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In this study, we propose an extension of the formulation developed by Faddeev and Jackiw to
include anticommutative variables in the language of supergeometry, as it could be a cost-
effective way to determine the (Z,-graded) Poisson structure of theories describing spin-like
degrees of freedom. Specifically, we apply the developed approach to pseudoclassical systems to
lately use the standard canonical quantization program to check whether their already known
quantum description is recovered.
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1. Introduction

The advent of quantum theory undoubtedly taught physicists that the well-known
laws that govern the everyday observable world are just a limiting case of a more
general and elegant theory, which has proven to be one of the greatest and most
profound achievements of human knowledge — understand science — about the
understanding of nature in its most primitive phase. It is also well known that there
are quantum systems that have classical analogue and this feature paved the way
for the powerful tool known as quantization, which states that one can establish

$Corresponding author.
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a one-to-one correspondence from the mathematical framework of the classical de-
scription of a system to the mathematical structure of its corresponding quantum
depiction. In this sense, the so-called quantization is merely an ambitious attempt to
start from a particular theory and arrive at a more general one. Nevertheless, the
enormous success of the correspondence principle suggests that in practice it is
possible, at least formally, to make use of this sort of inverse recipe of building an
acceptable quantum modeling from a previously established classical theory.

Another new concept brought by quantum mechanics that revolutionized our
view of nature at atomic scales is that each constituent of matter carries an intrinsic?
angular momentum known as spin. Our current knowledge of spin is that it is always
quantized and its corresponding quantum number can take either integer or half-
integer values; particles with integer spin are called bosons, while particles with half-
integer spin are known as fermions, and they behave very differently in nature.
According to Feynman, even though the rules for spin have been easily stated, no one
has found a simple explanation for them, which suggests that our understanding of
spin is still incomplete.! Mathematically, the quantum fields used to describe bosonic
particles obey commutation relations, whilst anticommutation relations govern fer-
mionic fields. Provided that a field theory can be thought of as an infinite degrees of
freedom extension of the description of a mechanical system, we might expect that a
classical description of spin degrees of freedom inherit that anticommutative be-
havior; therefore, the coordinates describing the spin degrees of freedom should be
Grassmann variables. The theory that takes into account the mentioned ingredient is
known as pseudoclassical mechanics or pseudomechanics after the name was coined
by Casalbuoni,?? though Berezin and Marinov also made enormous contributions to
the subject.®” It was shown that pseudomechanics is the classical limit (A — 0) of a
general nonrelativistic quantum theory with both Bose and Fermi operators. In this
sense, a pseudoclassical system admits the possibility of describing the spin at a pre-
quantum level.

It is also important to mention that any classical system described by a
Lagrangian on configuration space can be classified as regular or singular through the
Hessian criterion, which implies that any Lagrangian linear in time-derivatives of
generalized coordinates is always singular and so the standard Hamiltonian con-
struction is not well-defined; therefore, a consistent canonical analysis of the theory
requires the use of Dirac method® to obtain a dynamics compatible with the con-
straints involved. Nevertheless, there is another equivalent formulation developed by
Faddeev and Jackiw” that allows to treat a Lagrangian linear in velocities as non-
singular. This approach is built on the kinematically independent variables of the
standard phase space (in canonical formulation); notwithstanding, we will refer to
the set of these variables also as phase space. In fact, in the Faddeev—Jackiw (FJ)
formulation, the Lagrangian is written in such a way that it is linear in velocities.”

“In the sense that it has nothing to do with its motion in space.

"In this case, we use this term to refer to the time derivatives of the Faddeev—Jackiw phase space
coordinates.
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On the other hand, it turns out that any Lagrangian that considers anticommutative
variables is necessarily linear in the time derivatives of them and thus, the afore-
mentioned Hessian criterion tells us that such a Lagrangian is singular. However,
since this criterion is restricted just to configuration variables and their derivatives,
it does not apply to a Lagrangian defined on phase space. Therefore, the Hessian
criterion does not forbid the nonsingularity of the particular structure of the
Lagrangian employed in the FJ approach. The FJ formulation has some advantages
over the Dirac one, among which highlights the lack of need to classify the
constraints. However, the main feature of the FJ approach is that it provides a
systematic way to obtain the correct Poisson structure for both constrained and
unconstrained systems, which is the starting point of the canonical quantization
program.

