

editorial

Universidad de Nariiio

Mathematical foundations
for Computer Science
with MATLAB:

A course about computer
programming fundamentals

Mathematical foundations
for Computer Science
with MATLAB:

A course about computer
programming fundamentals

Jairo Guerrero Garcia
Autor

editorial

Universidad de Nariiio

Guerrero Garcia, Jairo

Mathematical foundations for computer science with MATLAB : a course about computer
programming fundamentals / Jairo Guerrero Garcia.—12. Ed. — San Juan de Pasto : Editorial
Universidad de Narifio, 2025

116 paginas : ilustraciones, tablas

Incluye referencias bibliograficas p. 108 - 111
ISBN: 978-628-7771-82-6

1. Matemadticas aplicadas—Informatica 2. MATLAB—Aplicaciones 3. Programacién 4. Teoria de
numeros 5. Matematicas—Ciencia de la computacidn 6. Funciones—MATLAB 7. Algebra lineal 8.

Matematicas discretas

519.7 G934m — SCDD-Ed. 22

© Editorial Universidad de Narino
© Jairo Guerrero Garcia

ISBN: 978-628-7771-82-6

Style review: Daniel Anthony Day
Cover design and layout: Angie Gabriela Ordofiez
Edition: 1st edition.

Publication date: October 2025
San Juan de Pasto - Narifo - Colombia

Reproduction in whole or in part, by any means or for
any purpose, without written permission from the author
or Editorial Universidad de Narifio is prohibited

Table of Contents

[CHAPTER 1] — Preface oottt 11
[CHAPTER 2] — The Dawn of COMPULINGcovvvviiiieiiiiee e 13
[CHAPTER 3] — Mathematics for Computer Sciencecccceeuveeeeeciveeeennns 17
3.1 Discrete mathematicsceevieeiierieniieneeeeeee e 19
32 CalCULUS. ...eeee e 23
33 Linear AIZEDTacc.eevueriirieniiiieeieereeenere e 26
3.4 Probability Theory and StatiStiCscoceevververeenierieeneenieneenieenee 28
3.5 NUMDET TREOTY ..ouviiiiiiiiieiteeeee e 30
[CHAPTER 4] — KNOWINg MATLABceeviieieeeeiteeeee e 37
[CHAPTER 5] — COMPAriSONS...ccccccuiiiiieeeeeeeecciittereeeeeeeeesnnnreseeesesesenanssnnenes 41
5.1 Workshop #1 — Comparisons in MATLAB........ccccceviienieniennen. 46
[CHAPTER 6] — LOOPS +.vevveveeereeseeeeeseeseesseseeseeeeessesesesesssessessessessesssesessensenns 59
6.1 Workshop #2 — Loops in MATLAB ..., 67
[CHAPTER 7] — FUNCEIONS 1. 77
7.1 Workshop #3 — Functions ins MATLAB.......cccccceviiinniieiinienne 83
[CHAPTER 8] — AITAYS wuvvereeeeeeieiiiirireeeeeeeeeeeitreeeeeeeeeeessnnsseseeseessssssssnssesseess 95
8.1 Workshop #4 — Arrays in MATLABcoocoviviiiiiiiieee 100
[CHAPTER 9] — EPilOBUE .cceeeeeeeeeeee ettt e 115

[CHAPTER 10] — REFEIENCES. .. 117

[CHAPTER 1] — PREFACE

This book was created as a guide to learning the mathematical foundations essential
for computer programming. Programming, a core aspect of Computer Science, is
deeply rooted in mathematics; in fact, Computer Science itself emerged from
mathematical principles. Understanding these foundations is crucial for developing
efficient and robust software solutions. For this reason, I believe MATLAB is one
of the most powerful languages for scientific computing, making it an ideal tool for
illustrating the mathematical concepts presented in this book.

The primary objective of this book is to support academic learning. It is specifically
designed for students and educators in Computer Science who seek to strengthen
their mathematical skills in the context of programming. Additionally, this book has
been intentionally written in English to encourage students to engage with academic
literature in the language commonly used in the field.

Throughout history, major milestones in computing have been driven by the
application of mathematics to solve specific problems. This legacy remains
highly relevant in Computer Science education today, which is why this book
was developed. It reflects much of my experience as a professor at the University
of Narifio, where I have worked extensively on the intersection of mathematics
and programming.

By reading this book, students will gain a fundamental understanding of key
mathematical concepts applied in programming, with a focus on problem-solving
techniques using MATLAB. The book covers topics such as numerical methods,
matrix operations, algorithmic thinking, and mathematical modeling, all essential for
constructing software. Upon completion, readers will have a strong foundation to
approach more advanced topics in scientific computing and software development,
equipping them with the skills necessary to analyze and solve computational
problems effectively.

Encouraging learners to type out source code manually, rather than copying and
pasting, offers significant educational advantages. This practice fosters active
engagement with the material, requiring learners to focus on each line and
understand its function within the program. Such deliberate involvement enhances
comprehension and aids in transferring knowledge from short-term to long-term
memory, thereby improving retention (Brack, 2016). Moreover, typing code allows
learners to encounter and resolve errors firsthand, promoting the development of
debugging skills and a deeper understanding of the code's functionality. This process
cultivates critical thinking and problem-solving abilities essential for proficient
programming. Additionally, typing encourages mindful learning, as learners must
pay attention to syntax and structure, leading to a more reflective and thorough
understanding of programming concepts (Cook, 2012). This mindfulness helps grasp
the code's purpose and architecture, reducing the likelihood of superficial learning
that often accompanies copy-paste practices. By typing code manually, learners
develop autonomy and confidence in their coding abilities, which is crucial for their
growth as programmers. Incorporating these practices into programming education
can lead to a more robust and meaningful learning experience, equipping learners
with the skills and understanding necessary for success in the field.

I use MATLAB throughout this textbook. MATLAB is a trademark of The
MathWorks.

—The Author,
Pasto, February 19, 2023

|[CHAPTER 2] — THE DAWN OF COMPUTING

Although computing was practically coined in the 20th century, there are
traces of computing that existed long ago. Various forms of computing existed
before the 20th century, although they were very different from modern
digital computers. Some examples include:

e Abacus: The abacus is a simple device for performing arithmetic
operations. It consists of beads or stones on rods, and users move the
beads to perform calculations (Marici¢ & Lazi¢, 2020).

e Slide Rule: The slide rule is a mechanical device for multiplication
and division. It consists of two logarithmic scales that slide past each
other (Ulmann, 2022).

e Jacquard Loom: The Jacquard loom, invented in the early 19th
century, used punched cards to control the weaving of complex
patterns in textiles. It is one of the earliest examples of a machine that
used programming (A/baugh et al., 2021).

e Charles Babbage's Analytical Engine: In the mid-19th century, Charles
Babbage, a British mathematician and inventor, designed the Analytical
Engine. Although it was never built, it was a mechanical computer that
could perform basic arithmetic operations, store data, and execute
instructions (Haecker, 2022).

These early forms of computing were used primarily for performing arithmetic
calculations and automating simple mechanical tasks. It was not until the mid-
20th century when the first digital computers were invented, that computing
became a field of study and a major technological force worldwide.

10

Jairo Guerrero Garcia

Historically, Computer Science was born from mathematics (O ’Regan,
2018). Unfortunately, human history is associated with wars. The 20th
century was a special case, with two world wars. Sometimes, history plays
with some irony in the plot of human lives; the more suffering, the more
technological developments are produced.

Technological developments are key to the evolution of civilization.
Scientists and scholars are duty-bound to produce innovative ideas to promote
such developments, and computing is no exception. Calculations are crucial
to winning a war because computing relies on being able to count, which is a
form of mathematics. Developers need to understand and work with numbers
to create algorithms and software. Many computing concepts are also based
on mathematical principles, such as logic and set theory.

While the war was still raging, Alan Turing and his team at Bletchley Park in
England worked on cracking the German ENIGMA code. This was a significant
turning point in the war, allowing the Allies to intercept and decode German
communications, giving them a considerable advantage. All these technological
advances were achieved thanks to mathematics (Bowen, 2019).

After the war, Alan Turing continued his work in computing and became the
father of computer science. He also made significant contributions to artificial
intelligence. Claude Shannon, an American mathematician, electrical
engineer, and cryptographer, is known as the "father of information theory."
Shannon is credited with inventing the binary code used in modern computer
systems and developing digital circuit design theory. All of his contributions
are based on mathematics (Magoun, 2019).

The traditional computing paradigm is based on the Von Neumann architecture,
which John Von Neumann proposed in the late 1940s. This architecture is used in
most conventional digital computers. It is based on a sequential processing model
that involves four main components: the input/output devices, the memory, the
arithmetic/logic unit (4LU), and the control unit (O 'Regan, 2013).

Mathematical foundations for computer science with MATLAB

In this model, data and instructions are stored in memory. The control unit
fetches instructions from memory, decodes them, and executes them by
sending signals to the ALU. The ALU performs arithmetic and logic
operations on data as directed by the control unit, and the results are then
stored back in memory.

The Von Neumann architecture is a "stored program" model, which means
that a computer program's instructions are stored in the same memory as the
data. This allows for great flexibility in programming, as programs can be
modified and rewritten as needed (Macrae, 2019).

While the traditional computing paradigm has been highly successful and is
still widely used today, it has some limitations. These include its reliance on
sequential processing and the need to move data between the memory and the
processor, which can slow down performance. Newer computing paradigms,
such as parallel computing and quantum computing, have emerged to address
these limitations and enable new computing applications and capabilities
(National Academies of Sciences, Engineering, and Medicine, 2019).

11

12

[CHAPTER 3] — MATHEMATICS FOR COMPUTER SCIENCE

Computer Science is the study of computers and computational systems. It
involves both theoretical and practical aspects of computing, including algorithms,
programming languages, data structures, software engineering, computer
architecture, artificial intelligence, databases, human-computer interaction, and
computer networking (ACM & IEEE-CS, 2020). Computer science is a broad field
that encompasses many subfields and specializations, such as cybersecurity,
computer graphics, computer vision, machine learning, robotics, and natural
language processing. It is also a rapidly evolving field, with innovative
technologies and applications constantly emerging.

Computer science has become increasingly important today, as computers
have become ubiquitous and are used in almost every aspect of our lives.
It is a wvital discipline for anyone interested in developing software,
designing computer systems, or working with technology in any capacity.
The origin of Computer Science can be traced back to the mid-20th century
when the first digital computers were being developed. During this time,
researchers were developing algorithms, programming languages, and
other foundational concepts that would define the field of Computer
Science (Woodford, 2021).

One of the earliest pioneers of Computer Science was Alan Turing, a British
mathematician and computer scientist who played a key role in cracking the
German Enigma code during World War II. After the war, Turing continued
to work on developing computer systems and artificial intelligence, and his
ideas helped shape the direction of the field. Another important figure in the
history of Computer Science was John von Neumann, a Hungarian-American
mathematician and physicist who worked on developing early electronic
computers and is credited with designing the von Neumann architecture, a
key model for modern computer systems.

ical foundations for computer science with MATLAB

Other significant early contributors to Computer Science include Grace
Hopper, who developed the first compiler for a computer programming
language, and Ada Lovelace, who is often considered the world's first
computer programmer for her work on Charles Babbage's Analytical Engine.
Since its early days, Computer Science has continued to evolve and expand,
with modern technologies and applications constantly emerging. Today, it is
a vital discipline that underpins many areas of contemporary society, from
business and industry to healthcare, science, and beyond (Pucik, 2022).

Undoubtedly, mathematics is the theoretical basis on which Computer
Science is based. Considering that mathematics is broad, there are concepts
on which the pioneers were based to create Computer Science. Computer
Science relies heavily on various mathematical disciplines to build and
analyze computational systems. Some of the key areas of mathematics that
are used in Computer Science include:

e Discrete Mathematics is a branch of mathematics that deals with
discrete structures, such as sets, graphs, and integers. It is used in
Computer Science to analyze algorithms, data structures, and
computational models (4igner, 2023).

e Calculus: Calculus 1s a branch of mathematics that deals with
continuous change and motion. It is used in Computer Science to
analyze algorithms' performance and model physical systems, such as
computer networks (Kidron, 2020).

e Linear Algebra: Linear algebra is a branch of mathematics that deals with
vectors and matrices. It is used in Computer Science for data analysis,
machine learning, and computer graphics (Trefethen & Bau, 2022).

e Probability Theory and Statistics: Probability theory and statistics
are used in computer science to model uncertainty and analyze data.
They are used in machine learning, data mining, and artificial
intelligence (Potters & Bouchaud, 2020).

13

14

Jairo Guerrero Garcia

e Number Theory: Number theory is a branch of mathematics that
deals with the properties of integers. It is used in Computer Science
for cryptography, data compression, and error-correcting codes
(Baker, 2022).

These are just a few examples of the many mathematical disciplines used in
Computer Science. Computer scientists can develop new technologies and
solutions that continue transforming the world by combining mathematical
theory with practical applications.

3.1 DISCRETE MATHEMATICS

Discrete mathematics is a branch of mathematics that deals with discrete or
countable objects, such as integers, graphs, and sets. Unlike continuous
mathematics, which deals with constant objects, such as real numbers and
calculus, discrete mathematics focuses on objects that a finite set of values
can represent.

Discrete mathematics is used extensively in Computer Science and other
fields that involve discrete structures and computational algorithms. Some of
the key topics in discrete mathematics include:

e Combinatorics is the study of discrete structures and their properties,
such as graphs, sets, and permutations. It is used in Computer Science
for data analysis, optimization, and algorithm design (West, 2020).

Here's an example of using combinatorics in MATLAB to generate
all possible combinations of elements in a set:

Suppose we have a set of numbers {1, 2, 3, 4} and want to generate
all possible combinations of two elements from this set.

In MATLAB, we can use the "combnk" function to generate all
possible combinations of k elements from a set of n elements. Here's
how we can use it for our example:

Mathematical foundations for computer science with MATLAB

% Define the set
set = [1,2,3,4];

% Generate all possible combinations of two elements
combinations = nchoosek(set, 2)

After running this code, the "combinations" variable will contain a 6 x 2
matrix, where each row represents a different combination of two
elements from the set:

combinations =
1 2
1 3
1 4
2 3
2 4
3 4

In this way, we can use combinatorics functions in MATLAB to
generate all possible combinations of elements in a set, which is
helpful for many applications in Computer Science, mathematics, and
other fields.

e Graph Theory: This is the study of graphs, which are mathematical
structures that represent relationships between objects. Graph theory
is used in Computer Science for network analysis, data mining, and
algorithm design (Sporns, 2022).

Here's an example of using graph theory in MATLAB to analyze a graph:

Suppose we have a graph with five nodes and six edges, represented
by the adjacency matrix A:

A=[01100; 10010, 10010, 01101; 0001 0];

15

16

Jairo Guerrero Garcia

We can use the built-in MATLAB function "graph" to create a graph
object from the adjacency matrix A:

G = graph(A);

Once we have the graph object, we can use various built-in functions
to analyze its properties. For example, we can use the "degree"
function to calculate the degree of each node in the graph:

deg = degree(G);

The "deg" variable will contain a vector with the degree of each node:

deg =

P W iNNDNDN

We can also use the "shortestpath" function to find the shortest path
between two nodes in the graph. For example, to find the shortest
path between nodes 1 and 5:

path = shortestpath(G, 1, 5);

The "path" variable will contain a vector with the nodes along the
shortest path:

path =
2 4 5

In this way, we can use graph theory functions in MATLAB to
analyze the properties of a graph, which is helpful for many
applications in Computer Science, mathematics, and other fields.

Mathematical foundations for computer science with MATLAB

Set Theory: This studies sets and their properties, such as cardinality
and intersection. Set theory is used in Computer Science for database
design, algorithm analysis, and data modeling (Kumar et al., 2019).

Here's an example of using set theory in MATLAB to perform set operations:

Suppose we have two sets of numbers, A and B, and we want to
perform set operations using MATLAB.

