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In this study, we propose an extension of the formulation developed by Faddeev and Jackiw to

include anticommutative variables in the language of supergeometry, as it could be a cost-
e®ective way to determine the (Z2-graded) Poisson structure of theories describing spin-like

degrees of freedom. Speci¯cally, we apply the developed approach to pseudoclassical systems to

lately use the standard canonical quantization program to check whether their already known
quantum description is recovered.

Keywords: Faddeev-Jackiw approach; pseudoclassical mechanics; Grassmann variables;

canonical quantization.

1. Introduction

The advent of quantum theory undoubtedly taught physicists that the well-known

laws that govern the everyday observable world are just a limiting case of a more

general and elegant theory, which has proven to be one of the greatest and most

profound achievements of human knowledge ��� understand science ��� about the

understanding of nature in its most primitive phase. It is also well known that there

are quantum systems that have classical analogue and this feature paved the way

for the powerful tool known as quantization, which states that one can establish
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a one-to-one correspondence from the mathematical framework of the classical de-

scription of a system to the mathematical structure of its corresponding quantum

depiction. In this sense, the so-called quantization is merely an ambitious attempt to

start from a particular theory and arrive at a more general one. Nevertheless, the

enormous success of the correspondence principle suggests that in practice it is

possible, at least formally, to make use of this sort of inverse recipe of building an

acceptable quantum modeling from a previously established classical theory.

Another new concept brought by quantum mechanics that revolutionized our

view of nature at atomic scales is that each constituent of matter carries an intrinsica

angular momentum known as spin. Our current knowledge of spin is that it is always

quantized and its corresponding quantum number can take either integer or half-

integer values; particles with integer spin are called bosons, while particles with half-

integer spin are known as fermions, and they behave very di®erently in nature.

According to Feynman, even though the rules for spin have been easily stated, no one

has found a simple explanation for them, which suggests that our understanding of

spin is still incomplete.1 Mathematically, the quantum ¯elds used to describe bosonic

particles obey commutation relations, whilst anticommutation relations govern fer-

mionic ¯elds. Provided that a ¯eld theory can be thought of as an in¯nite degrees of

freedom extension of the description of a mechanical system, we might expect that a

classical description of spin degrees of freedom inherit that anticommutative be-

havior; therefore, the coordinates describing the spin degrees of freedom should be

Grassmann variables. The theory that takes into account the mentioned ingredient is

known as pseudoclassical mechanics or pseudomechanics after the name was coined

by Casalbuoni,2,3 though Berezin and Marinov also made enormous contributions to

the subject.4,5 It was shown that pseudomechanics is the classical limit (�h ! 0) of a

general nonrelativistic quantum theory with both Bose and Fermi operators. In this

sense, a pseudoclassical system admits the possibility of describing the spin at a pre-

quantum level.

It is also important to mention that any classical system described by a

Lagrangian on con¯guration space can be classi¯ed as regular or singular through the

Hessian criterion, which implies that any Lagrangian linear in time-derivatives of

generalized coordinates is always singular and so the standard Hamiltonian con-

struction is not well-de¯ned; therefore, a consistent canonical analysis of the theory

requires the use of Dirac method6 to obtain a dynamics compatible with the con-

straints involved. Nevertheless, there is another equivalent formulation developed by

Faddeev and Jackiw7 that allows to treat a Lagrangian linear in velocities as non-

singular. This approach is built on the kinematically independent variables of the

standard phase space (in canonical formulation); notwithstanding, we will refer to

the set of these variables also as phase space. In fact, in the Faddeev{Jackiw (FJ)

formulation, the Lagrangian is written in such a way that it is linear in velocities.b

a In the sense that it has nothing to do with its motion in space.
b In this case, we use this term to refer to the time derivatives of the Faddeev{Jackiw phase space

coordinates.
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On the other hand, it turns out that any Lagrangian that considers anticommutative

variables is necessarily linear in the time derivatives of them and thus, the afore-

mentioned Hessian criterion tells us that such a Lagrangian is singular. However,

since this criterion is restricted just to con¯guration variables and their derivatives,

it does not apply to a Lagrangian de¯ned on phase space. Therefore, the Hessian

criterion does not forbid the nonsingularity of the particular structure of the

Lagrangian employed in the FJ approach. The FJ formulation has some advantages

over the Dirac one, among which highlights the lack of need to classify the

constraints. However, the main feature of the FJ approach is that it provides a

systematic way to obtain the correct Poisson structure for both constrained and

unconstrained systems, which is the starting point of the canonical quantization

program.

This paper is devoted to the investigation of pseudoclassical discrete systems

in the Faddeev{Jackiw formulation since it allows treating this type of systems

as nonsingular. The structure of this paper is the following: In Sec. 2, we present

the principal ideas and objects involved in the Faddeev{Jackiw pseudoclassical

construction for regular systems and their relation with the corresponding classical

Z2-graded brackets. Section 3 contains some instructive examples of pseudomecha-

nical systems and some relevant consequences, such as total angular momentum as

Noether charge, and the very primitive idea of supersymmetry (at the pseudo-

classical level). In Sec. 4, we proceed to perform the canonical quantization program

for the systems presented in the previous section. Finally, Sec. 5 contains our

conclusions of this work.

