




Mathematical foundations 
for Computer Science

with MATLAB:
A course about computer

programming fundamentals



Mathematical foundations 
for Computer Science

with MATLAB:
A course about computer

programming fundamentals

 Jairo Guerrero García
Autor



© Editorial Universidad de Nariño
© Jairo Guerrero García

ISBN: 978-628-7771-82-6

Style review:  Daniel Anthony Day
Cover design and layout: Angie Gabriela Ordoñez
Edition: 1st edition.

Publication date: October 2025
San Juan de Pasto - Nariño - Colombia

Reproduction in whole or in part, by any means or for
any purpose, without written permission from the author
or Editorial Universidad de Nariño is prohibited 



 

Table of Contents 

[CHAPTER 1] — Preface ............................................................................... 11 
[CHAPTER 2] — The Dawn of Computing .................................................... 13 
[CHAPTER 3] — Mathematics for Computer Science .................................. 17 

3.1 Discrete mathematics ................................................................... 19 
3.2 Calculus ........................................................................................ 23 
3.3 Linear Algebra ............................................................................. 26 
3.4 Probability Theory and Statistics ................................................. 28 
3.5 Number Theory ............................................................................ 30 

[CHAPTER 4] — Knowing MATLAB ............................................................... 37 
[CHAPTER 5] — Comparisons ....................................................................... 41 

5.1 Workshop #1 – Comparisons in MATLAB ................................. 46 
[CHAPTER 6] — Loops .................................................................................. 59 

6.1 Workshop #2 – Loops in MATLAB ............................................ 67 
[CHAPTER 7] — Functions ............................................................................ 77 

7.1 Workshop #3 – Functions ins MATLAB ..................................... 83 
[CHAPTER 8] — Arrays ................................................................................. 95 

8.1 Workshop #4 — Arrays in MATLAB ....................................... 100 
[CHAPTER 9] — Epilogue ............................................................................ 115 
[CHAPTER 10] — References ...................................................................... 117 
 

 

 

 

 



7

 

Table of Contents 

[CHAPTER 1] — Preface ............................................................................... 11 
[CHAPTER 2] — The Dawn of Computing .................................................... 13 
[CHAPTER 3] — Mathematics for Computer Science .................................. 17 

3.1 Discrete mathematics ................................................................... 19 
3.2 Calculus ........................................................................................ 23 
3.3 Linear Algebra ............................................................................. 26 
3.4 Probability Theory and Statistics ................................................. 28 
3.5 Number Theory ............................................................................ 30 

[CHAPTER 4] — Knowing MATLAB ............................................................... 37 
[CHAPTER 5] — Comparisons ....................................................................... 41 

5.1 Workshop #1 – Comparisons in MATLAB ................................. 46 
[CHAPTER 6] — Loops .................................................................................. 59 

6.1 Workshop #2 – Loops in MATLAB ............................................ 67 
[CHAPTER 7] — Functions ............................................................................ 77 

7.1 Workshop #3 – Functions ins MATLAB ..................................... 83 
[CHAPTER 8] — Arrays ................................................................................. 95 

8.1 Workshop #4 — Arrays in MATLAB ....................................... 100 
[CHAPTER 9] — Epilogue ............................................................................ 115 
[CHAPTER 10] — References ...................................................................... 117 
 

 

 

 

 

 

    

 

 

[CHAPTER 1]  — PREFACE 

This book was created as a guide to learning the mathematical foundations essential 
for computer programming. Programming, a core aspect of Computer Science, is 
deeply rooted in mathematics; in fact, Computer Science itself emerged from 
mathematical principles. Understanding these foundations is crucial for developing 
efficient and robust software solutions. For this reason, I believe MATLAB is one 
of the most powerful languages for scientific computing, making it an ideal tool for 
illustrating the mathematical concepts presented in this book. 

The primary objective of this book is to support academic learning. It is specifically 
designed for students and educators in Computer Science who seek to strengthen 
their mathematical skills in the context of programming. Additionally, this book has 
been intentionally written in English to encourage students to engage with academic 
literature in the language commonly used in the field. 

Throughout history, major milestones in computing have been driven by the 
application of mathematics to solve specific problems. This legacy remains 
highly relevant in Computer Science education today, which is why this book 
was developed. It reflects much of my experience as a professor at the University 
of Nariño, where I have worked extensively on the intersection of mathematics 
and programming. 

By reading this book, students will gain a fundamental understanding of key 
mathematical concepts applied in programming, with a focus on problem-solving 
techniques using MATLAB. The book covers topics such as numerical methods, 
matrix operations, algorithmic thinking, and mathematical modeling, all essential for 
constructing software. Upon completion, readers will have a strong foundation to 
approach more advanced topics in scientific computing and software development, 
equipping them with the skills necessary to analyze and solve computational 
problems effectively. 



8

 

Encouraging learners to type out source code manually, rather than copying and 
pasting, offers significant educational advantages. This practice fosters active 
engagement with the material, requiring learners to focus on each line and 
understand its function within the program. Such deliberate involvement enhances 
comprehension and aids in transferring knowledge from short-term to long-term 
memory, thereby improving retention (Brack, 2016). Moreover, typing code allows 
learners to encounter and resolve errors firsthand, promoting the development of 
debugging skills and a deeper understanding of the code's functionality. This process 
cultivates critical thinking and problem-solving abilities essential for proficient 
programming. Additionally, typing encourages mindful learning, as learners must 
pay attention to syntax and structure, leading to a more reflective and thorough 
understanding of programming concepts (Cook, 2012). This mindfulness helps grasp 
the code's purpose and architecture, reducing the likelihood of superficial learning 
that often accompanies copy-paste practices. By typing code manually, learners 
develop autonomy and confidence in their coding abilities, which is crucial for their 
growth as programmers. Incorporating these practices into programming education 
can lead to a more robust and meaningful learning experience, equipping learners 
with the skills and understanding necessary for success in the field. 

I use MATLAB throughout this textbook. MATLAB is a trademark of The 
MathWorks. 

—The Author,  

Pasto, February 19, 2023 

 

 

 

 

 

 

 

 



9

 

Encouraging learners to type out source code manually, rather than copying and 
pasting, offers significant educational advantages. This practice fosters active 
engagement with the material, requiring learners to focus on each line and 
understand its function within the program. Such deliberate involvement enhances 
comprehension and aids in transferring knowledge from short-term to long-term 
memory, thereby improving retention (Brack, 2016). Moreover, typing code allows 
learners to encounter and resolve errors firsthand, promoting the development of 
debugging skills and a deeper understanding of the code's functionality. This process 
cultivates critical thinking and problem-solving abilities essential for proficient 
programming. Additionally, typing encourages mindful learning, as learners must 
pay attention to syntax and structure, leading to a more reflective and thorough 
understanding of programming concepts (Cook, 2012). This mindfulness helps grasp 
the code's purpose and architecture, reducing the likelihood of superficial learning 
that often accompanies copy-paste practices. By typing code manually, learners 
develop autonomy and confidence in their coding abilities, which is crucial for their 
growth as programmers. Incorporating these practices into programming education 
can lead to a more robust and meaningful learning experience, equipping learners 
with the skills and understanding necessary for success in the field. 

I use MATLAB throughout this textbook. MATLAB is a trademark of The 
MathWorks. 

—The Author,  

Pasto, February 19, 2023 

 

 

 

 

 

 

 

 

 

 

 

 

[CHAPTER 2] — THE DAWN OF COMPUTING 

Although computing was practically coined in the 20th century, there are 
traces of computing that existed long ago. Various forms of computing existed 
before the 20th century, although they were very different from modern 
digital computers. Some examples include: 

• Abacus: The abacus is a simple device for performing arithmetic 
operations. It consists of beads or stones on rods, and users move the 
beads to perform calculations (Maričić & Lazić, 2020). 

• Slide Rule: The slide rule is a mechanical device for multiplication 
and division. It consists of two logarithmic scales that slide past each 
other (Ulmann, 2022). 

• Jacquard Loom: The Jacquard loom, invented in the early 19th 
century, used punched cards to control the weaving of complex 
patterns in textiles. It is one of the earliest examples of a machine that 
used programming (Albaugh et al., 2021). 

• Charles Babbage's Analytical Engine: In the mid-19th century, Charles 
Babbage, a British mathematician and inventor, designed the Analytical 
Engine. Although it was never built, it was a mechanical computer that 
could perform basic arithmetic operations, store data, and execute 
instructions (Haecker, 2022). 

These early forms of computing were used primarily for performing arithmetic 
calculations and automating simple mechanical tasks. It was not until the mid-
20th century when the first digital computers were invented, that computing 
became a field of study and a major technological force worldwide. 



Jairo Guerrero García

10

 

Historically, Computer Science was born from mathematics (O’Regan, 
2018). Unfortunately, human history is associated with wars. The 20th 
century was a special case, with two world wars. Sometimes, history plays 
with some irony in the plot of human lives; the more suffering, the more 
technological developments are produced. 

Technological developments are key to the evolution of civilization. 
Scientists and scholars are duty-bound to produce innovative ideas to promote 
such developments, and computing is no exception. Calculations are crucial 
to winning a war because computing relies on being able to count, which is a 
form of mathematics. Developers need to understand and work with numbers 
to create algorithms and software. Many computing concepts are also based 
on mathematical principles, such as logic and set theory. 

While the war was still raging, Alan Turing and his team at Bletchley Park in 
England worked on cracking the German ENIGMA code. This was a significant 
turning point in the war, allowing the Allies to intercept and decode German 
communications, giving them a considerable advantage. All these technological 
advances were achieved thanks to mathematics (Bowen, 2019). 

After the war, Alan Turing continued his work in computing and became the 
father of computer science. He also made significant contributions to artificial 
intelligence. Claude Shannon, an American mathematician, electrical 
engineer, and cryptographer, is known as the "father of information theory." 
Shannon is credited with inventing the binary code used in modern computer 
systems and developing digital circuit design theory. All of his contributions 
are based on mathematics (Magoun, 2019). 

The traditional computing paradigm is based on the Von Neumann architecture, 
which John Von Neumann proposed in the late 1940s. This architecture is used in 
most conventional digital computers. It is based on a sequential processing model 
that involves four main components: the input/output devices, the memory, the 
arithmetic/logic unit (ALU), and the control unit (O’Regan, 2013). 

 

 



Mathematical foundations for computer science with MATLAB

11

 

Historically, Computer Science was born from mathematics (O’Regan, 
2018). Unfortunately, human history is associated with wars. The 20th 
century was a special case, with two world wars. Sometimes, history plays 
with some irony in the plot of human lives; the more suffering, the more 
technological developments are produced. 

Technological developments are key to the evolution of civilization. 
Scientists and scholars are duty-bound to produce innovative ideas to promote 
such developments, and computing is no exception. Calculations are crucial 
to winning a war because computing relies on being able to count, which is a 
form of mathematics. Developers need to understand and work with numbers 
to create algorithms and software. Many computing concepts are also based 
on mathematical principles, such as logic and set theory. 

While the war was still raging, Alan Turing and his team at Bletchley Park in 
England worked on cracking the German ENIGMA code. This was a significant 
turning point in the war, allowing the Allies to intercept and decode German 
communications, giving them a considerable advantage. All these technological 
advances were achieved thanks to mathematics (Bowen, 2019). 

After the war, Alan Turing continued his work in computing and became the 
father of computer science. He also made significant contributions to artificial 
intelligence. Claude Shannon, an American mathematician, electrical 
engineer, and cryptographer, is known as the "father of information theory." 
Shannon is credited with inventing the binary code used in modern computer 
systems and developing digital circuit design theory. All of his contributions 
are based on mathematics (Magoun, 2019). 

The traditional computing paradigm is based on the Von Neumann architecture, 
which John Von Neumann proposed in the late 1940s. This architecture is used in 
most conventional digital computers. It is based on a sequential processing model 
that involves four main components: the input/output devices, the memory, the 
arithmetic/logic unit (ALU), and the control unit (O’Regan, 2013). 

 

 

 

In this model, data and instructions are stored in memory. The control unit 
fetches instructions from memory, decodes them, and executes them by 
sending signals to the ALU. The ALU performs arithmetic and logic 
operations on data as directed by the control unit, and the results are then 
stored back in memory. 

The Von Neumann architecture is a "stored program" model, which means 
that a computer program's instructions are stored in the same memory as the 
data. This allows for great flexibility in programming, as programs can be 
modified and rewritten as needed (Macrae, 2019). 

While the traditional computing paradigm has been highly successful and is 
still widely used today, it has some limitations. These include its reliance on 
sequential processing and the need to move data between the memory and the 
processor, which can slow down performance. Newer computing paradigms, 
such as parallel computing and quantum computing, have emerged to address 
these limitations and enable new computing applications and capabilities 
(National Academies of Sciences, Engineering, and Medicine, 2019).  

 

 

 

 

 

 

 

 

 

 

 



12

 

   

 

 

[CHAPTER 3] — MATHEMATICS FOR COMPUTER SCIENCE 

Computer Science is the study of computers and computational systems. It 
involves both theoretical and practical aspects of computing, including algorithms, 
programming languages, data structures, software engineering, computer 
architecture, artificial intelligence, databases, human-computer interaction, and 
computer networking (ACM & IEEE-CS, 2020). Computer science is a broad field 
that encompasses many subfields and specializations, such as cybersecurity, 
computer graphics, computer vision, machine learning, robotics, and natural 
language processing. It is also a rapidly evolving field, with innovative 
technologies and applications constantly emerging. 

Computer science has become increasingly important today, as computers 
have become ubiquitous and are used in almost every aspect of our lives. 
It is a vital discipline for anyone interested in developing software, 
designing computer systems, or working with technology in any capacity. 
The origin of Computer Science can be traced back to the mid-20th century 
when the first digital computers were being developed. During this time, 
researchers were developing algorithms, programming languages, and 
other foundational concepts that would define the field of Computer 
Science (Woodford, 2021). 

One of the earliest pioneers of Computer Science was Alan Turing, a British 
mathematician and computer scientist who played a key role in cracking the 
German Enigma code during World War II. After the war, Turing continued 
to work on developing computer systems and artificial intelligence, and his 
ideas helped shape the direction of the field. Another important figure in the 
history of Computer Science was John von Neumann, a Hungarian-American 
mathematician and physicist who worked on developing early electronic 
computers and is credited with designing the von Neumann architecture, a 
key model for modern computer systems. 



Mathematical foundations for computer science with MATLAB

13

 

   

 

 

[CHAPTER 3] — MATHEMATICS FOR COMPUTER SCIENCE 

Computer Science is the study of computers and computational systems. It 
involves both theoretical and practical aspects of computing, including algorithms, 
programming languages, data structures, software engineering, computer 
architecture, artificial intelligence, databases, human-computer interaction, and 
computer networking (ACM & IEEE-CS, 2020). Computer science is a broad field 
that encompasses many subfields and specializations, such as cybersecurity, 
computer graphics, computer vision, machine learning, robotics, and natural 
language processing. It is also a rapidly evolving field, with innovative 
technologies and applications constantly emerging. 

Computer science has become increasingly important today, as computers 
have become ubiquitous and are used in almost every aspect of our lives. 
It is a vital discipline for anyone interested in developing software, 
designing computer systems, or working with technology in any capacity. 
The origin of Computer Science can be traced back to the mid-20th century 
when the first digital computers were being developed. During this time, 
researchers were developing algorithms, programming languages, and 
other foundational concepts that would define the field of Computer 
Science (Woodford, 2021). 

One of the earliest pioneers of Computer Science was Alan Turing, a British 
mathematician and computer scientist who played a key role in cracking the 
German Enigma code during World War II. After the war, Turing continued 
to work on developing computer systems and artificial intelligence, and his 
ideas helped shape the direction of the field. Another important figure in the 
history of Computer Science was John von Neumann, a Hungarian-American 
mathematician and physicist who worked on developing early electronic 
computers and is credited with designing the von Neumann architecture, a 
key model for modern computer systems. 

 

Other significant early contributors to Computer Science include Grace 
Hopper, who developed the first compiler for a computer programming 
language, and Ada Lovelace, who is often considered the world's first 
computer programmer for her work on Charles Babbage's Analytical Engine. 
Since its early days, Computer Science has continued to evolve and expand, 
with modern technologies and applications constantly emerging. Today, it is 
a vital discipline that underpins many areas of contemporary society, from 
business and industry to healthcare, science, and beyond (Pucik, 2022). 

Undoubtedly, mathematics is the theoretical basis on which Computer 
Science is based. Considering that mathematics is broad, there are concepts 
on which the pioneers were based to create Computer Science. Computer 
Science relies heavily on various mathematical disciplines to build and 
analyze computational systems. Some of the key areas of mathematics that 
are used in Computer Science include: 

• Discrete Mathematics is a branch of mathematics that deals with 
discrete structures, such as sets, graphs, and integers. It is used in 
Computer Science to analyze algorithms, data structures, and 
computational models (Aigner, 2023). 

• Calculus: Calculus is a branch of mathematics that deals with 
continuous change and motion. It is used in Computer Science to 
analyze algorithms' performance and model physical systems, such as 
computer networks (Kidron, 2020). 

