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ABSTRACT: We extend earlier studies of transverse Ward-Fradkin-Green-Takahashi iden-
tities in QED, their usefulness to constrain the transverse fermion-boson vertex and their
importance for multiplicative renormalizability, to the equivalent gauge identities in QCD.
To this end, we consider transverse Slavnov-Taylor identities that constrain the transverse
quark-gluon vertex and derive its eight associated scalar form factors. The complete ver-
tex can be expressed in terms of the quark’s mass and wave-renormalization functions,
the ghost-dressing function, the quark-ghost scattering amplitude and a set of eight form
factors. The latter parametrize the hitherto unknown nonlocal tensor structure in the
transverse Slavnov-Taylor identity which arises from the Fourier transform of a four-point
function involving a Wilson line in coordinate space. We determine the functional form of
these eight form factors with the constraints provided by the Bashir-Bermudez vertex and
study the effects of this novel vertex on the quark in the Dyson-Schwinger equation using
lattice QCD input for the gluon and ghost propagators. We observe significant dynamical
chiral symmetry breaking and a mass gap that leads to a constituent mass of the order of
500 MeV for the light quarks. The flavor dependence of the mass and wave-renormalization
functions as well as their analytic behavior on the complex momentum plane is studied and
as an application we calculate the quark condensate and the pion’s weak decay constant in
the chiral limit. Both are in very good agreement with their reference values.
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1 Introduction

Whilst the Brout-Englert-Higgs (BEH) mechanism has been established as the essential ex-
plicit source of elementary particles’ masses, the same cannot be said of Nature’s composite
building blocks, namely the atoms and their nuclei. Even the lightest Nambu-Goldstone
mode of Quantum Chromodynamics (QCD), the pion, is more than an order of magnitude
heavier than the sum of the current masses of its constituents provided by the BEH mech-
anism. QCD is not a conformal theory and this mass relation is only sensible at a certain
energy scale. Commonly, the light quark’s current masses are quoted at 2 GeV in the MS
scheme [1], at which the sum of two u and one d current-quark current masses amounts to
merely 1% of the proton mass.

The overwhelming contribution to the light hadron’s masses does not stem from the
aforementioned mechanism and a recent lattice-QCD simulation [2| concludes that the ki-
netic quark energy and the gluon field are together responsible for 68% of the proton mass,
whereas the trace anomaly contributes 23%. Thus, only 9% of the proton’s mass is due
to the scalar condensate, which exhibits the major current-quark mass dependence. This
recent analysis of the proton’s “mass budget” has come to strengthen long-standing obser-
vations made by groups who apply functional continuum methods to QCD. In particular,
starting from light current quarks with m,, 4 ~ 3-4 MeV at a reasonable perturbative scale,



solving the Dyson-Schwinger equation (DSE) for the quark propagator in QCD |3, 4| and
making use of the three-body Faddeev equation yields the proton’s mass and that of the
Roper, the nucleon’s parity partners and the A baryons in a consistent symmetry-preserving
truncation [5-14]. These results not only preserve the correct mass ordering but are also
remarkably accurate within the uncertainties of the meson cloud effect. In these approaches
one can also compute the nucleon’s ¢ term, which is a measure of its current-quark mass
dependence [15], and it turns out that o =~ 50-60 MeV. The evidence is conclusive that the
vast majority of the nucleon’s mass is due to dynamical chiral symmetry breaking (DCSB),
which is in contrast to explicit chiral symmetry breaking whose origin lies solely in the BEH
mechanism and is described by the quarks’ mass terms in the QCD Lagrangian.

The Faddeev bound-state calculations are limited to the leading approximation of the
gap equation and three-body interaction kernel, with the exception of a certain degree
of beyond-ladder truncations effects modeled in the diquark amplitudes and propagators.
In this simplification, referred to as rainbow-ladder truncation, the quark-gluon vertex is
simply described by its bare form defined in the Lagrangian coupling. This is a drastic
simplification, as the one-loop dressed vertex already leads to non-vanishing coefficients for
all 12 independent tensor structures [16, 17]. In fact, DCSB is manifest not only in the
quark propagator but also in the quark-gluon vertex, as 6 of the 12 structures are only
generated dynamically and their feed-back into the gap equation enhances the generation
of quark masses. If one solves the gap equation with merely the bare vertex, a realistic
strong coupling and a gluon propagator obtained with the appropriate DSE or lattice-QCD
simulations [18-41], the resulting DCSB is too small and practically irrelevant to realistic
constituent-quark and hadron masses. Therefore, in using a model for the gluon dressing
in the rainbow-ladder truncation, a scale parameter is adjusted to the experimental pion
and kaon masses.

This procedure has proven to be very successful for ground and first excited states of
mesons and quarkonia in the pseudoscalar and vector channels. However, higher excited and
exotic states, as well as the scalar and axialvector gq states, are not well described in this
leading truncation [5-14, 42-58|. A particularly problematic case is the highly asymmetric
momentum distribution in flavored mesons, such as the D and B mesons, as the quark-gluon
vertex dressing has a different impact on a light quark than on charm and bottom quarks.
More precisely, while a bare vertex can reliably be used for the heavy-quark interaction in
the Bethe-Salpeter equation (BSE), this is not the case for light quarks [59-65]. Effects of a
dressed quark-gluon vertex in heavy-light mesons have also been addressed in Refs. [66-68].

There are not only phenomenological motivations for improving our knowledge about
the tensor structure and analytic behavior of the quark-gluon vertex in the nonperturba-
tive domain. On pure field-theoretical grounds the behavior of the fermion-boson vertex
is of great interest, as it i) is a crucial object to explain DCSB in QED (with an artifi-
cially scaled-up coupling) and in QCD, and b) plays an eminent role in its contribution
to the infrared behavior of Green functions as well as to quark and gluon fragmentation
functions, and therefore to the elucidation of the confinement mechanism. Starting from
the perturbative limit, truncation models for the vertex are commonly constructed that
retain the essential features of the underlying theory, which are known to be respected at



every order of a perturbative formulation by construction. It is a natural requirement to
achieve a satisfactory determination of relevant physical observables. For small values of the
coupling constant, perturbation theory is the paradigmatic example of such a truncation
scheme, yet inadequate to calculate hadronic bound states. Much progress towards a more
detailed understanding of the fermion-boson vertex in QED and QCD has been made in the
past years, either by direct calculation of the DSE for the vertex [69-73], invoking gauge
identities and multiplicative renormalizability [74-97|, in perturbative approaches [98-101]
or by direct numerical sampling of QCD on the lattice [102-107].

In this work we extend earlier studies [85] which are based on gauge covariance and
combine the constraints of the well known Ward-Fradkin-Green-Takahashi (WFGTI) iden-
tity [108-111] and two additional transverse Takahashi identities (TTI) [112-116]. The
WEFGTI has long been known as an expression of gauge symmetry and current conserva-
tion and allows for an expansion of the photon-fermion vertex in terms of a well-constrained
“longitudinal” part® [16] and undetermined transverse components. The symmetry which
leads to the transverse identities is the Lorentz transformation acting on the usual in-
finitesimal gauge transformation. Indeed, while the WFGTTI relates the divergence of the
fermion-photon vertex to the inverse fermion propagator, the TTI expresses the curl of this
vertex. Though the TTI were verified to one-loop order [117, 118|, the complexity of these
additional structures made these identities for the longest time not amicable to a straight-
forward determination of the transverse part of the photon-fermion vertex. Moreover, the
TTI couple the vector and axialvector vertices, though, as demonstrated in Ref. [88], the un-
coupling can be achieved by judicious tensor projections and leaves one with two identities
that involve only the vector vertex.? Nonetheless, besides the inverse fermion propagator
and the vector vertex, these uncoupled TTI still involve a nontrivial tensor structure that
arises from the Fourier transform of a four-point like function in coordinate-space with a
necessary Wilson line.

In Ref. [85] we demonstrated that this tensor structure can be parametrized and is con-
strained by multiplicative renormalizability. In that capacity, the TTI are intimately con-
nected to another consequence of local gauge covariance, namely the Landau-Khalatnikov-
Fradkin transformations (LKFT) [109, 119] which describe the response of the Green func-
tions to an arbitrary gauge transformation and express multiplicative renormalizability of
the massless fermion propagator in 4 space-time dimensions. This implies that not any
functional form of the tensor structures in the transverse vertex is possible and we showed
that, for a given form of the transverse vertex that satisfies the TTI, the critical QED
coupling above which chiral symmetry is dynamically broken is gauge invariant.