2. Faddeev{Jackiw Theory Involving Grassmann Variables

In this section, we present an extension of the Faddeev{Jackiw approach for discrete

systems described by both commutative and anticommutative variables; the latter

refers to the so-called Grassmann numbers. Given this, the whole construction is

performed on a set with Rmjn-structure, which we call phase superspace, M, and we

denote the corresponding supercoordinates by fzAgmþn
A¼1 . It is noteworthy that such

an extension has already been developed, but in a subtly di®erent way;c see for

example Refs. 8 and 9. The Faddeev{Jackiw theory is constructed for a Lagrangian

written in its canonical form; i.e. linear in the velocities as we show belowd:

Lðz; _zÞ ¼ _zA�AðzÞ �HðzÞ; ð1Þ
in which H is the Hamiltonian, depending only on z-variables (involving no time-

derivatives of them). The coe±cients of the velocities are the components of a 1-form

cThe Faddeev{Jackiw formulation is commonly treated in the component language; however, it is more

convenient (from a computational point of view) to deal with the geometric objects involved rather than

their components. Furthermore, being careful with the conventions employed in the Z2-case is of utmost
importance.
dThroughout this paper, we will use the left-derivative convention.
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on M:

� ¼ dzA�A; �A ¼ �AðzÞ ð2Þ
called canonical 1-form. Note that the Lagrangian takes objects of R2mj2n and as-

suming it as a homogeneous superfunction, in principle,e there are two possibilities

for its Grassmann-parity. Then, one can label it by a parameter such that jLj ¼ �. As

a consequence, it is possible to deduce from (1):

jHj ¼ �; j�Aj ¼ jAj þ �; ð3Þ
in which we have denoted jAj � jzAj. Recall that there are two conventions for the

exterior derivative operator on superspace, which depends on its Grassmann-parity,

namely, Deligne convention ðjdj ¼ 0Þ and the Bernstein{Leites ðjdj ¼ 1Þ one. For

now, we write jdj ¼ k, allowing also the two possibilities.10;f The next step will be to

determine the dynamics generated by the Lagrangian in (1) using Hamilton's prin-

ciple, that is, by varying the action,

S½z� ¼
Z t2

t1

Lðz; _zÞdt ð4Þ

and obtaining a necessary condition for its extreme value, considering suitable

boundary conditions. Then, one arrives at the following equations of motion:

!AB _zB ¼ @LH

@zA
; ð5Þ

with

!AB ¼ ð�1ÞjBjð�þ1Þ @L�B
@zA

� ð�1ÞjAjjBj @L�A
@zB

� �
: ð6Þ

From (6) it is straightforward to check the following properties:

!AB ¼ ð�1ÞðjAjþ1ÞðjBjþ1Þþ�ðjAjþjBjÞ!BA;

j!ABj ¼ jAj þ jBj þ �:

�
ð7Þ

It is interesting to see what happens if we take the exterior derivativeg of the

canonical 1-form:

d� ¼ 1

2
ð�1Þ1þkjBjdzB ^ dzA

@L�B
@zA

� ð�1ÞjAjjBj @L�A
@zB

� �
: ð8Þ

eAlthough all models of physical interest are described by an even Lagrangian, for our purposes it is useful

to consider both cases.
fGiven a p-form � and a q-form �, in the Deligne convention, � ^ � ¼ ð�1Þpqþj�jj�j� ^ � and

dð� ^ �Þ ¼ d� ^ � þ ð�1Þp� ^ d�, whereas in the Bernstein{Leites (BL) convention, � ^ � ¼ ð�1Þj�jj�j� ^
� and dð� ^ �Þ ¼ d� ^ � þ ð�1Þj�j� ^ d�.11 On the other hand, theBL convention can be interpreted also as

an even derivation but with di®erent gradings: � ^ � ¼ ð�1Þðj�jþpÞðj�jþqÞ� ^ � and dð� ^ �Þ ¼
d� ^ � þ ð�1Þj�jþp� ^ d�, see for example.12

g In our convention, the exterior derivative acts on the left.

L. G. Caro et al.
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Then, from (6) it is possible to write

d� ¼ � 1

2
ð�1ÞjBjðkþ�þ1ÞdzB ^ dzA!AB; ð9Þ

thus, picking conveniently kþ � ¼ 1, we obtain

d� ¼ � 1

2
dzB ^ dzA!AB: ð10Þ

Therefore, with this choice for k ¼ kð�Þ, we get the following fundamental relation:

d� ¼ �!: ð11Þ
On the other hand, the Grassmann-parity of the 2-formh ! is presented as follows:

j!j ¼ 1

2
dzB ^ dzA!AB

���� ����
¼ðjBj þ �Þ þ ðjAj þ �Þ þ ðjAj þ jBj þ �Þ ¼ �: ð12Þ

From this, we see that the parity of ! coincides with the Lagrangian's one. In the

nonsingular case, ! is a symplectic form and its inverse, with components !AB

de¯ned by

!AC!CB ¼ �AB ¼ !BC!
CA ð13Þ

are such that

!AB ¼ ð�1Þ1þðjAjþ�ÞðjBjþ�Þ!BA;

j!ABj ¼ jAj þ jBj þ �:

(
ð14Þ

By using (13) we can rewrite the equations of motion (5) as

_zA ¼ !AB @LH

@zB
: ð15Þ

As usual, one introduces the graded Poisson brackets (GPB) by the requirement:

_F¼: fF ;Hg�; ð16Þ
where F is an arbitrary homogeneous dynamical superfunction on M. From this

demand, and using (15), we obtain the explicit expression of the GPB of two dynamic

superfunctions:

fF ;Gg�¼:
@RF

@zA
!AB @LG

@zB
; ð17Þ

in which the �-dependence of the GPB is due to the fact that the parity of !AB

depends on the parameter �. Moreover, a quick computation yields

jf�; �gj ¼ � ¼ j!j: ð18Þ

h It is important to not confuse the object ! with its components !AB.

