_m^2}$
0.11	64.45	3.163	8.965	0.000034	6.6992E-05	2.8400	0.0028	0.0249	3.172
0.24	94.46	3.163	8.965	0.000034	0.00014626	2.8400	0.0028	0.0540	15.119
0.38	91.65	3.163	8.965	0.000034	0.00023165	2.8400	0.0028	0.0850	37.925
0.56	89.48	3.163	8.965	0.000034	0.00078415	2.8400	0.0028	0.2852	434.583
0.70	82.00	3.163	8.965	0.000034	0.00042986	2.8400	0.0028	0.1553	130.597
0.74	49.41	3.163	8.965	0.000034	0.00078273	2.8400	0.0028	0.2822	433.010
1.10	72.44	3.163	8.965	0.000034	0.00066963	2.8400	0.0028	0.2373	316.914
2.21	90.30	3.163	8.965	0.000034	0.00077121	2.8400	0.0028	0.2589	420.352
2.38	64.58	3.163	8.965	0.000034	0.00144996	2.8400	0.0028	0.4827	1485.877
3.45	91.48	3.163	8.965	0.000034	0.00076143	2.8400	0.0028	0.2405	409.760
5.30	91.90	3.163	8.965	0.000034	0.00323497	2.8400	0.0028	0.9322	7396.290
7.02	89.40	3.163	8.965	0.000034	0.00073328	2.8400	0.0028	0.1939	380.024

Tabla 4.30 Parámetros adimensionales en función de la eficiencia d=0.125 mm de acuerdo a la Ec. [1.21]

Concentración	Eficiencia	L	Ad	(L)	Α.	К	μ	(ρ_{i})	d	$\left(V'_{\cdot}\right)$	gD
%	%			$Ln\left(\frac{D}{D}\right)$	$\frac{n_d}{D^2}$	$\frac{1}{D}$	$\overline{\rho_{w}V_{m}D}$	$\left(\frac{r_{s}}{\rho_{w}}\right)$	\overline{D}	$\left(\frac{s}{V_m}\right)$	$\overline{V_m^2}$
0.49	36.21	0.73	0.01215	2.806	6.275	0.000034	0.00081022	2.8100	0.0057	0.8744	463.955
0.51	50.21	0.73	0.01215	2.806	6.275	0.000034	0.0008101	2.8100	0.0057	0.8738	463.825
1.23	64.26	0.83	0.01388	2.940	7.172	0.000034	0.00080419	2.8100	0.0057	0.8416	457.082
1.61	88.25	1.04	0.01736	3.163	8.965	0.000034	0.00080113	2.8100	0.0057	0.8253	453.605
2.21	86.96	1.04	0.01736	3.163	8.965	0.000034	0.00079622	2.8100	0.0057	0.7998	448.062
3.54	85.99	1.04	0.01736	3.163	8.965	0.000034	0.00078538	2.8100	0.0057	0.7458	435.943
14.70	77.21	0.73	0.01215	2.806	6.275	0.000034	0.00745402	2.8100	0.0057	4.2948	39269.319
2.84	63.39	0.73	0.01215	2.806	6.275	0.000034	0.00143746	2.8100	0.0057	1.4065	1460.370
1.35	78.92	0.94	0.01562	3.057	8.068	0.000034	0.00068395	2.8100	0.0057	0.7123	330.611
0.72	85.06	1.04	0.01736	3.163	8.965	0.000034	0.00036681	2.8100	0.0057	0.3921	95.096
0.60	93.46	1.04	0.01736	3.163	8.965	0.000034	0.00030441	2.8100	0.0057	0.3271	65.493
0.48	99.14	1.04	0.01736	3.163	8.965	0.000034	0.00024394	2.8100	0.0057	0.2634	42.057
0.27	91.91	1.04	0.01736	3.163	8.965	0.000034	0.00013849	2.8100	0.0057	0.1508	13.554
0.13	84.67	1.04	0.01736	3.163	8.965	0.000034	6.6977E-05	2.8100	0.0057	0.0734	3.170

Tabla 4.31 Parámetros adimensionales en función de la eficiencia d=0.25 mm de acuerdo a la Ec. [1.21]

Concentración	Eficiencia	D	L(L)	A	K	μ	(ρ_{s})	$\left(V_{m}\right)$	gd
%	%	\overline{d}	$Ln\left(\frac{-}{d}\right)$	$\frac{d^2a}{d^2}$	$\frac{n}{d}$	$\frac{1}{\rho_{w}V'_{s}d}$	$\left(\frac{r_{s}}{\rho_{w}}\right)$	$\left(\frac{m}{V'_{s}}\right)$	$\overline{V'_s}^2$
0.76	76.24	594.5946	9.551	3169509.527	0.020270	4.243582	2.8700	6.7903	60.545
2.04	74.52	594.5946	9.551	3169509.527	0.020270	4.533209	2.8700	7.3481	69.091
2.18	73.83	594.5946	9.551	3169509.527	0.020270	4.567818	2.8700	7.1061	70.150
4.86	96.00	594.5946	9.551	3169509.527	0.020270	5.254632	2.8700	7.4088	92.831
6.51	99.32	594.5946	9.551	3169509.527	0.020270	5.731028	2.8700	9.1501	110.427
11.31	98.95	594.5946	9.551	3169509.527	0.020270	7.417937	2.8700	11.5977	185.002
23.05	98.19	594.5946	9.551	3169509.527	0.020270	14.5504	2.8700	20.4326	711.803
14.79	66.68	594.5946	9.551	3169509.527	0.020270	8.98948	2.8700	6.3177	271.693
4.54	58.39	594.5946	9.551	3169509.527	0.020270	5.166256	2.8700	11.8245	89.735
2.71	62.12	594.5946	9.551	3169509.527	0.020270	4.694955	2.8700	18.0067	74.109
2.27	63.59	594.5946	9.551	3169509.527	0.020270	4.589348	2.8700	20.9902	70.813
1.22	57.25	594.5946	9.551	3169509.527	0.020270	4.345696	2.8700	37.0021	63.493
0.41	39.69	594.5946	9.551	3169509.527	0.020270	4.167891	2.8700	104.9576	58.404

 Tabla 4.32
 Parámetros adimensionales en función de la eficiencia d=0.074 mm de acuerdo a la Ec. [1.30]

Concentración	Eficiencia	D	L(L)	A_{d}	K	μ	(ρ_s)	$\left(V_{m}\right)$	gd
%	%	\overline{d}	$Ln\left(\frac{-}{d}\right)$	$\frac{d}{d^2}$	$\frac{1}{d}$	$\overline{\rho_{w}V'_{s}d}$	$\left(\frac{r_{s}}{\rho_{w}}\right)$	$\left(\frac{\overline{W'_s}}{V'_s}\right)$	$\overline{V'_s^2}$
0.11	64.45	352.0000	9.026	1110751.004	0.012000	0.946819	2.8400	40.1515	14.527
0.24	94.46	352.0000	9.026	1110751.004	0.012000	0.952794	2.8400	18.5066	14.711
0.38	91.65	352.0000	9.026	1110751.004	0.012000	0.959276	2.8400	11.7645	14.912
0.56	89.48	352.0000	9.026	1110751.004	0.012000	0.967894	2.8400	3.5066	15.181
0.70	82.00	352.0000	9.026	1110751.004	0.012000	0.974511	2.8400	6.4404	15.389
0.74	49.41	352.0000	9.026	1110751.004	0.012000	0.976393	2.8400	3.5438	15.449
1.10	72.44	352.0000	9.026	1110751.004	0.012000	0.993296	2.8400	4.2141	15.988
2.21	90.30	352.0000	9.026	1110751.004	0.012000	1.048466	2.8400	3.8623	17.814
2.38	64.58	352.0000	9.026	1110751.004	0.012000	1.057249	2.8400	2.0715	18.113
3.45	91.48	352.0000	9.026	1110751.004	0.012000	1.114257	2.8400	4.1573	20.119
5.30	91.90	352.0000	9.026	1110751.004	0.012000	1.221502	2.8400	1.0727	24.179
7.02	89.40	352.0000	9.026	1110751.004	0.012000	1.330989	2.8400	5.1566	28.707

Tabla 4.33 Parámetros adimensionales en función de la eficiencia d=0.125 mm de acuerdo a la Ec. [1.30]

Concentración	Eficiencia	L	A_{I}	D	L(L)	A_d	Κ	μ	(ρ_s)	$\left(V_{m}\right)$	gd
%	%	[m]	[m ²]	\overline{d}	$Ln\left(\frac{1}{d}\right)$	$\frac{d}{d^2}$	\overline{d}	$\overline{\rho_{w}V'_{s}d}$	$\left(\frac{\overline{\rho_{w}}}{\rho_{w}}\right)$	$\left(\frac{\overline{V'_s}}{V'_s}\right)$	$\overline{V'_s^2}$
0.49	36.21	0.73	0.01215	176	7.977	194389.823	0.006000	0.163073319	2.8100	1.1436	3.447
0.51	50.21	0.73	0.01215	176	7.977	194389.823	0.006000	0.163168227	2.8100	1.1444	3.451
1.23	64.26	0.83	0.01388	176	8.110	222159.797	0.006000	0.168172949	2.8100	1.1882	3.666
1.61	88.25	1.04	0.01736	176	8.333	277699.747	0.006000	0.170838739	2.8100	1.2116	3.784
2.21	86.96	1.04	0.01736	176	8.333	277699.747	0.006000	0.175212992	2.8100	1.2503	3.980
3.54	85.99	1.04	0.01736	176	8.333	277699.747	0.006000	0.185348928	2.8100	1.3409	4.454
14.70	77.21	0.73	0.01215	176	7.977	194389.823	0.006000	0.305467111	2.8100	0.2328	12.097
2.84	63.39	0.73	0.01215	176	7.977	194389.823	0.006000	0.179871656	2.8100	0.7110	4.194
1.35	78.92	0.94	0.01562	176	8.228	249929.772	0.006000	0.168990375	2.8100	1.4039	3.702
0.72	85.06	1.04	0.01736	176	8.333	277699.747	0.006000	0.164642576	2.8100	2.5503	3.514
0.60	93.46	1.04	0.01736	176	8.333	277699.747	0.006000	0.163802471	2.8100	3.0574	3.478
0.48	99.14	1.04	0.01736	176	8.333	277699.747	0.006000	0.162993129	2.8100	3.7964	3.444
0.27	91.91	1.04	0.01736	176	8.333	277699.747	0.006000	0.161592802	2.8100	6.6299	3.385
0.13	84.67	1.04	0.01736	176	8.333	277699.747	0.006000	0.16065118	2.8100	13.6284	3.346

Tabla 4.34 Parámetros adimensionales en función de la eficiencia d=0.25 mm de acuerdo a la Ec. [1.30]

Concentración	Eficiencia	D	L(L)	A,	K	$\rho_{\rm w}V'$, d	ρ_V' d	$\left(V_{m}\right)$	gd
%	%	\overline{d}	$Ln\left(\frac{1}{d}\right)$	$\frac{d^2a}{d^2}$	$\frac{\pi}{d}$	$\frac{\mu}{\mu}$	$\frac{\mu}{\mu}$	$\left(\frac{m}{V'_{s}}\right)$	$\overline{V'_s^2}$
0.76	76.24	594.5946	9.551	3169509.527	0.020270	0.23564995	0.6763	6.7903	60.545
2.04	74.52	594.5946	9.551	3169509.527	0.020270	0.22059428	0.6331	7.3481	69.091
2.18	73.83	594.5946	9.551	3169509.527	0.020270	0.21892291	0.6283	7.1061	70.150
4.86	96.00	594.5946	9.551	3169509.527	0.020270	0.1903083	0.5462	7.4088	92.831
6.51	99.32	594.5946	9.551	3169509.527	0.020270	0.17448877	0.5008	9.1501	110.427
11.31	98.95	594.5946	9.551	3169509.527	0.020270	0.13480838	0.3869	11.5977	185.002
23.05	98.19	594.5946	9.551	3169509.527	0.020270	0.06872661	0.1972	20.4326	711.803
14.79	66.68	594.5946	9.551	3169509.527	0.020270	0.11124114	0.3193	6.3177	271.693
4.54	58.39	594.5946	9.551	3169509.527	0.020270	0.19356377	0.5555	11.8245	89.735
2.71	62.12	594.5946	9.551	3169509.527	0.020270	0.21299459	0.6113	18.0067	74.109
2.27	63.59	594.5946	9.551	3169509.527	0.020270	0.2178959	0.6254	20.9902	70.813
1.22	57.25	594.5946	9.551	3169509.527	0.020270	0.23011272	0.6604	37.0021	63.493
0.41	39.69	594.5946	9.551	3169509.527	0.020270	0.23992952	0.6886	104.9576	58.404

Tabla 4.35 Parámetros adimensionales en función de la eficiencia d=0.074 mm de acuerdo a la Ec. [1.39]

Concentración	Eficiencia	D	(L)	4	K	$\rho V' d$	$\rho V' d$	$\left(V \right)$	gd
%	%	$\frac{D}{d}$	$Ln\left(\frac{L}{d}\right)$	$\frac{A_d}{d^2}$	$\frac{\pi}{d}$	$\frac{\mu_{w}}{\mu}$	$\frac{\mu_{s}}{\mu}$	$\left(\frac{V_m}{V_s}\right)$	$\frac{3}{V'_s^2}$
0.11	64.45	352.0000	9.026	1110751.004	0.012000	1.0561679	2.9995	40.1515	14.527
0.24	94.46	352.0000	9.026	1110751.004	0.012000	1.0495446	2.9807	18.5066	14.711
0.38	91.65	352.0000	9.026	1110751.004	0.012000	1.0424524	2.9606	11.7645	14.912
0.56	89.48	352.0000	9.026	1110751.004	0.012000	1.0331708	2.9342	3.5066	15.181
0.70	82.00	352.0000	9.026	1110751.004	0.012000	1.0261553	2.9143	6.4404	15.389
0.74	49.41	352.0000	9.026	1110751.004	0.012000	1.0241781	2.9087	3.5438	15.449
1.10	72.44	352.0000	9.026	1110751.004	0.012000	1.0067493	2.8592	4.2141	15.988
2.21	90.30	352.0000	9.026	1110751.004	0.012000	0.9537745	2.7087	3.8623	17.814
2.38	64.58	352.0000	9.026	1110751.004	0.012000	0.9458513	2.6862	2.0715	18.113
3.45	91.48	352.0000	9.026	1110751.004	0.012000	0.8974593	2.5488	4.1573	20.119
5.30	91.90	352.0000	9.026	1110751.004	0.012000	0.8186646	2.3250	1.0727	24.179
7.02	89.40	352.0000	9.026	1110751.004	0.012000	0.751321	2.1338	5.1566	28.707

Tabla 4.36 Parámetros adimensionales en función de la eficiencia d=0.125 mm de acuerdo a la Ec. [1.39]

Concentración	Eficiencia	L	Ad	D	L(L)	A_{d}	Κ	$\rho_{w}V'_{s}d$	$\rho_{s}V'_{s}d$	$\left(V_{m}\right)$	gd
%	%			\overline{d}	$Ln\left(\frac{-}{d}\right)$	$\frac{d}{d^2}$	\overline{d}	$\frac{\mu}{\mu}$	$\frac{\mu}{\mu}$	$\left(\frac{\overline{W'_s}}{V'_s}\right)$	$\overline{V'_s^2}$
0.49	36.21	0.73	0.01215	176	7.977	194389.823	0.006000	6.13221	17.2315	1.1436	3.447
0.51	50.21	0.73	0.01215	176	7.977	194389.823	0.006000	6.12864	17.2215	1.1444	3.451
1.23	64.26	0.83	0.01388	176	8.110	222159.797	0.006000	5.94626	16.7090	1.1882	3.666
1.61	88.25	1.04	0.01736	176	8.333	277699.747	0.006000	5.85347	16.4483	1.2116	3.784
2.21	86.96	1.04	0.01736	176	8.333	277699.747	0.006000	5.70734	16.0376	1.2503	3.980
3.54	85.99	1.04	0.01736	176	8.333	277699.747	0.006000	5.39523	15.1606	1.3409	4.454
14.70	77.21	0.73	0.01215	176	7.977	194389.823	0.006000	3.27367	9.1990	0.2328	12.097
2.84	63.39	0.73	0.01215	176	7.977	194389.823	0.006000	5.55952	15.6223	0.7110	4.194
1.35	78.92	0.94	0.01562	176	8.228	249929.772	0.006000	5.9175	16.6282	1.4039	3.702
0.72	85.06	1.04	0.01736	176	8.333	277699.747	0.006000	6.07376	17.0673	2.5503	3.514
0.60	93.46	1.04	0.01736	176	8.333	277699.747	0.006000	6.10491	17.1548	3.0574	3.478
0.48	99.14	1.04	0.01736	176	8.333	277699.747	0.006000	6.13523	17.2400	3.7964	3.444
0.27	91.91	1.04	0.01736	176	8.333	277699.747	0.006000	6.18839	17.3894	6.6299	3.385
0.13	84.67	1.04	0.01736	176	8.333	277699.747	0.006000	6.22467	17.4913	13.6284	3.346

Tabla 4.37 Parámetros adimensionales en función de la eficiencia d=0.25 mm de acuerdo a la Ec. [1.39]

Concentración	Eficiencia	$Ln\left(\frac{L}{L}\right)$	A_d	K	$\rho_{w}V'_{s}D$	$\rho_{s}V'_{s}D$	\underline{d}	$\left(\underline{V_m}\right)$	gD
%	%	D	D^2	\overline{D}	μ	μ	D	$\left(V'_{s}\right)$	V'_s^2
0.76	76.24	3.163	8.965	0.000034	140.116187	402.1335	0.0017	6.7903	35999.433
2.04	74.52	3.163	8.965	0.000034	131.164167	376.4412	0.0017	7.3481	41081.081
2.18	73.83	3.163	8.965	0.000034	130.17038	373.589	0.0017	7.1061	41710.743
4.86	96.00	3.163	8.965	0.000034	113.156287	324.7585	0.0017	7.4088	55196.926
6.51	99.32	3.163	8.965	0.000034	103.750079	297.7627	0.0017	9.1501	65659.171
11.31	98.95	3.163	8.965	0.000034	80.1563328	230.0487	0.0017	11.5977	110000.990
23.05	98.19	3.163	8.965	0.000034	40.864473	117.281	0.0017	20.4326	423233.922
14.79	66.68	3.163	8.965	0.000034	66.1433827	189.8315	0.0017	6.3177	161547.213
4.54	58.39	3.163	8.965	0.000034	115.091969	330.314	0.0017	11.8245	53355.873
2.71	62.12	3.163	8.965	0.000034	126.645431	363.4724	0.0017	18.0067	44064.944
2.27	63.59	3.163	8.965	0.000034	129.559723	371.8364	0.0017	20.9902	42104.862
1.22	57.25	3.163	8.965	0.000034	136.823779	392.6842	0.0017	37.0021	37752.795
0.41	39.69	3.163	8.965	0.000034	142.660797	409.4365	0.0017	104.9576	34726.657

Tabla 4.38 Parámetros adimensionales en función de la eficiencia d=0.074 mm de acuerdo a la Ec. [1.48]

Concentración	Eficiencia	(L)	A.	K	$\rho V' D$	$\rho V' D$	d	$\left(V \right)$	gD
	%	$Ln\left(\frac{-}{D}\right)$	$\frac{n_d}{D^2}$	$\frac{D}{D}$	$\frac{\mu_{w}}{\mu}$	$\frac{\mu_{s}, \mu_{s}}{\mu}$	$\frac{\pi}{D}$	$\left(\frac{V'_m}{V'_s}\right)$	$\frac{U}{V'_s}^2$
0.11	64.45	3.163	8.965	0.000034	371.7711	1055.83	0.0028	40.1515	5113.533
0.24	94.46	3.163	8.965	0.000034	369.4397	1049.209	0.0028	18.5066	5178.275
0.38	91.65	3.163	8.965	0.000034	366.9432	1042.119	0.0028	11.7645	5248.975
0.56	89.48	3.163	8.965	0.000034	363.6761	1032.84	0.0028	3.5066	5343.707
0.70	82.00	3.163	8.965	0.000034	361.2067	1025.827	0.0028	6.4404	5417.024
0.74	49.41	3.163	8.965	0.000034	360.5107	1023.85	0.0028	3.5438	5437.960
1.10	72.44	3.163	8.965	0.000034	354.3758	1006.427	0.0028	4.2141	5627.873
2.21	90.30	3.163	8.965	0.000034	335.7286	953.4693	0.0028	3.8623	6270.404
2.38	64.58	3.163	8.965	0.000034	332.9396	945.5486	0.0028	2.0715	6375.896
3.45	91.48	3.163	8.965	0.000034	315.9057	897.1721	0.0028	4.1573	7082.024
5.30	91.90	3.163	8.965	0.000034	288.1699	818.4026	0.0028	1.0727	8510.890
7.02	89.40	3.163	8.965	0.000034	264.465	751.0806	0.0028	5.1566	10104.990

Tabla 4.39 Parámetros adimensionales en función de la eficiencia d=0.125 mm de acuerdo a la Ec. [1.48]

Concentración	Eficiencia			(L)	4	K	$\rho V' D$	$\rho V' D$	d	$\left(V \right)$	gD
		L	A_d	$Ln\left \frac{2}{D}\right $	$\frac{\pi d}{r^2}$	<u></u>	$\underline{\rho_{w's}}$	$\underline{p_s}, \underline{s}$	<u>–</u>	$\frac{r}{171}$	$\frac{0}{U^{2}}$
%	%	[m]	[m ²]	(D)	D^2	D	μ	μ	D	$\left(V_{s}\right)$	V_{s}
0.49	36.21	0.73	0.01215	2.806	6.275	0.000034	1079.269138	3032.75	0.0057	1.1436	606.754
0.51	50.21	0.73	0.01215	2.806	6.275	0.000034	1078.64137	3030.98	0.0057	1.1444	607.461
1.23	64.26	0.83	0.01388	2.940	7.172	0.000034	1046.541675	2940.78	0.0057	1.1882	645.296
1.61	88.25	1.04	0.01736	3.163	8.965	0.000034	1030.211302	2894.89	0.0057	1.2116	665.916
2.21	86.96	1.04	0.01736	3.163	8.965	0.000034	1004.491724	2822.62	0.0057	1.2503	700.454
3.54	85.99	1.04	0.01736	3.163	8.965	0.000034	949.5603879	2668.26	0.0057	1.3409	783.839
14.70	77.21	0.73	0.01215	2.806	6.275	0.000034	576.1667734	1619.03	0.0057	0.2328	2129.001
2.84	63.39	0.73	0.01215	2.806	6.275	0.000034	978.475454	2749.52	0.0057	0.7110	738.197
1.35	78.92	0.94	0.01562	3.057	8.068	0.000034	1041.479432	2926.56	0.0057	1.4039	651.585
0.72	85.06	1.04	0.01736	3.163	8.965	0.000034	1068.982306	3003.84	0.0057	2.5503	618.488
0.60	93.46	1.04	0.01736	3.163	8.965	0.000034	1074.464869	3019.25	0.0057	3.0574	612.192
0.48	99.14	1.04	0.01736	3.163	8.965	0.000034	1079.800118	3034.24	0.0057	3.7964	606.158
0.27	91.91	1.04	0.01736	3.163	8.965	0.000034	1089.157423	3060.53	0.0057	6.6299	595.787
0.13	84.67	1.04	0.01736	3.163	8.965	0.000034	1095.541286	3078.47	0.0057	13.6284	588.864

Tabla 4.40 Parámetros adimensionales en función de la eficiencia d=0.25 mm de acuerdo a la Ec. [1.48]

Concentración	Eficiencia		1	(D)	1	K	11.	n	d	(V')	еL
%	%	L [m]	Α _d [m²]	$\left(\frac{D}{L}\right)$	$\frac{A_d}{L^2}$	$\frac{R}{L}$	$\frac{\mu}{\rho_{w}V_{m}L}$	$\frac{\rho_s}{\rho_w}$	$\frac{a}{L}$	$\left(\frac{V_{s}}{V_{m}}\right)$	$\frac{8^{-}}{V_m^2}$
0.76	76.24	1.04	0.02	0.042	0.016	0.000001	4.44675E-05	2.87	0.0001	0.1473	18454.358
2.04	74.52	1.04	0.02	0.042	0.016	0.000001	4.38963E-05	2.87	0.0001	0.1361	17983.354
2.18	73.83	1.04	0.02	0.042	0.016	0.000001	4.57381E-05	2.87	0.0001	0.1407	19524.083
4.86	96.00	1.04	0.02	0.042	0.016	0.000001	5.04654E-05	2.87	0.0001	0.1350	23768.502
6.51	99.32	1.04	0.02	0.042	0.016	0.000001	4.45662E-05	2.87	0.0001	0.1093	18536.418
11.31	98.95	1.04	0.02	0.042	0.016	0.000001	4.55105E-05	2.87	0.0001	0.0862	19330.220
23.05	98.19	1.04	0.02	0.042	0.016	0.000001	5.067E-05	2.87	0.0001	0.0489	23961.587
14.79	66.68	1.04	0.02	0.042	0.016	0.000001	0.000101244	2.87	0.0001	0.1583	95665.512
4.54	58.39	1.04	0.02	0.042	0.016	0.000001	3.1088E-05	2.87	0.0001	0.0846	9019.870
2.71	62.12	1.04	0.02	0.042	0.016	0.000001	1.85522E-05	2.87	0.0001	0.0555	3212.234
2.27	63.59	1.04	0.02	0.042	0.016	0.000001	1.55573E-05	2.87	0.0001	0.0476	2258.813
1.22	57.25	1.04	0.02	0.042	0.016	0.000001	8.35664E-06	2.87	0.0001	0.0270	651.745
0.41	39.69	1.04	0.02	0.042	0.016	0.000001	2.82554E-06	2.87	0.0001	0.0095	74.510

Tabla 4.41 Parámetros adimensionales en función de la eficiencia d=0.074 mm de acuerdo a la Ec. [1.57]

Concentración	Eficiencia	L	Α.	(ת)	4	V		0	d	(V')	σΙ
%	%	[m]	[m ²]	$\left(\frac{D}{L}\right)$	$\frac{A_d}{L^2}$	$\frac{K}{L}$	$\frac{\mu}{\rho_{w}V_{m}L}$	$rac{ ho_s}{ ho_w}$	$\frac{a}{L}$	$\left(\frac{V_s}{V_m}\right)$	$\frac{gL}{V_m^2}$
0.11	64.45	1.04	0.02	0.042	0.016	0.000001	2.83427E-06	2.84	0.0001	0.0249	74.972
0.24	94.46	1.04	0.02	0.042	0.016	0.000001	6.18797E-06	2.84	0.0001	0.0540	357.364
0.38	91.65	1.04	0.02	0.042	0.016	0.000001	9.80045E-06	2.84	0.0001	0.0850	896.410
0.56	89.48	1.04	0.02	0.042	0.016	0.000001	3.31757E-05	2.84	0.0001	0.2852	10271.973
0.70	82.00	1.04	0.02	0.042	0.016	0.000001	1.81865E-05	2.84	0.0001	0.1553	3086.832
0.74	49.41	1.04	0.02	0.042	0.016	0.000001	3.31156E-05	2.84	0.0001	0.2822	10234.792
1.10	72.44	1.04	0.02	0.042	0.016	0.000001	2.83305E-05	2.84	0.0001	0.2373	7490.702
2.21	90.30	1.04	0.02	0.042	0.016	0.000001	3.2628E-05	2.84	0.0001	0.2589	9935.604
2.38	64.58	1.04	0.02	0.042	0.016	0.000001	6.13444E-05	2.84	0.0001	0.4827	35120.735
3.45	91.48	1.04	0.02	0.042	0.016	0.000001	3.22142E-05	2.84	0.0001	0.2405	9685.225
5.30	91.90	1.04	0.02	0.042	0.016	0.000001	0.000136864	2.84	0.0001	0.9322	174821.41
7.02	89.40	1.04	0.02	0.042	0.016	0.000001	3.10233E-05	2.84	0.0001	0.1939	8982.380

Tabla 4.42 Parámetros adimensionales en función de la eficiencia d=0.125 mm de acuerdo a la Ec. [1.57]

Concentración	Eficiencia	L	A_d	(D)	4	K	Ц	ρ	d	(V')	gL
		[m]	[m ²]	$\left(\frac{z}{L}\right)$	$\frac{II_d}{I^2}$	$\frac{1}{L}$	$\frac{1}{\rho V L}$	$\frac{r_s}{\rho}$	$\frac{u}{I}$	$\left \frac{r}{V} \right $	$\frac{U}{V^2}$
%	%			(=)	L	<i>L</i>	<i>w m</i>	r w	L	('m)	' m
0.49	36.21	0.73	0.01215	0.060	0.023	0.000001	4.89692E-05	2.81	0.0003	0.8744	7676.351
0.51	50.21	0.73	0.01215	0.060	0.023	0.000001	4.89623E-05	2.81	0.0003	0.8738	7674.189
1.23	64.26	0.83	0.01388	0.053	0.020	0.000001	4.25295E-05	2.81	0.0003	0.8416	8643.002
1.61	88.25	1.04	0.01736	0.042	0.016	0.000001	3.38939E-05	2.81	0.0002	0.8253	10721.563
2.21	86.96	1.04	0.01736	0.042	0.016	0.000001	3.36862E-05	2.81	0.0002	0.7998	10590.559
3.54	85.99	1.04	0.01736	0.042	0.016	0.000001	3.32275E-05	2.81	0.0002	0.7458	10304.116
14.70	77.21	0.73	0.01215	0.060	0.023	0.000001	0.000450518	2.81	0.0003	4.2948	649728.726
2.84	63.39	0.73	0.01215	0.060	0.023	0.000001	8.68794E-05	2.81	0.0003	1.4065	24162.483
1.35	78.92	0.94	0.01562	0.047	0.018	0.000001	3.21513E-05	2.81	0.0003	0.7123	7032.988
0.72	85.06	1.04	0.01736	0.042	0.016	0.000001	1.5519E-05	2.81	0.0002	0.3921	2247.729
0.60	93.46	1.04	0.01736	0.042	0.016	0.000001	1.28789E-05	2.81	0.0002	0.3271	1548.007
0.48	99.14	1.04	0.01736	0.042	0.016	0.000001	1.03205E-05	2.81	0.0002	0.2634	994.075
0.27	91.91	1.04	0.01736	0.042	0.016	0.000001	5.859E-06	2.81	0.0002	0.1508	320.377
0.13	84.67	1.04	0.01736	0.042	0.016	0.000001	2.83364E-06	2.81	0.0002	0.0734	74.938

Tabla 4.43 Parámetros adimensionales en función de la eficiencia d=0.25 mm de acuerdo a la Ec. [1.57]

Concentración	Eficiencia		1	(L)	Δ	K	μ	0	V'	V
%	%	[m]	Α _d [m²]	$Ln\left(\frac{L}{d}\right)$	$\frac{A_d}{d^2}$	$\frac{K}{d}$	$\frac{\rho_w}{\rho_w\sqrt{gd^3}}$	$\frac{\rho_s}{\rho_w}$	$\frac{1}{\sqrt{gd}}$	$\frac{1}{\sqrt{gd}}$
0.76	76.24	1.04	0.02	9.551	3169509.527	0.020270	0.54537509	2.87	0.1285	0.8727
2.04	74.52	1.04	0.02	9.551	3169509.527	0.020270	0.54537509	2.87	0.1203	0.8840
2.18	73.83	1.04	0.02	9.551	3169509.527	0.020270	0.54537509	2.87	0.1194	0.8484
4.86	96.00	1.04	0.02	9.551	3169509.527	0.020270	0.54537509	2.87	0.1038	0.7690
6.51	99.32	1.04	0.02	9.551	3169509.527	0.020270	0.54537509	2.87	0.0952	0.8707
11.31	98.95	1.04	0.02	9.551	3169509.527	0.020270	0.54537509	2.87	0.0735	0.8527
23.05	98.19	1.04	0.02	9.551	3169509.527	0.020270	0.54537509	2.87	0.0375	0.7658
14.79	66.68	1.04	0.02	9.551	3169509.527	0.020270	0.54537509	2.87	0.0607	0.3833
4.54	58.39	1.04	0.02	9.551	3169509.527	0.020270	0.54537509	2.87	0.1056	1.2482
2.71	62.12	1.04	0.02	9.551	3169509.527	0.020270	0.54537509	2.87	0.1162	2.0917
2.27	63.59	1.04	0.02	9.551	3169509.527	0.020270	0.54537509	2.87	0.1188	2.4944
1.22	57.25	1.04	0.02	9.551	3169509.527	0.020270	0.54537509	2.87	0.1255	4.6437
0.41	39.69	1.04	0.02	9.551	3169509.527	0.020270	0.54537509	2.87	0.1309	13.7339

Tabla 4.44 Parámetros adimensionales en función de la eficiencia d=0.074 mm de acuerdo a la Ec. [1.66]
Concentración	Eficiencia	_		(I)	1	V		ρ_{s}	V'	V
%	%	L [m]	A _d [m²]	$Ln\left(\frac{L}{d}\right)$	$\frac{A_d}{d^2}$	$\frac{K}{d}$	$\frac{\mu}{ ho_w\sqrt{gd^3}}$	$\frac{\rho_w}{\rho_w}$	$\frac{r_s}{\sqrt{gd}}$	$\frac{r_m}{\sqrt{gd}}$
0.11	64.45	1.04	0.02	9.026	1110751.004	0.012000	0.248415024	2.84	0.2624	10.5345
0.24	94.46	1.04	0.02	9.026	1110751.004	0.012000	0.248415024	2.84	0.2607	4.8251
0.38	91.65	1.04	0.02	9.026	1110751.004	0.012000	0.248415024	2.84	0.2590	3.0466
0.56	89.48	1.04	0.02	9.026	1110751.004	0.012000	0.248415024	2.84	0.2567	0.9000
0.70	82.00	1.04	0.02	9.026	1110751.004	0.012000	0.248415024	2.84	0.2549	1.6417
0.74	49.41	1.04	0.02	9.026	1110751.004	0.012000	0.248415024	2.84	0.2544	0.9016
1.10	72.44	1.04	0.02	9.026	1110751.004	0.012000	0.248415024	2.84	0.2501	1.0539
2.21	90.30	1.04	0.02	9.026	1110751.004	0.012000	0.248415024	2.84	0.2369	0.9151
2.38	64.58	1.04	0.02	9.026	1110751.004	0.012000	0.248415024	2.84	0.2350	0.4867
3.45	91.48	1.04	0.02	9.026	1110751.004	0.012000	0.248415024	2.84	0.2229	0.9268
5.30	91.90	1.04	0.02	9.026	1110751.004	0.012000	0.248415024	2.84	0.2034	0.2182
7.02	89.40	1.04	0.02	9.026	1110751.004	0.012000	0.248415024	2.84	0.1866	0.9624

Tabla 4.45 Parámetros adimensionales en función de la eficiencia d=0.125 mm de acuerdo a la Ec. [1.66]

Concentración	Eficiencia			(L)				ρ	171	I/
%	%	L [m]	A_d	$\left Ln \right \frac{L}{d} \right $	$\frac{A_d}{a^2}$	$\frac{K}{I}$	$\frac{\mu}{\sqrt{1^3}}$	$\frac{r_s}{\rho}$	$\frac{V_{s}}{\sqrt{1}}$	$\frac{V_m}{\sqrt{1}}$
		[]	[m*]	(4)	d^2	d	$ ho_{w}\sqrt{gd^{s}}$	P_w	\sqrt{gd}	\sqrt{gd}
0.49	36.21	0.73	0.01215	7.977	194389.823	0.006000	0.087827974	2.81	0.5386	0.6159
0.51	50.21	0.73	0.01215	7.977	194389.823	0.006000	0.087827974	2.81	0.5383	0.6160
1.23	64.26	0.83	0.01388	8.110	222159.797	0.006000	0.087827974	2.81	0.5222	0.6205
1.61	88.25	1.04	0.01736	8.333	277699.747	0.006000	0.087827974	2.81	0.5141	0.6229
2.21	86.96	1.04	0.01736	8.333	277699.747	0.006000	0.087827974	2.81	0.5013	0.6267
3.54	85.99	1.04	0.01736	8.333	277699.747	0.006000	0.087827974	2.81	0.4739	0.6354
14.70	77.21	0.73	0.01215	7.977	194389.823	0.006000	0.087827974	2.81	0.2875	0.0669
2.84	63.39	0.73	0.01215	7.977	194389.823	0.006000	0.087827974	2.81	0.4883	0.3472
1.35	78.92	0.94	0.01562	8.228	249929.772	0.006000	0.087827974	2.81	0.5197	0.7296
0.72	85.06	1.04	0.01736	8.333	277699.747	0.006000	0.087827974	2.81	0.5334	1.3604
0.60	93.46	1.04	0.01736	8.333	277699.747	0.006000	0.087827974	2.81	0.5362	1.6393
0.48	99.14	1.04	0.01736	8.333	277699.747	0.006000	0.087827974	2.81	0.5388	2.0457
0.27	91.91	1.04	0.01736	8.333	277699.747	0.006000	0.087827974	2.81	0.5435	3.6034
0.13	84.67	1.04	0.01736	8.333	277699.747	0.006000	0.087827974	2.81	0.5467	7.4507

Tabla 4.46 Parámetros adimensionales en función de la eficiencia d=0.25 mm de acuerdo a la Ec. [1.66]