We can represent the sets using MATLAB arrays. For example, let:

[1J 2’ 3’ 4) 5].;
[4J 5’ 6’ 7) 8].;

To find the union of A and B, we can use the "union" function:
union(A, B);

The "C" variable will contain the union of A and B:

1 2 3 4 5 6 7 8
To find the intersection of A and B, we can use the "intersect" function:
intersect(A, B);

The "D" variable will contain the intersection of A and B:

4 5

To find the elements that are in A but not in B, we can use the
"setdiff" function:

intersect(A, B);

17

18

Jairo Guerrero Garcia

The "E" variable will contain the elements that are in A but not in B:

1 2 3

In this way, we can use set theory functions in MATLAB to
perform set operations on sets of numbers or other data types,
which is helpful for many applications in Computer Science,
mathematics, and other fields.

Discrete mathematics is a fundamental part of Computer Science and
provides the theoretical foundation for many important field study areas.
Computer scientists can develop algorithms, data structures, and other
computational tools critical to modern computing by understanding the
principles and concepts of discrete mathematics.

3.2 CALCULUS

Calculus was independently developed by two mathematicians, Sir Isaac
Newton and Gottfried Wilhelm Leibniz, in the 17th century.

Newton is credited with developing the foundations of differential calculus in
the 1660s while working on problems related to motion and forces. Leibniz,
a German mathematician and philosopher, created his version of calculus in
the late 1670s, called "infinitesimal calculus." Both men published their work
on calculus in the 1680s, and there was initially some controversy over who
deserved credit for inventing the subject (Kossovsky, 2020).

Todays, it is generally recognized that Newton and Leibniz played a significant
role in developing calculus and that their work was complementary rather
than competitive. The two approaches to calculus, Newtonian and Leibnizian,
are still in use today and have led to a rich body of mathematical theory and
practical applications. Calculus is a branch of mathematics that deals with
rates of change and how things change over time. It is divided into two main
branches: differential calculus and integral calculus.

Differential calculus deals with studying the rate of change of a function at a
point and calculating derivatives. Derivatives are used to find the slope of a

Mathematical foundations for computer science with MATLAB

function at a given point and its maximum and minimum points. They are
used in various fields, including physics, engineering, economics, and others
(Sprunger & Jacobs, 2019).

Integral calculus deals with the study of quantity accumulation and the
calculation of integrals. Integrals are used to find the total quantity that has
accumulated over time, and they have various applications, such as finding
the area under a curve or the volume of a three-dimensional shape.

Differential and integral calculus provide a robust set of tools for analyzing
and understanding how things change over time and are used extensively in
many fields of science, engineering, and mathematics. There is also a close
relationship with the concept of Infinitesimal calculus aside from differential
and integral calculus.

Infinitesimal calculus is an older term for the branch of mathematics that deals
with limits, derivatives, and integrals. Differential and integral calculus are
two subfields of infinitesimal calculus that study functions and their
derivatives and integrals (Martinez et al., 2020).

Differential calculus involves studying the rate of change of a function at a
point and calculating derivatives. Derivatives are used to find the slope of a
function at a given point and to determine its maximum and minimum points.

Integral calculus, conversely, studies the accumulation of quantities and
calculates integrals. Integrals are used to find the total amount that has
accumulated over time, and they have various applications, such as finding
the area under a curve or the volume of a three-dimensional shape.

In summary, differential and integral calculus are subfields of infinitesimal calculus
that study functions and their derivatives and integrals. Differential calculus deals
with the rate of change of a function, while integral calculus deals with the
accumulation of a quantity over time. Together, these two fields provide a robust set
of tools for analyzing and understanding how things change over time and are used
extensively in many fields of science, engineering, and mathematics (Kirchner,
Benzmiiller & Zalta, 2019).

19

20

Jairo Guerrero Garcia

Here's an example of how to use MATLAB to perform some basic operations
of differential calculus:

Suppose we want to find the derivative of a simple function, such as
f(x) = x*2, at a specific point, say x = 2. We can use MATLAB's
symbolic toolbox to define the function, find the derivative, and
evaluate it at x = 2. Here's how to do it:

Define the function using the "syms" command to create a symbolic variable x:

syms X
f = x*2;

Find the derivative of the function using the "diff" command:
df = diff(f)

This will output the derivative of the function, which is 2x.

Evaluate the derivative at a specific point, such as x =2, using the "subs" command:
df value = subs(df, x,2)

This will output the value of the function's derivative at x = 2, which is 4.

So, in this example, we used MATLAB's symbolic toolbox to define a
function, find its derivative, and evaluate it at a specific point, all using the
principles of differential calculus.

Now, here's another example of how to use MATLAB to perform some basic
operations of integral calculus:

Suppose we want to find the definite integral of a simple function, such as
f(x) = x*2, over a specific interval, say from x = 0 to x = 1. We can use
MATLAB's symbolic toolbox to define the function, find the integral, and
evaluate it over the given interval. Here's how to do it:

Mathematical foundations for computer science with MATLAB

Define the function using the "syms" command to create a symbolic variable x:

syms X
f = x*2;

Find the indefinite integral of the function using the "int" command:
F = int(f)

This will output the indefinite integral of the function, which is (1/3)x"3 + C,
where C is a constant of integration.

Evaluate the definite integral of the function over a specific interval, such as
from x = 0 to x = 1, using the "subs" command:

F_value = subs(F, x, 1) - subs(F, x, @)

This will output the value of the function's definite integral over the given
interval, which is 1/3.

So, in this example, we used MATLAB's symbolic toolbox to define a function,
find its indefinite integral, and evaluate its definite integral over a specific
interval, all using the principles of integral calculus.

3.3 LINEAR ALGEBRA

Linear algebra is a branch of mathematics that studies linear equations,
vectors, matrices, and linear transformations. It is a fundamental tool used in
many fields, including physics, engineering, Computer Science, economics,
and statistics.

Linear algebra involves the study of the properties of linear transformations and
their representation by matrices. It also deals with solving systems of linear
equations, which arise in many applications, and with the study of vector spaces
and their subspaces. Some of the key concepts in linear algebra include linear
independence, basis, dimension, inner product, determinants, eigenvectors, and
eigenvalues (Farin & Hansford, 2021).

21

22

Jairo Guerrero Garcia

Linear algebra has a wide range of applications in different areas of science and
engineering. For example, it is used in computer graphics to represent and manipulate
3D images, in data analysis to perform principal component analysis, in control theory
to model and analyze dynamic systems, in cryptography to encrypt and decrypt
messages, and in machine learning to perform linear regression and other types of
statistical analysis.

Here's an example of how to use MATLAB to perform some basic operations
of linear algebra:

Suppose we want to solve a system of linear equations, such as the following:
2x + 3y =7
4x + 5y = 11

We can use MATLAB to define the system of equations as a matrix equation,
and then use the backslash operator to solve it. Here's how to do it:

Define the system of equations as a matrix equation:

A
b

[2 3; 4 5];
[7; 11];

Here, we have defined the coefficient matrix A and the right-hand side vector b.

Solve the system of equations using the backslash operator:
x = A\b

This will output the solution vector x, which satisfies the system of equations.

In this example, the solution vector x is [-1; 3], which means that the solution
to the system of equations is x =-1 and y = 3.

So, in this example, we used MATLAB to define a system of linear equations
as a matrix equation, and then solved it using the backslash operator, all using
the principles of linear algebra.

34

Mathematical foundations for computer science with MATLAB

PROBABILITY THEORY AND STATISTICS

Probability theory and statistics are two branches of mathematics that are
closely related and often studied together.

n
X

Probability theory deals with the study of random events and the
likelihood of their occurrence. It provides a framework for quantifying
uncertainty and making predictions in situations where the outcome is
not known in advance. Some of the key concepts in probability theory
include probability distributions, expected values, variance, and
random variables (Matloff, 2019).

Here's an example of how to use MATLAB to simulate a random
variable with a certain probability distribution:

Suppose we want to simulate a random variable X that follows a
normal (Gaussian) distribution with mean 0 and standard deviation 1.
We can use the "randn" function in MATLAB to generate random
numbers from a standard normal distribution, and then transform them
to the desired distribution using the mean and standard deviation.

Here's how to do it:

Generate a vector of random numbers from a standard normal distribution:

1000; % number or samples
randn(n, 1); % generate n samples from a standard normal

distribution

Transform the vector to a normal distribution with mean 0 and
standard deviation 1:

mu = @ % mean
sigma = 1; % standard deviation
y = mu + sigma*x; % transform to normal distribution

23

24

Jairo Guerrero Garcia

Plot the histogram of the simulated random variable:

histogram(y, 'Normalization', 'pdf'); % plot the histogram
xlabel('x"); ylabel('f(x)"); % set the axis labels

< X
| |

This will plot the histogram of the simulated random variable X,
which should look like a normal distribution with mean 0 and standard
deviation 1.

In this example, we used MATLAB to simulate a random variable
with a normal distribution, which is a fundamental concept in
probability theory.

Statistics, on the other hand, is the study of collecting, analyzing, and
interpreting data. It involves the application of probability theory to
real-world situations and the use of statistical models to make
predictions and draw conclusions from data. Some of the key concepts
in statistics include hypothesis testing, confidence intervals,
regression analysis, and experimental design (Avella-Medina, 2020).

Here's an example of how to use MATLAB to perform a t-test on two
samples within the world of statistics:

Suppose we have two samples of data, and we want to test whether
their means are significantly different from each other. We can use a
t-test to determine whether the difference between the sample means
is statistically significant.

Here's how to do it:

Define the two samples of data:

= [1: 2, 3, 4, 5]}
= [4: 5, 6, 7, 8]}

Mathematical foundations for computer science with MATLAB

Calculate the means and standard deviations of the two samples:

mean_x = mean(x);
std_x = std(x);
mean_y = mean(y);
std_y = std(y);

Perform a two-sample t-test to compare the means of the two samples:

[h, p, ci, stats] = ttest2(x, y);

This will perform a two-sample t-test and output the test results,
including the test statistic (in the "stats" variable), the p-value (in the
n.n

p" variable), and the confidence interval for the difference in means
(in the "ci" variable).

In this example, the t-test may reveal whether the difference in means
between the two samples is statistically significant or not, and helps
us make conclusions about the underlying populations from which the
samples were drawn. The t-test is a fundamental tool in statistical
inference, and is widely used in many fields including medicine,
social sciences, and engineering.

Probability theory and statistics are used in many fields, such as physics,
engineering, finance, medicine, and social sciences. They are essential tools
in data science and machine learning, as they provide a foundation for
understanding and analyzing complex data sets.

In summary, probability theory and statistics are two branches of mathematics
that are fundamental to understanding uncertainty and making predictions in
a wide range of applications.

3.5 NUMBER THEORY

Number theory is a branch of mathematics that deals with the properties
of numbers, especially integers. It is one of the oldest and most fundamental
areas of mathematics, and has applications in many other fields such as
cryptography, Computer Science, and physics (Miller & Takloo-Bighash, 2021).

25

26

Jairo Guerrero Garcia

Some of the central topics in number theory include:

e Prime numbers: the study of the properties and distribution of prime
numbers, which are integers that can only be divided by 1 and themselves.

Here's an example of how to use MATLARB to generate prime numbers:

MATLAB provides the isprime function, which tests whether a given
number is prime or not. We can use this function to generate a list of
prime numbers up to a certain limit.

For example, to generate all prime numbers less than 100:

primes = [];
for i = 2:99
if isprime(i)
primes = [primes, i];

end

end
This code initializes an empty array called "primes", and then loops
overall numbers from 2 to 99. For each number, it checks whether it is
prime using the isprime function, and if so, adds it to the "primes" array.
After running this code, the "primes" array will contain all prime
numbers less than 100, we have an excerpt below:

primes =

Columns 1 through 11

2 3 5 7 11 13 17 19 23 29 31
Columns 12 through 22

37 41 43 47 53 59 61 67 71 73 79
Columns 23 through 25

83 89 97

Mathematical foundations for computer science with MATLAB

This is just one example of how to generate prime numbers in
MATLAB using the isprime function. There are many other ways to
generate prime numbers using MATLAB as well, depending on the
specific requirements of your problem.

e Diophantine equations: the study of equations in which we seek integer
solutions, such as the famous Pythagorean equation a2 + b2 = ¢2.

Here's an example of how to use MATLAB to solve a Diophantine equation:
Let's say we want to find all integer solutions to the equation:
5x + 12y = 37

This is a linear Diophantine equation, which means that we are
looking for integer solutions to a linear equation. To solve this
equation in MATLAB, we can use the gcd function, which computes
the greatest common divisor of two numbers.

We can start by finding the gcd of 5 and 12:
gcd(5, 12)

This gives us a result of 1, which means that 5 and 12 are coprime
(i.e., they have no common factors other than 1). This is good news,
because it means that there are integer solutions to the equation.

To find the solutions, we can use the extended Euclidean algorithm to
find the coefficients of 5 and 12 that add up to 1:

[u, v, gcd] = gcd(5, 12)

This givesus u =5, v=-2, and gcd = 1. These coefficients tell us that:

5x(5)+12%(=2) =1

28

Jairo Guerrero Garcia

Now we can use these coefficients to find all integer solutions to the
equation 5x + 12y = 37. We start by finding one particular solution by
setting y = 0:

5%37 + 12*k
k

where k is any integer. For example, if we set k = 0, we get x = 185
andy =0.

To find all integer solutions, we can add a multiple of the coefficients
u and v to this particular solution. For example, if we add u =5 to x
and v=-2toy, we get:

5*%37 + 12*k + 5
k - 2

This gives us another solution to the equation. We can continue adding
multiples of u and v to find all integer solutions. For example, if we
add 2u =10 and 2v = -4, we get:

5%37 + 12%k + 15
k -4

And so on. In this way, we can use MATLAB to find all integer
solutions to the Diophantine equation 5x + 12y = 37. The specific
implementation will depend on the equation you are trying to solve.

e Modular arithmetic: the study of arithmetic operations performed
"modulo" a certain number, which is a way of understanding periodic
or repeating patterns in arithmetic.

Here's a short example of how to use modular arithmetic in MATLAB:

Suppose we want to calculate the remainder when 100 is divided by 7.
We can use the modulo operator (mod) to perform modular arithmetic:

remainder = mod(100, 7)

The result will be 2, which is the remainder when 100 is divided by 7.

Mathematical foundations for computer science with MATLAB

Another example is computing the inverse of a number modulo a
given modulus. Suppose we want to find the inverse of 3 modulo 7,
which is a number x such that 3x =1 (mod 7). We can use the modinv
function from the Symbolic Math Toolbox to compute this inverse:

X = modinv(sym(3), sym(7))

The sym function is used to convert the integers 3 and 7 to symbolic
objects, which are required by the modinv function. The result will be a
symbolic fraction 5/21, which is the inverse of 3 modulo 7. If we want to
convert this to a regular fraction, we can use the double function:

double(x)

This will output 0.2381, which is approximately equal to 5/21.

e Cryptography: the study of encoding and decoding messages using
mathematical algorithms, often based on number theory.

Here's a short example of how to use cryptography in MATLAB:

Suppose we want to encrypt a message using the simple Caesar cipher,
which involves shifting each letter of the message by a fixed number
of positions in the alphabet. We can use the double and char functions
in MATLAB to convert between characters and their ASCII codes.

Here's an example of how to encrypt the message "HELLO WORLD"
using a shift of 3:

message = 'HELLO WORD'; % the message to be encrypted
shift = 3; % the number of positions to shift the letters

% convert the message to ASCII codes and apply the shift
encrypted = mod(double(message)- 65 + shift, 26) + 65;

% convert the encrypted ASCII codes back to characters
result = char(encrypted);

29

30

Jairo Guerrero Garcia

The result will be the encrypted message "KHOOR ZRUOG".

To decrypt the message, we simply apply the reverse shift:

shift = -3; % the reserve shift

% apply the reverse shift and convert back to characters
decrypted = char(mod(double(result) - 65 + shift, 26) + 65);

The result will be the original message "HELLO WORLD".