This paper is devoted to the investigation of pseudoclassical discrete systems
in the Faddeev—Jackiw formulation since it allows treating this type of systems
as nonsingular. The structure of this paper is the following: In Sec. 2, we present
the principal ideas and objects involved in the Faddeev—Jackiw pseudoclassical
construction for regular systems and their relation with the corresponding classical
Zy-graded brackets. Section 3 contains some instructive examples of pseudomecha-
nical systems and some relevant consequences, such as total angular momentum as
Noether charge, and the very primitive idea of supersymmetry (at the pseudo-
classical level). In Sec. 4, we proceed to perform the canonical quantization program
for the systems presented in the previous section. Finally, Sec. 5 contains our
conclusions of this work.

2. Faddeev-Jackiw Theory Involving Grassmann Variables

In this section, we present an extension of the Faddeev—Jackiw approach for discrete
systems described by both commutative and anticommutative variables; the latter
refers to the so-called Grassmann numbers. Given this, the whole construction is
performed on a set with R™/"-structure, which we call phase superspace, M, and we
denote the corresponding supercoordinates by {z4}"}71'. It is noteworthy that such
an extension has already been developed, but in a subtly different way;¢ see for
example Refs. 8 and 9. The Faddeev—Jackiw theory is constructed for a Lagrangian

written in its canonical form; i.e. linear in the velocities as we show below:
L(z 2) = £'04(2) — H(2), (1)

in which H is the Hamiltonian, depending only on zvariables (involving no time-
derivatives of them). The coefficients of the velocities are the components of a 1-form

“The Faddeev—Jackiw formulation is commonly treated in the component language; however, it is more
convenient (from a computational point of view) to deal with the geometric objects involved rather than
their components. Furthermore, being careful with the conventions employed in the Z,-case is of utmost
importance.

4Throughout this paper, we will use the left-derivative convention.
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on M:
0=dz"0,, 04=04(2) (2)

called canonical 1-form. Note that the Lagrangian takes objects of R?™2" and as-
suming it as a homogeneous superfunction, in principle,® there are two possibilities
for its Grassmann-parity. Then, one can label it by a parameter such that |L| = €. As
a consequence, it is possible to deduce from (1):

[H| =€ |04 =|Al+¢ 3)

in which we have denoted |A| = |24|. Recall that there are two conventions for the
exterior derivative operator on superspace, which depends on its Grassmann-parity,
namely, Deligne convention (|d| = 0) and the Bernstein—Leites (|d| = 1) one. For
now, we write |d| = k, allowing also the two possibilities.'"f The next step will be to
determine the dynamics generated by the Lagrangian in (1) using Hamilton’s prin-
ciple, that is, by varying the action,

S[e] = [ " L(z 2)dt (4)

and obtaining a necessary condition for its extreme value, considering suitable
boundary conditions. Then, one arrives at the following equations of motion:

. O H
wABzB = ﬁ7 (5)
with
9,0 9,0
wap = (_1)B|<e+1>( il _ (yyia aLzBA) ©)

From (6) it is straightforward to check the following properties:
{WAB = (=1)(IARDABHD+e(AHB) )
lwapl = |A] +|B| + e
It is interesting to see what happens if we take the exterior derivative® of the
canonical 1-form:

df = — (—1)"HHBIdB A d2A (%L:f _ (=1)lIB 8L0A> _ ®)

078

No| —

¢ Although all models of physical interest are described by an even Lagrangian, for our purposes it is useful
to consider both cases.

'Given a p-form o and a g¢form B, in the Deligne convention, aA 8= (—1)Pl¥IgAq and
d(aAB) = da A B+ (—1)Pa A df3, whereas in the Bernstein-Leites (BL) convention, a A § = (—1)*I01g A
aand d(a A B) = da A B+ (=1)1a A dB."! Onthe other hand, the BL convention can be interpreted also as
an even derivation but with different gradings: a A g = (=1)HDGA 0 and d(aAf) =
da A B+ (=1)le+Pa A d3, see for example.'?

¢In our convention, the exterior derivative acts on the left.
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Then, from (6) it is possible to write

1
d = -5 (—1)BIk+etD) 428 A dzde 5, (9)

thus, picking conveniently k£ + ¢ = 1, we obtain

1
do = fEdzB A dztwap. (10)

Therefore, with this choice for k£ = k(e), we get the following fundamental relation:
df = —w. (11)

On the other hand, the Grassmann-parity of the 2-form" w is presented as follows:

1
lw| = ‘deB ANdzdwap

=(Bl+¢) + (Al +¢) + (JA[+ B[ +¢) = e (12)

