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ABSTRACT 

The phenomenon of insecticide resistance is defined as the ability of insect populations to develop 
the capacity to survive doses of insecticides that would otherwise be lethal. This phenomenon can 
be attributed to the natural selection of individuals with genetic mutations that confer resistance. A 
comprehensive understanding of insecticide resistance mechanisms is crucial for developing novel 
control strategies within existing integrated pest management plans. In this context, this review 
examines the research conducted to characterize the resistance of agricultural pests (insects/mites) 
to insecticides/acaricides in Colombia. A search of relevant scientific literature was conducted using 
keywords in the databases. A literature review revealed that, according to reports from Colombia, 
there have been 27 documented instances of insecticide/acaricide resistance across 12 species. 
Conversely, the Arthropod Pesticide Resistance Database (APRD) indicates the existence of 98 
reports of resistance to insecticides/acaricides distributed across 10 species. A single instance of 
acaricide resistance was identified in the respiratory target; all other cases demonstrated resistance 
to the nervous and muscular targets. In this review, we present the main results, which are focused 
on determining toxicity curves and calculating lethal concentrations. We highlight the research 
carried out in the last decade, which makes use of new molecular techniques and allows a more 
detailed view of the resistance mechanisms. Furthermore, we suggest novel
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toxicology

RESUMEN 
La resistencia a insecticidas es un fenómeno en el cual las poblaciones de insectos desarrollan 

la capacidad de sobrevivir a dosis de insecticidas que normalmente serían letales. Esto debido a 
la selección natural de individuos con mutaciones genéticas que les confieren la resistencia. El 
conocimiento de los mecanismos de resistencia a los insecticidas es indispensable para reformular 
las estrategias de control en los actuales planes de manejo integrado de plagas. En este contexto, esta 
revisión analizó las investigaciones que tuvieron como objetivo caracterizar la resistencia de plagas 
agrícolas (insectos/ácaros) a insecticidas/acaricidas en Colombia. Utilizamos palabras claves para 
realizar la búsqueda de todas las investigaciones científicas relacionadas en bases de datos. El análisis 
de la información demostró que, en Colombia, existen 27 reportes de resistencia a insecticidas/
acaricidas distribuidos en 12 especies. Por otro lado, la base de datos sobre resistencia a plaguicidas 
de artrópodos (APRD) relata la existencia de 98 reportes distribuidos en 10 especies. Encontramos 
que únicamente existe un reporte de un acaricida resistente al modo de acción respiratorio. Los 
demás reportes presentan resistencia al modo de acción del sistema nervioso y muscular. En esta 
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INTRODUCTION 

For several decades, the use of agrochemicals for control of pests has been 
the most prevalent method globally. As a result, farmers have resorted to the 
indiscriminate use of broad-spectrum synthetic pesticides, often unregistered 
and applied in excessive doses. Consequently, pests have developed resistance to 
most major pesticide classes. Moreover, the widespread use of these toxic, non-
selective pesticides has led to harmful impacts on the health of users, consumers, 
and non-target organisms, including pollinators and natural predators of insect 
pests (Cutler & Guedes, 2017; Guedes et al., 2016). Insect resistance to insecticides 
is defined by IRAC as “an inherited change in the susceptibility of a pest 
population which is reflected in the repeated failure of an insecticide to achieve 
the expected level of control when used according to label recommendations 
for that pest species.” This phenomenon is very common due to the misuse of 
insecticides, mainly because of the selection pressure exerted by the same mode 
of action of an insecticide on a target pest (IRAC, 2024a). The first documented 
case of resistance was in 1914; since then, the numbers have been increasing to 
16,570 arthropods resistant to at least one class of pesticide have been reported, 
including mites and insects (Sparks et al., 2020).

In Colombia, the agricultural sector plays a crucial role in the country’s 
economy and food security. The issue of insecticide resistance represents a 
significant challenge, particularly given the limited research conducted in 
Colombia. This is due to a lack of interest and awareness regarding its importance 
in integrated pest management plans. However, there is a greater body of 
knowledge available on insect vectors of tropical diseases that are medically 
important. This is because, in 2004, the National Institute of Health of Colombia 
established the Network for Surveillance of Resistance to Insecticides Used in 
Public Health. Consequently, there is more extensive documentation of mosquito 
(Culicidae) resistance to the use of insecticides (Aguirre-Obando et al., 2015; 
Love et al., 2023; Orjuela et al., 2018). 