We here build upon these results and explore them in the context of QCD. As it is well
known, color-gauge invariance in QCD is preserved by the Slavnov-Taylor identity (STT)
for the quark-gluon vertex {120, 121] which also leaves the transverse vertex undetermined.
The TTI were generalized to two transverse STIs (TSTI) [122] from which the vector
vertex can be extracted that involves, as the usual STI, the inverse quark propagators,

! This denomination of the non-transverse vertex is a misnomer, as a purely transverse gluon propagator
in Landau gauge projects out any longitudinal contributions of the vertex in the DSE kernel.
2 Similar projections lead to transverse identities that only involve the axialvector vertex.



the ghost-dressing function and the quark-ghost scattering amplitude, but furthermore a
nonlocal four-point like function which is a consequence of gauge invariance. Asin QED, this
latter term can be parametrized most generally by four tensor structures and corresponding
form factors. Similarly, the quark-ghost scattering kernel can be described by four matrix-
valued amplitudes which can be computed within a nonperturbative dressed-propagator
approach [86, 90, 92-94|. Note that, for the very first time, we now also have generalized
LKFT (GLKFT) for QCD [82, 123, 124], though our understanding of these is in its infancy
and their complexity still prevents us from imposing tangible constraints on the quark-gluon
vertex.

In analogy with the approach taken in Refs. [85, 88|, we divide the quark-gluon ver-
tex into longitudinal and transverse tensor structures using the tensor basis of Ref. [125].
Solving a system of coupled equations we obtain the expressions of the longitudinal form
factors A\;(k,p),i = 1,...,4, from the usual STT as in Refs. [86, 90, 92-94], and additionally
derive the functional form of the transverse form factors 7j(k,p),j = 1,...,8, where k and
p are the outgoing and incoming quark momenta, respectively. Six of the twelve vertex
form factors depend on the quark-ghost interaction kernel and on the ghost-dressing func-
tion. In addition, the transverse form factors are characterized by a functional dependence
on eight scalar functions, Y;(k,p), which parametrize the aforementioned nonlocal tensor
structure in the uncoupled TSTI for the vector vertex. As we are currently in no condition
to calculate the corresponding four-point function in momentum space, we rely on the well
established Bashir-Bermudez ansatz [81] for the fermion-gauge boson vertex that preserves
multiplicative renormalizability and is constrained by gauge covariance and perturbative
QCD in a given kinematic limit. Thus, we trade our ignorance of the Y;(k, p) functions for
eight parameters a; employed in this ansatz and solve the quark DSE with the complete
vertex structure for a large representative sample of a;-sets. The latter are constrained by
multiplicative renormalizability in the range, —2 < a; < 42, and we employ gluon and
ghost propagators from lattice QCD.

We find that only a very limited combination leads to a mass function M (p) that
exhibits the DCSB and functional behavior observed in phenomenological models, and
the same holds for the wave renormalization function Z(p). In many cases, uninteresting
solutions are found, i.e. M(0) < 100 MeV, or the iteration process to solve the integral
equations converges poorly or not at all. We here present the first solution of the quark’s
DSE that leads to significant DCSB with M (0) ~ 500 MeV, employing as(u) ~ 0.3, a
gluon-dressing function, A(q?, i), and a ghost-dressing function, G(q?, u?), renormalized at
p = 4.3 GeV in agreement with lattice QCD. No additional strength via a form factor or
other modifications in the DSE kernel are introduced and even in the chiral limit the DCSB
is still considerable.

This paper is organized as follows: in Section 2 we review the DSE for a quark in QCD
and motivate our renormalization procedure, after which we go into the details of the con-
struction of the fully dressed quark-gluon vertex and its most general tensor structure. We
then introduce the longitudinal and transverse ST1Is that constrain the quark-gluon vertex,
discuss their content, in particular the quark-ghost scattering kernel, and show how their
manipulations with appropriate tensor projections leads to the analytic form of the 12 as-



sociated form factors. Since one nonlocal tensor structure in the transverse STIs is hitherto
unknown, at least nonperturbatively, we introduce its parametrization and constrain it with
the Bashir-Bermudez ansatz in Ref. [81] and multiplicative renormalizability. In Section 3
we turn our attention to the gauge sector and list the parametrizations of the gluon and
ghost propagators which are fitted to the data from three lattice QCD groups. In Section 4
we present our main results which consist of the mass and wave-renormalization functions
and the leading quark-ghost form factor in case of omitting the transverse vertex and using
the full vertex in the DSE. Strong coupling variations and quark-flavor dependence of the
DSE solutions are also studied. We wrap up that section with the solutions of the DSE on
the complex plane for light quarks, followed by some applications of our results, namely the
calculation of the pion’s weak decay constant and the quark condensate in the chiral limit,
in Section 4.3. Finally, in Section 5 we comment on our results and propose future steps
that could lead to a parameter-free determination of all transverse vertex functions.

2 The gap equation and gauge-symmetry constraints on the quark-gluon
vertex

2.1 Dyson-Schwinger equation for a quark

The most prominent occurrence of the quark-gluon vertex is in the DSE, which is nothing
else than the relativistic equation of motion of the quark in QCD formulated in a nonper-
turbative manner. In essence, the DSE describes the nonperturbative gluon dressing of the
current quark by a self-energy term in its propagator. For a given flavor the DSE of the

inverse quark propagator is,?

S~Yp) = Z (i7 pt mbm) +3(p%)
A gtk
&)

= Zoiy -p+Zym+ 2y 92/ AL (@) yut® S(k) Ty (k. p) (2.1)

where mP

™ is the bare quark mass, m is the renormalized or current quark mass and Z; (u, A)
and Za(p, A) are the vertex and wave-function renormalization constants, respectively. The
first two terms in Eq. (2.1) are the inverse free quark propagator and the integral expresses
the quark’s self-energy ¥(p?). In this integral, D, (g) is the dressed-gluon propagator in

Landau gauge with momentum g = k — p,

a a qudv
Au?j(Q) =5 <5W - 22 )A(qz) ) (2.2)

where A(q?) is the nonperturbative dressing function, A(g?) — 1/¢ for large ¢, I (k,p) =
I',,(k,p)t?*, is the dressed quark-gluon vertex and t* = A*/2 are the SU(3) group generators
with A® in the fundamental representation; a, b generally represent color indices.

3 We work in Euclidean space in which {v,,v.} = 26,.,, where 6,, is the Euclidean metric and the
Dirac matrices are hermitian: ’yl = 7Yu. Moreover, v5 = fy; = yav1v273, With T [y57. 7 YaV8] = —4€pvas,
Ouv = % [Yu,7v] and a space-like vector p, is characterized by p? > 0.



The most general Poincaré-covariant form of the solutions to Eq. (2.1) is written in
terms of covariant scalar and vector amplitudes:

S(p) = —iv-pov(p®) + os(p?)
_ 1 _ Z(p®) (2.3)
iy pA@?) +B@®?) iy p+M@p?) '

In the integral, A is an ultraviolet cut-off, u is the renormalization scale and one typically

chooses A > p in DSE studies of QCD. These scales are implicit in our notation, namely
A(p?) = A(p?, 12, A?) and B(p?) = B(p?, u?, A?), as is a flavor index f for these quantities
as well as for all renormalization constants. The flavor-dependent nonperturbative mass
and wave renormalization functions are,

M(p®) = B(p*, p?, A*)JA(p®, 1*, A?) (2.4)

and,
Z(p* A2 pP) = 1/A(p*, N2, 1iP) (2.5)

respectively. The scale p is commonly chosen such that the dressed functions match the
ones in perturbation theory, i.e. Z(u?) =1 and M (u?) = m = Zs(u, N)/Z4(t, A) mP™(A),
where Z4(p, A) is the renormalization constant associated with the Lagrangian’s mass term.

The object of our interest is the fully dressed vertex, I',(k, p), which satisfies its own
DSE. As already mentioned, we do not intend to solve the DSE of the vertex in a given
truncation scheme but rather make use of three STIs presented in Sections 2.2 and 2.3.
This allows us to derive the scalar form factors associated with the tensor structure of the
vertex. Before we engage on this path, a note on the renormalization method is in order.
After taking the color trace and with Cr = 4/3 in the fundamental representation, the
unrenormalized DSE for a given quark reads:

_ . . dk
Sl (p) = iy - p+ mP™ 4 2 Cp / A9, (@) So(k) TO (k. p) (2.6)

(2m)*

Relating bare propagators, the coupling and vertex to their renormalized expressions via
the following procedure,

S(p, i) = Zy ' (1*)So(p) , (2.7)
A(g*, 1?) = Z3' (1*)Do(d?) (2.8)
Dulk,p, i) = Z1(u*) Tk, p) (2.9)
9(w*) = Z; ' (1?) g0 (2.10)

and considering the relation Z7 = Z}/(Z3Z4) for the strong coupling [126] we obtain:

Crg*Z? [ d'k T, (k
77187 (p) = iy - p 4+ mP™ 4 L7 1/ (k:p) (2.11)

Z%ZA (27’(’)4 ZAAHV (q)fYM Z2 S<k) Zl



After simplification one arrives at the renormalized DSE (2.1), where the integral is mul-
tiplied by the p-dependent vertex renormalization constant Z;. Now, recall that the STI
for the quark-gluon vertex (2.16) imposes the all-order constraint on the renormalization

factors,
_ ZuZs

Z.
in which Zy, defined by H (k,p, u?) = Zg(u?)Ho(k, p), is the renormalization of the quark-
ghost kernel discussed in Section 2.4 and Z, is the renormalization constant of the ghost

A (2.12)

propagator (2.17):
G(¢* 11?) = Z, 1 (1*)Go(d®) - (2.13)
It is known that the ghost-gluon vertex is not ultraviolet divergent in Landau gauge and that
the quark-ghost kernel is finite at one-loop order [121]|. This also is the case in the dressed-
perturbative approach [90] we employ and we choose Zy = 1. The STI condition (2.12)
thus simplifies to [127],
Z3
Zy = —
1 Zc )
which is still not the relation Z; = Zs imposed by the WFGTT in QED. Since the self-energy
Y(p?) is also finite at one loop in Landau gauge, the authors of Ref. [90] set Zo = 1 which

(2.14)

simplifies the STI condition further to Z; = 1/Z., and in order to insure multiplicative
renormalizability the replacement Z;! — G(q¢?) was advocated. Similarly, also insisting
on the renormalization-point independence of M (p?), the Curtis-Pennington vertex [74] is
multiplied by a factor of G(¢?) in a non-Abelian ansatz for the quark-gluon vertex [69].