From this, we see that the parity of w coincides with the Lagrangian’s one. In the
nonsingular case, w is a symplectic form and its inverse, with components w3

defined by

WACWCB = 6% = wBCwCA (13)

are such that

wAB — (_1)1+(\A\+e)(|B|+e)wBA
’ (14)
WA =|A| +|B] +e.
By using (13) we can rewrite the equations of motion (5) as
o H
A = A8 L (15)

928"
As usual, one introduces the graded Poisson brackets (GPB) by the requirement:
F={F;H},, (16)

where F' is an arbitrary homogeneous dynamical superfunction on M. From this
demand, and using (15), we obtain the explicit expression of the GPB of two dynamic
superfunctions:

OrF 501G

R ABZLE
024 028

in which the e-dependence of the GPB is due to the fact that the parity of w??
depends on the parameter €. Moreover, a quick computation yields

{54 = e = |wl. (18)

{F;G}.= (17)

bt is important to not confuse the object w with its components w 4.
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Thus, we see that the Grassmann-parity of the GPB is given by that of the 2-form w.
The graded Poisson brackets obey the following properties:

(1) Grassmann-parity:
HE;GYel = |F| + ]Gl + e (19)
(2) Graded antisymmetry:
[F; @), = ~(~1)IF6+0 (G; FY,. (20)
(3) Graded Jacobi’s identity:
(—)FHUIEIN PGy HY o + (=) (UG {H F

+ (=)L, {F; G e = 0, (21)
(4) Graded Leibniz’s rule:
{FiGH} = {F;G} H + (-1)("HICIG{F HY.. (22)

The GPBs with ¢ = 0 are known as super Poisson brackets, whereas GPBs with
e = 1 are called odd Poisson brackets or classical antibrackets. Rigorously, the GPBs
are graded Lie brackets of degree € such that the map {F’; -}, is a left superderivation
with Grassmann-parity |F| + e.

The key ingredient in the Faddeev—Jackiw approach is the connection between
the inverse of the symplectic form and the GPB, since from (17) it is possible to
derive

{z4; 2P}, = wAB. (23)

This result is very relevant because we can obtain the GPP of any pair of dynamical
superfunctions from the canonical form of any Lagrangian.

As already mentioned, all the physical models involving both ordinary and
Grassmannian degrees of freedom have even Grassmann-parity so we will focus on
the € = 0 case, which suggests the use of the Bernstein—Leites convention in this
approach.

To conclude this section, it is worth mentioning that there is a particular situation
in which a system involving both commutative and anticommutative variables could
be singular,’ viz. when the system is endowed with gauge freedom. Although not
detailed here, the Faddeev—Jackiw approach also contemplates this case and offers
an iterative procedure in which the zero modes of the pre-symplectic form play the
role of generators of all constraints; however, at some stage of the algorithm, it is
necessary to introduce a subsidiary gauge constraint to finally obtain a nondegen-
erate symplectic form. For more details, we refer the interested reader to review
Ref. 13, for example.

'Namely, when the 2-form that follows from (11) is degenerate and so presents zero-modes.
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3. Specific Cases
3.1. Case 1: Pseudoclassical spin degrees of freedom

The main motivation for incorporating Grassmann variables to describe some kind of
degrees of freedom in theoretical physics was undoubtedly the need to classically
describe spin in a such way that after quantization we will obtain the already known
results. This proposal works wonderfully for the nonrelativistic description of spin.
To see that, let us consider a system with a configuration superspace R31® whose
dynamics is derived from the following Lagrangian:

1 ;o
L = 5 méyeg - %5db9aeb. (24)

It is worth mentioning that the presence of odd variables implies that the action is
not simply given by the usual expression, S = ff? Ldt, because the boundary con-
ditions for this kind of variable can be treated in a different fashion. For this par-
ticular case, the correct action is instead:

el id,
S— [ [L—§E(6ab9 (t)0° (1)) | dt (25)

and the initial conditions demanded to solve the variational problem, according to
Hamilton’s principle are'*

8q*(ty) = 0= 06¢"(t1), 60°(ty) + 60%(to) = 0. (26)

To start with the Faddeev—Jackiw scheme, we need to write the Lagrangian (24) in
its canonical form; for this purpose, it is convenient to obtain the corresponding
canonical momenta:

S 0, L
e — 7. — a P Tq = .
Do ’ Py

1
== —56(1;,9}]. (27)

Note that, from (27), there is a dependence between 7, and 6%, and thus, we choose
the following coordinates for the Faddeev—Jackiw phase superspace R6B3:

Pa 0). (28)