Pseudoclassical mechanics �a la Faddeev{Jackiw
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Thus, we see that the Grassmann-parity of the GPB is given by that of the 2-form !.

The graded Poisson brackets obey the following properties:

(1) Grassmann-parity:

jfF ;Gg�j ¼ jF j þ jGj þ �: ð19Þ
(2) Graded antisymmetry:

fF ;Gg� ¼ �ð�1ÞðjF jþ�ÞðjGjþ�ÞfG;Fg�: ð20Þ
(3) Graded Jacobi's identity:

ð�1ÞðjF jþ�ÞðjHjþ�ÞfF ; fG;Hg�g� þ ð�1ÞðjGjþ�ÞðjF jþ�ÞfG; fH;Fg�g�
þ ð�1ÞðjHjþ�ÞðjGjþ�ÞfH; fF ;Gg�g� ¼ 0: ð21Þ

(4) Graded Leibniz's rule:

fF ;GHg� ¼ fF ;Gg�H þ ð�1ÞðjF jþ�ÞjGjGfF ;Hg�: ð22Þ

The GPBs with � ¼ 0 are known as super Poisson brackets, whereas GPBs with

� ¼ 1 are called odd Poisson brackets or classical antibrackets. Rigorously, the GPBs

are graded Lie brackets of degree � such that the map fF ; �g� is a left superderivation

with Grassmann-parity jF j þ �.

The key ingredient in the Faddeev{Jackiw approach is the connection between

the inverse of the symplectic form and the GPB, since from (17) it is possible to

derive

fzA; zBg� ¼ !AB: ð23Þ
This result is very relevant because we can obtain the GPP of any pair of dynamical

superfunctions from the canonical form of any Lagrangian.

As already mentioned, all the physical models involving both ordinary and

Grassmannian degrees of freedom have even Grassmann-parity so we will focus on

the � ¼ 0 case, which suggests the use of the Bernstein{Leites convention in this

approach.

To conclude this section, it is worth mentioning that there is a particular situation

in which a system involving both commutative and anticommutative variables could

be singular,i viz. when the system is endowed with gauge freedom. Although not

detailed here, the Faddeev{Jackiw approach also contemplates this case and o®ers

an iterative procedure in which the zero modes of the pre-symplectic form play the

role of generators of all constraints; however, at some stage of the algorithm, it is

necessary to introduce a subsidiary gauge constraint to ¯nally obtain a nondegen-

erate symplectic form. For more details, we refer the interested reader to review

Ref. 13, for example.

iNamely, when the 2-form that follows from (11) is degenerate and so presents zero-modes.

L. G. Caro et al.
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3. Speci¯c Cases

3.1. Case 1: Pseudoclassical spin degrees of freedom

The main motivation for incorporating Grassmann variables to describe some kind of

degrees of freedom in theoretical physics was undoubtedly the need to classically

describe spin in a such way that after quantization we will obtain the already known

results. This proposal works wonderfully for the nonrelativistic description of spin.

To see that, let us consider a system with a con¯guration superspace R3j3 whose

dynamics is derived from the following Lagrangian:

L ¼ 1

2
m�abq

:
aq
:
b � i

2
�ab�

:
a�b: ð24Þ

It is worth mentioning that the presence of odd variables implies that the action is

not simply given by the usual expression, S ¼ R t2
t1
Ldt, because the boundary con-

ditions for this kind of variable can be treated in a di®erent fashion. For this par-

ticular case, the correct action is instead:

S ¼
Z t2

t1

L� i

2

d

dt
ð�ab�aðt1Þ�bðtÞÞ

� �
dt ð25Þ

and the initial conditions demanded to solve the variational problem, according to

Hamilton's principle are14

�qaðt2Þ ¼ 0 ¼ �qaðt1Þ; ��aðt1Þ þ ��aðt2Þ ¼ 0: ð26Þ

To start with the Faddeev{Jackiw scheme, we need to write the Lagrangian (24) in

its canonical form; for this purpose, it is convenient to obtain the corresponding

canonical momenta:

pa ¼
@L

@q
:
a
¼ m�abq

:
b; �a ¼

@LL

@�
:
a
¼ � i

2
�ab�

b: ð27Þ

Note that, from (27), there is a dependence between �a and �a, and thus, we choose

the following coordinates for the Faddeev{Jackiw phase superspace R6j3:

zst ¼ ðqa pa �aÞ: ð28Þ
Then, the canonical Lagrangian is given as follows:

L ¼ q
:
apa �

i

2
�ab�

:
a�b �H ð29Þ

with

H ¼ 1

2m
�abpapb: ð30Þ

Pseudoclassical mechanics �a la Faddeev{Jackiw
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A remarkable feature of this system is that there is no contribution involving the odd

variables in the Hamiltonian, which suggests that the time evolution of the �a could

not be generated by H. From (29), we recognize the canonical 1-formj:

# ¼ dqapa �
i

2
�abd�

a�b: ð31Þ

Then, the phase superspace is equipped with the 2-form obtained by (11), namely:

! ¼ � abdq
b ^ dpa þ

i

2
�abd�

b ^ d�a; ð32Þ

whose matrix representation results as

ð33Þ

The supermatrix above turns out to be nonsingular and therefore, its inverse can

be written as

ð34Þ

Hence, according to (23), we obtain the nonnull graded Poisson brackets of this

model:

fqa; pbg ¼ � ab ; f�a; �bg ¼ �i�ab: ð35Þ
It is important to mention that the �-variables transform under the orthogonal group

Oð3Þ3 and so we can perform a Oð3Þ-transformation for all coordinates; doing this we

¯nd that the Lagrangian (24) remains invariant under such a transformation.