According to the Arthropod Pesticide Resistance Database (APRD) (Mota-
Sanchez & Wise, 2024), there have been 199 documented instances of resistance 
in Colombia. Of these, 51% pertain to arthropods of medical and veterinary 
importance. This category includes eight species (101 reports) of mites (Acari) 
and mosquito vectors of diseases (Diptera: Culicidae). In contrast, the remaining 
49% pertains to agricultural importance, distributed among 10 species with 98 
reports. This encompasses one species of phytophagous mite and nine species 
of insects, with Hemiptera and Lepidoptera being particularly prevalent. Some 
reports suggest that most information on resistance in Colombia relates to 
Helicoverpa virescens in cotton crops and the whitefly complex in solanaceous 
and flower crops (Rodríguez & Cardona, 2001).

Currently, there are no research programs in Colombia, and the number of 
resistant insects and resistance mechanisms remain unknown. Thus, our objective 

revisión presentamos los principales resultados que están enfocados en la determinación de curvas de 
toxicidad y cálculo de concentraciones letales. Destacamos las investigaciones realizadas en la última 
década, las cuales hacen uso de nuevas técnicas moleculares y permiten una visión detallada de los 
mecanismos de resistencia. Finalmente, planteamos algunas sugerencias para incluir metodologías 
novedosas que permitan mejorar los actuales planes de manejo integrado de plagas.

Palabras clave: control químico; insecticida, manejo integrado de plagas; plagas de cultivos; 
resistencia; toxicología
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was to conduct the first literature review to obtain a clearer picture of the current 
situation in our country. It is important to note that insecticide resistance is, and 
will continue to be, one of the reasons driving the discovery of new molecules 
for chemical pest control (Lamberth et al., 2013; Maienfisch & Stevenson, 
2015; Sparks & Lorsbach, 2017). Nevertheless, the deployment of insecticides 
represents one of the fundamental pillars of Integrated Pest Management (IPM). 
It is therefore recommended to establish research lines in the field of agricultural 
toxicology to evaluate control failures and develop new criteria to modify current 
management plans while incorporating more sustainable and environmentally 
friendly alternatives in fumigant applications.

Search strategy
An exhaustive search of bibliographic material in national and international 

databases was conducted to extract data on the resistance of agricultural pests 
to insecticides/acaricides in Colombia. No restrictions were placed on the 
date or type of publication of the information. Articles about resistance and 
toxicology in the context of medical and veterinary entomology were excluded 
from the review. A total of 27 documents were obtained, distributed as follows: 
16 articles published in national and international journals, nine abstracts and 
proceedings from national congresses related to agricultural entomology, and 
two degree theses. Consequently, a total of 17 arthropod species in Colombia 
have demonstrated resistance to at least one pesticide (Table 1).

Table 1. List of species of arthropods resistant to pesticides in Colombia

Taxonomy Species No. 
Reports References

Acari: Tetranychidae

Tetranychus cinnabarinus
(Boisduval, 1867) 2a (Murillo & Mosquera, 1984)

Tetranychus bimaculatus
Harvey, 1892 1b (Mota-Sanchez & Wise, 2024)

Lepidoptera:
Noctuidae

Heliothis virescens 
Fabricius, 1777 5a

(Lozano Cruz, 1967; Rendon et al., 
1977; Rendón et al., 1990; Valencia 
et al., 1993; Wolfenbarger et al., 
1973)

Heliothis spp.
Ochsenheimer, 1816 4a

(Alcaraz, 1971; Collins, 1987; Rendon 
et al., 1978; Rendon & Cardona, 
1976)

Heliothis zea
Boddie, 1850 2b (Mota-Sanchez & Wise, 2024)

Helicoverpa zea
Boddie, 1850 1b (Mota-Sanchez & Wise, 2024)

Spodoptera frugiperda
J. E. Smith, 1797 2a - 2b

(Mota-Sanchez & Wise, 2024; Ríos-
Díez & Saldamando-Benjumea, 2011; 
Zenner de Polanía, 1996)

Lepidoptera: 
Gelechiidae

Tecia solanivora
(Povolný, 1973) 2a - 4b (Bacca et al., 2017; Gutiérrez et al., 

2019; Mota-Sanchez & Wise, 2024)

Tuta absoluta
(Meyrick, 1917) 1b (Haddi et al., 2012)