Number theory has a rich history, with contributions from many famous
mathematicians such as Euclid, Euler, Gauss, and Riemann. It is an active area

of research today, with many open problems and connections to other areas of
mathematics and science.

[CHAPTER 4] — KNOWING MATLAB

MATLAB (short for "matrix laboratory") is a programming language and
numerical computing environment that was created by Cleve Moler in the late
1970s. Moler was a professor of mathematics at the University of New
Mexico, and he created MATLAB to provide a way for his students to do
numerical calculations on a computer (Fortuna, Frasca & Buscarino, 2021).

The first version of MATLAB was written in Fortran and ran on the
minicomputers that were commonly used in academic and research
environments at the time. In 1984, Moler and his colleagues formed a
company called The MathWorks to commercialize MATLAB, and they
rewrote the software in C to improve its performance and portability.

Over the years, MATLAB has evolved to become a powerful tool for
numerical computation, data analysis, visualization, and programming. The
software includes a large library of mathematical functions and toolboxes for
specific applications, such as signal processing, control systems, and image
processing. MATLAB is also widely used in academic research and in
industries such as engineering, finance, and science.

Today, MATLAB is distributed by The MathWorks and is used by millions
of engineers, scientists, and students around the world. Its popularity is due
to its ease of use, powerful mathematical and visualization capabilities, and
the large community of users who contribute to its development and support.

According to The MathWorks—the producer—MATLAB is a programming
and numeric computing platform used by millions of engineers and scientists
to analyze data, develop algorithms, and create models (2023).

31

32

Jairo Guerrero Garcia

Engineers and scientists need a programming language that allows them to directly
express mathematical matrices and vector arrays. Linear algebra in MATLAB is
learned and looks like an academic textbook. The same is true for data analysis,
signal and image processing, control design, and other applications.

Everything about MATLAB is designed specifically for engineers and scientists,
because: function names are familiar and easy to remember, the desktop
environment is tuned for scientific and engineering workflows. The
documentation is written for engineers and scientists, not computer scientists.

MATLAB toolboxes offer professionally developed, rigorously tested, and
fully documented functionality for a wide range of scientific and engineering
applications. Toolboxes are designed to work together, integrating with
parallel computing environments, GPUs, and C code generation.

MATLAB Apps are interactive applications that combine direct access to
large collections of algorithms with immediate visual feedback. You can
instantly visualize how the different algorithms work with your data. Iterate
until you get the expected results, then automatically generate MATLAB
code to reproduce or automate your work.

Major engineering and scientific challenges require extensive coordination
across teams to bring ideas to implementation. Each passing of information
along the way adds errors and delays. MATLAB helps automate the entire
path from research to production by allowing you to:

Connecting: MATLAB allows you to connect with more than 1,000
hardware devices.

Analyzing: Integrating MATLAB into Production Environments

Scaling: MATLAB Runs Algorithms Faster and with Big Data by Scaling to
Clusters, the Cloud, and GPUs.

Simulating: Connectivity to Simulink and State flow for model-based design
and simulation.

Mathematical foundations for computer science with MATLAB

MATLAB does the work of making your code faster. Math operations are
distributed throughout your computer's kernels, library calls are highly
optimized, and all code is compiled.

Engineers and scientists rely on MATLAB to send a spacecraft to Pluto,
match patients needing organ transplants with donors, or simply generate a
business report. A team of MathWorks engineers continually verifies
software quality by running millions of tests against the MATLAB codebase
every day.

Considering the above, the first step is recognizing the main environment of
MATLAB to do the first steps into MATLAB programming. Now, MATLAB
is available for Microsoft Windows, Mac, and Linux. Regardless the
operating system, MATLAB has the same integrated development
environment as this:

4\ MATLAB R20233 - prerelease use - (=] X
SR EEION) BT ¢ - - |
3 il Variable v ” Analyze Code @ preferences (7) €3 Communi
E E O [Find Files & Y = [V i a @ & @° 7

§ &
Mew Mew Mew Open (] Compare Impot Clean - onveWotanace o 0 RunandTime Sulink Layour F KPR g g gy O Reauest Suppont

Seript Live Script v Data Data (27 Clear Workspace ~ ~ [/ Clear Commands ~ ~ [l paraltel~ L Learn MATLAB
FILE VARIABLE Gane SIMULING RESOURGES

G EHal & T » 0 v Downloads Ry
Corrent Folder ®

Mame $imulink Compiler Version 1.6 (R2023a)

1] 905815 win2 dote Simulink Control besign version 7.0 (R20233)

Simulink Coverage Version 5.6 (R20232)

Simulink Design Optimization Version 3.13 (R20233)

Simulink Design Verifier Version 4.9 (R20232)

Simulink Desktop Real-Time Version 5.15 (R20233)

Simulink PLC Coder Version ¥.8 (R20232)

Simulink Real-Time Version 8.2 (R20233)

Simulink Report Generater Version 5.14 (R20232)

Simulink Test Version 3.8 (R20233)

#aC Blackset Version 1.8 (R20232)

Spreadsheet Link Version 3.4.9 (R20233)

Suatetlow Version 10.8 (R20232)

Statistics and Nachine Learning Toolbox Version 12.5 (R20233)

H11005815_win32.dobs (Microsaft Word Templatel ~ Symhelic Hath Taolhex peraion 2.3 (F20232)

System Composer Version z.4 (R20233)

Workspace ® System Identification Teolbox Version 10.1 (R20234)

Name Vale Text inalytics Toolbox Version 1.10 (R20233)

VAV Toalbox Version 1.5 (R20232)

Vehicle Dynanmics Blockset Version z.0 (R20233)

Venicle Network Toolbox Version 5.4 (Rz0232)

Vision EDL Toolbox Version z.7 (R20233)

WLEN Toolpox Version 3.6 (Rz0232)

Wavelet Toolbox Version 6.3 (R20233)

Wireless HPL Toolhox Version z.6 (Rz0232)

Wireless Testhench Version 1.2 (R20233)

5>

Figure 4-1. MATLAB main screen

Four main areas are depicted in Figure 4-1. The first area is the Ribbon: it is at the
top of the screen. The Ribbon is a collection of common functionalities and tools
for working with MATLAB. As default, the Ribbon has 3 tab strips: HOME,
PLOTS, and APPS. The first one includes the main functionalities related to the

33

34

Jairo Guerrero Garcia

daily work with MATLAB. The second one is oriented to the graphical
representation based on plotting. The third one is related to the collection of
toolboxes installed in the system.

The second area is in the top-left location, and it is dedicated to the
management of the file system. In such an area, users can explore the file
system for interacting with files and folders.

The third area is in the bottom-left location of the screen, and it is called
Workspace. The Workspace is representation of the entities created in the
memory of the computer. Every single entity as variables—scalars or
matrices—will be available as a list in the Workspace. The Workspace allows
users exploring the values of the variables used in calculations.

Perhaps the most important area in the main screen is the Command Window,
which is the greatest one on the screen. It is possible that the configuration of
the main screen can vary according to the screen resolution; however, the
areas are always present regardless of the selected layout. The Command
Window is the entry point of statements written in MATLAB language; with
such a window, users can interact with the system to do some calculations
and starting programming with the language.

[CHAPTER 5] — COMPARISONS

One of the first steps in computing is understanding Boole’s algebra.
Boole's algebra, also known as Boolean algebra, is a branch of algebra that
deals with logical operations and the manipulation of logical values
(Rushdi, 2023). It was developed by the English mathematician and
philosopher George Boole in the mid-19th century. The basic idea of
Boolean algebra is to represent logical values—such as true and false, or
0 and 1—as symbols, and to define logical operations—such as AND, OR,
and NOT—that can be performed on these symbols. These operations can
then be used to manipulate logical expressions and to simplify them.

For example, in Boolean algebra, the logical AND operation is represented
by the symbol "A", and the logical OR operation is represented by the symbol
"V". Using these symbols, we can represent logical expressions and perform
operations on them. Here are some examples:

(A AB)V (CAD): This is a logical expression that represents the OR
operation between two AND operations. It means that either both A and B are
true, or both C and D are true (or both).

—(A Vv B): This is a logical expression that represents the NOT operation on
the OR operation. It means that A OR B is false.

A truth table is a table that shows the possible combinations of truth values—
typically true or false, represented by 1 or O—for a set of propositions, and the
resulting truth value of a compound proposition formed from those propositions
using logical operators. Truth tables are commonly used in logic, mathematics,
and Computer Science to determine the truth value of complex logical
expressions. The Table 1. below shows a truth table based on 3 logical operators:

35

36

Table 5-1. Truth table based on 3 logical operators

Jairo Guerrero Garcia

P Q NOT P NOT Q PANDQ |PORQ
False False True True False False
False True True False False True
True False False True False True
True True False False True True

In a truth table, the columns correspond to the input propositions and the
output, and the rows correspond to the possible combinations of input truth
values. The output column represents the truth value of the logical expression
formed from the input propositions.

In addition to its theoretical importance in the foundations of mathematics
and logic, Boolean algebra has practical applications in Computer Science,
where it is used in digital circuits and in the design of computer programs. In
fact, Boolean algebra is the foundation of digital electronics and is used to
design, build, and analyze digital systems.

Is a fundamental concept in computing and digital electronics. It provides a
way to reason about logic and binary data in a formal, mathematical way, and
allows us to manipulate and analyze digital signals, such as those that
represent the states of electronic switches in a computer circuit.

Here are some of the keyways in which Boolean algebra is important
in computing:

e Logic design: Boolean algebra is used to design digital circuits and
systems, such as CPUs, memory, and input/output devices. The
principles of Boolean algebra allow us to design circuits that perform
logical operations, such as AND, OR, and NOT, that are fundamental
to digital electronics (Roth Jr, Kinney & John, 2020).

Mathematical foundations for computer science with MATLAB

e Computer programming: Many programming languages, such as C,
C++, Java, and Python, include Boolean data types—usually
represented as true/false or 1/0—and logical operators—such as &&,
||, and !—that are based on Boolean algebra. These operators are used
to control program flow and make decisions based on conditions
(Tissenbaum, Sheldon & Abelson, 2019).

e Digital signal processing: Many signal processing algorithms, such as
filters, modulators, and demodulators, are based on Boolean algebraic
concepts. For example, a digital filter might use Boolean operations to
combine input samples and produce an output signal (Steiglitz, 2020).

e Database design: Boolean algebra can be used to design database
queries that involve logical operations such as AND, OR, and NOT.
These queries can be used to retrieve specific data from a database
based on certain conditions (Mount & Zumel, 2019).

Overall, Boolean algebra is a powerful and essential tool for working with
digital signals and logic in computing. Its concepts and principles are used
throughout Computer Science and engineering to design and analyze digital
systems, and to develop software and algorithms that manipulate and process
digital data.

In computer programming, a comparison is an operation based in Boolean
Algebra that is used to compare two values or expressions and determine their
relationship. The result of a comparison is usually a Boolean value, which is
either true or false, depending on the outcome of the comparison.

There are several types of comparisons that can be performed in computer
programming, including:

e Equality comparison: This type of comparison checks if two values
are equal. In many programming languages, the equality operator is
written as ==.

e Inequality comparison: This type of comparison checks if two
values are not equal. In many programming languages, the inequality
operator is written as !=.

37

38

Jairo Guerrero Garcia

Greater-than comparison: This type of comparison checks if one
value is greater than another. In many programming languages, the
greater-than operator is written as >.

Less-than comparison: This type of comparison checks if one value
is less than another. In many programming languages, the less-than
operator is written as <.

Greater-than-or-equal-to comparison: This type of comparison
checks if one value is greater than or equal to another. In many
programming languages, the greater-than-or-equal-to operator is
written as >=.

Less-than-or-equal-to comparison: This type of comparison checks
if one value is less than or equal to another. In many programming
languages, the less-than-or-equal-to operator is written as <=.

These comparison operators can be used in various contexts in programming,
such as in conditional statements (e.g., if statements) and loops. Comparisons
are a fundamental concept in programming and are used extensively in many
programming tasks. In MATLAB, you can use comparison operators to
compare values and produce logical (true/false) results. Here are some of the
most used comparison operators in MATLAB:

>: Greater than

<: Less than

>=: Greater than or equal to
<=: Less than or equal to
==: Equal to

~=: Not equal to

The following MATLAB script prompts the user to input their name and age,
and then provides a message based on the age input, it’s an example of using
comparisons in MATLAB. The code block checks the value of the age
variable using conditional statements. If the age is less than 0 or greater than

Mathematical foundations for computer science with MATLAB

130, it displays an error message. If the age is 18 or greater, it displays a
message indicating that the user is an adult. Otherwise, it displays a message
indicating that the user is not an adult.

% >>> THE AGE OF A PERSON <<«
% by Jairo Guerrero, University of Narifo

disp('>>> THE AGE OF A PERSON <<<');
name = input('What is your name? ', 's');
age = input('How old are you? (years) ');
if age < @ || age > 130
disp('Oops! wrong age...');
elseif age >= 18
disp(['Hi ', name, '. You are an adult']);
else

disp(['Hi ', name, '. Your are NOT an adult']);

Here we have another example using comparisons. Let’s create a MATLAB
script for calculating the area of a triangle based on its semi perimeter.

% >>> THE AREA OF A TRIANGLE ACCORDING TO ITS SIDES <<«
% by Jairo Guerrero, University of Narino

a = 0.0;
b =090.0;
C = 0.0;
p = 0.0;
S = 0.0;

39

40

Jairo Guerrero Garcia

disp('>>> THE AREA OF A TRIANGLE ACCORDING TO ITS SIDES <<<')
disp("")
a = input('Type the side a: ');
b = input('Type the side b: ');
c = input('Type the side c: ');
p=(a+b+c)/ 2;
if (p*(p-2a) *(p-b) *(p-c)) <=0
disp('Such a triangle does NOT exist...')
else
s=sqrt(p * (p - a) *(p-b) * (p-0c));
disp(['the area of your triangle is ', num2str(s)]);

5.1 WORKSHOP #1 - COMPARISONS IN MATLAB

This workshop will cover the topic of conditionals. Conditionals are considered
as an algorithmic structure that allows branching —flow change— in the execution
of a program from the evaluation of a logical expression —comparison—. In the
theoretical development, regardless of the programming language, a foundation
in Boolean algebra is required; expressions depend on the syntax of the
programming language. From the conditionals, all the previous concepts are
used. Therefore, it requires a greater motivational effort on the part of the teacher;
For their part, students in their role as programmers assume situations where a
decision must be made through Boolean logic. Thus, students require prior
knowledge in propositional logic.

Proposed Exercises:

* We need a script for asking for the number of years according to the age of
a person. If such a number is out of the valid range (between 0 and 120), an
error message should be displayed; otherwise, calculate and show the number
of months lived according to the number of years given by the user.

Mathematical foundations for computer science with MATLAB

Step 1: we open a new script and execute the cle, clear, and close commands
to clear the screen and delete variables.

clc; clear; close all %Clear screen and delete variables

Step 2: with disp command we print the title of project, in this case “Number
of years according to the age of a person.”

disp("Number of years according to the age of a person")

Step 3: with the disp command the message "How old are you?" is displayed.
Then the variable x is created with input to store the value entered by the user.

disp("How old are you?")
disp(ll ll)
x = input ("Enter your age: ");

Step 4: Once the user enters the age, the if conditional validates if the age is
between zero and 120, if the number is out of this range the message "7The
entered age is not validated" 1s displayed.

if (x<0)|](x>120)
disp("The entered age is not valid, re- run the program")

Step S: if the entered age is in the range between 0 and 120, else will allow the program
to continue executing and calculate the months and the message "the months lived are:
". The command num2srt(m) displays the result numerically.

else
m = x*12;
disp(" ")
d = ['the months lived are:
disp(d)
end

, hum2str(m)]

41

42

Jairo Guerrero Garcia

Step 6: Finally, some tests are performed in Command Window to check
the correct functioning of the program.

