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Dressed quark-gluon vertex form factors from gauge symmetry
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The origin of dynamical chiral symmetry breaking
(DCSB), the mass-generating mechanism responsible for the
overwhelming contribution to the nuclei’s masses, lies in
the non-Abelian nature of the theory of strong interactions
known as Quantum Chromodynamics (QCD). Starting with
the seminal work by Nambu and Jona-Lasinio [1], this mech-
anism has been gradually elucidated in QCD over the past
decades. While its role in generating hadron masses two or-
ders of magnitude larger than those of the light current quarks
is nowadays widely recognized, its likely deeper connection
to confinementstill remains speculative.

A common approach to investigate DCSB is to study the
gap equation of the quark, i.e. its two-point Green function,
and its nonperturbative formulation in terms of the Dyson-
Schwinger equation (DSE) [2]. The latter is a Euclidean-
space description of the quark’s equation of motion in rel-
ativistic quantum field theory and can be derived from the
generating functional in QCD [3]. The self-energy term in
this integral equation involves other Green functions, namely
the gluon propagator and the quark-gluon vertex, which are
irreducible two- and three-point functions, respectively. Both
contribute, along with the strong couplingαs, to the integral
kernel’s “strength” in the DSE.

Indeed, it is this strength that controls the emergence of
a mass gap. While the strong coupling and the form factor
associated with the gluon dressing form an overall strength
factor, the twelve tensor structures of the quark-gluon vertex
reveal a more intricate story. Their contributions are codified
in so-called longitudinal and transverse form factors and their
convolution with the strong coupling and the gluon dressing

function gives rise to a constituent quark mass scale.
Since the full structure of the dressed quark-gluon vertex,

and in particular of the associated form factors, still poses
a serious computational challenge in functional as well as in
lattice-QCD approaches, a common expedient in applications
to hadron physics is to retain merely its perturbativeγµ term.
Folding its form factor with that of the gluon propagator and
the strong coupling, one arrives at the nowadays well known
rainbow-laddertruncation of the gap equation, in which a
single analytic function mimics the infrared and ultraviolet
behavior and the strength of the strong interaction in an ef-
fective manner [4,5].

While this approach has certainly proven to be success-
ful in the computation of the light meson and baryon spec-
trum and their electromagnetic properties [6–15], it fails to
correctly describe the scalar and axialvector meson masses
and does not produce a satisfying mass ordering of higher
radially excited mesons. It also gives rise to a spurious spec-
trum of unobserved light mesons [6] with “exotic” quantum
numbers, and admits̄3c colored diquark bound-states. Still,
the latter feature can be favorably used to derive approxi-
mate Faddeev wave functions of baryons. The shortcoming
of this leading approximation is also observed in solving the
Bethe-Salpeter equation for pseudoscalar and vectorD andB
mesons [6, 9], but can be overcome introducing a flavor de-
pendence in the quark-gluon interaction [16–18]. However,
this comes at the cost of additional parameters for the charm
and bottom mesons.

Important improvements, based on the three-particle irre-
ducible (3PI) effective QCD action [19] or on a model ansatz
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for the quark-gluon vertex [20,21] amongst others, have been
obtained over the past decade, and one may assert that func-
tional QCD approaches to light and flavored mesons, heavy
quarkonia and baryons based on the DSE in conjunction with
either the Bethe-Salpeter equation (BSE) or Faddeev equa-
tion are overall very successful. This includes the mass spec-
trum of light and heavy mesons, the nucleon and∆ baryons,
their parity partners and radial excitations, as well as Comp-
ton scattering, elastic and transition form factors. Extensions
to tetraquark states have also been studied within this ap-
proach [22].

Nonetheless, a less model dependent interaction kernel,
based oncalculated QCD Green functions, of the quark
DSE and related bound-state equations is desirable. Only
a detailed construction of the interaction kernel, which in-
volves the fully dressed quark-gluon vertex, will allow to
verify whether the known hadron spectrum can be com-
pletely described with functional methods in QCD. In addi-
tion, there are not merely phenomenological but also formal,
field-theoretical motivations to study the analytic behavior of
the fermion-boson vertex. After all, this vertex plays a pivotal
role for DCSB in QED and in QCD. Its contribution to the in-
frared behavior of the quark propagator and to fragmentation
functions, and therefore to the elucidation of the confinement
mechanism, cannot be appreciated enough.