Lepidoptera: 
Crambidae

Ostrinia nubilalis*
Hübner,1796 1b (Mota-Sanchez & Wise, 2024)
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Among insects, the order Lepidoptera is of particular note (60%), with the 
greatest quantity of resistance information reported in the genus Helicoverpa 
spp. (formerly known as Heliothis), which is an important defoliator of cotton 
and corn crops. In the Coleoptera order (20%), certain pests of stored grains and 
seeds merit particular attention, while in the Hemiptera order (13%), whiteflies —
insects associated with virus transmission — warrant further investigation. Finally, 
the order Thysanoptera reports one species (7%). Additionally, two species of the 
mite genus Tetranychus, which are known to be phytophagous pests, have been 
identified as resistant to acaricides in multiple crops (Figure 1).

Figure 1. Number of insects’ species 
reports per family according to literature 
records of insecticide-resistant insects in 

Colombia (n=23).

a. Number of reports in the literature. b. Number of reports in Database APRD (Mota-Sanchez & 
Wise, 2024). https://www.pesticideresistance.org/. *. According to the European and Mediterranean 
Plant Protection Organization (EPPO) Global Database (2024) and a list of quarantine pests that are 
absent in Colombia, as provided by the Colombian Agricultural Institute, ICA (2024), O. nubilalis 
has not been reported in Colombia. 

Lepidoptera: Erebidae
Alabama argillacea
(Hübner, 1823) 1b (Mota-Sanchez & Wise, 2024)

Hemiptera:
Aleyrodidae

Bemisia tabaci 
(Gennadius, 1889) 3a - 23b

(Mota-Sanchez & Wise, 2024; 
Rodríguez et al., 2005,  Rodríguez et 
al., 2012)

Trialeurodes 
vaporariorum 
(Westwood, 1856)

2a - 59b
(Buitrago et al., 1994; Mota-Sanchez 
& Wise, 2024; Rodríguez & Cardona, 
2001)

Coleoptera: 
Curculionidae 
(Scolitynae)

Hypothenemus hampei
(Ferrari, 1867) 1a (Navarro et al., 2010)

Coleoptera:
Bostrichidae

Rhyzopertha dominica
(Fabricius, 1792) 1a (Ortega et al., 2021)

Coleoptera: 
Chrysomelidae 

(Bruchinae)

Zabrotes subfasciatus 
(Bohemann, 1833) 1a - 1b (Mota-Sanchez & Wise, 2024; Tyler 

& Evans, 1981)

Thrips palmi
Karny, 1925 1a (Rodríguez et al., 2003)



Pineda & Bacca - Resistance agricultural pests to synthetic insecticides

UNIVERSIDAD DE NARIÑO e-ISSN 2256-2273    Rev. Cienc. Agr.  January - April 2025     Volume 42(1): e1252

5

The veracity of the above-listed pests was corroborated through a review of 
databases maintained by the Colombian Agricultural Institute (ICA, 2024), the 
National Open Data Network on Biodiversity (SIB, 2024), and the European 
and Mediterranean Plant Protection Organization, EPPO Global Database 
(EPPO, 2024). The objective of this review was to ascertain the presence of 
these pests within the Colombian context. Our comprehensive analysis revealed 
that O. nubilalis, a European lepidopteran commonly known as the corn borer, 
is included in the list of absent quarantine pests that is updated annually by the 
Colombian Agricultural Institute (ICA, 2024). However, despite its inclusion in 
the Arthropod Pesticide Resistance Database (APRD) of Mota-Sanchez & Wise 
(2024), there is a dearth of studies investigating insecticide resistance in this 
pest within the Colombian context. We attribute this absence to an error in the 
APRD database.

The use of insecticides is a common practice for controlling insect pests in 
a variety of crops. After the Second World War and the successful introduction 
of dichlorodiphenyltrichloroethane (DDT), mainly for controlling disease-
transmitting insects, it was banned due to its persistent nature and the many 
contamination problems it caused (Beard, 2006; Jarman & Ballschmiter, 2012; 
Sánchez-Bayo, 2019). Later, alternative synthetic insecticides emerged, including 
organophosphates and carbamates (Gupta et al., 2022), which were used as 
broad-spectrum insecticides due to their ease of acquisition. In Colombia, they 
were used excessively and with inadequate practices in potato, cotton, corn, and 
flower crops. Due to the lack of other insecticides with a different mode of action, 
pests such as the whitefly complex quickly became resistant.