Therefore, according to the Noether theorem, there must exist a conserved charge

associated with the Oð3Þ-symmetry. Considering in¯nitesimal transformations of the

form Rc
a ¼ � ca þ ! c

a 2 Oð3Þ; with ! c
a antisymmetric, we get the following small

variation for the coordinates:

�qc ¼ ! c
aq

a; ��c ¼ ! c
a�

a ð36Þ

jWe are using # to denote the canonical 1-form just to not confuse it with the odd coordinates.

L. G. Caro et al.
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with this, the corresponding Noether charge will be given byk

!abM
ab ¼ �! c

aq
apc � ! c

a�
a � i

2
�cb�

b

� �
¼ 1

2
!abðqa�bcpc � qb�acpc � i�a�bÞ: ð37Þ

De¯ning

Lab ¼: qa�bcpc � qb�acpc; Sab¼: � i�a�b: ð38Þ
The Noether charge can be expressed as

Mab ¼ Lab þ Sab: ð39Þ
In order to identify physical quantities it is convenient to construct the following

objects:

La¼:
1

2
�abcL

bc; Sa¼:
1

2
�abcS

bc; ð40Þ

which leads to

La ¼ � c
ab q

bpc; Sa ¼ � i

2
�abc�

b�c: ð41Þ

We immediately recognize that the La are the components of the orbital angular

momentum, and the classical brackets between them are

fLa;Lbg ¼ � c
ab Lc; ð42Þ

whilst it is not hard to show that the Sa is such that

fSa;Sbg ¼ � c
ab Sc: ð43Þ

Note that jSaj ¼ 0 and hence could be a quantity with physical content. On the other

hand, the usual canonical quantization procedure shows that the quantum operators

Ŝa satisfy the commutation relations for the spin angular momentum. Moreover,

note that if we de¯ne Ma¼: 1
2 �abcM

bc, we obtain the components of a pseudovector

which we could call the pseudoclassical total angular momentum. We consider it

relevant to comment that the true conserved quantity associated with rotation

symmetry is the ð2; 0Þ-tensor with components Mab and not the total angular

momentum itself. On the other hand, in this description, we have obtained the spin

angular momentum as a quantity associated with some kind of rotation symmetry in

the pseudoclassical spin degrees of freedom.

One aspect that we must not lose sight of is that even though angular momentum

is a very relevant physical quantity, in practice there is no way to measure it directly;

however, we can measure another closely related quantity, namely, the magnetic

moment, associated with a nonstatic charged particle, which is responsible for such a

kIn our convention i�Q ¼ ��qp� ���þ �thþ i��, with h ¼ q :pþ �:�� L and �L ¼ i� d�
dt , being i� a real

parameter.

Pseudoclassical mechanics �a la Faddeev{Jackiw
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particle interacting with an external electromagnetic ¯eld. It is known from classical

electromagnetism that the potential energy associated with the interaction of an

electron, describing a circular trajectory, with an external magnetic ¯eld B
!

is given

by Ep;L ¼ ��
!
L �B

!
, with �

!
L ¼ �gL

�B

�h L
!
, in which �B is the Bohr magneton, gL ¼ 1 is

the electron g-factor and L
!
, the angular momentum. Now, if the spin angular mo-

mentum S
!
is taken into account, an additional term to potential energy arises in the

form: Ep;S ¼ ��
!

S �B
!
, in which �

!
S ¼ �gS

�B

�h S
!
, being gS the electron spin g-factor.l

Therefore, the total interaction energy will be given by

E ¼ �ð�!L þ �
!
SÞ �B

!
¼ �B

�h
ðgLL

!
þ gsS

!
Þ �B

!
; ð44Þ

from which one concludes that it is not the total angular momentum M
!

¼ L
!
þ S

!

that is present, but the linear combination gLL
!
þ gsS

!
.

On the other hand, the mechanical description of an electron moving in an ex-

ternal electromagnetic ¯eld (characterized by the potentials ’ and A
!
) is described by

the well-known Lagrangian:

L ¼ m

2
�ab _x

a _xb � e _xaAa þ e’: ð45Þ

Nevertheless, this Lagrangian is not complete since it is necessary to include, in

addition to the kinematics of spin variables, the contribution due to the interaction

of the external magnetic ¯eld with the electron spin magnetic moment, namely, the

tern ��
!
S �B

!
, which in terms of the �-variables readsm

��
!
S �B

!
¼ e

m
�abSaBb ¼ð41Þ � ie

2m
�ab�acd�

c�dBb

¼ � ie

2m
�c�d� b cdBb ¼ � ie

2m
�c�dFcd ð46Þ

with Fab ¼ @aAb � @bAa. Therefore, to describe completely (i.e. considering also the

spin degrees of freedom) the dynamics of an electron in an external electromagnetic

¯eld, the use of the following pseudoclassical Lagrangian must be considered:

L ¼ LF þ e ’� _xaAa þ
i

2m
�a�bFab

� �
; ð47Þ

in which the ¯rst term corresponds to the kinetic part (free case, see Eq. (24))

whereas the second one, is to the interaction sector. This Lagrangian can also be

written in terms of the quantity Sab de¯ned in (38):

L ¼ LF þ e ’� _xaAa �
1

2m
SabFab

� �
; ð48Þ

in which the con¯gurations are represented in the superspace R3j3. Note that this

Lagrangian is an improved version of (45). Besides, note the presence of the rank 2

tensor spin angular momentum introduced in (38). Another interesting case in which

l Its experimental value is gs ¼ 2; 00231930436256ð35Þ, although the Dirac equation provides gs ¼ 2.
mFor this computation we are considering gs ¼ 2.