• Linear Algebra: Linear algebra is a branch of mathematics that deals with 
vectors and matrices. It is used in Computer Science for data analysis, 
machine learning, and computer graphics (Trefethen & Bau, 2022). 

• Probability Theory and Statistics: Probability theory and statistics 
are used in computer science to model uncertainty and analyze data. 
They are used in machine learning, data mining, and artificial 
intelligence (Potters & Bouchaud, 2020). 

 

 



Jairo Guerrero García

14

 

• Number Theory: Number theory is a branch of mathematics that 
deals with the properties of integers. It is used in Computer Science 
for cryptography, data compression, and error-correcting codes 
(Baker, 2022). 

These are just a few examples of the many mathematical disciplines used in 
Computer Science. Computer scientists can develop new technologies and 
solutions that continue transforming the world by combining mathematical 
theory with practical applications. 

3.1 DISCRETE MATHEMATICS 

Discrete mathematics is a branch of mathematics that deals with discrete or 
countable objects, such as integers, graphs, and sets. Unlike continuous 
mathematics, which deals with constant objects, such as real numbers and 
calculus, discrete mathematics focuses on objects that a finite set of values 
can represent. 

Discrete mathematics is used extensively in Computer Science and other 
fields that involve discrete structures and computational algorithms. Some of 
the key topics in discrete mathematics include: 

• Combinatorics is the study of discrete structures and their properties, 
such as graphs, sets, and permutations. It is used in Computer Science 
for data analysis, optimization, and algorithm design (West, 2020). 

Here's an example of using combinatorics in MATLAB to generate 
all possible combinations of elements in a set: 

Suppose we have a set of numbers {1, 2, 3, 4} and want to generate 
all possible combinations of two elements from this set. 

In MATLAB, we can use the "combnk" function to generate all 
possible combinations of k elements from a set of n elements. Here's 
how we can use it for our example: 

 

 



Mathematical foundations for computer science with MATLAB

15

 

• Number Theory: Number theory is a branch of mathematics that 
deals with the properties of integers. It is used in Computer Science 
for cryptography, data compression, and error-correcting codes 
(Baker, 2022). 

These are just a few examples of the many mathematical disciplines used in 
Computer Science. Computer scientists can develop new technologies and 
solutions that continue transforming the world by combining mathematical 
theory with practical applications. 

3.1 DISCRETE MATHEMATICS 

Discrete mathematics is a branch of mathematics that deals with discrete or 
countable objects, such as integers, graphs, and sets. Unlike continuous 
mathematics, which deals with constant objects, such as real numbers and 
calculus, discrete mathematics focuses on objects that a finite set of values 
can represent. 

Discrete mathematics is used extensively in Computer Science and other 
fields that involve discrete structures and computational algorithms. Some of 
the key topics in discrete mathematics include: 

• Combinatorics is the study of discrete structures and their properties, 
such as graphs, sets, and permutations. It is used in Computer Science 
for data analysis, optimization, and algorithm design (West, 2020). 

Here's an example of using combinatorics in MATLAB to generate 
all possible combinations of elements in a set: 

Suppose we have a set of numbers {1, 2, 3, 4} and want to generate 
all possible combinations of two elements from this set. 

In MATLAB, we can use the "combnk" function to generate all 
possible combinations of k elements from a set of n elements. Here's 
how we can use it for our example: 

 

 

 

% Define the set 
set = [1,2,3,4]; 
 
% Generate all possible combinations of two elements 
combinations = nchoosek(set, 2) 

After running this code, the "combinations" variable will contain a 6 x 2 
matrix, where each row represents a different combination of two 
elements from the set: 

combinations = 
     1     2 
     1     3 
     1     4 
     2     3 
     2     4 
     3     4 

In this way, we can use combinatorics functions in MATLAB to 
generate all possible combinations of elements in a set, which is 
helpful for many applications in Computer Science, mathematics, and 
other fields. 

• Graph Theory: This is the study of graphs, which are mathematical 
structures that represent relationships between objects. Graph theory 
is used in Computer Science for network analysis, data mining, and 
algorithm design (Sporns, 2022). 

Here's an example of using graph theory in MATLAB to analyze a graph: 

Suppose we have a graph with five nodes and six edges, represented 
by the adjacency matrix A: 

A = [0 1 1 0 0; 1 0 0 1 0; 1 0 0 1 0;  0 1 1 0 1;  0 0 0 1 0]; 

 



Jairo Guerrero García

16

 

We can use the built-in MATLAB function "graph" to create a graph 
object from the adjacency matrix A: 

G = graph(A); 

Once we have the graph object, we can use various built-in functions 
to analyze its properties. For example, we can use the "degree" 
function to calculate the degree of each node in the graph: 

deg = degree(G); 

The "deg" variable will contain a vector with the degree of each node: 

deg = 
     2 
     2 
     2 
     3 
     1 

We can also use the "shortestpath" function to find the shortest path 
between two nodes in the graph. For example, to find the shortest 
path between nodes 1 and 5: 

path = shortestpath(G, 1, 5); 

The "path" variable will contain a vector with the nodes along the 
shortest path: 

path = 
     1     2     4     5 

In this way, we can use graph theory functions in MATLAB to 
analyze the properties of a graph, which is helpful for many 
applications in Computer Science, mathematics, and other fields. 



Mathematical foundations for computer science with MATLAB

17

 

We can use the built-in MATLAB function "graph" to create a graph 
object from the adjacency matrix A: 

G = graph(A); 

Once we have the graph object, we can use various built-in functions 
to analyze its properties. For example, we can use the "degree" 
function to calculate the degree of each node in the graph: 

deg = degree(G); 

The "deg" variable will contain a vector with the degree of each node: 

deg = 
     2 
     2 
     2 
     3 
     1 

We can also use the "shortestpath" function to find the shortest path 
between two nodes in the graph. For example, to find the shortest 
path between nodes 1 and 5: 

path = shortestpath(G, 1, 5); 

The "path" variable will contain a vector with the nodes along the 
shortest path: 

path = 
     1     2     4     5 

In this way, we can use graph theory functions in MATLAB to 
analyze the properties of a graph, which is helpful for many 
applications in Computer Science, mathematics, and other fields. 

 

• Set Theory: This studies sets and their properties, such as cardinality 
and intersection. Set theory is used in Computer Science for database 
design, algorithm analysis, and data modeling (Kumar et al., 2019). 

Here's an example of using set theory in MATLAB to perform set operations: 

Suppose we have two sets of numbers, A and B, and we want to 
perform set operations using MATLAB. 

We can represent the sets using MATLAB arrays. For example, let: 

A = [1, 2, 3, 4, 5]; 
B = [4, 5, 6, 7, 8]; 

To find the union of A and B, we can use the "union" function: 

C = union(A, B); 

The "C" variable will contain the union of A and B: 

C = 
     1     2     3     4     5     6     7     8 

To find the intersection of A and B, we can use the "intersect" function: 

D = intersect(A, B); 

The "D" variable will contain the intersection of A and B: 

D = 
     4     5 

To find the elements that are in A but not in B, we can use the 
"setdiff" function: 

D = intersect(A, B); 

 



Jairo Guerrero García

18

 

The "E" variable will contain the elements that are in A but not in B: 

E = 
     1     2     3 

In this way, we can use set theory functions in MATLAB to 
perform set operations on sets of numbers or other data types, 
which is helpful for many applications in Computer Science, 
mathematics, and other fields. 

Discrete mathematics is a fundamental part of Computer Science and 
provides the theoretical foundation for many important field study areas. 
Computer scientists can develop algorithms, data structures, and other 
computational tools critical to modern computing by understanding the 
principles and concepts of discrete mathematics. 

3.2 CALCULUS 

Calculus was independently developed by two mathematicians, Sir Isaac 
Newton and Gottfried Wilhelm Leibniz, in the 17th century. 

Newton is credited with developing the foundations of differential calculus in 
the 1660s while working on problems related to motion and forces. Leibniz, 
a German mathematician and philosopher, created his version of calculus in 
the late 1670s, called "infinitesimal calculus." Both men published their work 
on calculus in the 1680s, and there was initially some controversy over who 
deserved credit for inventing the subject (Kossovsky, 2020). 

Today, it is generally recognized that Newton and Leibniz played a significant 
role in developing calculus and that their work was complementary rather 
than competitive. The two approaches to calculus, Newtonian and Leibnizian, 
are still in use today and have led to a rich body of mathematical theory and 
practical applications. Calculus is a branch of mathematics that deals with 
rates of change and how things change over time. It is divided into two main 
branches: differential calculus and integral calculus.  

Differential calculus deals with studying the rate of change of a function at a 
point and calculating derivatives. Derivatives are used to find the slope of a 



Mathematical foundations for computer science with MATLAB

19

 

The "E" variable will contain the elements that are in A but not in B: 

E = 
     1     2     3 

In this way, we can use set theory functions in MATLAB to 
perform set operations on sets of numbers or other data types, 
which is helpful for many applications in Computer Science, 
mathematics, and other fields. 

Discrete mathematics is a fundamental part of Computer Science and 
provides the theoretical foundation for many important field study areas. 
Computer scientists can develop algorithms, data structures, and other 
computational tools critical to modern computing by understanding the 
principles and concepts of discrete mathematics. 

3.2 CALCULUS 

Calculus was independently developed by two mathematicians, Sir Isaac 
Newton and Gottfried Wilhelm Leibniz, in the 17th century. 

Newton is credited with developing the foundations of differential calculus in 
the 1660s while working on problems related to motion and forces. Leibniz, 
a German mathematician and philosopher, created his version of calculus in 
the late 1670s, called "infinitesimal calculus." Both men published their work 
on calculus in the 1680s, and there was initially some controversy over who 
deserved credit for inventing the subject (Kossovsky, 2020). 

Today, it is generally recognized that Newton and Leibniz played a significant 
role in developing calculus and that their work was complementary rather 
than competitive. The two approaches to calculus, Newtonian and Leibnizian, 
are still in use today and have led to a rich body of mathematical theory and 
practical applications. Calculus is a branch of mathematics that deals with 
rates of change and how things change over time. It is divided into two main 
branches: differential calculus and integral calculus.  

Differential calculus deals with studying the rate of change of a function at a 
point and calculating derivatives. Derivatives are used to find the slope of a 

 

function at a given point and its maximum and minimum points. They are 
used in various fields, including physics, engineering, economics, and others 
(Sprunger & Jacobs, 2019). 

Integral calculus deals with the study of quantity accumulation and the 
calculation of integrals. Integrals are used to find the total quantity that has 
accumulated over time, and they have various applications, such as finding 
the area under a curve or the volume of a three-dimensional shape. 

Differential and integral calculus provide a robust set of tools for analyzing 
and understanding how things change over time and are used extensively in 
many fields of science, engineering, and mathematics. There is also a close 
relationship with the concept of Infinitesimal calculus aside from differential 
and integral calculus. 

Infinitesimal calculus is an older term for the branch of mathematics that deals 
with limits, derivatives, and integrals. Differential and integral calculus are 
two subfields of infinitesimal calculus that study functions and their 
derivatives and integrals (Martínez et al., 2020). 

Differential calculus involves studying the rate of change of a function at a 
point and calculating derivatives. Derivatives are used to find the slope of a 
function at a given point and to determine its maximum and minimum points. 

Integral calculus, conversely, studies the accumulation of quantities and 
calculates integrals. Integrals are used to find the total amount that has 
accumulated over time, and they have various applications, such as finding 
the area under a curve or the volume of a three-dimensional shape. 

In summary, differential and integral calculus are subfields of infinitesimal calculus 
that study functions and their derivatives and integrals. Differential calculus deals 
with the rate of change of a function, while integral calculus deals with the 
accumulation of a quantity over time. Together, these two fields provide a robust set 
of tools for analyzing and understanding how things change over time and are used 
extensively in many fields of science, engineering, and mathematics (Kirchner, 
Benzmüller & Zalta, 2019). 



Jairo Guerrero García

20

 

Here's an example of how to use MATLAB to perform some basic operations 
of differential calculus: 

Suppose we want to find the derivative of a simple function, such as  
f(x) = x^2, at a specific point, say x = 2. We can use MATLAB's 
symbolic toolbox to define the function, find the derivative, and 
evaluate it at x = 2. Here's how to do it:  

Define the function using the "syms" command to create a symbolic variable x: 

syms x 
f = x^2; 

Find the derivative of the function using the "diff" command: 

df = diff(f) 

This will output the derivative of the function, which is 2x. 

Evaluate the derivative at a specific point, such as x = 2, using the "subs" command: 

df_value = subs(df, x,2) 

This will output the value of the function's derivative at x = 2, which is 4. 

So, in this example, we used MATLAB's symbolic toolbox to define a 
function, find its derivative, and evaluate it at a specific point, all using the 
principles of differential calculus. 

Now, here's another example of how to use MATLAB to perform some basic 
operations of integral calculus: 

Suppose we want to find the definite integral of a simple function, such as 
f(x) = x^2, over a specific interval, say from x = 0 to x = 1. We can use 
MATLAB's symbolic toolbox to define the function, find the integral, and 
evaluate it over the given interval. Here's how to do it: 

 

 



Mathematical foundations for computer science with MATLAB

21

 

Here's an example of how to use MATLAB to perform some basic operations 
of differential calculus: 

Suppose we want to find the derivative of a simple function, such as  
f(x) = x^2, at a specific point, say x = 2. We can use MATLAB's 
symbolic toolbox to define the function, find the derivative, and 
evaluate it at x = 2. Here's how to do it:  

Define the function using the "syms" command to create a symbolic variable x: 

syms x 
f = x^2; 

Find the derivative of the function using the "diff" command: 

df = diff(f) 

This will output the derivative of the function, which is 2x. 

Evaluate the derivative at a specific point, such as x = 2, using the "subs" command: 

df_value = subs(df, x,2) 

This will output the value of the function's derivative at x = 2, which is 4. 

So, in this example, we used MATLAB's symbolic toolbox to define a 
function, find its derivative, and evaluate it at a specific point, all using the 
principles of differential calculus. 

Now, here's another example of how to use MATLAB to perform some basic 
operations of integral calculus: 

Suppose we want to find the definite integral of a simple function, such as 
f(x) = x^2, over a specific interval, say from x = 0 to x = 1. We can use 
MATLAB's symbolic toolbox to define the function, find the integral, and 
evaluate it over the given interval. Here's how to do it: 

 

 

 

Define the function using the "syms" command to create a symbolic variable x: 

syms x 
f = x^2; 

Find the indefinite integral of the function using the "int" command: 

F = int(f) 

This will output the indefinite integral of the function, which is (1/3)x^3 + C, 
where C is a constant of integration. 

Evaluate the definite integral of the function over a specific interval, such as 
from x = 0 to x = 1, using the "subs" command: 

F_value = subs(F, x, 1) – subs(F, x, 0) 

This will output the value of the function's definite integral over the given 
interval, which is 1/3. 

So, in this example, we used MATLAB's symbolic toolbox to define a function, 
find its indefinite integral, and evaluate its definite integral over a specific 
interval, all using the principles of integral calculus. 

3.3 LINEAR ALGEBRA 

Linear algebra is a branch of mathematics that studies linear equations, 
vectors, matrices, and linear transformations. It is a fundamental tool used in 
many fields, including physics, engineering, Computer Science, economics, 
and statistics. 

Linear algebra involves the study of the properties of linear transformations and 
their representation by matrices. It also deals with solving systems of linear 
equations, which arise in many applications, and with the study of vector spaces 
and their subspaces. Some of the key concepts in linear algebra include linear 
independence, basis, dimension, inner product, determinants, eigenvectors, and 
eigenvalues (Farin & Hansford, 2021). 



Jairo Guerrero García

22

 

Linear algebra has a wide range of applications in different areas of science and 
engineering. For example, it is used in computer graphics to represent and manipulate 
3D images, in data analysis to perform principal component analysis, in control theory 
to model and analyze dynamic systems, in cryptography to encrypt and decrypt 
messages, and in machine learning to perform linear regression and other types of 
statistical analysis. 

Here's an example of how to use MATLAB to perform some basic operations 
of linear algebra: 

Suppose we want to solve a system of linear equations, such as the following: 

2𝑥𝑥 +  3𝑦𝑦 =  7 
4𝑥𝑥 +  5𝑦𝑦 =  11 

We can use MATLAB to define the system of equations as a matrix equation, 
and then use the backslash operator to solve it. Here's how to do it: 

Define the system of equations as a matrix equation: 

A = [2 3; 4 5]; 
b = [7; 11]; 

Here, we have defined the coefficient matrix A and the right-hand side vector b. 

Solve the system of equations using the backslash operator: 

x = A\b 

This will output the solution vector x, which satisfies the system of equations. 

In this example, the solution vector x is [-1; 3], which means that the solution 
to the system of equations is x = -1 and y = 3. 

So, in this example, we used MATLAB to define a system of linear equations 
as a matrix equation, and then solved it using the backslash operator, all using 
the principles of linear algebra. 