In this contribution we extend recent studies on the trans-
verse quark-gluon vertex, which we derived from transverse
Slavnov-Taylor identities and multiplicative renormalizabil-
ity in Refs. [23, 24]. In those studies we did not present fig-
ures of the different vertex form factors, so we here take the
opportunity to fill this gap.

The dressed quark-gluon vertex is the essential three-
point function which describes the nonperturbative coupling
of a dressed quark to a dressed gluon. As such, it is the source
of nonperturbative radiative gluon corrections to the current
quark’s relativistic motion. As in other relativistic quantum
field theories, the related equation of motion can be expressed
by a DSE conveniently derived within a functional approach
to QCD [3]:

S−1(p) = Z2 iγ · p + Z4 m

+ Z1g
2

Λ∫
d4k

(2π)4
∆ab

µν(q) γµtaS(k) Γb
ν(k, p) . (1)

In this integral equation,m is the renormalized current-quark
mass andZ4(µ, Λ) is its renormalization constant in the QCD
Lagrangian, whileZ1(µ, Λ) and Z2(µ, Λ) are vertex and
wave-function renormalization constants, respectively. The
integral in Eq. (1) expresses the quark’s self-energyΣ(p2),
whereΛ is an ultraviolet Poincaré invariant cut-off andµ is
the renormalization scale imposed, so thatS−1(p)|p2=µ2 =
γ · p + m(µ), with the common choiceΛ À µ. Furthermore,
∆µν(q) is the dressed gluon propagator in Landau gauge and
Γa

µ(k, p) = Γµ(k, p) ta is the dressed quark-gluon vertex,
whereta = λa/2 are the SU(3)c group generators anda, b
represent color indices.

The solutions of the DSE (1) can be most generally de-
composed into scalar and vector pieces,

S(p) =
1

iγ · p A(p2) + B(p2)
=

Z(p2)
iγ · p + M(p2)

, (2)

where Z(p2, Λ2, µ2) = 1/A(p2, Λ2, µ2) and M(p2) =
B(p2, µ2, Λ2)/A(p2, µ2, Λ2) are the flavor dependent, run-
ning wave renormalization and mass functions, respectively.

The complete vertex,Γµ(k, p), can be expanded in terms
of four non-transverse and eight transverse covariant vector
structures [25],

Γµ(k, p) = ΓL
µ(k, p) + ΓT

µ (k, p) =
4∑

i=1

λi(k, p)Li
µ(k, p)

+
8∑

i=1

τi(k, p)T i
µ(k, p) , (3)

in which p is the incoming andk the outgoing quark mo-
mentum and the gluon momentum,q = k − p, flows into
the vertex. The transverse vertex is naturally defined by
q · ΓT (k, p) = 0. We work with the vector base forLi

µ(k, p)
andT i

µ(k, p) defined in Ref. [26].
The form factors of the quark-gluon vertex, in particu-

lar of the longitudinal components, have been explored in
pQCD and in nonperturbative approaches, see for instance
Refs. [21, 27–37] or Ref. [24] for a more detailed bibliog-
raphy on the fermion-boson vertex. Recently, we employed
two transverse Slavnov-Taylor identities [38], which express
color gauge invariance and Lorentz covariance and constrain
the transverse quark-gluon vertex, to derive the eightτi(k, p)
form factors in QCD [24]. Along with the known expressions
for λi(k, p) [31,32] we found thatΓµ(k, p) in Eq. (3) can be
described by the following set of form factors:

λ1(k, p) =
1
2

G(q2)X0(q2)
[
A(k2) + A(p2)

]
, (4)

λ2(k, p) = G(q2)X0(q2)
A(k2)−A(p2)

k2 − p2
, (5)

λ3(k, p) = G(q2)X0(q2)
B(k2)−B(p2)

k2 − p2
, (6)

λ4(k, p) = 0 (7)

τ1(k, p) = − Y1

2(k2 − p2)∇(k, p)
, (8)

τ2(k, p) = − Y5 − 3Y3

4(k2 − p2)∇(k, p)
, (9)

τ3(k, p) =
1
2

G(q2)X0(q2)
[
A(k2)−A(p2)

k2 − p2

]

+
Y2

4∇(k, p)
− (k + p)2(Y3 − Y5)

8(k2 − p2)∇(k, p)
, (10)

τ4(k, p) = −6Y4 + Y A
6

8∇(k, p)
− (k + p)2Y S

7

8(k2 − p2)∇(k, p)
, (11)
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FIGURE 1. Form factors of the longitudinal vertexΓL
µ (k, p) (3) as functions of the quark momenta,k2 andp2 [in GeV2], and for the angle

θ = 2π/3.