Command Window

Humber of wyears according to the age of a person
How old are you?
Enter your age: 50

the months lived are: €00
Figure 5-1. Command Window — Exercise 1 Comparisons in MATLAB

* Constructing a script for asking for a number between 1 and 12. Show the
name of the month according to the given number by the user; if such a
number is not in the valid range, show an error message.

Step 1: we open a new script and execute the cle, clear, and close commands
to clear the screen and delete variables.

clc; clear; close all; %Clear sreen and delete variables

Step 2: with disp command we print the title of project, in this case “Number
between 1 and 12. Show the name of the month according to the given number by

)

the use.’

disp("Number betwewn 1 and 12. Show the name of the month
according to the given number by the user")

Step 3: A variable x is created with the input command that will allow the
user to enter the desired value.

x = input ("Enter a number: ");

Step 4: with the conditional switch each of the options entered is validated, if
any option is fulfilled, the program displays the corresponding month, otherwise
it shows the message " the entered value is incorrect re-run the program" saying
that no option was fulfilled.

Mathematical foundations for computer science with MATLAB

switch x

case 1

disp('The mont is: January')
case 2

disp('The mont is: February')
case 3

disp('The mont is: March')
case 4

disp('The mont is: Abril')
case 5

disp('The mont is: May')
case 6

disp('The mont is: June')
case 7

disp('The mont is: July')

case 8
disp('The mont is: August')

case 9

disp('The mont is: September')
case 10

disp('The mont is: Octuber')
case 11

disp('The mont is: November')
case 12

disp('The mont is: December')
otherwise

end

Step S: Finally, some tests are performed in Command Window to check
the correct functioning of the program.

Number between 1 and 12. Show the name of the month according to the given number by the user

Enter a number: 10
The month is: Octuber

fx >

Figure 5-2. Command Window — Exercise 2 Comparisons in MATLAB

43

44

Jairo Guerrero Garcia

* We need a script for calculating both solutions of a quadratic equation
according to the values of the 3 coefficients provided by the user.

Step 1: we open a new script and execute the cle, clear, and close commands
to clear the screen and delete variables.

clc; clear; close all; %Clear sreen and delete variables

Step 2: with disp command we print the title of project, in this case “Number
between 1 and 12. “Quadratic aquation solution”.

disp("Quadratic equation solution™)

Step 3: variables A, B and C are created with the input command for the user
to enter the value of the coefficients to solve the quadratic equation.

A = input("enter the coefficient A: ");
B = input("enter the coefficient B: ");
C = input("enter the coefficient C: ");

Step 4: Once the coefficients are entered, the solutions of the quadratic
equation are found considering the following equation:

—B +VBZ —44C
*12 = 24

The equation is entered into the program and the results obtained in x1 and
x2 are stored and printed.

disp("solutions of the quadratic equation are: ")

disp(" ")

Mathematical foundations for computer science with MATLAB

x1 = (-B+sqrt(B”2 - 4*A*C))/(2*A)

x1 = (-B-sqrt(Br2 - 4*A*C))/(2*A)

Step S: Finally, some tests are performed in Command Window to check
the correct functioning of the program. Also, the variables used can be
consulted in the Workspace.

@

Command Window Workspace

Quadratic egquation solution Marme Value
enter the coefficient A: 2 A 2
enter the cosfficient B: -7 B -7
enter the coefficient C: 5 C 5

1l 2.5000
solutions of the guadratic eguation are: x2 1

Figure 5-3. Command Window and Workspace

Exercise 3 Comparisons in MATLAB

NOTE: What if A = 0? What if the equation has complex solutions? How can
we improve the script in this regard?

* Showing the greatest value from 3 given numbers by the user using comparisons

Step 1: we open a new script and execute the cle, clear, and close commands
to clear the screen and delete variables.

clc; clear; close all; %Clear sreen and delete variables

Step 2: with disp command we print the title of project, in this case
“Compare three numbers”.

disp("Compare three numbers")

45

46

Jairo Guerrero Garcia

Step 3: with the disp command the message "Enter three numbers" is printed
for the user to enter the numbers. variables A, B and C are created with input
to store the values entered by the user via keyboard.

disp("Enter the three numbers")
disp(ll II)

A = input("enter the number 1: ");
B = input("enter the number 2: ");
C = input("enter the number 3: ");

Step 4: With the conditional if the values entered by the user are compared, first
if determines if A is greater than B and C, if the condition is not fulfilled
compares if B is greater than A and C, and finally compares if C is greater than
A and B. when any of the conditional is fulfilled, the program prints the message
"the greatest number is" and with the num2str command the numerical value of
the variable is observed.

if (A>B)&&(A>C)
da = ['the greatest number is: ' , num2str(A)];
disp(da)

elseif (B>A)&&(B>C)
db = ['the greatest number is: ' , num2str(B)];
disp(db)

elseif (C>A)&&(C>B)
dc = ['the greatest number is: ' , num2str(C)];
disp(dc)

end

Step S: Finally, some tests are performed in Command Window to check
the correct functioning of the program. Also, the variables used can be
consulted in the Workspace.

Mathematical foundations for computer science with MATLAB

Command Window Workspace ®
Compare three numbers Name Value
Enter the three numbers A 98
B 100
enter the number 1: 98 mcC -100
enter the number 2: 100 elh] di ‘the greatest number ...

enter the number 3: -100

the greatest number is: 100

Figure 5-4. Command Window and Workspace
Exercise 4 Comparisons in MATLAB

* Allowing the user for typing a number between 1 and 10. If such a
number is out of the valid range, show an error message; otherwise, show
the number in roman notation.

Step 1: we open a new script and execute the cle, clear, and close commands
to clear the screen and delete variables.

clc; clear; close all; %Clear sreen and delete variables

Step 2: with disp command we print the title of project, in this case “Number
between 1 and 12. “Number in Roman notation”.

disp("Number in roman notation™)

Step 3: Variable x is created with input so that the user can enter a value.

x = input("enter the number: ");

Step 4: with the conditional if, the first thing that is validated is if the number is
in the range of 1 to 10, if it is not between those values, the program prints the
message "the entered value is incorrect re-run the program". On the contrary if
the value is in that range, the program with the elseif goes on to validate that
value meets the condition and prints the corresponding Roman numeral.

47

Jairo Guerrero Garcia

if (x<=0)||(x>10)

disp("the entered value is incorrect re-run the program")
elseif (x==1)

disp('the number is in roman notation: I')
elseif (x==2)

disp('the number is in roman notation: II')
elseif (x==3)

disp('the number is in roman notation: III')
elseif (x==4)

disp('the number is in roman notation: IV')
elseif (x==5)

disp('the number is in roman notation: V')
elseif (x==6)

disp('the number is in roman notation: VI')
elseif (x==7)

disp('the number is in roman notation: VII')
elseif (x==8)

disp('the number is in roman notation: VIII')
elseif (x==9)

disp('the number is in roman notation: IX')
elseif (x==10)

disp('the number is in roman notation: X')
end

Step S: Finally, some tests are performed in Command Window to check
the correct functioning of the program.

Command Window Command Window

Number in roman notation Number in roman notation
enter the number : 10 enter the number : 15

the number in roman notation: X the entered value is incorrect re-run the program

Figure 5-5 Command Window —Exercise 5 Comparisons in MATLAB

» Allowing the user for typing a letter of the English alphabet. Show its
equivalent in morse notation.

Mathematical foundations for computer science with MATLAB

Step 1: we open a new script and execute the cle, clear, and close commands
to clear the screen and delete variables.

clc; clear; close all; %Clear sreen and delete variables

Step 2: with disp command we print the title of project, in this case “Number
between 1 and 12. “Morse notation”.

disp("Morse notation")

Step 3: A variable x is created with input so that the user can enter the letter.
's’ is added so that the user does not add quotation marks when entering the
letter by keyboard, because as it is a character, MATLAB must perform this
process so that the value entered is stored in the variable correctly.

x = input(“"enter the letter : ", 's');

Step 4: When the user enters the letter, the program validates the entered
information by means of the conditional if and elseif, when the entered letter
meets the condition, the corresponding Morse notation is printed.

if (x=="A")

disp("Morse notation is: --")
elseif (x=='B")

disp("Morse notation is: --:--")
elseif (x=='C")

disp("Morse notation is: ----")
elseif (x=='D")

disp("Morse notation is: ---")

elseif (x=='E")

disp("Morse notation is: ")
elseif (x=='F")

disp("Morse notation is: ----")
elseif (x=='G")

disp("Morse notation is: ---")

49

50

elseif (x=='H")
disp("Morse
elseif (x=="1I")
disp("Morse
elseif (x=='7")
disp("Morse
elseif (x=='K")
disp("Morse
elseif (x=="L")
disp("Morse
elseif (x=="M")
disp("Morse
elseif (x=='N")
disp("Morse
elseif (x=='0")
disp("Morse
elseif (x=='P")
disp("Morse
elseif (x=='Q")
disp("Morse
elseif (x=='R")
disp("Morse
elseif (x=='S")
disp("Morse
elseif (x=='T")
disp("Morse
elseif (x=='U")
disp("Morse
elseif (x=='V")
disp("Morse
elseif (x=="W")
disp("Morse
elseif (x=='X")
disp("Morse
elseif (x=='Y")
disp("Morse

Jairo Guerrero Garcia

notation

notation

notation

notation

notation

notation

notation

notation

notation

notation

notation

notation

notation

notation

notation

notation

notation

notation

is:

is:

is:

is:

is:

is:

is:

is:

is:

is:

is:

is:

is:

is:

is:

is:

is:

is:

-
-
SR

Mathematical foundations for computer science with MATLAB

elseif (x=='Z")
disp("Morse notation is: ---")
end

Step S: Finally, some tests are performed in Command Window to check
the correct functioning of the program.

Command Window

Morse nmotation
enter the letter : X

Morse notation is: —ee—

Figure 5-6. Command Window — Exercise 6 Comparisons in MATLAB

51

52

[CHAPTER 6] — LOOPS

A loop in computer programming is a programming structure that allows a
set of instructions to be executed repeatedly until a certain condition is met.
A loop enables a program to perform a repetitive task, such as iterating over
a list of items or repeatedly performing a calculation, without having to
manually code each iteration (Hosseini, Ouaknine & Worrell, 2019).

There are different types of loops in programming, including:

e for loop: This loop is used to iterate over a sequence of values, such
as a list or range of numbers, for a specific number of times.

o while loop: This loop repeatedly executes a set of instructions while
a certain condition is true. The loop will continue until the condition
becomes false.

e do-while loop: This loop is like a while loop, but it executes the
instructions at least once before checking the condition.

Loops are a fundamental programming concept, and they are used in many
different applications to automate repetitive tasks, perform calculations, and
process data.

MATLAB provides several types of loops, including for loops, while loops,
and do-while loops. Here's an overview of each of these types of loops and
how to use them in MATLAB.

For Loops: A for loop is used when you want to execute a set of statements a
specific number of times. The syntax of a for loop in MATLAB is:

for index = values
% staments
end

foundations for computer science with MATLAB

The index variable is the loop counter, and the values variable is a vector or
matrix that contains the values that the loop counter will take. For example,
to print the numbers from 1 to 5, you could use the following code:

for i = 1:5
disp(i)
end

While Loops: A while loop is used when you want to execute a set of
statements if a certain condition is true. The syntax of a while loop in
MATLAB is:

while condition
% staments
end

The condition variable is the condition that the loop will check before
executing each iteration of the loop. For example, to print the numbers from
1 to 5 using a while loop, you could use the following code:

i=1;

while i<=5
disp(i)
i=1+1;

end

Do-While Loops: MATLAB doesn't have a built-in do-while loop, but you
can achieve the same effect using a while loop that executes at least once. For
example, to print the numbers from 1 to 5 using a do-while loop, you could
use the following code:

i=1;

do
disp(i)
i=1+1;

while i<= 5

53

54

Jairo Guerrero Garcia

In this code, the do block executes at least once before the while condition
is checked.

The following MATLAB script calculates the factorial of a positive integer
entered by the user.

Here is a line-by-line explanation of what the code is doing:

Line 5: This line initializes a variable i to 1. i will be used as a counter
in the while loop that calculates the factorial.

Line 6: This line initializes a variable f to 1. f will be used to
accumulate the factorial as the loop runs.

Line 7: This line initializes a variable n to 0. n is not actually used for
anything in this line, but it's good practice to initialize all variables.

Line 9: This line displays a message on the console, indicating that
the script is about to calculate the factorial of a number.

Line 10: This line displays a blank line, for formatting purposes.

Line 11: This line prompts the user to input a positive number, which
is stored in the variable n.

Line 12: This line checks ifn is less than 0. If it is, a message is displayed
indicating that only positive values should be typed. If n is greater than
or equal to 0, the loop that calculates the factorial is executed.

Line 15: This line starts a while loop that runs as long as i is less than
or equal to n.

Line 16: This line updates f to be equal to its current value times 1.
The effect of this is to calculate the factorial of n.

Line 17: This line increases i by 1, so that the loop will eventually terminate.

Line 19: This line displays the final result, which is the factorial of n. The
num?2str function is used to convert the number values to strings so they
can be concatenated with the rest of the message in the disp function.

Mathematical foundations for computer science with MATLAB

Overall, this script is a simple but effective example of how to use MATLAB
to calculate a mathematical function.

1 e T
2 T % THE FACTORIAL OF A NUMBER

3 % By Jairo Guerrero, University of Narifo

4 Hom = = = e e e e e e
5 i=1;

6 f = 1;

7 n=0;

8 b T
9 disp('>>> THE FACTORIAL OF A NUMBER <<<')

10 disp('")

11 n = input('Type a positive number: ');

12 ifn<a@o

13 disp('Oops! type positive values only.');

14 else

15 while i <= n

16 f=Ff*i;

17 i=i+1;

18 end

19 disp(['The factorial of ', num2str(n), ' is ', num2str(f)]);
20 end
21 O = = = m

Figure 6-1. MATLAB script calculates the factorial of a positive integer
entered by the user

The following MATLAB script calculates the divisors of a given number
entered by the user.

Here is a line-by-line explanation of what the code is doing:

e Line 5: This line initializes a variable n to 0. n will store the number
entered by the user later in the code.

e Line 6: This line initializes a variable 1 to 1. 1 is a counter variable that
will be used in the while loop later to test for divisors.

e Line 8: This line displays a message on the console, indicating that
the script is about to calculate the divisors of a number.

e Line 9: This line displays a blank line, for formatting purposes.

e Line 10: This line prompts the user to input a number, which is stored
in the variable n.

Jairo Guerrero Garcia

e Line 11: This line starts a while loop that runs as long as i is less than
or equal to n.

e Line 12: This line checks if i is a divisor of n, using the mod function.
If the remainder of the division of n by i is 0, then i is a divisor of n,
so the code inside the if statement is executed.

e Line 13: This line displays the value of i along with a message
indicating that it is a divisor of n. The num2str function is used to
convert the number values to strings so they can be concatenated with
the rest of the message in the disp function.

e Line 15: This line increases i by 1, so that the loop will eventually terminate.
e Line 16: This is the end of the while loop.

Overall, this script is a simple but effective example of how to use MATLAB
to calculate the divisors of a number. It demonstrates the use of the mod
function to check for divisibility and the while loop for repeating a task a
certain number of times.

O e
% THE DIVISORS OF A NUMBER
% By Jairo Guerrero, University of Narifo

O 0o Ny B wN R
3

disp('>>> THE DIVISORS OF A NUMBER <<<')
disp('")

10 n = input('Type a number: ');

11 while i <= n

12 if mod(n, i) ==

13 disp([num2str(i), ' is divisor of ', num2str(n)]);
14 end

15 i=1+1;

16 end

17 R e e e T T T

Figure 6-2. MATLAB script calculates the divisors of a given number entered
by the user

56

Mathematical foundations for computer science with MATLAB

The following MATLAB script generates a random integer between 1 and
100, and then prompts the user to guess the number. The program provides
feedback on each guess, indicating whether the user should guess a higher or
lower number, until the user correctly guesses the "magic" number.