Undoubtedly, the advent and introduction of pyrethroids in the 1980s 
provided a viable and successful alternative for controlling many pests. In 
Colombia, they were successfully introduced to control H. virescens and other 
Lepidoptera in cotton crops. However, due to the lack of alternatives, repeated 
use and improper dosage in Tolima (Colombia) resulted in control failures and 
the selection of populations resistant to pyrethroids and organophosphates 
(Rendon et al., 1977; Rendon et al.,1978; Rendon & Cardona, 1976). Additionally, 
the corn earworm, S. frugiperda, was reported to exhibit resistance to the same 
groups in 1985, including carbamates (Table 2) (Zenner de Polanía, 1996). In the 
1990s, it was the whitefly complex, consisting of B. tabaci and T. vaporariorum, 
which are important pests in solanaceous and flower crops. Additionally, the 
whitefly was found to be associated with virus transmission and demonstrated 
resistance to the same groups, as well as to organochlorines and neonicotinoids. 
This finding was based on a synthesis of multiple studies conducted over several 
years by the International Center for Tropical Agriculture (CIAT) (Buitrago et al., 
1994; Rodríguez et al., 2005).

In subsequent years, several studies have reported resistance to the same 
mode of action across different chemical groups: pyrethroids in T. absoluta, 
spinosyns, carbamates and organophosphates in T. palmi, and organochlorines 
in Z. subfasciatus and H. hampei (Table 2). In the last decade, resistance to 
permethrin, chlorpyrifos, and carbofuran has been reported in T. solanivora and 
to pyrethroids in R. dominica. Thus, 26 studies report resistance to insecticides 
with modes of action targeting nerve and muscle systems. Finally, in Colombia, 
there is only one record of resistance to the respiration-target mode of action of 
Cihexatina in the mite T. cinnabarinus. A mitochondrial respiration produces 
ATP, the molecule that energizes all vital cellular processes. The insecticide 
inhibits the enzyme that synthesizes ATP (IRAC, 2024b). 
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It is estimated that 98% of the reported cases show resistance at the target 
site, but these studies are not sufficient to better understand the molecular and 
genetic basis of resistance mechanisms (Bass & Nauen, 2023; Sajad et al., 2020)

Table 2. Classification of insecticides that are registered for resistance in Colombia

Mode of action MoA * No. Sub-group Active Ingredient Pest

NERVE AND 
MUSCLE TARGETS                               
Acetylcholinesterase 

(AChE) inhibitors                                                  
Inhibit AChE, causing 
hyperexcitation. AChE 

is the enzyme that 
terminates the action of the 
excitatory neurotransmitter 

acetylcholine at nerve 
synapses.

1A Carbamates

Carbofuran Tecia solanivora

Carbosulfan Thrips palmi

Methomyl
Bemisia tabaci
Spodoptera frugiperda 
Trialeurodes vaporariorum        

1B Organophosphates

Chlorpyrifos Spodoptera frugiperda; 
Tecia solanivora

Methamidophos Bemisia tabaci 
Trialeurodes vaporariorum

Monocrotophos Trialeurodes vaporariorum

Omethoate

Parathion Methyl

Tetranychus cinnabarinus

Heliothis virescens 

Pirimiphos methyl

Profenofos

Rhyzopertha dominica 

Trialeurodes vaporariorum 

Triazophos
  
Toxametil 

(Methamidophos)

Heliothis virescens

NERVE AND 
MUSCLE TARGETS                                                 
GABA-gated chloride 

channel blockers
Block the GABA-activated 
chloride channel, causing 

hyperexcitation and 
convulsions. GABA is 
the major inhibitory 

neurotransmitter in insects.

2A Cyclodiene:  
organochlorines Endosulfan Heliothis virescens                                        

NC Organochlorine

Dieldrin

Endrin

Hypotenemus hampei

Heliothis virescens 

Thiocyclam hydrogen 
oxalate 

Dienochlor

Gamma-HCH 
(Lindano)

Bemisia tabaci 

Tetranychus cinnabarinus

Zabrotes subfasciatus 
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Mode of action MoA * No. Sub-group Active Ingredient Pest

NERVE AND 
MUSCLE TARGETS                                             

Sodium channel modulators
Keep sodium channels open, 

causing hyperexcitation 
and, in some cases, nerve 

block. Sodium channels are 
involved in the propagation 

of action potentials along 
nerve axons.