An intuitive motivation for this substitution is provided by the observation that the
product g2A(q?)G?(¢?) is a renormalization group invariant quantity in the Taylor scheme?*
and can be used to define an effective strong coupling in the DSE kernel. As argued in
Ref. [90], the prescription Z.! — G(¢?) compensates for the missing transverse part of
the quark-gluon vertex in their approach. This is because omitting the transverse vertex
components leads to mishandling of overlapping divergences and therefore compromises the
multiplicative renormalizability of the DSE. Indeed, we demonstrated in Ref. [85] that the
transverse vertex is crucial to satisfy multiplicative renormalizability and in here we include
all components of the vertex.

If we solved simultaneously the coupled quark, gluon and ghost DSE, we would know
the value of Z.. This is not our task here, as we pursue the hybrid approach of solving
the quark DSE (2.1) using as input renormalized gluon and ghost propagators from lattice
QCD. Note that the STI and TSTI to be discussed in Sections 2.2 and 2.3 involve the ghost
propagator and the quark-ghost scattering amplitude. Consequently, the vertex FZ(k,p)
we derive therefrom also depends on their scalar dressing functions. We therefore absorb
Z. on the right-hand side of Eq. (2.14) in the ghost-dressing function G(¢?) (see Egs. (2.44)
to (2.55)) or, similarly, we may absorb Z. in the strong coupling oy = g%/4m which is an
overall factor in front of the integral. As we allow for a certain variation of a,(u?) at a

4 This corresponds to the Taylor kinematics of vanishing incoming ghost momentum in the MOM
scheme [128]. The MOM scheme itself is defined by setting the scalar coeflicient function of the Green
function to its tree-level value in a specific kinematic configuration.



Figure 1. Diagrammatic representation of the dressed quark-gluon vertex I',(k,p) with its mo-
mentum flow defined by the incoming quark momentum p, the outgoing momentum k and ¢ = k—p.

given renormalization scale imposed by lattice QCD, the impact of this simplification is
minimal. Thus, the quark DSE we are concerned with in this work is,

ST p) = Zeiy-p+ Zim+ Zs

a A 4
e [ M@ SWTLkp) (215)

3 (2m)4

with all the 12 tensor structures of the fully dressed quark-gluon vertex we derive in the
next sections.

2.2 The quark-gluon vertex: general tensor structure

As emphasized in Section 2.1, the dressed quark-gluon vertex is a fundamental ingredient in
the QCD gap equation and its contributions in the infrared domain play a pivotal role for
the emergence of a constituent-quark mass. The vertex will result in strong DCSB if at least
one form factor associated with its tensor structure provides sufficient enhancement in the
infrared domain; this feature is commonly associated with the rainbow-ladder truncation of
the gap- and bound-state equations. However, as argued for example in Refs. [4, 48, 51, 62],
this simplest ansatz has limitations when applied to radially excited mesons, the axialvector
channel and heavy-flavored mesons. It is therefore of crucial importance to understand the
individual as well as collective contributions of the full vertex to the gap equation.

To begin with, as in QED, the fermion-gauge-boson vertex in QCD satisfies a set of
constraints imposed by gauge symmetry, multiplicative renormalizability, LKFT as well as
the C, P and T symmetry properties of the bare vertex; see, for instance, the discussions
in Refs. |78, 84]|. Therefore, in a general though not unique decomposition, the fermion-
gauge-boson vertex can be written in terms of twelve linearly independent structures [16].
In QCD, the STI associated with this vertex is given by,

iq-T(k,p) = G(a®) |~ (k) H* (k. p) — H*(p,K)S ™' ()|, (2.16)

where ¢ = k — p and the momentum flow is depicted in Figure 1 and S~1(p) = iA(p?)y -

p + B(p?) is the inverse of the propagator in Eq. 2.3. The color index a denotes again the

implicit SU(3) group generators. The ghost-dressing function G(¢?) is defined by the ghost

propagator,

G(q*)
¢

renormalized as G(u?) = 1, H%(k,p) = H(k,p)t* is the quark-ghost scattering amplitude

D (g% = — 59 (2.17)

and H%(p, k) is obtained from the conjugate, H'(—p, —k), and the momentum exchange
k <> —p. This identity allows us to determine the four components of the vertex which



are not transverse to the gluon momentum q. However, this doesn’t exhaust the number
of independent tensor structures that can be formed from the momenta k& and p and the
Dirac matrices. The full vertex, I'},(k, p) = I',(k,p) t* contains additional transverse vertex
components and can be decomposed as the sum [16],

T (k,p) =Th(k,p) + T (k,p) . (2.18)

The transverse vertex F;‘f(l{:7 p) vertex in Eq. (2.18) is thus naturally defined by,

iq-TT(k,p)=0. (2.19)

The STI (2.16) constrains the so-called longitudinal vertex, I'} (k, p), to four independent
structures,

Fﬁ(k7p) = Al(kvp) T + )\2(]{3,]7) %t#ry 1= Z)‘3(k:ap) tu - )\4(]{3,]7) Guutu ’ (220)

where t = p 4 k is the sum of the incoming and outgoing quark momenta.
The transverse vertex, ultraviolet-finite at one-loop order [17, 83|, can generally be
decomposed into eight independent tensor structures multiplied by associated scalar form

factors, 7;(k,p) [16]:
8

i=1
For the kinematical configuration in Figure 1, the tensors are defined as:

T (k.p) = i[pulk-q) = ku(p- q)] , (2.22)
T3 (k,p) = Ipu(k-q) — ku(p- )] - t, (2.23)
T3(kp) = €Y — Qw7 - 4 (2.24)
Tyt (k,p) = iq® [yuy - t — tu] + 2qupvkpou, (2.25)
T3 (k:p) = 04ty (2.26)
To(k,p) = =y (K = p*) +tuy - q, (2.27)
Ti(kp) = §(k* = p?) [y -t = L] + tupukpoup (2.28)
T8 (k,p) = —ivupvkoovy — Puy -k +kuv-p. (2.29)

Here, we adopt a slightly modified tensor basis [125] with respect to the one derived by Ball
and Chiu [16]. This ensures all transverse form factors are independent of any kinematic
singularities in one-loop perturbation theory in an arbitrary covariant gauge.

As discussed in more detail in Refs. |78, 84], the fully dressed vertex must exhibit
the same properties under charge-conjugation transformation as the bare vertex, which
constrains all the 7;(k,p) in Eq. (2.21) to be symmetric under the momentum interchange
k <> p, with the exception of the odd functions 74(k, p) and 74(k, p):

Tz(kvp) = Ti(p> k)a i = 1>273757778 (230)
Ti(k,p) = —7i(p, k), i=4,6. (2.31)



Similarly, Ai(k,p), A2(k,p), As(k,p) and Ay(k,p) are symmetric under k <> p, so as to
preserve the charge-conjugation properties of the bare vertex.

The STI (2.16) completely determines the form factors in Egs. (2.20) and their expres-
sions are given in In Section 2.3. The transverse scalar functions in Eq. (2.21), on the other
hand, remain undetermined. Nonetheless, as in QED, two additional transverse identities
allow to analogously constrain the form of these transverse vertex functions.

2.3 Transverse Slavnov-Taylor identities

A complete fermion-boson vertex based on gauge techniques, such as the one derived from
the TTI [85, 88|, is a first step towards a realistic quark-gluon interaction in QCD valid in
any coupling regime. As in QED, gauge invariance as well as Lorentz and charge transfor-
mation invariance constrain the tensor structure of the fully dressed three-point function.

As we already saw, the corresponding gauge symmetry preserving relation between
Green functions in QCD theory is provided by the STI of Eq. (2.16), which relates the
quark-gluon vertex with the ghost-dressing function, the inverse quark propagator and
the quark-ghost scattering kernel, H(k,p), and its conjugate, H(k, p). The non-transverse
vertex saturates this STI while the transverse vertex is automatically conserved. As in
QED, this allows to decompose the fermion-boson vertex into a so-called longitudinal and
a transverse part with a tensor basis for which we choose the one defined in Eq. (2.20) and
Eqgs (2.22)—(2.29). On the other hand, the STT is a consequence of SU(3) gauge invariance
and merely makes a statement about the non-transverse components of the vertex. By itself,
it fails to ensure gauge covariance in its totality. Under certain simplifying conditions, the
WFGTT can be recovered form the STI which leads to an abelianized form of the longitudinal
quark-gluon vertex [87, 90].