Here is a line-by-line explanation of what the code is doing:

Line 5: This line generates a random integer between 1 and 100 using
the randi function, and stores it in the variable magic.

Line 6: This line initializes the variable n to 0. n will store the user's
guess later in the code.

Line 7: This line initializes the variable tries to 0. tries will store the
number of guesses made by the user.

Line 9: This line displays a message on the console, indicating that
the script is about to prompt the user to guess a magic number.

Line 10: This line starts a while loop that will continue until the user
correctly guesses the magic number.

Line 11: This line prompts the user to input a number between 1 and
100, which is stored in the variable n.

Line 12: This line increasess the variable tries by 1, indicating that the
user has made another guess.

Line 13-19: These lines use if-elseif-else statements to provide
feedback to the user based on their guess. If the guess is too low, the
code in line 14 is executed. If the guess is too high, the code in line 16
is executed. If the guess is correct, the code in line 18 is executed.

Line 20: This is the end of the while loop.

Overall, this script is a fun example of how to use MATLAB to create a
simple guessing game. It demonstrates the use of conditional statements (if-
elseif-else) for providing feedback to the user and the use of a while loop for
repeating a task until a certain condition is met.

57

58

0 NV A WNRE

(+]

10
il
12
13
14
15
16
17
18
19
20
21

Jairo Guerrero Garcia

= = = m e e e
% THE MAGIC NUMBER

% by Jairo Guerrero, University of Narifio
magic = randi([1,100]);

n = 0;

tries = 0;

disp('>>> THE MAGIC NUMBER <<<')
[Z] while n ~= magic
n = input('Type a number between 1 and 100: ');
tries = tries + 1;
if magic > n
disp('The magic number is greater');
elseif magic < n
disp('The magic number is lower');
else
disp(['CONGRATS! You did it in ', num2str(tries), ' tries']);
end

Figure 6-3. MATLAB script generates a random integer between 1 and 100

The following MATLAB script is a program for listing prime numbers. Here's
a breakdown of the code:

pn, i, n, j, and dc are all variables that are initialized to zero. pn represents
the number of prime numbers to be listed, 1 is a counter for the while
loop, n represents the current number being evaluated, j is a counter for
the for loop, and dc is a counter for the number of divisors of n.

The fprintf function is used to print the string "LISTING PRIME
NUMBERS" to the command window.

The input function is used to prompt the user for the number of prime
numbers they want to list. The input is stored in the pn variable.

The while loop runs until 1 is less than pn.

Inside the while loop, dc is set to 0. This variable is used to count the
number of divisors of the current number n.

A for loop is used to iterate through all the numbers from 1 to n. Inside
the for loop, the rem function is used to check if n is divisible by j. If
it is, dc is increased by 1.

Mathematical foundations for computer science with MATLAB

e After the for loop, if dc is equal to 2, then the current number n is a
prime number, and it is printed to the command window using the
fprintf function. 1 is also increased by 1 to keep track of the number of
prime numbers listed.

e Finally, n is increased by 1 and the loop continues.

This program uses a brute force method to check whether each number is
prime, by checking whether it has only two divisors. There are more efficient
algorithms for determining whether a number is prime, but this method is
simple and easy to understand.

S
% >>> LISTING PRIME NUMBERS <<«
% by Jairo Guerrero, University of Narino
O m o o oo o e e o e e emm oo
pn = @;
i=0;
= 2;
J=209;
dc = 0;

fprintf("LISTING PRIME NUMBERS\n");
pn = input("How many prime numbers do you want? ");
while i < pn

dc = 0;
for j = 1:n
if rem(n,j) == 0
dc = dc + 1;
end
end
if dc ==

fprintf("%d\n",n);
i=1+1;

59

60

Jairo Guerrero Garcia

6.1 WORKSHOP #2 - LOOPS IN MATLAB

In this workshop, the topic about loops is covered. Loops are algorithmic
structures that allow the iteration —repetition— of one or more instructions of
the program from a starting point —start—, the evaluation of a logical
expression —comparison of completion— and the progress of this through
increments or control variable decrements. Within the theoretical
development, regardless of the programming language, a foundation in
Boolean algebra is required; expressions depend on the syntax of the
programming language. At this point, abstraction takes a leading role when
designing cyclic structures.

Proposed Exercises:
clc; clear; close all; %Clear sreen and delete variables

disp ("sum of even and odd numbers")

vector = 1:1:200;

even = 1;

odd = 1;

for i = 1 :length(vector)

if (mod(vector(i),2) == 0);
V_even(even) = (vector(i));
sum_even = sum(V_even);
even = even + 1;

else
V_odd(odd) = (vector(i));
sum_odd = sum(V_odd);
odd = odd +1;

end

end

disp(ll II)

disp("sum of even numbers")
sum_even

disp(ll II)

disp("sum of odd numbers")
sum odd

Mathematical foundations for computer science with MATLAB

» We want to calculate independently the sum of the numbers even and odd
between 1 and 200.

Step 1: we open a new script and execute the clc, clear and close commands
to clear the screen and delete variables.

Step 2: with the disp command we print the title of our project, in this case
"sum of even and odd numbers."

Step 3: the variable "vector" is defined that corresponds to the vector of
values from 1 to 200. In addition, two variables are added (even and odd) that
will be the counters for the for loop.

Step4: a for loop is created to go through each of the positions of the vector
and with a conditional if it is determined if the number is odd or even.

Conditional: for the conditional we used the mod that returns what is left over
in a division, to determine if the number is even, we use the mod 2 and if we
obtain a residue equal to zero the number is stored in the vector V_even that
corresponds to the even numbers, if it does not meet the condition the number
is stored in the vector V_odd that corresponds to the odd numbers.

Step 5: Once the even and odd numbers have been obtained and their
corresponding vector has been stored, the sum is performed with the sum
command, which allows the sum of the elements in a vector.

Step 6: When the program is executed the results are printed on the screen,
the disp command is used to display them on the right side of the screen.

Step 7: Some of the results obtained in the exercise can also be consulted,
such as the vectors of the odd and even numbers (V_even, V_odd) in the
lower left part of the screen.

* Read a series of non-zero numbers (the last number of the series is —99) and
get the greatest number. As a result, the number should be displayed. greater
and a negative number indication message, in case a negative number has
been read.

61

62

Jairo Guerrero Garcia

Step 1: we open a new script and execute the cle, clear, and close commands
to clear the screen and delete variables.

clc; clear; close all; %Clear sreen and delete variables

Step 2: with disp command we print the title of project, in this case “Read a
series of non-zero numbers.”

disp("Read a series of non-zero numbers")

Step 3: A variable n is defined with input that allows the user to determine
how many numbers he will need for the series; v is also defined as an empty
vector that will serve to store the series of numbers. And a message with the
disp command for the user to type the numbers of the series.

n = input("Enter how many numbers you require for the series: ")

v =[]

disp("enter the numbers")

Step 4: the for loop is created to store the data of the series entered by the user,
the conditional if allows to verify the information required in the problem which
is: non-zero numbers and the last number of the series is -99, if any of the
conditions are not met the program will send a message and must be executed
again, on the other hand if the conditions are met, the values of the series will be
stored in the vector v

1:n
input("Number: ");

for i
X

if (x==0)||(x < -99)
disp("A number out of the series was entered, re-run
the program")
break
else
v = [V,X];
end

end

Mathematical foundations for computer science with MATLAB

Step 5: the variable M is defined, and the max command is used to determine
the maximum value in the vector, the conditional if will validate if the greatest
number has negative sign, if it meets the condition, it will show the following
message "the greater number has a negative sign " otherwise it will print the
following message” the greater number is” and will display the number.

M = max(v);

if M<o
disp("the greater number has a negative sign")
M

else
disp("the greater number")
M

end

Step 6: Finally, some tests are performed in Command Window to check
the correct functioning of the program. Also, the variables used can be
consulted in the Workspace.

Command Window

Command Window

Read a series of non-zero numbers

Read a series of non-zero numbers

Enter how many numbers you require for the series: & Enter how many numbers you reguire for the series: 3
n = n =

5
3

enter the numbers
enter the numbers

Humber :10

Number :19 Number :-78

Humber :73 Number :-10

Number :5 Humber :-65

Number :-3 the greater number has a negative sign
the greater number is

M=
M=

-10

63

64

Jairo Guerrero Garcia

Workspace ®

Mame Yalue

4 10
15
10
[1,8,9,6,7,4,6,3,2,15]
15

= = 3=z 7

Figure 6-4. Command window and Workspace. LOOPS IN MATLAB: Read a
series of non-zeros numbers

* Calculate and display the sum and product of the even numbers between
20 and 400, both inclusive.

Step 1: we open a new script and execute the clc, clear, and close commands
to clear the screen and delete variables.

clc; clear; close all; %Clear sreen and delete variables

Step 2: with disp command we print the title of project, in this case
“Calculate and display the sum and product of the even numbers between 20
and 400, both inclusive.”

disp("Calculate and display the sum and product of the even
numbers")
disp("between 20 and 400, both inclusive")

Step 3: the vector variable is defined with the corresponding even numbers
from 20 to 400 and a counter with the name sum_even that will be used later
to sum the numbers in the for loop.

vector = 20:2:400;
sum_even = 0;

Step 4: the for loop will allow to go through the positions of the vector containing
the even numbers and perform the sum of each of these values that will be stored
in the variable sum_even. By means of the prod command, the product of the
corresponding even numbers stored in the vector variable is performed.

Mathematical foundations for computer science with MATLAB

for i=1:1length(vector)
sum_even = sum_even + vector(i);
end

prod_even = prod(vector)

Step 5: By means of the disp command, a message and its corresponding
result are printed on the screen.

disp(ll II)
disp("Sum of even numbers between 20 and 400 is: ")

sum_even

disp(ll II)
disp("Product of even numbers between 20 and 400 is: ")

prod_even

Step 6: finally, the program is executed, and its correct operation is verified in
the Command Window screen, Also, the variables used can be consulted in the
Workspace. The product, having a very large result, prints inf (infinity).

Command Window Workspace

Calculate and display the sum and product of the even numbers

between 20 and 400, both inclusive Name Value
i i 191
sum of even numbers between 20 and 400 is:
[prod_even Inf
sum_even = [sum_even 40110
] vector 1x197 double

40110

Product of even numbers between 20 and 400 is:

prod_sven =

Inf

Figure 6-5. Command window and Workspace. LOOPS IN MATLAB: Calculate
and display the sum and product of the even numbers between 20 and 400

* Calculate the sum of the squares of the first hundred natural numbers.

Step 1: we open a new script and execute the cle, clear, and close commands
to clear the screen and delete variables.

clc; clear; close all; %Clear sreen and delete variables

65

66

Jairo Guerrero Garcia

Step 2: with disp command we print the title of project, in this case
“Calculate the sum of the squares.”

disp("Calculate the sum of the squares")

Step 3: The vector variable is defined to obtain the first hundred numbers to
later find the square. A sum_squares counter is also defined to perform the
operation corresponding to the sum of the squares.

vector = 1:1:100;
sum_squares = 0;

Step 4: the for loop is used to go through the numbers from one to one
hundred and by means of the sum_squares counter, the result obtained by
squaring each number and adding it to the previous one is accumulated.

for i =1:length(vector)
sum_squares = sum_squares + (i~2);
end

Step 5: The result obtained with the disp command is printed on the screen.

disp(" ")
disp("The sum of the squares of the first hundred natural
numbers is: ")

sum_squares

Step 6: The program is executed, and the correct operation is verified in the
Command Window, and the variables used in the Workspace can also be observed.

Command Window

Workspace ®

Calculate the sum of the squares
Mame Value
The sum of the sguares of the first hundred natural numbers is: H 100

i
SUM_Squares 338350

Figure 6-6. Command window and Workspace. LOOPS IN MATLAB:
Calculate the sum of the squares

Mathematical foundations for computer science with MATLAB

* Add ten numbers entered by keyboard.

Step 1: we open a new script and execute the cle, clear, and close commands
to clear the screen and delete variables.

clc; clear; close all; %Clear sreen and delete variables

Step 2: with disp command we print the title of project, in this case “Add ten
numbers entered by keyboard”.

disp("Add ten numbers entered by keyboard")

Step 3: A variable L is defined to determine the ten numbers that the user
will enter and store by keyboard, v is defined as an empty vector that will
serve to store the data entered by the user, a message is also displayed on the
screen for the user to enter the numbers using the disp command.

L = 10;
v=1[1I

disp("enter the numbers")
disp(" ")

Step 4: the for loop allows the user to enter the ten numbers, by means of
the variable x with the input command the user will enter the desired
numbers, and in the vector v the values will be stored. The loop will end when
the user has typed the ten numbers.

for i = 1:L
x = input(“Number: ");
v = [v,Xx];

end

Step 5: The numbers entered by the user are displayed on the screen.

disp("The numbers entered are")
\"

67

Jairo Guerrero Garcia

Step 6: The program is executed, and the correct operation is verified in the
Command Window, and the variables used in the Workspace can also be observed.
The ten numbers entered by the user are displayed in the command window.

Command Window Workspace

O]

Zdd ten numbers entersd by keyboard

Mame Value
enter the numbers Hj | _ID
Number :54 L 10
Number :8
Number :90 Hj sum 180
Numbez :-78 v [54,8,90,-78,65,9,-8,56...
Number 165 HH « -9

Number :9
Number :-28

Number :56

Number :-7

Number :-9

the numbers entered are

v =

54 g 90 -78 () a -8 5é -7 -9

Figure 6-7. Command Window and Workspace. LOOPS IN MATLAB: Add ten
numbers entered by keyboard

[CHAPTER 7] — FUNCTIONS

A function is a block of code in computer programming that performs a
specific task. Functions are designed to be reusable, meaning that they can be
called from different parts of a program and with different inputs
(Kochenderfer & Wheeler, 2019).

Functions can be defined in most programming languages, including
MATLAB, Python, Java, and many others. Here are some common
characteristics of functions in programming:

A function has a name, which is used to identify it when it is called
from other parts of the program.

A function can take inputs, also known as parameters, which are values
that the function uses to perform its task. These inputs can be of different
types, depending on the language and the needs of the function.

A function can return a value or set of values as its output. This output
can be of different types, depending on the language and the needs of
the function.

A function can contain any number of statements, which are executed
when the function is called.

A function can be defined anywhere in a program, but it is usually
defined before it is called.

In computer programming, there are several types of functions, each with its
own specific purpose. Here are some common types of functions:

69

70

Jairo Guerrero Garcia

e Built-in functions: These are functions that are built into the
programming language or provided by the programming
environment. Examples of built-in functions include print and input
in Python, plot and rand in MATLAB, and System.out.println in Java.

e User-defined functions: These are functions that are created by the
user in the program to perform specific tasks. In many programming
languages, you can define your own functions using the function
keyword. These functions can be designed to take input, perform
calculations, and return output.

e Recursive functions: These are functions that call themselves
repeatedly until a condition is met. Recursive functions are useful for
solving problems that can be broken down into smaller sub-problems.
Examples of recursive functions include the Fibonacci sequence and
calculating the factorial of a number.

e Lambda functions (also known as anonymous functions): These are
functions that are defined without a name and can be used as
arguments to other functions. Lambda functions are useful for
performing simple operations and can help simplify code. Examples
of functions that can take lambda functions as arguments include map
and filter in Python and arrayfun in MATLAB.

e Higher-order functions: These are functions that take one or more
functions as arguments or return a function as output. Higher-
order functions are useful for creating more modular and flexible
code. Examples of higher-order functions include sort and map in
Python and arrayfun and feval in MATLAB.

These are just a few examples of the types of functions that exist in computer
programming. Different programming languages may have their own specific
types of functions or use different terminology, but the underlying concepts
are similar.

Mathematical foundations for computer science with MATLAB

In MATLAB, we can follow the steps below in order to create and use functions.

I. Open a new script in MATLAB and type the function keyword
followed by the name of the function you want to create. The name of
the function should be descriptive and meaningful, as it will be used
to call the function from other parts of your code.