Concentración	Eficiencia		Δ	(D)	(L)	Α.	K	$0 \sqrt{qd^3}$	$n \sqrt{\sigma d^3}$	V'_{a}	V
%	%	[m]	[m ²]	$\left(\frac{-}{d}\right)$	$Ln\left(\frac{-}{d}\right)$	$\frac{d^2}{d^2}$	$\frac{1}{d}$	$\frac{\mu_w \sqrt{gu}}{\mu}$	$\frac{\mu_s \sqrt{gu}}{\mu}$	$\frac{3}{\sqrt{gd}}$	$\frac{m}{\sqrt{gd}}$
0.76	76.24	1.04	0.02	594.59	9.551	3169509.527	0.020270	1.833600429	5.26243	0.1285	0.8727
2.04	74.52	1.04	0.02	594.59	9.551	3169509.527	0.020270	1.833600429	5.26243	0.1203	0.8840
2.18	73.83	1.04	0.02	594.59	9.551	3169509.527	0.020270	1.833600429	5.26243	0.1194	0.8484
4.86	96.00	1.04	0.02	594.59	9.551	3169509.527	0.020270	1.833600429	5.26243	0.1038	0.7690
6.51	99.32	1.04	0.02	594.59	9.551	3169509.527	0.020270	1.833600429	5.26243	0.0952	0.8707
11.31	98.95	1.04	0.02	594.59	9.551	3169509.527	0.020270	1.833600429	5.26243	0.0735	0.8527
23.05	98.19	1.04	0.02	594.59	9.551	3169509.527	0.020270	1.833600429	5.26243	0.0375	0.7658
14.79	66.68	1.04	0.02	594.59	9.551	3169509.527	0.020270	1.833600429	5.26243	0.0607	0.3833
4.54	58.39	1.04	0.02	594.59	9.551	3169509.527	0.020270	1.833600429	5.26243	0.1056	1.2482
2.71	62.12	1.04	0.02	594.59	9.551	3169509.527	0.020270	1.833600429	5.26243	0.1162	2.0917
2.27	63.59	1.04	0.02	594.59	9.551	3169509.527	0.020270	1.833600429	5.26243	0.1188	2.4944
1.22	57.25	1.04	0.02	594.59	9.551	3169509.527	0.020270	1.833600429	5.26243	0.1255	4.6437
0.41	39.69	1.04	0.02	594.59	9.551	3169509.527	0.020270	1.833600429	5.26243	0.1309	13.7339

Tabla 4.47 Parámetros adimensionales en función de la eficiencia d=0.074 mm de acuerdo a la Ec. [1.75]

Concentración	Eficiencia				(L)	4	V	$\sqrt{3}$		V'	V
%	%	L [m]	A _d [m²]	$\left(\frac{D}{d}\right)$	$Ln\left(\frac{-}{d}\right)$	$\frac{A_d}{d^2}$	$\frac{K}{d}$	$rac{ ho_w\sqrt{gd^3}}{\mu}$	$\frac{\rho_s \sqrt{gd^3}}{\mu}$	$\frac{v_s}{\sqrt{gd}}$	$\frac{v_m}{\sqrt{gd}}$
0.11	64.45	1.04	0.02	352.00	9.026	1110751.004	0.012000	4.02552142	11.43248	0.2624	10.5345
0.24	94.46	1.04	0.02	352.00	9.026	1110751.004	0.012000	4.02552142	11.43248	0.2607	4.8251
0.38	91.65	1.04	0.02	352.00	9.026	1110751.004	0.012000	4.02552142	11.43248	0.2590	3.0466
0.56	89.48	1.04	0.02	352.00	9.026	1110751.004	0.012000	4.02552142	11.43248	0.2567	0.9000
0.70	82.00	1.04	0.02	352.00	9.026	1110751.004	0.012000	4.02552142	11.43248	0.2549	1.6417
0.74	49.41	1.04	0.02	352.00	9.026	1110751.004	0.012000	4.02552142	11.43248	0.2544	0.9016
1.10	72.44	1.04	0.02	352.00	9.026	1110751.004	0.012000	4.02552142	11.43248	0.2501	1.0539
2.21	90.30	1.04	0.02	352.00	9.026	1110751.004	0.012000	4.02552142	11.43248	0.2369	0.9151
2.38	64.58	1.04	0.02	352.00	9.026	1110751.004	0.012000	4.02552142	11.43248	0.2350	0.4867
3.45	91.48	1.04	0.02	352.00	9.026	1110751.004	0.012000	4.02552142	11.43248	0.2229	0.9268
5.30	91.90	1.04	0.02	352.00	9.026	1110751.004	0.012000	4.02552142	11.43248	0.2034	0.2182
7.02	89.40	1.04	0.02	352.00	9.026	1110751.004	0.012000	4.02552142	11.43248	0.1866	0.9624

Tabla 4.48 Parámetros adimensionales en función de la eficiencia d=0.125 mm de acuerdo a la Ec. [1.75]

Concentración	Eficiencia	-		(מ)	(L)	1	V	$2 \sqrt{z d^3}$	$2\sqrt{-1^3}$	V'	V
%	%	L [m]	A _d [m²]	$\left(\frac{D}{d}\right)$	$Ln\left(\frac{1}{d}\right)$	$\frac{A_d}{d^2}$	$\frac{K}{d}$	$\frac{\rho_{w\sqrt{ga}}}{\mu}$	$\frac{\rho_{s}\sqrt{ga}}{\mu}$	$\frac{r_s}{\sqrt{gd}}$	$\frac{r_m}{\sqrt{gd}}$
0.49	36.21	0.73	0.01215	176	7.977	194389.823	0.006	11.38589398	31.99436	0.5386	0.6159
0.51	50.21	0.73	0.01215	176	7.977	194389.823	0.006	11.38589398	31.99436	0.5383	0.6160
1.23	64.26	0.83	0.01388	176	8.110	222159.797	0.006	11.38589398	31.99436	0.5222	0.6205
1.61	88.25	1.04	0.01736	176	8.333	277699.747	0.006	11.38589398	31.99436	0.5141	0.6229
2.21	86.96	1.04	0.01736	176	8.333	277699.747	0.006	11.38589398	31.99436	0.5013	0.6267
3.54	85.99	1.04	0.01736	176	8.333	277699.747	0.006	11.38589398	31.99436	0.4739	0.6354
14.70	77.21	0.73	0.01215	176	7.977	194389.823	0.006	11.38589398	31.99436	0.2875	0.0669
2.84	63.39	0.73	0.01215	176	7.977	194389.823	0.006	11.38589398	31.99436	0.4883	0.3472
1.35	78.92	0.94	0.01562	176	8.228	249929.772	0.006	11.38589398	31.99436	0.5197	0.7296
0.72	85.06	1.04	0.01736	176	8.333	277699.747	0.006	11.38589398	31.99436	0.5334	1.3604
0.60	93.46	1.04	0.01736	176	8.333	277699.747	0.006	11.38589398	31.99436	0.5362	1.6393
0.48	99.14	1.04	0.01736	176	8.333	277699.747	0.006	11.38589398	31.99436	0.5388	2.0457
0.27	91.91	1.04	0.01736	176	8.333	277699.747	0.006	11.38589398	31.99436	0.5435	3.6034
0.13	84.67	1.04	0.01736	176	8.333	277699.747	0.006	11.38589398	31.99436	0.5467	7.4507

Tabla 4.49 Parámetros adimensionales en función de la eficiencia d=0.25 mm de acuerdo a la Ec. [1.75]

Concentración	Eficiencia	(L)	4			
%	%	$\left Ln \left(\frac{D}{D} \right) \right $	$\frac{A_d}{A_T}$	F'_{L}	F_L	F_{G}
0.76	76.24	3.163	11.415	0.018506	0.2746	0.0674
2.04	74.52	3.163	11.415	0.018746	0.4520	0.0415
2.18	73.83	3.163	11.415	0.017992	0.4677	0.0385
4.86	96.00	3.163	11.415	0.016306	0.6790	0.0240
6.51	99.32	3.163	11.415	0.018465	0.7671	0.0241
11.31	98.95	3.163	11.415	0.018082	0.9345	0.0193
23.05	98.19	3.163	11.415	0.01624	1.0743	0.0151
14.79	66.68	3.163	11.415	0.008128	1.0047	0.0081
4.54	58.39	3.163	11.415	0.02647	0.6589	0.0402
2.71	62.12	3.163	11.415	0.044356	0.5194	0.0854
2.27	63.59	3.163	11.415	0.052895	0.4771	0.1109
1.22	57.25	3.163	11.415	0.098473	0.3499	0.2814
0.41	39.69	3.163	11.415	0.291237	0.1995	1.4595

Tabla 4.50 Parámetros adimensionales en función de la eficiencia d=0.074 mm deacuerdo a la Ec. [1.82]

Tabla 4.51 Parámetros adimensionales en función de la eficiencia d=0.125 mmde acuerdo a la Ec. [1.82]

Concentración	Eficiencia	(L)	1			
%	%	$\left \frac{Ln}{D} \right $	$\frac{A_d}{A_T}$	F'_{L}	F_L	F_{G}
0.11	64.45	3.163	11.414	0.292697	0.1049	2.7903
0.24	94.46	3.163	11.414	0.134064	0.1587	0.8450
0.38	91.65	3.163	11.414	0.084647	0.2022	0.4187
0.56	89.48	3.163	11.414	0.025006	0.2488	0.1005
0.70	82.00	3.163	11.414	0.045615	0.2793	0.1633
0.74	49.41	3.163	11.414	0.025051	0.2873	0.0872
1.10	72.44	3.163	11.414	0.029282	0.3509	0.0834
2.21	90.30	3.163	11.414	0.025425	0.4979	0.0511
2.38	64.58	3.163	11.414	0.013523	0.5163	0.0262
3.45	91.48	3.163	11.414	0.025752	0.6160	0.0418
5.30	91.90	3.163	11.414	0.006061	0.7465	0.0081
7.02	89.40	3.163	11.414	0.026741	0.8374	0.0319

Concentración	Eficiencia	L	A_d	(L)	Α.		E	
0/	0/	[m]	[m ²]	$Ln\left(\frac{L}{D}\right)$	$\frac{A_d}{A_T}$	F_{L}	F_L	F_{G}
70	70			~ /	1			
0.49	36.21	0.73	0.01215	2.806	7.990	0.024401	0.2567	0.0951
0.51	50.21	0.73	0.01215	2.806	7.990	0.0244044	0.2605	0.0937
1.23	64.26	0.83	0.01388	2.940	9.132	0.0245838	0.4123	0.0596
1.61	88.25	1.04	0.01736	3.163	11.415	0.0246778	0.4716	0.0523
2.21	86.96	1.04	0.01736	3.163	11.415	0.02483	0.5521	0.0450
3.54	85.99	1.04	0.01736	3.163	11.415	0.0251728	0.6911	0.0364
14.70	77.21	0.73	0.01215	2.806	7.990	0.0026523	1.1805	0.0022
2.84	63.39	0.73	0.01215	2.806	7.990	0.0137535	0.6224	0.0221
1.35	78.92	0.94	0.01562	3.057	10.273	0.028906	0.4315	0.0670
0.72	85.06	1.04	0.01736	3.163	11.415	0.0538969	0.3135	0.1719
0.60	93.46	1.04	0.01736	3.163	11.415	0.0649456	0.2845	0.2283
0.48	99.14	1.04	0.01736	3.163	11.415	0.081045	0.2534	0.3198
0.27	91.91	1.04	0.01736	3.163	11.415	0.1427596	0.1882	0.7587
0.13	84.67	1.04	0.01736	3.163	11.415	0.2951782	0.1281	2.3043

Tabla 4.52 Parámetros adimensionales en función de la eficiencia d=0.25 mm deacuerdo a la Ec. [1.82]

4.3.6 Relaciones entre eficiencia con cada uno de los parámetros adimensionales. Con el fin de encontrar una relación exponencial entre la eficiencia y cada uno de los parámetros adimensionales que se establecieron anteriormente en el análisis dimensional, se realiza una representación gráfica de los datos obtenidos consignados en las Tablas 4.26 a 4.52.

Se grafica F_L Vs $\underline{F_G}$ para que a partir de un valor F_L teórico encontrado con la Ec.[2.46] se pueda encontrar gráficamente o mediante la ecuación potencial obtenida un valor de F_G .

Los siguientes parámetros adimensionales no fueron graficados Vs la Eficiencia porque son constantes por cada ensayo o porque una de sus variables es constante, debido a que ciertas características del flujo o del modelo no fueron cambiadas la influencia que estos tienen no se considera dentro de este análisis.

$$\frac{K}{D}, \left(\frac{\rho_s}{\rho_w}\right), \frac{d}{D}, \frac{D}{d}, \frac{K}{d}, \frac{K}{L}, \frac{d}{L}, \frac{\mu}{\rho_w\sqrt{gd^3}}, \frac{\rho_w\sqrt{gd^3}}{\mu}, \frac{\rho_s\sqrt{gd^3}}{\mu}, \sigma_s, \theta$$

Ya que estos parámetros adimensionales no se tuvieron en cuenta para el análisis, las ecuaciones [1.66] y [1.75] se redujeron a una sola, por consiguiente, las ecuaciones que se van a conformar son: Ec.[1.12], Ec.[2.21], Ec.[1.30], Ec.[1.39], Ec.[1.48], Ec.[1.57] y Ec.[1.66]

Gráfica 4.1 Eficiencia vs. Concentración d=0.074 mm

Gráfica 4.2 Eficiencia vs. $Ln\left(\frac{L}{D}\right)Ln(L/D) d = 0.074mm$

Gráfica 4.3 Eficiencia vs. $\frac{A_d}{D^2}$, d = 0.074 mm

Gráfica 4.6 Eficiencia vs. $\frac{gD}{{V'_s}^2}$, d = 0.074 mm

Gráfica 4.7 Eficiencia vs. $\frac{\mu}{\rho_{w}V_{m}D}$, d = 0.074 mm

Gráfica 4.12 Eficiencia vs. $\frac{\mu}{\rho_w V_s d}$, d = 0.074 mm

Gráfica 4.11 Eficiencia vs. $\frac{A_d}{d^2}$, d = 0.074 mm

Gráfica 4.13 Eficiencia vs. $\frac{gd}{V_s^2}$, d = 0.074 mm

Gráfica 4.15 Eficiencia vs. $\frac{\rho_s V'_s d}{\mu}$, d = 0.074 mm

Gráfica 4.16 Eficiencia vs. $\frac{\rho_w V_s D}{\mu}$, d = 0.074 mm

Gráfica 4.19 Eficiencia vs. $\frac{A_d}{L^2}$, d = 0.074 mm

Gráfica 4.24 Eficiencia vs.
$$\frac{A_d}{A}$$
, d = 0.074 mm

Gráfica 4.25 Eficiencia vs. F_G , d = 0.074 mm

Gráfica 4.26 F_{G} vs. F_{L} , d = 0.074 mm

- C=23.05% ---- C=14.79% ---

C=0.41% —— C=1.22%

- C=4.54%

C=2.71%

C=11.31% ----

C=2.27%

Gráfica 4.27 Eficiencia vs. Concentración d = 0.125 mm

Gráfica 4.29 Eficiencia vs. $\frac{A_d}{D^2}$, d = 0.125 mm

Gráfica 4.30 Eficiencia vs. $\frac{\mu}{\rho_w V'_s D}$, d = 0.125 mm

0 0.10

0.30

0.20

0.40

0.50

0.60

V'_vm

0.70

0.80

0.90

1.00

Gráfica 4.36 Eficiencia vs. $\frac{\mu}{\rho_w V'_s d}$, d = 0.125 mm

Gráfica 4.37 Eficiencia vs. $Ln\left(\frac{L}{d}\right)$, d = 0.125 mm

Gráfica 4.40 Eficiencia vs. $\frac{\rho_w V_s d}{\mu}$, d = 0.125 mm

Gráfica 4.39 Eficiencia vs. $\frac{gd}{V_s^2}$, d = 0.125 mm

Gráfica 4.41 Eficiencia vs. $\frac{\rho_s V'_s d}{\mu}$, d = 0.125 mm

Gráfica 4.43 Eficiencia vs. $\frac{\rho_s V'_s D}{\mu}$, d = 0.125 mm

Gráfica 4.46 Eficiencia vs. $\frac{\mu}{\rho_w V_m L}$, d = 0.125 mm

Gráfica 4.48 Eficiencia vs.
$$\frac{V'_s}{\sqrt{gd}}$$
, d = 0.125 mm

Gráfica 4.49 Eficiencia vs. $\frac{V_m}{\sqrt{gd}}$, d = 0.125 mm

Gráfica 4.51 Eficiencia vs. F_G , d = 0.125 mm

Gráfica 4.52 F_G vs. F_L , d = 0.125 mm

Gráfica 4.53 Eficiencia vs. Concentración d = 0.25 mm

Gráfica 4.56 Eficiencia vs. $\frac{\mu}{\rho_w V'_s D}$, d = 0.25 mm

gD/V's²

Gráfica 4.64 Eficiencia vs. $\frac{\mu}{\rho_w V'_s d}$, d = 0.25 mm

Gráfica 4.67 Eficiencia vs. $\frac{\rho_s V'_s d}{\mu}$, d = 0.25 mm

Gráfica 4.71 Eficiencia vs. $\frac{\mu}{\rho_{w}V_{m}L}$, d = 0.25 mm

Gráfica 4.74 Eficiencia vs.
$$\frac{V_m}{\sqrt{gd}}$$
, d = 0.25 mm

Gráfica 4.75 Eficiencia vs. $\frac{A_d}{A_T}$, d = 0.25 mm

Gráfica 4.77 F_{G} vs. F_{L} , d = 0.25 mm

Después de realizar una regresión exponencial a cada una de las graficas anteriores se obtiene una serie de ecuaciones en donde la eficiencia está en función de los diversos parámetros adimensionales, que se muestran en la Tabla 4.53.

ECUACIÓN	COMENTARIO	No. EC.
$\eta = 1.23 \mathrm{C}^{0.1578}$	d=0.074 mm, η y C en tanto por uno.	[4.10a]
$\eta = 0.95004C^{0.0391}$	d=0.125 mm, η y C en tanto por uno.	[4.10b]
$n = 0.7843C^{0.0094}$	d=0.25 mm, η y C	[4 10c]
η = 0.76+5€	en tanto por uno.	[4.100]
$\eta = 0.23156 \left(Ln \left(\frac{L}{D} \right) \right)^{1.0327}$	d=0.074 mm	[4.11a]
$\eta = 0.40848 \left(Ln \left(\frac{L}{D} \right) \right)^{0.6152}$	d=0.125 mm	[4.11b]

Continuación Tak	ola 4.53 Resum	nen ecuaciones	que relacionan
eficiencia con ca	ada uno de los	parámetros adir	nensionales.

ECUACIÓN	COMENTARIO	No. EC.
$\eta = 0.57652 \left(Ln \left(\frac{L}{D} \right) \right)^{0.2515}$	d=0.25 mm	[4.11c]
$\eta = 1.6813d^{0.7361} \left(Ln \left(\frac{L}{D} \right) \right)^{0.0512d^{-1.1671}}$	Valida para d=0.074 mm, d=0.125 mm y d=0.25 mm. <i>d</i> en mm	[4.11d]
$\eta = 0.24594 \left(\frac{A_d}{D^2}\right)^{0.5488}$	d=0.074 mm	[4.12a]
$\eta = 0.4262 \left(\frac{A_d}{D^2}\right)^{0.3223}$	d=0.125 mm	[4.12b]
$\eta = 0.58773 \left(\frac{A_d}{D^2}\right)^{0.1304}$	d=0.25 mm	[4.12c]
$\eta = 4.2268 \left(\frac{\mu}{\rho_{w} V'_{s} D}\right)^{0.3797}$	d=0.074 mm	[4.13a]
$\eta = 24.25 \left(\frac{\mu}{\rho_w V_s D}\right)^{0.5867}$	d=0.125 mm	[4.13b]
$\eta = 1.3691 \left(\frac{\mu}{\rho_w V'_s D}\right)^{0.0868}$	d=0.25 mm	[4.13c]
$\eta = 1.2728 \left(\frac{V_m}{V'_s}\right)^{-0.2182}$	d=0.074 mm	[4.14a]
$\eta = 0.80069 \left(\frac{V_m}{V'_s}\right)^{-0.0039}$	d=0.125 mm	[4.14b]
$\eta = 0.70862 \left(\frac{V_m}{V'_s}\right)^{0.181}$	d=0.25 mm	[4.14c]
$\eta = 0.08831 \left(\frac{gD}{V'_s^2}\right)^{0.1898}$	d=0.074 mm	[4.15a]
$\eta = 0.061518 \left(\frac{gD}{V_s'^2}\right)^{0.2933}$	d=0.125 mm	[4.15b]

ECUACIÓN	COMENTARIO	No. EC.		
$\eta = 0.56523 \left(\frac{gD}{{V'_s}^2}\right)^{0.0434}$	d=0.25 mm	[4.15c]		
$\eta = 3.6093 \left(\frac{\mu}{\rho_w V_m D}\right)^{0.2215}$	d=0.074 mm	[4.16a]		
$\eta = 0.85737 \left(\frac{\mu}{\rho_w V_m D}\right)^{0.01}$	d=0.125 mm	[4.16b]		
$\eta = 0.40166 \left(\frac{\mu}{\rho_w V_m D}\right)^{-0.084}$	d=0.25 mm	[4.16c]		
$\eta = 1.2728 \left(\frac{V'_s}{V_m}\right)^{0.2182}$	d=0.074 mm	[4.17a]		
$\eta = 0.80069 \left(\frac{V'_s}{V_m} \right)^{0.0039}$	d=0.125 mm	[4.17b]		
$\eta = 0.70862 \left(\frac{V'_s}{V_m}\right)^{-0.1081}$	d=0.25 mm	[4.17c]		
$\eta = 0.37792 \left(\frac{gD}{V_m^2}\right)^{0.1107}$	d=0.074 mm	[4.18a]		
$\eta = 0.77444 \left(\frac{gD}{V_m^2}\right)^{0.005}$	d=0.125 mm	[4.18b]		
$\eta = 0.94555 \left(\frac{gD}{V_m^2}\right)^{-0.042}$	d=0.25 mm	[4.18c]		
$\eta = 0.000022 \left(Ln \left(\frac{L}{d} \right) \right)^{4.6571}$	d=0.074 mm [4.19a]			
$\eta = 0.002982 \left(Ln \left(\frac{L}{d} \right) \right)^{2.5724}$	d=0.125 mm	[4.19b]		
$\eta = 0.10351 \left(Ln \left(\frac{L}{d} \right) \right)^{0.9521}$	d=0.25 mm	[4.19c]		

ECUACIÓN	COMENTARIO	No. EC.			
$\eta = 0.000222 \left(\frac{A_d}{d^2}\right)^{0.5488}$	d=0.074 mm	[4.20a]			
$\eta = 0.009733 \left(\frac{A_d}{d^2}\right)^{0.3223}$	d=0.125 mm	[4.20b]			
$\eta = 0.15266 \left(\frac{A_d}{d^2}\right)^{0.1304}$	d=0.25 mm	[4.20c]			
$\eta = 0.37382 \left(\frac{\mu}{\rho_{w} V'_{s} d}\right)^{0.3797}$	d=0.074 mm	[4.21a]			
$\eta = 0.77768 \left(\frac{\mu}{\rho_{w} V'_{s} d}\right)^{0.5867}$	d=0.125 mm	[4.21b]			
$\eta = 0.87389 \left(\frac{\mu}{\rho_w V_s d}\right)^{0.0868}$	d=0.25 mm	[4.21c]			
$\eta = 0.29695 \left(\frac{gd}{{V'_s}^2}\right)^{0.1898}$	d=0.074 mm	[4.22a]			
$\eta = 0.34354 \left(\frac{gd}{{V'_s}^2}\right)^{0.2933}$	d=0.125 mm	[4.22b]			
$\eta = 0.7075 \left(\frac{gd}{V'_{s}^{2}}\right)^{0.0434}$	d=0.25 mm	[4.22c]			
$\eta = 0.37382 \left(\frac{\rho_{w} V'_{s} d}{\mu}\right)^{-0.3797}$	d=0.074 mm	[4.23a]			
$\eta = 0.77768 \left(\frac{\rho_{w} V_{s}' d}{\mu}\right)^{-0.5867}$	d=0.125 mm	[4.23b]			
$\eta = 0.87389 \left(\frac{\rho_w V_s d}{\mu}\right)^{-0.0868}$	d=0.25 mm [4.23c]				
$\eta = 0.55784 \left(\frac{\rho_s V'_s d}{\mu}\right)^{-0.3797}$	d=0.074 mm	[4.24a]			

ECUACIÓN	COMENTARIO	No. EC.
$\eta = 1.4346 \left(\frac{\rho_s V_s d}{\mu}\right)^{-0.5867}$	d=0.125 mm	[4.24b]
$\eta = 0.95592 \left(\frac{\rho_s V_s' d}{\mu}\right)^{-0.0868}$	d=0.25 mm	[4.24c]
$\eta = 4.2268 \left(\frac{\rho_{w} V'_{s} D}{\mu}\right)^{-0.3797}$	d=0.074 mm	[4.25a]
$\eta = 24.252 \left(\frac{\rho_w V_s D}{\mu}\right)^{-0.5867}$	d=0.125 mm	[4.25b]
$\eta = 1.3691 \left(\frac{\rho_w V_s D}{\mu}\right)^{-0.0868}$	d=0.25 mm	[4.25c]
$\eta = 6.3076 \left(\frac{\rho_s V'_s D}{\mu}\right)^{-0.3797}$	d=0.074 mm	[4.26a]
$\eta = 44.739 \left(\frac{\rho_s V_s D}{\mu}\right)^{-0.5867}$	d=0.125 mm	[4.26b]
$]\eta = 1.4977 \left(\frac{\rho_s V'_s D}{\mu}\right)^{-0.0868}$	d=0.25 mm	[4.26c]
$\eta = 0.1446 \left(\frac{D}{L}\right)^{-0.5488}$	d=0.074 mm	[4.27a]
$\eta = 0.31183 \left(\frac{D}{L}\right)^{-0.3223}$	d=0.125 mm	[4.27b]
$\eta = 0.51796 \left(\frac{D}{L}\right)^{-0.1304}$	d=0.25 mm	[4.27c]
$\eta = 0.0848560 \left(\frac{A_d}{L^2}\right)^{-0.5488}$	d=0.074 mm	[4.28a]
$\eta = 0.22815 \left(\frac{A_d}{L^2}\right)^{-0.3223}$	d=0.125 mm	[4.28b]
$\eta = 0.45647 \left(\frac{A_d}{L^2}\right)^{-0.1304}$	d=0.25 mm	[4.28c]

ECUACIÓN	COMENTARIO	No. EC.
$\eta = 7.2722 \left(\frac{\mu}{\rho_w V_m L}\right)^{0.2215}$	d=0.074 mm	[4.29a]
$\eta = 0.88487 \left(\frac{\mu}{\rho_w V_m L}\right)^{0.01}$	d=0.125 mm	[4.29b]
$\eta = 0.28063 \left(\frac{\mu}{\rho_{w} V_{m} L}\right)^{-0.0939}$	d=0.25 mm	[4.29c]
$\eta = 0.26625 \left(\frac{gL}{V_m^2}\right)^{0.1107}$	d=0.074 mm	[4.30a]
$\eta = 0.7623 \mathrm{l} \left(\frac{gL}{V_m^2} \right)^{0.005}$	d=0.125 mm	[4.30b]
$\eta = 1.0379 \left(\frac{gL}{V_m^2}\right)^{-0.038}$	d=0.25 mm	[4.30c]
$\eta = 0.29695 \left(\frac{V'_s}{\sqrt{gd}}\right)^{-0.3797}$	d=0.074 mm	[4.31a]
$\eta = 0.34354 \left(\frac{V'_{s}}{\sqrt{gd}}\right)^{-0.5867}$	d=0.125 mm	[4.31b]
$\eta = 0.7075 \left(\frac{V'_s}{\sqrt{gd}}\right)^{-0.0868}$	d=0.25 mm	[4.31c]
$\eta = 0.76672 \left(\frac{V_m}{\sqrt{gd}}\right)^{-0.2215}$	d=0.074 mm	[4.32a]
$\eta = 0.79745 \left(\frac{V_m}{\sqrt{gd}}\right)^{-0.01}$	d=0.125 mm	[4.32b]
$\eta = 0.7609 \left(\frac{V_m}{\sqrt{gd}}\right)^{0.084}$	d=0.25 mm	[4.32c]
$\eta = 0.2154 \left(\frac{A_d}{A_t}\right)^{0.5488}$	d=0.074 mm	[4.33a]

ECUACIÓN	COMENTARIO	No. EC.
$\eta = 0.39428 \left(\frac{A_d}{A_t}\right)^{0.3223}$	d=0.125 mm	[4.33b]
$\eta = 0.5695 \mathrm{l} \left(\frac{A_d}{A_t}\right)^{0.1304}$	d=0.25 mm	[4.33c]
$\eta = 0.45097 F_G^{-0.158}$	d=0.074 mm	[4.34a]
$\eta = 0.76728 F_G^{-0.016}$	d=0.125 mm	[4.34b]
$\eta = 0.81856 F_G^{0.036}$	d=0.25 mm	[4.34c]

4.3.7 Deducción de funciones adimensionales. Con las ecuaciones de la Tabla 4.53 se continúa con la conformación de una ecuación general para encontrar la eficiencia, η .

Las relaciones anteriores son de la siguiente forma:

 $\eta = bX_i^{a_i}$

De Donde:

b: Coeficiente que modifica el parámetro adimensional.

X_i: Parámetros adimensionales.

a_i: Exponente que relaciona la eficiencia con el parámetro adimensional.

La función adimensional a la que se quiere llegar tiene la siguiente forma:

 $\eta = a_o X_1^{a_1} X_2^{a_2} X_3^{a_3} \dots X_i^{a_i}$

*a*_o: Coeficiente multiplicativo de la función adimensional.

De acuerdo a las funciones adimensionales establecidas en el Capitulo I, Ec.[1.12], Ec.[1.21], Ec.[1.30], Ec.[1.39], Ec.[1.48], Ec.[1.57], Ec.[1.66] y Ec.[1.82], se unen cada uno de los $X_i^{a_i}$ para ajustar unas ecuaciones que los relacionen con la eficiencia, dejando como incógnita la constante a_o , como se ve en la Ec.[4.35].

$$\eta = a_o C^{0.1578} \left(\ln \left(\frac{L}{D} \right) \right)^{1.0327} \left(\frac{A_d}{D^2} \right)^{0.5488} \left(\frac{\mu}{\rho_w V'_s D} \right)^{0.3797} \left(\frac{V_m}{V'_s} \right)^{-0.2182} \left(\frac{gD}{{V'_s}^2} \right)^{0.1898}$$
Ec. [4.35]

Todos los datos experimentales que se encontraron, se consignaron en la Tabla 4.54 con el objeto de encontrar un η teórico siguiendo la Ec. [4.35]. Se asume un valor tentativo de a_a , iterando hasta encontrar el menor valor de error promedio.

El error se calcula de acuerdo a la Ec. [4.36]

$$\% Error = \frac{|\eta Experimental - \eta Teorico|}{\eta Experimental} 100$$
 Ec. [4.36]

Para el porcentaje de error promedio se utiliza la Ec.[4.37]

$$\% Error = \frac{\frac{\sum_{i=1}^{N} |\eta Experimental - \eta Teorico|}{\eta Experimental}}{N} 100$$
 Ec. [4.37]

Donde:

N: Número de datos usados.

Se sigue este mismo procedimiento para encontrar los valores de a_o para todas las relaciones funcionales adimensionales por cada tamaño de partícula, los resultados se muestran en las Tablas 4.54 hasta 4.77.

a。	с	$Ln\left(\frac{L}{D}\right)$	$\frac{A_d}{\mathbf{D}^2}$	$\frac{\mu}{\rho_w V'_s D}$	$\frac{V_m}{V'_s}$	$\frac{gD}{V'_s^2}$	η Exper.	η Teórica	Error %	Error Prom.
	0.76	3.1628	8.9650	0.0071	6.7903	35999.4	76.2415	58.7518	22.9398	
	2.04	3.1628	8.9650	0.0076	7.3481	41081.1	74.5167	70.9142	4.8345	
	2.18	3.1628	8.9650	0.0077	7.1061	41710.7	73.8311	72.6401	1.6131	
	4.86	3.1628	8.9650	0.0088	7.4088	55196.9	95.9953	90.8563	5.3534	
	6.51	3.1628	8.9650	0.0096	9.1501	65659.2	99.3242	97.0375	2.3022	
	11.31	3.1628	8.9650	0.0125	11.5977	110001.0	98.9468	122.3011	23.6028	
0.1570	23.05	3.1628	8.9650	0.0245	20.4326	423233.9	98.1908	201.6921	105.4083	31.932
	14.79	3.1628	8.9650	0.0151	6.3177	161547.2	66.6801	168.5462	152.7684	
	4.54	3.1628	8.9650	0.0087	11.8245	53355.9	58.3851	80.1214	37.2291	
	2.71	3.1628	8.9650	0.0079	18.0067	44064.9	62.1241	62.6572	0.8581	
	2.27	3.1628	8.9650	0.0077	20.9902	42104.9	63.5888	57.9261	8.9052	
	1.22	3.1628	8.9650	0.0073	37.0021	37752.8	57.2543	44.5217	22.2386	
	0.41	3.1628	8.9650	0.0070	104.9576	34726.7	39.6922	28.9524	27.0578	
	0.76	3.1628	8.9650	0.0071	6.7903	35999.4	76.2415	57.6292	24.4123	
	2.04	3.1628	8.9650	0.0076	7.3481	41081.1	74.5167	69.5591	6.6530	
	2.18	3.1628	8.9650	0.0077	7.1061	41710.7	73.8311	71.2521	3.4931	
	4.86	3.1628	8.9650	0.0088	7.4088	55196.9	95.9953	89.1202	7.1619	
	6.51	3.1628	8.9650	0.0096	9.1501	65659.2	99.3242	95.1833	4.1691	
	11.31	3.1628	8.9650	0.0125	11.5977	110001.0	98.9468	119.9641	21.2410	04 007
0.1540	23.05	3.1628	8.9650	0.0245	20.4326	423233.9	98.1908	197.8382	101.4833	31.927
	14.79	3.1628	8.9650	0.0151	6.3177	161547.2	66.6801	165.3256	147.9384	
	4.54	3.1628	8.9650	0.0087	11.8245	53355.9	58.3851	78.5904	34.6069	
	2.71	3.1628	8.9650	0.0079	18.0067	44064.9	62.1241	61.4599	1.0692	
	2.27	3.1628	8.9650	0.0077	20.9902	42104.9	63.5888	56.8192	10.6458	
	1.22	3.1628	8.9650	0.0073	37.0021	37752.8	57.2543	43.6710	23.7245	
	0.41	3.1628	8.9650	0.0070	104.9576	34726.7	39.6922	28.3992	28.4516	
	0.76	3.1628	8.9650	0.0071	6.7903	35999.4	76.2415	58.0034	23.9214	
	2.04	3.1628	8.9650	0.0076	7.3481	41081.1	74.5167	70.0108	6.0468	
	2.18	3.1628	8.9650	0.0077	7.1061	41710.7	73.8311	71.7148	2.8664	
	4.86	3.1628	8.9650	0.0088	7.4088	55196.9	95.9953	89.6989	6.5590	
	6.51	3.1628	8.9650	0.0096	9.1501	65659.2	99.3242	95.8014	3.5468	
	11.31	3.1628	8.9650	0.0125	11.5977	110001.0	98.9468	120.7431	22.0283	21 00/
0.1550	23.05	3.1628	8.9650	0.0245	20.4326	423233.9	98.1908	199.1228	102.7917	31.004
	14.79	3.1628	8.9650	0.0151	6.3177	161547.2	66.6801	166.3991	149.5484	
	4.54	3.1628	8.9650	0.0087	11.8245	53355.9	58.3851	79.1007	35.4810	
	2.71	3.1628	8.9650	0.0079	18.0067	44064.9	62.1241	61.8590	0.4268	
	2.27	3.1628	8.9650	0.0077	20.9902	42104.9	63.5888	57.1882	10.0656	
	1.22	3.1628	8.9650	0.0073	37.0021	37752.8	57.2543	43.9545	23.2292	-
	0.41	3.1628	8.9650	0.0070	104.9576	34726.7	39.6922	28.5836	27.9870	

Tabla 4.54Cálculo del coeficiente a_o , d=0.074 mm de acuerdo a la Ec.[1.12]

Continuación Tabla 4.54 Cálculo del coeficiente a_o , d =0.074 mm de acuerdo a la Ec.[1.12]