3A Pyrethroids

Bifenthrin Bemisia tabaci 
Rhyzopertha dominica

Cypermethrin

Bemisia tabaci
Heliothis virescens 
Spodoptera frugiperda 
Trialeurodes vaporariorum                                   

Deltamethrin
Heliothis virescens 
Trialeurodes vaporariorum     
Rhyzopertha dominica

Fenvalerate Heliothis virescens                            

Lambda-Cyhalothrin Spodoptera frugiperda

Permethrin Tecia solanivora

3B DDT DDT Heliothis virescens 

NERVE AND 
MUSCLE TARGETS                                        
Nicotinic acetylcholine 

receptor (nAChR) 
competitive modulators 
Bind to the acetylcholine 
site on nAChRs, causing a 
range of symptoms from 

hyper-excitation to lethargy 
and paralysis. Acetylcholine 

is the major excitatory 
neurotransmitter in the 
insect central nervous 

system.

4A Neonicotinoids

Imidacloprid Bemisia tabaci
Thrips palmi                                               

Thiamethoxam Bemisia tabaci

NERVE AND 
MUSCLE TARGETS                                               
Nicotinic acetylcholine 

receptor (nAChR) 
allosteric modulators 
- Site I:  Allosterically 

activate nAChRs, 
causing hyperexcitation 
of the nervous system. 

Acetylcholine is the major 
excitatory neurotransmitter 

in the insect central 
nervous system.

5 Spinosyns Spinosyns Thrips palmi
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Mechanisms of resistance
As previously stated, resistance is defined as the ability of an insect population 

to survive and successfully reproduce following exposure to a dose of insecticide 
that was previously effective in controlling it (Sparks & Nauen, 2015). However, 
this phenomenon of insecticide resistance is a natural process and is part of the 
natural process of evolution and adaptation (Costantini, 2019; Madgwick et al., 
2023). This adaptive phenomenon involves a strong selection of specific mutations 
that confer different types of resistance, thus causing failures in IPM (IRAC, 2024a).

However, this phenomenon of insecticide resistance is a natural occurrence 
and an integral aspect of the evolutionary process (Madgwick et al., 2023). This 
adaptive phenomenon involves the strong selection of specific mutations that 
confer different types of resistance, leading to failures in IPM. It is unfortunate 
that in many cases, resistance is not only present to a chemical compound but 
in some cases, it also confers cross-resistance to other structurally related agents. 
This is due to the structural similarity of the compounds and the fact that in many 
cases, they can share a common target site within the pest, such that they share a 
common mechanism of action (IRAC, 2024a; Sajad et al., 2020). The hereditary 
changes present in a pest are associated with genetic mutations that in turn can 
take different forms and cause different types of resistance, according to IRAC 
(2024a): a. Target Site Resistance: The occurrence of a mutation at a specific 
site on the receptor protein results in a reduction in the efficacy of the insecticide 
(Constant, 1999). b. Metabolic resistance: In this case, insects develop the 
ability to break down the insecticide through the action of enzymes. For example, 
they produce higher levels of detoxifying enzymes (such as esterases, cytochrome 
P450 monooxygenases, or glutathione S-transferases) that can break down 
or alter the insecticide before it reaches its target site. Additionally, the insect’s 
metabolism adapts to degrade the insecticide more rapidly, reducing its effective 
concentration (Ranganathan et al., 2022). c. Physical adaptation: In this case, 
the insect develops a physical adaptation that enables it to evade the insecticide, 
such as a thicker cuticle, an additional wax layer, or accelerated waste excretion. 
These adaptations, on their own, do not provide significant protection. However, 
they are often combined with other mechanisms to enhance effectiveness (Perry et 
al., 2011). d. Behavioral adaptation: This particular form of resistance is less 
prevalent, as it entails mutations that have altered the insect’s intrinsic behavioral 
patterns. In order to evade contact with the insecticide, insects may modify their 
behavior, which may include alterations to their feeding, mating, or shelter-seeking 
habits, thereby reducing their exposure (Zalucki & Furlong, 2017). 

Insects can develop resistance to multiple insecticides, often due to a combination 
of the above mechanisms or because one mechanism (e.g., detoxification) may 

GROWTH AND 
DEVELOPMENT 

OBJECTIVES
Mite growth inhibitors 

affecting CHS1: Inhibit the 
enzyme that catalyzes the 
polymerization of chitin. 