Then, the canonical Lagrangian is given as follows:
L = gop, — %50,,,(9"0’) —H (29)

with
1
2m

H= (5abpapb' (30)
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A remarkable feature of this system is that there is no contribution involving the odd
variables in the Hamiltonian, which suggests that the time evolution of the 6% could
not be generated by H. From (29), we recognize the canonical 1-form’:

9 = dg'p, — %5a,,d9a9,,‘ (31)
Then, the phase superspace is equipped with the 2-form obtained by (11), namely:
w = 6%dg" A dp, + %%d@b A doe, (32)

whose matrix representation results as

(33)

The supermatrix above turns out to be nonsingular and therefore, its inverse can
be written as

o 9 o,
aqb apb 00b
9 a !
5 00 i 0
! 34)
ol o, (
e -4, 0 E 0
o, | .
oha 0 0 ! —Z(Sab

Hence, according to (23), we obtain the nonnull graded Poisson brackets of this
model:

{am} =065, {00} = —is™. (35)
It is important to mention that the #-variables transform under the orthogonal group
0(3)? and so we can perform a O(3)-transformation for all coordinates; doing this we
find that the Lagrangian (24) remains invariant under such a transformation.
Therefore, according to the Noether theorem, there must exist a conserved charge
associated with the O(3)-symmetry. Considering infinitesimal transformations of the
form R¢, =65 +w®, € O(3), with w®, antisymmetric, we get the following small
variation for the coordinates:

0¢° =w.q", 60°=w",0° (36)

iWe are using 9 to denote the canonical 1-form just to not confuse it with the odd coordinates.
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with this, the corresponding Noether charge will be given by*

wabMab = _wcaqapc —w* aea <_ %6017917)

1 . o
- §%b(qa5”°pc —¢'6"p, — i6"6"). (37)
Defining
L= ¢ p, — ¢5p,,  SP=— 00 (38)

The Noether charge can be expressed as
Mab — Lab + Sab' (39)

In order to identify physical quantities it is convenient to construct the following
objects:

1 . 1 .
La:§€abCLb ) Sa:§6abcsb ; (40)
which leads to
La = eabcqbpca Sa = _%eabcebec- (41)

We immediately recognize that the L, are the components of the orbital angular
momentum, and the classical brackets between them are

{Lw Lb} = eabch (42)
whilst it is not hard to show that the .S, is such that
{Sa; Sb} = eal;:Sc- (43)

Note that |S,| = 0 and hence could be a quantity with physical content. On the other
hand, the usual canonical quantization procedure shows that the quantum operators
S',I satisfy the commutation relations for the spin angular momentum. Moreover,
note that if we define Mai%eabcM be we obtain the components of a pseudovector
which we could call the pseudoclassical total angular momentum. We consider it
relevant to comment that the true conserved quantity associated with rotation
symmetry is the (2,0)-tensor with components M and not the total angular
momentum itself. On the other hand, in this description, we have obtained the spin
angular momentum as a quantity associated with some kind of rotation symmetry in
the pseudoclassical spin degrees of freedom.

One aspect that we must not lose sight of is that even though angular momentum
is a very relevant physical quantity, in practice there is no way to measure it directly;
however, we can measure another closely related quantity, namely, the magnetic
moment, associated with a nonstatic charged particle, which is responsible for such a

*In our convention ieQ = —bqp — 807 + 6th + ie®, with h = ¢-p + 0-m — L and 6L = ie %, being i€ a real
parameter.
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particle interacting with an external electromagnetic field. It is known from classical
electromagnetism that the potential energy associated with the interaction of an
electron, describigg a circular trajectogy, with an external magnetic field B is given
by £, = — 1 - B, with ﬁé = —g; 5 L, in which 153 is the Bohr magneton, g, = 1 s
the electron g-factor and L, the angular momentum. Now, if the spin angular mo-
mentum S is taken into account, an additional term to potential energy arises in the

form: E, g = fﬁs - B, in which ﬁs = —gghE S, being gy the electron spin g-factor.!
Therefore, the total interaction energy will be given by
R T - - =
E=—(up+ps) - B==(9.L+g,5) - B, (44)

h
from which one concludes that it is not the total angular momentum ]\} = Z + 5
that is present, but the linear combination g; L + ¢,S.