		(-)			17	D				
a₀	с	$Ln\left(\frac{L}{D}\right)$	$\frac{A_d}{D^2}$	$\frac{\mu}{\rho_{w}V'_{s}D}$	$\frac{V_m}{V'_s}$	$\frac{gD}{V'_s^2}$	η Exper.	η Teórica	Error %	Error Prom.
	0.76	3.1628	8.9650	0.0071	6.7903	35999.4	76.2415	58.3776	23.4306	
	2.04	3.1628	8.9650	0.0076	7.3481	41081.1	74.5167	70.4625	5.4407	
	2.18	3.1628	8.9650	0.0077	7.1061	41710.7	73.8311	72.1775	2.2398	
	4.86	3.1628	8.9650	0.0088	7.4088	55196.9	95.9953	90.2776	5.9562	
	6.51	3.1628	8.9650	0.0096	9.1501	65659.2	99.3242	96.4194	2.9245	
	11.31	3.1628	8.9650	0.0125	11.5977	110001.0	98.9468	121.5221	22.8155	
0.1560	23.05	3.1628	8.9650	0.0245	20.4326	423233.9	98.1908	200.4075	104.1000	31.875
	14.79	3.1628	8.9650	0.0151	6.3177	161547.2	66.6801	167.4727	151.1584	
	4.54	3.1628	8.9650	0.0087	11.8245	53355.9	58.3851	79.6110	36.3550	
	2.71	3.1628	8.9650	0.0079	18.0067	44064.9	62.1241	62.2581	0.2156	
	2.27	3.1628	8.9650	0.0077	20.9902	42104.9	63.5888	57.5571	9.4854	
	1.22	3.1628	8.9650	0.0073	37.0021	37752.8	57.2543	44.2381	22.7339	
	0.41	3.1628	8.9650	0.0070	104.9576	34726.7	39.6922	28.7680	27.5224	
	0.76	3.1628	8.9650	0.0071	6.7903	35999.4	76.2415	58.3402	23.4797	
	2.04	3.1628	8.9650	0.0076	7.3481	41081.1	74.5167	70.4173	5.5013	
	2.18	3.1628	8.9650	0.0077	7.1061	41710.7	73.8311	72.1312	2.3024	
	4.86	3.1628	8.9650	0.0088	7.4088	55196.9	95.9953	90.2197	6.0165	
	6.51	3.1628	8.9650	0.0096	9.1501	65659.2	99.3242	96.3576	2.9867	
	11.31	3.1628	8.9650	0.0125	11.5977	110001.0	98.9468	121.4442	22.7368	04.070
0.1559	23.05	3.1628	8.9650	0.0245	20.4326	423233.9	98.1908	200.2790	103.9692	31.870
	14.79	3.1628	8.9650	0.0151	6.3177	161547.2	66.6801	167.3653	150.9974	
	4.54	3.1628	8.9650	0.0087	11.8245	53355.9	58.3851	79.5600	36.2676	
	2.71	3.1628	8.9650	0.0079	18.0067	44064.9	62.1241	62.2182	0.1514	
	2.27	3.1628	8.9650	0.0077	20.9902	42104.9	63.5888	57.5202	9.5434	
	1.22	3.1628	8.9650	0.0073	37.0021	37752.8	57.2543	44.2098	22.7834	
	0.41	3.1628	8.9650	0.0070	104.9576	34726.7	39.6922	28.7496	27.5688	
	0.76	3.1628	8.9650	0.0071	6.7903	35999.4	76.2415	58.3028	23.5288	
	2.04	3.1628	8.9650	0.0076	7.3481	41081.1	74.5167	70.3721	5.5619	
	2.18	3.1628	8.9650	0.0077	7.1061	41710.7	73.8311	72.0849	2.3651	
	4.86	3.1628	8.9650	0.0088	7.4088	55196.9	95.9953	90.1619	6.0768	
	6.51	3.1628	8.9650	0.0096	9.1501	65659.2	99.3242	96.2958	3.0490	
	11.31	3.1628	8.9650	0.0125	11.5977	110001.0	98.9468	121.3663	22.6581	24.004
0.1558	23.05	3.1628	8.9650	0.0245	20.4326	423233.9	98.1908	200.1505	103.8383	31.004
	14.79	3.1628	8.9650	0.0151	6.3177	161547.2	66.6801	167.2580	150.8364	
	4.54	3.1628	8.9650	0.0087	11.8245	53355.9	58.3851	79.5090	36.1802	
	2.71	3.1628	8.9650	0.0079	18.0067	44064.9	62.1241	62.1783	0.0872	
	2.27	3.1628	8.9650	0.0077	20.9902	42104.9	63.5888	57.4833	9.6015	
	1.22	3.1628	8.9650	0.0073	37.0021	37752.8	57.2543	44.1814	22.8330	
	0.41	3.1628	8.9650	0.0070	104.9576	34726.7	39.6922	28.7311	27.6153	

Continuación Tabla 4.54 Cálculo del coeficiente a_o , d =0.074 mm de acuerdo a la Ec.[1.12]

		(L)	4	<i>U</i>	V	gД				F
a₀	с	$Ln\left(\frac{L}{D}\right)$	$\frac{T_d}{D^2}$	$\frac{\rho}{\rho_{w}V'_{s}D}$	$\frac{V'_m}{V'_s}$	$\frac{3}{V'_s^2}$	η Exper.	η Teórica	Error %	Prom.
	0.76	3.1628	8.9650	0.0071	6.7903	35999.4	76.2415	58.1905	23.6760	
	2.04	3.1628	8.9650	0.0076	7.3481	41081.1	74.5167	70.2366	5.7437	
	2.18	3.1628	8.9650	0.0077	7.1061	41710.7	73.8311	71.9461	2.5531	
	6.51	3.1628	8.9650	0.0096	9.1501	65659.2	99.3242	96.1104	3.2357	
	11.31	3.1628	8.9650	0.0125	11.5977	110001.0	98.9468	121.1326	22.4219	
0 1555	23.05	3.1628	8.9650	0.0245	20.4326	423233.9	98.1908	199.7651	103.4458	31.863
0.1555	14.79	3.1628	8.9650	0.0151	6.3177	161547.2	66.6801	166.9359	150.3534	
	4.54	3.1628	8.9650	0.0087	11.8245	53355.9	58.3851	79.3559	35.9180	
	2.71	3.1628	8.9650	0.0079	18.0067	44064.9	62.1241	62.0585	0.1056	
	2.27	3.1628	8.9650	0.0077	20.9902	42104.9	63.5888	57.3726	9.7755	
	1.22	3.1628	8.9650	0.0073	37.0021	37752.8	57.2543	44.0963	22.9816	
	0.41	3.1628	8.9650	0.0070	104.9576	34726.7	39.6922	28.6758	27.7547	
	0.76	3.1628	8.9650	0.0071	6.7903	35999.4	76.2415	58.2092	23.6515	
	2.04	3.1628	8.9650	0.0076	7.3481	41081.1	74.5167	70.2592	5.7134	
	2.18	3.1628	8.9650	0.0077	7.1061	41710.7	73.8311	71.9693	2.5218	
	4.86	3.1628	8.9650	0.0088	7.4088	55196.9	95.9953	90.0172	6.2275	
	6.51	3.1628	8.9650	0.0096	9.1501	65659.2	99.3242	96.1413	3.2045	
	11.31	3.1628	8.9650	0.0125	11.5977	110001.0	98.9468	121.1715	22.4613	21.001
0.1556	23.05	3.1628	8.9650	0.0245	20.4326	423233.9	98.1908	199.8294	103.5112	31.001
	14.79	3.1628	8.9650	0.0151	6.3177	161547.2	66.6801	166.9896	150.4339	
	4.54	3.1628	8.9650	0.0087	11.8245	53355.9	58.3851	79.3814	35.9617	
	2.71	3.1628	8.9650	0.0079	18.0067	44064.9	62.1241	62.0785	0.0734	
	2.27	3.1628	8.9650	0.0077	20.9902	42104.9	63.5888	57.3911	9.7465	
	1.22	3.1628	8.9650	0.0073	37.0021	37752.8	57.2543	44.1105	22.9568	
	0.41	3.1628	8.9650	0.0070	104.9576	34726.7	39.6922	28.6850	27.7314	
	0.76	3.1628	8.9650	0.0071	6.7903	35999.4	76.2415	58.2654	23.5779	
	2.04	3.1628	8.9650	0.0076	7.3481	41081.1	74.5167	70.3270	5.6225	
	2.18	3.1628	8.9650	0.0077	7.1061	41710.7	73.8311	72.0387	2.4278	
	4.86	3.1628	8.9650	0.0088	7.4088	55196.9	95.9953	90.1040	6.1371	
	6.51	3.1628	8.9650	0.0096	9.1501	65659.2	99.3242	96.2340	3.1112	
	11.31	3.1628	8.9650	0.0125	11.5977	110001.0	98.9468	121.2884	22.5794	21 050
0.1557	23.05	3.1628	8.9650	0.0245	20.4326	423233.9	98.1908	200.0221	103.7075	51.050
	14.79	3.1628	8.9650	0.0151	6.3177	161547.2	66.6801	167.1506	150.6754	
	4.54	3.1628	8.9650	0.0087	11.8245	53355.9	58.3851	79.4579	36.0928	
	2.71	3.1628	8.9650	0.0079	18.0067	44064.9	62.1241	62.1383	0.0229	
	2.27	3.1628	8.9650	0.0077	20.9902	42104.9	63.5888	57.4464	9.6595	
	1.22	3.1628	8.9650	0.0073	37.0021	37752.8	57.2543	44.1531	22.8825	
	0.41	3.1628	8.9650	0.0070	104.9576	34726.7	39.6922	28.7127	27.6617	

a₀	с	$Ln\left(\frac{L}{D}\right)$	$\frac{A_d}{\mathbf{D}^2}$	$\frac{\mu}{\rho_{w}V'_{s}D}$	$\frac{V_m}{V'_c}$	$\frac{gD}{V'_{s}^{2}}$	η Exper.	η Teórica	Error %	Error Prom.
	0.11	3 1628	8 9646	0.0027	s 40 1515	5113 53	64 45	64 99	0.84	
	0.24	3.1628	8.9646	0.0027	18.5066	5178.28	94.46	67.70	28.33	
	0.38	3.1628	8.9646	0.0027	11.7645	5248.97	91.65	69.60	24.06	
	0.56	3.1628	8.9646	0.0027	3.5066	5343.71	89.48	71.77	19.79	
	0.70	3.1628	8.9646	0.0028	6.4404	5417.02	82.00	72.81	11.21	
0 55000	0.74	3.1628	8.9646	0.0028	3.5438	5437.96	49.41	73.30	48.34	40.45
0.55000	1.10	3.1628	8.9646	0.0028	4.2141	5627.87	72.44	75.88	4.75	18.15
	2.21	3.1628	8.9646	0.0030	3.8623	6270.40	90.30	83.12	7.96	
	2.38	3.1628	8.9646	0.0030	2.0715	6375.90	64.58	84.39	30.68	
	3.45	3.1628	8.9646	0.0032	4.1573	7082.02	91.48	90.82	0.73	
	5.30	3.1628	8.9646	0.0035	1.0727	8510.89	91.90	103.42	12.53	
	7.02	3.1628	8.9646	0.0038	5.1566	10104.99	89.40	114.93	28.56	
	0.11	3.1628	8.9646	0.0027	40.1515	5113.53	64.45	62.62	2.83	
	0.24	3.1628	8.9646	0.0027	18.5066	5178.28	94.46	65.24	30.94	
	0.38	3.1628	8.9646	0.0027	11.7645	5248.97	91.65	67.07	26.82	
	0.56	3.1628	8.9646	0.0027	3.5066	5343.71	89.48	69.16	22.70	
	0.70	3.1628	8.9646	0.0028	6.4404	5417.02	82.00	70.16	14.44	
0 53000	0.74	3.1628	8.9646	0.0028	3.5438	5437.96	49.41	70.63	42.95	17 96
0.00000	1.10	3.1628	8.9646	0.0028	4.2141	5627.87	72.44	73.13	0.95	17.50
	2.21	3.1628	8.9646	0.0030	3.8623	6270.40	90.30	80.10	11.30	
	2.38	3.1628	8.9646	0.0030	2.0715	6375.90	64.58	81.32	25.93	
	3.45	3.1628	8.9646	0.0032	4.1573	7082.02	91.48	87.51	4.34	
	5.30	3.1628	8.9646	0.0035	1.0727	8510.89	91.90	99.66	8.44	
	7.02	3.1628	8.9646	0.0038	5.1566	10104.99	89.40	110.75	23.88	
	0.11	3.1628	8.9646	0.0027	40.1515	5113.53	64.45	62.51	3.01	
	0.24	3.1628	8.9646	0.0027	18.5066	5178.28	94.46	65.12	31.07	
	0.38	3.1628	8.9646	0.0027	11.7645	5248.97	91.65	66.95	26.96	
	0.56	3.1628	8.9646	0.0027	3.5066	5343.71	89.48	69.03	22.85	
	0.70	3.1628	8.9646	0.0028	6.4404	5417.02	82.00	70.03	14.60	
0.52900	0.74	3.1628	8.9646	0.0028	3.5438	5437.96	49.41	70.50	42.68	17.96
0.02000	1.10	3.1628	8.9646	0.0028	4.2141	5627.87	72.44	72.99	0.76	
	2.21	3.1628	8.9646	0.0030	3.8623	6270.40	90.30	79.95	11.47	
	2.38	3.1628	8.9646	0.0030	2.0715	6375.90	64.58	81.16	25.69	
	3.45	3.1628	8.9646	0.0032	4.1573	7082.02	91.48	87.35	4.52	
	5.30	3.1628	8.9646	0.0035	1.0727	8510.89	91.90	99.47	8.24	
	7.02	3.1628	8.9646	0.0038	5,1566	10104.99	89.40	110.54	23.65	

Tabla 4.55Cálculo del coeficiente a_o , d=0.125 mm de acuerdo a la Ec.[1.12]

a₀	с	$Ln\left(\frac{L}{D}\right)$	$\frac{A_d}{D^2}$	$\frac{\mu}{\rho_{w}V'_{s}D}$	$\frac{V_m}{V'_s}$	$\frac{gD}{V'_s^2}$	η Exper.	η Teórica	Error %	Error Prom.
	0.11	3.1628	8.9646	0.0027	40.1515	5113.53	64.45	62.04	3.73	
	0.24	3.1628	8.9646	0.0027	18.5066	5178.28	94.46	64.64	31.58	
	0.38	3.1628	8.9646	0.0027	11.7645	5248.97	91.65	66.45	27.50	
	0.56	3.1628	8.9646	0.0027	3.5066	5343.71	89.48	68.52	23.42	
	0.70	3.1628	8.9646	0.0028	6.4404	5417.02	82.00	69.51	15.23	
0.52509	0.74	3.1628	8.9646	0.0028	3.5438	5437.96	49.41	69.98	41.63	17.95
0.02000	1.10	3.1628	8.9646	0.0028	4.2141	5627.87	72.44	72.45	0.01	
	2.21	3.1628	8.9646	0.0030	3.8623	6270.40	90.30	79.35	12.13	
	2.38	3.1628	8.9646	0.0030	2.0715	6375.90	64.58	80.56	24.76	
	3.45	3.1628	8.9646	0.0032	4.1573	7082.02	91.48	86.70	5.22	
	5.30	3.1628	8.9646	0.0035	1.0727	8510.89	91.90	98.73	7.44	
	7.02	3.1628	8.9646	0.0038	5.1566	10104.99	89.40	109.73	22.74	
	0.11	3.1628	8.9646	0.0027	40.1515	5113.53	64.45	62.04	3.73	
	0.24	3.1628	8.9646	0.0027	18.5066	5178.28	94.46	64.63	31.58	
	0.38	3.1628	8.9646	0.0027	11.7645	5248.97	91.65	66.45	27.50	
	0.56	3.1628	8.9646	0.0027	3.5066	5343.71	89.48	68.52	23.42	
	0.70	3.1628	8.9646	0.0028	6.4404	5417.02	82.00	69.51	15.23	
0.52508	0.74	3.1628	8.9646	0.0028	3.5438	5437.96	49.41	69.98	41.62	17.95
0.02000	1.10	3.1628	8.9646	0.0028	4.2141	5627.87	72.44	72.45	0.01	
	2.21	3.1628	8.9646	0.0030	3.8623	6270.40	90.30	79.35	12.13	
	2.38	3.1628	8.9646	0.0030	2.0715	6375.90	64.58	80.56	24.76	
	3.45	3.1628	8.9646	0.0032	4.1573	7082.02	91.48	86.70	5.22	
	5.30	3.1628	8.9646	0.0035	1.0727	8510.89	91.90	98.73	7.43	
	7.02	3.1628	8.9646	0.0038	5.1566	10104.99	89.40	109.72	22.73	
	0.11	3.1628	8.9646	0.0027	40.1515	5113.53	64.45	62.04	3.73	
	0.24	3.1628	8.9646	0.0027	18.5066	5178.28	94.46	64.63	31.58	
	0.38	3.1628	8.9646	0.0027	11.7645	5248.97	91.65	66.45	27.50	
	0.56	3.1628	8.9646	0.0027	3.5066	5343.71	89.48	68.52	23.42	
	0.70	3.1628	8.9646	0.0028	6.4404	5417.02	82.00	69.51	15.23	
0.52507	0.74	3.1628	8.9646	0.0028	3.5438	5437.96	49.41	69.98	41.62	17.95
	1.10	3.1628	8.9646	0.0028	4.2141	5627.87	72.44	72.44	0.01	
	2.21	3.1628	8.9646	0.0030	3.8623	6270.40	90.30	79.35	12.13	
	2.38	3.1628	8.9646	0.0030	2.0715	6375.90	64.58	80.56	24.75	
	3.45	3.1628	8.9646	0.0032	4.1573	7082.02	91.48	86.70	5.23	
	5.30	3.1628	8.9646	0.0035	1.0727	8510.89	91.90	98.73	7.43	
	7.02	3.1628	8.9646	0.0038	5.1566	10104.99	89.40	109.72	22.73	

Continuación Tabla 4.55 Cálculo del coeficiente a_o , d=0.125 mm de acuerdo a la Ec.[1.12]

				r						-
a。	с	$Ln\left(\frac{L}{D}\right)$	$\frac{A_d}{D^2}$	$\frac{\mu}{\rho_{w}V'_{s}D}$	$\frac{V_m}{V'_s}$	$\frac{gD}{V'_s^2}$	η Exper.	η Teórica	Error %	Error Prom.
	0.49	2.81	6.28	0.00093	1.1436	606.75	36.21	57.253	58.095	
	0.51	2.81	6.28	0.00093	1.1444	607.46	50.21	57.279	14.076	
	1.23	2.94	7.17	0.00096	1.1882	645.30	64.26	60.020	6.599	
	1.61	3.16	8.96	0.00097	1.2116	665.92	88.25	63.404	28.154	
	2.21	3.16	8.96	0.00100	1.2503	700.45	86.96	64.091	26.295	
	3.54	3.16	8.96	0.00105	1.3409	783.84	85.99	65.501	23.824	
	14.70	2.81	6.28	0.00174	0.2328	2129.00	77.21	55.496	28.119	22 609
0.5	2.84	2.81	6.28	0.00102	0.7110	738.20	63.39	56.237	11.286	22.098
	1.35	3.06	8.07	0.00096	1.4039	651.58	78.92	62.781	20.447	
	0.72	3.16	8.96	0.00094	2.5503	618.49	85.06	67.766	20.329	
	0.60	3.16	8.96	0.00093	3.0574	612.19	93.46	68.925	26.255	
	0.48	3.16	8.96	0.00093	3.7964	606.16	99.14	70.350	29.042	
	0.27	3.16	8.96	0.00092	6.6299	595.79	91.91	74.212	19.257	
	0.13	3.16	8.96	0.00091	13.6284	588.86	84.67	79.597	5.995	
	0.49	2.81	6.28	0.00093	1.1436	606.75	36.21	70.983	96.007	
	0.51	2.81	6.28	0.00093	1.1444	607.46	50.21	71.014	41.431	
	1.23	2.94	7.17	0.00096	1.1882	645.30	64.26	74.413	15.798	
	1.61	3.16	8.96	0.00097	1.2116	665.92	88.25	78.609	10.926	
	2.21	3.16	8.96	0.00100	1.2503	700.45	86.96	79.461	8.621	
	3.54	3.16	8.96	0.00105	1.3409	783.84	85.99	81.208	5.556	
0 6100	14.70	2.81	6.28	0.00174	0.2328	2129.00	77.21	68.804	10.882	17 075
0.0199	2.84	2.81	6.28	0.00102	0.7110	738.20	63.39	69.722	9.987	17.075
	1.35	3.06	8.07	0.00096	1.4039	651.58	78.92	77.835	1.370	
	0.72	3.16	8.96	0.00094	2.5503	618.49	85.06	84.016	1.224	
	0.60	3.16	8.96	0.00093	3.0574	612.19	93.46	85.453	8.571	
	0.48	3.16	8.96	0.00093	3.7964	606.16	99.14	87.220	12.026	
	0.27	3.16	8.96	0.00092	6.6299	595.79	91.91	92.009	0.105	
	0.13	3.16	8.96	0.00091	13.6284	588.86	84.67	98.685	16.547	
	0.49	2.81	6.28	0.00093	1.1436	606.75	36.21	72.139	99.200	
	0.51	2.81	6.28	0.00093	1.1444	607.46	50.21	72.171	43.736	
	1.23	2.94	7.17	0.00096	1.1882	645.30	64.26	75.626	17.685	
	1.61	3.16	8.96	0.00097	1.2116	665.92	88.25	79.889	9.474	
	2.21	3.16	8.96	0.00100	1.2503	700.45	86.96	80.755	7.132	
	3.54	3.16	8.96	0.00105	1.3409	783.84	85.99	82.531	4.018	
0.63	14.70	2.81	6.28	0.00174	0.2328	2129.00	77.21	69.925	9.430	17 210
0.00	2.84	2.81	6.28	0.00102	0.7110	738.20	63.39	70.858	11.779	
	1.35	3.06	8.07	0.00096	1.4039	651.58	78.92	79.104	0.237	
	0.72	3.16	8.96	0.00094	2.5503	618.49	85.06	85.385	0.385	
	0.60	3.16	8.96	0.00093	3.0574	612.19	93.46	86.846	7.081	
	0.48	3.16	8.96	0.00093	3.7964	606.16	99.14	88.641	10.593	
	0.27	3.16	8.96	0.00092	6.6299	595.79	91.91	93.508	1.736	
	0.13	3.16	8.96	0.00091	13.6284	588.86	84.67	100.293	18.446	

 Tabla 4.56
 Cálculo del coeficiente a_o, d=0.25 mm de acuerdo a la Ec.[1.12]

 V_m gD μ L A_d Error η Teórica η Ln С Error % a。 V^{-2} D D^{2} V'_{s} Exper. Prom. $\rho_{w}V'_{s}D$ 77.864 115.010 0.49 2.81 6.28 0.00093 1.1436 606.75 36.21 77.899 55.143 50.21 0.51 2.81 6.28 0.00093 1.1444 607.46 81.628 27.025 64.26 1.23 2.94 7.17 1.1882 645.30 0.00096 86.230 2.290 1.61 3.16 8.96 0.00097 1.2116 665.92 88.25 87.164 0.238 2.21 3.16 8.96 1.2503 700.45 86.96 0.00100 89.081 3.600 85.99 3.54 3.16 8.96 0.00105 1.3409 783.84 75.475 2.242 14.70 2.81 6.28 0.00174 0.2328 2129.00 77.21 0.68 76.482 20.651 2.84 2.81 0.00102 0.7110 738.20 63.39 20.299 6.28 85.382 8.193 1.35 3.06 8.07 0.00096 1.4039 651.58 78.92 8.353 92.161 0.72 3.16 8.96 2.5503 618.49 85.06 0.00094 0.293 93.738 0.60 3.16 8.96 0.00093 3.0574 612.19 93.46 95.676 3.497 99.14 0.48 3.16 8.96 3.7964 606.16 0.00093 100.929 9.810 0.27 <u>6.62</u>99 595.79 91.91 3.16 8.96 0.00092 108.253 27.847 0.13 3.16 8.96 0.00091 13.6284 588.86 84.67 74.429 105.524 0.49 2.81 6.28 0.00093 1.1436 606.75 36.21 74.462 48.299 0.51 2.81 6.28 0.00093 1.1444 607.46 50.21 78.027 21.421 1.23 2.94 7.17 645.30 64.26 0.00096 1.1882 82.426 6.601 1.61 3.16 8.96 0.00097 1.2116 665.92 88.25 83.319 4.184 2.21 3.16 8.96 0.00100 1.2503 700.45 86.96 0.971 3.54 85.151 783.84 85.99 3.16 8.96 1.3409 0.00105 72.145 6.555 14.70 2.81 6.28 0.00174 0.2328 2129.00 77.21 0.65 18.209 73.108 15.328 2.84 2.81 6.28 0.00102 0.7110 738.20 63.39 81.615 3.419 1.35 3.06 8.07 0.00096 1.4039 651.58 78.92 88.095 3.572 0.72 3.16 8.96 0.00094 2.5503 618.49 85.06 89.603 4.131 3.0574 612.19 93.46 0.60 3.16 8.96 0.00093 91.455 7.755 0.48 8.96 606.16 99.14 3.16 0.00093 3.7964 96.476 4.966 0.27 3.16 8.96 0.00092 6.6299 595.79 91.91 13.6284 103.477 22.207 0.13 3.16 8.96 0.00091 588.86 84.67 66.162 82.695 0.49 2.81 6.28 0.00093 1.1436 606.75 36.21 66.191 31.826 0.51 2.81 6.28 0.00093 1.1444 607.46 50.21 69.360 7.934 2.94 7.17 1.1882 645.30 64.26 1.23 0.00096 73.270 16.975 1.61 3.16 8.96 0.00097 1.2116 665.92 88.25 74.064 14.827 2.21 3.16 8.96 0.00100 1.2503 700.45 86.96 11.970 75.693 3.54 3.16 8.96 0.00105 1.3409 783.84 85.99 0.5778 64.131 16.934 17.842 14.70 2.81 6.28 0.2328 2129.00 77.21 0.00174 64.987 2.518 2.84 2.81 6.28 0.00102 0.7110 738.20 63.39 72.549 8.068 1.35 3.06 8.07 0.00096 1.4039 651.58 78.92 78.310 7.932 0.72 3.16 8.96 0.00094 2.5503 618.49 85.06 14.780 79.650 0.60 8.96 3.0574 612.19 93.46 3.16 0.00093 81.296 18.001 99.14 0.48 3.16 8.96 0.00093 3.7964 606.16 85.760 6.693 0.27 3.16 8.96 0.00092 6.6299 595.79 91.91

Continuación Tabla 4.56 Cálculo del coeficiente a_o, d=0.25 mm de acuerdo a la Ec.[1.12]

		L(L)	A_d	μ	V'_s	gD	n	n		Error
a。	C	$Ln(\overline{D})$	$\frac{a}{D^2}$	$\overline{\rho_{w}V_{m}D}$	$\overline{V_m}$	$\overline{V_m^2}$	Exper.	Teórica	Error %	Prom.
	0.76	3.16	8.96	0.00105	0.14727	780.76	76.24	68.72	9.87	
	2.04	3.16	8.96	0.00104	0.13609	760.83	74.52	78.44	5.26	
	2.18	3.16	8.96	0.00108	0.14072	826.02	73.83	81.35	10.18	
	4.86	3.16	8.96	0.00119	0.13497	1005.59	96.00	95.56	0.46	
	6.51	3.16	8.96	0.00105	0.10929	784.23	99.32	90.43	8.95	
	11.31	3.16	8.96	0.00108	0.08622	817.82	98.95	94.57	4.42	
0.45000	23.05	3.16	8.96	0.00120	0.04894	1013.76	98.19	98.06	0.13	30.200
	14.79	3.16	8.96	0.00239	0.15828	4047.39	66.68	160.50	140.71	
	4.54	3.16	8.96	0.00073	0.08457	381.61	58.39	68.88	17.97	
	2.71	3.16	8.96	0.00044	0.05553	135.90	62.12	46.08	25.82	
	2.27	3.16	8.96	0.00037	0.04764	95.57	63.59	40.09	36.95	
	1.22	3.16	8.96	0.00020	0.02703	27.57	57.25	24.39	57.40	
	0.41	3.16	8.96	0.00007	0.00953	3.15	39.69	10.13	74.48	
	0.76	3.16	8.96	0.00105	0.14727	780.76	76.24	68.87	9.67	
	2.04	3.16	8.96	0.00104	0.13609	760.83	74.52	78.61	5.49	
	2.18	3.16	8.96	0.00108	0.14072	826.02	73.83	81.53	10.43	
	4.86	3.16	8.96	0.00119	0.13497	1005.59	96.00	95.77	0.24	
	6.51	3.16	8.96	0.00105	0.10929	784.23	99.32	90.63	8.75	
	11.31	3.16	8.96	0.00108	0.08622	817.82	98.95	94.78	4.21	
0.45100	23.05	3.16	8.96	0.00120	0.04894	1013.76	98.19	98.28	0.09	30.196
	14.79	3.16	8.96	0.00239	0.15828	4047.39	66.68	160.86	141.24	
	4.54	3.16	8.96	0.00073	0.08457	381.61	58.39	69.03	18.23	
	2.71	3.16	8.96	0.00044	0.05553	135.90	62.12	46.18	25.66	
	2.27	3.16	8.96	0.00037	0.04764	95.57	63.59	40.18	36.81	
	1.22	3.16	8.96	0.00020	0.02703	27.57	57.25	24.44	57.30	
	0.41	3.16	8.96	0.00007	0.00953	3.15	39.69	10.15	74.43	
	0.76	3.16	8.96	0.00105	0.14727	780.76	76.24	68.81	9.75	
	2.04	3.16	8.96	0.00104	0.13609	760.83	74.52	78.54	5.40	
	2.18	3.16	8.96	0.00108	0.14072	826.02	73.83	81.45	10.33	
	4.86	3.16	8.96	0.00119	0.13497	1005.59	96.00	95.68	0.33	
	6.51	3.16	8.96	0.00105	0.10929	784.23	99.32	90.55	8.84	
	11.31	3.16	8.96	0.00108	0.08622	817.82	98.95	94.69	4.30	
0.45058	23.05	3.16	8.96	0.00120	0.04894	1013.76	98.19	98.19	0.00	30.190
	14.79	3.16	8.96	0.00239	0.15828	4047.39	66.68	160.71	141.02	
	4.54	3.16	8.96	0.00073	0.08457	381.61	58.39	68.96	18.12	
	2.71	3.16	8.96	0.00044	0.05553	135.90	62.12	46.14	25.73	
	2.27	3.16	8.96	0.00037	0.04764	95.57	63.59	40.15	36.87	
	1.22	3.16	8.96	0.00020	0.02703	27.57	57.25	24.42	57.34	
	0.41	3.16	8.96	0.00007	0.00953	3.15	39.69	10.14	74.45	1

Tabla 4.57Cálculo del coeficiente a_o , d=0.074 mm de acuerdo a la Ec.[1.21]

a。	с	$Ln\left(\frac{L}{D}\right)$	$\frac{A_d}{D^2}$	$\frac{\mu}{\rho V D}$	$\frac{V'_s}{V}$	$\frac{gD}{V^2}$	η Exper.	η Teórica	Error %	Error Prom.
	0.11	3.16	8.96	$P_w' m^{\mathbf{D}}$	^m	' m 3 1710	64 446	73 861	14 6091	
	0.11	3.16	8.96	0.00007	0.0240	15 1103	94 463	77 583	17 8696	
	0.24	3.16	8.96	0.00013	0.0040	37 9250	91 652	79.861	12 8642	
	0.50	3.16	8.96	0.00023	0.0000	434 5835	89.477	83 503	6 6762	
	0.30	3.16	8.96	0.00070	0.2002	130 5967	81 999	83.028	1 2552	
	0.70	3.16	8.96	0.00043	0.1000	433.0104	49 412	84.406	70.8207	
0.260000	1 10	3.16	8.96	0.00067	0.2022	316 9143	72 440	85 373	17 8534	15.891
	2.21	3.16	8.96	0.00077	0.2589	420 3525	90 304	88.014	2 5363	
	2.38	3 16	8.96	0.00145	0.4827	1485 8773	64 576	89.609	38 7665	
	3 45	3 16	8.96	0.00076	0.2405	409 7595	91 481	89.514	2 1498	
	5.30	3.16	8.96	0.00323	0.9322	7396,2903	91,900	94,203	2.5057	
	7.02	3.16	8.96	0.00073	0.1939	380.0238	89.399	91.891	2,7868	
	0.11	3.16	8.96	0.00007	0.0249	3.1719	64.446	68.179	5.7931	
	0.24	3.16	8.96	0.00015	0.0540	15.1193	94.463	71.615	24.1873	
	0.38	3.16	8.96	0.00023	0.0850	37.9250	91.652	73.718	19.5669	
	0.56	3.16	8.96	0.00078	0.2852	434.5835	89.477	77.080	13.8549	
	0.70	3.16	8.96	0.00043	0.1553	130.5967	81.999	76.642	6.5336	
	0.74	3.16	8.96	0.00078	0.2822	433.0104	49.412	77.914	57.6806	
0.240000	1.10	3.16	8.96	0.00067	0.2373	316.9143	72.440	78.806	8.7877	16.225
	2.21	3.16	8.96	0.00077	0.2589	420.3525	90.304	81.244	10.0335	
	2.38	3.16	8.96	0.00145	0.4827	1485.8773	64.576	82.716	28.0922	
	3.45	3.16	8.96	0.00076	0.2405	409.7595	91.481	82.628	9.6767	
	5.30	3.16	8.96	0.00323	0.9322	7396.2903	91.900	86.957	5.3793	
	7.02	3.16	8.96	0.00073	0.1939	380.0238	89.399	84.822	5.1199	
	0.11	3.16	8.96	0.00007	0.0249	3.1719	64.446	71.960	11.6597	
	0.24	3.16	8.96	0.00015	0.0540	15.1193	94.463	75.587	19.9832	
	0.38	3.16	8.96	0.00023	0.0850	37.9250	91.652	77.806	15.1066	
	0.56	3.16	8.96	0.00078	0.2852	434.5835	89.477	81.354	9.0778	
	0.70	3.16	8.96	0.00043	0.1553	130.5967	81.999	80.892	1.3505	
0.050000	0.74	3.16	8.96	0.00078	0.2822	433.0104	49.412	82.234	66.4247	45 200
0.253309	1.10	3.16	8.96	0.00067	0.2373	316.9143	72.440	83.176	14.8205	15.300
	2.21	3.16	8.96	0.00077	0.2589	420.3525	90.304	85.749	5.0445	
	2.38	3.16	8.96	0.00145	0.4827	1485.8773	64.576	87.303	35.1954	
	3.45	3.16	8.96	0.00076	0.2405	409.7595	91.481	87.210	4.6679	
	5.30	3.16	8.96	0.00323	0.9322	7396.2903	91.900	91.779	0.1322	
	7.02	3.16	8.96	0.00073	0.1939	380.0238	89.399	89.526	0.1416	

Tabla 4.58Cálculo del coeficiente a_o , d=0.125 mm de acuerdo a la Ec.[1.21]

		$L_{r}(L)$	A_d	μ	V'_{s}	gD	n	n	F 0/	Error
a。	C	$Ln(\overline{D})$	$\frac{u}{D^2}$	$\rho_{w}V_{m}D$	$\overline{V_m}$	$\overline{V_m^2}$	Exper.	Teórica	Error %	Prom.
	0.49	2.8061	6.2755	0.0008	0.874	463.955	36.214	60.308	66.530	
	0.51	2.8061	6.2755	0.0008	0.874	463.825	50.211	60.330	20.152	
	1.23	2.9396	7.1720	0.0008	0.842	457.082	64.261	62.964	2.018	
	1.61	3.1628	8.9650	0.0008	0.825	453.605	88.251	66.375	24.788	
	2.21	3.1628	8.9650	0.0008	0.800	448.062	86.957	66.870	23.100	
	3.54	3.1628	8.9650	0.0008	0.746	435.943	85.986	67.833	21.112	
0 27000	14.70	2.8061	6.2755	0.0075	4.295	39269.319	77.205	36.107	53.232	23 /78
0.27000	2.84	2.8061	6.2755	0.0014	1.407	1460.370	63.391	52.890	16.566	20.470
	1.35	3.0574	8.0685	0.0007	0.712	330.611	78.916	67.619	14.315	
	0.72	3.1628	8.9650	0.0004	0.392	95.096	85.057	81.410	4.288	
	0.60	3.1628	8.9650	0.0003	0.327	65.493	93.464	85.514	8.506	
	0.48	3.1628	8.9650	0.0002	0.263	42.057	99.143	90.668	8.548	
	0.27	3.1628	8.9650	0.0001	0.151	13.554	91.912	105.348	14.618	
	0.13	3.1628	8.9650	0.0001	0.073	3.170	84.674	127.788	50.918	
	0.49	2.8061	6.2755	0.0008	0.874	463.955	36.214	63.008	73.986	
	0.51	2.8061	6.2755	0.0008	0.874	463.825	50.211	63.031	25.533	
	1.23	2.9396	7.1720	0.0008	0.842	457.082	64.261	65.784	2.369	
	1.61	3.1628	8.9650	0.0008	0.825	453.605	88.251	69.348	21.420	
	2.21	3.1628	8.9650	0.0008	0.800	448.062	86.957	69.864	19.657	
	3.54	3.1628	8.9650	0.0008	0.746	435.943	85.986	70.870	17.579	
0 28209	14.70	2.8061	6.2755	0.0075	4.295	39269.319	77.205	37.724	51.138	22 949
0.20200	2.84	2.8061	6.2755	0.0014	1.407	1460.370	63.391	55.258	12.830	22.040
	1.35	3.0574	8.0685	0.0007	0.712	330.611	78.916	70.647	10.478	
	0.72	3.1628	8.9650	0.0004	0.392	95.096	85.057	85.055	0.002	
	0.60	3.1628	8.9650	0.0003	0.327	65.493	93.464	89.343	4.409	
	0.48	3.1628	8.9650	0.0002	0.263	42.057	99.143	94.728	4.453	
	0.27	3.1628	8.9650	0.0001	0.151	13.554	91.912	110.065	19.751	
	0.13	3.1628	8.9650	0.0001	0.073	3.170	84.674	133.510	57.676	
	0.49	2.8061	6.2755	0.0008	0.874	463.955	36.214	64.775	78.865	
	0.51	2.8061	6.2755	0.0008	0.874	463.825	50.211	64.799	29.053	
	1.23	2.9396	7.1720	0.0008	0.842	457.082	64.261	67.628	5.240	
	1.61	3.1628	8.9650	0.0008	0.825	453.605	88.251	71.292	19.216	
	2.21	3.1628	8.9650	0.0008	0.800	448.062	86.957	71.823	17.404	
	3.54	3.1628	8.9650	0.0008	0.746	435.943	85.986	72.857	15.268	
0 20000	14.70	2.8061	6.2755	0.0075	4.295	39269.319	77.205	38.782	49.768	23 101
0.23000	2.84	2.8061	6.2755	0.0014	1.407	1460.370	63.391	56.807	10.386	20.101
	1.35	3.0574	8.0685	0.0007	0.712	330.611	78.916	72.628	7.968	
	0.72	3.1628	8.9650	0.0004	0.392	95.096	85.057	87.440	2.802	
	0.60	3.1628	8.9650	0.0003	0.327	65.493	93.464	91.848	1.729	
	0.48	3.1628	8.9650	0.0002	0.263	42.057	99.143	97.384	1.774	
	0.27	3.1628	8.9650	0.0001	0.151	13.554	91.912	113.151	23.108	
	0.13	3.1628	8.9650	0.0001	0.073	3.170	84.674	137.253	62.097	