                 

10
A Hexythiazox Cihexatina 

(Hexythiazox) Tetranychus cinnabarinus 

*IRAC: Mode of action classification scheme, version 11.2, 08/2024; NC: No current classification
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confer resistance to insecticides of different chemical classes. This phenomenon 
is referred to as multiple and cross-resistance. Consequently, the classification of 
modes of action established by IRAC is intended to assist growers in identifying 
distinct modes of action, thereby preventing the repetitive utilization of analogous 
insecticide products and averting the development of resistance (Gnanadhas et al., 
2013; Sparks & Nauen, 2015).

Study of resistance in Colombia
The most prevalent form of insecticide resistance is the result of genetic 

mutations at the site of action, which impair the efficacy of the insecticide. The 
common examples of this phenomenon include insecticides with a target mode 
of action in the nervous and muscular systems. A clear example is provided 
by mutations in the enzyme acetylcholinesterase, which confers resistance to 
organophosphates, or in voltage-dependent sodium channels, which confers 
resistance to pyrethroids (Chrn et al., 2016; Liu, 2012). In our extensive review, 
we found that 98% of the literature reports resistance to this mode of action, 
with multiple species exhibiting resistance to pyrethroids, organophosphates, 
and carbamates. The remaining two percent can be attributed to the respiration 
targets’ mode of action (Table 2; Figure 2). Of the published papers (n=16), 
75% of the research is based on basic toxicity tests using the impregnated vial 
technique (IRAC, 2011), direct application on immature stages, immersion of the 
arthropods in different concentrations of the pesticides studied, or in some more 
specific cases, immersion of the foliage for sucking pests.

Figure 2. Number of species reported 
as resistant to each chemical group of 

insecticides/acaricides in Colombia. Blue: 
growth and development objectives; Red: 

nerve and muscle targets. (n=47).

Each methodology was adapted to the specific conditions of each laboratory 
and the experience of the researchers involved. All of the methodologies 
included pre-tests to determine a mortality rate and subsequent calibration 
curves to determine the new lethal concentrations (LC) of each product used. 
Concentration values are calculated using Probit analysis and Abbott’s mortality 
correction. In the majority of studies, comparisons are made between the LC 
values of a susceptible and a resistant population to determine the resistance ratio 
(RR) of the species under research to a given compound (Akçay, 2013; Sakuma, 
1998). These studies allow the deduction of whether a population is resistant 
to a specific compound due to the influence of selection pressure. Nevertheless, 
these studies are unable to ascertain the physiological resistance mechanism that 
the pest has acquired. It is crucial to study the biological, genetic, and molecular 
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bases of insecticide resistance because it allows for the determination of which 
physiological process inactivates the insecticide before it reaches its molecular 
target (Bass & Nauen, 2023; Perry et al., 2015). 

A review of the Colombian literature revealed that only four publications 
(25%) employed methodologies that facilitate a more comprehensive 
understanding of resistance mechanisms. One study by Valencia et al. (1993) 
involved enzymatic activity analyses, including esterases, carboxylesterases, the 
mixed-function oxidase system (MFOs), and cytochrome P-450 activity. This 
analysis demonstrated an increase in the enzymatic activity of the resistant 
population of H. virescens to Triazophos. Newer techniques such as high-
resolution fusion polymerase chain reaction (PCR) quantification to identify 
polymorphisms (SNPs) and mutations for rapid identification of Rdl (resistance 
to dieldrin) alleles in different pest populations were used by Navarro et al. 
(2010), where they reported the Rdl allele in populations of H. hampei. Similar 
studies identified pyrethroid resistance mediated by mutation of the para-type 
sodium channel in various populations of T. absoluta. Haddi et al. (2012) showed 
that the Rio Negro (Antioquia-Colombia) population exhibited mutations in dr/
super-kdr type genes (M918T, T929I and L1014F), which attribute resistance to 
pyrethroids. Similar results were reported by Bacca et al. (2017), who determined 
genetic mutations of Kdr genes (L1014F) conferring pyrethroid resistance in T. 
solanivora of Nariño and Boyacá departments populations.