FIGURE 2. Form factors of the transverse vertexΓT
µ (k, p) (3) as functions of the quark momenta,k2 andp2 [in GeV2], and for the angle

θ = 2π/3.
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τ5(k, p) = −G(q2)X0(q2)
[
B(k2)−B(p2)

k2 − p2

]

− 2Y4 + Y A
6

2(k2 − p2)
, (12)

τ6(k, p) =
(k − p)2Y2

4(k2 − p2)∇(k, p)
− Y3 − Y5

8∇(k, p)
, (13)

τ7(k, p) =
q2(6Y4 + Y A

6 )
4(k2 − p2)∇(k, p)

+
Y S

7

4∇(k, p)
, (14)

τ8(k, p) = −G(q2)X0(q2)
[
A(k2)−A(p2)

k2 − p2

]

− 2Y A
8

k2 − p2
. (15)

In Eqs. (8) to (15) the Gram determinant is defined by
∇(k, p) = k2p2 − (k · p)2. The form factorsλi(k, p),
i = 1, 2, 3, and τi(k, p), i = 3, 5, 8, are proportional to
the ghost-dressing functionG(q2) which is renormalized as
G(µ2) = 1. Moreover,X0(q2) is the leading form factor of
the quark-ghost scattering amplitude,Ha(k, p) = H(k, p)ta;
see,e.g., Refs. [32, 33] for details. The a priori unknown
scalar functions,Y A,S

i , are form factors we introduce to de-
compose a four-point function that appears in the transverse
Slavnov-Taylor identities and which involves a non-local vec-
tor vertex and a Wilson line to preserve gauge invariance. We
refer to the discussion in Ref. [38] and merely stress that the
Y A,S

i functions have been constrained by us in Ref. [39] with
the vertex ansatz of Ref. [29] and insisting on multiplicative
renormalizability.

We solve the DSE (1) with numerical input from lattice
QCD [40, 41] for the gluon and ghost dressing functions,
∆(q2) and G(q2), and with the vertex defined by Eqs. (3)
to (15). The solution for the vector and scalar components
of the quark propagator,A(p2) andB(p2) respectively, are

then used to compute the form factorsλi(k, p) andτi(k, p).
We present them in Figs. 1 and 2 as functions of the mo-
menta squaredk2 andp2 and for the kinematic configuration:
cos θ = k · p/|k||p| = −1/2, θ = 2π/3.

The functional form of theλi(k, p) form factors is sim-
ilar to that found in Refs. [32, 33] though with differences
in magnitude, as those studies exclusively concentrated on
ΓL

µ(k, p). Therefore, some strength is shifted from the trans-
verse to the longitudinal vertex and a direct comparison is
difficult. As observed in Ref. [24], the dominating contribu-
tion of the transverse vertex in the gap Eq. (1), and therefore
to DCSB, is due to the form factorsτ4(k, p) andτ7(k, p). We
multiply them and alsoτ1(k, p) by q2 in Fig. 2 in order to
regularize a singular behavior at the origin. Note that this
poses no problem in the numerical treatment of the quark
DSE since kinematic factors in the integral kernel have an
analogous regularizing effect.

A more comprehensive treatment of the these form fac-
tors taking into account other anglesθ, which include the
soft-gluon and symmetric quark limit, is underway. This
also requires the contributions of the sub-leading form factors
X1(k, p), X2(k, p) andX3(k, p) that parametrize the quark-
ghost scattering amplitude.
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versity of Michoaćan and CONACyT, Mexico, through grant
Nos. 4.10 and CB2014-22117, respectively.

1. Y. Nambu and G. Jona-Lasinio, Dynamical Model of Elemen-
tary Particles Based on an Analogy with Superconductivity.
1.,Phys. Rev.122(1961) 345-358https://doi.org/10.
1103/PhysRev.122.345 .

2. A. Bashir, L. Chang, I. C. Clöet, B. El-Bennich, Y. X. Liu,
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