Tabla 4.59Cálculo del coeficiente a_o , d=0.25 mm de acuerdo a la Ec.[1.21]

a	с	$Ln\left(\frac{L}{-}\right)$	$\underline{A_d}$	μ	V_m	\underline{gd}	_ ŋ	<u>,</u>	Error %	Error
		d	d ²	$\rho_{w}V'_{s}d$	V'_{s}	V'_{s}^{2}	Exper.	leorica		Prom.
	0.76	9.551	3169510	4.244	6.790	60.545	76.241	58.672	23.045	
	2.04	9.551	3169510	4.533	7.348	69.091	74.517	70.817	4.964	
	2.18	9.551	3169510	4.568	7.106	70.150	73.831	72.541	1.747	
	4.86	9.551	3169510	5.255	7.409	92.831	95.995	90.732	5.482	
	6.51	9.551	3169510	5.731	9.150	110.427	99.324	96.905	2.436	
	11.31	9.551	3169510	7.418	11.598	185.002	98.947	122.134	23.434	
3.77E-09	23.05	9.551	3169510	14.550	20.433	711.803	98.191	201.417	105.128	31.920
	14.79	9.551	3169510	8.989	6.318	271.693	66.680	168.316	152.424	
	4.54	9.551	3169510	5.166	11.824	89.735	58.385	80.012	37.042	
	2.71	9.551	3169510	4.695	18.007	74.109	62.124	62.572	0.720	
	2.27	9.551	3169510	4.589	20.990	70.813	63.589	57.847	9.029	
	1.22	9.551	3169510	4.346	37.002	63.493	57.254	44.461	22.345	
	0.41	9.551	3169510	4.168	104.958	58.404	39.692	28.913	27.157	
	0.76	9.551	3169510	4.244	6.790	60.545	76.241	58.252	23.595	
	2.04	9.551	3169510	4.533	7.348	69.091	74.517	70.311	5.644	
	2.18	9.551	3169510	4.568	7.106	70.150	73.831	72.022	2.450	
	4.86	9.551	3169510	5.255	7.409	92.831	95.995	90.083	6.158	
	6.51	9.551	3169510	5.731	9.150	110.427	99.324	96.212	3.133	
	11.31	9.551	3169510	7.418	11.598	185.002	98.947	121.261	22.551	
3.74E-09	23.05	9.551	3169510	14.550	20.433	711.803	98.191	199.977	103.661	31.856
	14.79	9.551	3169510	8.989	6.318	271.693	66.680	167.113	150.618	
	4.54	9.551	3169510	5.166	11.824	89.735	58.385	79.440	36.062	
	2.71	9.551	3169510	4.695	18.007	74.109	62.124	62.124	0.000	
	2.27	9.551	3169510	4.589	20.990	70.813	63.589	57.433	9.680	
	1.22	9.551	3169510	4.346	37.002	63.493	57.254	44.143	22.900	
	0.41	9.551	3169510	4.168	104.958	58.404	39.692	28.706	27.678	
	0.76	9.551	3169510	4.244	6.790	60.545	76.241	57.414	24.695	
	2.04	9.551	3169510	4.533	7.348	69.091	74.517	69.299	7.002	
	2.18	9.551	3169510	4.568	7.106	70.150	73.831	70.985	3.854	
	4.86	9.551	3169510	5.255	7.409	92.831	95.995	88.787	7.509	
	6.51	9.551	3169510	5.731	9.150	110.427	99.324	94.827	4.528	
	11.31	9.551	3169510	7.418	11.598	185.002	98.947	119.515	20.787	
3.68E-09	23.05	9.551	3169510	14.550	20.433	711.803	98.191	197.098	100.729	31.951
	14.79	9.551	3169510	8.989	6.318	271.693	66.680	164.707	147.010	
	4.54	9.551	3169510	5.166	11.824	89.735	58.385	78.296	34.103]
	2.71	9.551	3169510	4.695	18.007	74.109	62.124	61.230	1.439]
	2.27	9.551	3169510	4.589	20.990	70.813	63.589	56.607	10.980]
	1.22	9.551	3169510	4.346	37.002	63.493	57.254	43.508	24.010]
	0.41	9.551	3169510	4.168	104.958	58.404	39.692	28.293	28.719]

Tabla 4.60Cálculo del coeficiente a_o , d=0.074 mm de acuerdo a la Ec.[1.30]

a₀	С	$Ln\left(\frac{L}{d}\right)$	$\frac{A_d}{\mathrm{d}^2}$	$\frac{\mu}{\rho_{w}V'_{s}d}$	$\frac{V_m}{V'_s}$	$\frac{gd}{{V'_s}^2}$	η Exper.	η Teórica	Error %	Error Prom.
	0.11	9.026	1110751	0.947	40.152	14.527	64.446	81.747	26.846	
	0.24	9.026	1110751	0.953	18.507	14.711	94.463	85.163	9.846	
	0.38	9.026	1110751	0.959	11.765	14.912	91.652	87.555	4.470	
	0.56	9.026	1110751	0.968	3.507	15.181	89.477	90.284	0.902	
	0.70	9.026	1110751	0.975	6.440	15.389	81.999	91.586	11.691	
0 00002	0.74	9.026	1110751	0.976	3.544	15.449	49.412	92.205	86.604	21 704
0.00002	1.10	9.026	1110751	0.993	4.214	15.988	72.440	95.456	31.772	51.704
	2.21	9.026	1110751	1.048	3.862	17.814	90.304	104.556	15.782	
	2.38	9.026	1110751	1.057	2.071	18.113	64.576	106.150	64.380	
	3.45	9.026	1110751	1.114	4.157	20.119	91.481	114.238	24.877	
	5.30	9.026	1110751	1.222	1.073	24.179	91.900	130.091	41.556	
	7.02	9.026	1110751	1.331	5.157	28.707	89.399	144.572	61.715	
	0.11	9.026	1110751	0.947	40.152	14.527	64.446	61.005	5.339	
	0.24	9.026	1110751	0.953	18.507	14.711	94.463	63.554	32.721	
	0.38	9.026	1110751	0.959	11.765	14.912	91.652	65.340	28.709	
	0.56	9.026	1110751	0.968	3.507	15.181	89.477	67.376	24.700	
	0.70	9.026	1110751	0.975	6.440	15.389	81.999	68.348	16.648	
1 /0E-05	0.74	9.026	1110751	0.976	3.544	15.449	49.412	68.810	39.256	18 203
1.492-05	1.10	9.026	1110751	0.993	4.214	15.988	72.440	71.236	1.663	10.200
	2.21	9.026	1110751	1.048	3.862	17.814	90.304	78.027	13.596	
	2.38	9.026	1110751	1.057	2.071	18.113	64.576	79.216	22.672	
	3.45	9.026	1110751	1.114	4.157	20.119	91.481	85.252	6.808	
	5.30	9.026	1110751	1.222	1.073	24.179	91.900	97.083	5.639	
	7.02	9.026	1110751	1.331	5.157	28.707	89.399	107.890	20.683	
	0.11	9.026	1110751	0.947	40.152	14.527	64.446	62.061	3.700	
	0.24	9.026	1110751	0.953	18.507	14.711	94.463	64.654	31.556	
	0.38	9.026	1110751	0.959	11.765	14.912	91.652	66.470	27.475	
	0.56	9.026	1110751	0.968	3.507	15.181	89.477	68.543	23.396	
	0.70	9.026	1110751	0.975	6.440	15.389	81.999	69.531	15.205	
1 52E-05	0.74	9.026	1110751	0.976	3.544	15.449	49.412	70.001	41.667	17 947
1.522-05	1.10	9.026	1110751	0.993	4.214	15.988	72.440	72.469	0.039	11.541
	2.21	9.026	1110751	1.048	3.862	17.814	90.304	79.377	12.100	
	2.38	9.026	1110751	1.057	2.071	18.113	64.576	80.587	24.795	
	3.45	9.026	1110751	1.114	4.157	20.119	91.481	86.728	5.195	
	5.30	9.026	1110751	1.222	1.073	24.179	91.900	98.763	7.467	
	7.02	9.026	1110751	1.331	5.157	28.707	89.399	109.757	22.772	

Tabla 4.61Cálculo del coeficiente a_o , d=0.125 mm de acuerdo a la Ec. [1.30]

a₀	с	$Ln\left(\frac{L}{d}\right)$	$\frac{A_d}{d^2}$	$\frac{\mu}{\rho V' d}$	$\frac{V_m}{V'}$	$\frac{gd}{V'^2}$	η Exper.	η Teórica	Error %	Error Prom.
	0.40	(<i>u</i>)	u to to coo	$p_w r_s u$	s	<i>v</i> _s	00.044	40.000		
	0.49	7.977	194390	0.163	1.144	3.447	36.214	49.263	36.033	
	0.51	7.977	194390	0.163	1.144	3.451	50.211	49.285	1.844	
	1.23	8.110	222160	0.168	1.188	3.666	64.261	51.856	19.304	
	1.61	8.333	277700	0.171	1.212	3.784	88.251	55.188	37.464	
	2.21	8.333	277700	0.175	1.250	3.980	86.957	55.785	35.847	
	3.54	8.333	277700	0.185	1.341	4.454	85.986	57.010	33.698	
0.0160	14.70	7.977	194390	0.305	0.233	12.097	77.205	47.730	38.178	29.259
	2.84	7.977	194390	0.180	0.711	4.194	63.391	48.385	23.672	
	1.35	8.228	249930	0.169	1.404	3.702	78.916	54.450	31.003	
	0.72	8.333	277700	0.165	2.550	3.514	85.057	58.986	30.651	
	0.60	8.333	277700	0.164	3.057	3.478	93.464	59.995	35.809	
	0.48	8.333	277700	0.163	3.796	3.444	99.143	61.236	38.235	
	0.27	8.333	277700	0.162	6.630	3.385	91.912	64.598	29.717	
	0.13	8.333	277700	0.161	13.628	3.346	84.674	69.286	18.173	
	0.49	7.977	194390	0.163	1.144	3.447	36.214	70.200	93.847	
	0.51	7.977	194390	0.163	1.144	3.451	50.211	70.231	39.873	
	1.23	8.110	222160	0.168	1.188	3.666	64.261	73.895	14.992	
	1.61	8.333	277700	0.171	1.212	3.784	88.251	78.643	10.886	
	2.21	8.333	277700	0.175	1.250	3.980	86.957	79.494	8.582	
	3.54	8.333	277700	0.185	1.341	4.454	85.986	81.239	5.520	
	14.70	7.977	194390	0.305	0.233	12.097	77.205	68.015	11.904	
0.0228	2.84	7.977	194390	0.180	0.711	4.194	63.391	68.949	8.768	16.750
	1.35	8.228	249930	0.169	1.404	3.702	78.916	77.591	1.679	
	0.72	8.333	277700	0.165	2.550	3.514	85.057	84.055	1.178	
	0.60	8.333	277700	0.164	3.057	3.478	93.464	85.494	8.528	
	0.48	8.333	277700	0.163	3.796	3.444	99.143	87.261	11.985	
	0.27	8.333	277700	0.162	6.630	3.385	91.912	92.053	0.153	
	0.13	8.333	277700	0.161	13.628	3.346	84.674	98.733	16.604	
	0.49	7.977	194390	0.163	1.144	3.447	36.214	69.892	92.996	
	0.51	7.977	194390	0.163	1.144	3.451	50.211	69.923	39.259	
	1.23	8.110	222160	0.168	1.188	3.666	64.261	73.571	14.487	
	1.61	8.333	277700	0.171	1.212	3.784	88.251	78.298	11.277	
	2.21	8.333	277700	0.175	1.250	3.980	86.957	79.145	8.983	
	3.54	8.333	277700	0.185	1.341	4.454	85,986	80,883	5,935	
	14 70	7 977	194390	0.305	0.233	12 097	77 205	67 717	12 290	
0.0227	2 84	7 977	194390	0.180	0.200	4 194	63 391	68 647	8 291	16.780
	1 35	8 228	249930	0.169	1 404	3 702	78 916	77 251	2 111	
	0.72	8 333	277700	0.165	2 550	3.514	85.057	83 686	1 611	
	0.60	8 333	277700	0.100	2.000	3 / 79	93 161	85 110	8 020	
	0.00	0.000 g 222	277700	0.104	3 706	3.470	00 1/2	86.970	12 271	
	0.40	0.333	277700	0.103	3.790	3.444	99.143	00.879	12.3/1	
	0.27	8.333	2///00	0.162	6.630	3.385	91.912	91.649	0.286	
	0.13	8.333	277700	0.161	13.628	3.346	84.674	98.300	16.093	

Tabla 4.62 Cálculo del coeficiente a_o , d=0.25 mm de acuerdo a la Ec. [1.30]

a	с	$Ln\left(\frac{L}{L}\right)$	$\underline{A_d}$	$\rho_{w}V'_{s}d$	$\underline{\rho_{s}V'_{s}d}$	V_m	gd	_ ŋ	<u>_</u> <u>ŋ</u>	Error %	Error
0	-	-d	d^2	μ	μ	V'_{s}	V'_s^2	Exper.	Teórica		Prom.
	0.76	9.551	3169510	0.236	0.676	6.790	60.545	76.241	40.170	47.312	
	2.04	9.551	3169510	0.221	0.633	7.348	69.091	74.517	49.717	33.281	
	2.18	9.551	3169510	0.219	0.628	7.106	70.150	73.831	51.074	30.823	
	4.86	9.551	3169510	0.190	0.546	7.409	92.831	95.995	67.372	29.818	
	6.51	9.551	3169510	0.174	0.501	9.150	110.427	99.324	74.366	25.128	
	11.31	9.551	3169510	0.135	0.387	11.598	185.002	98.947	103.373	4.474	
2.2222E- 09	23.05	9.551	3169510	0.069	0.197	20.433	711.803	98.191	220.173	124.230	45.153
	14.79	9.551	3169510	0.111	0.319	6.318	271.693	66.680	153.244	129.820	
	4.54	9.551	3169510	0.194	0.556	11.824	89.735	58.385	59.030	1.105	
	2.71	9.551	3169510	0.213	0.611	18.007	74.109	62.124	44.517	28.343	
	2.27	9.551	3169510	0.218	0.625	20.990	70.813	63.589	40.801	35.836	
	1.22	9.551	3169510	0.230	0.660	37.002	63.493	57.254	30.717	46.350	
	0.41	9.551	3169510	0.240	0.689	104.958	58.404	39.692	19.661	50.467	
	0.76	9.551	3169510	0.236	0.676	6.790	60.545	76.241	39.729	47.891	
	2.04	9.551	3169510	0.221	0.633	7.348	69.091	74.517	49.170	34.014	
	2.18	9.551	3169510	0.219	0.628	7.106	70.150	73.831	50.513	31.583	
	4.86	9.551	3169510	0.190	0.546	7.409	92.831	95.995	66.631	30.589	
	6.51	9.551	3169510	0.174	0.501	9.150	110.427	99.324	73.549	25.951	
	11.31	9.551	3169510	0.135	0.387	11.598	185.002	98.947	102.237	3.326	
2.1978E- 09	23.05	9.551	3169510	0.069	0.197	20.433	711.803	98.191	217.754	121.766	45.080
	14.79	9.551	3169510	0.111	0.319	6.318	271.693	66.680	151.560	127.295	
	4.54	9.551	3169510	0.194	0.556	11.824	89.735	58.385	58.381	0.006	
	2.71	9.551	3169510	0.213	0.611	18.007	74.109	62.124	44.027	29.130	
	2.27	9.551	3169510	0.218	0.625	20.990	70.813	63.589	40.353	36.541	
	1.22	9.551	3169510	0.230	0.660	37.002	63.493	57.254	30.379	46.940	
	0.41	9.551	3169510	0.240	0.689	104.958	58.404	39.692	19.445	51.011	
	0.76	9.551	3169510	0.236	0.676	6.790	60.545	76.241	39.297	48.457	
	2.04	9.551	3169510	0.221	0.633	7.348	69.091	74.517	48.636	34.731	
	2.18	9.551	3169510	0.219	0.628	7.106	70.150	73.831	49.964	32.327	
	4.86	9.551	3169510	0.190	0.546	7.409	92.831	95.995	65.907	31.343	
	6.51	9.551	3169510	0.174	0.501	9.150	110.427	99.324	72.749	26.756	
	11.31	9.551	3169510	0.135	0.387	11.598	185.002	98.947	101.126	2.203	
	23.05	9.551	3169510	0.069	0.197	20.433	711.803	98.191	215.387	119.356	
2 1720E	14.79	9.551	3169510	0.111	0.319	6.318	271.693	66.680	149.913	124.824	45 176
2.1739E- 09	4.54	9.551	3169510	0.194	0.556	11.824	89.735	58.385	57.747	1.093	45.176
	2.71	9.551	3169510	0.213	0.611	18.007	74.109	62.124	43.549	29.900	
	2.27	9.551	3169510	0.218	0.625	20.990	70.813	63.589	39.914	37.231	
	1.22	9.551	3169510	0.230	0.660	37.002	63.493	57.254	30.049	47.517	
	0.41	9.551	3169510	0.240	0.689	104.958	58.404	39.692	19.233	51.544	
	2.71	9.551	3169510	0.213	0.611	18.007	74.109	62.124	43.048	30.706	
	2.27	9.551	3169510	0.218	0.625	20.990	70.813	63.589	39.455	37.952	
	1.22	9.551	3169510	0.230	0.660	37.002	63.493	57.254	29.704	48.120	
			0400540	0.040	0.000	404 050	E0 404	20 602	10 012	ED 101	

Tabla 4.63Cálculo del coeficiente a₀, d=0.074 mm de acuerdo a la Ec. [1.39]

a₀	с	$Ln\left(\frac{L}{d}\right)$	$\frac{A_d}{d^2}$	$\frac{\rho_{w}V'_{s}d}{\mu}$	$\frac{\rho_{s}V'_{s}d}{\mu}$	$\frac{V_m}{V'_s}$	$\frac{gd}{V'_s^2}$	η Exper.	η Teórica	Error %	Error Prom.
	0.11	9.026	1110751	1.056	3.000	40.152	14.527	64.446	53.641	16.766	
	0.24	9.026	1110751	1.050	2.981	18.507	14.711	94.463	56.089	40.624	1
	0.38	9.026	1110751	1.042	2.961	11.765	14.912	91.652	57.894	36.832	1
	0.56	9.026	1110751	1.033	2.934	3.507	15.181	89.477	60.013	32.929	1
	0.70	9.026	1110751	1.026	2.914	6.440	15.389	81.999	61.122	25.460	1
0.000025	0.74	9.026	1110751	1.024	2.909	3.544	15.449	49.412	61.605	24.675	22 505
0.000025	1.10	9.026	1110751	1.007	2.859	4.214	15.988	72.440	64.422	11.068	22.505
	2.21	9.026	1110751	0.954	2.709	3.862	17.814	90.304	72.838	19.342	1
	2.38	9.026	1110751	0.946	2.686	2.071	18.113	64.576	74.311	15.075]
	3.45	9.026	1110751	0.897	2.549	4.157	20.119	91.481	82.476	9.844]
	5.30	9.026	1110751	0.819	2.325	1.073	24.179	91.900	99.123	7.859	1
	7.02	9.026	1110751	0.751	2.134	5.157	28.707	89.399	115.847	29.584	
	0.11	9.026	1110751	1.056	3.000	40.152	14.527	64.446	59.701	7.363	
	0.24	9.026	1110751	1.050	2.981	18.507	14.711	94.463	62.425	33.916]
	0.38	9.026	1110751	1.042	2.961	11.765	14.912	91.652	64.434	29.697	
	0.56	9.026	1110751	1.033	2.934	3.507	15.181	89.477	66.792	25.352	1
	0.70	9.026	1110751	1.026	2.914	6.440	15.389	81.999	68.027	17.040	
2.782E-	0.74	9.026	1110751	1.024	2.909	3.544	15.449	49.412	68.564	38.759	21 229
05	1.10	9.026	1110751	1.007	2.859	4.214	15.988	72.440	71.700	1.022	21.550
	2.21	9.026	1110751	0.954	2.709	3.862	17.814	90.304	81.066	10.230	
	2.38	9.026	1110751	0.946	2.686	2.071	18.113	64.576	82.705	28.075	
	3.45	9.026	1110751	0.897	2.549	4.157	20.119	91.481	91.793	0.341	
	5.30	9.026	1110751	0.819	2.325	1.073	24.179	91.900	110.321	20.044	
	7.02	9.026	1110751	0.751	2.134	5.157	28.707	89.399	128.934	44.223	
	0.11	9.026	1110751	1.056	3.000	40.152	14.527	64.446	59.499	7.676	
	0.24	9.026	1110751	1.050	2.981	18.507	14.711	94.463	62.214	34.140	
	0.38	9.026	1110751	1.042	2.961	11.765	14.912	91.652	64.216	29.934	
	0.56	9.026	1110751	1.033	2.934	3.507	15.181	89.477	66.566	25.605	
	0.70	9.026	1110751	1.026	2.914	6.440	15.389	81.999	67.797	17.320	
2.773E-	0.74	9.026	1110751	1.024	2.909	3.544	15.449	49.412	68.332	38.290	21.323
05	1.10	9.026	1110751	1.007	2.859	4.214	15.988	72.440	71.457	1.357	21.020
	2.21	9.026	1110751	0.954	2.709	3.862	17.814	90.304	80.792	10.534	
	2.38	9.026	1110751	0.946	2.686	2.071	18.113	64.576	82.426	27.642	
	3.45	9.026	1110751	0.897	2.549	4.157	20.119	91.481	91.482	0.002	
	5.30	9.026	1110751	0.819	2.325	1.073	24.179	91.900	109.947	19.638	
	7.02	9.026	1110751	0.751	2.134	5.157	28.707	89.399	128.498	43.735	

Tabla 4.64Cálculo del coeficiente a_o , d=0.125 mm de acuerdo a la Ec. [1.39]

a₀	С	$Ln\left(\frac{L}{d}\right)$	$\frac{A_d}{d^2}$	$\frac{\rho_{w}V'_{s}d}{\mu}$	$\frac{\rho_{s}V_{s}d}{\mu}$	$\frac{V_m}{V'_s}$	$\frac{gd}{{V'_s}^2}$	η Exper.	η Teórica	Error %	Error Prom.
	0.49	7.977	194390	6.132	17.232	1.144	3.447	36.214	48.035	32.640	
	0.51	7.977	194390	6.129	17.221	1.144	3.451	50.211	48.058	4.287	
	1.23	8.110	222160	5.946	16.709	1.188	3.666	64.261	50.699	21.105	
	1.61	8.333	277700	5.853	16.448	1.212	3.784	88.251	54.031	38.775	
	2.21	8.333	277700	5.707	16.038	1.250	3.980	86.957	54.737	37.053	
	3.54	8.333	277700	5.395	15.161	1.341	4.454	85.986	56.214	34.624	
0.02	14.70	7.977	194390	3.274	9.199	0.233	12.097	77.205	49.167	36.316	20.256
0.02	2.84	7.977	194390	5.560	15.622	0.711	4.194	63.391	47.585	24.934	30.230
	1.35	8.228	249930	5.917	16.628	1.404	3.702	78.916	53.258	32.514	
	0.72	8.333	277700	6.074	17.067	2.550	3.514	85.057	57.563	32.324	
	0.60	8.333	277700	6.105	17.155	3.057	3.478	93.464	58.522	37.386	
	0.48	8.333	277700	6.135	17.240	3.796	3.444	99.143	59.706	39.778	
	0.27	8.333	277700	6.188	17.389	6.630	3.385	91.912	62.937	31.525	
	0.13	8.333	277700	6.225	17.491	13.628	3.346	84.674	67.470	20.318	
	0.49	7.977	194390	6.132	17.232	1.144	3.447	36.214	72.052	98.960	
	0.51	7.977	194390	6.129	17.221	1.144	3.451	50.211	72.087	43.569	
	1.23	8.110	222160	5.946	16.709	1.188	3.666	64.261	76.049	18.343	
	1.61	8.333	277700	5.853	16.448	1.212	3.784	88.251	81.047	8.163	
	2.21	8.333	277700	5.707	16.038	1.250	3.980	86.957	82.105	5.580	
	3.54	8.333	277700	5.395	15.161	1.341	4.454	85.986	84.321	1.936	
0.00	14.70	7.977	194390	3.274	9.199	0.233	12.097	77.205	73.751	4.474	40 700
0.03	2.84	7.977	194390	5.560	15.622	0.711	4.194	63.391	71.378	12.599	16.739
	1.35	8.228	249930	5.917	16.628	1.404	3.702	78.916	79.886	1.229	
	0.72	8.333	277700	6.074	17.067	2.550	3.514	85.057	86.345	1.514	
	0.60	8.333	277700	6.105	17.155	3.057	3.478	93.464	87.783	6.078	
	0.48	8.333	277700	6.135	17.240	3.796	3.444	99.143	89.559	9.667	
	0.27	8.333	277700	6.188	17.389	6.630	3.385	91.912	94.405	2.713	
	0.13	8.333	277700	6.225	17.491	13.628	3.346	84.674	101.204	19.523	
	0.49	7.977	194390	6.132	17.232	1.144	3.447	36.214	70.155	93.720	
	0.51	7.977	194390	6.129	17.221	1.144	3.451	50.211	70.189	39.789	
	1.23	8.110	222160	5.946	16.709	1.188	3.666	64.261	74.046	15.227	
	1.61	8.333	277700	5.853	16.448	1.212	3.784	88.251	78.913	10.581	
	2.21	8.333	277700	5.707	16.038	1.250	3.980	86.957	79.943	8.066	
	3.54	8.333	277700	5.395	15.161	1.341	4.454	85.986	82.101	4.518	
0.00004	14.70	7.977	194390	3.274	9.199	0.233	12.097	77.205	71.809	6.990	40.000
0.02921	2.84	7.977	194390	5.560	15.622	0.711	4.194	63.391	69.498	9.633	10.293
	1.35	8.228	249930	5.917	16.628	1.404	3.702	78.916	77.783	1.436	
	0.72	8.333	277700	6.074	17.067	2.550	3.514	85.057	84.071	1.159	
	0.60	8.333	277700	6.105	17.155	3.057	3.478	93.464	85.471	8.552	
	0.48	8.333	277700	6.135	17.240	3.796	3.444	99.143	87.201	12.046	1
	0.27	8.333	277700	6.188	17.389	6.630	3.385	91.912	91.919	0.008	1
	0.13	8.333	277700	6.225	17.491	13.628	3.346	84.674	98.539	16.375	1

Tabla 4.65 Cálculo del coeficiente a_o, d=0.25 mm de acuerdo a la Ec. [1.39]

a。	с	$Ln\left(\frac{L}{D}\right)$	$\frac{A_d}{\mathbf{D}^2}$	$\frac{\rho_{w}V'_{s}D}{\mu}$	$\frac{\rho_s V'_s D}{\mu}$	$\frac{V_m}{V'}$	$\frac{gD}{V'_{*}^{2}}$	η Exper.	η Teórica	Error %	Error Prom.
	0.76	3.163	8.965	140.116	402.133	6.790	35999.433	76.241	40.312	47.126	
	2.04	3.163	8.965	131.164	376.441	7.348	41081.081	74.517	49.892	33.046	
	2.18	3.163	8.965	130.170	373.589	7.106	41710.743	73.831	51.254	30.579	
	4.86	3,163	8.965	113,156	324,759	7.409	55196.926	95,995	67.609	29.570	
	6.51	3,163	8.965	103,750	297,763	9,150	65659,171	99.324	74.628	24.864	
	11.31	3,163	8.965	80,156	230.049	11.598	110000.990	98.947	103,738	4.842	
1.05	23.05	3,163	8.965	40.864	117,281	20.433	423233.922	98,191	220.949	125.020	45.176
	14.79	3.163	8.965	66.143	189.832	6.318	161547.213	66.680	153.784	130.630	
	4.54	3,163	8.965	115.092	330.314	11.824	53355.873	58,385	59,238	1.461	
	2.71	3.163	8.965	126.645	363.472	18.007	44064.944	62.124	44.673	28.090	
	2.27	3.163	8.965	129.560	371.836	20.990	42104.862	63.589	40.945	35.610	
	1.22	3.163	8.965	136.824	392.684	37.002	37752.795	57.254	30.825	46.161	
	0.41	3.163	8.965	142.661	409.436	104.958	34726.657	39.692	19.730	50.293	
	0.76	3.163	8.965	140.116	402.133	6.790	35999.433	76.241	39.732	47.886	
	2.04	3.163	8.965	131.164	376.441	7.348	41081.081	74.517	49.175	34.008	
	2.18	3.163	8.965	130.170	373.589	7.106	41710.743	73.831	50.517	31.577	
	4.86	3.163	8.965	113.156	324.759	7.409	55196.926	95.995	66.637	30.583	
	6.51	3.163	8.965	103.750	297.763	9.150	65659.171	99.324	73.555	25.944	
	11.31	3.163	8.965	80.156	230.049	11.598	110000.990	98.947	102.247	3.335	
1.03491	23.05	3.163	8.965	40.864	117.281	20.433	423233.922	98.191	217.774	121.787	45.080
	14.79	3.163	8.965	66.143	189.832	6.318	161547.213	66.680	151.574	127.316	
	4.54	3.163	8.965	115.092	330.314	11.824	53355.873	58.385	58.387	0.003	
	2.71	3.163	8.965	126.645	363.472	18.007	44064.944	62.124	44.031	29.123	
	2.27	3.163	8.965	129.560	371.836	20.990	42104.862	63.589	40.357	36.535	
	1.22	3.163	8.965	136.824	392.684	37.002	37752.795	57.254	30.382	46.935	
	0.41	3.163	8.965	142.661	409.436	104.958	34726.657	39.692	19.446	51.007	
	0.76	3.163	8.965	140.116	402.133	6.790	35999.433	76.241	46.071	39.573	
	2.04	3.163	8.965	131.164	376.441	7.348	41081.081	74.517	57.019	23.481	
	2.18	3.163	8.965	130.170	373.589	7.106	41710.743	73.831	58.576	20.662	
	4.86	3.163	8.965	113.156	324.759	7.409	55196.926	95.995	77.268	19.509	
	6.51	3.163	8.965	103.750	297.763	9.150	65659.171	99.324	85.289	14.131	
	11.31	3.163	8.965	80.156	230.049	11.598	110000.990	98.947	118.557	19.819	
1.2	23.05	3.163	8.965	40.864	117.281	20.433	423233.922	98.191	252.514	157.166	46.136
	14.79	3.163	8.965	66.143	189.832	6.318	161547.213	66.680	175.754	163.577	
	4.54	3.163	8.965	115.092	330.314	11.824	53355.873	58.385	67.701	15.955	
	2.71	3.163	8.965	126.645	363.472	18.007	44064.944	62.124	51.055	17.817	
	2.27	3.163	8.965	129.560	371.836	20.990	42104.862	63.589	46.794	26.411	
	1.22	3.163	8.965	136.824	392.684	37.002	37752.795	57.254	35.229	38.470	
	0.41	3.163	8.965	142.661	409.436	104.958	34726.657	39.692	22.549	43.191	

Tabla 4.66Cálculo del coeficiente a_o , d=0.074 mm de acuerdo a la Ec. [1.48]

a₀	с	$Ln\left(\frac{L}{D}\right)$	$\frac{A_d}{\mathrm{D}^2}$	$\frac{\rho_{w}V'_{s}D}{\mu}$	$\frac{\rho_{s}V'_{s}D}{\mu}$	$\frac{V_m}{V'_s}$	$\frac{gD}{V'_s^2}$	η Exper.	η Teórica	Error %	Error Prom.
30	0.11	3.163	8.965	371.771	1,055.830	40.152	5,113.533	64.446	59.552	7.593	21.3237
	0.24	3.163	8.965	369.440	1,049.209	18.507	5,178.275	94.463	62.270	34.081	
	0.38	3.163	8.965	366.943	1,042.119	11.765	5,248.975	91.652	64.274	29.872	
	0.56	3.163	8.965	363.676	1,032.840	3.507	5,343.707	89.477	66.626	25.538	
	0.70	3.163	8.965	361.207	1,025.827	6.440	5,417.024	81.999	67.857	17.247	
	0.74	3.163	8.965	360.511	1,023.850	3.544	5,437.960	49.412	68.393	38.413	
	1.10	3.163	8.965	354.376	1,006.427	4.214	5,627.873	72.440	71.520	1.270	
	2.21	3.163	8.965	335.729	953.469	3.862	6,270.404	90.304	80.861	10.457	
	2.38	3.163	8.965	332.940	945.549	2.071	6,375.896	64.576	82.496	27.751	
	3.45	3.163	8.965	315.906	897.172	4.157	7,082.024	91.481	91.558	0.085	
	5.30	3.163	8.965	288.170	818.403	1.073	8,510.890	91.900	110.035	19.733	
	7.02	3.163	8.965	264.465	751.081	5.157	10,104.990	89.399	128.596	43.845	
29.5	0.11	3.163	8.965	371.771	1,055.830	40.152	5,113.533	64.446	58.560	9.133	21.5099
	0.24	3.163	8.965	369.440	1,049.209	18.507	5,178.275	94.463	61.232	35.179	
	0.38	3.163	8.965	366.943	1,042.119	11.765	5,248.975	91.652	63.203	31.041	
	0.56	3.163	8.965	363.676	1,032.840	3.507	5,343.707	89.477	65.515	26.779	
	0.70	3.163	8.965	361.207	1,025.827	6.440	5,417.024	81.999	66.726	18.626	
	0.74	3.163	8.965	360.511	1,023.850	3.544	5,437.960	49.412	67.253	36.106	
	1.10	3.163	8.965	354.376	1,006.427	4.214	5,627.873	72.440	70.328	2.915	
	2.21	3.163	8.965	335.729	953.469	3.862	6,270.404	90.304	79.513	11.949	
	2.38	3.163	8.965	332.940	945.549	2.071	6,375.896	64.576	81.121	25.622	
	3.45	3.163	8.965	315.906	897.172	4.157	7,082.024	91.481	90.032	1.583	
	5.30	3.163	8.965	288.170	818.403	1.073	8,510.890	91.900	108.201	17.738	
	7.02	3.163	8.965	264.465	751.081	5.157	10,104.990	89.399	126.453	41.447	
30.5	0.11	3.163	8.965	371.771	1,055.830	40.152	5,113.533	64.446	60.545	6.053	21.4640
	0.24	3.163	8.965	369.440	1,049.209	18.507	5,178.275	94.463	63.308	32.982	
	0.38	3.163	8.965	366.943	1,042.119	11.765	5,248.975	91.652	65.345	28.703	
	0.56	3.163	8.965	363.676	1,032.840	3.507	5,343.707	89.477	67.736	24.297	
	0.70	3.163	8.965	361.207	1,025.827	6.440	5,417.024	81.999	68.988	15.867	
	0.74	3.163	8.965	360.511	1,023.850	3.544	5,437.960	49.412	69.533	40.720	
	1.10	3.163	8.965	354.376	1,006.427	4.214	5,627.873	72.440	72.712	0.376	
	2.21	3.163	8.965	335.729	953.469	3.862	6,270.404	90.304	82.209	8.965	
	2.38	3.163	8.965	332.940	945.549	2.071	6,375.896	64.576	83.871	29.880	
	3.45	3.163	8.965	315.906	897.172	4.157	7,082.024	91.481	93.084	1.753	
	5.30	3.163	8.965	288.170	818.403	1.073	8,510.890	91.900	111.869	21.729	
	7.02	3.163	8.965	264.465	751.081	5.157	10,104.990	89.399	130.739	46.242	