How do the DSE solutions of propagators and vertices depend on an arbitrary gauge
transformation? In QED the answer to this question can be obtained from the well-defined
set of LKFT laws which leave the DSE and WGTI form-invariant. Given a suitable ansatz
for the three-point Green function, I'(k,p), that is invariant under a LKFT to another
gauge, one can ensure gauge covariance and the WFGTTI is satisfied in either gauge. The
general rules that govern the LKFT, though, are far from trivial and an extension to the
quark propagator in any gauge has only recently been established [82].

In analogy to QED, the transverse components of the vertex can be constrained by
TSTI that relate to the curl of the quark-gluon vertex. Their Dirac structure is identical to
that of the T'TI and in addition they involve the ghost-dressing function and the quark-ghost
scattering kernel. The TSTI can be derived in a functional approach [122] and read:

0. Lok, p) — L5k, p) = G(¢*) [S™ (p)ow H(k,p) + H*(p, k) 0,5~ (k)]
+ 2imT, (k,D) + tacos T (kD) + AL (K,p), (2.3

.1 (k,p) — o T3 (k,p) = G(¢®) [S™ (p)o,, H(k,p) — H*(p,k) 07,5 (k)]
+ taeauuﬁ F%(k,p) + V;V(k},p) ) (233)
where m is the renormalized current-quark mass in the DSE, af‘w = Y50, and Ty, (k, p)

is an inhomogeneous tensor vertex. The two tensor structures, Afj, and V,, are Fourier
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transforms of four-point functions in coordinate space which involve a Wilson line to pre-
serve gauge invariance [122]. Moreover, I'j(k,p) couples to the axialvector vertex via the
fourth term on the right-hand side of Eq. (2.32) and likewise, I‘Za(k, p) couples to the vector
vertex. We stress that these identities bear no explicit dependence on the covariant gauge
parameter. They are valid for any covariant gauge and are not limited to the perturbative
case.

We follow Refs. [85, 88| and proceed in analogous manner to decouple Egs. (2.32) and
(2.33). This is done so by introducing the two tensors,

1
Tﬁu = iea/ﬂjﬂtaqﬁu (234)
T2 - 1 agB 2.35
w = ieauuﬂ’?/ q . (2.35)

Contracting the axialvector identity (2.33) with the tensors (2.34) and (2.35) yields zero
on the left-hand side of the equation, whereas operating the contractions on the right-hand
sides with the identities,

Ty, tacauws Ta(k,p) = t2q-T(k,p) — q-tt-T(k,p), (2.36)

Tiu taeaur/ﬂ F,B(kap) =7-lq- F(k,p) —q-tv- F(kap) 5 (237)
one can recast the two contractions of the axialvector identity into the new form,
q-tt-T(k,p) = G(¢*) Ty, [S™ (p)o,, H(k,p) — H(p, K)o, S~ (k)]

+ t2q : F(k7p) + TﬁquV ) (238)

q-ty-T(k,p) = G(a®) T4, (S~ (p)os, H(k,p) — H(p, k)05, S (k)]
+y-tq-T(k,p) + T2 Vi (2.39)

in which we dropped color indices for simplicity’s sake. Remarkably, these two new identities
involve only the vector vertex, I',(k,p), and do not explicitly depend on the quark mass
m. Likewise, information about the axialvector vertex, I‘z(k, p), can be obtained through
an analogous procedure involving the vector TSTT (2.32).

We have thus uncoupled the vector from the axialvector vertex and obtain, in analogy
with Ref. [88], three matrix-valued equations for the scalar projections of I',(k, p), namely
Egs. (2.16), (2.38) and (2.39). They form a set of twelve linearly independent and coupled
linear equations for the twelve unknown scalar vertex functions, \;(k, p) and 7;(k, p), which
can be solved exactly provided H®(k,p), H%(p,k) and Vi (k,p) are known. The terms
T jl,VW and TiuV/w are unknown objects, yet they are Lorentz-scalar objects which, without
loss of generality, can be conveniently expressed as,

T, Viw = Y1(k,p)1p + Ya(k,p)v - q + Ya(k,p)y - t + Ya(k,p) [y - ¢, 7 - ] (2.40)

iTo, Vi = Ys(k, p)1p + Yo(k,p)y - ¢ + Yo (k,p)y - t + Ys(k,p) [y - ¢, - ] (2.41)
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where Y;(k,p) are hitherto unconstrained scalar functions.

A final ingredient we require to derive the expressions for the form factors A;(k, p) and
7i(k,p) is the quark-ghost scattering amplitude, H*(k,p) = H(k,p)t®, which so far has
been studied in a dressed-perturbative approach and will be discussed in more detail in
Section 2.4. Nonetheless, employing a similar expedient as in Egs. (2.40) and (2.41), we
can decompose the matrix-valued kernel and parameterize it as follows:

H(k,p) = Xo(k,p)Ip + X1(k,p)y -k + Xo(k,p)y-p+ X3(k,p) [y-k,v-p], (242)

H(p,k) = Xo(p, k)1p — Xo(p, k) v -k — X1(p, k) v -p+ X3(p, k) [v-k,v-p] . (2.43)

Perturbative expressions for the form factors X;(k, p) are known to one-loop order [17] and
yield Xo(k,p) = 1+ O(g?) and X; = O(g?), i = 1,2,3. The same diagrammatic approach
based on dressed propagators and vertices that incorporate all X;(k,p) form factors in
the longitudinal vertex appears to mostly corroborate this dominance, while X3(k, p) may
become sizable [92] in certain kinematic limits. For the remainder of this work, we make the
simplifying assumption that the contribution of Xy (k,p) dominates and limit ourselves to
the kinematic configuration, k = ¢/2, p = —¢/2 = H(k,p) = H(q/2,—q/2), and therefore
Xo(k,p) =~ Xo(q?). We neglect sub-leading form factors as their contributions are negligibly
small compared to the strength of the transverse vertex, as will be shown shortly.

The decomposition in terms of Lorentz covariants of Egs. (2.40), (2.41), (2.42) and
(2.43) allows us to write the identities (2.16), (2.38) and (2.39) as a matrix-valued equation
system that can be solved by different means. With a set of four projections, with respect
to the Dirac trace, one obtains four linearly independent, coupled linear equations whose
solutions yield the \;(k, p) form factors and, likewise, the 7;(k, p) can be isolated using eight
different projections. Thus, with the four projections of Eq. (2.16) we arrive the following
scalar vertex functions of the non-transverse vertex:

Mlk.p) = 3 Gla?)Xo(a?) [AG) + AGY)] | (2.41)
2 2

Xo(k,p) = G(¢*)Xo(q%) w : (2.45)
2 2

) = GG Xo(a?) 2= (2.46)

M(k,p) = 0. (2.47)

Note that in the absence of the sub-leading Xj23(k,p) form factors, \y(k,p) = 0, as
in QED [16]. The transverse vertex functions are derived from four projections of each,
Eqgs. (2.38) and (2.39):

Yi
k,p) = —
) = aE V)

Y5 — 3Y3
4(k* — p*)V(k,p) ’

(2.48)

m2(k,p) = — (2.49)

AR - AP)] . Yo (Y — Ya)
Py }+4V@4»‘8@¢—p%vw4»’ (2.50)

n(kp) = 5 6X() |
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Y+ Y t2y2

k,p) = - 2.51
M) S ) SR V) (251
B(k*) - B(»*)] 2vi+YA
_ 2 2 6
(k) = ~G()Xola?) | P H - BEe (2:52)
(k —p)*Ys Y - Vs
k,p) = - 2.53
o8 = Vs s (25
2 A S
k.p) = 2.54
7P = G =V e T V) 254
A(k?) — A(p? 2V
ms(k,p) = —G(q*) Xo(q”) [ ( kg p2( )] T2 fpz : (2.55)
where Y; = Y;(k,p) and the Gram determinant is defined by:
V(k,p) = k*p* = (k-p)*. (2.56)

In addition, the vertex transformation properties under charge conjugation determine the
symmetry properties of the Y-functions:

Yi(k,p) = Yi(p,k),  i=2,6%7°8", (2.57)
Yi(k,p) = —Yi(p,k), i=1,3,456"738", (2.58)

where, as in Ref. [85], we introduce the decomposition,
Yi(k,p) = Y (k,p) + Y (k,p) | (2.59)

for i = 6,7,8, where the superscripts S and A denote the symmetric and antisymmetric
parts of the corresponding Y; functions for £ <> p. Note that there is no contribution of
Y, YA and Y3 to the form factors 7;(k, p) in Eqs. (2.48) to (2.55) as a consequence of the
symmetry properties in Eqgs. (2.30) and (2.31) which imply:

(k* — p*)Yi(k, p)

Y (k,p) = — NG (2.60)
2

Y (k,p) = W : (2.61)

Yés(k,p) _ _(k _p)2}/2(kap) (kz _p2)Y23(k7p) ) (262)

8V (k,p) 8V (k, p)

We stress that while Egs. (2.44) to (2.55) are analytic expressions, the remaining chal-
lenge stems from our ignorance of the scalar Y;(k,p) functions. We shall constrain their
analytical form with an ansatz for the transverse vertex in perturbative QCD [81] in Sec-
tion 2.5 and postpone the actual calculation of the nontrivial four-point function Vg, (k, p).
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HO®k,p,q) =1 HYk,p,q) -

Figure 2. Diagrammatic representation of the unconnected and connected quark-ghost scattering
amplitude in its dressed one-loop approximation with the simplified kinematic choice k = ¢/2 and
p = —q/2. The yellow-shaded circles denote the dressed quark, gluon and ghost propagators, while
the blue- and purple-shaded circles represent the dressed ghost-gluon and quark-gluon vertices,
respectively. The outgoing quark and ghost propagators are joined in a non-standard “vertex”.