On the other hand, the mechanical description of an electron moving in an ex-
ternal electromagnetic field (characterized by the potentials ¢ and A) is described by
the well-known Lagrangian:

L= %6(11,3':“3':” — it A, + ep. (45)

Nevertheless, this Lagrangian is not complete since it is necessary to include, in
addition to the kinematics of spin variables, the contribution due to the interaction
of the external magnetic field with the electron spin magnetic moment, namely, the
tern —jig - B, which in terms of the f-variables reads™

7ﬁ5 -B= %éﬂbSuBb (4:1> - %6ab€a(:dacade
- %9@9%1) By = — %909% (46)

with F, = 0,4, — 0, A,. Therefore, to describe completely (i.e. considering also the
spin degrees of freedom) the dynamics of an electron in an external electromagnetic
field, the use of the following pseudoclassical Lagrangian must be considered:

L=Lp+ e(ap A, LeaebFab), (47)
2m

in which the first term corresponds to the kinetic part (free case, see Eq. (24))
whereas the second one, is to the interaction sector. This Lagrangian can also be
written in terms of the quantity S® defined in (38):

1
L=Lr+ e(ap — 1A, — —SabFab>, (48)
2m

in which the configurations are represented in the superspace R33. Note that this
Lagrangian is an improved version of (45). Besides, note the presence of the rank 2
tensor spin angular momentum introduced in (38). Another interesting case in which

'Tts experimental value is g, = 2,00231930436256(35), although the Dirac equation provides g, = 2.
“For this computation we are considering g, = 2.
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we could introduce Grassmann coordinates to describe spin degrees of freedom is the
so-called spin—orbit interaction, which takes place in hydrogen-like atoms and is
nothing but the interaction between the electron spin and the internal magnetic field
of the atom itself.” The corresponding energy turns out to be proportional to the
product S - L, which written in terms of both ordinary and Grassmann coordinates,
according to (41), is given by

S-L= _%eaeb(éacxcpb - 6b(:xcpa) = §SabLab' (49)
Thus, the Lagrangian which correctly describes the spin—orbit interaction is°
m i iZe?
L=§ _'a~b7_0119b — 00 a ;b
”’b<2 Ty ) * 4meg(2mers) ¢ v
Ze2
- c SPL,. (50)

Lp———2t
7 drey(4mer?)

At this point, we must observe that the Lagrangians (48) and (50) are both of the
form
m ... i na 1 a
L:6Qb<?$ mb—§9 9b> —U—§Sb‘/ab, (51)
in which Uis a scalar function and V,; denotes the components of an antisymmetric

tensor, both depending on the coordinates and possibly linear in velocities. On the
other hand, defining Va:%eabcv,,c (in a (40) fashion) leads to

- = 1
SV =68V, = Esabvab (52)

and then, (51) can be expressed as

L=—x —=0-0-U-S5-V. (53)

2 2
Hence, either (51) or (53) is the more general Lagrangian describing interactions that
involve the electron spin angular momentum. The Lagrangian considered in the case
of a nonrelativistic particle in an external electromagnetic field can be put into this

form and then the corresponding Hamiltonian is obtained:

L:LF—&—e(p—eE-A—ig'-E,
- e (54)
H:—(p—l-eA)?—ego—F%S-B

"In the electron referential frame, the nucleus is orbiting around it. The effective electric current due to
such translation produces a magnetic field with the same orientation of the angular momentum of the
nucleus (which in turn is identical to that of the electron in the nucleus frame).
°Here, we have used the complete expression for the spin—orbit energy, Fgog =
symmetry of 6,06;.

228 L

Treo (e and the anti-
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with p, = mé,,i’ + g4, and using the fact that B, = ¢, F).. Note that the last
term in H corresponds to the interaction between the spin magnetic moment of the
particle and the external field.

3.2. Case 2: Witten supersymmetric model

This model was originally introduced by Witten'? in its quantized version, which led
to the so-called supersymmetric quantum mechanics, which have been extensively
studied later. The pseudoclassical Lagrangian description for the Witten model
considers a configuration superspace R'? and the following Lagrangian:
) aw
L=—1i W2—— 00 + 60 ——99— 55

. (80 +50) — 08 - (53)
in which W = W(z) is a Grassmann-even superfunction called supersymmetric po-
tential; on the other hand, # and § are Grassmann variables. First of all the canonical
momenta are obtained:

oL

p= 5o = mi, (56)
o0 2 o0 2

Then, the Hamiltonian reads
H=ip+0r+0r—L
1 1 i =dW

22 T2 _ -
= 5P +2W +\/E00 T (58)

Due to the dependence between the odd momentum and coordinate variables, the
following coordinates are considered for Faddeev-Jackiw phase superspace R22:

Hl=(@x p 0 0) (59)

and so, the canonical Lagrangian is
R TP R
L=gip——-00——-600—H, (60)
2 2
from it, the canonical 1-form is derived:
i (R
¥ =dzp — - dio ——dog. (61)
2 2
Thus, by using (11) one gets the following 2-form:

w:dxAdp+%deAd9+%déAd@ (62)

2450070-12
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whose supermatrix representation is

0 -1:0 0
e (63)
0 014 0
0 010 i

It is easy to check that the supermatrix above is nonsingular; then, its inverse is
presented as follows:

110 0
“L0io0 o] (64)
0 0:—i 0
0 0' 0 —i

Therefore, from (23) the GPB of phase superspace variables is obtained:
{z;p} =1, {6;0} = —i={0;0}. (65)

It is interesting to observe that the dynamics generated by (55) remains invariant
under the following infinitesimal transformations:

60— 6 =0+60,

J— .
oSO G GG s (66)
with the following small variations:
61(1; = —7;619_/\/7_71, (52{E = —2'629/\/%,
610 = 61W, 520 = 62\/%@7 (67)

(Slg = 61\/7’%.%, 62@ = —GQW,

in which the ¢; denotes real parameters with odd Grassmann-parity. The index j
states that there are two sets of transformations that determine a symmetry. We
must emphasize that these transformations mix even and odd variables and for this
reason are commonly known as supersymmetry transformations. It is direct to check
that under such transformations the Lagrangian presents the following variations:
i d (1 -
OHL=——¢,—|—=60p—0W),
! 2 “dt (\/m P )
i d 1 -
0oL =——€g— | —=6p+60W ),
2 22 dt (\/m b )
which justifies our previous assertion that (66) are supersymmetry transformations.
According to the Noether theorem, there must exist a conserved charge associated
with each supersymmetry transformation:

1

N

(68)

1

Op+0W, Q= N Op — OW. (69)

Q=
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Note that |@Q;| = 1; i.e. the Noether charges are anticommutative objects. The Q; is
known in the literature as supercharges and as every Noether charge, it plays the role
of generators of the small variations presented in (67):

6,24 = ie{Q; 2} (70)
On the other hand, these supercharges verify a very particular relation:
{Qj; Qry = 203 H  (j,k=1,2). (71)
In particular, the choice -LW = \/mw (with w constant) yields the following
Lagrangian:
L= %5&2 - %wQa:Q - % (00 + 59) — iwh, (72)

which in turn leads to the Hamiltonian:

H—p2+m 222 + 00w = 1(X2+P2)+'9§ (73)
—2m QWJZ 1 OJ—CL)Q 1

with X := (mw)?z and P := (mw)~'/?p. Readily, we recognize that the sector
of (73) involving only ordinary variables corresponds to the well-known harmonic
oscillator, in which defining the auxiliary quantities:

.1 . o b _
a:ﬁ(X—i-zP), a—ﬁ(X pP), (74)

leads to the following nonvanishing classical brackets relations:
{a; H} = —iwa, {a*;H}=iwa*, {a;a*} = —i. (75)

Besides that, by using F= {F; H}, one can obtain the laws of motion for the vari-
ables introduced in (74):

a = age” 1 iy /.
) = X = _(ane Twt + a*etwt ; 76
{a* = qgje! \/5( 0 o) (76)

which exhibits the harmonic behavior of the coordinate .
In a completely analogous way, one could defineP

. ) *_L —i0):
b= (04i0), b= (0 if) (77)

which turn out to be such that

{b; H} = —iwdb, {b*;H} =iwb*, {b;b*}=—i (78)

? A quick calculation shows that the sector of the Lagrangian (72) involving only odd coordinates can be
written in terms of the complex odd variables defined in (77) as L= -%(6-0+ 00)—
iwhf = ib*b+ L (b*b) — wb*b = ib*b — wb*b.
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and as a consequence:

1 . )
0 _ (b(]eﬂwt + bSBMt),

V2 (79)
é — _(boefiwt _ baeiwt)’

V2i

which reveals that the Grassmann variables that describe this system also have an
oscillatory behavior. Thus, since all of the configuration variables describe an oscil-
latory motion with (angular) frequency w, this particular case of the Witten model is
known as pseudoclassical supersymmetric harmonic oscillator.