L. G. Caro et al.
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we could introduce Grassmann coordinates to describe spin degrees of freedom is the

so-called spin{orbit interaction, which takes place in hydrogen-like atoms and is

nothing but the interaction between the electron spin and the internal magnetic ¯eld

of the atom itself.n The corresponding energy turns out to be proportional to the

product S
!
� L
!
, which written in terms of both ordinary and Grassmann coordinates,

according to (41), is given by

S
!
� L
!
¼ � i

2
�a�bð�acxcpb � �bcx

cpaÞ ¼
1

2
SabLab: ð49Þ

Thus, the Lagrangian which correctly describes the spin{orbit interaction iso

L ¼ �ab
m

2
_xa _xb � i

2
�
:
a�b

� �
þ iZe2

4�"0ð2mc2r3Þ �a�bx
a _xb

¼LF � Ze2

4�"0ð4mc2r3Þ S
abLab: ð50Þ

At this point, we must observe that the Lagrangians (48) and (50) are both of the

form

L ¼ �ab
m

2
_xa _xb � i

2
�
:
a�b

� �
� U � 1

2
SabVab; ð51Þ

in which U is a scalar function and Vab denotes the components of an antisymmetric

tensor, both depending on the coordinates and possibly linear in velocities. On the

other hand, de¯ning Va¼: 1
2 �a

bcVbc (in a (40) fashion) leads to

S
!
� V
!

¼ �abSaVb ¼
1

2
SabVab ð52Þ

and then, (51) can be expressed as

L ¼ m

2
x
!: 2

� i

2
�
!:
� �
!
� U � S

!
� V
!
: ð53Þ

Hence, either (51) or (53) is the more general Lagrangian describing interactions that

involve the electron spin angular momentum. The Lagrangian considered in the case

of a nonrelativistic particle in an external electromagnetic ¯eld can be put into this

form and then the corresponding Hamiltonian is obtained:

L ¼ LF þ e’� ex
!: �A

!
� e

m
S
!
�B
!
;

H ¼ 1

2m
ðp! þ eA

!
Þ2 � e’þ e

m
S
!
�B
!

8>><>>: ð54Þ

n In the electron referential frame, the nucleus is orbiting around it. The e®ective electric current due to

such translation produces a magnetic ¯eld with the same orientation of the angular momentum of the

nucleus (which in turn is identical to that of the electron in the nucleus frame).
oHere, we have used the complete expression for the spin{orbit energy, ESO ¼ Ze2S

!�L!
4��0ð2m2c2r3Þ and the anti-

symmetry of �a�b.

Pseudoclassical mechanics �a la Faddeev{Jackiw
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with pa ¼ m�ab _x
b þ qAa and using the fact that Ba ¼ 1

2 �
bc

a Fbc. Note that the last

term in H corresponds to the interaction between the spin magnetic moment of the

particle and the external ¯eld.

3.2. Case 2: Witten supersymmetric model

This model was originally introduced by Witten15 in its quantized version, which led

to the so-called supersymmetric quantum mechanics, which have been extensively

studied later. The pseudoclassical Lagrangian description for the Witten model

considers a con¯guration superspace R1j2 and the following Lagrangian:

L ¼ m

2
_x2 � 1

2
W 2 � i

2
ð�:�þ ��

:
��Þ � iffiffiffiffiffi

m
p ���

dW

dx
; ð55Þ

in which W ¼ WðxÞ is a Grassmann-even superfunction called supersymmetric po-

tential; on the other hand, � and �� are Grassmann variables. First of all the canonical

momenta are obtained:

p ¼ @L

@ _x
¼ m _x; ð56Þ

�� ¼ @L

@�
: L ¼ � i

2
�; � ¼ @L

@
�
�
: L ¼ � i

2
��: ð57Þ

Then, the Hamiltonian reads

H ¼ _xpþ �
:
�� þ ��

:
�� L

¼ 1

2m
p2 þ 1

2
W 2 þ iffiffiffiffiffi

m
p ���

dW

dx
: ð58Þ

Due to the dependence between the odd momentum and coordinate variables, the

following coordinates are considered for Faddeev{Jackiw phase superspace R2j2:

zst ¼ ðx p � ��Þ ð59Þ
and so, the canonical Lagrangian is

L ¼ _xp� i

2
�
:
�� i

2
��
:
�� �H; ð60Þ

from it, the canonical 1-form is derived:

# ¼ dxp� i

2
d��� i

2
d����: ð61Þ

Thus, by using (11) one gets the following 2-form:

! ¼ dx ^ dpþ i

2
d� ^ d�þ i

2
d�� ^ d��; ð62Þ

L. G. Caro et al.

2450070-12



whose supermatrix representation is

ð63Þ

It is easy to check that the supermatrix above is nonsingular; then, its inverse is

presented as follows:

ð64Þ

Therefore, from (23) the GPB of phase superspace variables is obtained:

fx; pg ¼ 1; f�; �g ¼ �i ¼ f��; ��g: ð65Þ
It is interesting to observe that the dynamics generated by (55) remains invariant

under the following in¯nitesimal transformations:

x ! x0 ¼ xþ �jx;
� ! �0 ¼ �þ �j�;

�� ! ��0 ¼ �� þ �j��
ð66Þ

with the following small variations:

�1x ¼ �i�1��=
ffiffiffiffiffi
m

p
;

�1� ¼ �1W ;

�1�� ¼ �1
ffiffiffiffiffi
m

p
_x;

8><>:
�2x ¼ �i�2�=

ffiffiffiffiffi
m

p
;

�2� ¼ �2
ffiffiffiffiffi
m

p
_x;

�2�� ¼ ��2W ;

8><>: ð67Þ

in which the �j denotes real parameters with odd Grassmann-parity. The index j

states that there are two sets of transformations that determine a symmetry. We

must emphasize that these transformations mix even and odd variables and for this

reason are commonly known as supersymmetry transformations. It is direct to check

that under such transformations the Lagrangian presents the following variations:

�1L ¼ � i

2
�1

d

dt

1ffiffiffiffiffi
m

p ��p� �W

� �
;

�2L ¼ � i

2
�2

d

dt

1ffiffiffiffiffi
m

p �pþ ��W

� �
;

8>><>>: ð68Þ

which justi¯es our previous assertion that (66) are supersymmetry transformations.

According to the Noether theorem, there must exist a conserved charge associated

with each supersymmetry transformation:

Q1 ¼
1ffiffiffiffiffi
m

p ��pþ �W ; Q2 ¼
1ffiffiffiffiffi
m

p �p� ��W : ð69Þ

Pseudoclassical mechanics �a la Faddeev{Jackiw
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Note that jQjj ¼ 1; i.e. the Noether charges are anticommutative objects. The Qj is

known in the literature as supercharges and as every Noether charge, it plays the role

of generators of the small variations presented in (67):

�jz
A ¼ i�fQj; z

Ag: ð70Þ
On the other hand, these supercharges verify a very particular relation:

fQj;Qkg ¼ �2i�jkH ðj; k ¼ 1; 2Þ: ð71Þ

In particular, the choice d
dx W ¼ ffiffiffiffiffi

m
p

! (with ! constant) yields the following

Lagrangian:

L ¼ m

2
_x2 � m

2
!2x2 � i

2
ð�:�þ ��

:
��Þ � i!���; ð72Þ

which in turn leads to the Hamiltonian:

H ¼ p2

2m
þ m

2
!2x2 þ i���! ¼ !

1

2
ðX2 þ P 2Þ þ i���

� �
ð73Þ

with X :¼ ðm!Þ1=2x and P :¼ ðm!Þ�1=2p. Readily, we recognize that the sector

of (73) involving only ordinary variables corresponds to the well-known harmonic

oscillator, in which de¯ning the auxiliary quantities:

a¼: 1ffiffiffi
2

p ðX þ iP Þ; a�¼: 1ffiffiffi
2

p ðX � iP Þ; ð74Þ

leads to the following nonvanishing classical brackets relations:

fa;Hg ¼ �i!a; fa�;Hg ¼ i!a�; fa; a�g ¼ �i: ð75Þ

Besides that, by using _F ¼ fF ;Hg, one can obtain the laws of motion for the vari-

ables introduced in (74):

a ¼ a0e
�i!t

a� ¼ a�
0e

i!t

�
) X ¼ 1ffiffiffi

2
p ða0e�i!t þ a�

0e
i!tÞ; ð76Þ

which exhibits the harmonic behavior of the coordinate x.

In a completely analogous way, one could de¯nep

b¼: 1ffiffiffi
2

p ð�þ i��Þ; b�¼: 1ffiffiffi
2

p ð�� i��Þ; ð77Þ

which turn out to be such that

fb;Hg ¼ �i!b; fb�;Hg ¼ i!b�; fb; b�g ¼ �i ð78Þ
pA quick calculation shows that the sector of the Lagrangian (72) involving only odd coordinates can be

written in terms of the complex odd variables de¯ned in (77) as L ¼ � i
2 ð�:�þ ��:��Þ�

i!��� ¼ ib� _bþ d
dt ðb�bÞ � !b�b ffi ib� _b� !b�b.

L. G. Caro et al.
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and as a consequence:

� ¼ 1ffiffiffi
2

p ðb0e�i!t þ b�0ei!tÞ;

�� ¼ 1ffiffiffi
2

p
i
ðb0e�i!t � b�0ei!tÞ;

8>><>>: ð79Þ

which reveals that the Grassmann variables that describe this system also have an

oscillatory behavior. Thus, since all of the con¯guration variables describe an oscil-

latory motion with (angular) frequency !, this particular case of the Witten model is

known as pseudoclassical supersymmetric harmonic oscillator.