Tabla 4.67Cálculo del coeficiente a_o , d=0.125 mm de acuerdo a la Ec. [1.48]

a₀	с	$Ln\left(\frac{L}{D}\right)$	A_d	$\frac{\rho_{w}V'_{s}D}{\mu}$	$\frac{\rho_{s}V_{s}D}{\mu}$	$\frac{V_m}{V'_s}$	gD	η Exper.	η Teórica	Error %	Error Prom.
			$\overline{D^2}$				V'_{s}^{2}				
1.3	0.49	2.806	6.275	1079.269	3032.746	1.144	606.754	36.214	74.225	104.960	17.702
	0.51	2.806	6.275	1078.641	3030.982	1.144	607.461	50.211	74.262	47.899	
	1.23	2.940	7.172	1046.542	2940.782	1.188	645.296	64.261	78.021	21.412	
	1.61	3.163	8.965	1030.211	2894.894	1.212	665.916	88.251	82.532	6.480	
	2.21	3.163	8.965	1004.492	2822.622	1.250	700.454	86.957	83.610	3.850	
	3.54	3.163	8.965	949.560	2668.265	1.341	783.839	85.986	85.867	0.139	
	14.70	2.806	6.275	576.167	1619.029	0.233	2129.001	77.205	75.975	1.593	
	2.84	2.806	6.275	978.475	2749.516	0.711	738.197	63.391	73.530	15.995	
	1.35	3.057	8.068	1041.479	2926.557	1.404	651.585	78.916	81.643	3.455	
	0.72	3.163	8.965	1068.982	3003.840	2.550	618.488	85.057	87.927	3.374	
	0.60	3.163	8.965	1074.465	3019.246	3.057	612.192	93.464	89.391	4.357	
	0.48	3.163	8.965	1079.800	3034.238	3.796	606.158	99.143	91.200	8.012	
	0.27	3.163	8.965	1089.157	3060.532	6.630	595.787	91.912	96.135	4.595	
	0.13	3.163	8.965	1095.541	3078.471	13.628	588.864	84.674	103.059	21.713	
1.1	0.49	2.806	6.275	1079.269	3032.746	1.144	606.754	36.214	62.806	73.428	18.258
	0.51	2.806	6.275	1078.641	3030.982	1.144	607.461	50.211	62.837	25.146	
	1.23	2.940	7.172	1046.542	2940.782	1.188	645.296	64.261	66.018	2.733	
	1.61	3.163	8.965	1030.211	2894.894	1.212	665.916	88.251	69.835	20.868	
	2.21	3.163	8.965	1004.492	2822.622	1.250	700.454	86.957	70.747	18.642	
	3.54	3.163	8.965	949.560	2668.265	1.341	783.839	85.986	72.656	15.502	
	14.70	2.806	6.275	576.167	1619.029	0.233	2129.001	77.205	64.287	16.733	
	2.84	2.806	6.275	978.475	2749.516	0.711	738.197	63.391	62.218	1.851	
	1.35	3.057	8.068	1041.479	2926.557	1.404	651.585	78.916	69.083	12.461	
	0.72	3.163	8.965	1068.982	3003.840	2.550	618.488	85.057	74.399	12.530	
	0.60	3.163	8.965	1074.465	3019.246	3.057	612.192	93.464	75.639	19.072	
	0.48	3.163	8.965	1079.800	3034.238	3.796	606.158	99.143	77.169	22.164	
	0.27	3.163	8.965	1089.157	3060.532	6.630	595.787	91.912	81.345	11.497	
	0.13	3.163	8.965	1095.541	3078.471	13.628	588.864	84.674	87.204	2.988	
	0.49	2.806	6.275	1079.269	3032.746	1.144	606.754	36.214	70.959	95.942	
1.2428	0.51	2.806	6.275	1078.641	3030.982	1.144	607.461	50.211	70.994	41.392	
	1.23	2.940	7.172	1046.542	2940.782	1.188	645.296	64.261	74.588	16.070	
	1.61	3.163	8.965	1030.211	2894.894	1.212	665.916	88.251	78.901	10.595	
	2.21	3.163	8.965	1004.492	2822.622	1.250	700.454	86.957	79.931	8.080	
	3.54	3.163	8.965	949.560	2668.265	1.341	783.839	85.986	82.088	4.533	
	14.70	2.806	6.275	576.167	1619.029	0.233	2129.001	77.205	72.632	5.923	16 620
	2.84	2.806	6.275	978.475	2749.516	0.711	738.197	63.391	70.295	10.891	10.020
	1.35	3.057	8.068	1041.479	2926.557	1.404	651.585	78.916	78.051	1.097	
	0.72	3.163	8.965	1068.982	3003.840	2.550	618.488	85.057	84.058	1.175	
	0.60	3.163	8.965	1074.465	3019.246	3.057	612.192	93.464	85.458	8.566	
	0.48	3.163	8.965	1079.800	3034.238	3.796	606.158	99.143	87.187	12.059	
	0.27	3.163	8.965	1089.157	3060.532	6.630	595.787	91.912	91.905	0.007	
	0.13	3.163	8.965	1095.541	3078.471	13.628	588.864	84.674	98.524	16.358	

Tabla 4.68Cálculo del coeficiente a_o , d=0.25 mm de acuerdo a la Ec. [1.48]
a。	с	$\frac{D}{L}$	$\frac{A_d}{\mathrm{L}^2}$	$\frac{\mu}{\rho_{_{w}}V_{_{m}}L}$	$\frac{V'_s}{V_m}$	$\frac{gL}{V_m^2}$	η Exper.	η Teórica	Error %	Error Prom.
	0.76	0.042	0.016	0.0000445	0.147	18454.358	76.241	80.774	5.945	
	2.04	0.042	0.016	0.0000439	0.136	17983.354	74.517	92.198	23.729	
	2.18	0.042	0.016	0.0000457	0.141	19524.083	73.831	95.624	29.517	
	4.86	0.042	0.016	0.0000505	0.135	23768.502	95.995	112.324	17.010	
	6.51	0.042	0.016	0.0000446	0.109	18536.418	99.324	106.298	7.022	
	11.31	0.042	0.016	0.0000455	0.086	19330.220	98.947	111.166	12.349	
0.15	23.05	0.042	0.016	0.0000507	0.049	23961.587	98.191	115.271	17.395	37.938
	14.79	0.042	0.016	0.0001012	0.158	95665.512	66.680	188.667	182.943	
	4.54	0.042	0.016	0.0000311	0.085	9019.870	58.385	80.960	38.666	
	2.71	0.042	0.016	0.0000186	0.056	3212.234	62.124	54.168	12.807	
	2.27	0.042	0.016	0.0000156	0.048	2258.813	63.589	47.128	25.886	
	1.22	0.042	0.016	0.0000084	0.027	651.745	57.254	28.670	49.925	
	0.41	0.042	0.016	0.0000028	0.010	74.510	39.692	11.905	70.006	
	0.76	0.042	0.016	0.0000445	0.147	18454.358	76.241	48.464	36.433	
	2.04	0.042	0.016	0.0000439	0.136	17983.354	74.517	55.319	25.763	
	2.18	0.042	0.016	0.0000457	0.141	19524.083	73.831	57.374	22.290	
	4.86	0.042	0.016	0.0000505	0.135	23768.502	95.995	67.394	29.794	
	6.51	0.042	0.016	0.0000446	0.109	18536.418	99.324	63.779	35.787	
	11.31	0.042	0.016	0.0000455	0.086	19330.220	98.947	66.699	32.591	
0.09	23.05	0.042	0.016	0.0000507	0.049	23961.587	98.191	69.163	29.563	42.612
	14.79	0.042	0.016	0.0001012	0.158	95665.512	66.680	113.200	69.766	
	4.54	0.042	0.016	0.0000311	0.085	9019.870	58.385	48.576	16.800	
	2.71	0.042	0.016	0.0000186	0.056	3212.234	62.124	32.501	47.684	
	2.27	0.042	0.016	0.0000156	0.048	2258.813	63.589	28.277	55.531	
	1.22	0.042	0.016	0.0000084	0.027	651.745	57.254	17.202	69.955	
	0.41	0.042	0.016	0.0000028	0.010	74.510	39.692	7.143	82.003	
	0.76	0.042	0.016	0.0000445	0.147	18454.358	76.241	68.803	9.756	
	2.04	0.042	0.016	0.0000439	0.136	17983.354	74.517	78.535	5.392	
	2.18	0.042	0.016	0.0000457	0.141	19524.083	73.831	81.452	10.322	
	4.86	0.042	0.016	0.0000505	0.135	23768.502	95.995	95.677	0.331	
	6.51	0.042	0.016	0.0000446	0.109	18536.418	99.324	90.545	8.839	
	11.31	0.042	0.016	0.0000455	0.086	19330.220	98.947	94.691	4.301	
0.12777	23.05	0.042	0.016	0.0000507	0.049	23961.587	98.191	98.188	0.003	30.190
	14.79	0.042	0.016	0.0001012	0.158	95665.512	66.680	160.706	141.011	
	4.54	0.042	0.016	0.0000311	0.085	9019.870	58.385	68.962	18.116	
	2.71	0.042	0.016	0.0000186	0.056	3212.234	62.124	46.140	25.729	
	2.27	0.042	0.016	0.0000156	0.048	2258.813	63.589	40.144	36.869	
	1.22	0.042	0.016	0.0000084	0.027	651.745	57.254	24.421	57.346	
	0.41	0.042	0.016	0.0000028	0.010	74.510	39.692	10.141	74.451	

Tabla 4.69Cálculo del coeficiente a_o , d=0.074 mm de acuerdo a la Ec. [1.57]

a。	с	$\frac{D}{L}$	$\frac{A_d}{\text{L}^2}$	$\frac{\mu}{\rho_{w}V_{m}L}$	$\frac{V'_s}{V_m}$	$\frac{gL}{{V_m}^2}$	η Exper.	η Teórica	Error %	Error Prom.
	0.11	0.0423	0.0160	0.000003	0.0249	74.9717	64.4459	49.9048	22.5634	
	0.24	0.0423	0.0160	0.000006	0.0540	357.3643	94.4634	52.4198	44.5079	
	0.38	0.0423	0.0160	0.000010	0.0850	896.4096	91.6517	53.9591	41.1260	
	0.56	0.0423	0.0160	0.000033	0.2852	10271.9731	89.4768	56.4196	36.9450	
	0.70	0.0423	0.0160	0.000018	0.1553	3086.8317	81.9990	56.0988	31.5860	
0.07	0.74	0.0423	0.0160	0.000033	0.2822	10234.7919	49.4123	57.0299	15.4164	20.0070
0.07	1.10	0.0423	0.0160	0.000028	0.2373	7490.7018	72.4402	57.6832	20.3714	29.0070
	2.21	0.0423	0.0160	0.000033	0.2589	9935.6040	90.3042	59.4673	34.1478	
	2.38	0.0423	0.0160	0.000061	0.4827	35120.7350	64.5757	60.5454	6.2412	
	3.45	0.0423	0.0160	0.000032	0.2405	9685.2249	91.4805	60.4808	33.8867	
	5.30	0.0423	0.0160	0.000137	0.9322	174821.4065	91.9004	63.6492	30.7411	
	7.02	0.0423	0.0160	0.000031	0.1939	8982.3801	89.3992	62.0866	30.5512	
	0.11	0.0423	0.0160	0.000003	0.0249	74.9717	64.4459	72.0054	11.7300	
	0.24	0.0423	0.0160	0.000006	0.0540	357.3643	94.4634	75.6342	19.9328	
	0.38	0.0423	0.0160	0.000010	0.0850	896.4096	91.6517	77.8552	15.0532	
	0.56	0.0423	0.0160	0.000033	0.2852	10271.9731	89.4768	81.4055	9.0206	
	0.70	0.0423	0.0160	0.000018	0.1553	3086.8317	81.9990	80.9425	1.2884	
0 101	0.74	0.0423	0.0160	0.000033	0.2822	10234.7919	49.4123	82.2860	66.5294	15 2005
0.101	1.10	0.0423	0.0160	0.000028	0.2373	7490.7018	72.4402	83.2285	14.8928	10.2990
	2.21	0.0423	0.0160	0.000033	0.2589	9935.6040	90.3042	85.8028	4.9847	
	2.38	0.0423	0.0160	0.000061	0.4827	35120.7350	64.5757	87.3584	35.2805	
	3.45	0.0423	0.0160	0.000032	0.2405	9685.2249	91.4805	87.2652	4.6079	
	5.30	0.0423	0.0160	0.000137	0.9322	174821.4065	91.9004	91.8367	0.0694	
	7.02	0.0423	0.0160	0.000031	0.1939	8982.3801	89.3992	89.5821	0.2047	
	0.11	0.0423	0.0160	0.000003	0.0249	74.9717	64.4459	106.9388	65.9356	
	0.24	0.0423	0.0160	0.000006	0.0540	357.3643	94.4634	112.3281	18.9117	
	0.38	0.0423	0.0160	0.000010	0.0850	896.4096	91.6517	115.6266	26.1587	
	0.56	0.0423	0.0160	0.000033	0.2852	10271.9731	89.4768	120.8992	35.1179	
	0.70	0.0423	0.0160	0.000018	0.1553	3086.8317	81.9990	120.2117	46.6013	
0.15	0.74	0.0423	0.0160	0.000033	0.2822	10234.7919	49.4123	122.2069	147.3209	57 6337
0.15	1.10	0.0423	0.0160	0.000028	0.2373	7490.7018	72.4402	123.6068	70.6328	01.0001
	2.21	0.0423	0.0160	0.000033	0.2589	9935.6040	90.3042	127.4299	41.1118	
	2.38	0.0423	0.0160	0.000061	0.4827	35120.7350	64.5757	129.7401	100.9117	
	3.45	0.0423	0.0160	0.000032	0.2405	9685.2249	91.4805	129.6018	41.6714	
	5.30	0.0423	0.0160	0.000137	0.9322	174821.4065	91.9004	136.3911	48.4118	
	7.02	0.0423	0.0160	0.000031	0.1939	8982.3801	89.3992	133.0427	48.8188	

Tabla 4.70Cálculo del coeficiente a_o , d=0.125 mm de acuerdo a la Ec. [1.57]

a。	С	<u>D</u>	$\underline{A_d}$	<u> </u>	V'_{s}	\underline{gL}	_ ŋ	<u>n</u>	Error	Error
		L	L^2	$\rho_{w}V_{m}L$	V_m	V_m^2	Exper.	Teorica	%	Prom.
	0.49	0.060	0.023	0.000049	0.874	7676.351	36.214	49.386	36.372	
	0.51	0.060	0.023	0.000049	0.874	7674.189	50.211	49.404	1.606	
	1.23	0.053	0.020	0.000043	0.842	8643.002	64.261	52.247	18.696	
0.12	1.61	0.042	0.016	0.000034	0.825	10721.563	88.251	56.369	36.126	
	2.21	0.042	0.016	0.000034	0.800	10590.559	86.957	56.789	34.693	
	3.54	0.042	0.016	0.000033	0.746	10304.116	85.986	57.609	33.002	
	14.70	0.060	0.023	0.000451	4.295	649728.726	77.205	29.444	61.862	26 867
0.12	2.84	0.060	0.023	0.000087	1.407	24162.483	63.391	43.264	31.750	20.007
	1.35	0.047	0.018	0.000032	0.712	7032.988	78.916	56.808	28.015	
	0.72	0.042	0.016	0.000016	0.392	2247.729	85.057	69.240	18.596	
	0.60	0.042	0.016	0.000013	0.327	1548.007	93.464	72.756	22.156	
	0.48	0.042	0.016	0.000010	0.263	994.075	99.143	77.174	22.159	
	0.27	0.042	0.016	0.000006	0.151	320.377	91.912	89.765	2.336	
	0.13	0.042	0.016	0.000003	0.073	74.938	84.674	109.036	28.772	
	0.49	0.060	0.023	0.000049	0.874	7676.351	36.214	60.745	67.738	
	0.51	0.060	0.023	0.000049	0.874	7674.189	50.211	60.767	21.024	
	1.23	0.053	0.020	0.000043	0.842	8643.002	64.261	64.264	0.004	
	1.61	0.042	0.016	0.000034	0.825	10721.563	88.251	69.334	21.435	
	2.21	0.042	0.016	0.000034	0.800	10590.559	86.957	69.851	19.672	
	3.54	0.042	0.016	0.000033	0.746	10304.116	85.986	70.859	17.593	
0 1476	14.70	0.060	0.023	0.000451	4.295	649728.726	77.205	36.216	53.091	22 516
0.1470	2.84	0.060	0.023	0.000087	1.407	24162.483	63.391	53.215	16.053	22.010
	1.35	0.047	0.018	0.000032	0.712	7032.988	78.916	69.874	11.458	
	0.72	0.042	0.016	0.000016	0.392	2247.729	85.057	85.165	0.127	
	0.60	0.042	0.016	0.000013	0.327	1548.007	93.464	89.490	4.252	
	0.48	0.042	0.016	0.000010	0.263	994.075	99.143	94.923	4.256	
	0.27	0.042	0.016	0.000006	0.151	320.377	91.912	110.411	20.127	
	0.13	0.042	0.016	0.000003	0.073	74.938	84.674	134.114	58.390	
	0.49	0.060	0.023	0.000049	0.874	7676.351	36.214	65.848	81.830	
	0.51	0.060	0.023	0.000049	0.874	7674.189	50.211	65.873	31.192	
	1.23	0.053	0.020	0.000043	0.842	8643.002	64.261	69.663	8.405	
	1.61	0.042	0.016	0.000034	0.825	10721.563	88.251	75.159	14.835	
	2.21	0.042	0.016	0.000034	0.800	10590.559	86.957	75.719	12.923	
	3.54	0.042	0.016	0.000033	0.746	10304.116	85.986	76.811	10.670	
0.10	14.70	0.060	0.023	0.000451	4.295	649728.726	77.205	39.259	49.150	24.200
0.16	2.84	0.060	0.023	0.000087	1.407	24162.483	63.391	57.686	9.000	24.290
	1.35	0.047	0.018	0.000032	0.712	7032.988	78.916	75.744	4.019	
	0.72	0.042	0.016	0.000016	0.392	2247.729	85.057	92.320	8.539	
	0.60	0.042	0.016	0.000013	0.327	1548.007	93.464	97.008	3.792	
	0.48	0.042	0.016	0.000010	0.263	994.075	99.143	102.898	3.787	1
	0.27	0.042	0.016	0.000006	0.151	320.377	91.912	119.687	30.219	1
	0.13	0.042	0.016	0.000003	0.073	74.938	84.674	145.381	71.696	1

Tabla 4.71Cálculo del coeficiente a_o , d=0.25 mm de acuerdo a la Ec. [1.57]

a。	с	$Ln\left(\frac{L}{D}\right)$	$\frac{A_d}{d^2}$	$rac{V_s}{\sqrt{gd}}$	$rac{V_m}{\sqrt{gd}}$	η Exper.	η Teórica	Error %	Error Prom.
	0.76	9.551	3169510	0.129	0.873	76.241	46.974	38.387	
	2.04	9.551	3169510	0.120	0.884	74.517	56.095	24.721	
	2.18	9.551	3169510	0.119	0.848	73.831	57.398	22.258	
	4.86	9.551	3169510	0.104	0.769	95.995	70.210	26.861	
	6.51	9.551	3169510	0.095	0.871	99.324	73.913	25.584	
	11.31	9.551	3169510	0.074	0.853	98.947	89.363	9.686	
3.33E-09	23.05	9.551	3169510	0.037	0.766	98.191	132.234	34.671	30.579
	14.79	9.551	3169510	0.061	0.383	66.680	119.707	79.525	
	4.54	9.551	3169510	0.106	1.248	58.385	61.985	6.165	
	2.71	9.551	3169510	0.116	2.092	62.124	49.144	20.893	
	2.27	9.551	3169510	0.119	2.494	63.589	45.574	28.330	
	1.22	9.551	3169510	0.125	4.644	57.254	35.265	38.406	
	0.41	9.551	3169510	0.131	13.734	39.692	23.006	42.040	
	0.76	9.551	3169510	0.129	0.873	76.241	59.461	22.009	
	2.04	9.551	3169510	0.120	0.884	74.517	71.007	4.710	
	2.18	9.551	3169510	0.119	0.848	73.831	72.656	1.592	
	4.86	9.551	3169510	0.104	0.769	95.995	88.873	7.419	
	6.51	9.551	3169510	0.095	0.871	99.324	93.561	5.803	
	11.31	9.551	3169510	0.074	0.853	98.947	113.117	14.321	
4.22E-09	23.05	9.551	3169510	0.037	0.766	98.191	167.385	70.469	26.618
	14.79	9.551	3169510	0.061	0.383	66.680	151.528	127.247	
	4.54	9.551	3169510	0.106	1.248	58.385	78.462	34.386	
	2.71	9.551	3169510	0.116	2.092	62.124	62.208	0.135	
	2.27	9.551	3169510	0.119	2.494	63.589	57.689	9.278	
	1.22	9.551	3169510	0.125	4.644	57.254	44.640	22.032	
	0.41	9.551	3169510	0.131	13.734	39.692	29.121	26.633	
	0.76	9.551	3169510	0.129	0.873	76.241	59.381	22.114	
	2.04	9.551	3169510	0.120	0.884	74.517	70.911	4.839	
	2.18	9.551	3169510	0.119	0.848	73.831	72.558	1.725	
	4.86	9.551	3169510	0.104	0.769	95.995	88.753	7.544	
	6.51	9.551	3169510	0.095	0.871	99.324	93.434	5.930	
	11.31	9.551	3169510	0.074	0.853	98.947	112.965	14.167	
4.21E-09	23.05	9.551	3169510	0.037	0.766	98.191	167.159	70.239	26.613
	14.79	9.551	3169510	0.061	0.383	66.680	151.324	126.940	
	4.54	9.551	3169510	0.106	1.248	58.385	78.356	34.205	
	2.71	9.551	3169510	0.116	2.092	62.124	62.124	0.000	
	2.27	9.551	3169510	0.119	2.494	63.589	57.611	9.401	
	1.22	9.551	3169510	0.125	4.644	57.254	44.580	22.138	
	0.41	9.551	3169510	0.131	13.734	39.692	29.082	26.731	

Tabla 4.72Cálculo del coeficiente a_o , d=0.074 mm de acuerdo a la Ec. [1.66]

a₀	с	$Ln\left(\frac{L}{D}\right)$	$\frac{A_d}{d^2}$	$rac{V'_s}{\sqrt{gd}}$	$rac{V_m}{\sqrt{gd}}$	η Exper.	η Teórica	Error %	Error Prom.
	0.11	9.026	1110751	0.262	10.534	64.446	59.753	7.283	
	0.24	9.026	1110751	0.261	4.825	94.463	62.317	34.030	
	0.38	9.026	1110751	0.259	3.047	91.652	63.994	30.177	
	0.56	9.026	1110751	0.257	0.900	89.477	66.136	26.085	
	0.70	9.026	1110751	0.255	1.642	81.999	66.579	18.805	
1 420E-05	0.74	9.026	1110751	0.254	0.902	49.412	67.200	35.998	18 100
1.4236-05	1.10	9.026	1110751	0.250	1.054	72.440	68.811	5.010	10.105
	2.21	9.026	1110751	0.237	0.915	90.304	73.097	19.055	
	2.38	9.026	1110751	0.235	0.487	64.576	74.136	14.805	
	3.45	9.026	1110751	0.223	0.927	91.481	77.077	15.745	
	5.30	9.026	1110751	0.203	0.218	91.900	83.934	8.669	
	7.02	9.026	1110751	0.187	0.962	89.399	87.927	1.647	
	0.11	9.026	1110751	0.262	10.534	64.446	66.392	3.019	
	0.24	9.026	1110751	0.261	4.825	94.463	69.242	26.700	
	0.38	9.026	1110751	0.259	3.047	91.652	71.105	22.418	
	0.56	9.026	1110751	0.257	0.900	89.477	73.485	17.873	
	0.70	9.026	1110751	0.255	1.642	81.999	73.977	9.783	
1 587E-05	0.74	9.026	1110751	0.254	0.902	49.412	74.666	51.108	15 934
1.507 E-05	1.10	9.026	1110751	0.250	1.054	72.440	76.457	5.544	13.934
	2.21	9.026	1110751	0.237	0.915	90.304	81.219	10.061	
	2.38	9.026	1110751	0.235	0.487	64.576	82.373	27.561	
	3.45	9.026	1110751	0.223	0.927	91.481	85.641	6.383	
	5.30	9.026	1110751	0.203	0.218	91.900	93.260	1.479	
	7.02	9.026	1110751	0.187	0.962	89.399	97.696	9.281	
	0.11	9.026	1110751	0.262	10.534	64.446	65.405	1.489	
	0.24	9.026	1110751	0.261	4.825	94.463	68.213	27.789	
	0.38	9.026	1110751	0.259	3.047	91.652	70.049	23.571	
	0.56	9.026	1110751	0.257	0.900	89.477	72.393	19.093	
	0.70	9.026	1110751	0.255	1.642	81.999	72.878	11.123	
1 564E-05	0.74	9.026	1110751	0.254	0.902	49.412	73.557	48.864	15 702
1.0042 00	1.10	9.026	1110751	0.250	1.054	72.440	75.321	3.976	10.702
	2.21	9.026	1110751	0.237	0.915	90.304	80.012	11.397	
	2.38	9.026	1110751	0.235	0.487	64.576	81.150	25.666	
	3.45	9.026	1110751	0.223	0.927	91.481	84.369	7.774	
	5.30	9.026	1110751	0.203	0.218	91.900	91.875	0.028	
	7.02	9.026	1110751	0.187	0.962	89.399	96.245	7.658	

Tabla 4.73Cálculo del coeficiente a_o , d=0.125 mm de acuerdo a la Ec. [1.66]

a。	с	$Ln\left(\frac{L}{D}\right)$	$\frac{A_d}{d^2}$	$rac{V'_s}{\sqrt{gd}}$	$rac{V_m}{\sqrt{gd}}$	η Exper.	η Teórica	Error %	Error Prom.
	0.49	7.977	194389.8	0.539	0.616	36.214	34.058	5.954	
	0.51	7.977	194389.8	0.538	0.616	50.211	34.069	32.147	
	1.23	8.110	222159.8	0.522	0.621	64.261	35.631	44.553	
	1.61	8.333	277699.7	0.514	0.623	88.251	37.801	57.166	
	2.21	8.333	277699.7	0.501	0.627	86.957	38.017	56.280	
	3.54	8.333	277699.7	0.474	0.635	85.986	38.417	55.321	
0.01	14.70	7.977	194389.8	0.288	0.067	77.205	30.817	60.085	10 570
0.01	2.84	7.977	194389.8	0.488	0.347	63.391	33.277	47.505	40.372
	1.35	8.228	249929.8	0.520	0.730	78.916	37.232	52.821	
	0.72	8.333	277699.7	0.533	1.360	85.057	39.934	53.050	
	0.60	8.333	277699.7	0.536	1.639	93.464	40.476	56.694	
	0.48	8.333	277699.7	0.539	2.046	99.143	41.132	58.512	
	0.27	8.333	277699.7	0.544	3.603	91.912	42.875	53.352	
	0.13	8.333	277699.7	0.547	7.451	84.674	45.239	46.572	
	0.49	7.977	194389.8	0.539	0.616	36.214	72.204	99.378	
	0.51	7.977	194389.8	0.538	0.616	50.211	72.227	43.847	
	1.23	8.110	222159.8	0.522	0.621	64.261	75.537	17.547	17.452
	1.61	8.333	277699.7	0.514	0.623	88.251	80.138	9.192	
	2.21	8.333	277699.7	0.501	0.627	86.957	80.597	7.314	
	3.54	8.333	277699.7	0.474	0.635	85.986	81.444	5.282	
0.0212	14.70	7.977	194389.8	0.288	0.067	77.205	65.331	15.380	
0.0212	2.84	7.977	194389.8	0.488	0.347	63.391	70.547	11.289	
	1.35	8.228	249929.8	0.520	0.730	78.916	78.932	0.020	
	0.72	8.333	277699.7	0.533	1.360	85.057	84.661	0.466	
	0.60	8.333	277699.7	0.536	1.639	93.464	85.809	8.191	
	0.48	8.333	277699.7	0.539	2.046	99.143	87.201	12.046	
	0.27	8.333	277699.7	0.544	3.603	91.912	90.894	1.107	
	0.13	8.333	277699.7	0.547	7.451	84.674	95.907	13.267	
	0.49	7.977	194389.8	0.539	0.616	36.214	102.175	182.139	
	0.51	7.977	194389.8	0.538	0.616	50.211	102.208	103.558	
	1.23	8.110	222159.8	0.522	0.621	64.261	106.892	66.340	
	1.61	8.333	277699.7	0.514	0.623	88.251	113.403	28.501	
	2.21	8.333	277699.7	0.501	0.627	86.957	114.052	31.159	
	3.54	8.333	277699.7	0.474	0.635	85.986	115.251	34.036	
0.03	14.70	7.977	194389.8	0.288	0.067	77.205	92.450	19.746	54 283
0.05	2.84	7.977	194389.8	0.488	0.347	63.391	99.831	57.484	34.203
	1.35	8.228	249929.8	0.520	0.730	78.916	111.696	41.537	
	0.72	8.333	277699.7	0.533	1.360	85.057	119.803	40.850	
	0.60	8.333	277699.7	0.536	1.639	93.464	121.427	29.919	
	0.48	8.333	277699.7	0.539	2.046	99.143	123.397	24.463	
	0.27	8.333	277699.7	0.544	3.603	91.912	128.624	39.943	
	0.13	8.333	277699.7	0.547	7.451	84.674	135.718	60.283	

Tabla 4.74 Cálculo del coeficiente a_o , d=0.25 mm de acuerdo a la Ec. [1.66]

a。	$Ln\left(\frac{L}{D}\right)$	$rac{A_d}{A_t}$	F _G	η Exper.	η Teórica	Error %	Error Prom.
	3.163	11.415	0.067	76.241	76.540	0.392	
	3.163	11.415	0.041	74.517	82.644	10.907	
	3.163	11.415	0.038	73.831	83.631	13.274	
	3.163	11.415	0.024	95.995	90.095	6.146	
	3.163	11.415	0.024	99.324	90.062	9.325	
	3.163	11.415	0.019	98.947	93.224	5.784	
0.04	3.163	11.415	0.015	98.191	96.930	1.284	15.774
	3.163	11.415	0.008	66.680	106.994	60.459	
	3.163	11.415	0.040	58.385	83.060	42.263	
	3.163	11.415	0.085	62.124	73.730	18.681	
	3.163	11.415	0.111	63.589	70.751	11.263	
	3.163	11.415	0.281	57.254	61.069	6.663	
	3.163	11.415	1.459	39.692	47.084	18.623	
	3.163	11.415	0.067	76.241	80.769	5.939	
	3.163	11.415	0.041	74.517	87.210	17.035	
	3.163	11.415	0.038	73.831	88.252	19.532	
	3.163	11.415	0.024	95.995	95.073	0.961	
	3.163	11.415	0.024	99.324	95.038	4.316	
	3.163	11.415	0.019	98.947	98.374	0.579	
0.04221	3.163	11.415	0.015	98.191	102.286	4.170	19.412
	3.163	11.415	0.008	66.680	112.906	69.324	
	3.163	11.415	0.040	58.385	87.649	50.123	
	3.163	11.415	0.085	62.124	77.803	25.238	
	3.163	11.415	0.111	63.589	74.660	17.410	
	3.163	11.415	0.281	57.254	64.443	12.557	
	3.163	11.415	1.459	39.692	49.685	25.177	
	3.163	11.415	0.067	76.241	68.867	9.672	
	3.163	11.415	0.041	74.517	74.359	0.211	
	3.163	11.415	0.038	73.831	75.247	1.918	
	3.163	11.415	0.024	95.995	81.063	15.555	
	3.163	11.415	0.024	99.324	81.033	18.416	
	3.163	11.415	0.019	98.947	83.878	15.229	
0.03599	3.163	11.415	0.015	98.191	87.213	11.180	12.478
	3.163	11.415	0.008	66.680	96.268	44.373	
	3.163	11.415	0.040	58.385	74.733	28.001	
	3.163	11.415	0.085	62.124	66.338	6.783	
	3.163	11.415	0.111	63.589	63.658	0.109	
	3.163	11.415	0.281	57.254	54.947	4.030	
	3.163	11.415	1.459	39.692	42.364	6.731	

Tabla 4.75 Cálculo del coeficiente a_o , d=0.074 mm de acuerdo a la Ec. [1.82]

a。	$Ln\left(\frac{L}{D}\right)$	$\frac{A_d}{A_t}$	F _G	η Exper.	η Teórica	Error %	Error Prom.
	3.163	11.414	2.790	64.446	65.678	1.911	
	3.163	11.414	0.845	94.463	66.945	29.131	
	3.163	11.414	0.419	91.652	67.701	26.132	
	3.163	11.414	0.101	89.477	69.265	22.589	
	3.163	11.414	0.163	81.999	68.729	16.183	
0.45	3.163	11.414	0.087	49.412	69.423	40.497	10.070
0.15	3.163	11.414	0.083	72.440	69.471	4.098	19.870
	3.163	11.414	0.051	90.304	70.019	22.463	
	3.163	11.414	0.026	64.576	70.771	9.594	
	3.163	11.414	0.042	91.481	70.244	23.215	
	3.163	11.414	0.008	91.900	72.110	21.535	
	3.163	11.414	0.032	89.399	70.547	21.087	
	3.163	11.414	2.790	64.446	87.570	35.882	
	3.163	11.414	0.845	94.463	89.260	5.508	
	3.163	11.414	0.419	91.652	90.269	1.509	
	3.163	11.414	0.101	89.477	92.353	3.214	
	3.163	11.414	0.163	81.999	91.638	11.755	
0.2	3.163	11.414	0.087	49.412	92.563	87.329	10 566
0.2	3.163	11.414	0.083	72.440	92.628	27.869	19.566
	3.163	11.414	0.051	90.304	93.359	3.383	
	3.163	11.414	0.026	64.576	94.362	46.126	
	3.163	11.414	0.042	91.481	93.658	2.381	
	3.163	11.414	0.008	91.900	96.147	4.620	
	3.163	11.414	0.032	89.399	94.063	5.217	
	3.163	11.414	2.790	64.446	83.196	29.094	
	3.163	11.414	0.845	94.463	84.801	10.228	
	3.163	11.414	0.419	91.652	85.760	6.429	
	3.163	11.414	0.101	89.477	87.740	1.941	
	3.163	11.414	0.163	81.999	87.061	6.173	
0 10001	3.163	11.414	0.087	49.412	87.940	77.972	16 442
0.19001	3.163	11.414	0.083	72.440	88.002	21.482	10.442
	3.163	11.414	0.051	90.304	88.696	1.781	
	3.163	11.414	0.026	64.576	89.648	38.827	
	3.163	11.414	0.042	91.481	88.980	2.733	
	3.163	11.414	0.008	91.900	91.344	0.605	
	3.163	11.414	0.032	89.399	89.364	0.039	

Tabla 4.76 Cálculo del coeficiente a_o , d=0.125 mm de acuerdo a la Ec. [1.82]

a。	$Ln\left(\frac{L}{D}\right)$	$\frac{A_d}{A_t}$	F _G	η Exper.	η Teórica	Error %	Error Prom.
	2.81	7.990	0.095	36.214	75.696	109.022	
	2.81	7.990	0.094	50.211	75.657	50.677	
	2.94	9.132	0.060	64.261	76.634	19.254	
	3.16	11.415	0.052	88.251	79.985	9.367	
	3.16	11.415	0.045	86.957	79.550	8.518	
	3.16	11.415	0.036	85.986	78.948	8.184	
0 4947	2.81	7.990	0.002	77.205	66.149	14.321	10 229
0.4047	2.81	7.990	0.022	63.391	71.823	13.301	19.320
	3.06	10.273	0.067	78.916	78.922	0.008	
	3.16	11.415	0.172	85.057	83.485	1.849	
	3.16	11.415	0.228	93.464	84.341	9.761	
	3.16	11.415	0.320	99.143	85.371	13.892	
	3.16	11.415	0.759	91.912	88.067	4.183	
	3.16	11.415	2.304	84.674	91.661	8.252	
	2.81	7.990	0.095	36.214	78.086	115.620	
	2.81	7.990	0.094	50.211	78.045	55.434	
	2.94	9.132	0.060	64.261	79.053	23.018	
	3.16	11.415	0.052	88.251	82.509	6.506	
	3.16	11.415	0.045	86.957	82.061	5.631	
	3.16	11.415	0.036	85.986	81.441	5.286	
0.5	2.81	7.990	0.002	77.205	68.237	11.617	10 665
0.5	2.81	7.990	0.022	63.391	74.090	16.877	19.005
	3.06	10.273	0.067	78.916	81.414	3.165	
	3.16	11.415	0.172	85.057	86.120	1.250	
	3.16	11.415	0.228	93.464	87.003	6.913	
	3.16	11.415	0.320	99.143	88.065	11.173	
	3.16	11.415	0.759	91.912	90.847	1.158	
	3.16	11.415	2.304	84.674	94.554	11.669	
	2.81	7.990	0.095	36.214	62.468	72.496	
	2.81	7.990	0.094	50.211	62.436	24.347	
	2.94	9.132	0.060	64.261	63.242	1.586	
	3.16	11.415	0.052	88.251	66.008	25.205	
	3.16	11.415	0.045	86.957	65.649	24.504	
	3.16	11.415	0.036	85.986	65.152	24.229	
0.4	2.81	7.990	0.002	77.205	54.589	29.293	22 620
0.4	2.81	7.990	0.022	63.391	59.272	6.498	23.020
	3.06	10.273	0.067	78.916	65.131	17.468	
	3.16	11.415	0.172	85.057	68.896	19.000	
	3.16	11.415	0.228	93.464	69.602	25.530	
	3.16	11.415	0.320	99.143	70.452	28.939	
	3.16	11.415	0.759	91.912	72.678	20.927	
	3.16	11.415	2.304	84.674	75.644	10.665	

Tabla 4.77 Cálculo del coeficiente a_o , d=0.25 mm de acuerdo a la Ec. [1.82]

Para mayor facilidad de observación se grafica los valores supuestos de a_0 vs. los datos encontrados del error promedio, para cada uno de los diámetros de partícula de sedimentos y para cada función adimensional, según como se ve en las Gráficas [4.78] hasta [4.101].