Another interesting pseudoclassical Lagrangian that exhibits this kind of super-
symmetry is the one presented in (48) in the particular case in which ¢ = 0. Then, for
a spin-1/2 particle with electric charge —e and spin g-factor that can be rounded to 2
(e.g. electron and muon), the Lagrangian becomes

1
L=Lp—e (:t”'Aa + —S"'”Fab) (80)
2m
In this case, the small variations,

0, 60" = ey/mis, (81)

ozt = —i

Bk

induce the variation in the Lagrangian:

. d \/E ~anb € a
6LZEdt( 75(,;]:16 0 + \/ma Aa>7 (82)

which shows that, in fact, this is a supersymmetry. Besides, the corresponding
supercharge results:

Q=§§Wm+MJ (83)

Then, the relation in (71) yields the following Hamiltonian:

1 e
H= 5 (pa + €A,)8 (p, + eAy) + o S®F,, (84)

or in vector notation:

1 - -
H=—(p+eA)?’+

5 S B, (85)

e
m
which, of course, coincides with the one obtained through the pseudomechanical
canonical construction (see Eq. (54)). Note that the transformations corresponding
to (81) do not depend on the vector potential A and this suggests that the system
exhibits supersymmetry under such transformations, even in the noninteracting case,
described by the Lagrangian (24), with supercharge @ = ﬁ PO

2450070-15



L. G. Caro et al.

4. Canonical Quantization

Among the different known quantization schemes, probably the most widely used is
canonical quantization, which consists of establishing a correspondence between
the classical Poisson brackets of canonical variables and the commutation (antic-
ommutation) relations of the associated quantum operators via the correspondence
principle. Explicitly, one uses the recipe:

1 ~ 4

(F:G} — = [F: G, (56)
in which the square brackets [;-]_ ([-;-].) stand for commutator (anticommutator)
when both dynamical functions have equal Grassmann-parity |F|=0 = |G|
(IF|=1=1G|). More generally, the graded classical brackets become the
superbrackets:

[F; Gl =F G — (—1)FIGIGF, (87)

in which the operators act on a Hilbert space H = Hy ® H;. Technically, a quanti-
zation of a pseudoclassical system consists on finding a representation of the Lie
superalgebra of dynamical superfunctions, with the classical superbrackets given
by (65) for a phase superspace R?2, or (35) for a general phase superspace R*"I">2
playing the role of Lie superbrackets.!'¢

In the remaining part of this section, the canonical quantization of the cases
presented in the previous section will be performed, focusing on the Grassmann-odd
variables, since the even ones are already known.

4.1. Case 1: Pseudoclassical spin degrees of freedom

The starting point is to apply the rule (86) to the classical brackets obtained in (35):
{0°0" = —is™ — [6%;0], = h6™ (a,b=1,2,3), (88)

from them, one easily recognizes that these anticommutation relations correspond to
a Clifford algebra C¢(3, C) according to

[\/g@)a; \/iab] o (%)

and taking into account that this algebra is generated by the Pauli matrices o,
which obey an identical anticommutation relation: [o,; 0] = 28,1, one may choose

the following representation:
- h
§ = \/%5‘1”01,, (90)

which implies that the quantum operators corresponding to the spin degrees of
freedom are also self-adjoint. With this, the quantized version of the even variables
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S, defined in (41) acquires the form

S, = 7§€ab(: <\/;5bm0m> (\/;5mo'n> - 50—@' (91)

Besides, applying the canonical quantization procedure, the classical brackets be-
tween the quantities presented in (43) become

{Sa; Sb} = each(: - [Suv Sb]— = ihﬁabc‘g(:a (92)

which is the expected result, since it corresponds to the quantum commutation
relation of an angular momentum operator. More rigorously, since the quantum
Hilbert space for this system is H = L2(R3) ® C2, one should write 5, = 1 ® 25,.On
the other hand, considering the case in which the particle is charged in a region with
an external magnetic field, the Hamiltonian in (54) becomes, after quantization

eh . —
H=|—(pt+ed2—ep|®@1+—8-
5 (pHed)2—ep|®1+ QmE o (93)
with

A=A@), ¢=p@), B=DB@). (94)

We immediately recognize that (93) corresponds to the well-known Pauli Hamiltonian.