2. After the function name, list the input arguments inside parentheses.
Input arguments are the values that your function will take as input
when it is called. You can have zero or more input arguments.

3. Next, use the = operator to define the output arguments of the
function, if any. Output arguments are the values that your function
will return as output when it is called. You can have zero or more
output arguments.

4. Write the code that you want your function to execute. This can include
any valid MATLAB code, such as loops, conditionals, and calculations.

5. When your function is done, use the end keyword to indicate the end
of the function.

Here's an example of a simple function that takes two input arguments and
returns their sum:

funtion result = add(a,b)

%this function adds wo numbers and returns the result
result = a + b;

end

To call this function from other parts of your code, you simply use its name
and pass in the necessary input arguments, like this:

X = add(3, 4);

In this example, the function add is called with the arguments 3 and 4. The result
of the function is assigned to the variable x, which will have the value 7.

71

72

Jairo Guerrero Garcia

When calling a function, you can also use the [] operator to capture the output
arguments of the function, like this:

[a, b]= myFunction(inputl, input2);

In this example, myFunction is called with two input arguments, inputl and
input2. The two output arguments of the function are assigned to the variables
aandb.

In addition to creating your own functions, MATLAB has many built-in
functions that you can use in your code. You can find a list of these functions
in the MATLAB documentation.

The flowing MATLAB script defines a function called GoldenRatio that takes
one input argument fn, which represents the number of Fibonacci numbers to
use for the calculation.

Inside the function, the script initializes variables i, a, b, and c to 0. It then
uses a for loop to calculate the fnth number of the Fibonacci sequence by
adding the previous two numbers together.

Finally, the script divides the last two numbers of the sequence to obtain the
golden ratio, and stores it in a variable called golden ratio.

After defining the GoldenRatio function, the script prompts the user to enter
the number of Fibonacci numbers to use by calling the input function with the
string "Type the number of Fibonacci's to use: " as an argument. It then passes
the user's input to the GoldenRatio function, and displays the resulting golden
ratio using the disp function.

Mathematical foundations for computer science with MATLAB

%
% >>> CALCULATING THE GOLDEN RATIO BASED ON FIBONACCI'S <<«
% by Jairo Guerrero, University of Narino

%

function [golden_ratio] = GoldenRatio(fn)

i=0;
a = 0;
b =1;
c = 0;
for i = 1:fn
C =a + b;
a =b;
b =c;
end
c=b/ a;
golden_ratio = c;

The following script is a MATLAB script that simulates rolling a six-sided
die a specified number of times and counts the number of even and odd rolls.

The script begins by initializing two variables, even and odds, to 0.

The script then defines a function called DrawDice that takes one input
argument dice, which represents the value rolled on the die. The function
outputs an ASCII art representation of the die face with the corresponding
number of dots displayed.

After defining the DrawDice function, the script prompts the user to enter the
number of rolls they want by calling the input function with the string "How
many rolls do you want (1..10)? " as an argument. It then uses a for loop to
simulate rolling the die the specified number of times.

Inside the loop, the script generates a random integer between 1 and 6
(inclusive) using the randi function, and passes it to the DrawDice function
to display the corresponding die face.

73

74

Jairo Guerrero Garcia

The script then uses the mod function to determine whether the roll is even or
odd. If the roll is even, it increments the even counter by 1. Otherwise, it
increments the odds counter by 1.

After the loop finishes, the script displays the number of rolls, the
number of even rolls, and the number of odd rolls using the disp
function and string concatenation.

% >>> ROLLING A DICE <<<
% by Jairo Guerrero, University of Narifno

disp("+------- +");

if dice ==
disp("| 1");
disp("[* [|");
disp("| 1");

elseif dice == 2
disp("| * 1");
disp("| 1");
disp("| * ")

elseif dice == 3
disp("| * 1");
disp("| * [");
disp("| ")

elseif dice == 4
disp("| * * [");
disp("| 1");
disp("| * * |");

elseif dice == 5
disp("[* * [|");
disp("| * [");
disp("| * * [");

Mathematical foundations for computer science with MATLAB

elseif dice == 6
disp("| * * [");
disp("| * * [");
disp("[* * [|");

end

disp("+------- +");

end

disp("");

disp(">>> ROLLING DICE <<<");
disp("");

rolls =

for i = 1:rolls

dice = randi([1 6]);

DrawDice(dice);

if mod(dice, 2) == 0
even = even + 1;

else
odds = odds + 1;

end
end
disp("");

disp("Rolls: " + string(rolls) +
", odd: " + string(odds));

7.1 WORKSHOP #3 — FUNCTIONS INS MATLAB

In this workshop, the concept of function will be worked on as a part of the
program that performs specific tasks and has the facility of being called in
different instances within the program; they can manage input parameters and
can return output values. The concept of function is the most complex of the
objects selected in this investigation, it involves the integration of all the previous
concepts. Therefore, several practical exercises are necessary to strengthen your
learning. It is here that students in their role as professional programmers exploit

their creative potential using functions.

, even:

input("How many rolls do you want (1...10)? ");

+ string(even) +

75

76

Jairo Guerrero Garcia

Proposed Exercises:

* Building a script with a function for asking a given temperature and a two-
character string (like these ‘cf’,’ck’,’kf’,’ke’,’fc’, and ‘fk’). Such a function
must convert the temperature according to the two-character string; for
instance: cf stands for Celsius to Fahrenheit, fk stands for Fahrenheit to
Kelvin, and so on.

Step 1: A new script with function is created.

HOME

= = oA 43 [Find Files
New New Mew | Open {2 Compare
Script Live Script | » =4

~| Script Ctri+N

Current Folder

Live Script

‘Workspace

Function —
Name
Live Function
Class

Test Class

System Object >
Project >

Figure

App

B e e E

Simulink Model

Figure 7-1. Icon for creating a new script

Step 2: click on function and we get the following:

function [outputArgl, outputArg2] = untitled(inputArgil,
inputArg2)

% UNITITLED Summary of this function goes here

% Detailed explanation goes here

outputArgl = inputArgil;

outputArg2 = inputArg2;

end

Mathematical foundations for computer science with MATLAB

It contains the output parameters, the input parameters, the title and
the body for the function syntax.

Step 3: For this case the output parameter of the function is Tout (Output
temperature), the input parameters are Tin and C (Input temperature and
Conversion) and the title for the function is ConversionT.

function [Tout] = Conversion(Tin, C)

Step 4: The variables Tin and C with input are created so that the user can enter
the input temperature value and the desired conversion type by keyboard.

Tin = input("Enter Temperature: ");
C = input("Enter Conversion: ",'s");

Step 5: With the fprintf command a menu is created for the user to select the
type of conversion.

fprintf("Temperature conversion type: \n")

fprintf("cf -- Celcius - Fahrenheit\nck -- Celcius -
Kelvin\nkf -- Kelvin - Fahrenheit\n")

fprintf("kc -- Kelvin - Celcius\nfc - Fahrenheit - Celcius\nfk
-- Faherenheit - Kelvin\n")

disp(" ")

Step 6: A switch case sentence is created to execute one of several groups of
instructions. For this program, the input variable C entered by the user is
evaluated, which corresponds to the conversion type.

switch c
case 'cf'
Tout = (Tin*(9/5)+32);

fprintf("Celcius: %d\n", Tin)
fprintf("Fahrenheit: %", Tout)

77

78

Jairo Guerrero Garcia

case 'ck’
Tout = (Tin+273.15);

fprintf("Celcius: %d\n", Tin)
fprintf("Kelvin: %", Tout)

case 'kf'
Tout = ((Tin - 273.15)*(9/5) + 32);

fprintf("Kelvin: %d\n", Tin)
fprintf("Fahrenheit: %", Tout)

case 'kc'
Tout = (Tin - 273.15);

fprintf("Kelvin: %d\n", Tin)
fprintf("Celcius: %", Tout)

case 'fc'
Tout = (Tin-32)*(5/9);

fprintf("Fahrenheit: %d\n", Tin)
fprintf("Celcius: %", Tout)

case 'fk'
Tout = ((Tin-32)*(5/9) + 273.15);

fprintf("Fahrenheit: %d\n", Tin)
fprintf("Kelvin: %", Tout)

otherwise
fprintf("Incorrect entered conversion™

if the variable entered by the user meets any of the cases of the statement, the
program performs the required conversion and prints the values, if it does not
meet any of the cases, the program displays the following message “incorrect
entered conversion.”

Mathematical foundations for computer science with MATLAB

Step 7: Finally in the command window the function is called by typing its
name (ConversionT), it will ask to enter the input values (Tin and C) and will

print the menu and display the result of the temperature conversion.

Command Window

»>>» ConversionT

Enter Temperature: 25

Enter Conversion: ck
Temperature conversion type:

cf —— Celcius - Fahrenheit
ck —— Celcius - Eelwin
kf —— Eelvin - Fahrenheit
kc —— Eelvin - Celcius
fc -— Fahrenheit - Celcius
fk -- Fahrenheit - Eelwvin

Celcius: 25
Eelwvin:

ans =

298.1500

Figure 7-2. Command window. FUNCTIONS: Conversion Temperature

* Building a script with a function for converting cartesian coordinates into
polar coordinates and vice versa.

Step 1: A new script with function is created.

Step 2: click on function and we get the following:

function[outputArgl, outputArg2] = untitled(inputArgil,
inputArg2)

%
%

UNITITLED Summary of this function goes here
Detailed explanation goes here

outputArgl = inputArgl;
outputArg2 = inputArg2;

end

79

80

Jairo Guerrero Garcia

It contains the output parameters, the input parameters, the title and the body
for the function syntax.

Step 3: For this case the output parameters of the function are x, y, r, t
(Cartesian and polar coordinates), the input parameters are X, y, r, t (Cartesian
and polar coordinates) and the title for the function is CartesianPolar.

function[x,y,r,t] = CartesianPolar(x,y,r,t)

Step 4: With fprintf a menu is created for the user to select the type of
conversion desired, 1 (Cartesian - Polar), 2 (Polar - Cartesian), and an S
variable is created with the input command to store the user's selection.

fprintf("Select conversion\n 1 Cartesian - Polar\n 2 Polar
- Cartesian\n")
S = input ("conversion: ");

Step 5: A switch case sentence is created to execute one of several groups of
instructions. For this program, the input variable S entered by the user is
evaluated, which corresponds to the conversion type.

switch S
case 1
fprintf("conversion Cartesian - Polar\n")
x = input("enter the value of x: ");

disp(" ")
y = input("enter the value of y: ");
disp(ll Il)

fprintf("The polar coordinates are\n")
fprintf("Distance: \n")

r o= sqrt((x)"2+(y)"2)

fprintf("Angle: ")

t = atan(y/x)

Mathematical foundations for computer science with MATLAB

case 2
fprintf("conversion Polar - Cartesian \n")
x = input("enter the value of r: ");

disp(ll Il)
y = input("enter the value of t: ");
disp(n ||)

fprintf("The cartesian coordinates are\n")
fprintf("x-coordinate: \n")

X = r*cos(t)

fprintf("Angle: ")

y = r¥*sin(t)

otherwise
fprintf("incorrect entered conversion")

If the user enters the value 1, the program will ask him to enter the input
values to the function of x,y (Cartesian coordinates) and perform the
corresponding transformations to obtain the output values of the function r
and t (polar coordinates) and display these values on the screen, on the other
hand if the option is 2 the input values to the function that the user must enter
are r and t (polar coordinates) and the output values of the function will be
x,y (Cartesian coordinates).

Step 6: Finally in Command Window the function is called with its name
to execute the program, it will ask to enter the type of conversion and the
parameters for the function to print the corresponding values. The angle to
be entered and the one calculated by the program is in radians.

81

Jairo Guerrero Garcia

Command Window

>> CartesianPolar

Select conversion

1 Cartesian - Polar

2 Polar - Cartesia
Conversion: 1

Conversion Cartesian Polar
enter the value of x: 10

enter the value of y: -8

The polar coordinates are
Distance:

r =
12,3062

Angle:
t =

-0.6747

Figure 7-3. Command Window. FUNCTIONS: Conversion Coordinates Polar -
Cartesian

* Building a script with a function for calculating the number of active,
communicative extraterrestrial civilizations in the Milky Way Galaxy
according to the Drake’s equation.

Step 1: A new script with function is created.

Step 2: click on function and we get the following:

function[outputArgl, outputArg2] = untitled(inputArgl,
inputArg2)

% UNITITLED Summary of this function goes here

% Detailed explanation goes here

outputArgl = inputArgil;

outputArg2 = inputArg2;

end

It contains the output parameters, the input parameters, the title and the body
for the function syntax.

82

Mathematical foundations for computer science with MATLAB

Step 3: For this case the output parameter of the function is N (Number of
civilizations that could communicate in our galaxy, the Milky Way), the input
parameters are R, fp, ne, fl, fi, fc, L (The other parameters that must be
considered for the Drake’s equation) and the title for the function is DrakeE.

function[N] = DrakeE(R,fp,ne,fl,fi,fc,L)
Step 4: A brief description of what each parameter means is given in the commentary.

%R* Annual rate of formation of "proper" stars in the galaxy
%fp Fraction of stars that have planets in their orbit
%ne Number of those planets orbiting within the habitable zone

of the star
%fl Fraction of those planets within the habitable zone on

which life has developed
%fi Fraction of those planets on which intelligent 1life has

developed

%fc Fraction of those planets where intelligent life has
developed a technology and attempts to communicate

%L Time span, measured in years, during which an intelligent
and communicative civilization can exist

Step S: The corresponding values previously consulted are assigned to each input
variable and Drake's equation is applied and print the result.
Drake’s equation is:

N=Rxfyxne*frxfixfc*L

R =10; Fp = 1/2; ne = 2; fl = 1; fi = 0.01; fc = 0.01; L =
10000;

fprintf("The number of civilization that could communicate in
the Milky way Galaxy are: ")

N = R*fp*ne*fl*fi*fc*L;

end

83

84

Jairo Guerrero Garcia

Step 6: Finally in Command Window the function is called with the name
assigned to it and we can obtain the result of Drake's Equation.

Command Window

»> DrakeE
fprintf =

"The number of civilizations that could communicate in the Milky Way Galaxy are: H "

ans =

10

Figure 7-4. Command Window. FUNCTIONS: DrakeE

* Building a script with a function for determining if a number given by the
user is prime number or not.

Step 1: A new script with function is created.

Step 2: click on function and we get the following:

function[outputArgl, outputArg2] = untitled(inputArgil,
inputArg2)

% UNITITLED Summary of this function goes here

% Detailed explanation goes here

outputArgl = inputArgl;
outputArg2 = inputArg2;
end

It contains the output parameters, the input parameters, the title and the body
for the function syntax.

Step 3: For this case the output parameter of the function is P (Variable that
determines whether the number is prime or not), the input parameters is N
(Number entered by user) and the title for the function is Prime.

function[P] = Prime(N)

Mathematical foundations for computer science with MATLAB

Step 4: With the fprintf command we enter a title to be displayed on the screen.
And with input we ask the user to enter the input value (N) to the function.

fprintf("determine if a number is prime\n\n")
N = input("Enter the number: ");

Step 5: By means of the for loop we validate if the number entered by the user
is prime, this is done with the mod command that gives us the remainder of a
division, the conditional if validates that if the remainder of that division is or,
then the message that the number is not prime is printed, but if the condition is
not met and the program exits the for loop it validates that the number is prime.

for i = 2: N-1
r=mod (N,i);
if r==0
fprintf("The number %i is not prime \n", N)
return
end
end

fprintf("The number %i is prime \n", N)

end

Step 6: Finally with Command Window the function is called with the
assigned name and the program asks the user to enter a number to determine
if it is prime or not.