2.4 Quark-ghost scattering amplitude

The nonperturbative behavior of the quark-ghost scattering kernel H%(k,p) introduced
in the STI (2.16) is unknown. A tractable ansatz that allows for a connection with the
perturbative result [17] is given by the one-loop dressed approximation to H%(k,p) [90],
whose diagrammatic representation is depicted in Figure 2. We use the tensorial decompo-
sition of Eqgs. (2.42) and (2.43) and, as mentioned previously, limit ourself to the dominant
form factor Xo(k,p) with the momentum configuration k& = ¢/2 and p = —¢q/2, so that
Xo(q/2,—q/2) = Xo(¢?) does not depend on angles. Applying the kinematics of the Feyn-
man diagram in Figure 2, we project out Xo(g?),

Xo(¢*) = L Trep H(g/2,—q/2,q)

C A gty
_ 1—|—ng/ Gt Au(OD(C+0) Trp G (€4 )T (0 4.-9)] . (269

where C'4 = 3 is the Casimir operator in the adjoint representation,
G, :’L'(EV—I-QZ,) Hy —il, Hy , (2.64)

is the dressed ghost-gluon vertex and £+ ¢ and q are respectively the outgoing and incoming
ghost momenta, while ¢ is the gluon momentum exchanged between the quark and the
ghost. Note that that the terms proportional to ¢, in the vertex (2.64) are transverse to
the gluon propagator A, (¢) in Landau gauge; Hy does therefore not contribute to the
quark-ghost kernel. Moreover, the momentum ¢ coincides with the gluon momentum in the
gap equation (2.1).

The remaining form factor Hy (¢ + q,q) ~ H1(¢ + ¢,0) = Hy(x) is parametrized by the
expression [130],

02172 'LU4
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fitted to lattice-QCD data: ¢ = 1.26, a = 0.80 GeV, b = 1.3 GeV and w = 0.65 GeV. In
Ref. [86] the replacement of the tree-level ghost-gluon vertex by a dressed vertex enhanced
Xo(g?) overall and by about 20% in the peak region ¢> =1-4 GeV2. Adding the transverse
part of the vertex in the gap equation this observation is not significantly altered. Note that
L, (k,p) = T'f(k,p) + I} (k, p) enters both the DSE (2.15) and the quark-ghost scattering
amplitude in Eq. (2.63) for consistency.

2.5 Ansatz to constrain the nonlocal Lorentz scalars TJVVW and TiVVW

The vertex ansatz proposed in Ref. [81] is constrained by two requirements: it provides the
multiplicative renormalizability of the fermion propagator and produces a gauge-independent
critical coupling for DCSB. The appeal of this ansatz lies in the fact that it is merely ex-
pressed in terms of the quark propagator’s scalar and vector functions, B(p?) and A(p?),
respectively. In the particular kinematical configuration k% > p?, the transverse form
factors of this ansatz are given by:

B(k*) — B(p*)

n(k,p) = a1 CESICETR (2.66)
(k. p) = az (k?f;l)_(é(f;% : (2.67)
3(k,p) = asw, (2.68)
T4(k,p) = G4W’ (2.69)
75(k,p) = —%W, (2.70)
76(k,p) = —aﬁm [A(K?) — A(p?)] , (2.71)
1k, p) = — ;ljf; + kQC:ZPQ B(ig :;(pQ) , (2.72)
7s(k,p) = asA(kZ) —A®) (2.73)

k2 — p2 ’
where the coefficients a; are unknown constants.

Inserting the above form factors in Eqgs. (2.48) to (2.55), we derive the following ex-
pressions for the Y;(k,p) which consequently depend on the a; coefficients:

Vilkp) = 201 [BO2) - B6A) 550 (274)
Ya(k,p) = 3 [A(K*) — A(p*)] {(¥* - p?) (G(¢*)Xo(q?) — 2a3)
2 2
o (H) (k+p)%as } | (2.75)
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Yi(k,p) = 5 [A(K*) — APH)] { — ¢* (G(¢*) Xo(¢?) — 2a3)

+ 4ma2 Lok 4 pPas) (2.76)
B(k*) — B(p*)

Yz;(k»p) = _4/€2p2(/€2 +p2)

{2(k* + p*)V(k,p)as

+ 2k%p*(k* + p?) [as — G(¢*) Xo| + K*p*(k + p)?ar} | (2.77)

Ys(k,p) = 5 [A(K*) = Ap*)] { = (k = p)? [G(¢*) X0 — 2a3]

V(k,p)
k2 + p?

4
+3 as + 2(k* + p*)ag} (2.78)

B(k*) — B(p®)

Y (k,p) = m{ﬂkj +p°)V(k, p)ay
+ 6k2p* (k% + p?) (a5 - G(qQ)Xg) + k2p%(k + p)2a7} , (2.79)
S 2 2 k? — p2
Y7 (k,p) = a7 [B(k*) — B(p”)] R (2.80)
Y¢' (kp) = =3 [A(K?) = A(?)] (as + G(¢*) Xo) - (2.81)

While the ansatz given by Eqs. (2.66) to (2.73) allows us to derive analytic expressions
for the Y;(k, p) form factors, we trade our ignorance of their functional form—or of the non-
local tensor V), in general—for that of relative coefficients. The task is now to find a set of
solutions @ := {a1, a9, as, a4, as, ag, az, ag} that reproduces mass and wave-function renor-
malization solutions from lattice QCD or successful phenomenological models employed in
calculations of hadron properties. It turns out that this set is rather small since some of
the a; are tightly constrained due to multiplicative renormalizability, as we established with
the two relations [85],

as + 2a3 — 2ag = 0, (2.82)
1

As we shall see, DSE solutions are found in the parameter space defined by the intervals,
—2 < a; < +2. Allowing for the parameters to leave this range mostly leads to unstable or
non-converging iterations when solving the integral equations.

3 Gauge sector: gluon and ghost propagators from lattice QCD

We focus on the complete tensor structures of the dressed quark-gluon vertex, in particular
on its contribution to DCSB in the gap equation, and, as such, we do not attempt to solve the
coupled DSEs for the gluon and the ghost. This exercise is certainly most worthwhile and of
particular interest to understand the effect of the vertex in the dressed gluon propagator and
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its feedback on the quark gap equation. We postpone this more ample and complex study
and rather employ the dressed gluon and ghost propagators which have been calculated on
the lattice and for which several numerical results are readily available.

We use the following three data sets for the gluon and ghost propagators in Landau
gauge obtained with lattice-QCD simulations:

I. Quenched lattice data by Bogolubsky et al. [29] generated with 3 = 6/g2 = 5.70, a
lattice spacing a = 0.17 fm and a lattice volume of L* = (13.6 fm)*.

IT. Quenched lattice data for the gluon by Dudal et al. [35] generated with 8 = 6.0, lattice
spacing a = 0.1016(25) fm and two different lattice volumes: L* = (6.57fm)* and
L* = (8.21fm)*. Quenched lattice data for the ghost by Duarte et al. [36] generated
with 8 = 6.0, lattice spacing a = 0.1016(25) fm and L* = (8.128 fm)*.

ITI. Partially unquenched lattice data by Ayala et al. [30] from the gauge configurations
generated by the European Twisted Mass Collaboration (ETMC) for Ny =2 +1+1
with 8 = 1.90, (L/a)? x T/a = 323 x 64 and B = 1.95, (L/a)® x T//a = 48> x 96.

Each of these three data sets features distinct advantages. The propagators of the sets I
and IIT were calculated with a large lattice volume and the lowest accessible momenta are
p ~ 70 MeV and p = 100 MeV, while the largest momenta are p ~ 4 GeV and p ~ 4.5 GeV,
respectively. Data set III additionally allows us to analyze unquenching effects in the
solutions of the quark DSE. The lattice data of set II were obtained with a smaller lattice
volume, however for a considerably smaller lattice spacing a. Therefore, larger momenta
up to p = 7.7 GeV are accessible, which provides additional information on the functional
behavior in the perturbative domain of these functions.