Gráfica 4.78 Error promedio (%) vs. a_o , d = 0.074 mm de acuerdo a la Ec. [1.12]

Gráfica 4.79 Error promedio (%) vs. a_o , d = 0.125 mm de acuerdo a la Ec. [1.12]

Gráfica 4.80 Error promedio (%) vs a_o , d = 0.25 mm de acuerdo a la Ec. [1.12]

Gráfica 4.81 Error promedio (%) vs. a_o , d = 0.074 mm de acuerdo a la Ec. [1.21]

Gráfica 4.82 Error promedio (%) vs. a_o , d = 0.125 mm de acuerdo a la Ec. [1.21]

Gráfica 4.83 Error promedio (%) vs. a_o , d = 0.25 mm de acuerdo a la Ec. [1.21]

Gráfica 4.84 Error promedio (%) vs. a_o , d = 0.074 mm de acuerdo a la Ec. [1.30]

Gráfica 4.85 Error promedio (%) vs. a_o , d = 0.125 mm de acuerdo a la Ec. [1.30]

Gráfica 4.86 Error promedio (%) vs. a_o , d = 0.25 mm de acuerdo a la Ec. [1.30]

Gráfica 4.87 Error promedio (%) vs. a_o , d = 0.074 mm de acuerdo a la Ec. [1.39]

Gráfica 4.88 Error promedio (%) vs. a_o , d = 0.125 mm de acuerdo a la Ec. [1.39]

Gráfica 4.89 Error promedio (%) vs. a_o , d = 0.25 mm de acuerdo a la Ec. [1.39]

Gráfica 4.90 Error promedio (%) vs. a_o , d = 0.074 mm de acuerdo a la Ec. [1.48]

Gráfica 4.91 Error promedio (%) vs. a_o , d = 0.125 mm de acuerdo a la Ec. [1.48]

Gráfica 4.92 Error promedio (%) vs. a_o , d = 0.25 mm de acuerdo a la Ec. [1.48]

Gráfica 4.93 Error promedio (%) vs. a_o , d = 0.074 mm de acuerdo a la Ec. [1.57]

Gráfica 4.94 Error promedio (%) vs. a_o , d = 0.125 mm de acuerdo a la Ec. [1.57]

Gráfica 4.95 Error promedio (%) vs. a_o , d = 0.25 mm de acuerdo a la Ec. [1.57]

Gráfica 4.96 Error promedio (%) vs. a_o , d = 0.074 mm de acuerdo a la Ec. [1.66]

Gráfica 4.97 Error promedio (%) vs. a_o , d = 0.125 mm de acuerdo a la Ec. [1.66]

Gráfica 4.98 Error promedio (%) vs. a_o , d = 0.25 mm de acuerdo a la Ec. [1.66]

Gráfica 4.99 Error promedio (%) vs. a_o , d = 0.074 mm de acuerdo a la Ec. [1.82]

Gráfica 4.100 Error promedio (%) vs. a_o , d = 0.125 mm de acuerdo a la Ec. [1.82]

Gráfica 4.101 Error promedio (%) vs. a_o , d = 0.25 mm de acuerdo a la Ec. [1.82]

4.3.8 Ecuaciones de Eficiencia en función de los parámetros adimensionales. Ya con los valores de a_o encontrados en las tablas anteriores, se realiza la conformación de las ecuaciones de eficiencia, η , en función de los parámetros adimensionales para cada una de las partículas, y para cada relación adimensional, según como se muestra en la Tabla 4.78

Ecuación	Comentario	No. Ec.
$\eta = 0.1557 C^{0.1578} \left(\ln \left(\frac{L}{D} \right) \right)^{1.0327} \left(\frac{A_d}{D^2} \right)^{0.5488} \left(\frac{\mu}{\rho_w V_s D} \right)^{0.3797} \left(\frac{V_m}{V_s} \right)^{-0.2182} \left(\frac{gD}{V_s} \right)^{0.1898}$	d =0.074 mm Error = 31.86 % Según Ec.[1.12]	[4.38a]
$\eta = 0.52508C^{0.0391} \left(\ln\left(\frac{L}{D}\right) \right)^{0.6152} \left(\frac{A_d}{D^2}\right)^{0.3223} \left(\frac{\mu}{\rho_w V'_s D}\right)^{0.5867} \left(\frac{V_m}{V'_s}\right)^{-0.0039} \left(\frac{gD}{V'_s^2}\right)^{0.2933}$	d =0.125 mm Error = 17.95% Según Ec.[1.12]	[4.38b]

Continuación Tabla 4.78 Resumen de ecuaciones de eficiencia para cada diámetro.

Ecuación	Comentario	No. Ec.
$\eta = 0.6199C^{0.0094} \left(\ln\left(\frac{L}{D}\right) \right)^{0.2515} \left(\frac{A_d}{D^2}\right)^{0.1304} \left(\frac{\mu}{\rho_w V'_s D}\right)^{0.0868} \left(\frac{V_m}{V'_s}\right)^{0.1081} \left(\frac{gD}{{V'_s}^2}\right)^{0.0434}$	d =0.25 mm Error = 17.07% Según Ec.[1.12]	[4.38c]
$\eta = 0.45058C^{0.1578} \left(\ln\left(\frac{L}{D}\right) \right)^{1.0327} \left(\frac{A_d}{D^2}\right)^{0.5488} \left(\frac{\mu}{\rho_w V_m D}\right)^{0.2215} \left(\frac{V_s}{V_m}\right)^{0.2182} \left(\frac{gD}{V_m^2}\right)^{0.1107}$	d =0.074 mm Error = 30.19% Según Ec.[1.21]	[4.39a]
$\eta = 0.253309 C^{0.0391} \left(\ln \left(\frac{L}{D} \right) \right)^{0.6152} \left(\frac{A_d}{D^2} \right)^{0.3223} \left(\frac{\mu}{\rho_w V_m D} \right)^{0.01} \left(\frac{V_s}{V_m} \right)^{0.0039} \left(\frac{gD}{V_m^2} \right)^{0.005}$	d =0.125 mm Error = 15.3% Según Ec.[1.21]	[4.39b]
$\eta = 0.28209 C^{0.0094} \left(\ln \left(\frac{L}{D} \right) \right)^{0.2515} \left(\frac{A_d}{D^2} \right)^{0.1304} \left(\frac{\mu}{\rho_w V_m D} \right)^{-0.084} \left(\frac{V_s}{V_m} \right)^{-0.1081} \left(\frac{gD}{V_m^2} \right)^{-0.042}$	d =0.25 mm Error = 22.95% Según Ec.[1.21]	[4.39c]
$\eta = \frac{1}{267493000} C^{0.1578} \left(\ln\left(\frac{L}{d}\right) \right)^{4.6571} \left(\frac{A_d}{d^2}\right)^{0.5488} \left(\frac{\mu}{\rho_w V'_s d}\right)^{0.3797} \left(\frac{V_m}{V'_s}\right)^{-0.2182} \left(\frac{gd}{V'_s}\right)^{0.182} \left(\frac{gd}$	d =0.074 mm Error = 31.86% Según Ec.[1.30]	[4.40a]
$\eta = \frac{1}{65860} C^{0.0391} \left(\ln \left(\frac{L}{d} \right) \right)^{2.5724} \left(\frac{A_d}{d^2} \right)^{0.3223} \left(\frac{\mu}{\rho_w V'_s d} \right)^{0.5867} \left(\frac{V_m}{V'_s} \right)^{-0.0039} \left(\frac{gd}{V'_s^2} \right)^{0.2932} \left(\frac{M_s}{\rho_w V'_s d} \right)^{0.2932}$	d =0.125 mm Error = 17.95% Según Ec.[1.30]	[4.40b]
$\eta = 0.0228C^{0.0094} \left(\ln\left(\frac{L}{d}\right) \right)^{0.9521} \left(\frac{A_d}{d^2}\right)^{0.1304} \left(\frac{\mu}{\rho_w V'_s d}\right)^{0.0868} \left(\frac{V_m}{V'_s}\right)^{0.1081} \left(\frac{gd}{V'_s^2}\right)^{0.0434}$	d =0.25 mm Error = 16.7% Según Ec.[1.30]	[4.40c]
$\eta = \frac{1}{455*10^6} C^{0.1578} \left(\ln\left(\frac{L}{d}\right) \right)^{4.6571} \left(\frac{A_d}{d^2}\right)^{0.5488} \left(\frac{\rho_w V'_s d}{\mu}\right)^{-0.3797} \left(\frac{\rho_s V'_s d}{\mu}\right)^{-0.3797} \left(\frac{V_m}{V'_s}\right)^{-0.2182} \left(\frac{gd}{V'_s}\right)^{0.1898}$	d =0.074 mm Error = 45.08% Según Ec.[1.39]	[4.41a]
$\eta = \frac{1}{36062} C^{0.0391} \left(\ln\left(\frac{L}{d}\right) \right)^{2.5724} \left(\frac{A_d}{d^2}\right)^{0.3223} \left(\frac{\rho_w V_s d}{\mu}\right)^{-0.5867} \left(\frac{\rho_s V_s d}{\mu}\right)^{-0.5867} \left(\frac{V_m}{V_s}\right)^{-0.0039} \left(\frac{gd}{V_s^2}\right)^{0.2933}$	d =0.125 mm Error = 21.32% Según Ec.[1.39]	[4.41b]
$\eta = 0.02921C^{0.0094} \left(\ln\left(\frac{L}{d}\right) \right)^{0.9521} \left(\frac{A_d}{d^2}\right)^{0.104} \left(\frac{\rho_w V_s d}{\mu}\right)^{-0.0868} \left(\frac{\rho_s V_s d}{\mu}\right)^{-0.0868} \left(\frac{V_m}{V_s}\right)^{0.1081} \left(\frac{gd}{V_s^2}\right)^{0.081} \left(\frac{gd}{V_$	d =0.25 mm Error = 16.29% Según Ec.[1.39]	[4.41c]
$\eta = 1.03491C^{0.1578} \left(\ln\left(\frac{L}{D}\right) \right)^{1.0327} \left(\frac{A_d}{D^2}\right)^{0.5488} \left(\frac{\rho_w V_s D}{\mu}\right)^{-0.3797} \left(\frac{\rho_s V_s D}{\mu}\right)^{-0.3797} \left(\frac{V_m}{V_s}\right)^{-0.2182} \left(\frac{gD}{V_s}\right)^{0.1898}$	d =0.074 mm Error = 45.08% Según Ec.[1.48]	[4.42a]
$\eta = 30.004C^{0.0391} \left(\ln\left(\frac{L}{D}\right) \right)^{0.6152} \left(\frac{A_d}{D^2}\right)^{0.3223} \left(\frac{\rho_w V_s D}{\mu}\right)^{-0.5867} \left(\frac{\rho_s V_s D}{\mu}\right)^{-0.5867} \left(\frac{V_m}{V_s}\right)^{-0.0039} \left(\frac{gD}{V_s^2}\right)^{0.2933}$	d =0.125 mm Error = 21.32% Según Ec.[1.48]	[4.42b]
$\eta = 1.2429C^{0.0094} \left(\ln\left(\frac{L}{D}\right) \right)^{0.2515} \left(\frac{A_d}{D^2}\right)^{0.1304} \left(\frac{\rho_w V'_s D}{\mu}\right)^{-0.0868} \left(\frac{\rho_s V'_s D}{\mu}\right)^{-0.0868} \left(\frac{V_m}{V'_s}\right)^{0.1081} \left(\frac{gD}{V'_s}\right)^{0.043}$	d =0.25 mm Error = 16.62% Según Ec.[1.48]	[4.42c]
$\eta = 0.12777 C^{0.1578} \left(\frac{D}{L}\right)^{-0.5488} \left(\frac{A_d}{L^2}\right)^{-0.5488} \left(\frac{\mu}{\rho_w V_m L}\right)^{0.215} \left(\frac{V'_s}{V_m}\right)^{0.2182} \left(\frac{gL}{V_m^2}\right)^{0.1107}$	d =0.074 mm Error = 30.19% Según Ec.[1.57]	[4.43a]

Continuación Tabla 4.78 Resumen de ecuaciones de eficiencia para cada diámetro.

Ecuación	Comentario	No. Ec.
$\eta = 0.10109C^{0.0391} \left(\frac{D}{L}\right)^{-0.3223} \left(\frac{A_d}{L^2}\right)^{-0.3223} \left(\frac{\mu}{\rho_w V_m L}\right)^{0.01} \left(\frac{V'_s}{V_m}\right)^{0.0039} \left(\frac{gL}{V_m^2}\right)^{0.005}$	d =0.125 mm Error = 15.3% Según Ec.[1.57]	[4.43b]
$\eta = 0.1476C^{0.0094} \left(\frac{D}{L}\right)^{-0.1304} \left(\frac{A_d}{L^2}\right)^{-0.1304} \left(\frac{\mu}{\rho_w V_m L}\right)^{-0.0939} \left(\frac{V'_s}{V_m}\right)^{-0.1081} \left(\frac{gL}{V_m^2}\right)^{-0.038}$	d =0.25 mm Error = 22.5% Según Ec.[1.57]	[4.43c]
$\eta = \frac{1}{237320000} C^{0.1578} \left(Ln \left(\frac{L}{d} \right) \right)^{4.6571} \left(\frac{A_d}{d^2} \right)^{0.5488} \left(\frac{V'_s}{\sqrt{gd}} \right)^{-0.3797} \left(\frac{V_m}{\sqrt{gd}} \right)^{-0.2215}$	d =0.074 mm Error = 26.61% Según Ec.[1.66]	[4.44a]
$\eta = \frac{1}{63950} C^{0.0391} \left(Ln \left(\frac{L}{d} \right) \right)^{2.5724} \left(\frac{A_d}{d^2} \right)^{0.3223} \left(\frac{V_s}{\sqrt{gd}} \right)^{-0.5867} \left(\frac{V_m}{\sqrt{gd}} \right)^{-0.01}$	d =0.125 mm Error = 15.7% Según Ec.[1.66]	[4.44b]
$\eta = 0.0212C^{0.0094} \left(Ln \left(\frac{L}{d} \right) \right)^{0.9521} \left(\frac{A_d}{d^2} \right)^{0.1304} \left(\frac{V'_s}{\sqrt{gd}} \right)^{-0.0868} \left(\frac{V_m}{\sqrt{gd}} \right)^{0.084}$	d =0.25 mm Error = 17.45% Según Ec.[1.66]	[4.44c]
$\eta = 0.03599 \left(Ln \left(\frac{L}{D} \right) \right)^{1.0327} \left(\frac{A_d}{A_t} \right)^{0.5488} (F_G)^{-0.158}$	d =0.074 mm Error = 12.48% Según Ec.[1.82]	[4.45a]
$\eta = 0.19001 \left(Ln \left(\frac{L}{D} \right) \right)^{0.6152} \left(\frac{A_d}{A_t} \right)^{0.3223} \left(F_G \right)^{-0.016}$	d =0.125 mm Error = 16.44% Según Ec.[1.82]	[4.45b]
$\eta = 0.4847 \left(Ln \left(\frac{L}{D} \right) \right)^{0.2515} \left(\frac{A_d}{A_t} \right)^{0.1304} F_G^{0.036}$	d =0.25 mm Error = 19.33% Según Ec.[1.82]	[4.45c]

Como se ve en la Tabla 4.78 hay ocho ecuaciones por cada tamaño de partícula, es decir se tienen 24 Ecuaciones en total, y se pretende reducir el número de ecuaciones uniéndolas en una sola función, para obtener ocho Ecuaciones válidas para los diámetros de partícula d= 0.074, d =0.125 mm, d=0.25 mm. Para ello se realiza un procedimiento similar al mencionado en el literal 4.3.7.

La forma de armar dichas ecuaciones se realiza mediante dos métodos, el Método I consiste en tomar como base las ecuaciones obtenidas para cada diámetro (Tabla 4.78) y encontrar para cada una de ellas un a_o , como se muestra en las Tablas 4.79 hasta 4.86, de esta manera se tienen tres ecuaciones diferentes que se pueden usar con los tres diámetros de partícula, y de estas se escoge aquella que suministre el menor porcentaje de error promedio.

С	η Exper.	a₀ Ec. [4.38a]	η Teórica	Error Prom.	a₀ Ec. [4.38b]	η Teórica	Error Prom.	a₀ Ec. [4.38c]	η Teórica	Error Prom.
0.76	76.24	0.17234	64.49		0.13644	55.02		0.31318	77.24	
2.04	74.52	0.17234	77.84		0.13644	61.77		0.31318	79.99	
2.18	73.83	0.17234	79.74		0.13644	62.50		0.31318	79.67	
4.86	96.00	0.17234	99.73		0.13644	75.99		0.31318	82.87	
6.51	99.32	0.17234	106.52		0.13644	85.03		0.31318	87.64	
11.31	98.95	0.17234	134.25		0.13644	117.50		0.31318	96.18	
23.05	98.19	0.17234	221.40		0.13644	265.74		0.31318	120.58	
14.79	66.68	0.17234	185.01		0.13644	149.12		0.31318	89.31	
4.54	58.39	0.17234	87.95		0.13644	74.16		0.31318	89.86	
2.71	62.12	0.17234	68.78		0.13644	64.86		0.31318	94.91	
2.27	63.59	0.17234	63.59		0.13644	62.68		0.31318	97.04	
1.22	57.25	0.17234	48.87		0.13644	57.25		0.31318	105.89	
0.41	39.69	0.17234	31.78		0.13644	52.04		0.31318	125.67	
0.11	64.45	0.17234	15.37		0.13644	16.12		0.31318	88.32	
0.24	94.46	0.17234	20.68		0.13644	16.79		0.31318	77.42	
0.38	91.65	0.17234	24.68		0.13644	17.27		0.31318	71.72	
0.56	89.48	0.17234	34.44		0.13644	17.80		0.31318	57.91	
0.70	82.00	0.17234	31.40		0.13644	18.06		0.31318	64.86	
0.74	49.41	0.17234	36.14		0.13644	18.18		0.31318	58.26	
1.10	72.44	0.17234	37.48	53.43	0.13644	18.82	68.35	0.31318	60.52	37.98
2.21	90.30	0.17234	44.44		0.13644	20.62		0.31318	60.53	
2.38	64.58	0.17234	51.83		0.13644	20.93		0.31318	54.19	
3.45	91.48	0.17234	49.14		0.13644	22.53		0.31318	62.25	
5.30	91.90	0.17234	75.79		0.13644	25.66		0.31318	49.70	
7.02	89.40	0.17234	60.02		0.13644	28.51		0.31318	67.20	
0.49	36.21	0.17234	13.70		0.13644	4.11		0.31318	36.21	
0.51	50.21	0.17234	13.76		0.13644	4.12		0.31318	36.23	
1.23	64.26	0.17234	18.14		0.13644	4.75		0.31318	38.07	
1.61	88.25	0.17234	23.24		0.13644	5.49		0.31318	40.27	
2.21	86.96	0.17234	24.74		0.13644	5.73		0.31318	40.80	
3.54	85.99	0.17234	27.39		0.13644	6.23		0.31318	41.91	
14.70	77.21	0.17234	53.35		0.13644	9.87		0.31318	31.26	
2.84	63.39	0.17234	21.57		0.13644	4.95		0.31318	34.36	
1.35	78.92	0.17234	19.78		0.13644	5.09		0.31318	40.31	
0.72	85.06	0.17234	16.93		0.13644	5.08		0.31318	45.44	
0.60	93.46	0.17234	15.74		0.13644	5.01		0.31318	46.84	
0.48	99.14	0.17234	14.45		0.13644	4.93		0.31318	48.57	
0.27	91.91	0.17234	11.62		0.13644	4.77		0.31318	53.36	
0.13	84.67	0.17234	8.82		0.13644	4.59		0.31318	60.31	

 Tabla 4.79 Cálculo de a_o para d=0.074, mm, d=0.125 mm y d=0.25 mm, según

 Ec. [1.12]. Método I.

_	n	a。	n	Error	a₀	n	Error	ao	n	Error
С	Exper	Ec.	Teórica	Prom	Ec. [4.39b]	Teórica	Prom	Ec. [4.39c]	Teórica	Prom
0.76	76.24	[4.39a] 0.3762	57.45		0.2269	73.94		0.2504	70.33	
2.04	74.52	0.3762	65.57		0.2269	76.80	-	0.2504	71.75	-
2.18	73.83	0.3762	68.01	-	0.2269	77.08	-	0.2504	71.04	-
4.86	96.00	0.3762	79.89	-	0.2269	79.68	-	0.2504	70.73	
6.51	99.32	0.3762	75.60		0.2269	80.33	-	0.2504	74.09	-
11.31	98.95	0.3762	79.06	-	0.2269	82.04	-	0.2504	76.14	
23.05	98.19	0.3762	81.98		0.2269	84.35	-	0.2504	80.03	-
14.79	66.68	0.3762	134.18		0.2269	84.44	-	0.2504	62.50	-
2.71	62.12	0.3762	38.52		0.2269	76.07	-	0.2504	91.60	-
2.27	63.59	0.3762	33.52		0.2269	75.24		0.2504	95.77	
1.22	57.25	0.3762	20.39		0.2269	72.36		0.2504	112.37	
0.41	39.69	0.3762	8.47		0.2269	67.60		0.2504	149.38	
0.11	64.45	0.3762	8.48		0.2269	64.43		0.2504	132.90	
0.24	94.46	0.3762	16.06	-	0.2269	67.68	-	0.2504	107.99	-
0.38	91.65	0.3762	23.37		0.2269	69.66		0.2504	95.60	
0.56	89.48	0.3762	55.59		0.2269	72.84		0.2504	68.59	
0.70	82.00	0.3762	38.64		0.2269	72.43		0.2504	81.21	32.75
0.74	49.41	0.3762	57.90		0.2269	73.63		0.2504	68.87	
1.10	72.44	0.3762	55.31	47.66	0.2269	74.47	10.00	0.2504	72.30	
2.21	90.30	0.3762	67.00	47.00	0.2269	76.78	19.02	0.2504	70.40	
2.38	64.58	0.3762	102.72		0.2269	78.17		0.2504	59.24	
3.45	91.48	0.3762	70.35		0.2269	78.08		0.2504	71.42	
5.30	91.90	0.3762	192.04		0.2269	82.17		0.2504	48.58	
7.02	89.40	0.3762	73.84		0.2269	80.16		0.2504	74.06	
0.49	36.21	0.3762	51.24		0.2269	60.31		0.2504	55.91	
0.51	50.21	0.3762	51.45		0.2269	60.37		0.2504	55.93	
1.23	64.26	0.3762	66.07		0.2269	67.13		0.2504	58.37	
1.61	88.25	0.3762	83.50		0.2269	76.24		0.2504	61.53	
2.21	86.96	0.3762	86.96		0.2269	77.17		0.2504	61.99	
3.54	85.99	0.3762	91.70		0.2269	78.56		0.2504	62.88	
14.70	77.21	0.3762	331.09		0.2269	72.44		0.2504	33.47	
2.84	63.39	0.3762	96.56		0.2269	65.44		0.2504	49.03	
1.35	78.92	0.3762	66.82		0.2269	71.41		0.2504	62.69	
0.72	85.06	0.3762	44.27		0.2269	72.53		0.2504	75.47	
0.60	93.46	0.3762	38.04		0.2269	71.69		0.2504	79.27	
0.48	99.14	0.3762	31.77		0.2269	70.70		0.2504	84.05	
0.27	91.91	0.3762	20.02		0.2269	68.22		0.2504	97.66	
0.13	84.67	0.3762	11.06		0.2269	65.17		0.2504	118.46	

 Tabla 4.80 Cálculo de a_o para d=0.074, mm, d=0.125 mm y d=0.25 mm, según

 Ec. [1.21] Método I.

с	η Exper	a₀ Ec. [4.40a]	η Teórica	Error Prom	a₀ Ec. [4.40b]	η Teórica	Error Prom	a₀ Ec. [4.40c]	η Teórica	Error Prom
0.76	76.24	3.83E-09	59.72		2E-06	52.70		0.0081	77.83	43.86
2.04	74.52	3.83E-09	72.09		2E-06	59.16		0.0081	80.14	
2.18	73.83	3.83E-09	73.84		2E-06	59.86		0.0081	80.01	
4.86	96.00	3.83E-09	92.36		2E-06	72.79		0.0081	82.97	
6.51	99.32	3.83E-09	98.64		2E-06	81.45		0.0081	86.41	
11.31	98.95	3.83E-09	124.33		2E-06	112.55		0.0081	93.20	
23.05	98.19	3.83E-09	205.03		2E-06	254.55		0.0081	112.12	
14.79	66.68	3.83E-09	171.34		2E-06	142.84		0.0081	90.46	
4.54	58.39	3.83E-09	81.45		2E-06	71.04		0.0081	86.96	
2.71	62.12	3.83E-09	63.69		2E-06	62.12		0.0081	89.07	
2.27	63.59	3.83E-09	58.88		2E-06	60.04		0.0081	90.05	
1.22	57.25	3.83E-09	45.26		2E-06	54.84		0.0081	94.29	
0.41	39.69	3.83E-09	29.43		2E-06	49.85		0.0081	103.71	
0.11	64.45	3.83E-09	5.57		2E-06	8.17		0.0081	63.17	
0.24	94.46	3.83E-09	7.50		2E-06	8.51		0.0081	58.59	
0.38	91.65	3.83E-09	8.95		2E-06	8.75		0.0081	56.09	
0.56	89.48	3.83E-09	12.48		2E-06	9.02		0.0081	49.47	
0.70	82.00	3.83E-09	11.38		2E-06	9.15		0.0081	53.01	
0.74	49.41	3.83E-09	13.10		2E-06	9.21		0.0081	49.74	
1.10	72.44	3.83E-09	13.59	70.75	2E-06	9.54	73.86	0.0081	51.01	
2.21	90.30	3.83E-09	16.11		2E-06	10.45		0.0081	51.35	
2.38	64.58	3.83E-09	18.79		2E-06	10.61		0.0081	48.11	
3.45	91.48	3.83E-09	17.81		2E-06	11.41		0.0081	52.53	
5.30	91.90	3.83E-09	27.47		2E-06	13.00		0.0081	46.29	
7.02	89.40	3.83E-09	21.76		2E-06	14.44		0.0081	55.82	
0.49	36.21	3.83E-09	1.29		2E-06	0.85		0.0081	24.91	
0.51	50.21	3.83E-09	1.30		2E-06	0.85		0.0081	24.92	
1.23	64.26	3.83E-09	1.76		2E-06	1.00		0.0081	26.22	
1.61	88.25	3.83E-09	2.38		2E-06	1.18		0.0081	27.90	
2.21	86.96	3.83E-09	2.53		2E-06	1.23		0.0081	28.21	
3.54	85.99	3.83E-09	2.80		2E-06	1.34		0.0081	28.83	
14.70	77.21	3.83E-09	5.04		2E-06	2.04		0.0081	24.14	
2.84	63.39	3.83E-09	2.04		2E-06	1.02		0.0081	24.46	
1.35	78.92	3.83E-09	1.98		2E-06	1.08		0.0081	27.53	
0.72	85.06	3.83E-09	1.73		2E-06	1.09		0.0081	29.82	
0.60	93.46	3.83E-09	1.61		2E-06	1.08		0.0081	30.33	
0.48	99.14	3.83E-09	1.48		2E-06	1.06		0.0081	30.96	
0.27	91.91	3.83E-09	1.19		2E-06	1.03		0.0081	32.66	
0.13	84.67	3.83E-09	0.90		2E-06	0.99		0.0081	35.03	

Tabla 4.81Cálculo de a_o para d=0.074, mm, d=0.125 mm y d=0.25 mm, según
Ec. [1.30]Ec. [1.30]Método I.

a₀ a₀ Ec. a。 Error Error Error ŋ ŋ ŋ С Ec. Ec. , Teórica Exper Teórica Prom Prom Teórica Prom [4.41a] [4.41b] [4.41c] 53.640 0.76 76.241 2.97E-09 1.16 E-06 38.579 0.00767 76.24 1.16 E-06 2.04 74.517 2.97E-09 66.387 45.019 0.00767 78.96 1.16 E-06 2.18 73.831 2.97E-09 68.200 45.755 0.00767 78.88 1.16 E-06 4.86 95.995 2.97E-09 89.962 60.402 0.00767 82.80 1.16 E-06 6.51 99.324 2.97E-09 99.301 71.118 0.00767 86.89 1.16 E-06 11.31 98.947 2.97E-09 138.036 114.333 0.00767 95.83 1.16 E-06 23.05 98.191 2.97E-09 294.000 383.932 0.00767 122.23 1.16 E-06 14.79 66.680 2.97E-09 204.629 0.00767 162.414 94.58 1.16 E-06 4.54 58.385 2.97E-09 78.824 58.362 0.00767 86.65 1.16 E-06 2.97E-09 59.443 0.00767 88.02 2.71 62.124 48.254 1.16 E-06 2.27 63.589 2.97E-09 54.482 46.014 0.00767 88.82 1.16 E-06 1.22 57.254 2.97E-09 41.016 40.708 0.00767 92.56 1.16 E-06 0.41 39.692 2.97E-09 26.253 36.105 0.00767 101.44 1.16 E-06 0.11 64.446 2.97E-09 2.842 2.495 0.00767 54.38 1.16 E-06 0.24 94.463 2.97E-09 3.834 2.609 0.00767 50.46 1.16 E-06 0.38 91.652 2.97E-09 4.586 2.693 0.00767 48.34 1.16 E-06 0.56 89.477 2.97E-09 6.423 2.791 0.00767 42.67 1.16 E-06 81.999 0.00767 0.70 2.97E-09 5.871 2.843 45.74 1.16 E-06 0.74 49.412 2.97E-09 6.761 2.865 0.00767 42.93 1.16 E-06 79.18 84.04 50.01 1.10 72.440 2.97E-09 7.059 2.996 0.00767 44.10 1.16 E-06 2.21 90.304 2.97E-09 8.542 3.388 0.00767 44.59 1.16 E-06 2.38 2.97E-09 9.996 0.00767 41.81 64.576 3.456 1.16 E-06 91.481 2.97E-09 0.00767 45.86 3.45 9.667 3.836 1.16 E-06 91.900 2.97E-09 15.439 0.00767 40.74 5.30 4.610 1.16 E-06 7.02 89.399 2.97E-09 12.633 5.388 0.00767 49.49 1.16 E-06 0.49 36.214 2.97E-09 0.340 0.093 0.00767 18.42 1.16 E-06 0.51 50.211 2.97E-09 0.342 0.093 0.00767 18.43 1.16 E-06 1.23 64.261 2.97E-09 0.469 0.111 0.00767 19.44 1.16 E-06 88.251 2.9<u>7E-09</u> 0.00767 1.61 0.636 0.133 20.72 1.16 E-06 2.21 86.957 2.97E-09 0.00767 20.99 0.684 0.141 1.16 E-06 3.54 85.986 2.97E-09 0.773 0.158 0.00767 21.56 1.16 E-06 14.70 77.205 2.97E-09 0.00767 18.86 1.680 0.323 1.16 E-06 2.84 63.391 2.97E-09 0.556 0.119 0.00767 18.25 1.16 E-06 1.35 78.916 2.97E-09 0.526 0.121 0.00767 20.42 1.16 E-06 0.72 85.057 2.97E-09 0.00767 0.457 0.120 22.08 1.16 E-06 0.60 93.464 2.97E-09 0.424 0.00767 0.118 22.44 1.16 E-06 22.90 0.48 99.143 2.97E-09 0.388 0.116 0.00767 1.16 E-06 0.27 91.912 2.97E-09 0.311 0.112 0.00767 24.14 1.16 E-06 2.97E-09 0.13 84.674 0.236 0.107 0.00767 25.87

Tabla 4.82 Cálculo de *a_o* para d=0.074, mm, d=0.125 mm y d=0.25 mm, según Ec. [1.39] Método I.

с	η Exper	a₀ Ec. [4.42a]	η Teóric a	Error Prom	a₀ Ec. [4.42b]	η Teórica	Error Prom	a₀ Ec. [4.42c]	η Teórica	Error Prom
0.76	76.24	1.491	57.24		3.23503	38.68		0.61763	78.72	
2.04	74.52	1.491	70.84		3.23503	45.14		0.61763	81.52	
2.18	73.83	1.491	72.77		3.23503	45.87		0.61763	81.44	
4.86	96.00	1.491	95.99		3.23503	60.56		0.61763	85.49	
6.51	99.32	1.491	105.96		3.23503	71.30		0.61763	89.71	
11.31	98.95	1.491	147.29		3.23503	114.63		0.61763	98.95	
23.05	98.19	1.491	313.71		3.23503	384.93		0.61763	126.21	
14.79	66.68	1.491	218.34		3.23503	162.84		0.61763	97.66	
4.54	58.39	1.491	84.11		3.23503	58.51		0.61763	89.47	
2.71	62.12	1.491	63.43		3.23503	48.38		0.61763	90.88	
2.27	63.59	1.491	58.13		3.23503	46.13		0.61763	91.71	
1.22	57.25	1.491	43.77		3.23503	40.81		0.61763	95.57	
0.41	39.69	1.491	28.01		3.23503	36.20	-	0.61763	104.74	-
0.11	64.45	1.491	9.45		3.23503	6.43		0.61763	72.72	
0.24	94.46	1.491	12.75		3.23503	6.73		0.61763	67.48	
0.38	91.65	1.491	15.25		3.23503	6.94		0.61763	64.65	
0.56	89.48	1.491	21.36		3.23503	7.20		0.61763	57.07	
0.70	82.00	1.491	19.53		3.23503	7.33		0.61763	61.18	
0.74	49.41	1.491	22.49		3.23503	7.39		0.61763	57.41	
1.10	72.44	1.491	23.48	68.79	3.23503	7.73	81.48	0.61763	58.97	37.12
2.21	90.30	1.491	28.41		3.23503	8.73		0.61763	59.64	
2.38	64.58	1.491	33.25		3.23503	8.91		0.61763	55.91	-
3.45	91.48	1.491	32.15		3.23503	9.89		0.61763	61.33	-
5.30	91.90	1.491	51.35		3.23503	11.89		0.61763	54.48	
7.02	89.40	1.491	42.02		3.23503	13.89		0.61763	66.19	-
0.49	36.21	1.491	5.64		3.23503	0.88		0.61763	35.26	-
0.51	50.21	1.491	5.67		3.23503	0.89		0.61763	35.28	
1.23	64.26	1.491	7.56	-	3.23503	1.04		0.61763	37.07	-
1.61	88.25	1.491	9.75	-	3.23503	1.21		0.61763	39.21	-
2.21	86.96	1.491	10.48		3.23503	1.28		0.61763	39.72	
3.54	85.99	1.491	11.85	-	3.23503	1.44	-	0.61763	40.80	-
14.70	77.21	1.491	27.90		3.23503	3.06		0.61763	36.10	
2.84	63.39	1.491	9.23		3.23503	1.13		0.61763	34.93	
1.35	78.92	1.491	8.26		3.23503	1.12		0.61763	38.79	-
0.72	85.06	1.491	7.00		3.23503	1.10		0.61763	41.77	
0.60	93.46	1.491	6.50		3.23503	1.08		0.61763	42.47	
0.48	99.14	1.491	5.95		3.23503	1.06		0.61763	43.33	
0.27	91.91	1.491	4.77		3.23503	1.02		0.61763	45.67	
0.13	84.67	1.491	3.61		3.23503	0.98		0.61763	48.96	

Tabla 4.83 Cálculo de a_o para d=0.074, mm, d=0.125 mm y d=0.25 mm, segúnEc. [1.48] Método I.

с	η Exper	a₀ Ec. [4.43a]	η Teórica	Error Prom	a _o Ec. [4.43b]	η Teórica	Error Prom	a₀ Ec. [4.43c]	η Teórica	Error Prom
0.76	76.24	0.1075	57.89		0.0911	74.53		0.1312	70.41	
2.04	74.52	0.1075	66.08		0.0911	77.41		0.1312	71.83	
2.18	73.83	0.1075	68.53		0.0911	77.70		0.1312	71.12	
4.86	96.00	0.1075	80.50		0.0911	80.32		0.1312	70.79	
6.51	99.32	0.1075	76.18		0.0911	80.97		0.1312	74.17	
11.31	98.95	0.1075	79.67		0.0911	82.70		0.1312	76.22	
23.05	98.19	0.1075	82.61		0.0911	85.02		0.1312	80.10	
14.79	66.68	0.1075	135.21		0.0911	85.12		0.1312	62.46	
4.54	58.39	0.1075	58.02		0.0911	79.18		0.1312	80.79	
2.71	62.12	0.1075	38.82		0.0911	76.68		0.1312	91.85	
2.27	63.59	0.1075	33.78		0.0911	75.84		0.1312	96.06	
1.22	57.25	0.1075	20.55		0.0911	72.94		0.1312	112.85	
0.41	39.69	0.1075	8.53		0.0911	68.14		0.1312	150.32	
0.11	64.45	0.1075	8.55		0.0911	64.95		0.1312	133.75	
0.24	94.46	0.1075	16.18		0.0911	68.22		0.1312	108.52	
0.38	91.65	0.1075	23.55		0.0911	70.22		0.1312	95.98	
0.56	89.48	0.1075	56.02		0.0911	73.43		0.1312	68.70	
0.70	82.00	0.1075	38.93		0.0911	73.01		0.1312	81.43	
0.74	49.41	0.1075	58.34		0.0911	74.22		0.1312	68.98	
1.10	72.44	0.1075	55.74	46.97	0.0911	75.07	18.69	0.1312	72.44	32.84
2.21	90.30	0.1075	67.52	-	0.0911	77.39		0.1312	70.52	
2.38	64.58	0.1075	103.52	-	0.0911	78.80		0.1312	59.26	
3.45	91.48	0.1075	70.89	-	0.0911	78.71		0.1312	71.54	
5.30	91.90	0.1075	193.52	-	0.0911	82.83		0.1312	48.52	
7.02	89.40	0.1075	74.41		0.0911	80.80		0.1312	74.19	
0.49	36.21	0.1075	49.97		0.0911	58.43		0.1312	54.00	
0.51	50.21	0.1075	50.18	-	0.0911	58.50		0.1312	54.02	
1.23	64.26	0.1075	65.12	-	0.0911	65.95		0.1312	57.12	
1.61	88.25	0.1075	84.14	-	0.0911	76.85		0.1312	61.63	
2.21	86.96	0.1075	87.63	-	0.0911	77.79		0.1312	62.09	
3.54	85.99	0.1075	92.40	-	0.0911	79.19		0.1312	62.99	
14.70	77.21	0.1075	322.91	-	0.0911	70.19		0.1312	32.19	
2.84	63.39	0.1075	94.17	-	0.0911	63.41		0.1312	47.30	
1.35	78.92	0.1075	66.59		0.0911	71.08		0.1312	62.11	
0.72	85.06	0.1075	44.61		0.0911	73.12		0.1312	75.70	
0.60	93.46	0.1075	38.33		0.0911	72.26		0.1312	79.55	
0.48	99.14	0.1075	32.01		0.0911	71.26		0.1312	84.38	
0.27	91.91	0.1075	20.17		0.0911	68.77		0.1312	98.14	
0.13	84.67	0.1075	11.14		0.0911	65.69		0.1312	119.21	

Tabla 4.84 Cálculo de a_o para d=0.074, mm, d=0.125 mm y d=0.25 mm, segúnEc. [1.57] Método I.