Mathematical foundations for computer science with MATLAB

23

 

Linear algebra has a wide range of applications in different areas of science and 
engineering. For example, it is used in computer graphics to represent and manipulate 
3D images, in data analysis to perform principal component analysis, in control theory 
to model and analyze dynamic systems, in cryptography to encrypt and decrypt 
messages, and in machine learning to perform linear regression and other types of 
statistical analysis. 

Here's an example of how to use MATLAB to perform some basic operations 
of linear algebra: 

Suppose we want to solve a system of linear equations, such as the following: 

2𝑥𝑥 +  3𝑦𝑦 =  7 
4𝑥𝑥 +  5𝑦𝑦 =  11 

We can use MATLAB to define the system of equations as a matrix equation, 
and then use the backslash operator to solve it. Here's how to do it: 

Define the system of equations as a matrix equation: 

A = [2 3; 4 5]; 
b = [7; 11]; 

Here, we have defined the coefficient matrix A and the right-hand side vector b. 

Solve the system of equations using the backslash operator: 

x = A\b 

This will output the solution vector x, which satisfies the system of equations. 

In this example, the solution vector x is [-1; 3], which means that the solution 
to the system of equations is x = -1 and y = 3. 

So, in this example, we used MATLAB to define a system of linear equations 
as a matrix equation, and then solved it using the backslash operator, all using 
the principles of linear algebra. 

 

3.4 PROBABILITY THEORY AND STATISTICS 

Probability theory and statistics are two branches of mathematics that are 
closely related and often studied together. 

• Probability theory deals with the study of random events and the 
likelihood of their occurrence. It provides a framework for quantifying 
uncertainty and making predictions in situations where the outcome is 
not known in advance. Some of the key concepts in probability theory 
include probability distributions, expected values, variance, and 
random variables (Matloff, 2019). 

Here's an example of how to use MATLAB to simulate a random 
variable with a certain probability distribution: 

Suppose we want to simulate a random variable X that follows a 
normal (Gaussian) distribution with mean 0 and standard deviation 1. 
We can use the "randn" function in MATLAB to generate random 
numbers from a standard normal distribution, and then transform them 
to the desired distribution using the mean and standard deviation. 

Here's how to do it: 

Generate a vector of random numbers from a standard normal distribution: 

n = 1000; % number or samples 
x = randn(n, 1); % generate n samples from a standard normal 
distribution 

Transform the vector to a normal distribution with mean 0 and 
standard deviation 1: 

mu = 0 % mean 
sigma = 1; % standard deviation 
y = mu + sigma*x; % transform to normal distribution 

 

 



Jairo Guerrero García

24

 

Plot the histogram of the simulated random variable: 

histogram(y, 'Normalization', 'pdf'); % plot the histogram 
xlabel('x'); ylabel('f(x)'); % set the axis labels 

This will plot the histogram of the simulated random variable X, 
which should look like a normal distribution with mean 0 and standard 
deviation 1. 

In this example, we used MATLAB to simulate a random variable 
with a normal distribution, which is a fundamental concept in 
probability theory. 

• Statistics, on the other hand, is the study of collecting, analyzing, and 
interpreting data. It involves the application of probability theory to 
real-world situations and the use of statistical models to make 
predictions and draw conclusions from data. Some of the key concepts 
in statistics include hypothesis testing, confidence intervals, 
regression analysis, and experimental design (Avella-Medina, 2020). 

Here's an example of how to use MATLAB to perform a t-test on two 
samples within the world of statistics: 

Suppose we have two samples of data, and we want to test whether 
their means are significantly different from each other. We can use a 
t-test to determine whether the difference between the sample means 
is statistically significant. 

Here's how to do it: 

Define the two samples of data: 

x = [1, 2, 3, 4, 5]; 
y = [4, 5, 6, 7, 8]; 

 

 

 



Mathematical foundations for computer science with MATLAB

25

 

Plot the histogram of the simulated random variable: 

histogram(y, 'Normalization', 'pdf'); % plot the histogram 
xlabel('x'); ylabel('f(x)'); % set the axis labels 

This will plot the histogram of the simulated random variable X, 
which should look like a normal distribution with mean 0 and standard 
deviation 1. 

In this example, we used MATLAB to simulate a random variable 
with a normal distribution, which is a fundamental concept in 
probability theory. 

• Statistics, on the other hand, is the study of collecting, analyzing, and 
interpreting data. It involves the application of probability theory to 
real-world situations and the use of statistical models to make 
predictions and draw conclusions from data. Some of the key concepts 
in statistics include hypothesis testing, confidence intervals, 
regression analysis, and experimental design (Avella-Medina, 2020). 

Here's an example of how to use MATLAB to perform a t-test on two 
samples within the world of statistics: 

Suppose we have two samples of data, and we want to test whether 
their means are significantly different from each other. We can use a 
t-test to determine whether the difference between the sample means 
is statistically significant. 

Here's how to do it: 

Define the two samples of data: 

x = [1, 2, 3, 4, 5]; 
y = [4, 5, 6, 7, 8]; 

 

 

 

 

Calculate the means and standard deviations of the two samples: 

mean_x = mean(x); 
std_x = std(x); 
mean_y = mean(y); 
std_y = std(y); 

Perform a two-sample t-test to compare the means of the two samples: 

[h, p, ci, stats] = ttest2(x, y); 

This will perform a two-sample t-test and output the test results, 
including the test statistic (in the "stats" variable), the p-value (in the 
"p" variable), and the confidence interval for the difference in means 
(in the "ci" variable). 

In this example, the t-test may reveal whether the difference in means 
between the two samples is statistically significant or not, and helps 
us make conclusions about the underlying populations from which the 
samples were drawn. The t-test is a fundamental tool in statistical 
inference, and is widely used in many fields including medicine, 
social sciences, and engineering. 

Probability theory and statistics are used in many fields, such as physics, 
engineering, finance, medicine, and social sciences. They are essential tools 
in data science and machine learning, as they provide a foundation for 
understanding and analyzing complex data sets. 

In summary, probability theory and statistics are two branches of mathematics 
that are fundamental to understanding uncertainty and making predictions in 
a wide range of applications. 

3.5 NUMBER THEORY 

Number theory is a branch of mathematics that deals with the properties 
of numbers, especially integers. It is one of the oldest and most fundamental 
areas of mathematics, and has applications in many other fields such as 
cryptography, Computer Science, and physics (Miller & Takloo-Bighash, 2021). 



Jairo Guerrero García

26

 

Some of the central topics in number theory include: 

• Prime numbers: the study of the properties and distribution of prime 
numbers, which are integers that can only be divided by 1 and themselves. 

Here's an example of how to use MATLAB to generate prime numbers: 

MATLAB provides the isprime function, which tests whether a given 
number is prime or not. We can use this function to generate a list of 
prime numbers up to a certain limit. 

For example, to generate all prime numbers less than 100: 

primes = []; 
for i = 2:99 
 if isprime(i) 
  primes = [primes, i]; 
 end 
end 

This code initializes an empty array called "primes", and then loops 
overall numbers from 2 to 99. For each number, it checks whether it is 
prime using the isprime function, and if so, adds it to the "primes" array. 

After running this code, the "primes" array will contain all prime 
numbers less than 100, we have an excerpt below: 

primes = 
 
  Columns 1 through 11 
 
     2     3     5     7    11    13    17    19    23    29   31 
 
  Columns 12 through 22 
 
    37    41    43    47    53    59    61    67    71    73   79 
 
  Columns 23 through 25 
 
    83    89    97 



Mathematical foundations for computer science with MATLAB

27

 

Some of the central topics in number theory include: 

• Prime numbers: the study of the properties and distribution of prime 
numbers, which are integers that can only be divided by 1 and themselves. 

Here's an example of how to use MATLAB to generate prime numbers: 

MATLAB provides the isprime function, which tests whether a given 
number is prime or not. We can use this function to generate a list of 
prime numbers up to a certain limit. 

For example, to generate all prime numbers less than 100: 

primes = []; 
for i = 2:99 
 if isprime(i) 
  primes = [primes, i]; 
 end 
end 

This code initializes an empty array called "primes", and then loops 
overall numbers from 2 to 99. For each number, it checks whether it is 
prime using the isprime function, and if so, adds it to the "primes" array. 

After running this code, the "primes" array will contain all prime 
numbers less than 100, we have an excerpt below: 

primes = 
 
  Columns 1 through 11 
 
     2     3     5     7    11    13    17    19    23    29   31 
 
  Columns 12 through 22 
 
    37    41    43    47    53    59    61    67    71    73   79 
 
  Columns 23 through 25 
 
    83    89    97 

 

This is just one example of how to generate prime numbers in 
MATLAB using the isprime function. There are many other ways to 
generate prime numbers using MATLAB as well, depending on the 
specific requirements of your problem. 

• Diophantine equations: the study of equations in which we seek integer 
solutions, such as the famous Pythagorean equation a^2 + b^2 = c^2. 

Here's an example of how to use MATLAB to solve a Diophantine equation: 

Let's say we want to find all integer solutions to the equation: 

5𝑥𝑥 + 12𝑦𝑦 = 37 

This is a linear Diophantine equation, which means that we are 
looking for integer solutions to a linear equation. To solve this 
equation in MATLAB, we can use the gcd function, which computes 
the greatest common divisor of two numbers. 

We can start by finding the gcd of 5 and 12: 

gcd(5, 12) 

This gives us a result of 1, which means that 5 and 12 are coprime 
(i.e., they have no common factors other than 1). This is good news, 
because it means that there are integer solutions to the equation. 

To find the solutions, we can use the extended Euclidean algorithm to 
find the coefficients of 5 and 12 that add up to 1: 

[u, v, gcd] = gcd(5, 12) 

This gives us u = 5, v = -2, and gcd = 1. These coefficients tell us that: 

5 ∗ (5) + 12 ∗ (−2) = 1 

 

 



Jairo Guerrero García

28

 

Now we can use these coefficients to find all integer solutions to the 
equation 5x + 12y = 37. We start by finding one particular solution by 
setting y = 0: 

x = 5*37 + 12*k 
y = k 

where k is any integer. For example, if we set k = 0, we get x = 185 
and y = 0. 

To find all integer solutions, we can add a multiple of the coefficients 
u and v to this particular solution. For example, if we add u = 5 to x 
and v = -2 to y, we get: 

x = 5*37 + 12*k + 5 
y = k - 2 

This gives us another solution to the equation. We can continue adding 
multiples of u and v to find all integer solutions. For example, if we 
add 2u = 10 and 2v = -4, we get: 

x = 5*37 + 12*k + 15 
y = k - 4 

And so on. In this way, we can use MATLAB to find all integer 
solutions to the Diophantine equation 5x + 12y = 37. The specific 
implementation will depend on the equation you are trying to solve. 

• Modular arithmetic: the study of arithmetic operations performed 
"modulo" a certain number, which is a way of understanding periodic 
or repeating patterns in arithmetic. 

Here's a short example of how to use modular arithmetic in MATLAB: 

Suppose we want to calculate the remainder when 100 is divided by 7. 
We can use the modulo operator (mod) to perform modular arithmetic: 

remainder = mod(100, 7) 

The result will be 2, which is the remainder when 100 is divided by 7. 



Mathematical foundations for computer science with MATLAB

29

 

Now we can use these coefficients to find all integer solutions to the 
equation 5x + 12y = 37. We start by finding one particular solution by 
setting y = 0: 

x = 5*37 + 12*k 
y = k 

where k is any integer. For example, if we set k = 0, we get x = 185 
and y = 0. 

To find all integer solutions, we can add a multiple of the coefficients 
u and v to this particular solution. For example, if we add u = 5 to x 
and v = -2 to y, we get: 

x = 5*37 + 12*k + 5 
y = k - 2 

This gives us another solution to the equation. We can continue adding 
multiples of u and v to find all integer solutions. For example, if we 
add 2u = 10 and 2v = -4, we get: 

x = 5*37 + 12*k + 15 
y = k - 4 

And so on. In this way, we can use MATLAB to find all integer 
solutions to the Diophantine equation 5x + 12y = 37. The specific 
implementation will depend on the equation you are trying to solve. 

• Modular arithmetic: the study of arithmetic operations performed 
"modulo" a certain number, which is a way of understanding periodic 
or repeating patterns in arithmetic. 

Here's a short example of how to use modular arithmetic in MATLAB: 

Suppose we want to calculate the remainder when 100 is divided by 7. 
We can use the modulo operator (mod) to perform modular arithmetic: 

remainder = mod(100, 7) 

The result will be 2, which is the remainder when 100 is divided by 7. 

 

Another example is computing the inverse of a number modulo a 
given modulus. Suppose we want to find the inverse of 3 modulo 7, 
which is a number x such that 3x ≡ 1 (mod 7). We can use the modinv 
function from the Symbolic Math Toolbox to compute this inverse: 

x = modinv(sym(3), sym(7)) 

The sym function is used to convert the integers 3 and 7 to symbolic 
objects, which are required by the modinv function. The result will be a 
symbolic fraction 5/21, which is the inverse of 3 modulo 7. If we want to 
convert this to a regular fraction, we can use the double function: 

double(x) 

This will output 0.2381, which is approximately equal to 5/21. 

• Cryptography: the study of encoding and decoding messages using 
mathematical algorithms, often based on number theory. 

Here's a short example of how to use cryptography in MATLAB: 

Suppose we want to encrypt a message using the simple Caesar cipher, 
which involves shifting each letter of the message by a fixed number 
of positions in the alphabet. We can use the double and char functions 
in MATLAB to convert between characters and their ASCII codes. 

Here's an example of how to encrypt the message "HELLO WORLD" 
using a shift of 3: 

message = 'HELLO WORD'; % the message to be encrypted 
shift = 3; % the number of positions to shift the letters 
 
% convert the message to ASCII codes and apply the shift 
encrypted = mod(double(message)- 65 + shift, 26) + 65; 
 
% convert the encrypted ASCII codes back to characters 
result = char(encrypted); 



Jairo Guerrero García

30

 

The result will be the encrypted message "KHOOR ZRUOG". 

To decrypt the message, we simply apply the reverse shift: 

shift = -3; % the reserve shift 
 
% apply the reverse shift and convert back to characters 
decrypted = char(mod(double(result) - 65 + shift, 26) + 65); 

The result will be the original message "HELLO WORLD". 

Number theory has a rich history, with contributions from many famous 
mathematicians such as Euclid, Euler, Gauss, and Riemann. It is an active area 
of research today, with many open problems and connections to other areas of 
mathematics and science. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



31

 

The result will be the encrypted message "KHOOR ZRUOG". 

To decrypt the message, we simply apply the reverse shift: 

shift = -3; % the reserve shift 
 
% apply the reverse shift and convert back to characters 
decrypted = char(mod(double(result) - 65 + shift, 26) + 65); 

The result will be the original message "HELLO WORLD". 

Number theory has a rich history, with contributions from many famous 
mathematicians such as Euclid, Euler, Gauss, and Riemann. It is an active area 
of research today, with many open problems and connections to other areas of 
mathematics and science. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[CHAPTER 4] — KNOWING MATLAB 

MATLAB (short for "matrix laboratory") is a programming language and 
numerical computing environment that was created by Cleve Moler in the late 
1970s. Moler was a professor of mathematics at the University of New 
Mexico, and he created MATLAB to provide a way for his students to do 
numerical calculations on a computer (Fortuna, Frasca & Buscarino, 2021). 

The first version of MATLAB was written in Fortran and ran on the 
minicomputers that were commonly used in academic and research 
environments at the time. In 1984, Moler and his colleagues formed a 
company called The MathWorks to commercialize MATLAB, and they 
rewrote the software in C to improve its performance and portability. 

Over the years, MATLAB has evolved to become a powerful tool for 
numerical computation, data analysis, visualization, and programming. The 
software includes a large library of mathematical functions and toolboxes for 
specific applications, such as signal processing, control systems, and image 
processing. MATLAB is also widely used in academic research and in 
industries such as engineering, finance, and science. 

Today, MATLAB is distributed by The MathWorks and is used by millions 
of engineers, scientists, and students around the world. Its popularity is due 
to its ease of use, powerful mathematical and visualization capabilities, and 
the large community of users who contribute to its development and support. 

According to The MathWorks—the producer—MATLAB is a programming 
and numeric computing platform used by millions of engineers and scientists 
to analyze data, develop algorithms, and create models (2023). 



Jairo Guerrero García

32

 

Engineers and scientists need a programming language that allows them to directly 
express mathematical matrices and vector arrays. Linear algebra in MATLAB is 
learned and looks like an academic textbook. The same is true for data analysis, 
signal and image processing, control design, and other applications. 

Everything about MATLAB is designed specifically for engineers and scientists, 
because: function names are familiar and easy to remember, the desktop 
environment is tuned for scientific and engineering workflows. The 
documentation is written for engineers and scientists, not computer scientists. 

MATLAB toolboxes offer professionally developed, rigorously tested, and 
fully documented functionality for a wide range of scientific and engineering 
applications. Toolboxes are designed to work together, integrating with 
parallel computing environments, GPUs, and C code generation. 