In exploiting the available lattice data we resort to analytic fits motivated by theoretical
considerations. The lattice propagators, A(q?) and G(q?), of set I and II are parametrized
with an expression that combines the refined Gribov-Zwanziger tree-level gluon propagator
in the infrared domain supplemented by the 1-loop renormalization group behavior at larger

momenta. This amounts to a renormalization-group improved Padé approximation and can

be written as [35]
2 2\ 17!
+m
4wl [ LT , (3.1)
A2
QCD

where w = 11N, o, (1) /127, Aqep = 0.425 GeV and 74 = —13/22 is the 1-loop anomalous
gluon dimension. We choose u = 4.3 GeV and as = 0.3 [90, 129]. A least-squares fit yields
x?/d.o.f. = 1.788 for the renormalized gluon-dressing function of set I [29]:

¢* + M}

2y _
A(q)_Zq‘UrM%qungJ‘

Z = 1.440 £ 0.003 , M? = 2.880 £ 0.054 GeV? |
M2 = 0.434 £ 0.021 GeV? | M3 = 0.527 4+ 0.009 GeV* |
m2 = 0.305 £ 0.071 GeV? (3.2)
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and in case of set II [35] we obtain x?/d.o.f. = 0.031 in a best fit to the bare gluon propagator
with the parameters,

Z =8.421 +0.040 , M? =2.743 +0.184 GeV? |
M3 = 0.519 4+ 0.073 GeV? | M3 = 0.356 4 0.029 GeV* |
m2 = 0.259 £ 0.262 GeV? (3.3)

where A(g?) must be renormalized by a factor 0.3143 2. Similarly, we make use of the
ghost-dressing parametrization introduced in Ref. [36],

4 2 2 4 @+ m e
G(qZ) = l1+wh | ——2 , (3.4)
q* + quQ + M§ AéCD
with the anomalous ghost dimension 7, = —9/44, while w and Aqcp take on the same

values as in Eq. 3.1. Fitting this expression to the ghost propagator of set I [29] renormalized
at = 4.3 GeV we find x2/d.o.f. = 1.534 and the following parameters:
Z =1.05940.001, M =35562+0.464GeV*, M3I=233.47140.391CeV?,
Mi =14.790 £ 0.188GeV? ,  M7I =29.193 4 0.331 GeV? , m? = 0.018 +0.010 GeV? ,
mi = 0.001 £ 0.0002 GeV?. (3.5)

Likewise, a least-squares fit to the bare ghost propagator of Ref. [36] yields x?/d.o.f. = 0.247
with the parameter set:
Z =5.06840.086 , M =19.281 +3.685GeV?, M2 =27.721 +3.388GeV? |
Mg =7.69541.925GeV? | M7 =24.340 £ 2.833GeV? , m3 = 0.527 +0.083 GeV? |
mi = 0.018 4 0.021 GeV*. (3.6)

Accordingly, G(¢?) must be renormalized by a factor 4.706 at p = 4.3 GeV.

On the other hand, we fit the unquenched data in Ref. [30] with a Padé approximant
in the region ¢ < g9 = 3GeV and a renormalization-group improved continuation for
q > qo = 3 GeV given by

a1 + a2q2
Alq?) = ’ <qo, 3.7
(¢°) o5 T o1l + on gt q=qo (3.7)
Vgl
2 2 1 A B
Alg?) = — +§2q0 7 < 08 (] QCD)) ¢>q, (38
a3 + auqy + asqy ¢ \ log (¢/Aqep)

where the anomalous dimension including flavor dependence is in this case v = % — %N I
g=11-— %N ¢, Ny =4 and Aqcp = 600 MeV. Analogously, the ghost propagator is fitted
to the expressions,

2y _ B+ Beg’
= Bs + Pag* q<qo, (3.9)
o B+ Bedd <10g(q0/AQCD)>gﬁ;h »
¢l) = B3 + Bag? \ log (¢/Aqcp) q>4q, (3.10)
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where g1, = 9/4. The fitted parameters are [131]:

oy = 4.305 GeV?, ap =0.979, a3 =1GeV?, a4 =1.581GeV? as=1.098, (3.11)
B1 = 2.750 GeV?, [y =1.855, f3=1GeV? p;=1.864. (3.12)

4 Results

4.1 Solving the Dyson-Schwinger equation for real space-like momenta

The DSE (2.15) is solved by first projecting out the scalar functions A(p?) and B(p?) of
the general solution (2.3). This yields two coupled, nonlinear integral equations which
additionally couple to the integral equation for Xo(q?) (2.63). We solve these three equa-
tions, F(p?) = A(p?), B(p?) and X((q?), simultaneously via an iterative procedure using as
convergence criterium,

_ et - )]

—_ 103
) =107%, (4.1)

€F

where n = 20 — 30 iterations suffice. Imposing the constraints (2.82) and (2.83) we have
established the following values for the coefficients a;:

ay ag as a4 as a6 ar asg

(4.2)

2 2 -1 | -1 1

N[ =
D=
(@)

The crucial choice is az < 0, as positive values of this coefficient inevitably lead to spurious
or non-converging solutions of the integral-equation system. With the choice ag = —1 and
with ag fixed by the condition (2.83) we then adjust az and ag to satisfy condition (2.82).
It turns out that the wave-function renormalization, Z(p?), is quite sensitive to ag # 0
and either positive or negative values impact its functional behavior unfavorably in the
infrared domain; i.e. Z(p?) turns back to its perturbative value = 1, a feature also observed
in conjunction with the Ball-Chiu vertex. A similar observation holds for a4 > 0 and we
therefore use a4 = —1. Thus, setting ag = 0 we have as = 2 while a; > 0 leads to an
increase in the mass function. The solutions exhibit little dependence on the choice for as,
whereas a7 < 0 results in a mass function that decreases too fast and yields negative masses
at large momenta. We remark that this choice is not unique, but within the constraints of
Eqgs. (2.83) and (2.83) and with the necessary choice of az < 0 little room for variation is
left as we checked with some n > 200 configurations.

Our quark-gluon vertex is now fully determined and in the following we present the
solutions for M(p?), Z(p?) and X¢(q?) for the three sets of gluon and ghost propagators
discussed in Section 3. Note that in what follows we determine Z4(u, A) by imposing m(u) =
M(u) at u = 4.3 GeV. Considering degenerate light-quark masses in the range m(2 GeV) ~
30-50 MeV employed in lattice simulations [30], we choose m(4.3 GeV) = 25 MeV. Along
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Figure 3. Mass function, M (p?), wave renormalization, Z(p?), and the quark-ghost kernel form
factor, Xo(q?), for three sets of gluon and ghost propagators, using only I‘ﬁ (k, p) and the form factors
of Eqs. (2.44)—(2.47) in the DSE (2.15). Set I [29] and II [35, 36]: as(u) = 0.30, m(u) = 25 MeV,
uw=4.3 GeV. Set III [30]: as(p) = 0.35, m(u) =25MeV, u=4.3 GeV.

with A(4.3 GeV) = 0.98, we therefore impose the renormalization conditions:

2
Zo(u, A) = Hf;‘m | (43)
Z4(,U,,A) _ B(M2) B er(L/(i;;A) ES(M7A) ’ (44)

are the integrals after the usual scalar and vector projections
(2.15) with Pp = 1p/4 and P4 = —i~y - p/4p?, respectively:

AW*) = Zo(p, A) + Za(p, ) Sy (p, A) (4.5)
B(p*) = Za(p, A)m(p) + Za(p, A) Zs(p, A) (4.6)

In order to appreciate the effect of the non-transverse components of I',(k,p), we first
omit the contributions of FE following the work of Ref. [86], however without artificially

where Xg(p, A) and Xy (u, A)
of the right-hand-side of Eq.
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enhancing X(q?) by an inversion procedure. The mass and wave-renormalization functions
along with the form factor Xo(¢?) are plotted in Figure 3 for the gluon and ghost propagator
sets discussed in Section 3. The values for m(u) and a,(p) at the renormalization scale p are
detailed for each set in Figure 3 and we remark the following: the gluon- and ghost- dressing
functions of sets I and II are renormalized at ;4 = 4.3 GeV where we employ as(p) = 0.30 at
this scale following Refs. [90, 129]. We also renormalize the DSE at 1 = 4.3 GeV when using
the unquenched propagators of set III but increase the strong coupling to as(u) = 0.35, as
otherwise only a trivial solution, M (0) ~ 0, is found. This is in line with the behavior of
the Taylor coupling in Ref. [30].