с	η Exper	a₀ Ec. [4.44a]	η Teórica	Error Prom	a₀ Ec. [4.44b]	η Teórica	Error Prom	a _o Ec. [4.44c]	η Teórica	Error Prom
0.76	76.24	4.17E-09	58.72		5.6E-06	64.14		0.01268	86.38	
2.04	74.52	4.17E-09	70.12		5.6E-06	69.28		0.01268	87.78	
2.18	73.83	4.17E-09	71.75		5.6E-06	69.81		0.01268	87.59	
4.86	96.00	4.17E-09	87.76		5.6E-06	78.28		0.01268	88.60	
6.51	99.32	4.17E-09	92.39		5.6E-06	83.21		0.01268	90.45	
11.31	98.95	4.17E-09	111.70		5.6E-06	98.94		0.01268	92.82	
23.05	98.19	4.17E-09	165.29		5.6E-06	151.22		0.01268	98.18	
14.79	66.68	4.17E-09	149.63		5.6E-06	112.82		0.01268	88.47	
4.54	58.39	4.17E-09	77.48		5.6E-06	76.92		0.01268	92.08	
2.71	62.12	4.17E-09	61.43		5.6E-06	70.90		0.01268	94.90	
2.27	63.59	4.17E-09	56.97		5.6E-06	69.36		0.01268	95.97	
1.22	57.25	4.17E-09	44.08		5.6E-06	65.16		0.01268	100.05	
0.41	39.69	4.17E-09	28.76		5.6E-06	60.28		0.01268	108.08	
0.11	64.45	4.17E-09	8.22		5.6E-06	23.54		0.01268	81.23	
0.24	94.46	4.17E-09	11.07		5.6E-06	24.55		0.01268	76.68	
0.38	91.65	4.17E-09	13.22		5.6E-06	25.21		0.01268	74.14	
0.56	89.48	4.17E-09	18.50		5.6E-06	26.05		0.01268	67.22	
0.70	82.00	4.17E-09	16.81		5.6E-06	26.23		0.01268	70.89	
0.74	49.41	4.17E-09	19.38		5.6E-06	26.47	50.24	0.01268	67.46	
1.10	72.44	4.17E-09	20.04	65.00	5.6E-06	27.11	59.34	0.01268	68.70	32.95
2.21	90.30	4.17E-09	23.56		5.6E-06	28.79		0.01268	68.66	
2.38	64.58	4.17E-09	27.50		5.6E-06	29.20		0.01268	65.20	
3.45	91.48	4.17E-09	25.80		5.6E-06	30.36		0.01268	69.39	
5.30	91.90	4.17E-09	39.39		5.6E-06	33.06		0.01268	62.19	
7.02	89.40	4.17E-09	30.62		5.6E-06	34.64		0.01268	71.16	
0.49	36.21	4.17E-09	3.21		5.6E-06	6.99		0.01268	43.19	
0.51	50.21	4.17E-09	3.23		5.6E-06	7.00		0.01268	43.20	
1.23	64.26	4.17E-09	4.36		5.6E-06	8.03		0.01268	45.18	
1.61	88.25	4.17E-09	5.86		5.6E-06	9.44		0.01268	47.93	
2.21	86.96	4.17E-09	6.21		5.6E-06	9.70		0.01268	48.21	
3.54	85.99	4.17E-09	6.81		5.6E-06	10.21		0.01268	48.71	
14.70	77.21	4.17E-09	11.38		5.6E-06	11.79		0.01268	39.08	
2.84	63.39	4.17E-09	4.99		5.6E-06	7.97		0.01268	42.20	
1.35	78.92	4.17E-09	4.87		5.6E-06	8.70		0.01268	47.21	
0.72	85.06	4.17E-09	4.28		5.6E-06	8.88		0.01268	50.64	
0.60	93.46	4.17E-09	3.98		5.6E-06	8.78		0.01268	51.32	
0.48	99.14	4.17E-09	3.66		5.6E-06	8.66		0.01268	52.16	
0.27	91.91	4.17E-09	2.94		5.6E-06	8.38		0.01268	54.37	
0.13	84.67	4.17E-09	2.23		5.6E-06	8.05		0.01268	57.36	

Tabla 4.85Cálculo de a_o para d=0.074, mm, d=0.125 mm y d=0.25 mm, segúnEc. [1.66]Método I.

с	η Exper	a₀ Ec. [4.45a]	η Teórica	Error Prom	a₀ Ec. [4.45b]	η Teórica	Error Prom	a₀ Ec. [4.45c]	η Teórica	Error Prom
0.76	76.24	0.03916	74.93		0.1618	75.19		0.4523	75.32	
2.04	74.52	0.03916	80.91		0.1618	75.78		0.4523	74.02	
2.18	73.83	0.03916	81.88		0.1618	75.87		0.4523	73.82	
4.86	96.00	0.03916	88.20		0.1618	76.45		0.4523	72.57	
6.51	99.32	0.03916	88.17		0.1618	76.44		0.4523	72.58	
11.31	98.95	0.03916	91.27		0.1618	76.71		0.4523	72.01	
23.05	98.19	0.03916	94.89		0.1618	77.01		0.4523	71.38	
14.79	66.68	0.03916	104.75		0.1618	77.79		0.4523	69.79	
4.54	58.39	0.03916	81.32		0.1618	75.82		0.4523	73.93	
2.71	62.12	0.03916	72.18		0.1618	74.91		0.4523	75.97	
2.27	63.59	0.03916	69.27		0.1618	74.60		0.4523	76.68	
1.22	57.25	0.03916	59.79		0.1618	73.49		0.4523	79.30	
0.41	39.69	0.03916	46.10		0.1618	71.58		0.4523	84.14	
0.11	64.45	0.03916	41.61		0.1618	70.84		0.4523	86.12	
0.24	94.46	0.03916	50.25		0.1618	72.21		0.4523	82.50	
0.38	91.65	0.03916	56.15		0.1618	73.03		0.4523	80.44	
0.56	89.48	0.03916	70.35		0.1618	74.71		0.4523	76.41	
0.70	82.00	0.03916	65.15		0.1618	74.14		0.4523	77.76	
0.74	49.41	0.03916	71.95		0.1618	74.88	10.57	0.4523	76.02	
1.10	72.44	0.03916	72.45	20.05	0.1618	74.94	19.57	0.4523	75.90	21.53
2.21	90.30	0.03916	78.29		0.1618	75.53		0.4523	74.57	
2.38	64.58	0.03916	87.00		0.1618	76.34		0.4523	72.80	
3.45	91.48	0.03916	80.80		0.1618	75.77		0.4523	74.04	
5.30	91.90	0.03916	104.68		0.1618	77.78		0.4523	69.80	
7.02	89.40	0.03916	84.32		0.1618	76.10		0.4523	73.32	
0.49	36.21	0.03916	51.57		0.1618	61.93		0.4523	70.64	
0.51	50.21	0.03916	51.69		0.1618	61.94		0.4523	70.60	
1.23	64.26	0.03916	62.67		0.1618	67.03		0.4523	71.51	
1.61	88.25	0.03916	77.99		0.1618	75.50		0.4523	74.64	
2.21	86.96	0.03916	79.88		0.1618	75.68		0.4523	74.23	
3.54	85.99	0.03916	82.58		0.1618	75.94		0.4523	73.67	
14.70	77.21	0.03916	93.19		0.1618	65.75		0.4523	61.73	
2.84	63.39	0.03916	64.94		0.1618	63.39		0.4523	67.02	
1.35	78.92	0.03916	68.36		0.1618	71.19		0.4523	73.65	
0.72	85.06	0.03916	64.63		0.1618	74.08		0.4523	77.90	
0.60	93.46	0.03916	61.80		0.1618	73.74		0.4523	78.70	
0.48	99.14	0.03916	58.59		0.1618	73.34		0.4523	79.66	
0.27	91.91	0.03916	51.12		0.1618	72.34		0.4523	82.18	
0.13	84.67	0.03916	42.89		0.1618	71.06		0.4523	85.53	

 Tabla 4.86 Cálculo de a_o para d=0.074, mm, d=0.125 mm y d=0.25 mm, según

 Ec. [1.82] Método I.

En el Método II se trata de establecer una relación potencial, lineal o polinómica, según como mejor sea conveniente, entre los exponentes de los parámetros adimensionales, el coeficiente de cada ecuación por diámetro de partícula y los diámetros de partícula que le correspondan. Así el tamaño de la partícula, *d*, estará en función del coeficiente y los exponentes de la ecuación resultante.

El primer paso es enfrentar los exponentes de los diferentes parámetros adimensionales, el coeficiente a_o , y el diámetro de las partículas tal como se ve en las Tablas 4.87 hasta 4.94.

d(mm)	Coeficiente a _{o1}	Exponente 1 C	Exponente 2 $Ln\left(\frac{L}{D}\right)$	Exponente 3 $\frac{A_d}{D^2}$	Exponente 4 $\frac{\mu}{\rho_w V'_s D}$	Exponente 5 $\frac{V_m}{V'_s}$	Exponente 6 $\frac{gD}{V'_s^2}$
0.074	0.1557	0.1578	1.0327	0.5488	0.3797	-0.2182	0.1898
0.125	0.5208	0.0391	0.6152	0.3223	0.5867	-0.0039	0.2933
0.25	0.6199	0.0094	0.2515	0.1304	0.0868	0.1081	0.0434

Tabla 4.87 Relación entre el diámetro de la partícula y los coeficientes y
exponentes de las Ec. [4.38a], Ec.[4.38b] y Ec.[4.38c]

Tabla 4.88 Relación entre el diámetro de la partícula y los coeficientes y
exponentes de las Ec. [4.39a], Ec.[4.39b] y Ec.[4.39c]

d(mm)	Coeficiente a _{o2}	Exponente 1 C	Exponente 2 $Ln\left(\frac{L}{D}\right)$	Exponente $\frac{3}{D^2}$	Exponente 4 $\frac{\mu}{\rho_w V_m D}$	Exponente 5 $\frac{V'_s}{V_m}$	Exponente 6 $\frac{gD}{V_m^2}$
0.074	0.4506	0.1578	1.0327	0.5488	0.2215	0.2182	0.1107
0.125	0.2533	0.0391	0.6152	0.3223	0.0100	0.0039	0.0050
0.25	0.2821	0.0094	0.2515	0.1304	-0.0840	-0.1081	-0.0420

Tabla 4.89 Relación entre el diámetro de la partícula y los coeficientes y
exponentes de las Ec. [4.40a], Ec.[4.40b] y Ec.[4.40c]

d(mm)	Coeficiente a₀₃	Exponente 1 C	Exponente 2 $Ln\left(\frac{L}{d}\right)$	Exponente $\frac{3}{\frac{A_d}{d^2}}$	Exponente 4 $\frac{\mu}{\rho_{w}V'_{s}d}$	Exponente 5 $\frac{V_m}{V'_s}$	Exponente 6 $\frac{gd}{V_s'^2}$
0.074	1/267493000	0.1578	4.6571	0.5488	0.3797	-0.2182	0.1898
0.125	1/65860	0.0391	2.5724	0.3223	0.5867	-0.0039	0.2933
0.25	0.0228	0.0094	0.9521	0.1304	0.0868	0.1081	0.0434

d (mm)	Coeficiente a₀₄	Exponente 1 C	Exponente 2 $Ln\left(\frac{L}{d}\right)$	Exponente 3 $\frac{A_d}{d^2}$	Exponente $\frac{4}{\frac{\rho_w V'_s d}{\mu}}$	Exponente 5 $\frac{\rho_s V'_s d}{\mu}$	Exponente 6 $\frac{V_m}{V'_s}$	Exponente 7 $\frac{gd}{V_{s}^{2}}$
0.074	1/455000000	0.1578	4.6571	0.5488	-0.3797	-0.3797	-0.2182	0.1898
0.125	1/36062	0.0391	2.5724	0.3223	-0.5867	-0.5867	-0.0039	0.2933
0.25	0.0292	0.0094	0.9521	0.1304	-0.0868	-0.0868	0.1081	0.0434

Tabla 4.90 Relación entre el diámetro de la partícula y los coeficientes y
exponentes de las Ec. [4.41a], Ec.[4.41b] y Ec.[4.41c]

Tabla 4.91 Relación entre el diámetro de la partícula y los coeficientes y
exponentes de las Ec. [4.42a], Ec.[4.42b] y Ec.[4.42c]

d (mm)	Coeficiente a₀₅	Exponente 1 C	Exponente 2 $Ln\left(\frac{L}{D}\right)$	Exponente $\frac{A_d}{D^2}$	Exponente $\frac{4}{\frac{\rho_w V'_s D}{\mu}}$	Exponente 5 $\frac{\rho_s V'_s D}{\mu}$	Exponente $\frac{6}{V_m}$ $\overline{V'_s}$	Exponente 7 $\frac{gD}{V_s^{\prime}}^2$
0.074	1.0349	0.1578	1.0327	0.5488	-0.3797	-0.3797	-0.2182	0.1898
0.125	30.0040	0.0391	0.6152	0.3223	-0.5867	-0.5867	-0.0039	0.2933
0.25	1.2429	0.0094	0.2515	0.1304	-0.0868	-0.0868	0.1081	0.0434

Tabla 4.92 Relación entre el diámetro de la partícula y los coeficientes y
exponentes de las Ec. [4.43a], Ec.[4.43b] y Ec.[4.43c]

d(mm)	Coeficiente a₀₀	Exponente 1 C	Exponente 2 $\frac{D}{L}$	Exponente 3 $\frac{A_d}{L^2}$	Exponente $\frac{4}{\rho_{w}V_{m}L}$	Exponente 5 $\frac{V'_s}{V_m}$	Exponente 6 $\frac{gL}{V_m^2}$
0.074	0.1278	0.1578	-0.5488	-0.5488	0.2215	0.2182	0.1107
0.125	0.10109	0.0391	-0.3223	-0.3223	0.0100	0.0039	0.0050
0.25	0.1476	0.0094	-0.1304	-0.1304	-0.0939	-0.1081	-0.0380

Tabla 4.93 Relación entre el diámetro de la partícula y los coeficientes y
exponentes de las Ec. [4.44a], Ec.[4.44b] y Ec.[4.44c]

d(mm)	Coeficiente a₀7	Exponente 1 C	Exponente 2 $Ln\left(\frac{L}{D}\right)$	Exponente 3 $\frac{A_d}{d^2}$	Exponente 4 $\frac{V_s}{\sqrt{gd}}$	Exponente 5 $\frac{V_m}{\sqrt{gd}}$
0.074	1/237320000	0.1578	4.6571	0.5488	-0.3797	-0.2215
0.125	1/63950	0.0391	2.5724	0.3223	-0.5867	-0.0100
0.25	0.0212	0.0094	0.9521	0.1304	-0.0868	0.0840

d(mm)	Coeficiente a₀₀	Exponente 1 $Ln\left(\frac{L}{D}\right)$	Exponente 2 $\frac{A_d}{A_t}$	Exponente 3 F_G
0.074	0.03599	1.0327	0.5488	-0.158
0.125	0.19001	0.6152	0.3223	-0.016
0.25	0.4847	0.2515	0.1304	0.036

Tabla 4.94 Relación entre el diámetro de la partícula y los coeficientes y exponentes de las Ec. [4.45a], Ec.[4.45b] y Ec.[4.45c]

A continuación, con las tabulaciones anteriores se grafica el diámetro vs. cada uno de los exponentes y coeficientes, para llegar a una ecuación que relacione estos dos parámetros, ver Gráficas 4.102 a 4..

Gráfica 4.102 a_{o1} vs. d

Gráfica 4.103 Exponente de C vs. d

Gráfica 4.104 Exponente de $Ln\left(\frac{L}{D}\right)$ vs. d

Gráfica 4.107 Exponente de $\frac{V_m}{V'_s}$ vs. d

Gráfica 4.109 a_{o2} vs. d

Gráfica 4.113 a_{o3} vs. d

Gráfica 4.114 Exponente $Ln\left(\frac{L}{d}\right)$ vs. d

Gráfica 4.118 a_{o4} vs. d

Gráfica 4.119 Exponente $\frac{\rho_w V'_s d}{\mu}$ vs. d

Gráfica 4.120 Exponente $\frac{\rho_s V_s d}{\mu}$ vs. d

Gráfica 4.121 a_{o5} vs. d

Gráfica 4.122 Exponente $\frac{\rho_w V'_s D}{\mu}$ vs. *d*

Gráfica 4.124 a_{o6} vs. d

Gráfica 4.126 Exponente $\frac{A_d}{L^2}$ vs. *d*

Gráfica 4.128 Exponente $\frac{gL}{V_m^2}$ vs. *d*

Gráfica 4.129 a_{o7} vs. d

Gráfica 4.130 Exponente $\frac{V'_s}{\sqrt{gd}}$ vs. d

Gráfica 4.132 a_{o8} vs. d

Por último se reúnen las ecuaciones de la eficiencia, η , en función de parámetros adimensionales, con su correspondiente valor de error promedio y se los consigna en la Tabla 4.95.

ECUACIÓN	COMENTARIO	No. EC
$\eta = 0.17234C^{0.1578} \left(Ln\left(\frac{L}{D}\right) \right)^{1.0327} \left(\frac{A_d}{D^2}\right)^{0.5488} \left(\frac{\mu}{\rho_w V'_s D}\right)^{0.3797} \left(\frac{V_m}{V'_s}\right)^{-0.2182} \left(\frac{gD}{V'_s^2}\right)^{0.1898}$	Error 53.43%	[4.46ª]
$\eta = 0.13644C^{0.0391} \left(Ln \left(\frac{L}{D} \right) \right)^{0.6152} \left(\frac{A_d}{D^2} \right)^{0.3223} \left(\frac{\mu}{\rho_w V'_s D} \right)^{0.5867} \left(\frac{V_m}{V'_s} \right)^{-0.0039} \left(\frac{gD}{V'_s} \right)^{0.2933}$	Error 68.35%	[4.46b]
$\eta = 0.31318C^{0.0094} \left(Ln \left(\frac{L}{D} \right) \right)^{0.2515} \left(\frac{A_d}{D^2} \right)^{0.1304} \left(\frac{\mu}{\rho_w V'_s D} \right)^{0.0868} \left(\frac{V_m}{V'_s} \right)^{0.181} \left(\frac{gD}{V'_s^2} \right)^{0.0434}$	Error 37.98%	[4.46c]
$\eta = 3.3392d^{1.0887}C^{0.0004d^{-2.259}}\left(Ln\left(\frac{L}{D}\right)\right)^{0.0512d^{-1.1671}}\left(\frac{A_d}{D^2}\right)^{0.0258d^{-1.187}}\left(\frac{\mu}{\rho_w V'_s D}\right)^{0.0196d^{-1.2931}}$ $\left(\frac{V_m}{V'_s}\right)^{1.6739d-0.2885}\left(\frac{gD}{V'_s}\right)^{0.0098d^{-1.2928}}$	Error 60.62% Diámetro de partícula, d, en mm.	[4.46d]
$\eta = 0.3762C^{0.1578} \left(Ln\left(\frac{L}{D}\right) \right)^{1.0327} \left(\frac{A_d}{D^2}\right)^{0.5488} \left(\frac{\mu}{\rho_w V_m D}\right)^{0.2215} \left(\frac{V'_s}{V_m}\right)^{0.2182} \left(\frac{gD}{V_m^2}\right)^{0.1107}$	Error 47.66%	[4.47a]
$\eta = 0.2269C^{0.0391} \left(Ln \left(\frac{L}{D} \right) \right)^{0.6152} \left(\frac{A_d}{D^2} \right)^{0.3223} \left(\frac{\mu}{\rho_w V_m D} \right)^{0.01} \left(\frac{V'_s}{V_m} \right)^{0.0039} \left(\frac{gD}{V_m^2} \right)^{0.005}$	Error 19%	[4.47b]

Tabla 4.95 Ecuaciones para el cálculo de eficiencia, η .

ECUACIÓN	COMENTARIO	No. EC
$\eta = 0.2504C^{0.0094} \left(Ln \left(\frac{L}{D} \right) \right)^{0.2515} \left(\frac{A_d}{D^2} \right)^{0.1304} \left(\frac{\mu}{\rho_w V_m D} \right)^{-0.084} \left(\frac{V'_s}{V_m} \right)^{-0.1081} \left(\frac{gD}{V_m^2} \right)^{-0.042}$	Error 32.75%	[4.47c]
$\eta = 0.1547d^{-0.3564}C^{0.0004d^{-2.3033}} \left(Ln \left(\frac{L}{D} \right) \right)^{0.0512d^{-1.1671}} \left(\frac{A_d}{D^2} \right)^{0.0258d^{1.187}} \left(\frac{\mu}{\rho_w V_m D} \right)^{-1.5508d+0.2813} \left(\frac{V'_s}{V_m} \right)^{-1.6739d+0.2885} \left(\frac{gD}{V_m^2} \right)^{-0.7752d+0.1406}$	Error 32.53% Diámetro de partícula, d, en mm.	[4.47d]
$\eta = \frac{1}{260899300} C^{0.1578} \left(Ln \left(\frac{L}{d} \right) \right)^{4.6571} \left(\frac{A_d}{d^2} \right)^{0.5488} \left(\frac{\mu}{\rho_w V'_s d} \right)^{0.3797} \left(\frac{V_m}{V'_s} \right)^{-0.2182} \left(\frac{gd}{V'_s^2} \right)^{0.1898}$	Error 70.74%	[4.48a]
$\eta = \frac{1}{500455} C^{0.0391} \left(Ln \left(\frac{L}{d} \right) \right)^{2.5724} \left(\frac{A_d}{d^2} \right)^{0.3223} \left(\frac{\mu}{\rho_w V'_s d} \right)^{0.5867} \left(\frac{V_m}{V'_s} \right)^{-0.0039} \left(\frac{gd}{V'_s} \right)^{0.2933}$	Error 73.86%	[4.48b]
$\eta = 0.0081C^{0.0094} \left(Ln \left(\frac{L}{d} \right) \right)^{0.9521} \left(\frac{A_d}{d^2} \right)^{0.1304} \left(\frac{\mu}{\rho_w V'_s d} \right)^{0.868} \left(\frac{V_m}{V'_s} \right)^{0.1081} \left(\frac{gd}{V'_s} \right)^{0.0434}$	Error 43.86%	[4.48c]

ECUACIÓN	COMENTARIO	No. EC
$\eta = 2*10^{5} d^{12.714} C^{0.0004*d^{-2.3033}} \left(Ln \left(\frac{L}{d} \right) \right)^{0.1587d^{-1.3108}} \left(\frac{A_{d}}{d^{2}} \right)^{0.0258d^{-1.187}} \left(\frac{\mu}{\rho_{w} V'_{s} d} \right)^{0.0196d^{-1.2931}} \left(\frac{V_{m}}{V'_{s}} \right)^{1.6739d - 0.2885} \left(\frac{gd}{V'_{s}^{2}} \right)^{0.0098d^{-1.2928}}$	Error 72.83% Diámetro de partícula, d, en mm.	[4.48d]
$\eta = \frac{1}{337000000} C^{0.1578} \left(Ln \left(\frac{L}{d} \right) \right)^{4.6571} \left(\frac{A_d}{d^2} \right)^{0.5488} \left(\frac{\rho_w V'_s d}{\mu} \right)^{-0.3797} \left(\frac{\rho_s V'_s d}{\mu} \right)^{-0.3797} \left(\frac{V_m}{V'_s} \right)^{-0.2182} \left(\frac{gd}{V'_s} \right)^{0.1898}$	Error 79.2%	[4.49a]
$\eta = \frac{1}{859999} C^{0.0391} \left(Ln \left(\frac{L}{d} \right) \right)^{2.5724} \left(\frac{A_d}{d^2} \right)^{0.3223} \left(\frac{\rho_w V'_s d}{\mu} \right)^{-0.5867} \left(\frac{\rho_s V'_s d}{\mu} \right)^{-0.5867} \left(\frac{V_m}{V'_s} \right)^{-0.0039} \left(\frac{gd}{V'_s} \right)^{0.2933}$	Error 84.04%	[4.49b]
$\eta = 0.00767C^{0.0094} \left(Ln \left(\frac{L}{d} \right) \right)^{0.9521} \left(\frac{A_d}{d^2} \right)^{0.1304} \left(\frac{\rho_w V_s' d}{\mu} \right)^{-0.0868} \left(\frac{\rho_s V_s' d}{\mu} \right)^{-0.0868} \left(\frac{V_m}{V_s'} \right)^{0.1081} \left(\frac{gd}{V_s'} \right)^{0.0434}$	Error 50%	[4.49c]
$\eta = 6*10^{5} d^{13.294} C^{0.0004d^{-2.3033}} \left(Ln \left(\frac{L}{d} \right) \right)^{0.1587d^{-1.3108}} \left(\frac{A_{d}}{d^{2}} \right)^{0.0258d^{-1.187}} \left(\frac{\rho_{w} V_{s} d}{\mu} \right)^{2.1032d - 0.6658} \left(\frac{V_{m}}{V_{s}} \right)^{1.6739d - 0.2885} \left(\frac{gd}{V_{s}^{2}} \right)^{0.0098d^{-1.2928}}$	Error 88.36% Diámetro de partícula, d, en mm.	[4.49d]

ECUACIÓN	COMENTARIO	No. EC
$\eta = 1.4908C^{0.1578} \left(Ln \left(\frac{L}{D} \right) \right)^{1.0327} \left(\frac{A_d}{D^2} \right)^{0.5488} \left(\frac{\rho_w V'_s D}{\mu} \right)^{-0.3797} \left(\frac{\rho_s V'_s D}{\mu} \right)^{-0.3797} \left(\frac{V_m}{V'_s} \right)^{-0.2182} \left(\frac{gD}{V'_s} \right)^{0.1898}$	Error 68.8%	[4.50a]
$\eta = 3.23503C^{0.0391} \left(Ln \left(\frac{L}{D} \right) \right)^{0.6152} \left(\frac{A_d}{D^2} \right)^{0.3223} \left(\frac{\rho_w V'_s D}{\mu} \right)^{-0.5867} \left(\frac{\rho_s V'_s D}{\mu} \right)^{-0.5867} \left(\frac{V_m}{V'_s} \right)^{-0.0039} \left(\frac{gD}{V'_s} \right)^{0.2933}$	Error 81.47%	[4.50b]
$\eta = 0.61763C^{0.0094} \left(Ln \left(\frac{L}{D} \right) \right)^{0.2515} \left(\frac{A_d}{D^2} \right)^{0.1304} \left(\frac{\rho_w V_s D}{\mu} \right)^{-0.0868} \left(\frac{\rho_s V_s D}{\mu} \right)^{-0.0868} \left(\frac{V_m}{V_s} \right)^{0.1081} \left(\frac{gD}{V_s^2} \right)^{0.0434}$	Error 37.1%	[4.50c]
$\eta = \left(-4534.7d^2 + 1470.4d - 82.945\right)C^{0.0004d^{2.3033}} \left(Ln\left(\frac{L}{D}\right)\right)^{0.0512d^{1.1671}} \left(\frac{A_d}{D^2}\right)^{0.0258d^{1.187}} \left(\frac{\rho_w V'_s D}{U}\right)^{-0.0196d^{-1.2931}} \left(\frac{\rho_s V'_s D}{U}\right)^{-0.0196d^{-1.2931}} \left(\frac{V_m}{U}\right)^{1.6739d - 0.2885} \left(\frac{gD}{U}\right)^{0.0098d^{-1.2928}}$	Error 73.64% Diámetro de partícula, d, en mm.	[4.50d]
(μ) (μ) (ν_s) (ν_s)		
$\eta = 0.1075C^{0.1578} \left(\frac{D}{L}\right)^{-0.5488} \left(\frac{A_d}{L^2}\right)^{-0.5488} \left(\frac{\mu}{\rho_w V_m L}\right)^{0.2215} \left(\frac{V'_s}{V_m}\right)^{0.2182} \left(\frac{gL}{V_m^2}\right)^{0.1107}$	Error 46.97%	[4.51a]
$\eta = 0.0911C^{0.0391} \left(\frac{D}{L}\right)^{-0.3223} \left(\frac{A_d}{L^2}\right)^{-0.3223} \left(\frac{\mu}{\rho_w V_m L}\right)^{0.01} \left(\frac{V'_s}{V_m}\right)^{0.0039} \left(\frac{gL}{V_m^2}\right)^{0.005}$	Error 18.7%	[4.51b]
$\eta = 0.1312C^{0.0094} \left(\frac{D}{L}\right)^{-0.1304} \left(\frac{A_d}{L^2}\right)^{-0.1304} \left(\frac{\mu}{\rho_w V_m L}\right)^{-0.0939} \left(\frac{V'_s}{V_m}\right)^{-0.1081} \left(\frac{gL}{V_m^2}\right)^{-0.038}$	Error 32.84%	[4.51c]

ECUACIÓN	COMENTARIO	No. EC
$\eta = (5.0865d^2 - 1.5353d + 0.2135)C^{0.0004d^{-2.3033}} \left(\frac{D}{L}\right)^{-16.511d^2 + 7.7269d - 1.0302} \left(\frac{A_d}{L^2}\right)^{-16.511d^2 + 7.7269d - 1.0302} \left(\frac{\mu}{\rho_w V_m L}\right)^{-1.6114d + 0.287} \left(\frac{V'_s}{V_m}\right)^{-1.6739d + 0.2885} \left(\frac{gL}{V_m^2}\right)^{-0.7507d + 0.1383}$	Error 41.86% Diámetro de partícula, d, en mm.	[4.51d]
$\eta = \frac{1}{240000000} C^{0.1578} \left(Ln \left(\frac{L}{d} \right) \right)^{4.6571} \left(\frac{A_d}{d^2} \right)^{0.5488} \left(\frac{V'_s}{\sqrt{gd}} \right)^{-0.3797} \left(\frac{V_m}{\sqrt{gd}} \right)^{-0.2215}$	Error 65%	[4.52a]
$\eta = \frac{1}{177700} C^{0.0391} \left(Ln \left(\frac{L}{d} \right) \right)^{2.5724} \left(\frac{A_d}{d^2} \right)^{0.3223} \left(\frac{V_s}{\sqrt{gd}} \right)^{-0.5867} \left(\frac{V_m}{\sqrt{gd}} \right)^{-0.01}$	Error 59.3%	[4.52b]
$\eta = 0.01268C^{0.0094} \left(Ln \left(\frac{L}{d} \right) \right)^{0.9521} \left(\frac{A_d}{d^2} \right)^{0.1304} \left(\frac{V'_s}{\sqrt{gd}} \right)^{-0.0868} \left(\frac{V_m}{\sqrt{gd}} \right)^{0.084}$	Error 32.95%	[4.52c]
$\eta = 1 * 10^5 d^{12.557} C^{0.0004d^{-2.3033}} \left(Ln \left(\frac{L}{d} \right) \right)^{0.1587d^{-1.3108}} \left(\frac{A_d}{d^2} \right)^{0.0258d^{-1.187}} \left(\frac{V_s}{\sqrt{gd}} \right)^{45.784d^2 - 13.17d + 0.3442} \left(\frac{V_m}{\sqrt{gd}} \right)^{-19.29d^2 + 7.9858d - 0.7068}$	Error 41.86% Diámetro de partícula, d, en mm.	[4.52d]
$\eta = 0.03916 \left(Ln \left(\frac{L}{D} \right) \right)^{1.0327} \left(\frac{A_d}{A_t} \right)^{0.5488} (F_G)^{-0.158}$	Error 20.05%	[4.53a]

ECUACIÓN	COMENTARIO	No. EC
$\eta = 0.1618 \left(Ln \left(\frac{L}{D} \right) \right)^{0.6152} \left(\frac{A_d}{A_t} \right)^{0.3223} (F_G)^{-0.016}$	Error 19.57%	[4.53b]
$\eta = 0.4523 \left(Ln \left(\frac{L}{D} \right) \right)^{0.2515} \left(\frac{A_d}{A_t} \right)^{0.1304} F_G^{0.036}$	Error 21.53%	[4.53c]
$\eta = (2.5134d - 0.1393) \left(Ln \left(\frac{L}{D}\right) \right)^{0.0512d^{-1.1671}} \left(\frac{A_d}{A_t}\right)^{0.0258d^{-1.187}} F_G^{0.9733d - 0.1917}$	Error 21.43% Diámetro de partícula, d , en mm.	[4.53d]

El valor de $F_G = F'_L/F_L$ no se puede encontrar de una manera teórica, debido a que F'_L es un dato que se halla experimentalmente, por esta razón es que se optó por establecer una relación potencial entre las variables F_L y F_G , tal y como se observa en las Gráficas 4.26, 4.52 y 4.77, las ecuaciones encontradas se denotan en la Tabla 4.96, esta relación depende del diámetro de la partícula, *d. FL* se puede obtener con la Ec.[2.46.]

Tabla 4.96. Ecuaciones propuestas para el cálci	ulo de F G
---	-------------------

ECUACIÓN	COMENTARIO	No EC
$F_G = 0.0123 F_L^{-2.371}$	Ecuación válida para d = 0.074 mm	[4.54a]
$F_G = 0.008 F_L^{-2.3766}$	Ecuación válida para d = 0.125 mm	[4.54b]
$F_G = 0.006 F_L^{-2.7238}$	Ecuación válida para d = 0.25 mm	[4.54c]

4.4 COMENTARIOS FINALES

En la Tabla 4.97 se resume las ecuaciones propuestas para el cálculo de la eficacia, η , con las que se obtiene el menor error promedio. El valor de error varía entre 12.5% y 19%.

Tabla 4.97 Ecuaciones recomendadas para el cálculo de eficiencia,	η.
---	----

ECUACIÓN	COMENTARIO
$\eta = 0.03599 \left(Ln \left(\frac{L}{D} \right) \right)^{1.0327} \left(\frac{A_d}{A_t} \right)^{0.5488} (F_G)^{-0.158}$	Para d = 0.074 mm. Error=12.48%
$\eta = 0.10109C^{0.0391} \left(\frac{D}{L}\right)^{-0.3223} \left(\frac{A_d}{L^2}\right)^{-0.3223} \left(\frac{\mu}{\rho_w V_m L}\right)^{0.01} \left(\frac{V'_s}{V_m}\right)^{0.0039} \left(\frac{gL}{V_m^2}\right)^{0.005}$	Para d = 0.125 mm. Error =15.3%
$\eta = 0.253309 C^{0.0391} \left(Ln \left(\frac{L}{D} \right) \right)^{0.6152} \left(\frac{A_d}{D^2} \right)^{0.3223} \left(\frac{\mu}{\rho_w V_m D} \right)^{0.01} \left(\frac{V'_s}{V_m} \right)^{0.0039} \left(\frac{gD}{V_m^2} \right)^{0.005}$	Para d = 0.125 mm. Error=15.3%
$\eta = 0.02921C^{0.0094} \left(Ln \left(\frac{L}{d} \right) \right)^{0.9521} \left(\frac{A_d}{d^2} \right)^{0.1304} \left(\frac{\rho_w V_s d}{\mu} \right)^{-0.0868} \left(\frac{\rho_s V_s d}{\mu} \right)^{-0.0868} \left(\frac{V_m}{V_s} \right)^{0.001} \left(\frac{gd}{V_s^2} \right)^{0.0434}$	Para d=0.25 mm Error=16.29%

Continuación Tabla 4.97 Ecuaciones recomendadas para el cálculo de eficiencia, *η*.

ECUACIÓN	
$\eta = 0.0911C^{0.0391} \left(\frac{D}{L}\right)^{-0.3223} \left(\frac{A_d}{L^2}\right)^{-0.3223} \left(\frac{\mu}{\rho_w V_m L}\right)^{0.01} \left(\frac{V'_s}{V_m}\right)^{0.0039} \left(\frac{gL}{V_m^2}\right)^{0.005}$	Válida para d=0.074mm, 0.125mm y 0.25mm Error=18.7
	%

5. METODOLOGÍA DE DISEÑO

De las ecuaciones consignadas en la Tabla 4.97 se toman aquellas que proporcionen el menor porcentaje de error. A continuación se describen los pasos a seguir para el diseño de un sedimentador de sección circular y flujo a presión, aplicable para diámetros de partícula d=0.074 mm, d=0.125 mm, d=0.25 mm.