MATLAB Apps are interactive applications that combine direct access to 
large collections of algorithms with immediate visual feedback. You can 
instantly visualize how the different algorithms work with your data. Iterate 
until you get the expected results, then automatically generate MATLAB 
code to reproduce or automate your work. 

Major engineering and scientific challenges require extensive coordination 
across teams to bring ideas to implementation. Each passing of information 
along the way adds errors and delays. MATLAB helps automate the entire 
path from research to production by allowing you to: 

Connecting: MATLAB allows you to connect with more than 1,000 
hardware devices. 

Analyzing: Integrating MATLAB into Production Environments 

Scaling: MATLAB Runs Algorithms Faster and with Big Data by Scaling to 
Clusters, the Cloud, and GPUs. 

Simulating: Connectivity to Simulink and State flow for model-based design 
and simulation. 



Mathematical foundations for computer science with MATLAB

33

 

Engineers and scientists need a programming language that allows them to directly 
express mathematical matrices and vector arrays. Linear algebra in MATLAB is 
learned and looks like an academic textbook. The same is true for data analysis, 
signal and image processing, control design, and other applications. 

Everything about MATLAB is designed specifically for engineers and scientists, 
because: function names are familiar and easy to remember, the desktop 
environment is tuned for scientific and engineering workflows. The 
documentation is written for engineers and scientists, not computer scientists. 

MATLAB toolboxes offer professionally developed, rigorously tested, and 
fully documented functionality for a wide range of scientific and engineering 
applications. Toolboxes are designed to work together, integrating with 
parallel computing environments, GPUs, and C code generation. 

MATLAB Apps are interactive applications that combine direct access to 
large collections of algorithms with immediate visual feedback. You can 
instantly visualize how the different algorithms work with your data. Iterate 
until you get the expected results, then automatically generate MATLAB 
code to reproduce or automate your work. 

Major engineering and scientific challenges require extensive coordination 
across teams to bring ideas to implementation. Each passing of information 
along the way adds errors and delays. MATLAB helps automate the entire 
path from research to production by allowing you to: 

Connecting: MATLAB allows you to connect with more than 1,000 
hardware devices. 

Analyzing: Integrating MATLAB into Production Environments 

Scaling: MATLAB Runs Algorithms Faster and with Big Data by Scaling to 
Clusters, the Cloud, and GPUs. 

Simulating: Connectivity to Simulink and State flow for model-based design 
and simulation. 

 

MATLAB does the work of making your code faster. Math operations are 
distributed throughout your computer's kernels, library calls are highly 
optimized, and all code is compiled. 

Engineers and scientists rely on MATLAB to send a spacecraft to Pluto, 
match patients needing organ transplants with donors, or simply generate a 
business report. A team of MathWorks engineers continually verifies 
software quality by running millions of tests against the MATLAB codebase 
every day. 

Considering the above, the first step is recognizing the main environment of 
MATLAB to do the first steps into MATLAB programming. Now, MATLAB 
is available for Microsoft Windows, Mac, and Linux. Regardless the 
operating system, MATLAB has the same integrated development 
environment as this: 

 

Figure 4-1. MATLAB main screen 

Four main areas are depicted in Figure 4-1. The first area is the Ribbon: it is at the 
top of the screen. The Ribbon is a collection of common functionalities and tools 
for working with MATLAB. As default, the Ribbon has 3 tab strips: HOME, 
PLOTS, and APPS. The first one includes the main functionalities related to the 



Jairo Guerrero García

34

 

daily work with MATLAB. The second one is oriented to the graphical 
representation based on plotting. The third one is related to the collection of 
toolboxes installed in the system. 

The second area is in the top-left location, and it is dedicated to the 
management of the file system. In such an area, users can explore the file 
system for interacting with files and folders. 

The third area is in the bottom-left location of the screen, and it is called 
Workspace. The Workspace is representation of the entities created in the 
memory of the computer. Every single entity as variables—scalars or 
matrices—will be available as a list in the Workspace. The Workspace allows 
users exploring the values of the variables used in calculations. 

Perhaps the most important area in the main screen is the Command Window, 
which is the greatest one on the screen. It is possible that the configuration of 
the main screen can vary according to the screen resolution; however, the 
areas are always present regardless of the selected layout. The Command 
Window is the entry point of statements written in MATLAB language; with 
such a window, users can interact with the system to do some calculations 
and starting programming with the language. 

 

 

 

 

 

 

 

 

 

 



35

 

daily work with MATLAB. The second one is oriented to the graphical 
representation based on plotting. The third one is related to the collection of 
toolboxes installed in the system. 

The second area is in the top-left location, and it is dedicated to the 
management of the file system. In such an area, users can explore the file 
system for interacting with files and folders. 

The third area is in the bottom-left location of the screen, and it is called 
Workspace. The Workspace is representation of the entities created in the 
memory of the computer. Every single entity as variables—scalars or 
matrices—will be available as a list in the Workspace. The Workspace allows 
users exploring the values of the variables used in calculations. 

Perhaps the most important area in the main screen is the Command Window, 
which is the greatest one on the screen. It is possible that the configuration of 
the main screen can vary according to the screen resolution; however, the 
areas are always present regardless of the selected layout. The Command 
Window is the entry point of statements written in MATLAB language; with 
such a window, users can interact with the system to do some calculations 
and starting programming with the language. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[CHAPTER 5] — COMPARISONS 

One of the first steps in computing is understanding Boole’s algebra. 
Boole's algebra, also known as Boolean algebra, is a branch of algebra that 
deals with logical operations and the manipulation of logical values 
(Rushdi, 2023). It was developed by the English mathematician and 
philosopher George Boole in the mid-19th century. The basic idea of 
Boolean algebra is to represent logical values—such as true and false, or 
0 and 1—as symbols, and to define logical operations—such as AND, OR, 
and NOT—that can be performed on these symbols. These operations can 
then be used to manipulate logical expressions and to simplify them. 

For example, in Boolean algebra, the logical AND operation is represented 
by the symbol "∧", and the logical OR operation is represented by the symbol 
"∨". Using these symbols, we can represent logical expressions and perform 
operations on them. Here are some examples: 

(A ∧ B) ∨ (C ∧ D) : This is a logical expression that represents the OR 
operation between two AND operations. It means that either both A and B are 
true, or both C and D are true (or both). 

¬(A ∨ B): This is a logical expression that represents the NOT operation on 
the OR operation. It means that A OR B is false. 

A truth table is a table that shows the possible combinations of truth values—
typically true or false, represented by 1 or 0—for a set of propositions, and the 
resulting truth value of a compound proposition formed from those propositions 
using logical operators. Truth tables are commonly used in logic, mathematics, 
and Computer Science to determine the truth value of complex logical 
expressions. The Table 1. below shows a truth table based on 3 logical operators: 



Jairo Guerrero García

36

 

P Q NOT P NOT Q P AND Q P OR Q 

False False True True False False 

False True True False False True 

True False False True False True 

True True False False True True 

Table 5-1. Truth table based on 3 logical operators 

In a truth table, the columns correspond to the input propositions and the 
output, and the rows correspond to the possible combinations of input truth 
values. The output column represents the truth value of the logical expression 
formed from the input propositions. 

In addition to its theoretical importance in the foundations of mathematics 
and logic, Boolean algebra has practical applications in Computer Science, 
where it is used in digital circuits and in the design of computer programs. In 
fact, Boolean algebra is the foundation of digital electronics and is used to 
design, build, and analyze digital systems. 

Is a fundamental concept in computing and digital electronics. It provides a 
way to reason about logic and binary data in a formal, mathematical way, and 
allows us to manipulate and analyze digital signals, such as those that 
represent the states of electronic switches in a computer circuit. 

Here are some of the keyways in which Boolean algebra is important 
in computing: 

• Logic design: Boolean algebra is used to design digital circuits and 
systems, such as CPUs, memory, and input/output devices. The 
principles of Boolean algebra allow us to design circuits that perform 
logical operations, such as AND, OR, and NOT, that are fundamental 
to digital electronics (Roth Jr, Kinney & John, 2020). 

 

P Q NOT P NOT Q P AND Q P OR Q 

False False True True False False 

False True True False False True 

True False False True False True 

True True False False True True 

Table 5-1. Truth table based on 3 logical operators 

In a truth table, the columns correspond to the input propositions and the 
output, and the rows correspond to the possible combinations of input truth 
values. The output column represents the truth value of the logical expression 
formed from the input propositions. 

In addition to its theoretical importance in the foundations of mathematics 
and logic, Boolean algebra has practical applications in Computer Science, 
where it is used in digital circuits and in the design of computer programs. In 
fact, Boolean algebra is the foundation of digital electronics and is used to 
design, build, and analyze digital systems. 

Is a fundamental concept in computing and digital electronics. It provides a 
way to reason about logic and binary data in a formal, mathematical way, and 
allows us to manipulate and analyze digital signals, such as those that 
represent the states of electronic switches in a computer circuit. 

Here are some of the keyways in which Boolean algebra is important 
in computing: 

• Logic design: Boolean algebra is used to design digital circuits and 
systems, such as CPUs, memory, and input/output devices. The 
principles of Boolean algebra allow us to design circuits that perform 
logical operations, such as AND, OR, and NOT, that are fundamental 
to digital electronics (Roth Jr, Kinney & John, 2020). 

 

P Q NOT P NOT Q P AND Q P OR Q 

False False True True False False 

False True True False False True 

True False False True False True 

True True False False True True 

Table 5-1. Truth table based on 3 logical operators 

In a truth table, the columns correspond to the input propositions and the 
output, and the rows correspond to the possible combinations of input truth 
values. The output column represents the truth value of the logical expression 
formed from the input propositions. 

In addition to its theoretical importance in the foundations of mathematics 
and logic, Boolean algebra has practical applications in Computer Science, 
where it is used in digital circuits and in the design of computer programs. In 
fact, Boolean algebra is the foundation of digital electronics and is used to 
design, build, and analyze digital systems. 

Is a fundamental concept in computing and digital electronics. It provides a 
way to reason about logic and binary data in a formal, mathematical way, and 
allows us to manipulate and analyze digital signals, such as those that 
represent the states of electronic switches in a computer circuit. 

Here are some of the keyways in which Boolean algebra is important 
in computing: 

• Logic design: Boolean algebra is used to design digital circuits and 
systems, such as CPUs, memory, and input/output devices. The 
principles of Boolean algebra allow us to design circuits that perform 
logical operations, such as AND, OR, and NOT, that are fundamental 
to digital electronics (Roth Jr, Kinney & John, 2020). 



Mathematical foundations for computer science with MATLAB

37

 

P Q NOT P NOT Q P AND Q P OR Q 

False False True True False False 

False True True False False True 

True False False True False True 

True True False False True True 

Table 5-1. Truth table based on 3 logical operators 

In a truth table, the columns correspond to the input propositions and the 
output, and the rows correspond to the possible combinations of input truth 
values. The output column represents the truth value of the logical expression 
formed from the input propositions. 

In addition to its theoretical importance in the foundations of mathematics 
and logic, Boolean algebra has practical applications in Computer Science, 
where it is used in digital circuits and in the design of computer programs. In 
fact, Boolean algebra is the foundation of digital electronics and is used to 
design, build, and analyze digital systems. 

Is a fundamental concept in computing and digital electronics. It provides a 
way to reason about logic and binary data in a formal, mathematical way, and 
allows us to manipulate and analyze digital signals, such as those that 
represent the states of electronic switches in a computer circuit. 

Here are some of the keyways in which Boolean algebra is important 
in computing: 

• Logic design: Boolean algebra is used to design digital circuits and 
systems, such as CPUs, memory, and input/output devices. The 
principles of Boolean algebra allow us to design circuits that perform 
logical operations, such as AND, OR, and NOT, that are fundamental 
to digital electronics (Roth Jr, Kinney & John, 2020). 

 

P Q NOT P NOT Q P AND Q P OR Q 

False False True True False False 

False True True False False True 

True False False True False True 

True True False False True True 

Table 5-1. Truth table based on 3 logical operators 

In a truth table, the columns correspond to the input propositions and the 
output, and the rows correspond to the possible combinations of input truth 
values. The output column represents the truth value of the logical expression 
formed from the input propositions. 

In addition to its theoretical importance in the foundations of mathematics 
and logic, Boolean algebra has practical applications in Computer Science, 
where it is used in digital circuits and in the design of computer programs. In 
fact, Boolean algebra is the foundation of digital electronics and is used to 
design, build, and analyze digital systems. 

Is a fundamental concept in computing and digital electronics. It provides a 
way to reason about logic and binary data in a formal, mathematical way, and 
allows us to manipulate and analyze digital signals, such as those that 
represent the states of electronic switches in a computer circuit. 

Here are some of the keyways in which Boolean algebra is important 
in computing: 

• Logic design: Boolean algebra is used to design digital circuits and 
systems, such as CPUs, memory, and input/output devices. The 
principles of Boolean algebra allow us to design circuits that perform 
logical operations, such as AND, OR, and NOT, that are fundamental 
to digital electronics (Roth Jr, Kinney & John, 2020). 

 

• Computer programming: Many programming languages, such as C, 
C++, Java, and Python, include Boolean data types—usually 
represented as true/false or 1/0—and logical operators—such as &&, 
||, and !—that are based on Boolean algebra. These operators are used 
to control program flow and make decisions based on conditions 
(Tissenbaum, Sheldon & Abelson, 2019). 

• Digital signal processing: Many signal processing algorithms, such as 
filters, modulators, and demodulators, are based on Boolean algebraic 
concepts. For example, a digital filter might use Boolean operations to 
combine input samples and produce an output signal (Steiglitz, 2020). 

• Database design: Boolean algebra can be used to design database 
queries that involve logical operations such as AND, OR, and NOT. 
These queries can be used to retrieve specific data from a database 
based on certain conditions (Mount & Zumel, 2019). 

Overall, Boolean algebra is a powerful and essential tool for working with 
digital signals and logic in computing. Its concepts and principles are used 
throughout Computer Science and engineering to design and analyze digital 
systems, and to develop software and algorithms that manipulate and process 
digital data. 

In computer programming, a comparison is an operation based in Boolean 
Algebra that is used to compare two values or expressions and determine their 
relationship. The result of a comparison is usually a Boolean value, which is 
either true or false, depending on the outcome of the comparison. 

There are several types of comparisons that can be performed in computer 
programming, including: 

• Equality comparison: This type of comparison checks if two values 
are equal. In many programming languages, the equality operator is 
written as ==. 

• Inequality comparison: This type of comparison checks if two 
values are not equal. In many programming languages, the inequality 
operator is written as !=. 



Jairo Guerrero García

38

 

• Greater-than comparison: This type of comparison checks if one 
value is greater than another. In many programming languages, the 
greater-than operator is written as >. 

• Less-than comparison: This type of comparison checks if one value 
is less than another. In many programming languages, the less-than 
operator is written as <. 

• Greater-than-or-equal-to comparison: This type of comparison 
checks if one value is greater than or equal to another. In many 
programming languages, the greater-than-or-equal-to operator is 
written as >=. 

• Less-than-or-equal-to comparison: This type of comparison checks 
if one value is less than or equal to another. In many programming 
languages, the less-than-or-equal-to operator is written as <=. 

These comparison operators can be used in various contexts in programming, 
such as in conditional statements (e.g., if statements) and loops. Comparisons 
are a fundamental concept in programming and are used extensively in many 
programming tasks. In MATLAB, you can use comparison operators to 
compare values and produce logical (true/false) results. Here are some of the 
most used comparison operators in MATLAB: 

>: Greater than 

<: Less than 

>=: Greater than or equal to 

<=: Less than or equal to 

==: Equal to 

~=: Not equal to 

The following MATLAB script prompts the user to input their name and age, 
and then provides a message based on the age input, it’s an example of using 
comparisons in MATLAB. The code block checks the value of the age 
variable using conditional statements. If the age is less than 0 or greater than 



Mathematical foundations for computer science with MATLAB

39

 

• Greater-than comparison: This type of comparison checks if one 
value is greater than another. In many programming languages, the 
greater-than operator is written as >. 

• Less-than comparison: This type of comparison checks if one value 
is less than another. In many programming languages, the less-than 
operator is written as <. 

• Greater-than-or-equal-to comparison: This type of comparison 
checks if one value is greater than or equal to another. In many 
programming languages, the greater-than-or-equal-to operator is 
written as >=. 

• Less-than-or-equal-to comparison: This type of comparison checks 
if one value is less than or equal to another. In many programming 
languages, the less-than-or-equal-to operator is written as <=. 

These comparison operators can be used in various contexts in programming, 
such as in conditional statements (e.g., if statements) and loops. Comparisons 
are a fundamental concept in programming and are used extensively in many 
programming tasks. In MATLAB, you can use comparison operators to 
compare values and produce logical (true/false) results. Here are some of the 
most used comparison operators in MATLAB: 

>: Greater than 

<: Less than 

>=: Greater than or equal to 

<=: Less than or equal to 

==: Equal to 

~=: Not equal to 

The following MATLAB script prompts the user to input their name and age, 
and then provides a message based on the age input, it’s an example of using 
comparisons in MATLAB. The code block checks the value of the age 
variable using conditional statements. If the age is less than 0 or greater than 

 

130, it displays an error message. If the age is 18 or greater, it displays a 
message indicating that the user is an adult. Otherwise, it displays a message 
indicating that the user is not an adult. 