Another interesting pseudoclassical Lagrangian that exhibits this kind of super-

symmetry is the one presented in (48) in the particular case in which ’ ¼ 0. Then, for

a spin-1/2 particle with electric charge �e and spin g-factor that can be rounded to 2

(e.g. electron and muon), the Lagrangian becomes

L ¼ LF � e _xaAa þ
1

2m
SabFab

� �
: ð80Þ

In this case, the small variations,

�xa ¼ �i
�ffiffiffiffiffi
m

p �a; ��a ¼ �
ffiffiffiffiffi
m

p
_xa; ð81Þ

induce the variation in the Lagrangian:

�L ¼ i�
d

dt
�

ffiffiffiffiffi
m

p
2

�ab _x
a�b þ effiffiffiffiffi

m
p �aAa

� �
; ð82Þ

which shows that, in fact, this is a supersymmetry. Besides, the corresponding

supercharge results:

Q ¼ 1ffiffiffiffiffi
m

p �aðpa þ eAaÞ: ð83Þ

Then, the relation in (71) yields the following Hamiltonian:

H ¼ 1

2m
ðpa þ eAaÞ�abðpb þ eAbÞ þ

e

2m
SabFab ð84Þ

or in vector notation:

H ¼ 1

2m
ðp! þ eA

!
Þ2 þ e

m
S
!
�B
!
; ð85Þ

which, of course, coincides with the one obtained through the pseudomechanical

canonical construction (see Eq. (54)). Note that the transformations corresponding

to (81) do not depend on the vector potential A
!

and this suggests that the system

exhibits supersymmetry under such transformations, even in the noninteracting case,

described by the Lagrangian (24), with supercharge Q ¼ 1ffiffiffi
m

p pa�
a.
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4. Canonical Quantization

Among the di®erent known quantization schemes, probably the most widely used is

canonical quantization, which consists of establishing a correspondence between

the classical Poisson brackets of canonical variables and the commutation (antic-

ommutation) relations of the associated quantum operators via the correspondence

principle. Explicitly, one uses the recipe:

fF ;Gg ! 1

i�h
½F̂ ; Ĝ��; ð86Þ

in which the square brackets ½�; ��� (½�; ��þ) stand for commutator (anticommutator)

when both dynamical functions have equal Grassmann-parity jF j ¼ 0 ¼ jGj
(jF j ¼ 1 ¼ jGj). More generally, the graded classical brackets become the

superbrackets:

½F̂ ; Ĝ�� ¼ F̂ Ĝ � ð�1ÞjF jjGjĜF̂ ; ð87Þ
in which the operators act on a Hilbert space H ¼ H0 	H1. Technically, a quanti-

zation of a pseudoclassical system consists on ¯nding a representation of the Lie

superalgebra of dynamical superfunctions, with the classical superbrackets given

by (65) for a phase superspace R2j2, or (35) for a general phase superspace R2mjn
2,

playing the role of Lie superbrackets.16

In the remaining part of this section, the canonical quantization of the cases

presented in the previous section will be performed, focusing on the Grassmann-odd

variables, since the even ones are already known.

4.1. Case 1: Pseudoclassical spin degrees of freedom

The starting point is to apply the rule (86) to the classical brackets obtained in (35):

f�a; �bg ¼ �i�ab ! ½�̂a; �̂b�þ ¼ �h�ab ða; b ¼ 1; 2; 3Þ; ð88Þ

from them, one easily recognizes that these anticommutation relations correspond to

a Cli®ord algebra C‘ð3;CÞ according toffiffiffiffi
2

�h

r
�̂a;

ffiffiffiffi
2

�h

r
�̂b

" #
þ
¼ 2�ab ð89Þ

and taking into account that this algebra is generated by the Pauli matrices 	a,

which obey an identical anticommutation relation: ½	a;	b�þ ¼ 2�abI; one may choose

the following representation:

�̂a ¼
ffiffiffiffi
�h

2

r
�ab	b; ð90Þ

which implies that the quantum operators corresponding to the spin degrees of

freedom are also self-adjoint. With this, the quantized version of the even variables

L. G. Caro et al.
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Sa de¯ned in (41) acquires the form

Ŝa ¼ � i

2
�abc

ffiffiffiffi
�h

2

r
�bm	m

 ! ffiffiffiffi
�h

2

r
�cn	n

 !
¼ �h

2
	a: ð91Þ

Besides, applying the canonical quantization procedure, the classical brackets be-

tween the quantities presented in (43) become

fSa;Sbg ¼ � c
ab Sc ! ½Ŝa; Ŝb�� ¼ i�h� c

ab Ŝc; ð92Þ
which is the expected result, since it corresponds to the quantum commutation

relation of an angular momentum operator. More rigorously, since the quantum

Hilbert space for this system isH ¼ L2ðR3Þ 	 C2, one should write Ŝa ¼ 1	 �h
2 	a. On

the other hand, considering the case in which the particle is charged in a region with

an external magnetic ¯eld, the Hamiltonian in (54) becomes, after quantization

Ĥ ¼ 1

2m
ðp̂ þ eÂÞ2 � e’̂

� �
	 1þ e�h

2m
B̂ � 	! ð93Þ

with

Â ¼ A
!
ðx̂Þ; ’̂ ¼ ’ðx̂Þ; B̂ ¼ B

!
ðx̂Þ: ð94Þ

We immediately recognize that (93) corresponds to the well-known Pauli Hamiltonian.

4.2. Case 2: Witten supersymmetric model

For the sake of perspicuity, we start the quantization program for the particular case

of supersymmetric harmonic oscillator; later it will be extended to the general case.