85

86

Jairo Guerrero Garcia

Command Window

>>» Prime

Determine if a number is prime

Enter the number: 10

The number 10 i= not prime

»>> Prime

Determine if a numkber is prime

Enter the number: 3

The number 3 is prime

fx o=

Figure 7-5. Command window. FUNCTIONS: Determinate if a number is prime

[CHAPTER 8] — ARRAYS

In computer programming, an array is a data structure that stores a collection of
elements, all the same type, in contiguous memory locations. Each element in
the array is identified by an index or a key that represents its position in the array.

Arrays are useful when you need to store a large amount of data of the same
type and want to access it quickly and efficiently. By using an index or a key,
you can easily access any element in the array, making it easy to search, sort,
and manipulate the data stored in the array.

Arrays are commonly used in programming languages like C, C++, Java,
Python, MATLAB, and others. There are different types of arrays such as
one-dimensional arrays, multi-dimensional arrays, and jagged arrays, each
with its own specific uses and properties.

There are several types of arrays in computer programming, including:

e One-dimensional arrays: Also known as a flat array or a vector, a one-
dimensional array stores elements in a single row or sequence. Each
element in the array is accessed using a single index or subscript,
which represents its position in the sequence.

e Multi-dimensional arrays: Multi-dimensional arrays are arrays with
more than one index or subscript. They are often used to represent
matrices or tables. A two-dimensional array, for example, has rows
and columns, and its elements are accessed using two indices.

e Jagged arrays: A jagged array is an array of arrays, where each
element in the array is itself an array. Unlike multi-dimensional
arrays, jagged arrays can have different lengths for each subarray.

87

38

Jairo Guerrero Garcia

e Dynamic arrays: A dynamic array is an array whose size can be
dynamically adjusted during runtime. This allows you to add or
remove elements from the array as needed. In some programming
languages, dynamic arrays are implemented using data structures such
as linked lists or resizable arrays.

e Associative arrays: Also known as a map, dictionary, or hash table,
an associative array is an array where the elements are accessed
using a key instead of an index. The key-value pairs are stored in
the array, and the key is used to retrieve the corresponding value.

e Sparse arrays: A sparse array is an array that contains mostly empty
or null values. To save memory, only non-empty values are stored,
along with their corresponding indices.

The specific types of arrays available in a programming language may vary,
and some languages may support additional types of arrays not listed here.

In MATLAB, you can declare and use arrays using the following syntax:

One-dimensional arrays: To declare a one-dimensional array, use square
brackets [] to enclose a comma-separated list of elements. For example:

a=1[1, 2, 3, 4, 5];
You can access elements in the array using their index:
disp(a(2)); % Output:2

Multi-dimensional arrays: To declare a multi-dimensional array, use square
brackets [] and semicolons ; to separate rows. For example:

b = [lJ 21 3J 4.) 5.) 6’ 7’ 8’ 9];
You can access elements in the array using their row and column indices:

disp(b(2, 3)); % Output:6

Mathematical foundations for computer science with MATLAB

Jagged arrays: To declare a jagged array, use cell arrays, which are arrays that
can hold elements of different data types. For example:

c = {1, [2, 3], [4, 5, 6, 7]};
You can access elements in the array using their index:
disp(c{2}(1)); % Output: 2

Dynamic arrays: In MATLAB, arrays are dynamic by default, so you can add
or remove elements from an array using the following syntax:

a(6) = 6;
disp(a); % Output: [1, 2, 3, 4, 5, 6]

Associative arrays: To declare an associative array, use the containers.Map
class, which allows you to map keys to values. For example:

d = containers.Map({'one', 'two', 'three'}, [1, 2, 3]);
You can access elements in the array using their keys:
disp(d('two')); % Output:2

These are just a few examples of how to declare and use arrays in MATLAB.
There are many more features and functions available for working with arrays
in MATLAB, including built-in functions for sorting, searching, and
manipulating arrays.

MATLAB has several built-in functions for performing arithmetic
calculations with vectors. Here are some common examples:

Vector Addition and Subtraction

You can add or subtract two vectors of the same size using the + and -
operators, respectively.

89

Jairo Guerrero Garcia

vli = [1 2 3];

v2 = [4 5 6];

v3 = vl + v2; % Vector addition

v4d = vl - v2; % Vector subtraction

Scalar Multiplication and Division

You can multiply or divide a vector by a scalar using the * and / operators, respectively.

vl = [1 2 3];

s = 2;
v2 = s * vl; % Scalar multiplication
v3 = vl / s; % Scalar division

Dot Product

You can calculate the dot product of two vectors using the dot() function.

vl = [1 2 3];
v2 = [4 5 6];
dp = dot(vl, v2); % Dot product

Cross Product

You can calculate the cross product of two vectors using the cross() function.

vl = [1 2 3];
v2 = [4 5 6];
cp = cross (vl, v2); % Cross product

Magnitude and Normalization

You can calculate the magnitude of a vector using the norm() function, and you
can normalize a vector (i.e., make it a unit vector) using the normalize() function.

vl = [1 2 3];
mag = norm(vl); % Magnitude of vl
v2 = normalize(vl); % Normalize vl

Mathematical foundations for computer science with MATLAB

In order to work with matrices, here is a MATLAB script that can solve any
linear system of equations using Gaussian elimination and back substitution.
To use the script, simply run it in MATLAB and enter the coefficient matrix
A and the constant terms b when prompted. The script will then solve the
system of equations and print the solution vector x.

Note that the script assumes that the coefficient matrix is square and that there
is a unique solution to the system of equations. If these assumptions are not
met, the script will produce an error message.

% >>> Solving a linear equation system <<«
% by Jairo Guerrero, University of Narifo

o
1l

input('Enter the coefficient matrix A: ');
input('Enter the constant terms b: ');

[m, n] = size(A);

ifm~=n

error('The coefficient matrix must be square. ');

(o
1l

end
A = [A b];
for i = 1:n-1
if A(i,i) == 0
error('Zero pivot encountered. The system has no
unique solution. ');
end
for j = i+l:n
factor = A(j,1)) / A(i,i);
A(j,:) = A(j,:) - factor * A (i,:);
end
end
x = zeros(n,1l);
x(n) = A(n,n+1) / A(n,n);

for i = n-1:-1:1
x(i) = (A(i,n+1) - A(i,i+1l:n)*x(i+l:n)) / A(i,i);
end
fprintf(' The solution is: \n');
disp(x);

91

92

Jairo Guerrero Garcia

For understanding the MATLAB script above, we need to check the code
lines inside. This script solves a linear equation system of the form Ax = b
using Gaussian elimination and back substitution. Here's how it works:

e The script prompts the user to input the coefficient matrix A and the
constant terms b.

e The script checks that the coefficient matrix is square, meaning that it
has the same number of rows and columns. If the matrix is not square,
the script produces an error message.

e The script augments the coefficient matrix A with the constant terms b.

e The script performs Gaussian elimination to transform the augmented
matrix A into row echelon form, with all elements below the diagonal
set to zero.

e The script performs back substitution to solve for the unknowns x.
Starting from the last row of the row echelon form, it solves for each
unknown x(i) in terms of the previously solved unknowns x (i+1: n).

e Finally, the script prints the solution vector x.

8.1 WORKSHOP #4 — ARRAYS IN MATLAB

This workshop will work on arrays. An array—matrix—is an ordered collection
of data—either primitives or objects depending on the language—. Arrays are
used to store multiple values in a single variable, as opposed to variables that can
only store one value—for each variable—. Each element of the array—matrix—
has a number associated with it, called a "numeric index", which allows you to
access it.

Proposed Exercises

» Write a script that allows to obtain the number of positive elements of an
array (one-dimensional vector). Populate said vector with random values
between -100 and 100.

Mathematical foundations for computer science with MATLAB

Step 1: we open a new script and execute the cle, clear, and close commands
to clear the screen and delete variables.

clc; clear; close all; %Clear sreen and delete variables

Step 2: with disp command we print the title of project, in this case “Write a
script that allows to obtain the number of positive elements of in an array.”

disp(" Write a script that allows to obtain the number of
positive element of in an array")

Step 3: A variable n is created to determine the number of elements with which
the vector will be filled, to enter the value it is done with the command input.

n = input ("enter the number of elements to populate the
vector: ")

Step 4: A vector (v) is created with the randi function that allows to obtain the
random numbers between -100 and 100 with which the vector will be filled. n is
the number of elements that the vector will have.

v = randi([-100,100], 1, n);

Step S: To determine the number of positive elements in the vector, the
positive variable is created and the condition that vector is greater than zero
is added (v>0) to count only the positive elements.

disp("The number of positive elements is ")
positive = sum(v>0)

93

94

Jairo Guerrero Garcia

Step 6: Finally, some tests are performed in Command Window to check
the correct functioning of the program. Also, the variables used can be
consulted in the Workspace.

Waorkspace ®

Write a script that allows to obtain the number of positive elements of in an array

Marme Value
enter the number of elements to populate the vector: 5
. n 5
. [1] positive 2
; v [-15,-16,-90,43,84]

The number of positive slements is

positive =

Figure 8-1. Command window and Workspace. ARRAYS: obtain the number
of positive elements of an array.

* Fill a 4x4 identity matrix, element by element in an algorithmic way by
using loops. Then create the same identity matrix with pre-defined functions.

Step 1: we open a new script and execute the cle, clear, and close commands
to clear the screen and delete variables.

clc; clear; close all; %Clear sreen and delete variables

Step 2: with disp command we print the title of project, in this case “Fill a
4x4 1dentity matrix, element by element”.

disp("Fill a 4x4 identity matrix, element by element")
Step 3: variable M is created, which is a 4x4 matrix of zeros that will allow
the creation of the identity matrix later.

M = zeros(4, 4);

Mathematical foundations for computer science with MATLAB

Step 4: Subsequently, two loops for are used to create the rows and columns
of the vector, and a conditional if is added to make it an identity matrix, when
the row is equal to the column (i=j) a one is added, otherwise the rest is zero.
Finally, M is printed.

for 1 = 1:4
for j = 1:4
if i ==
M(i:j) =1;
else
M(1i,3) = @;
end
end
end
M

Step 5: to perform the matrix identity with the default functions of the eye
command and add the matrix dimension.

disp("with pre-defined functions™")
disp(eye(4))

Step 6: Finally, some tests are performed in Command Window to check
the correct functioning of the program. Also, the variables used can be
consulted in the Workspace.

Command Window Waorkspace @

Fill a 4x4 identity matrixz, slement by element

MName Value
. Hi 4
£ 4
M ded double

ooow
cekrao
okoo
Heooao

ined

‘.:'
o oo e
H
1
o oo
=
g
- ooo

Figure 8-2. Command window and Workspace. ARRAYS: Fill a 4x4 identity matrix.

95

96

Jairo Guerrero Garcia

« Fill a 3 x 3 matrix of numbers typed by the user. Reading the elements from such
a matrix and calculate the sum of each of its rows and columns, leaving these
results in two vectors, one of the sums of the rows and another of the columns.

Step 1: we open a new script and execute the cle, clear, and close commands
to clear the screen and delete variables.

clc; clear; close all; %Clear sreen and delete variables

Step 2: with disp command we print the title of project, in this case “Fill a
3x3 matrix of numbers typed by the user and sum and add up the elements of
the rows and columns”.

disp("Fill a 3x3 matrix of numbers typed by the user and sum
and add up the elements of the rows and columns ")

Step 3: Variable M is created, which is a 3x3 matrix of zeros that will later
be used to fill it with the values that the user enters by keyboard.

M= zeros(3, 3);

Step 4: Two for loops are performed to determine the rows and columns of
the matrix, i corresponds to the rows and j are the columns, for the user to
enter the values in each corresponding position the input command is added,
also the position in which each value is entered is printed and the values are
added to the matrix M. Finally, the result of the matrix is printed.

for i = 1:3

for j=1:3
fprintf('enter the element (%i,%i', i, j);
M(i,3) = input(':");

end

end
disp("Entered matrix")
M

Mathematical foundations for computer science with MATLAB

Step 5: The next step is to create the row and column sum vectors, for the
column sum vector we use the command sum(M), which directly performs
the sum of the columns and adds them to the vsc vector, for the arrows sum
we use the command sum (M,2) which performs the sum of the rows but adds
them to a column vector, so we add the transpose command to convert the
vsr vector to a row vector. finally, we print the results.

disp(ll II)
disp("Vector sum columns")
vsc = sum(M)

disp(ll II)
disp("vector sum rows")
vsr = transpose(sum(M,2))

Step 6: Finally, some tests are performed in Command Window to check
the correct functioning of the program. Also, the variables used can be
consulted in the Workspace.

Command Window

Fill a 3x3 matrix of numbers typed by the user and sum and add up the elements of the rows and columns

enter the element (1,1):
enter the element (1,2):
enter the slement (L1,3):
enter the element (2,1):
enter the element (2,2):
enter the slement (2,3):
enter the element (3,1):
enter the element (3,2):
enter the element (3,3):
Entered matrix

Wom - ot b W R

M=

-
oot
-

97

98

Jairo Guerrero Garcia

" =
Norkspace O]
Vector sum columns = P -

MNarne Value

wsc = i 3

e j 3

1z 15 hi:] M [1.234567.89]
[wsc [12,15,18]

[wsr [6,15,24]
Vector sum rows

vsr =

€ 15 24

Figure 8-3. Command window and Workspace. ARRAYS: Fill a 3x3 matrix of
numbers typed by the user

* Calculate the sum of all the elements of a vector of n elements of random
numbers between 1 and 100, as well as the arithmetic mean (average); the
calculations will be performed algorithmically step by step. At the end, use
predefined functions.

Step 1: we open a new script and execute the cle, clear, and close commands
to clear the screen and delete variables.

clc; clear; close all; %Clear sreen and delete variables

Step 2: with disp command we print the title of project, in this case
“Calculate the sum of all the elements of a vector of n elements of random
numbers between 1 and 100 as well as the arithmetic mean (average)”

disp("Calculate the sum of all the elements of a vector of n
elements of random numbers between 1 and 100")
disp("as well as the arithmetic mean (averange)")

Step 3: The variable n is created with the input command so that the user can
enter the number of values to fill the vector, also with the randi function the
values will be added to the vector (v) with random numbers between 1 and 100.

n = input("enter the number of elements to populate the
vector: ")
v = randi([1,100],1,n);

Mathematical foundations for computer science with MATLAB

Step 4: to calculate the sum and arithmetic mean with a predefined function,
sum(v) and mean(v) were used and the values were stored in the variables M
and S1.

M= mean(v);
S1 = sum(v);

Step 5: To perform the algorithm step by step, we define a counter S that allows us
to keep the sum of the elements in the vector, we create a for loop to go through the
vector (v), perform the sum and store the values in S; the sum is performed with

S =S + v(i), once this sum is obtained, the arithmetic mean is calculated with S/n
and stored in the variable mean, the arithmetic mean corresponds to the sum of the
elements of the vector over the number of elements. finally, the results are printed.

S = 0;

for i = 1:1ength(v)
S =S+ v(i);

end

disp("The sun is")

disp(" ")

S

disp("The arithmetic mean (averange) is: ")
mean = S/n

Step 6: The values obtained with the default functions are printed out.

disp("with predefined functions")
disp("The sum is")

S1

disp(ll II)

disp("The arithmetic mean (averange) is: ")
M

99

100

Jairo Guerrero Garcia

Step 7: Finally, some tests are performed in Command Window to check
the correct functioning of the program. Also, the variables used can be
consulted in the Workspace.

Calculate the sum of all the elements of a wvector of n elements of random numbers between 1 and 100
as well as the arithmetic mean (average)

enter the number of elements to populate the wvector: 5§
n =
3

The sum is

189
The arithmetic mean (average) is:

mean =

37.8000
Workspace ®
with predefined functions Mame = Value
The sum is jjl 5
51 = M 37.8000
— mean 37.8000
189 n 5
s 189
I 51 129
The arithmetic mean (average) is: jj\f [72,52,13,15,37]
M=
37.8000

Figure 8-4. Command window and Workspace. ARRAY: Calculate the sum of all
the elements of a vector of n elements of random numbers between 1 and 100.