%---------------------------------------------------- 
% >>> THE AGE OF A PERSON <<< 
% by Jairo Guerrero, University of Nariño 
%---------------------------------------------------- 
age = 0; 
name = ''; 
%---------------------------------------------------- 
disp('>>> THE AGE OF A PERSON <<<'); 
name = input('What is your name? ', 's'); 
age = input('How old are you? (years) '); 
if age < 0 || age > 130 
    disp('Oops! wrong age...'); 
elseif age >= 18 
    disp(['Hi ', name, '. You are an adult']); 
else 
    disp(['Hi ', name, '. Your are NOT an adult']); 
end 
%---------------------------------------------------- 

Here we have another example using comparisons. Let’s create a MATLAB 
script for calculating the area of a triangle based on its semi perimeter. 

%---------------------------------------------------- 
% >>> THE AREA OF A TRIANGLE ACCORDING TO ITS SIDES <<< 
% by Jairo Guerrero, University of Nariño 
%---------------------------------------------------- 
a = 0.0; 
b = 0.0; 
c = 0.0; 
p = 0.0; 
s = 0.0; 
%---------------------------------------------------- 
 



Jairo Guerrero García

40

 

disp('>>> THE AREA OF A TRIANGLE ACCORDING TO ITS SIDES <<<') 
disp('') 
a = input('Type the side a: '); 
b = input('Type the side b: '); 
c = input('Type the side c: '); 
p = (a + b + c) / 2; 
if (p * (p - a) *(p - b) * (p - c)) <= 0 
    disp('Such a triangle does NOT exist...') 
else 
    s = sqrt(p * (p - a) *(p - b) * (p - c)); 
    disp(['the area of your triangle is ', num2str(s)]); 
end 
%----------------------------------------------------  
 

5.1 WORKSHOP #1 – COMPARISONS IN MATLAB 

This workshop will cover the topic of conditionals. Conditionals are considered 
as an algorithmic structure that allows branching −flow change− in the execution 
of a program from the evaluation of a logical expression −comparison−. In the 
theoretical development, regardless of the programming language, a foundation 
in Boolean algebra is required; expressions depend on the syntax of the 
programming language. From the conditionals, all the previous concepts are 
used. Therefore, it requires a greater motivational effort on the part of the teacher; 
For their part, students in their role as programmers assume situations where a 
decision must be made through Boolean logic. Thus, students require prior 
knowledge in propositional logic. 

Proposed Exercises: 

• We need a script for asking for the number of years according to the age of 
a person. If such a number is out of the valid range (between 0 and 120), an 
error message should be displayed; otherwise, calculate and show the number 
of months lived according to the number of years given by the user. 

 



Mathematical foundations for computer science with MATLAB

41

 

disp('>>> THE AREA OF A TRIANGLE ACCORDING TO ITS SIDES <<<') 
disp('') 
a = input('Type the side a: '); 
b = input('Type the side b: '); 
c = input('Type the side c: '); 
p = (a + b + c) / 2; 
if (p * (p - a) *(p - b) * (p - c)) <= 0 
    disp('Such a triangle does NOT exist...') 
else 
    s = sqrt(p * (p - a) *(p - b) * (p - c)); 
    disp(['the area of your triangle is ', num2str(s)]); 
end 
%----------------------------------------------------  
 

5.1 WORKSHOP #1 – COMPARISONS IN MATLAB 

This workshop will cover the topic of conditionals. Conditionals are considered 
as an algorithmic structure that allows branching −flow change− in the execution 
of a program from the evaluation of a logical expression −comparison−. In the 
theoretical development, regardless of the programming language, a foundation 
in Boolean algebra is required; expressions depend on the syntax of the 
programming language. From the conditionals, all the previous concepts are 
used. Therefore, it requires a greater motivational effort on the part of the teacher; 
For their part, students in their role as programmers assume situations where a 
decision must be made through Boolean logic. Thus, students require prior 
knowledge in propositional logic. 

Proposed Exercises: 

• We need a script for asking for the number of years according to the age of 
a person. If such a number is out of the valid range (between 0 and 120), an 
error message should be displayed; otherwise, calculate and show the number 
of months lived according to the number of years given by the user. 

 

 

Step 1: we open a new script and execute the clc, clear, and close commands 
to clear the screen and delete variables. 

clc; clear; close all %Clear screen and delete variables 

Step 2: with disp command we print the title of project, in this case “Number 
of years according to the age of a person.”  

disp("Number of years according to the age of a person") 

Step 3: with the disp command the message "How old are you?" is displayed. 
Then the variable x is created with input to store the value entered by the user.   

disp("How old are you?") 
disp(" ") 
x = input ("Enter your age: "); 

Step 4: Once the user enters the age, the if conditional validates if the age is 
between zero and 120, if the number is out of this range the message "The 
entered age is not validated" is displayed. 

if (x<0)||(x>120) 
    disp("The entered age is not valid, re- run the program") 

Step 5: if the entered age is in the range between 0 and 120, else will allow the program 
to continue executing and calculate the months and the message "the months lived are: 
". The command num2srt(m) displays the result numerically. 

else 
    m = x*12; 
    disp(" ") 
    d = ['the months lived are: ', num2str(m)] 
    disp(d) 
end 



Jairo Guerrero García

42

 

Step 6: Finally, some tests are performed in Command Window to check 
the correct functioning of the program. 

Figure 5-1. Command Window – Exercise 1 Comparisons in MATLAB 

• Constructing a script for asking for a number between 1 and 12. Show the 
name of the month according to the given number by the user; if such a 
number is not in the valid range, show an error message. 

Step 1: we open a new script and execute the clc, clear, and close commands 
to clear the screen and delete variables. 

clc; clear; close all; %Clear sreen and delete variables 

Step 2: with disp command we print the title of project, in this case “Number 
between 1 and 12. Show the name of the month according to the given number by 
the use.” 

disp("Number betwewn 1 and 12. Show the name of the month 
according to the given number by the user") 

Step 3: A variable x is created with the input command that will allow the 
user to enter the desired value. 

x = input ("Enter a number: "); 

Step 4: with the conditional switch each of the options entered is validated, if 
any option is fulfilled, the program displays the corresponding month, otherwise 
it shows the message " the entered value is incorrect re-run the program" saying 
that no option was fulfilled. 
 



Mathematical foundations for computer science with MATLAB

43

 

Step 6: Finally, some tests are performed in Command Window to check 
the correct functioning of the program. 

Figure 5-1. Command Window – Exercise 1 Comparisons in MATLAB 

• Constructing a script for asking for a number between 1 and 12. Show the 
name of the month according to the given number by the user; if such a 
number is not in the valid range, show an error message. 

Step 1: we open a new script and execute the clc, clear, and close commands 
to clear the screen and delete variables. 

clc; clear; close all; %Clear sreen and delete variables 

Step 2: with disp command we print the title of project, in this case “Number 
between 1 and 12. Show the name of the month according to the given number by 
the use.” 

disp("Number betwewn 1 and 12. Show the name of the month 
according to the given number by the user") 

Step 3: A variable x is created with the input command that will allow the 
user to enter the desired value. 

x = input ("Enter a number: "); 

Step 4: with the conditional switch each of the options entered is validated, if 
any option is fulfilled, the program displays the corresponding month, otherwise 
it shows the message " the entered value is incorrect re-run the program" saying 
that no option was fulfilled. 
 

 

switch x 
    case 1 
        disp('The mont is: January') 
    case 2 
        disp('The mont is: February') 
    case 3 
        disp('The mont is: March') 
    case 4 
        disp('The mont is: Abril')         
    case 5 
        disp('The mont is: May') 
    case 6 
        disp('The mont is: June') 
    case 7 
        disp('The mont is: July') 
 
    case 8 
        disp('The mont is: August') 
 
    case 9 
        disp('The mont is: September') 
    case 10 
        disp('The mont is: Octuber')         
    case 11 
        disp('The mont is: November') 
    case 12 
        disp('The mont is: December')             
    otherwise 
end 

Step 5: Finally, some tests are performed in Command Window to check 
the correct functioning of the program. 

Figure 5-2. Command Window – Exercise 2 Comparisons in MATLAB 



Jairo Guerrero García

44

 

• We need a script for calculating both solutions of a quadratic equation 
according to the values of the 3 coefficients provided by the user. 

Step 1: we open a new script and execute the clc, clear, and close commands 
to clear the screen and delete variables. 

clc; clear; close all; %Clear sreen and delete variables 

Step 2: with disp command we print the title of project, in this case “Number 
between 1 and 12. “Quadratic aquation solution”. 

disp("Quadratic equation solution") 

Step 3: variables A, B and C are created with the input command for the user 
to enter the value of the coefficients to solve the quadratic equation. 

A = input("enter the coefficient A: "); 

B = input("enter the coefficient B: "); 

C = input("enter the coefficient C: "); 

Step 4: Once the coefficients are entered, the solutions of the quadratic 
equation are found considering the following equation: 
 

𝒙𝒙𝟏𝟏,𝟐𝟐 = (−𝑩𝑩± √𝑩𝑩𝟐𝟐 − 𝟒𝟒𝟒𝟒𝟒𝟒
𝟐𝟐𝟐𝟐 ) 

 
The equation is entered into the program and the results obtained in x1 and 
x2 are stored and printed.  

disp("solutions of the quadratic equation are: ") 

disp(" ") 

 



Mathematical foundations for computer science with MATLAB

45

 

• We need a script for calculating both solutions of a quadratic equation 
according to the values of the 3 coefficients provided by the user. 

Step 1: we open a new script and execute the clc, clear, and close commands 
to clear the screen and delete variables. 

clc; clear; close all; %Clear sreen and delete variables 

Step 2: with disp command we print the title of project, in this case “Number 
between 1 and 12. “Quadratic aquation solution”. 

disp("Quadratic equation solution") 

Step 3: variables A, B and C are created with the input command for the user 
to enter the value of the coefficients to solve the quadratic equation. 

A = input("enter the coefficient A: "); 

B = input("enter the coefficient B: "); 

C = input("enter the coefficient C: "); 

Step 4: Once the coefficients are entered, the solutions of the quadratic 
equation are found considering the following equation: 
 

𝒙𝒙𝟏𝟏,𝟐𝟐 = (−𝑩𝑩± √𝑩𝑩𝟐𝟐 − 𝟒𝟒𝟒𝟒𝟒𝟒
𝟐𝟐𝟐𝟐 ) 

 
The equation is entered into the program and the results obtained in x1 and 
x2 are stored and printed.  

disp("solutions of the quadratic equation are: ") 

disp(" ") 

 

 

x1 = (-B+sqrt(B^2 - 4*A*C))/(2*A) 

x1 = (-B-sqrt(B^2 - 4*A*C))/(2*A) 

Step 5: Finally, some tests are performed in Command Window to check 
the correct functioning of the program. Also, the variables used can be 
consulted in the Workspace. 

 
 
 
 
 

Figure 5-3. Command Window and Workspace 

Exercise 3 Comparisons in MATLAB 
 
NOTE: What if A = 0? What if the equation has complex solutions? How can 
we improve the script in this regard? 
 
• Showing the greatest value from 3 given numbers by the user using comparisons 

Step 1: we open a new script and execute the clc, clear, and close commands 
to clear the screen and delete variables. 

clc; clear; close all; %Clear sreen and delete variables 

Step 2: with disp command we print the title of project, in this case 
“Compare three numbers”. 

disp("Compare three numbers") 



Jairo Guerrero García

46

 

Step 3: with the disp command the message "Enter three numbers" is printed 
for the user to enter the numbers. variables A, B and C are created with input 
to store the values entered by the user via keyboard. 

disp("Enter the three numbers") 
disp(" ") 
A = input("enter the number 1: "); 
B = input("enter the number 2: "); 
C = input("enter the number 3: "); 

Step 4: With the conditional if the values entered by the user are compared, first 
if determines if A is greater than B and C, if the condition is not fulfilled 
compares if B is greater than A and C, and finally compares if C is greater than 
A and B. when any of the conditional is fulfilled, the program prints the message 
"the greatest number is" and with the num2str command the numerical value of 
the variable is observed. 

if (A>B)&&(A>C) 
    da = ['the greatest number is: ' , num2str(A)]; 
    disp(da) 
elseif (B>A)&&(B>C) 
    db = ['the greatest number is: ' , num2str(B)]; 
    disp(db) 
elseif (C>A)&&(C>B) 
    dc = ['the greatest number is: ' , num2str(C)]; 
    disp(dc) 
end 

Step 5: Finally, some tests are performed in Command Window to check 
the correct functioning of the program. Also, the variables used can be 
consulted in the Workspace. 



Mathematical foundations for computer science with MATLAB

47

 

Step 3: with the disp command the message "Enter three numbers" is printed 
for the user to enter the numbers. variables A, B and C are created with input 
to store the values entered by the user via keyboard. 

disp("Enter the three numbers") 
disp(" ") 
A = input("enter the number 1: "); 
B = input("enter the number 2: "); 
C = input("enter the number 3: "); 

Step 4: With the conditional if the values entered by the user are compared, first 
if determines if A is greater than B and C, if the condition is not fulfilled 
compares if B is greater than A and C, and finally compares if C is greater than 
A and B. when any of the conditional is fulfilled, the program prints the message 
"the greatest number is" and with the num2str command the numerical value of 
the variable is observed. 

if (A>B)&&(A>C) 
    da = ['the greatest number is: ' , num2str(A)]; 
    disp(da) 
elseif (B>A)&&(B>C) 
    db = ['the greatest number is: ' , num2str(B)]; 
    disp(db) 
elseif (C>A)&&(C>B) 
    dc = ['the greatest number is: ' , num2str(C)]; 
    disp(dc) 
end 

Step 5: Finally, some tests are performed in Command Window to check 
the correct functioning of the program. Also, the variables used can be 
consulted in the Workspace. 

 

  
Figure 5-4. Command Window and Workspace 

 Exercise 4 Comparisons in MATLAB 

• Allowing the user for typing a number between 1 and 10. If such a 
number is out of the valid range, show an error message; otherwise, show 
the number in roman notation. 

Step 1: we open a new script and execute the clc, clear, and close commands 
to clear the screen and delete variables. 

clc; clear; close all; %Clear sreen and delete variables 

Step 2: with disp command we print the title of project, in this case “Number 
between 1 and 12. “Number in Roman notation”. 

disp("Number in roman notation") 

Step 3: Variable x is created with input so that the user can enter a value. 

x = input("enter the number: "); 

Step 4: with the conditional if, the first thing that is validated is if the number is 
in the range of 1 to 10, if it is not between those values, the program prints the 
message "the entered value is incorrect re-run the program". On the contrary if 
the value is in that range, the program with the elseif goes on to validate that 
value meets the condition and prints the corresponding Roman numeral. 
 
 



Jairo Guerrero García

48

 

if (x<=0)||(x>10) 
    disp("the entered value is incorrect re-run the program") 
elseif (x==1) 
    disp('the number is in roman notation: I') 
elseif (x==2) 
    disp('the number is in roman notation: II') 
elseif (x==3) 
    disp('the number is in roman notation: III') 
elseif (x==4) 
    disp('the number is in roman notation: IV') 
elseif (x==5) 
    disp('the number is in roman notation: V') 
elseif (x==6) 
    disp('the number is in roman notation: VI') 
elseif (x==7) 
    disp('the number is in roman notation: VII') 
elseif (x==8) 
    disp('the number is in roman notation: VIII') 
elseif (x==9) 
    disp('the number is in roman notation: IX') 
elseif (x==10) 
    disp('the number is in roman notation: X') 
end 

Step 5: Finally, some tests are performed in Command Window to check 
the correct functioning of the program.  

 
Figure 5-5 Command Window  –Exercise 5 Comparisons in MATLAB 

• Allowing the user for typing a letter of the English alphabet. Show its 
equivalent in morse notation. 



Mathematical foundations for computer science with MATLAB

49

 

if (x<=0)||(x>10) 
    disp("the entered value is incorrect re-run the program") 
elseif (x==1) 
    disp('the number is in roman notation: I') 
elseif (x==2) 
    disp('the number is in roman notation: II') 
elseif (x==3) 
    disp('the number is in roman notation: III') 
elseif (x==4) 
    disp('the number is in roman notation: IV') 
elseif (x==5) 
    disp('the number is in roman notation: V') 
elseif (x==6) 
    disp('the number is in roman notation: VI') 
elseif (x==7) 
    disp('the number is in roman notation: VII') 
elseif (x==8) 
    disp('the number is in roman notation: VIII') 
elseif (x==9) 
    disp('the number is in roman notation: IX') 
elseif (x==10) 
    disp('the number is in roman notation: X') 
end 

Step 5: Finally, some tests are performed in Command Window to check 
the correct functioning of the program.  