4.2. Case 2: Witten supersymmetric model

For the sake of perspicuity, we start the quantization program for the particular case
of supersymmetric harmonic oscillator; later it will be extended to the general case.
The starting point consists in obtaining the quantum brackets corresponding to (65):

{0:0) = —i = {0:0} — [0:0], = n.=[0:0].. (95)
Besides that, quantizing the classical brackets in (78) yields4
[b;67], = h, (96)

from these anticommutation relations, one identifies the underlying Clifford algebra
C¢(2,C) according to

[1315ﬂ+:L (97)

Therefore, taking into account that the matrices Uiﬁ% (01 £ ioy) satisfy the antic-
ommutation relation: [o,;0_], = I, we may choose the following representation:

b=vVho,, b=vVho_, (98)

4 According (77) and assuming that 0, 9 are self-adjoint (motivated by the previous example), it turns out
that b* = b,
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which in turn implies

. 7 . 7
b= \/%01, o — \/;02. (99)

Considering this result, the corresponding quantum Hamiltonian, acting on the
Hilbert space H = L?(R) ® C? reads

. H2 h
= (p— n %uﬂﬂ) ®1-18 5w, (100)

which is of the form H= Hp®1+1® Hp. The sector Hp: L?(R) — L*(R)
(Hp : C2 — C2) of this Hamiltonian corresponds to the so-called bosonic (fermionic)
quantum harmonic oscillator. Maintaining the representation (99) for the f-quantum
operators, we arrive at the following expression for the quantum Hamiltonian of the
Witten model:

A= (2 L) o110 W (101)
~\om "2 ofm
with
. AW
W=w), W=—""(%) (102)
X

4.3. Supersymmelric quantum mechanics

A quantum system characterized by a Hamiltonian H and a set of self-adjoint
operators {Q]} ;_v:h with all of them acting on some Hilbert space, is said to be
supersymmetric if

[Q;: Qi)s = 64H; V,1<jk<N. (103)

In this context, the operators Q ; are called quantum supercharges and we say that
the system presents N-extended supersymmetry.
Applying the canonical quantization procedure to (71) results in

[Q); Q14 = 206, H (104)

and then, we see the quantized Noether charges due to the (pseudoclassical) super-
symmetry transformations coincide with the quantum supercharges up to a scale
factor (2h)~'/2. Then, for example, the quantum Witten model turns out to be a
system with NV = 2 supersymmetry and supercharge operators:

~ 1 1 ~
Q4 —<—ﬁ®02+w®01)7
2\vm (105)

Qs

1 R .
2(\/%?@01—“7@02)7
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which was obtained from (69) and (99). Another quantum system with N =1 su-
persymmetry is the one characterized by the Hamiltonian (93), which corresponds to
a charged spin-1/2 particle in an external magnetic field. The associated quantum
supercharge is given by

Q= m(lj +ed)- o, (106)

which was obtained from (83) and (90).

5. Conclusions

The Faddeev—Jackiw formalism was developed for discrete systems described by
both commutative and anticommutative variables. The construction was made on a
set of supercoordinates that we call phase superspace, where the Lagrangian was
written in its canonical form. The corresponding equations of motion were consis-
tently derived from Hamilton’s principle, exhibiting a natural symplectic structure,
which has several relevant properties, highlighting among them the fact that its
inverse determines the graded Poisson brackets (GPB). The fundamental GPB for
the supercoordinates z4 was determined from the components of the inverse of the
symplectic form, and with them, the GPB of any pair of dynamical superfunctions
can be easily obtained.

The case of pseudoclassical spin degrees of freedom was carefully studied and
suitable initial conditions were introduced to solve the variational problem. The
(nonsingular) supermatrix representation of the symplectic form was obtained, and
its inverse allowed us to determine the nonnull fundamental GPB of the model.
Noether charge corresponding to (rigid) O(3) symmetry was derived leading to the
total angular momentum straightforwardly. Finally, the general Lagrangian de-
scribing interactions that involve the electron spin angular momentum was deduced.

The Witten model was treated at a pseudoclassical level and it was shown to be
invariant under supersymmetry transformations. The corresponding Noether char-
ges act as generators of these transformations. Interestingly, from the fundamental
GPB of the model, Noether charges were found to satisfy a very particular algebra
involving the Hamiltonian itself. It was also verified that this model includes the
supersymmetric harmonic oscillator as a particularly interesting case.

The canonical quantization program was developed for the studied models,
leading to the conclusion that the quantum operators corresponding to the Grass-
mann-odd degrees of freedom satisfy a complex Clifford algebra, which implies that
their proper representation must be given by Pauli matrices (or linear combinations
of them). In addition, we found that the Hamiltonian obtained by the pseudoclassical
Lagrangian proposed for electromagnetic interactions involving spin degrees of
freedom becomes the Pauli Hamiltonian after being quantized. On the other hand, it
was seen that the purely magnetic interactions described by this Lagrangian also
display supersymmetric behavior.
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