Datos de entrada:

- 1. Diámetro de partícula, d
- 2. Concentración volumétrica, C
- 3. Temperatura del fluido, Tº
- 4. Aceleración de la gravedad, g.
- 5. Gravedad específica de los sólidos, S
- 6. Caudal líquido de entrada, Q_L
- 7. Eficiencia del sedimentador, η

5.1 PROCEDIMIENTO I

- 1. Encontrar la viscosidad cinemática del agua según la temperatura: v_f
- 2. Parámetro adimensional de la partícula individual d₊ Ec.[2.8c]
- **3.** Número de Reynolds de la partícula individual: R_s con Ec. [2.8b]
- **4.** Velocidad de sedimentación de la partícula V_s con la Ec.[2.18]
- 5. Coeficiente de densidad de la partícula con mezcla:⊿' con Ec. [2.34]
- 6. Viscosidad cinemática de la mezcla v_m con la Ec. [2.36]
- 7. Parámetro adimensional de la partícula afectado por la mezcla d'₊ Ec.[2.33]
- 8. Número de Reynolds de la partícula afectado por la mezclar R_m con la Ec.[2.32]
- **9.** Cálculo de **t**, exponente que cuantifica el efecto de la concentración sobre la velocidad de asentamiento de las partículas con la Ec. [3.31]
- 10. Velocidad de Sedimentación de la partícula afectada por la concentración V's, de acuerdo al anterior procedimiento Ec. [2.30]
- **11.**Cálculo del coeficiente de arrastre de los sólidos afectada por la concentración **C'**_D con la Ec.[2.35]
- 12. Cálculo de *a*, tomado de la Tabla 2.4.
- **13.**Calcular la función que depende de las características del fluido y de los sedimentos naturales, **G**, según la Ec. [3.9]

- 14. Calcular Caudal de la mezcla, **Q**_m, de acuerdo a la Ec.[3.1a]
- **15.**Calcular el diámetro del tubo del sedimentador, **D**, con la Ec. [3.1], el valor de **n**, se obtiene de la Tabla 3.2
- **16.** Encontrar la velocidad de la mezcla, V_m , con la ecuación de continuidad v

 $Q_m = V_m A_T$

- **17.** Encontrar la longitud del sedimentador con la Ec. [4.11d]
- **18.** Reemplazar longitud, L, diámetro del sedimentador, D, Velocidad de la mezcla, V_m , Velocidad de sedimentación afectado por la mezcla, V's, en la Ec.[4.51b] para encontrar área de drenaje, A_d .

Si se quiere se puede escoger una ecuación de eficiencia, η , que trabaje con un diámetro de partícula, *d*, determinado, de acuerdo al diseño que se quiera realizar, que proporcione menor error que la ecuación seleccionada, Ec[4.51b] así como se explica a continuación.

5.7 DISEÑO PARA d = 0.074 mm

Si el diámetro de partícula más crítico con el que se cuenta para el diseño del sedimentador es d = 0.074 mm el procedimiento para el cálculo es como sigue:

- 1. Calcular el diámetro, **D**, del sedimentador con los pasos 1 a 15 del procedimiento anterior.
- 2. Encontrar la longitud del sedimentador con la Ec. [4.11a]
- **3.** Calcular F_L con la Ec[2.46]
- 4. Despejar F_G de la Ec[4.54a]
- 5. Reemplazar *L*, *D*, $A_T = \pi D^2/4$, y F_G en la Ec.[4.45a] para encontrar Área de drenaje A_d

5.3 DISEÑO PARA d = 0.125 mm

Si el diámetro de partícula más crítico con el que se cuenta para el diseño del sedimentador es d = 0.125 mm el procedimiento para el cálculo es como sigue:

- 1. Desarrollar los pasos 1 a 15 del Procedimiento I
- 2. Encontrar la longitud del sedimentador, *L*, con la Ec. [4.11b]
- **3.** Reemplazar **D**, **L**, **V**_m, **V**'_s y otras constantes en la Ec.[4.43b], para hallar el valor de A_d

5.4 DISEÑO PARA d = 0.25 mm

Si el diámetro de partícula más crítico con el que se cuenta para el diseño del sedimentador es d = 0.25 mm el procedimiento para el cálculo es como sigue:

- 1. Desarrollar los pasos 1 a 15 del Procedimiento I, para hallar el valor de *L* con la Ec. [4.11c]
- 2. Encontrar la longitud del sedimentador, *L*, con la Ec. [4.19c]
- 3. Escoger el mayor valor encontrado para L, entre la Ec[4.11c] y Ec.[4.19c]
- **4.** Reemplazar L, V_m , V'_s y otras constantes en la Ec.[4.41c], para hallar el valor de A_d

5.5 EJEMPLO DE DISEÑO

A continuación se desarrolla paso a paso la metodología de diseño encontrada en la presente investigación, para el diseño de un sedimentador con sección circular y flujo a presión.

DATOS DE ENTRADA

- Diámetro de partícula, *d* =0.074 mm
- Concentración volumétrica, **C = 15%**
- Temperatura del fluido, Tº = 15 º
- Aceleración de la gravedad, $g = 9.81 \text{ m/s}^2$.
- Gravedad específica de los Sólidos, **S = 2.65**
- Caudal líquido de entrada, $Q_L = 6.3 I/s$
- Eficiencia del sedimentador, $\eta = 95\%$

PROCEDIMENTO I:

20. Para una temperatura de 15°C la viscosidad cinemática es $v_f = 0.01152$ cm²/sg

21.
$$d_{+} = \left(\frac{(\Delta)g}{v_{f}^{2}}\right)^{1/3} d = \left(\frac{(2.65 - 1)981cm/sg^{2}}{(0.01152cm^{2}/sg)^{2}}\right)^{1/3} (0.0074cm) = 1.703$$

22.
$$R_s = \left(\sqrt{\left(25 + 1.2d_+^2\right)} - 5\right)^{1.5} = \left(\sqrt{\left(25 + 1.2\left(1.703\right)^2\right)} - 5\right)^{1.5} = 0.195$$

23.
$$V_s = \frac{R_s v_f}{d} = \frac{0.195(0.01152cm^2 / sg)}{0.0074cm} = 0.304cm / sg$$

24. $\Delta' = \left[\frac{(1-C)(S-1)}{1+C(S-1)}\right] = \left[\frac{(1-0.15)(2.65-1)}{1+0.15(2.65-1)}\right] = 1.124$
25. $v_m = \frac{2v_f}{2-3C} = \frac{2(0.01152cm^2 / sg)}{2-3(0.15)} = 0.01487cm^2 / sg$
26. $d'_+ = \left(\frac{\Delta'g}{v_m^2}\right)^{\left(\frac{1}{3}\right)} d = \left(\frac{1.124 (981 cm / sg^2)}{(0.01487 cm^2 / sg)^2}\right)^{\left(\frac{1}{3}\right)} 0.0074 cm = 1.264$
27. $R_m = \left(\sqrt{(25+1.2(d_+)^2)} - 5\right)^{1.5} = \left(\sqrt{(25+1.2(1.264-)^2)} - 5\right)^{1.5} = 0.082$
28. $t = \frac{Ln\left[\frac{(2-2C)}{(2-3C)}\right] + Ln\left[\frac{R_m}{R_s}\right]}{Ln\left[1-C\right]} = \frac{Ln\left[\frac{(2-2(0.15))}{(2-3(0.15))}\right] + Ln\left[\frac{0.082}{0.195}\right]}{Ln\left[1-0.15\right]} = 4.796$
29. $V'_s = V_s (1-C)^t = 0.304 cm / sg (1-0.15)^{4.796} = 0.1396 cm / sg$
30. $C'_D = \left[\left(\frac{32}{R_m}\right)^{2/3} + 1\right]^{3/2} = \left[\left(\frac{32}{0.082}\right)^{2/3} + 1\right]^{3/2} = 402.58$

31.
$$\alpha = 0.3607 R_s^{0.3295} = 0.3607(0.195)^{0.3295} = 0.2106$$

32.
$$G = \left[\frac{3000}{791} \frac{C'_D V'_s^2}{dv_f^{1/8}} \frac{C(1+\alpha C^x)}{(1-C)}\right]^{8/15} = \left[\frac{3000}{791} \frac{(402.58)(0.1396cm/sg)^2}{(0.0074cm)(0.01152cm^2/sg)^{1/8}} \frac{0.15(1+0.2106(0.15)^0)}{(1-0.15)}\right] = 7.83$$

33.
$$Q_m = \frac{Q_L}{1-C} = \frac{0.0063m^3 / sg}{1-0.15} = 0.00741m^3 / sg$$

34.
$$D = \left(\frac{4Q_m}{\pi G}\right)^n = \left(\frac{4(0.00741 \ m^3 \ / \ sg\,)}{\pi (7.83\,)}\right)^{5/13} = 0.075 \ m = 3"$$

35. $V_m = \frac{Q_m}{A_T} = \frac{4(0.00741)}{0.075^2 \pi} = 1.68 \ m/s$

36.
$$\eta = 1.6813d^{0.7361} \left(Ln \left(\frac{L}{D} \right) \right)^{0.0512d^{-1.1671}} = 0.247 \left(Ln \left(\frac{L}{D} \right) \right)^{1.069}$$

$$L = \left(e^{\frac{\eta}{0.247}}\right) D = \left(e^{\frac{0.95}{0.247}}\right) 0.075m = 3.51m$$

37.
$$\eta = 0.0911C^{0.0391} \left(\frac{D}{L}\right)^{-0.3223} \left(\frac{A_d}{L^2}\right)^{-0.3223} \left(\frac{\mu}{\rho_w V_m L}\right)^{0.01} \left(\frac{V'_s}{V_m}\right)^{0.0039} \left(\frac{gL}{V_m^2}\right)^{0.005}$$

$$A_{d} = \left(\frac{\eta}{0.0911C^{0.0391} \left(\frac{D}{L}\right)^{-0.3223} \left(\frac{\mu}{\rho_{w}V_{m}L}\right)^{0.01} \left(\frac{V'_{s}}{V_{m}}\right)^{0.0039} \left(\frac{gL}{V_{m}^{2}}\right)^{0.005}}\right)^{-1/0.3223} L^{2} = 0.2346m^{2}$$

PROCEDIMIENTO II

1.
$$D = \left(\frac{4Q_m}{\pi G}\right)^n = \left(\frac{4(0.00741 \ m^3 \ / \ sg\,)}{\pi \ (7.83\,)}\right)^{5/13} = 0.075 \ m = 3"$$

2. $\eta = 0.23156Ln \left(\frac{L}{D}\right)^{1.0327}$
 $L = (D)e^{\left(\frac{\eta}{0.23156}\right)^{1/1.0327}} = (0.075m)e^{\left(\frac{0.95}{0.23156}\right)^{1/1.0327}} = 3.79m$

3.
$$F_L = \left[\frac{3000}{791} \frac{C'_D V'_s^2 CD^{9/8}}{(1-C)dv_f^{1/8}} \frac{(1+\alpha C^x)}{[2gD(S-1)]^{15/16}}\right]^{8/15}$$

$$F_{L} = \left[\frac{3000}{791} \frac{(402.58)(0.1396cm/s)^{2}(0.15)(7.5cm^{9/8})}{(1-0.15)(0.0074cm)(0.01152cm/sg^{2})^{1/8}} \frac{(1+0.2106(0.15)^{0})}{[2(981cm/sg^{2})(7.5cm)(2.65-1)]^{15/16}}\right]^{8/15}$$

$$F_{L} = 0.0912$$

4.
$$F_G = 0.0123 F_L^{-2.371} = 0.0123(0.0912^{-2.371}) = 3.597$$

5.
$$\eta = 0.03599 \left(Ln \left(\frac{L}{D} \right) \right)^{1.0327} \left(\frac{A_d}{A_t} \right)^{0.5488} (F_G)^{-0.158}$$

$$A_d = \left(\frac{\eta}{0.03599 \left(Ln \left(\frac{L}{D} \right) \right)^{1.0327} (F_G)^{-0.158}} \right)^{1/0.5488} A_T = 0.19m^2$$

5.6 COMENTARIOS FINALES

Analizando los resultados obtenidos a partir de los dos procedimientos de diseño escogidos, para el mismo diámetro de partícula se puede decir que las dimensiones encontradas para el sedimentador de sección circular son muy similares por lo cual se considera tener un buen grado de acierto y se puede tomar cualquiera de los dos procedimientos anteriormente mencionados.

6. CONCLUSIONES

- El modelo del sedimentador de sección circular con flujo a presión construido es capaz de sedimentar partículas sólidas naturales de diámetro d = 0.074 mm.
- El sedimentador de sección circular logra unas eficiencias de remoción, η, considerablemente buenas, logrando un η = 99.3% para un d = 0.074 mm, η = 94.5 % para d = 0.125 mm y un η = 99.14% para d = 0.25 mm. Lo que indica una elección acertada tanto de los procedimientos realizados, como de las ecuaciones seleccionadas.
- La longitud del sedimentador mínima para realizar un adecuado y óptimo proceso de sedimentación, varia de acuerdo al diámetro de la partícula, *d*, y a la concentración volumétrica, *C*.
- La longitud del sedimentador, L, es mas grande cuanto mayor sea el diámetro de la partícula a sedimentar, debido a la densidad de los sedimentos ρ_s .
- A concentraciones bajas, la primera tolva recoge una mayor cantidad de sedimentos que la última, a cierta concentración se llega al fenómeno que las tolvas que reciben mayor cantidad de sólidos son las que se ubican en la longitud media del tubo del sedimentador, y cuando se tiene unas concentraciones altas las tolvas que cumplen con la función de recibir mayor peso de sólidos son la primera o las dos primeras.
- El área de drenaje, A_d, seleccionado por medio de la ecuación encontrada por Gómez(2004) es menor a la necesaria para evitar la depositación de las partículas sólidas en las paredes del tubo.
- Las gráficas de eficiencia, η , vs. $Ln\left(\frac{L}{D}\right)$ y vs. $\frac{A_d}{D^2}$ individualmente, es decir para cada concentración, logran una correlación del 0.95 aproximadamente,

esto indica que la variación de las relaciones $\left(\frac{L}{D}\right)$ y $\frac{A_d}{D^2}$ indican en gran medida la variación de la eficiencia, η .

- Las curvas que se generan al graficar eficiencia, $\boldsymbol{\eta}$, vs. $Ln\left(\frac{L}{D}\right)$ y vs. $\frac{A_d}{D^2}$, por cada concentración con cada diámetro de partícula, \boldsymbol{d} , son paralelas entre si, y aumentan su pendiente al aumentar la concentración volumétrica, \boldsymbol{C} , de la mezcla.
- Después de cierto valor de concentración, *C*, la eficiencia de remoción de partículas del agua, *η*, permanece constante, para el caso de d = 0.074 mm este valor de concentración es igual a 22%, para d = 0.125 mm C = 8% y para d = 0.25 mm C = 10%, que se pueden considerar como concentraciones críticas para dichos diámetros de partícula.
- La ecuación exponencial que se puede formular para relacionar F'_L o F_L con la eficiencia, η , no explican de una manera muy acertada la variación de esta última variable, por el contrario si se relaciona F'_L / F_L y η se alcanza un valor de correlación significativamente mayor, lo cual indica que esta correspondencia explica mejor la varianza de la eficiencia, η .
- Los parámetros como : $\frac{\mu}{\rho_w V'_s D}$, $\left(\frac{V_m}{V'_s}\right)$, $\frac{gD}{V'_s}$, $\frac{\mu}{\rho_w V_m D}$, $\left(\frac{V'_s}{V_m}\right)$, $\frac{gD}{V_m^2}$, $\frac{\mu}{\rho_w V'_s d}$, $\frac{gd}{V'_s^2}$, $\frac{\rho_w V'_s d}{\mu}$, $\frac{\rho_s V'_s d}{\mu}$, $\frac{\rho_w V'_s D}{\mu}$, $\frac{\rho_s V'_s D}{\mu}$, $\frac{\mu}{\rho_w V_m L}$, $\frac{gL}{V_m^2}$, $\frac{V'_s}{\sqrt{gd}}$, $\frac{V_m}{\sqrt{gd}}$, al relacionarse con la eficiencia, η , proporcionan una gráfica que no se acerca mucho a los datos experimentales obtenidos,(correlación pequeña), o sea que su relación individual con la eficiencia no es muy aceptable.
- Si los mismos parámetros anteriores se acomodan en una ecuación como se estudió en el análisis dimensional, se obtiene un número de ecuaciones para encontrar eficiencia de remoción, η, con un porcentaje de error admisible, y que explican en un alto grado la variación de la misma.
- Las ecuaciones para hallar eficiencia, η , con el mínimo error, de las propuestas son las establecidas en la Tabla 4.97, Ec. [4.45a] con un error

de 12.48%, Ec. [4.43b] con un error de 15.3%, Ec. [4.39b] con un error de 15.3%, Ec. [4.41c] con un error de 16.29%, Ec.[4.51b] con un error de 18.7%.

7. RECOMENDACIONES

- Ampliar este estudio a un diámetro de partículas mayor y así aumentar el rango de aplicación de las ecuaciones obtenidas, ya que las propuestas para el cálculo de η en la presente investigación, son válidas para los diámetros de partícula d = 0.074 mm, d = 0.125 mm y d = 0.25 mm, que según la clasificación se encuentran entre una arena fina y una arena gruesa respectivamente.
- Continuar la experimentación de los sedimentadores con diámetros mayores, trabajando un mayor caudal, para poder así comparar que tan símil es el comportamiento entre este y el grupo de caudales que hacen parte del presente proyecto.
- Realizar ensayos con mezclas de agua y sedimento con una gradación definida, para no involucrar en las variables el diámetro de partícula, d, sino la desviación geométrica de los sólidos, σ_s , y así acercarse un poco más a la realidad del proceso de sedimentación, que es en si el objetivo que se quiere alcanzar, a pesar de que para establecer un procedimiento de diseño se necesita el menor diámetro de partícula con el que se va a realizar dicho diseño.
- Implementar un sedimentador piloto de sección circular con flujo a presión en un sistema de potabilización primario o completo, trabajando con mayores caudales y a condiciones que se acercan más a la realidad, a partir de los resultados presentados con esta experimentación y este análisis.
- Llevar los productos de esta investigación al campo del transporte de sedimentos naturales en tubos de sección circular, porque estos no solo se pueden encaminar a la profundización o ampliación del tema de sedimentadores de fuljo a presión.
- Construir un número determinado de placas dentro de las tolvas, o permitir el paso de los sedimentos a las tolvas por medio de placas perforadas, o cualquier otro método que evite que a ciertas velocidades las partículas no se sedimenten, debido a que durante el proceso de experimentación, se observó una recirculación de los sedimentos dentro de las tolvas.

- Evitar la depositación del sedimento en el accesorio de entrada (codo) al tubo principal del sedimentador, conectando el sedimentador a unos accesorios de mayor diámetro, para así aumentar la velocidad de flujo hasta que arrastre las partículas. Otro método es aumentar la cabeza de presión en el inicio del sedimentador para no hacer una conexión con una te seguido de un codo, sino únicamente con una te, que además ayudaría a bajar las pérdidas de carga.
- Investigar y experimentar acerca del transporte del sólido sedimentado hasta un lugar apropiado, ya que este seria un punto de gran magnitud si este tipo de sedimentadores se implementa en un futuro.

BIBLIOGRAFÍA

Cheng. N. S. (1997b) "Effect of Concentration on Settling Velocity of Sediment Particles". Journal of Hydraulic Engineering. Vol 123. No 8. 1997b.

-----. "Simplified Settling Velocity Formula For Sediment Particle". Journal of Hydraulic Engineering. Vol 123. No 2. 1997a.

Calidad y tratamiento del agua Manual de suministros de agua comunitaria, American Water Works Association, Mc Graw – Hill Profesional.

Duckworth, R.A. "The hydraulic transport of materials by pipeline". South African Mechanical Engineer (Johannesburg). 1978.

JIMÉNEZ, Luisa. Análisis estadístico para algunas pruebas biológicas, 2000.

Gómez, Z. Hernán. J., (2004) "Efecto de la Concentración de Partículas de Sedimentos Naturales en la Velocidad Mínima de Transporte en Canales Abiertos ". XXI Congreso Latinoamericano de Hidráulica". São Pedro, Estado de São Paulo, Brasil, octubre 18 al 22 de 2004.

------. "Estudio de separadores hidráulicos de partículas con flujo a presión en tubos rectos de sección circular". XXII Congreso Latinoamericano de Hidráulica. Guayana, Estado de Bolívar, Venezuela, 2006.

------. "Hidrotransporte de sedimentos en tubos horizontales a presión: Estudio de la velocidad crítica de depositación". Trabajo de investigación para optar el título de Magíster en Recursos Hidráulicos. Universidad Nacional de Colombia. Bogotá. Oct 2002.

------. "Separadores Hidráulicos de Partículas en Tubos con Flujo a Presión". XVII Seminario Nacional de Hidráulica e Hidrología. Popayán, Cauca, 2006.

Gómez, Z. Hernán. J., Ordóñez, O.J.I., (2002) "Velocidad Crítica de Depositación en el Transporte de Sedimentos en Tubos Horizontales a Presión ", *XX Congreso Latinoamericano de Hidráulica,* La Habana, Cuba, Octubre de 2002.

Graf, H. W. "Hydraulics of Sediment Transport". McGraw. Hill. New York. 1971. 513 pages [ISBN 07-023900-2]

Kokpinar, A.-M. & Gogus M. "Critical Velocity in Slurry Transporting Horizontal Pipes". Journal of Hydraulic Engineering. Vol. 127. No 9. September. 2001. Pp 763-771. ASCE.

Parzonka, W; Kenchington, Charles, J.M. (1981). "Hydrotransport of solids in horizontal pipes: effects of solids concentration and particle size on deposit velocity". Canadian Journal of Chemical Engineering. (Ottawa). 1981. Vol. 59, No. 3, pages 291.296. [6 pp.]

Yang, Chih Ted. (1996) "Sediment Transport: Theory and Practice". McGraw. Hill. Series in Water Resources and Environmental Engineering. New York. 1996.

http://www.unlu.edu.ar/~qui10017/Quimica%20COU%20muestra%20par a%20IQ10017/Cap%A1tulo%20VIa.htm.

http://www.invias.gov.co
ANEXOS

ANEXO A. Ubicación general de la zona de extracción de sedimentos

ANEXO B. Ubicación de la zona de extracción de sedimentos

ANEXO C. Mapa topográfico de la ubicación de la zona de extracción de sedimentos

ANEXO D. Fotografía de extracción de los sedimentos

ANEXO E. Fotografía del lecho de la quebrada de la vereda Dolores

ANEXO F. Fotografía de la quebrada de la vereda Dolores

ANEXO G. Fotografía de sedimentos diámetro de partícula pasante tamiz No 16 y retenido en tamiz No 30

ANEXO H. Fotografía de sedimentos diámetro de partícula pasante tamiz No 30 y retenido en tamiz No 60

ANEXO I. Fotografía de sedimentos diámetro de partícula pasante tamiz No 60 y retenido en tamiz No 120

	ALLING STREET
1	Participan
1	and a provide
	AND AD DE NAME

UNIVERSIDAD DE NARIÑO FACULTAD DE INGENIERÍA - DEPARTAMENTO DE INGENIERÍA CIVIL LABORATORIO DE SUELOS

(ASTM D 854-92)

PROYECTO: LOCALIZACIÓN: ELABORADO POR: DESCRIPCIÓN:

ESTUDIO EXPERIMENTAL DE SEDIMENTADORES EN TUBOS CIRCULARES CON FLUJO A PRESION	SONDEO:
LECHO QUEBRADA DE LA VEREDA DOLORES	MUESTRA:
YURI BIBIANA NARVAEZ - ANAMARIA SANTACRUZ	PROF. (m):
SEDIMENTO PASANTE TAMIZ No 120 Y RETENIDO EN TAMIZ No 200	FECHA RECEPCIÓN:
	FECHA ENSAYO:

PRUEBA	S	1	2	3	4	5	6
Tx,	C	17,0	18,0	18,0	18,0		
Wa,	g	329,0	339,0	335,3	333,9		
Wb,	g	412,5	414,7	411,1	420,4		
(Wa-Wb),	g	<u>-83,55</u>	<u>-75,70</u>	<u>-75,80</u>	<u>-86,48</u>		
Wo,	g	127,20	116,70	116,90	132,70		
Wo + (Wa - Wb),	g	<u>43,65</u>	<u>41,00</u>	<u>41,10</u>	<u>46,22</u>		
PStx = Wo/(Wo+(Wa	ı - Wb))	<u>2,9141</u>	<u>2,8463</u>	<u>2,8443</u>	<u>2,8711</u>		
к		<u>1.0006</u>	<u>1.0004</u>	<u>1,0004</u>	<u>1.0004</u>		
PS _{20 °C} = K x PStx		<u>2,9158</u>	<u>2.8475</u>	<u>2,8454</u>	<u>2.8722</u>		
Picnómetro o frasco I	No.	7	10	4	5		

Wa = Peso del picnómetro lleno con agua a la temperatura Tx

Wb = Peso picnómetro con agua y muestra

Wo = Peso seco de la muestra

Tx = Temperatura del agua y muestra al momento de determinar el Wb

PStx = Peso específico a la temperatura Tx

K = Factor de corrección

 $PS_{20 \ C}$ = Peso específico a 20 $^{\circ}C$

Observaciones:

%= 1,02 < 1,02 VALOR ACEPTABLE	s	2.87	
<u> </u>	VALOR ACEPTABLE		
	%=	1,02	< 1,02

Ejecutó

Jefe del Laboratorio

Temperatura ℃	Densidad Relativa del agua	Factor de Corrección K
10	0,999730	1,0015
11	0,999630	1,0014
12	0,999520	1,0013
13	0,999400	1,0012
14	0,999270	1,0010
15	0,999130	1,0009
16	0,998970	1,0007
17	0,998800	1,0006
18	0,998620	1,0004
19	0,998430	1,0002
20	0,998230	1,0000
21	0,998020	0,9998
22	0,997800	0,9996
23	0,997570	0,9993
24	0,997330	0,9991
25	0,997070	0,9988
26	0,996810	0,9986
27	0,996540	0,9983
28	0,996260	0,9980
29	0,995970	0,9977
30	0,995860	0,9974

1

0

20-nov-06 05-dic-06

	COLUMN OF THE
1	12 ADASY
1	PET Ry
1	
	DAD OF IL

UNIVERSIDAD DE NARIÑO FACULTAD DE INGENIERÍA - DEPARTAMENTO DE INGENIERÍA CIVIL LABORATORIO DE SUELOS

(ASTM D 854-92)

PROYECTO: LOCALIZACIÓN: ELABORADO POR: DESCRIPCIÓN:

ESTUDIO EXPERIMENTAL DE SEDIMENTADORES EN TUBOS CIRCULARES CON FLUJO A PRESION	SONDEO:	1
LECHO QUEBRADA DE LA VEREDA DOLORES	MUESTRA:	
YURI BIBIANA NARVAEZ - ANAMARIA SANTACRUZ	PROF. (m):	0
SEDIMENTO PASANTE TAMIZ No 60 Y RETENIDO EN TAMIZ No 120	FECHA RECEPCIÓN:	20-nov-06
	FECHA ENSAYO:	06-dic-06
	FECHA ENSAYO:	06-dic-06

PRUEBA	AS	1	2	3	4	5	6
Tx,	C	19,0	18,0	19,0			
Wa,	g	339,2	333,9	335,2			
Wb,	g	402,8	383,3	398,4			
(Wa-Wb),	g	<u>-63,60</u>	<u>-49,38</u>	<u>-63,22</u>			
Wo,	g	98,70	76,40	97,10			
Wo + (Wa - Wb),	g	<u>35,10</u>	<u>27.02</u>	<u>33.88</u>			
PStx = Wo/(Wo+(Wa	a - Wb))	<u>2,8120</u>	<u>2.8275</u>	<u>2.8660</u>			
к		<u>1.0002</u>	<u>1.0004</u>	<u>1.0002</u>			
PS _{20 °C} = K x PStx		<u>2,8125</u>	<u>2.8287</u>	<u>2.8666</u>			
Picnómetro o frasco	No.	10	5	4			

Wa = Peso del picnómetro lleno con agua a la temperatura Tx

Wb = Peso picnómetro con agua y muestra

Wo = Peso seco de la muestra

Tx = Temperatura del agua y muestra al momento de determinar el Wb

PStx = Peso específico a la temperatura Tx

K = Factor de corrección

PS_{20 ℃} = Peso específico a 20 ℃

Observaciones:

s	2.84	
VALOR ACEPTABLE		
%=	1,019215	< 1,02

Ejecutó

Jefe del Laboratorio

Temperatura ℃	Densidad Relativa del agua	Factor de Corrección K
10	0,999730	1,0015
11	0,999630	1,0014
12	0,999520	1,0013
13	0,999400	1,0012
14	0,999270	1,0010
15	0,999130	1,0009
16	0,998970	1,0007
17	0,998800	1,0006
18	0,998620	1,0004
19	0,998430	1,0002
20	0,998230	1,0000
21	0,998020	0,9998
22	0,997800	0,9996
23	0,997570	0,9993
24	0,997330	0,9991
25	0,997070	0,9988
26	0,996810	0,9986
27	0,996540	0,9983
28	0,996260	0,9980
29	0,995970	0,9977
30	0,995860	0,9974

	UNIVERSIDAD DE NARIÑO FACULTAD DE INGENIERÍA - DEPARTAMENTO DE INGENIERÍA CIV LABORATORIO DE SUELOS (ASTM D 854-92)						
PROYECTO: LOCALIZACIÓN: ELABORADO POR: DESCRIPCIÓN:	ESTUDIO E LECHO QU YURI BIBIA SEDIMENT	PERIMENTAL DE SEDIMENTADORES EN TUBOS CIRCULARES CON FLUJO A PRESION BRADA DE LA VEREDA DOLORES IA NARVAEZ - ANAMARIA SANTACRUZ) PASANTE TAMIZ No 30 Y RETENIDO EN TAMIZ No 60				SONDEO: _ MUESTRA: _ PROF. (m): _ FECHA RECEPCIÓN: _ FECHA ENSAYO:	0 20-nov-06 06-dic-06
PRUEBA	s	1	2	3	4	5	6
Tx,	ũ	17,0	18,0	18,0	18,0		
Wa,	g	339,4	333,9	335,3	339,4		
Wb,	g	426,2	414,9	431,9	420,2		
(Wa-Wb),	g	<u>-86,78</u>	<u>-80,98</u>	<u>-96,60</u>	<u>-80,80</u>		
Wo,	g	135,60	126,00	149,40	125,10		
Wo + (Wa - Wb),	g	<u>48.82</u>	<u>45,02</u>	<u>52,80</u>	<u>44.30</u>		
PStx = Wo/(Wo+(Wa	- Wb))	<u>2,7776</u>	<u>2,7988</u>	<u>2,8295</u>	<u>2.8239</u>		
к		<u>1.0006</u>	<u>1.0004</u>	<u>1.0004</u>	<u>1.0004</u>		
PS _{20 °C} = K x PStx		<u>2,7792</u>	<u>2,7999</u>	<u>2.8307</u>	<u>2.8251</u>		
Picnómetro o frasco N	No.	10	5	4	3		

Wa = Peso del picnómetro lleno con agua a la temperatura Tx

Wb = Peso picnómetro con agua y muestra

Wo = Peso seco de la muestra

 $\mathsf{Tx}=\mathsf{Temperatura}\ \mathsf{del}\ \mathsf{agua}\ \mathsf{y}\ \mathsf{muestra}\ \mathsf{al}\ \mathsf{momento}\ \mathsf{de}\ \mathsf{determinar}\ \mathsf{el}\ \mathsf{Wb}$

PStx = Peso específico a la temperatura Tx

K = Factor de corrección

 $PS_{20 C}$ = Peso específico a 20 °C

%= 1,018516 < 1,02 VALOR ACEPTABLE

<u>S 2,81</u>

Ejecutó

3		
Temperatura ℃	Densidad Relativa del agua	Factor de Corrección K
10	0,999730	1,0015
11	0,999630	1,0014
12	0,999520	1,0013
13	0,999400	1,0012
14	0,999270	1,0010
15	0,999130	1,0009
16	0,998970	1,0007
17	0,998800	1,0006
18	0,998620	1,0004
19	0,998430	1,0002
20	0,998230	1,0000
21	0,998020	0,9998
22	0,997800	0,9996
23	0,997570	0,9993
24	0,997330	0,9991
25	0,997070	0,9988
26	0,996810	0,9986
27	0,996540	0,9983
28	0,996260	0,9980
29	0,995970	0,9977
30	0,995860	0,9974

Jefe del Laboratorio

Diámetro Dosificador [cm]	Peso [gr]	Tiempo [min]	Caudal [gr/min]
0.357	579.10	19.76	29.31
0.357	183.20	4.83	37.93
0.357	183.10	5.01	36.56
0.397	74.50	2.64	28.17
0.397	49.30	2.73	18.04
0.397	48.00	2.51	19.09
0.397	54.70	2.45	22.29
0.437	117.00	1.66	70.35
0.437	111.90	1.58	70.61
0.437	115.80	1.57	73.84
0.437	122.40	2.70	45.31
0.476	219.10	1.79	122.33
0.476	187.90	1.50	125.43
0.476	178.10	1.44	124.10
0.516	209.10	1.53	136.34
0.516	253.40	1.76	144.21
0.556	262.00	1.54	169.93
0.556	241.90	1.38	175.27
0.556	234.80	1.33	176.54
0.675	300.00	1.28	234.41
0.675	287.70	1.20	240.45
0.675	294.20	1.28	229.57
0.675	308.10	1.24	247.97
0.754	336.60	0.90	376.02
0.754	355.80	0.93	383.61
0.754	312.30	0.84	370.68
0.794	404.80	0.84	480.86
0.794	321.90	0.65	495.48
0.794	365.70	0.75	484.48
0.873	414.40	0.71	584.35
0.873	449.80	0.74	608.52
0.873	431.90	0.73	595.59

ANEXO M. Datos curva de calibración dosificador de sólidos d = [0.074 mm - 0.125 mm]

Diámetro	Peso [gr]	Tiempo	Caudal
Dosificador [cm]			
0.357	158.60	3.85	41.22
0.357	155.00	3.86	76.84
0.357	157.80	3.94	74.32
0.357	145.30	3.65	81.01
0.397	184.20	3.64	77.78
0.397	168.50	3.59	89.79
0.397	161.30	3.65	83.90
0.397	172.90	3.76	79.47
0.437	173.40	2.01	154.86
0.437	168.70	1.96	158.98
0.437	181.30	2.08	147.12
0.476	212.60	1.42	225.50
0.476	208.30	1.40	251.04
0.476	191.40	1.30	266.68
0.516	255.50	1.32	248.72
0.516	243.70	1.28	307.95
0.516	246.40	1.29	294.86
0.556	235.50	1.09	351.87
0.556	266.80	1.23	304.24
0.556	254.00	1.20	337.81
0.675	264.00	0.91	430.82
0.675	262.00	0.90	448.30
0.675	263.20	0.90	443.10
0.754	336.20	0.71	565.73
0.754	330.40	0.69	682.65
0.754	320.90	0.69	679.85
0.794	543.20	0.81	567.00
0.794	602.00	0.88	775.89
0.794	512.10	0.74	1001.67
0.873	534.60	0.74	878.97
0.873	514.60	0.71	947.63
0.873	406.10	0.55	1186.36

ANEXO N. Datos curva de calibración dosificador de sólidos d = [0.125 mm-0.25 mm]

Diámetro Dosificador [cm]	Peso [gr]	Tiempo [min]	Caudal [gr/min]
0.36	47.90	2.06	23.29
0.36	67.00	2.48	27.06
0.36	78.60	2.62	30.01
0.52	182.50	1.21	151.28
0.52	181.10	1.19	151.97
0.52	212.70	1.37	154.88
0.75	411.40	0.80	516.19
0.75	308.30	0.78	394.16
0.75	349.10	0.81	429.31
0.79	463.90	0.83	562.19
0.79	494.80	0.87	570.81
0.79	459.60	0.79	582.39
0.87	552.40	0.90	616.52
0.87	469.60	0.80	588.96
0.87	494.40	0.81	608.49
0.99	558.60	0.61	922.80
0.99	523.50	0.57	917.35
0.99	490.60	0.54	910.77
1.03	765.60	0.94	810.30
1.03	732.10	0.90	811.79
1.03	652.30	0.81	806.64
1.11	775.30	0.64	1209.20
1.11	713.20	0.60	1189.33
1.11	753.10	0.66	1140.77
1.11	769.70	0.66	1165.62
1.15	895.70	0.70	1275.62
1.15	711.20	0.56	1271.89
1.15	787.90	0.62	1265.70
1.19	626.80	0.45	1387.75
1.19	712.90	0.53	1339.62
1.19	852.70	0.63	1357.44
1.23	767.30	0.53	1446.37
1.23	857.10	0.60	1423.75
1.23	775.20	0.54	1431.58
1.27	872.00	0.58	1513.01
1.27	836.30	0.55	1519.62
1.27	775.50	0.52	1494.22

ANEXO O. Datos curva de calibración dosificador de sólidos d = [0.25 mm - 0.6 mm]

ANEXO P. Sedimentador de sección circular instalado.

ANEXO Q. Constante de sedimentos en las tolvas

ANEXO R. Proceso de sedimentación

ANEXO S. Flujo de mezcla (agua + sedimentos)

ANEXO T. Detalle de sedimentación

ANEXO U. Detalle de sedimentación en tolva