Challenges and perspectives of resistance in Colombia
Studies on the resistance of agricultural pests to insecticides in Colombia are 

insufficient due to a lack of knowledge of their importance in IPM programs. In 
addition to research on the biology of resistant insects that allows us to determine 
the adaptive costs of the species, it is important to include methodologies related 
to genetic, biochemical, and molecular analyses to understand the metabolic 
bases, resistance mediated by the target site, and identify new insecticide targets, 
in addition to understanding the adaptive costs of resistant species and mitigating 
the impact currently (Erdogan et al., 2024; Rix et al., 2022; Wang & Wang, 2024). 
In contrast to surveillance programs for insect vectors of diseases, in Colombia, 
there are no research and monitoring programs in insecticide toxicology to detect 
failures in control plans in time and create new strategies that are effective and 
specific for each species.

General recommendations to avoid and reduce control failures focus on 
rotation plans for different types of insecticide/acaricide modes of action, using 
the doses recommended by the manufacturer, respecting the frequency and, if 
possible, using low-persistence insecticides, taking into account the collateral 
effect on beneficial insects. In Colombia, some political and legal measures are 
promoted for specific quarantine pests, regulated by the Colombian Agricultural 
Institute (ICA). Despite the introduction of new integrated management 
strategies for specific crops and pests to reduce the impact of resistance, the 
challenge is difficult. There is a great deal of information on resistance to various 
insecticides in the carbamate, organophosphate, and pyrethroid groups (Table 
2) for H. virescens in cotton and S. frugiperda in maize and rice, but integrated 
management practices that have rationalized insecticide use have in some 
cases restored susceptibility, for example, in corn, with the introduction of new 
molecules such as diflubenzuron and Bt crops. In 2002, transgenic maize and 
cotton crops were introduced, containing proteins (Cry1Ab or Cry1F) of Bacillus 
thuringiensis (Bt), designed to reduce resistant populations and the use of 
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synthetic insecticides in pest control (Blanco et al., 2016; Monnerat et al., 2006). 
In 2018, the University of Tolima registered the susceptibility of S. frugiperda 
to lambda-cyhalothrin and methomyl, attributed to the use of BT maize crops 
(partial findings have been disseminated SOCOLEN congress) (Jaramillo-Barrios 
et al., 2020; Ríos-Díez & Saldamando-Benjumea, 2011; Rodriguez-Chalarca et 
al., 2024; Valencia-Cataño et al., 2016; Zenner et al., 2005).

However, there are also many examples of resistance that are challenging, 
such as T. solanivora in potato crops, where resistant populations have changed 
their biology as part of their adaptive process. Another example is the whitefly 
complex, which is highly accentuated in southern Colombia owing to the 
indiscriminate use of insecticides banned in Colombia but easily accessible due 
to access to neighboring countries where they are marketed. In this case, the 
inclusion of new public policies in the agricultural sector is necessary to improve 
the extension service and attention to farmers, which will make it possible to 
diagnose pests classified as resistant and create a monitoring network for 
potentially resistant pests.

The agricultural extension and assistance service in Colombia is primarily 
managed by personnel from multinational corporations that produce, market, 
and distribute pesticides. Consequently, there is a dearth of deliberate technical 
assistance that is genuinely oriented towards integrated pest management plans. 
Instead, the emphasis is on increasing sales for commissions. A considerable 
number of products are recommended despite lacking ICA registration for the 
crop and for the pests and are also used in excess. For this reason, there are 
control failures in many crops such as avocado, flowers, ornamentals, tomatoes, 
potatoes, cape gooseberry, and grapes. 

Resistance and toxicology studies should go beyond the calculation of new 
LC50 and toxicity curves; they should aim to determine the metabolic mechanisms 
used by the pest to detoxify the lethal effect of the insecticide. New molecular tools 
should be used to analyze in detail the mutations of the genome of each species 
and to carry out complementary studies on sublethal effects, and adaptive and 
behavioral costs, to implement specific integrated pest management plans that 
also include environmentally friendly and sustainable practices.

CONCLUSIONS

The evolution of pest resistance to synthetic insecticides is an evolutionary 
process driven by selection pressure, which is exacerbated by their inappropriate 
use. The high reproductive rate of insects, their enzymatic detoxification 
mechanisms, and selective pressure are all factors that contribute to the 
proliferation of individuals that possess resistant genes. Addressing this issue 
necessitates further research to accurately identify resistance mechanisms and 
formulate species-specific IPM strategies.
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