The mass functions in Figure 3 exhibit the well-known fast rise at about p = 1 GeV and
saturate at low momenta, where the mass M (0) ranges between 100 MeV and 163 MeV.
While these solutions exhibit appreciable DCSB, it is much lower than that obtained
with phenomenological models and does not yield the correct pion mass and weak de-
cay constant [4]. The functional behavior of Z(p?) is characteristic of that produced with
a Ball-Chiu vertex and the Maris-Tandy model [42] in the gap equation and indeed, in
Egs. (2.44) to (2.47) the longitudinal form factors describe a “ghost-corrected” Ball-Chiu
vertex. However, the depth of the minimum of Z(p?) is less pronounced than with the
phenomenological approach and the growth in the deep infrared is exacerbated with values
of Z(0) > 1. Clearly, limiting the vertex to its non-transverse components yields mass- and
wave-renormalization functions which are unlike those required for realistic applications in
hadron physics. We note that the leading form factor of the quark-ghost scattering kernel
behaves similarly in all three cases with a maximum located around 2-5 GeV? but different
magnitudes. Notably, the more enhanced solutions for X¢(q?) using set I and II are also
accompanied by an increased DCSB in the corresponding mass functions. The net contri-
bution of Xo(q?) to M(p?) is 27% when using set I and 29% when using set II; solving the
DSE with set III and keeping Xo(¢q?) = 1 does not yield a mass gap.

We now introduce the transverse components of the quark-gluon vertex, I',(k,p) =
Fﬁ(k,p) + Fg(k,p), in the DSE and therefore all 12 form factors, Egs. (2.44) to (2.47) and
(2.48) to (2.55), come into play. The solutions for M(p?), Z(p?) and Xo(q?) are again
juxtaposed for the three sets of gluon and ghost propagators in Figure 4. We immediately
notice the drastic increase of the mass functions, exemplified by M (0) = 500 MeV for set I,
M(0) = 546 MeV for set II and M(0) = 458 MeV for set III. In other words, including
the transverse vertex leads to a 235%-350% increase in DCSB, while the contribution of
the quark-ghost scattering amplitude Xo(g?) is in the range of 14%17%. The resulting
wave renormalizations likewise exhibit a different behavior at low momenta: while they
do not monotonously fall as lattice-QCD calculations indicate, albeit with larger errors at
low momenta [105], they flatten out and only slightly bend over compared to the solutions
obtained with merely the longitudinal vertex. The quark-ghost form factors Xp(q?) in
Figure 4 are similar to those in Figure 3, yet we note that overall their maximum values
decrease.

A worthwhile observation is that no solutions for the coupled integral equations (4.5),
(4.6) and (2.63) are found if we define Y;(k,p) =0, i = 1,..., 8, regardless of the value of
the strong coupling as(p). The same is true if we set 74(k,p) = 77(k,p) = 0. Indeed, these
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Figure 4. Mass function, M (p?), wave renormalization, Z(p?), and leading quark-ghost kernel
form factor, X((q?), obtained with three sets of gluon and ghost propagators, I',,(k, p) = Fﬁ(k, p)+
Fg(k,p) and associated form factors of Eqgs. (2.44)—(2.55) in the DSE (2.15). Current-quark masses,
strong couplings and renormalization scale as in Figure 3.

two transverse form factors are responsible for the overwhelming contribution to DCSB in
the gap equation. Keeping them both and discarding, one by one, the remaining 7;(k, p),
1 =1,2,3,5,6,8 or combinations thereof, results in very similar solutions. Depending on
which form factor is discarded, variations of 5-10% of the mass functions plotted in Figure 4
are observed, some leading to a decrease while others to an increase of M (p?). Hence, the
form factors other than 74(k, p) and 77(k, p) are merely responsible for the fine details of the
transverse vertex. We note that 74(k, p) and 77(k, p) are very similar in structure to Ya(k, p),
Y (k,p) and Y2 (k, p), all of which are proportional to the difference of the mass functions,
AB(k,p) = B(k) — B(p). On the other hand, if we retain only 73(k, p) and 75(k, p), which
also explicitly depend on AB(k,p), the resulting mass functions exhibit modest DCSB,
about 20-30% larger than when the transverse vertex is completely neglected, as depicted
in Figure 3.

The mass functions in Figure 4 clearly demonstrate that the inclusion of the transverse
components in the DSE has a dramatic impact on dynamical mass generation. This was
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DSE (2.15) is solved with the vertex T'y(k,p) = T} (k,p) + '} (k,p) and the corresponding form
factors in Eqgs. (2.44)—(2.55); and with the gluon and ghost propagators of set IIT [30]. The current-
quark mass is m(4.3 GeV) = 25 MeV.

already realized long ago and calculations beyond the rainbow-ladder truncation commonly
include phenomenological ansétze for several transverse components, in particular those
proportional to AB(k?,p?) = B(k?) — B(p?).
present transverse quark-gluon vertex, derived from gauge identities and whose unknown

The novelty in this approach is that the

tensor component is constrained with a vertex ansatz motivated by perturbation theory and
multiplicative renormalizability [81], generates copious DCSB without the need to resort to
a phenomenological gluon model.

On the other hand, the wave renormalization Z(p?) tends to increase again in the
infrared region below 1 GeV in case of the gluon and ghost propagators of set I and III.
One may wonder whether the strength of the transverse vertex, whose effect flattens out
Z(p?) at lower momenta, is compatible with what model interactions in given truncation
schemes predict. The overall strength of the quark-gluon interaction, however, is controlled
by the strong coupling. In using what lattice QCD offers us for the gluon and ghost
propagators renormalized at 4.3 GeV, we also work with a strong coupling expected at that
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Figure 6. Flavor dependence of M (p?), Z(p?) and X(q?) obtained with the gluon- and ghost
propagators of set IT [35, 36]. The DSE (2.15) is solved with the vertex I',(k,p) = T} (k, p)+T7 (k, p)
and the associated form factors in Eqs. (2.44)—(2.55). The strong coupling is as(u) = 0.3 and the
current quark masses are: my q(p) = 25.0 MeV, my(u) = 82.1 MeV, m.(u) = 1.304 GeV and
mp(p) = 4.697 GeV at the renormalization scale p = 4.3 GeV. For comparison, we also plot the
solutions in the chiral limit which define the quark propagators in Eqgs. (4.10) and (4.11).

renormalization scale. However, given that our transverse vertex has not been determined
ezactly and that our approach is not self-consistent—we do not solve the gluon and ghost
DSE that couple to the quark-gap equation—we may consider variations of as. We do so
in Figure 5 where we vary the coupling (4.3 GeV) in the range between 0.30 and 0.38
and concentrate merely on set III of gluon and ghost propagators. Plainly, an increasing
coupling strength carries along two modifications: M (p?) is enhanced, which is expected,
whereas Z(p?) is increasingly suppressed and eventually levels out below p ~ 1 GeV. The
form factor Xo(q?) is also enhanced as a function of as and its peak value slightly shifts to
larger momenta.

The DSE can obviously also be solved for different quark flavors and we do this exercise
in Figure 6, where we make use of the gluon and ghost propagators of set II; the results for
the two other sets are qualitatively and quantitatively very similar. We employ the light,
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strange and charm current-quark masses renormalized at 2 GeV of Ref. [30]: m, (2 GeV) =
ma(2GeV) = 40 MeV, m4(2 GeV) = 95 MeV, m.(2GeV) = 1.51 GeV evolved to the scale
p = 4.3 GeV. For the bottom quark we choose my(4.3 GeV) = M(4.3GeV) = 4.70 GeV,
where Mj(p?) is the mass function for that flavor obtained with an interaction model [46]
in rainbow truncation.

The pattern of the mass function for increasing current-quark masses mirrors the well-
known behavior predicted by phenomenological gluon and vertex models, see Refs. [62, 64]
for example. At p = 0 GeV we find: M,(0) = 0.55 GeV, M (0) = 0.67 GeV, M.(0) =
1.92 GeV and M,(0) = 4.97 GeV. Thus, even for the charm quark the impact of dynamical
mass generation is important. The wave renormalization function flattens out in the infrared
region for heavier quarks but remains above Z(0) ~ 0.93 when Z(4.3GeV) = 0.98 is
imposed. We also read from Figure 6 that X(g?) is very sensitive to the current-quark
mass and while the function is increasingly damped, its maximum value is considerably
shifted to large momenta where it contributes little to DCSB in heavy quarks.

4.2 Solving the Dyson-Schwinger equation on the complex plane

So far, we have solved the DSE on the real spacelike axis which suffices to evaluate the
magnitude of DCSB and the confining properties of the solutions. However, in solving the
bound-state equation in Euclidean space [52| the quark propagators,

S(ps) = =iy - pxov(p?) + 0s(p) , (4.7)

are evaluated at complex-valued momenta. This is because in Euclidean space their argu-
ments, py = p+ nP and p_ = p — 1P, define parabolas on the complex plane,

pi =p* —n°M* + 2inM|p|z, , (4.8)
P2 =p* — °M? — 2inM|p|z, ,

where P = (6,1M ) is the meson’s rest-frame momentum, 7 + 7 = 1 are the momentum
partition parameters with 1,7 € [0,1], and z, = p- P/|p||P| is the angle between the relative
and total meson momenta for which —1 < z, < +1 holds.

We use Cauchy’s integral theorem to solve the quark DSE inside this parabola. At first,
we parametrize the contour of the parabola in the lower and upper half of the complex plane
and find solutions on this contour via an iterative procedure using the same renormalization
procedure as in Eqs. (4.3) and (4.4). Then, we apply this contour solution in Cauchy’s
integral formula again to find solutions for o (p3) and os(p3) inside the parabola. A
detailed discussion with examples of parametrizations can be found in Refs. [48, 132, 133].