 
Figure 5-5 Command Window  –Exercise 5 Comparisons in MATLAB 

• Allowing the user for typing a letter of the English alphabet. Show its 
equivalent in morse notation. 

 

Step 1: we open a new script and execute the clc, clear, and close commands 
to clear the screen and delete variables. 

clc; clear; close all; %Clear sreen and delete variables 

Step 2: with disp command we print the title of project, in this case “Number 
between 1 and 12. “Morse notation”.  

disp("Morse notation") 

Step 3: A variable x is created with input so that the user can enter the letter. 
's' is added so that the user does not add quotation marks when entering the 
letter by keyboard, because as it is a character, MATLAB must perform this 
process so that the value entered is stored in the variable correctly.  

x = input("enter the letter : ", 's'); 

Step 4: When the user enters the letter, the program validates the entered 
information by means of the conditional if and elseif, when the entered letter 
meets the condition, the corresponding Morse notation is printed. 

if (x=='A') 
    disp("Morse notation is: ·-") 
elseif (x=='B') 
    disp("Morse notation is: -···") 
elseif (x=='C') 
    disp("Morse notation is: -·-·") 
elseif (x=='D') 
    disp("Morse notation is: -··") 
 
elseif (x=='E') 
    disp("Morse notation is: ·") 
elseif (x=='F') 
    disp("Morse notation is: ··-·") 
elseif (x=='G') 
    disp("Morse notation is: --·") 



Jairo Guerrero García

50

 

elseif (x=='H') 
    disp("Morse notation is: ····") 
elseif (x=='I') 
    disp("Morse notation is: ··") 
elseif (x=='J') 
    disp("Morse notation is: ·---") 
elseif (x=='K') 
    disp("Morse notation is: -·-") 
elseif (x=='L') 
    disp("Morse notation is: ·-··") 
elseif (x=='M') 
    disp("Morse notation is: --") 
elseif (x=='N') 
    disp("Morse notation is: -·") 
elseif (x=='O') 
    disp("Morse notation is: ---") 
elseif (x=='P') 
    disp("Morse notation is: ·--·") 
elseif (x=='Q') 
    disp("Morse notation is: --·-") 
elseif (x=='R') 
    disp("Morse notation is: ·-·") 
elseif (x=='S') 
    disp("Morse notation is: ···") 
elseif (x=='T') 
    disp("Morse notation is: -") 
elseif (x=='U') 
    disp("Morse notation is: ··-") 
elseif (x=='V') 
    disp("Morse notation is: ···-") 
elseif (x=='W') 
    disp("Morse notation is: ·--") 
elseif (x=='X') 
    disp("Morse notation is: -··-") 
elseif (x=='Y') 
    disp("Morse notation is: -·--") 



Mathematical foundations for computer science with MATLAB

51

 

elseif (x=='H') 
    disp("Morse notation is: ····") 
elseif (x=='I') 
    disp("Morse notation is: ··") 
elseif (x=='J') 
    disp("Morse notation is: ·---") 
elseif (x=='K') 
    disp("Morse notation is: -·-") 
elseif (x=='L') 
    disp("Morse notation is: ·-··") 
elseif (x=='M') 
    disp("Morse notation is: --") 
elseif (x=='N') 
    disp("Morse notation is: -·") 
elseif (x=='O') 
    disp("Morse notation is: ---") 
elseif (x=='P') 
    disp("Morse notation is: ·--·") 
elseif (x=='Q') 
    disp("Morse notation is: --·-") 
elseif (x=='R') 
    disp("Morse notation is: ·-·") 
elseif (x=='S') 
    disp("Morse notation is: ···") 
elseif (x=='T') 
    disp("Morse notation is: -") 
elseif (x=='U') 
    disp("Morse notation is: ··-") 
elseif (x=='V') 
    disp("Morse notation is: ···-") 
elseif (x=='W') 
    disp("Morse notation is: ·--") 
elseif (x=='X') 
    disp("Morse notation is: -··-") 
elseif (x=='Y') 
    disp("Morse notation is: -·--") 

 

elseif (x=='Z') 
    disp("Morse notation is: --·") 
end 

Step 5: Finally, some tests are performed in Command Window to check 
the correct functioning of the program. 
 

 

Figure 5-6.  Command Window – Exercise 6 Comparisons in MATLAB 

 

 

 

 

 

 

 

 

 

 

 

 



52

 

 

 

[CHAPTER 6] — LOOPS 

A loop in computer programming is a programming structure that allows a 
set of instructions to be executed repeatedly until a certain condition is met. 
A loop enables a program to perform a repetitive task, such as iterating over 
a list of items or repeatedly performing a calculation, without having to 
manually code each iteration (Hosseini, Ouaknine & Worrell, 2019). 

There are different types of loops in programming, including: 

• for loop: This loop is used to iterate over a sequence of values, such 
as a list or range of numbers, for a specific number of times. 

• while loop: This loop repeatedly executes a set of instructions while 
a certain condition is true. The loop will continue until the condition 
becomes false. 

• do-while loop: This loop is like a while loop, but it executes the 
instructions at least once before checking the condition. 

Loops are a fundamental programming concept, and they are used in many 
different applications to automate repetitive tasks, perform calculations, and 
process data. 

MATLAB provides several types of loops, including for loops, while loops, 
and do-while loops. Here's an overview of each of these types of loops and 
how to use them in MATLAB. 

For Loops: A for loop is used when you want to execute a set of statements a 
specific number of times. The syntax of a for loop in MATLAB is: 

for index = values 
    % staments 
end 



Mathematical foundations for computer science with MATLAB

53

 

 

 

[CHAPTER 6] — LOOPS 

A loop in computer programming is a programming structure that allows a 
set of instructions to be executed repeatedly until a certain condition is met. 
A loop enables a program to perform a repetitive task, such as iterating over 
a list of items or repeatedly performing a calculation, without having to 
manually code each iteration (Hosseini, Ouaknine & Worrell, 2019). 

There are different types of loops in programming, including: 

• for loop: This loop is used to iterate over a sequence of values, such 
as a list or range of numbers, for a specific number of times. 

• while loop: This loop repeatedly executes a set of instructions while 
a certain condition is true. The loop will continue until the condition 
becomes false. 

• do-while loop: This loop is like a while loop, but it executes the 
instructions at least once before checking the condition. 

Loops are a fundamental programming concept, and they are used in many 
different applications to automate repetitive tasks, perform calculations, and 
process data. 

MATLAB provides several types of loops, including for loops, while loops, 
and do-while loops. Here's an overview of each of these types of loops and 
how to use them in MATLAB. 

For Loops: A for loop is used when you want to execute a set of statements a 
specific number of times. The syntax of a for loop in MATLAB is: 

for index = values 
    % staments 
end 

 

The index variable is the loop counter, and the values variable is a vector or 
matrix that contains the values that the loop counter will take. For example, 
to print the numbers from 1 to 5, you could use the following code: 

for i = 1:5 
    disp(i) 
end 

While Loops: A while loop is used when you want to execute a set of 
statements if a certain condition is true. The syntax of a while loop in 
MATLAB is: 

while condition 
    % staments 
end 

The condition variable is the condition that the loop will check before 
executing each iteration of the loop. For example, to print the numbers from 
1 to 5 using a while loop, you could use the following code: 

i = 1; 
while i<=5 
    disp(i) 
    i = i + 1; 
end 

Do-While Loops: MATLAB doesn't have a built-in do-while loop, but you 
can achieve the same effect using a while loop that executes at least once. For 
example, to print the numbers from 1 to 5 using a do-while loop, you could 
use the following code: 

i = 1; 
do 
    disp(i) 
    i = 1 + 1; 
while i<= 5 



Jairo Guerrero García

54

 

In this code, the do block executes at least once before the while condition 
is checked. 

The following MATLAB script calculates the factorial of a positive integer 
entered by the user. 

Here is a line-by-line explanation of what the code is doing: 

• Line 5: This line initializes a variable i to 1. i will be used as a counter 
in the while loop that calculates the factorial. 

• Line 6: This line initializes a variable f to 1. f will be used to 
accumulate the factorial as the loop runs. 

• Line 7: This line initializes a variable n to 0. n is not actually used for 
anything in this line, but it's good practice to initialize all variables. 

• Line 9: This line displays a message on the console, indicating that 
the script is about to calculate the factorial of a number. 

• Line 10: This line displays a blank line, for formatting purposes. 

• Line 11: This line prompts the user to input a positive number, which 
is stored in the variable n. 

• Line 12: This line checks if n is less than 0. If it is, a message is displayed 
indicating that only positive values should be typed. If n is greater than 
or equal to 0, the loop that calculates the factorial is executed. 

• Line 15: This line starts a while loop that runs as long as i is less than 
or equal to n. 

• Line 16: This line updates f to be equal to its current value times i. 
The effect of this is to calculate the factorial of n. 

• Line 17: This line increases i by 1, so that the loop will eventually terminate. 

• Line 19: This line displays the final result, which is the factorial of n. The 
num2str function is used to convert the number values to strings so they 
can be concatenated with the rest of the message in the disp function. 



Mathematical foundations for computer science with MATLAB

55

 

In this code, the do block executes at least once before the while condition 
is checked. 

The following MATLAB script calculates the factorial of a positive integer 
entered by the user. 

Here is a line-by-line explanation of what the code is doing: 

• Line 5: This line initializes a variable i to 1. i will be used as a counter 
in the while loop that calculates the factorial. 

• Line 6: This line initializes a variable f to 1. f will be used to 
accumulate the factorial as the loop runs. 

• Line 7: This line initializes a variable n to 0. n is not actually used for 
anything in this line, but it's good practice to initialize all variables. 

• Line 9: This line displays a message on the console, indicating that 
the script is about to calculate the factorial of a number. 

• Line 10: This line displays a blank line, for formatting purposes. 

• Line 11: This line prompts the user to input a positive number, which 
is stored in the variable n. 

• Line 12: This line checks if n is less than 0. If it is, a message is displayed 
indicating that only positive values should be typed. If n is greater than 
or equal to 0, the loop that calculates the factorial is executed. 

• Line 15: This line starts a while loop that runs as long as i is less than 
or equal to n. 

• Line 16: This line updates f to be equal to its current value times i. 
The effect of this is to calculate the factorial of n. 

• Line 17: This line increases i by 1, so that the loop will eventually terminate. 

• Line 19: This line displays the final result, which is the factorial of n. The 
num2str function is used to convert the number values to strings so they 
can be concatenated with the rest of the message in the disp function. 

 

Overall, this script is a simple but effective example of how to use MATLAB 
to calculate a mathematical function. 

 
Figure 6-1. MATLAB script calculates the factorial of a positive integer 

entered by the user 

The following MATLAB script calculates the divisors of a given number 
entered by the user. 

Here is a line-by-line explanation of what the code is doing: 

• Line 5: This line initializes a variable n to 0. n will store the number 
entered by the user later in the code. 

• Line 6: This line initializes a variable i to 1. i is a counter variable that 
will be used in the while loop later to test for divisors. 

• Line 8: This line displays a message on the console, indicating that 
the script is about to calculate the divisors of a number. 

• Line 9: This line displays a blank line, for formatting purposes. 

• Line 10: This line prompts the user to input a number, which is stored 
in the variable n. 



Jairo Guerrero García

56

 

• Line 11: This line starts a while loop that runs as long as i is less than 
or equal to n. 

• Line 12: This line checks if i is a divisor of n, using the mod function. 
If the remainder of the division of n by i is 0, then i is a divisor of n, 
so the code inside the if statement is executed. 

• Line 13: This line displays the value of i along with a message 
indicating that it is a divisor of n. The num2str function is used to 
convert the number values to strings so they can be concatenated with 
the rest of the message in the disp function. 

• Line 15: This line increases i by 1, so that the loop will eventually terminate. 

• Line 16: This is the end of the while loop. 

Overall, this script is a simple but effective example of how to use MATLAB 
to calculate the divisors of a number. It demonstrates the use of the mod 
function to check for divisibility and the while loop for repeating a task a 
certain number of times. 

 

Figure 6-2. MATLAB script calculates the divisors of a given number entered 
by the user 



Mathematical foundations for computer science with MATLAB

57

 

• Line 11: This line starts a while loop that runs as long as i is less than 
or equal to n. 

• Line 12: This line checks if i is a divisor of n, using the mod function. 
If the remainder of the division of n by i is 0, then i is a divisor of n, 
so the code inside the if statement is executed. 

• Line 13: This line displays the value of i along with a message 
indicating that it is a divisor of n. The num2str function is used to 
convert the number values to strings so they can be concatenated with 
the rest of the message in the disp function. 

• Line 15: This line increases i by 1, so that the loop will eventually terminate. 

• Line 16: This is the end of the while loop. 

Overall, this script is a simple but effective example of how to use MATLAB 
to calculate the divisors of a number. It demonstrates the use of the mod 
function to check for divisibility and the while loop for repeating a task a 
certain number of times. 

 

Figure 6-2. MATLAB script calculates the divisors of a given number entered 
by the user 

 

The following MATLAB script generates a random integer between 1 and 
100, and then prompts the user to guess the number. The program provides 
feedback on each guess, indicating whether the user should guess a higher or 
lower number, until the user correctly guesses the "magic" number. 

Here is a line-by-line explanation of what the code is doing: 

• Line 5: This line generates a random integer between 1 and 100 using 
the randi function, and stores it in the variable magic. 

• Line 6: This line initializes the variable n to 0. n will store the user's 
guess later in the code. 

• Line 7: This line initializes the variable tries to 0. tries will store the 
number of guesses made by the user. 

• Line 9: This line displays a message on the console, indicating that 
the script is about to prompt the user to guess a magic number. 

• Line 10: This line starts a while loop that will continue until the user 
correctly guesses the magic number. 

• Line 11: This line prompts the user to input a number between 1 and 
100, which is stored in the variable n. 

• Line 12: This line increasess the variable tries by 1, indicating that the 
user has made another guess. 

• Line 13-19: These lines use if-elseif-else statements to provide 
feedback to the user based on their guess. If the guess is too low, the 
code in line 14 is executed. If the guess is too high, the code in line 16 
is executed. If the guess is correct, the code in line 18 is executed. 

• Line 20: This is the end of the while loop. 

Overall, this script is a fun example of how to use MATLAB to create a 
simple guessing game. It demonstrates the use of conditional statements (if-
elseif-else) for providing feedback to the user and the use of a while loop for 
repeating a task until a certain condition is met. 



Jairo Guerrero García

58

 

 
Figure 6-3. MATLAB script generates a random integer between 1 and 100 

The following MATLAB script is a program for listing prime numbers. Here's 
a breakdown of the code: 

• pn, i, n, j, and dc are all variables that are initialized to zero. pn represents 
the number of prime numbers to be listed, i is a counter for the while 
loop, n represents the current number being evaluated, j is a counter for 
the for loop, and dc is a counter for the number of divisors of n. 

• The fprintf function is used to print the string "LISTING PRIME 
NUMBERS" to the command window. 

• The input function is used to prompt the user for the number of prime 
numbers they want to list. The input is stored in the pn variable. 

• The while loop runs until i is less than pn. 

• Inside the while loop, dc is set to 0. This variable is used to count the 
number of divisors of the current number n. 

• A for loop is used to iterate through all the numbers from 1 to n. Inside 
the for loop, the rem function is used to check if n is divisible by j. If 
it is, dc is increased by 1. 



Mathematical foundations for computer science with MATLAB

59

 

 
Figure 6-3. MATLAB script generates a random integer between 1 and 100 

The following MATLAB script is a program for listing prime numbers. Here's 
a breakdown of the code: 

• pn, i, n, j, and dc are all variables that are initialized to zero. pn represents 
the number of prime numbers to be listed, i is a counter for the while 
loop, n represents the current number being evaluated, j is a counter for 
the for loop, and dc is a counter for the number of divisors of n. 

• The fprintf function is used to print the string "LISTING PRIME 
NUMBERS" to the command window. 

• The input function is used to prompt the user for the number of prime 
numbers they want to list. The input is stored in the pn variable. 

• The while loop runs until i is less than pn. 

• Inside the while loop, dc is set to 0. This variable is used to count the 
number of divisors of the current number n. 

• A for loop is used to iterate through all the numbers from 1 to n. Inside 
the for loop, the rem function is used to check if n is divisible by j. If 
it is, dc is increased by 1. 

 

• After the for loop, if dc is equal to 2, then the current number n is a 
prime number, and it is printed to the command window using the 
fprintf function. i is also increased by 1 to keep track of the number of 
prime numbers listed. 

• Finally, n is increased by 1 and the loop continues. 

This program uses a brute force method to check whether each number is 
prime, by checking whether it has only two divisors. There are more efficient 
algorithms for determining whether a number is prime, but this method is 
simple and easy to understand. 