The starting point consists in obtaining the quantum brackets corresponding to (65):

f�; �g ¼ �i ¼ f��; ��g ! ½�̂; �̂�þ ¼ �h ¼ ½ �̂� ; �̂� �þ: ð95Þ
Besides that, quantizing the classical brackets in (78) yieldsq

½b̂; b̂†�þ ¼ �h; ð96Þ
from these anticommutation relations, one identi¯es the underlying Cli®ord algebra

C‘ð2;CÞ according to

1ffiffiffi
�h

p b̂;
1ffiffiffi
�h

p b̂†
� �

þ
¼ 1: ð97Þ

Therefore, taking into account that the matrices 	�¼: 1
2 ð	1 � i	2Þ satisfy the antic-

ommutation relation: ½	þ;	��þ ¼ I, we may choose the following representation:

b̂ ¼
ffiffiffi
�h

p
	þ; b̂† ¼

ffiffiffi
�h

p
	�; ð98Þ

qAccording (77) and assuming that �̂, �̂� are self-adjoint (motivated by the previous example), it turns out

that bb� ¼ b̂†.
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which in turn implies

�̂ ¼
ffiffiffiffi
�h

2

r
	1; �̂� ¼

ffiffiffiffi
�h

2

r
	2: ð99Þ

Considering this result, the corresponding quantum Hamiltonian, acting on the

Hilbert space H ¼ L2ðRÞ 	 C2 reads

Ĥ ¼ p̂2

2m
þ m

2
!2x̂2

� �
	 1� 1	 �h

2
!	3; ð100Þ

which is of the form Ĥ ¼ ĤB 	 1þ 1	 ĤF . The sector ĤB : L2ðRÞ ! L2ðRÞ
(ĤF : C2 ! C2) of this Hamiltonian corresponds to the so-called bosonic (fermionic)

quantum harmonic oscillator. Maintaining the representation (99) for the �-quantum

operators, we arrive at the following expression for the quantum Hamiltonian of the

Witten model:

Ĥ ¼ p̂2

2m
þ 1

2
Ŵ

2

� �
	 1� 1	 �h

2
ffiffiffiffiffi
m

p cW 0	3 ð101Þ

with

Ŵ ¼ Wðx̂Þ; cW 0 ¼ dW

dx
ðx̂Þ: ð102Þ

4.3. Supersymmetric quantum mechanics

A quantum system characterized by a Hamiltonian Ĥ and a set of self-adjoint

operators fQ̂jgN
j¼1, with all of them acting on some Hilbert space, is said to be

supersymmetric if

½Q̂j; Q̂k�þ ¼ �jkĤ ; 8; 1 � j; k � N: ð103Þ

In this context, the operators Q̂j are called quantum supercharges and we say that

the system presents N-extended supersymmetry.

Applying the canonical quantization procedure to (71) results in

½Q̂j; Q̂k�þ ¼ 2�h�jkĤ ð104Þ
and then, we see the quantized Noether charges due to the (pseudoclassical) super-

symmetry transformations coincide with the quantum supercharges up to a scale

factor ð2�hÞ�1=2. Then, for example, the quantum Witten model turns out to be a

system with N ¼ 2 supersymmetry and supercharge operators:

Q̂1 ¼
1

2

1ffiffiffiffiffi
m

p p̂ 	 	2 þ Ŵ	 	1

� �
;

Q̂2 ¼
1

2

1ffiffiffiffiffi
m

p p̂ 	 	1 � Ŵ	 	2

� �
;

8>><>>: ð105Þ
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which was obtained from (69) and (99). Another quantum system with N ¼ 1 su-

persymmetry is the one characterized by the Hamiltonian (93), which corresponds to

a charged spin-1/2 particle in an external magnetic ¯eld. The associated quantum

supercharge is given by

Q̂ ¼ 1

2
ffiffiffiffiffi
m

p ðp̂ þ eÂÞ � 	!; ð106Þ

which was obtained from (83) and (90).

5. Conclusions

The Faddeev{Jackiw formalism was developed for discrete systems described by

both commutative and anticommutative variables. The construction was made on a

set of supercoordinates that we call phase superspace, where the Lagrangian was

written in its canonical form. The corresponding equations of motion were consis-

tently derived from Hamilton's principle, exhibiting a natural symplectic structure,

which has several relevant properties, highlighting among them the fact that its

inverse determines the graded Poisson brackets (GPB). The fundamental GPB for

the supercoordinates zA was determined from the components of the inverse of the

symplectic form, and with them, the GPB of any pair of dynamical superfunctions

can be easily obtained.

The case of pseudoclassical spin degrees of freedom was carefully studied and

suitable initial conditions were introduced to solve the variational problem. The

(nonsingular) supermatrix representation of the symplectic form was obtained, and

its inverse allowed us to determine the nonnull fundamental GPB of the model.

Noether charge corresponding to (rigid) Oð3Þ symmetry was derived leading to the

total angular momentum straightforwardly. Finally, the general Lagrangian de-

scribing interactions that involve the electron spin angular momentum was deduced.

The Witten model was treated at a pseudoclassical level and it was shown to be

invariant under supersymmetry transformations. The corresponding Noether char-

ges act as generators of these transformations. Interestingly, from the fundamental

GPB of the model, Noether charges were found to satisfy a very particular algebra

involving the Hamiltonian itself. It was also veri¯ed that this model includes the

supersymmetric harmonic oscillator as a particularly interesting case.

The canonical quantization program was developed for the studied models,

leading to the conclusion that the quantum operators corresponding to the Grass-

mann-odd degrees of freedom satisfy a complex Cli®ord algebra, which implies that

their proper representation must be given by Pauli matrices (or linear combinations

of them). In addition, we found that the Hamiltonian obtained by the pseudoclassical

Lagrangian proposed for electromagnetic interactions involving spin degrees of

freedom becomes the Pauli Hamiltonian after being quantized. On the other hand, it

was seen that the purely magnetic interactions described by this Lagrangian also

display supersymmetric behavior.
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