The real and imaginary parts of the M (p?) and Z(p?) functions are plotted in Figures 7
and 8, respectively. The real part of M (p?) is a smooth and monotonically decreasing
function of p? = pi in real direction, whereas it is all but constant along the imaginary
axis Im (p?). Likewise, the real part of Z(p?) smoothly tends towards its perturbative
limit both on and off the real axis. The imaginary part of both functions is characterized
by complex-conjugate extrema near the origin of the parabola, though we note that their
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Figure 7. Real part (upper panel) and imaginary part (lower panel) of the complex mass function
M(p?). The DSE is solved on the complex parabola with p; defined by Eq. (4.8), the external
mass P? = —M2 (M, = 140 MeV) and n = 1/2. We use the gluon and ghost propagators of set

I1 35, 36], the vertex T\, (k,p) = I'L(k,p) + T} (k, p) with the form factors in Eqs. (2.44)(2.47) and
(2.48)—(2.55), while as(u) = 0.3. Mass units are in GeV.

magnitude is considerably smaller than that of the imaginary parts of solutions with model
propagators [43, 46, 135].

Generally speaking, in the complex momentum range considered herein, the two so-
lutions presented in Figures 7 and 8 are qualitatively very similar to those obtained with
phenomenological interaction models in rainbow-ladder truncation. There are, on the other
hand, distinctive quantitative and analytical differences and we here refrain from a detailed
comparison. We merely note that the convergence of the complex DSE using a Cauchy
integral, with the present vertex and its inherent complexities, raises subtle issues that de-

pend on the details of the contour parametrization and its size determined by the parabola
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cutoff on the complex plane.

4.3 Applications

While the numerical DSE solutions we obtain with the vertex defined by Egs. (2.20) and
(2.21) along with Eqgs. (2.44) to (2.55) lead to typical constituent masses and characteris-
tic mass functions for all flavors considered in Figure 6, only the calculation of a gauge-

Set I Set IT Set 111
F9Mev] | 97.0 96.02 | 98.67
(—(Gq))s [MeV] | 251.16 | 249.61 | 255.80

Table 1. Weak decay constant in the chiral limit (4.10) and quark condensate (4.11) calculated
with the solutions for M(p?) and Z(p?) using the longitudinal (2.20) and transverse (2.21) vertex
in the DSE (2.15) and the three sets of gluon and ghost propagators introduced in Section 3.
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independent observable can tell us more about how realistic they are. Naturally, the next
step consists in the construction of an antiquark-quark Bethe-Salpeter kernel that is con-
sistent with this new vertex and must satisfy the axialvector Ward-Takahashi identities.
Given the complexity of the task, we postpone it to a future work.

However, even without the knowledge of the pion’s Bethe-Salpeter amplitude we may
compute its weak decay constant, which is a measure of chiral symmetry breaking. Indeed,
while the pion’s mass vanishes in chiral limit, f; does not. We follow Ref. [134] where the
weak decay constant in the chiral limit is expressed by the integral,

(ffr))z = % dp*p? B%(p?) (03 — 2 [os0L, +p2O'VO'</]
0

= p* [osol = (00)*] = p" [ovoy = (01)?]) (4.10)

with oy , = dos(p?)/dp*. As we are constrained by a low renormalization point due to
our use of quenched lattice-QCD input for the gluon and ghost propagators, determining
Zy and Z4 in the chiral limit is not straightforward. We set m = 0 MeV at pu = 4.3 GeV
which allows for a sensible approximation in using os(p?) and o, (p?) to calculate the decay
constant in the chiral limit.

As another application, we consider the quark condensate which is an order parameter
for DCSB. As for the pion decay constant, we do so using the three DSE solutions for the
full vertex at hand, i.e. M(p?) and Z(p?) obtained with the different ghost and gluon-
dressing functions in the chiral limit. We thus calculate the integral over the trace of the
quark propagator:

A g4
—{(qq) = Z4Nc/ ((217:;4 trp [S(k)] . (4.11)

The values of the decay constant f2 and of the quark condensate are obtained for all three
sets of gluon and ghost propagators and are summarized in Table 1. The three values for
fY are slightly above the experimental value, f,+ = 92.2 MeV, while the quark condensates
are in good agreement with other estimates, for instance the chiral condensate in the MS
scheme using SU(2) chiral perturbation theory [136], (—(gq))*/? = 272(2) MeV, or the
light-quark condensate from lattice QCD [137]: (—{(gq))'/® = 283(2) MeV.

5 Conclusive remarks and future developments

We have derived a novel form of the transverse quark-gluon vertex that complements the
“longitudinal” components obtained as a ghost-corrected Ball-Chiu vertex in Refs. 86, 90,
92, 94] which saturates the STI [120, 121]. As for the non-transverse components, we
were guided by symmetry transformations and multiplicative renormalizability encoded in
the set of two TSTI [122| which couple the vector and axialvector vertices. By means of
projections with two appropriate tensors one obtains an identity for each of these vertices,
i.e. the TSTI have been decoupled.

Once this is realized, one can project out the eight transverse form factors for which
we obtain the expressions in Egs. (2.48) to (2.55). Notably, of the twelve form factors
that describe the fully dressed quark-gluon vertex, only A1 (k,p), A2(k,p), A\3(k,p), T3(k,p),
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75(k,p) and 75(k,p) depend directly on the quark-ghost kernel and ghost-dressing func-
tion®. Of course, due to imposing the Bashir-Bermudez ansatz for the transverse ver-
tex to constrain the scalar Y;(k,p) functions, the latter are also functions of the quark-
ghost kernel and ghost-dressing function. The last ingredients are the eight parameters,
a := {ay,a9,as,aq,as,a¢,a7,ag}, inherent to the Bashir-Bermudez vertex specified by
Egs. (2.66) to (2.73). We showed that they are far from being free parameters, as they
are constrained by multiplicative renormalizability relations and limited to a rather narrow
range outside of which no or very unsatisfying solutions of the DSE are found.

Nonetheless, while our dressed quark-gluon vertex in its present form is successful in
producing the right amount of DCSB for hadron phenomenology, as our results for the
weak decay constant of the pion and the quark condensate demonstrate, the reliance on
parameters is unsatisfying and theoretically undesirable. Amongst future perspectives,
we plan to obtain an integral expression for the four-point function, at the origin of the
tensor elements TI}VVW and TﬁVVW, along similar lines applied to the quark-ghost kernel
in Section 2.4. We remind that the nonlocal four-point function is related to the tensor V,,,
via the line integral,

d*¢
V,uzl = /(271’)4 2€>\ Eduvp Fp(kvp;g) ) (51)

where I',(k, p; £) is the Fourier transform of the four-point function in coordinate space and
which is defined in QED by [122]:

/ dx d*a’ d*zy day el ber—PeatE=0e=(k=02) (0| o) (") y , W(a!, )1 ()1 (21)1b(2) |0)

= (2n)'8"(k — p — q) S(K)Tp(k, p; O)S(p) , (5.2)

with ¢ = (k. —¥¢) — (p — ¢) and W(2/,x) is a Wilson line that ensures a gauge invariant
expression. The expression in QCD is analogous, yet involves in addition color matrices
and ghost fields. Therefore, expanding the Wilson line to leading order in the strong
coupling ¢ [138], the matrix element can be expressed approximately by diagrams that
describe the gluon dressing of quarks, the two-quark scattering and the interaction of a
quark with a ghost via gluon exchange. However, in such an approach the propagators
ought to be dressed as in the dressed approximation to H®(k,p) discussed in Section 2.4.
With this ansatz, one can contract V,,, with the tensors TI}V and Tﬁ,/ to obtain the form
factor decomposition of Eqgs. (2.40) and (2.41) and subsequently project out all Y;(k,p)
functions. As a consequence, we arrive at a set of eight integral equations which are all
coupled with each other as well as with the integral equations for A(p?), B(p?) and Xo(q?)
we considered in this work.

In future studies, the quark-ghost kernel we presented in Section 2.4 ought to be calcu-
lated beyond the leading approximation that includes only Xg(¢?) and moreover neglects
any angular dependence; see Refs. [92, 94| for detailed calculations. This is important as
Ay (k,p) remains otherwise zero and in the particular case of the soft-gluon limit, & = p

5 Aa(k,p) also depends on the quark-ghost kernel if the form factors Xi(k,p), Xa(k, p) and X3(k,p) are
not neglected as in the present case.
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(¢> = 0), the expressions for A\i(k,p) (2.44) and Aa(k,p) (2.45) hardly express any func-
tional dependence without the full inclusion of the X;(k,p) [97]. However, for our present
purpose this simplified ansatz proves to be sufficient, as our aim was to demonstrate that
an important amount of DCSB in the gap equation is due to the transverse quark-gluon
vertex. We are therefore optimistic that with future refinements a complete vertex structure
can be achieved that catches the dynamical subtleties much beyond the leading truncation,
indispensable for the reproduction of the excited hadron spectrum and exotic states.
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