%---------------------------------------------------- 
% >>> LISTING PRIME NUMBERS <<< 
% by Jairo Guerrero, University of Nariño 
%----------------------------------------------------     
pn = 0; 
i = 0; 
n = 2; 
j = 0; 
dc = 0; 
%----------------------------------------------------   
fprintf("LISTING PRIME NUMBERS\n"); 
pn = input("How many prime numbers do you want? "); 
while i < pn 
    dc = 0; 
    for j = 1:n 
        if rem(n,j) == 0 
            dc = dc + 1; 
        end 
    end 
 
    if dc == 2  
        fprintf("%d\n",n); 
        i = i + 1; 
    end 
    n = n + 1; 
end 
%----------------------------------------------------  



Jairo Guerrero García

60

 

6.1 WORKSHOP #2 – LOOPS IN MATLAB 
In this workshop, the topic about loops is covered. Loops are algorithmic 
structures that allow the iteration −repetition− of one or more instructions of 
the program from a starting point −start−, the evaluation of a logical 
expression −comparison of completion− and the progress of this through 
increments or control variable decrements. Within the theoretical 
development, regardless of the programming language, a foundation in 
Boolean algebra is required; expressions depend on the syntax of the 
programming language. At this point, abstraction takes a leading role when 
designing cyclic structures. 

Proposed Exercises: 

clc; clear; close all; %Clear sreen and delete variables 
 
disp ("sum of even and odd numbers") 
 
vector = 1:1:200; 
even = 1; 
odd = 1; 
for i = 1 :length(vector) 
 
    if (mod(vector(i),2) == 0); 
        V_even(even) = (vector(i)); 
        sum_even = sum(V_even); 
        even = even + 1; 
    else 
        V_odd(odd) = (vector(i)); 
        sum_odd = sum(V_odd); 
        odd = odd +1; 
    end 
 
end 
 
disp(" ") 
disp("sum of even numbers") 
sum_even 
disp(" ") 
disp("sum of odd numbers") 
sum odd 



Mathematical foundations for computer science with MATLAB

61

 

6.1 WORKSHOP #2 – LOOPS IN MATLAB 
In this workshop, the topic about loops is covered. Loops are algorithmic 
structures that allow the iteration −repetition− of one or more instructions of 
the program from a starting point −start−, the evaluation of a logical 
expression −comparison of completion− and the progress of this through 
increments or control variable decrements. Within the theoretical 
development, regardless of the programming language, a foundation in 
Boolean algebra is required; expressions depend on the syntax of the 
programming language. At this point, abstraction takes a leading role when 
designing cyclic structures. 

Proposed Exercises: 

clc; clear; close all; %Clear sreen and delete variables 
 
disp ("sum of even and odd numbers") 
 
vector = 1:1:200; 
even = 1; 
odd = 1; 
for i = 1 :length(vector) 
 
    if (mod(vector(i),2) == 0); 
        V_even(even) = (vector(i)); 
        sum_even = sum(V_even); 
        even = even + 1; 
    else 
        V_odd(odd) = (vector(i)); 
        sum_odd = sum(V_odd); 
        odd = odd +1; 
    end 
 
end 
 
disp(" ") 
disp("sum of even numbers") 
sum_even 
disp(" ") 
disp("sum of odd numbers") 
sum odd 

 

• We want to calculate independently the sum of the numbers even and odd 
between 1 and 200. 

Step 1: we open a new script and execute the clc, clear and close commands 
to clear the screen and delete variables. 
 
Step 2: with the disp command we print the title of our project, in this case 
"sum of even and odd numbers." 
 
Step 3: the variable "vector" is defined that corresponds to the vector of 
values from 1 to 200. In addition, two variables are added (even and odd) that 
will be the counters for the for loop. 
 
Step4: a for loop is created to go through each of the positions of the vector 
and with a conditional if it is determined if the number is odd or even. 
 
Conditional: for the conditional we used the mod that returns what is left over 
in a division, to determine if the number is even, we use the mod 2 and if we 
obtain a residue equal to zero the number is stored in the vector V_even that 
corresponds to the even numbers, if it does not meet the condition the number 
is stored in the vector V_odd that corresponds to the odd numbers. 
 
Step 5: Once the even and odd numbers have been obtained and their 
corresponding vector has been stored, the sum is performed with the sum 
command, which allows the sum of the elements in a vector. 
 
Step 6: When the program is executed the results are printed on the screen, 
the disp command is used to display them on the right side of the screen. 
 
Step 7: Some of the results obtained in the exercise can also be consulted, 
such as the vectors of the odd and even numbers (V_even, V_odd) in the 
lower left part of the screen. 
 
• Read a series of non-zero numbers (the last number of the series is –99) and 
get the greatest number. As a result, the number should be displayed. greater 
and a negative number indication message, in case a negative number has 
been read. 



Jairo Guerrero García

62

 

Step 1: we open a new script and execute the clc, clear, and close commands 
to clear the screen and delete variables.  

clc; clear; close all; %Clear sreen and delete variables 

Step 2: with disp command we print the title of project, in this case “Read a 
series of non-zero numbers.” 

disp("Read a series of non-zero numbers") 

Step 3: A variable n is defined with input that allows the user to determine 
how many numbers he will need for the series; v is also defined as an empty 
vector that will serve to store the series of numbers. And a message with the 
disp command for the user to type the numbers of the series. 

n = input("Enter how many numbers you require for the series: ") 
v = []; 
disp("enter the numbers") 

Step 4:  the for loop is created to store the data of the series entered by the user, 
the conditional if allows to verify the information required in the problem which 
is: non-zero numbers and the last number of the series is -99, if any of the 
conditions are not met the program will send a message and must be executed 
again, on the other hand if the conditions are met, the values of the series will be 
stored in the vector v 

for i = 1:n 
    x = input("Number: "); 
 
    if ( x == 0 )||(x < -99) 
        disp("A number out of the series was entered, re-run  
the program") 
        break 
    else 
        v = [v,x]; 
    end 
 
end 



Mathematical foundations for computer science with MATLAB

63

 

Step 1: we open a new script and execute the clc, clear, and close commands 
to clear the screen and delete variables.  

clc; clear; close all; %Clear sreen and delete variables 

Step 2: with disp command we print the title of project, in this case “Read a 
series of non-zero numbers.” 

disp("Read a series of non-zero numbers") 

Step 3: A variable n is defined with input that allows the user to determine 
how many numbers he will need for the series; v is also defined as an empty 
vector that will serve to store the series of numbers. And a message with the 
disp command for the user to type the numbers of the series. 

n = input("Enter how many numbers you require for the series: ") 
v = []; 
disp("enter the numbers") 

Step 4:  the for loop is created to store the data of the series entered by the user, 
the conditional if allows to verify the information required in the problem which 
is: non-zero numbers and the last number of the series is -99, if any of the 
conditions are not met the program will send a message and must be executed 
again, on the other hand if the conditions are met, the values of the series will be 
stored in the vector v 

for i = 1:n 
    x = input("Number: "); 
 
    if ( x == 0 )||(x < -99) 
        disp("A number out of the series was entered, re-run  
the program") 
        break 
    else 
        v = [v,x]; 
    end 
 
end 

 

Step 5: the variable M is defined, and the max command is used to determine 
the maximum value in the vector, the conditional if will validate if the greatest 
number has negative sign, if it meets the condition, it will show the following 
message "the greater number has a negative sign " otherwise it will print the 
following message” the greater number is” and will display the number. 

M = max(v); 
if M<0 
    disp("the greater number has a negative sign") 
    M 
 
else 
    disp("the greater number") 
    M 
end 

Step 6: Finally, some tests are performed in Command Window to check 
the correct functioning of the program. Also, the variables used can be 
consulted in the Workspace. 

 
 
 
 
 



Jairo Guerrero García

64

 

 
 
 
 
 
 
 
 

Figure 6-4. Command window and Workspace. LOOPS IN MATLAB: Read a 
series of non-zeros numbers 

 
• Calculate and display the sum and product of the even numbers between 
20 and 400, both inclusive. 

Step 1: we open a new script and execute the clc, clear, and close commands 
to clear the screen and delete variables. 

clc; clear; close all; %Clear sreen and delete variables 

Step 2: with disp command we print the title of project, in this case 
“Calculate and display the sum and product of the even numbers between 20 
and 400, both inclusive.” 

disp("Calculate and display the sum and product of the even 
numbers") 
disp("between 20 and 400, both inclusive") 

Step 3: the vector variable is defined with the corresponding even numbers 
from 20 to 400 and a counter with the name sum_even that will be used later 
to sum the numbers in the for loop. 

vector = 20:2:400; 
sum_even = 0; 

Step 4:  the for loop will allow to go through the positions of the vector containing 
the even numbers and perform the sum of each of these values that will be stored 
in the variable sum_even. By means of the prod command, the product of the 
corresponding even numbers stored in the vector variable is performed. 



Mathematical foundations for computer science with MATLAB

65

 

 
 
 
 
 
 
 
 

Figure 6-4. Command window and Workspace. LOOPS IN MATLAB: Read a 
series of non-zeros numbers 

 
• Calculate and display the sum and product of the even numbers between 
20 and 400, both inclusive. 

Step 1: we open a new script and execute the clc, clear, and close commands 
to clear the screen and delete variables. 

clc; clear; close all; %Clear sreen and delete variables 

Step 2: with disp command we print the title of project, in this case 
“Calculate and display the sum and product of the even numbers between 20 
and 400, both inclusive.” 

disp("Calculate and display the sum and product of the even 
numbers") 
disp("between 20 and 400, both inclusive") 

Step 3: the vector variable is defined with the corresponding even numbers 
from 20 to 400 and a counter with the name sum_even that will be used later 
to sum the numbers in the for loop. 

vector = 20:2:400; 
sum_even = 0; 

Step 4:  the for loop will allow to go through the positions of the vector containing 
the even numbers and perform the sum of each of these values that will be stored 
in the variable sum_even. By means of the prod command, the product of the 
corresponding even numbers stored in the vector variable is performed. 

 

for i=1:length(vector) 
    sum_even = sum_even + vector(i); 
end 
 
prod_even = prod(vector) 

Step 5: By means of the disp command, a message and its corresponding 
result are printed on the screen. 

disp(" ") 
disp("Sum of even numbers between 20 and 400 is: ") 
sum_even 
 
disp(" ") 
disp("Product of even numbers between 20 and 400 is: ") 
prod_even 

Step 6: finally, the program is executed, and its correct operation is verified in 
the Command Window screen, Also, the variables used can be consulted in the 
Workspace. The product, having a very large result, prints inf (infinity). 

 

Figure 6-5. Command window and Workspace. LOOPS IN MATLAB: Calculate 
and display the sum and product of the even numbers between 20 and 400 

• Calculate the sum of the squares of the first hundred natural numbers. 

Step 1: we open a new script and execute the clc, clear, and close commands 
to clear the screen and delete variables. 

clc; clear; close all; %Clear sreen and delete variables 



Jairo Guerrero García

66

 

Step 2: with disp command we print the title of project, in this case 
“Calculate the sum of the squares.” 

disp("Calculate the sum of the squares") 

Step 3:  The vector variable is defined to obtain the first hundred numbers to 
later find the square. A sum_squares counter is also defined to perform the 
operation corresponding to the sum of the squares.  
 
vector = 1:1:100; 
sum_squares = 0; 
 
Step 4: the for loop is used to go through the numbers from one to one 
hundred and by means of the sum_squares counter, the result obtained by 
squaring each number and adding it to the previous one is accumulated. 

for i =1:length(vector) 
    sum_squares = sum_squares + (i^2); 
end 

Step 5: The result obtained with the disp command is printed on the screen. 

disp(" ") 
disp("The sum of the squares of the first hundred natural 
numbers is: ") 
sum_squares 

Step 6: The program is executed, and the correct operation is verified in the 
Command Window, and the variables used in the Workspace can also be observed.  
 

 

Figure 6-6. Command window and Workspace. LOOPS IN MATLAB: 
Calculate the sum of the squares 



Mathematical foundations for computer science with MATLAB

67

 

Step 2: with disp command we print the title of project, in this case 
“Calculate the sum of the squares.” 

disp("Calculate the sum of the squares") 

Step 3:  The vector variable is defined to obtain the first hundred numbers to 
later find the square. A sum_squares counter is also defined to perform the 
operation corresponding to the sum of the squares.  
 
vector = 1:1:100; 
sum_squares = 0; 
 
Step 4: the for loop is used to go through the numbers from one to one 
hundred and by means of the sum_squares counter, the result obtained by 
squaring each number and adding it to the previous one is accumulated. 

for i =1:length(vector) 
    sum_squares = sum_squares + (i^2); 
end 

Step 5: The result obtained with the disp command is printed on the screen. 

disp(" ") 
disp("The sum of the squares of the first hundred natural 
numbers is: ") 
sum_squares 

Step 6: The program is executed, and the correct operation is verified in the 
Command Window, and the variables used in the Workspace can also be observed.  
 

 

Figure 6-6. Command window and Workspace. LOOPS IN MATLAB: 
Calculate the sum of the squares 

 

• Add ten numbers entered by keyboard. 

Step 1: we open a new script and execute the clc, clear, and close commands 
to clear the screen and delete variables. 

clc; clear; close all; %Clear sreen and delete variables 

Step 2: with disp command we print the title of project, in this case “Add ten 
numbers entered by keyboard”. 

disp("Add ten numbers entered by keyboard") 

Step 3: A variable L is defined to determine the ten numbers that the user 
will enter and store by keyboard, v is defined as an empty vector that will 
serve to store the data entered by the user, a message is also displayed on the 
screen for the user to enter the numbers using the disp command. 

L = 10; 
v = []; 
disp("enter the numbers") 
disp(" ") 

Step 4:  the for loop allows the user to enter the ten numbers, by means of 
the variable x with the input command the user will enter the desired 
numbers, and in the vector v the values will be stored. The loop will end when 
the user has typed the ten numbers. 

for i = 1:L 
    x = input("Number: "); 
    v = [v,x]; 
end 

Step 5: The numbers entered by the user are displayed on the screen. 

disp("The numbers entered are") 
v 



Jairo Guerrero García

68

 

Step 6: The program is executed, and the correct operation is verified in the 
Command Window, and the variables used in the Workspace can also be observed. 
The ten numbers entered by the user are displayed in the command window. 

 

Figure 6-7. Command Window and Workspace. LOOPS IN MATLAB: Add ten 
numbers entered by keyboard 

  

 

 

 

 

 

 

 

 



69

 

Step 6: The program is executed, and the correct operation is verified in the 
Command Window, and the variables used in the Workspace can also be observed. 
The ten numbers entered by the user are displayed in the command window. 

 

Figure 6-7. Command Window and Workspace. LOOPS IN MATLAB: Add ten 
numbers entered by keyboard 

  

 

 

 

 

 

 

 

 

 

 

 

 

[CHAPTER 7] — FUNCTIONS 

A function is a block of code in computer programming that performs a 
specific task. Functions are designed to be reusable, meaning that they can be 
called from different parts of a program and with different inputs 
(Kochenderfer & Wheeler, 2019). 

Functions can be defined in most programming languages, including 
MATLAB, Python, Java, and many others. Here are some common 
characteristics of functions in programming: 

• A function has a name, which is used to identify it when it is called 
from other parts of the program. 

• A function can take inputs, also known as parameters, which are values 
that the function uses to perform its task. These inputs can be of different 
types, depending on the language and the needs of the function. 

• A function can return a value or set of values as its output. This output 
can be of different types, depending on the language and the needs of 
the function. 

• A function can contain any number of statements, which are executed 
when the function is called. 

• A function can be defined anywhere in a program, but it is usually 
defined before it is called. 

In computer programming, there are several types of functions, each with its 
own specific purpose. Here are some common types of functions: 



Jairo Guerrero García

70

 

• Built-in functions: These are functions that are built into the 
programming language or provided by the programming 
environment. Examples of built-in functions include print and input 
in Python, plot and rand in MATLAB, and System.out.println in Java. 

• User-defined functions: These are functions that are created by the 
user in the program to perform specific tasks. In many programming 
languages, you can define your own functions using the function 
keyword. These functions can be designed to take input, perform 
calculations, and return output. 

• Recursive functions: These are functions that call themselves 
repeatedly until a condition is met. Recursive functions are useful for 
solving problems that can be broken down into smaller sub-problems. 
Examples of recursive functions include the Fibonacci sequence and 
calculating the factorial of a number. 

• Lambda functions (also known as anonymous functions): These are 
functions that are defined without a name and can be used as 
arguments to other functions. Lambda functions are useful for 
performing simple operations and can help simplify code. Examples 
of functions that can take lambda functions as arguments include map 
and filter in Python and arrayfun in MATLAB. 

• Higher-order functions: These are functions that take one or more 
functions as arguments or return a function as output. Higher-
order functions are useful for creating more modular and flexible 
code. Examples of higher-order functions include sort and map in 
Python and arrayfun and feval in MATLAB. 

These are just a few examples of the types of functions that exist in computer 
programming. Different programming languages may have their own specific 
types of functions or use different terminology, but the underlying concepts 
are similar. 