* Create a 4 x 4 matrix of numeric values typed by the user. Create a new
matrix as the transposed matrix step by step algorithmically. Finally use the
predefined functions.

Mathematical foundations for computer science with MATLAB

Step 1: we open a new script and execute the cle, clear, and close commands
to clear the screen and delete variables.

clc; clear; close all; %Clear sreen and delete variables

Step 2: with disp command we print the title of project, in this case
“Create a 4x4 matrix of numeric values typed by the user. Create a new
matrix as the transposed.”

disp("Create a 4x4 matrix of numeric values typed by the user.
Create a new metrix as the transposed")

Step 3: Variable M is created, which is a 4x4 matrix of zeros that will later
be used to fill it with the values that the user enters by keyboard.

M = zeros(4,4;)

Step 4: Two for loops are performed to determine the rows and columns of
the matrix, i corresponds to the rows and j are the columns, for the user to
enter the values in each corresponding position the input command is added,
also the position in which each value is entered is printed and the values are
added to the matrix M(i,j). Finally, the result of the matrix is printed.

for 1 = 1:4

for j = 1:4
fprintf('enter the element (%i,%i)', i, j);
M(i,3) = input(':");
end
end

Step 5: for the transposed matrix we create again two for loops that will allow
us to add the elements to the rows and columns of the matrix, but now we
define T(i,j) = M(j,i) so that the columns become rows and the condition of
the transposed matrix.

101

102

Jairo Guerrero Garcia

for i = 1:4

for j = 1:4
T(i:j) = M(j.vi)s
end
end

Step 6: for this step, the normal and transposed matrices are printed on the screen.
disp("Entered matrix")

M

disp(ll Il)
disp("transposed matrix")
T

Step 7: To calculate the transposed matrix with default function, the
transpose command is used.

disp("with pre-defined functions")

Trans= transpose(M)

Step 8: Finally, some tests are performed in Command Window to check
the correct functioning of the program. Also, the variables used can be
consulted in the Workspace.

Command Window

Create a 4x4 matrix of numeric wvalues typed by the user. Create a new matrix as the transposed
enter the element (1,1):5
enter the element (1,2):8
enter the element (1,3):9
enter the element (1,4):1
enter the element (2,1):4
enter the element (2,2):2
enter the element (2,3):3
enter the element (2,4):6
enter the element (3,1):7
enter the element (3,2):5
enter the element (3,3):9
enter the element (3,4):8
enter the element (4,1):7
enter the element (4,2):2
enter the element (4,3):6
enter the element (4,4):9
Entered matrix
M=

5 g8 a 1

4 2 3 &

7 5 a &

i 7 2 & 8

Mathematical foundations for computer science with MATLAB

. —
transposed matrix Workspace \x
T = MName Value
5 4 7 7 mi 4
3 2 5 2 |jj_| 4
] 3] 3 M PR
4xd double
1 g 5 2 m)
mT 4xd double
t Trans 4vd double
with pre-defined functions
Trans =
5 4 7 T
2

Figure 8-5. Command Window and Workspace. ARRAYS: Create a 4x4
matrix of numeric values typed by the user.

» Write a script that allows to type a number N. Create a NxN square matrix
in order to represent the Pascal’s triangle within it, for instance:

Table 8-1. Example of square matrix of order 6

N=6
1 0 0 0
1 1 0 0
1 1 0

oS o o O
S o o o o

2
3

1 4 6 4 1
5 10 10 5 1

Step 1: we open a new script and execute the clc, clear, and close commands
to clear the screen and delete variables.

clc; clear; close all; %Clear sreen and delete variables

103

104

Jairo Guerrero Garcia

Step 2: with disp command we print the title of project, in this case “Create
a NxN square matrix in order to represent the Pascal’s triangle”.

disp("Create a NxN square matrix in order to represent the
Pascal's triangle")

Step 3: A variable N is created with the input command for the user to define
the dimension of the square matrix NxN.

N = input("index to create the square matrix :");

Step 4: To create the pascal triangle we use two for lop, the first one
allows us to determine the row in which the values are located and for
the second for and determine the values that will be found in each row
we use the following equation:
i!
PT = ——
JHa@ =Nt

The values calculated in the equation are stored in the vector a(1,j+1), the
rows do not change, what we are interested in knowing are the values
calculated in j, therefore j+1 is added.

Then we create the cell A{i+1} that stores and organizes the vectors to form
the pascal triangle, we also set a=0 so that each time the vector is reset and
stores the new values.

for i = O:N

for j = 0: 1
a(1,j+1)=factorial(i)/(factorial(j)*factorial(i-j));
end
A{i+1} = a;
a = 0;
end

Mathematical foundations for computer science with MATLAB

Step 5: to print the pascal triangle, a for loop is created to display on the
screen what we have stored in cell A.

disp("Pascal's triangle is:
for k = 1:N

disp(A{k})
end

Step 6: Finally, some tests are performed in Command Window to check
the correct functioning of the program. Also, the variables used can be
consulted in the Workspace.

Command Window

Create a NxN sguare matrix in order to represent the Pascal's triangle

index to create the sguare matrix :6

Pascal's triangle is
1

1 1

1 2 1

1 3 3 1

1 4 g 4 1

1 5 10 10 5 1
Workspace
Marme Value
HHa 0
A %7 cell

=
oo on

Figure 8-6. Command Window and Workspace. ARRAY: Create a NxN
square matrix in order to represent the Pascal’s triangle.

105

106

[CHAPTER 9] — EPILOGUE

MATLAB is a high-level programming language widely used for numerical
computing and scientific data analysis. Some of the main characteristics of
programming with MATLAB are:

Easy to use: MATLAB is known for its user-friendly syntax and interactive
development environment. Its simple and intuitive syntax allows developers
to express complex mathematical operations with ease.

Powerful data visualization capabilities: MATLAB provides powerful tools
for data visualization, making it easy to create plots, graphs, and other visual
representations of data.

Numerical computing capabilities: MATLAB is designed for numerical
computing, making it easy to perform complex calculations and manipulate
large data sets. It comes with a wide range of built-in functions for linear
algebra, statistics, optimization, and signal processing.

Wide range of toolboxes: MATLAB provides a wide range of toolboxes that
extend its functionality for specialized applications. These toolboxes include
image processing, control systems, signal processing, and optimization.

Interoperability: MATLAB can be easily integrated with other programming
languages and applications, such as Python, Java, C, and Excel.

Community support: MATLAB has a large and active community of users
and developers, providing access to a wealth of resources, including forums,
tutorials, and documentation.

ons for computer science with MATLAB

Overall, MATLAB is a powerful and versatile programming language that is
well-suited for numerical computing and data analysis in a wide range of
fields, including engineering, science, and finance.

This book was created as an important part of academia for several reasons:

Learning resource: This book provides a comprehensive and organized
resource for students to learn from. They cover a range of topics and provide
a structured approach to understanding a subject, in this case: Mathematical
Foundations in computer programming. This book can also provide
examples, explanations, and illustrations that help students better understand
the material.

Reference material: This book can serve as a reference material for students
throughout their academic careers related to computing. They can be used to
refresh knowledge, review concepts, and prepare for exams.

Integration: This book can integrate multiple disciplines, theories, and
approaches to a subject, but always focusing on mathematical foundations for
computing. This can provide a holistic understanding of a topic, and help
students connect different ideas and concepts.

Overall, this book is an important resource in academia that provide a
structured approach to learning, standardize information, serve as a reference
material, and can integrate multiple disciplines related with computing.

107

108

[CHAPTER 10] — REFERENCES

ACM & IEEE-CS. (2020). Computing Curricula 2020 CC2020, Paradigms for
Global Computing Education. [Internet]
https://www.acm.org/binaries/content/assets/education/curricula-
recommendations/cc2020.pdf

Aigner, M. (2023). Discrete mathematics. American Mathematical Society.

Albaugh, L., McCann, J., Yao, L., & Hudson, S. E. (2021). Enabling Personal
Computational Handweaving with a Low-Cost Jacquard Loom. In
Proceedings of the 2021 CHI Conference on Human Factors in Computing
Systems. 1-10.

Avella-Medina, M. (2020). The role of robust statistics in private data
analysis. Chance, 33(4), 37-42.

Baker, A. (2022). Transcendental number theory. Cambridge university press.
Bowen, J. (2019). The impact of Alan Turing: Formal methods and beyond.
Engineering Trustworthy Software Systems: 4th International School, SETSS

2018, Chonggqing, China, April 7-12, 2018, Tutorial Lectures 4, 202-235.

Farin, G. & Hansford, D. (2021). Practical linear algebra: a geometry toolbox.
Chapman and Hall/CRC.

Fortuna, L., Frasca, M., & Buscarino, A. (2021). Optimal and robust control:
Advanced topics with Matlab®. CRC press.

Haecker, R. (2022). Sacramental Engines: The Trinitarian Ontology of
Computers in Charles Babbage’s Analytical Engine. Religions, 13(8), 757.

Hosseini, M., Ouaknine, J. & Worrell, J. (2019). Termination of linear loops
over the integers. arXiv preprint arXiv:1902.07465.

Kidron, 1. (2020). Calculus teaching and learning. Encyclopedia of
mathematics education, 87-94.

Kirchner, D., Benzmiller, C. & Zalta, E. (2019). Computer science and
metaphysics: A cross-fertilization. Open Philosophy, 2(1), 230-251.

Kochenderfer, M. & Wheeler, T. (2019). Algorithms for optimization. Mit Press.

Kossovsky, A. (2020). The Bitter Dispute with Leibniz over Calculus Priority.
The Birth of Science, 161-161.

Kumar, S., Azar, A., Inbarani, H., Liyaskar, O. & Almustafa, K. (2019).
Weighted Rough Set Theory for Fetal Heart Rate Classification.
International Journal of Sociotechnology and Knowledge Development
(USKD), 11(4), 1-19.

Macrae, N. (2019). John von Neumann: The scientific genius who pioneered
the modern computer, game theory, nuclear deterrence, and much more.
Plunkett Lake Press.

Matloff, N. (2019). Probability and statistics for data science: Math+ R+ data.
CRC Press.

Magoun, A. (2019). The Mystery of Claude Shannon’s Personal Computer. In
2019 6th IEEE History of Electrotechnology Conference (HISTELCON). 85-86

Marici¢, S. & Lazi¢, B. (2020). Abacus computing tool: From history to
application in mathematical education. Inovacije u nastavi-¢asopis za
savremenu nastavu, 33(1), 57-71.

Martinez, F., Martinez, |., Kaabar, M., Ortiz-Munuera, R. & Paredes, S. (2020).
Note on the conformable fractional derivatives and integrals of complex-
valued functions of a real variable. IAENG International Journal of Applied
Mathematics, 50(3), 609-615.

109

110

Miller, S. & Takloo-Bighash, R. (2021). An invitation to modern number theory.
In An Invitation to Modern Number Theory. Princeton University Press.

Mount, J. & Zumel, N. (2019). Practical data science with R. Simon and Schuster.

National Academies of Sciences, Engineering, and Medicine. (2019).
Quantum computing: progress and prospects.

O’Regan, G. (2013). Giants of computing. Springer
O’Regan, G. (2018). World of computing. Springer

Potters, M., & Bouchaud, J. P. (2020). A First Course in Random Matrix
Theory: For Physicists, Engineers and Data Scientists. Cambridge
University Press.

Pucik, A. (2022). Not Damsels in Distress: Women and the Video Game
Industry. Arkansas State University.

Roth Jr, C., Kinney, L. & John, E. (2020). Fundamentals of logic design.
Cengage Learning.

Rushdi, A. (2023). An Overview of Recent Developments in Big Boolean
Equations. arXiv preprint arXiv:2302.09118.

Steiglitz, K. (2020). Digital Signal Processing Primer. Courier Dover Publications.

Sporns, O. (2022). Graph theory methods: applications in brain networks.
Dialogues in clinical neuroscience.

Sprunger, D. & Jacobs, B. (2019). The differential calculus of causal functions.
arXiv preprint arXiv:1904.10611.

The MathWorks. (2023). MATLAB & Simulink. [Internet]
https://www.mathworks.com/products/matlab.html

Tissenbaum, M., Sheldon, J. & Abelson, H. (2019). From computational thinking
to computational action. Communications of the ACM, 62(3), 34-36.

Trefethen, L. & Bau, D. (2022). Numerical linear algebra (Vol. 181). Siam.
Ulmann, B. (2022). Analog computing. Walter de Gruyter GmbH & Co KG.
West, D. (2020). Combinatorial mathematics. Cambridge University Press.

Woodford, C. (2021). A brief history of computers. Explain that Stuff.

111

112

Table of Figures

Figure 4 1. MATLAB main SCIEenouvvimieeniiiinienienieneenieseeneenees 33
Figure 5 1. Command Window —

Exercise 1 Comparisons in MATLABccccoviviiniininiienenne 42
Figure 5 2. Command Window —

Exercise 2 Comparisons in MATLABcccccoviiiniininiienenne 43
Figure 5 3. Command Window and Workspace —

Exercise 3 Comparisons in MATLABccccoviiiniininiiennne 45
Figure 5 4. Command Window and Workspace —

Exercise 4 Comparisons in MATLABccccoviviniininienenne 47
Figure 5 5 Command Window —

Exercise 5 Comparisons in MATLABccocoviniiniininiienene 48
Figure 5 6. Command Window —

Exercise 6 Comparisons in MATLABccccoviviiniininiieneen, 51
Figure 6 1. MATLAB script calculates the factorial of

a positive integer entered by the USercceevvveviieiieiciiennnnne. 55
Figure 6 2. MATLAB script calculates the divisors of

a given number entered by the USerccceevvveciieiieniiennne, 56
Figure 6 3. MATLAB script generates a random

integer between 1 and 100cocoeveriiniininiineneeeeeee 58
Figure 6 4. Comand window and Workspace.

LOOPS IN MATLAB: Read a series of non-zeros numbers 64
Figure 6 5. Command window and Workspace.

LOOPS IN MATLAB: Calculate and display thesum and

product of the even numbers between 20 and 400 65
Figure 6 6. Command window and Workspace.

LOOPS IN MATLARB: Calculate the sum of the squares 66
Figure 6 7. Command Window and Workspace.

LOOPS IN MATLAB: Add ten numbers entered by keyboard 68
Figure 7 1. Icon for creating @ New SCIIPLeevereeeruereeneenienieneeieeeesieene 76
Figure 7 2. Command window. FUNCTIONS:

Conversion TeMPETaturecccveeeveereeeveeneenieeniieseeenseeeneens 79

Figure 7 3.
Figure 7 4.
Figure 7 5.
Figure 8 1.
Figure 8 2.
Figure 8 3.

Figure 8 4.

Figure 8 5.

Figure 8 6.

Command Window. FUNCTIONS:

Conversion Coordinates Polar - Cartesiancc.ccoceeeeeiennnene 82
Command Window. FUNCTIONS: DrakeEccccocevenen. 84
Command window. FUNCTIONS:

Determinate if a number iS primeccoeeeeveeevieenieniieenieene 86
Command window and Workspace. ARRAY'S:

obtain the number of positive elements of an array. 94
Command window and Workspace. ARRAY'S:

Fill a 4x4 identity mMatriX.coceveeveeneenenieneenieeeeseeree e 95
Command window and Workspace. ARRAY'S:

Fill a 3x3 matrix of numbers typed by the user 98
Command window and Workspace. ARRAY:

Calculate the sum of all the elements of a vector of n

elements of random numbers between 1 and 100. 100
Command Window and Workspace. ARRAYS:

Create a 4x4 matrix of numeric values typed by the user. 103
Command Window and Workspace. ARRAY:

Create an NxN square matrix to represent Pascal’s triangle. 105

113

114

Table of Tables

Table 5-1. Truth table based on three logical operatorscccceeeveennenn. 36

Table 8-1. Example of a square matrix of order 6

editorial

Universidad de Nariiio

Publication date: October 2025
San Juan de Pasto - Narifio - Colombia

ISBN: 978-628-7771-82-6