 

 



Mathematical foundations for computer science with MATLAB

71

 

• Built-in functions: These are functions that are built into the 
programming language or provided by the programming 
environment. Examples of built-in functions include print and input 
in Python, plot and rand in MATLAB, and System.out.println in Java. 

• User-defined functions: These are functions that are created by the 
user in the program to perform specific tasks. In many programming 
languages, you can define your own functions using the function 
keyword. These functions can be designed to take input, perform 
calculations, and return output. 

• Recursive functions: These are functions that call themselves 
repeatedly until a condition is met. Recursive functions are useful for 
solving problems that can be broken down into smaller sub-problems. 
Examples of recursive functions include the Fibonacci sequence and 
calculating the factorial of a number. 

• Lambda functions (also known as anonymous functions): These are 
functions that are defined without a name and can be used as 
arguments to other functions. Lambda functions are useful for 
performing simple operations and can help simplify code. Examples 
of functions that can take lambda functions as arguments include map 
and filter in Python and arrayfun in MATLAB. 

• Higher-order functions: These are functions that take one or more 
functions as arguments or return a function as output. Higher-
order functions are useful for creating more modular and flexible 
code. Examples of higher-order functions include sort and map in 
Python and arrayfun and feval in MATLAB. 

These are just a few examples of the types of functions that exist in computer 
programming. Different programming languages may have their own specific 
types of functions or use different terminology, but the underlying concepts 
are similar. 

 

 

 

In MATLAB, we can follow the steps below in order to create and use functions.  

1. Open a new script in MATLAB and type the function keyword 
followed by the name of the function you want to create. The name of 
the function should be descriptive and meaningful, as it will be used 
to call the function from other parts of your code. 

2. After the function name, list the input arguments inside parentheses. 
Input arguments are the values that your function will take as input 
when it is called. You can have zero or more input arguments. 

3. Next, use the = operator to define the output arguments of the 
function, if any. Output arguments are the values that your function 
will return as output when it is called. You can have zero or more 
output arguments. 

4. Write the code that you want your function to execute. This can include 
any valid MATLAB code, such as loops, conditionals, and calculations. 

5. When your function is done, use the end keyword to indicate the end 
of the function. 

Here's an example of a simple function that takes two input arguments and 
returns their sum: 

funtion result = add(a,b) 
%this function adds wo numbers and returns the result 
result = a + b; 
end 

To call this function from other parts of your code, you simply use its name 
and pass in the necessary input arguments, like this: 

x = add(3, 4); 

In this example, the function add is called with the arguments 3 and 4. The result 
of the function is assigned to the variable x, which will have the value 7. 



Jairo Guerrero García

72

 

When calling a function, you can also use the [] operator to capture the output 
arguments of the function, like this: 

[a, b]= myFunction(input1, input2); 

In this example, myFunction is called with two input arguments, input1 and 
input2. The two output arguments of the function are assigned to the variables 
a and b. 

In addition to creating your own functions, MATLAB has many built-in 
functions that you can use in your code. You can find a list of these functions 
in the MATLAB documentation. 

The flowing MATLAB script defines a function called GoldenRatio that takes 
one input argument fn, which represents the number of Fibonacci numbers to 
use for the calculation. 

Inside the function, the script initializes variables i, a, b, and c to 0. It then 
uses a for loop to calculate the fnth number of the Fibonacci sequence by 
adding the previous two numbers together. 

Finally, the script divides the last two numbers of the sequence to obtain the 
golden ratio, and stores it in a variable called golden_ratio. 

After defining the GoldenRatio function, the script prompts the user to enter 
the number of Fibonacci numbers to use by calling the input function with the 
string "Type the number of Fibonacci's to use: " as an argument. It then passes 
the user's input to the GoldenRatio function, and displays the resulting golden 
ratio using the disp function. 

 

 

 

 

 



Mathematical foundations for computer science with MATLAB

73

 

When calling a function, you can also use the [] operator to capture the output 
arguments of the function, like this: 

[a, b]= myFunction(input1, input2); 

In this example, myFunction is called with two input arguments, input1 and 
input2. The two output arguments of the function are assigned to the variables 
a and b. 

In addition to creating your own functions, MATLAB has many built-in 
functions that you can use in your code. You can find a list of these functions 
in the MATLAB documentation. 

The flowing MATLAB script defines a function called GoldenRatio that takes 
one input argument fn, which represents the number of Fibonacci numbers to 
use for the calculation. 

Inside the function, the script initializes variables i, a, b, and c to 0. It then 
uses a for loop to calculate the fnth number of the Fibonacci sequence by 
adding the previous two numbers together. 

Finally, the script divides the last two numbers of the sequence to obtain the 
golden ratio, and stores it in a variable called golden_ratio. 

After defining the GoldenRatio function, the script prompts the user to enter 
the number of Fibonacci numbers to use by calling the input function with the 
string "Type the number of Fibonacci's to use: " as an argument. It then passes 
the user's input to the GoldenRatio function, and displays the resulting golden 
ratio using the disp function. 

 

 

 

 

 

 

%---------------------------------------------------------- 
% >>> CALCULATING THE GOLDEN RATIO BASED ON FIBONACCI'S <<< 
% by Jairo Guerrero, University of Nariño 
%---------------------------------------------------------- 
function [golden_ratio] = GoldenRatio(fn) 
    i = 0; 
    a = 0; 
    b = 1; 
    c = 0; 
    for i = 1:fn 
        c = a + b; 
        a = b; 
        b = c; 
    end 
    c = b / a; 
    golden_ratio = c; 
end 
%---------------------------------------------------------- 

The following script is a MATLAB script that simulates rolling a six-sided 
die a specified number of times and counts the number of even and odd rolls. 

The script begins by initializing two variables, even and odds, to 0. 

The script then defines a function called DrawDice that takes one input 
argument dice, which represents the value rolled on the die. The function 
outputs an ASCII art representation of the die face with the corresponding 
number of dots displayed. 

After defining the DrawDice function, the script prompts the user to enter the 
number of rolls they want by calling the input function with the string "How 
many rolls do you want (1..10)? " as an argument. It then uses a for loop to 
simulate rolling the die the specified number of times. 

Inside the loop, the script generates a random integer between 1 and 6 
(inclusive) using the randi function, and passes it to the DrawDice function 
to display the corresponding die face. 



Jairo Guerrero García

74

 

The script then uses the mod function to determine whether the roll is even or 
odd. If the roll is even, it increments the even counter by 1. Otherwise, it 
increments the odds counter by 1. 

After the loop finishes, the script displays the number of rolls, the 
number of even rolls, and the number of odd rolls using the disp 
function and string concatenation. 

%---------------------------------------------------------- 
% >>> ROLLING A DICE <<< 
% by Jairo Guerrero, University of Nariño 
%----------------------------------------------------------     
even = 0; 
odd = 0; 
%----------------------------------------------------------  
function DrawDice(dice) 
    disp("+-------+"); 
    if dice == 1 
        disp("|       |"); 
        disp("|   *   |"); 
        disp("|       |"); 
    elseif dice == 2 
        disp("| *     |"); 
        disp("|       |"); 
        disp("|     * |"); 
    elseif dice == 3 
        disp("| *     |"); 
        disp("|   *   |"); 
        disp("|     * |"); 
    elseif dice == 4 
        disp("| *   * |"); 
        disp("|       |"); 
        disp("| *   * |"); 
    elseif dice == 5 
        disp("| *   * |"); 
        disp("|   *   |"); 
        disp("| *   * |"); 



Mathematical foundations for computer science with MATLAB

75

 

The script then uses the mod function to determine whether the roll is even or 
odd. If the roll is even, it increments the even counter by 1. Otherwise, it 
increments the odds counter by 1. 

After the loop finishes, the script displays the number of rolls, the 
number of even rolls, and the number of odd rolls using the disp 
function and string concatenation. 

%---------------------------------------------------------- 
% >>> ROLLING A DICE <<< 
% by Jairo Guerrero, University of Nariño 
%----------------------------------------------------------     
even = 0; 
odd = 0; 
%----------------------------------------------------------  
function DrawDice(dice) 
    disp("+-------+"); 
    if dice == 1 
        disp("|       |"); 
        disp("|   *   |"); 
        disp("|       |"); 
    elseif dice == 2 
        disp("| *     |"); 
        disp("|       |"); 
        disp("|     * |"); 
    elseif dice == 3 
        disp("| *     |"); 
        disp("|   *   |"); 
        disp("|     * |"); 
    elseif dice == 4 
        disp("| *   * |"); 
        disp("|       |"); 
        disp("| *   * |"); 
    elseif dice == 5 
        disp("| *   * |"); 
        disp("|   *   |"); 
        disp("| *   * |"); 

 

    elseif dice == 6 
        disp("| *   * |"); 
        disp("| *   * |"); 
        disp("| *   * |"); 
    end 
    disp("+-------+"); 
end 
%---------------------------------------------------------- 
disp(""); 
disp(">>> ROLLING DICE <<<"); 
disp(""); 
rolls = input("How many rolls do you want (1...10)? "); 
for i = 1:rolls 
    dice = randi([1 6]); 
    DrawDice(dice); 
    if mod(dice, 2) == 0 
        even = even + 1; 
    else 
        odds = odds + 1; 
    end 
end 
disp(""); 
disp("Rolls: " + string(rolls) + ", even: " + string(even) + 
", odd: " + string(odds)); 
%---------------------------------------------------------- 

7.1 WORKSHOP #3 – FUNCTIONS INS MATLAB 

In this workshop, the concept of function will be worked on as a part of the 
program that performs specific tasks and has the facility of being called in 
different instances within the program; they can manage input parameters and 
can return output values. The concept of function is the most complex of the 
objects selected in this investigation, it involves the integration of all the previous 
concepts. Therefore, several practical exercises are necessary to strengthen your 
learning. It is here that students in their role as professional programmers exploit 
their creative potential using functions. 



Jairo Guerrero García

76

 

Proposed Exercises: 

• Building a script with a function for asking a given temperature and a two-
character string (like these ‘cf’,’ck’,’kf’,’kc’,’fc’, and ‘fk’). Such a function 
must convert the temperature according to the two-character string; for 
instance: cf stands for Celsius to Fahrenheit, fk stands for Fahrenheit to 
Kelvin, and so on. 

Step 1: A new script with function is created. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7-1. Icon for creating a new script 

Step 2: click on function and we get the following: 

function [outputArg1, outputArg2] = untitled(inputArg1, 
inputArg2) 
% UNITITLED Summary of this function goes here 
% Detailed explanation goes here 
outputArg1 = inputArg1; 
outputArg2 = inputArg2; 
end 



Mathematical foundations for computer science with MATLAB

77

 

Proposed Exercises: 

• Building a script with a function for asking a given temperature and a two-
character string (like these ‘cf’,’ck’,’kf’,’kc’,’fc’, and ‘fk’). Such a function 
must convert the temperature according to the two-character string; for 
instance: cf stands for Celsius to Fahrenheit, fk stands for Fahrenheit to 
Kelvin, and so on. 

Step 1: A new script with function is created. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7-1. Icon for creating a new script 

Step 2: click on function and we get the following: 

function [outputArg1, outputArg2] = untitled(inputArg1, 
inputArg2) 
% UNITITLED Summary of this function goes here 
% Detailed explanation goes here 
outputArg1 = inputArg1; 
outputArg2 = inputArg2; 
end 

 

It contains the output parameters, the input parameters, the title and 
the body for the function syntax. 
 
Step 3: For this case the output parameter of the function is Tout (Output 
temperature), the input parameters are Tin and C (Input temperature and 
Conversion) and the title for the function is ConversionT. 

function [Tout] = Conversion(Tin, C) 

Step 4: The variables Tin and C with input are created so that the user can enter 
the input temperature value and the desired conversion type by keyboard. 

Tin = input("Enter Temperature: "); 
C = input("Enter Conversion: ",'s'); 

Step 5: With the fprintf command a menu is created for the user to select the 
type of conversion. 

fprintf("Temperature conversion type: \n") 
fprintf("cf -- Celcius - Fahrenheit\nck -- Celcius - 
Kelvin\nkf -- Kelvin - Fahrenheit\n") 
fprintf("kc -- Kelvin - Celcius\nfc - Fahrenheit - Celcius\nfk 
-- Faherenheit - Kelvin\n") 
disp(" ") 

Step 6: A switch case sentence is created to execute one of several groups of 
instructions. For this program, the input variable C entered by the user is 
evaluated, which corresponds to the conversion type. 

switch c 
    case 'cf' 
        Tout = (Tin*(9/5)+32); 
 
        fprintf("Celcius: %d\n", Tin) 
        fprintf("Fahrenheit: %", Tout) 
 
 
 



Jairo Guerrero García

78

 

    case 'ck' 
        Tout = (Tin+273.15); 
 
        fprintf("Celcius: %d\n", Tin) 
        fprintf("Kelvin: %", Tout) 
 
    case 'kf' 
        Tout = ((Tin - 273.15)*(9/5) + 32); 
 
        fprintf("Kelvin: %d\n", Tin) 
        fprintf("Fahrenheit: %", Tout) 
 
    case 'kc' 
        Tout = (Tin - 273.15); 
 
        fprintf("Kelvin: %d\n", Tin) 
        fprintf("Celcius: %", Tout) 
 
    case 'fc' 
        Tout = (Tin-32)*(5/9); 
 
        fprintf("Fahrenheit: %d\n", Tin) 
        fprintf("Celcius: %", Tout) 
 
    case 'fk' 
        Tout = ((Tin-32)*(5/9) + 273.15); 
 
        fprintf("Fahrenheit: %d\n", Tin) 
        fprintf("Kelvin: %", Tout) 
 
    otherwise 
        fprintf("Incorrect entered  conversion") 

if the variable entered by the user meets any of the cases of the statement, the 
program performs the required conversion and prints the values, if it does not 
meet any of the cases, the program displays the following message “incorrect 
entered conversion.” 



Mathematical foundations for computer science with MATLAB

79

 

    case 'ck' 
        Tout = (Tin+273.15); 
 
        fprintf("Celcius: %d\n", Tin) 
        fprintf("Kelvin: %", Tout) 
 
    case 'kf' 
        Tout = ((Tin - 273.15)*(9/5) + 32); 
 
        fprintf("Kelvin: %d\n", Tin) 
        fprintf("Fahrenheit: %", Tout) 
 
    case 'kc' 
        Tout = (Tin - 273.15); 
 
        fprintf("Kelvin: %d\n", Tin) 
        fprintf("Celcius: %", Tout) 
 
    case 'fc' 
        Tout = (Tin-32)*(5/9); 
 
        fprintf("Fahrenheit: %d\n", Tin) 
        fprintf("Celcius: %", Tout) 
 
    case 'fk' 
        Tout = ((Tin-32)*(5/9) + 273.15); 
 
        fprintf("Fahrenheit: %d\n", Tin) 
        fprintf("Kelvin: %", Tout) 
 
    otherwise 
        fprintf("Incorrect entered  conversion") 

if the variable entered by the user meets any of the cases of the statement, the 
program performs the required conversion and prints the values, if it does not 
meet any of the cases, the program displays the following message “incorrect 
entered conversion.” 

 

Step 7:  Finally in the command window the function is called by typing its 
name (ConversionT), it will ask to enter the input values (Tin and C) and will 
print the menu and display the result of the temperature conversion. 

Figure 7-2. Command window. FUNCTIONS: Conversion Temperature 

• Building a script with a function for converting cartesian coordinates into 
polar coordinates and vice versa. 

Step 1: A new script with function is created. 

Step 2: click on function and we get the following: 

function[outputArg1, outputArg2] = untitled(inputArg1, 
inputArg2) 
% UNITITLED Summary of this function goes here 
% Detailed explanation goes here 
outputArg1 = inputArg1; 
outputArg2 = inputArg2; 
end 



Jairo Guerrero García

80

 

It contains the output parameters, the input parameters, the title and the body 
for the function syntax. 
 
Step 3: For this case the output parameters of the function are x, y, r, t 
(Cartesian and polar coordinates), the input parameters are x, y, r, t (Cartesian 
and polar coordinates) and the title for the function is CartesianPolar. 

function[x,y,r,t] = CartesianPolar(x,y,r,t) 

Step 4: With fprintf a menu is created for the user to select the type of 
conversion desired, 1 (Cartesian - Polar), 2 (Polar - Cartesian), and an S 
variable is created with the input command to store the user's selection. 

    fprintf("Select conversion\n 1 Cartesian - Polar\n 2 Polar 
- Cartesian\n") 
    S = input ("conversion: "); 

Step 5: A switch case sentence is created to execute one of several groups of 
instructions. For this program, the input variable S entered by the user is 
evaluated, which corresponds to the conversion type. 

switch S 
    case 1  
        fprintf("conversion Cartesian - Polar\n") 
        x = input("enter the value of x: "); 
        disp(" ") 
        y = input("enter the value of y: "); 
        disp(" ") 
 
        fprintf("The polar coordinates are\n") 
        fprintf("Distance: \n") 
        r = sqrt((x)^2+(y)^2) 
        fprintf("Angle: ") 
        t = atan(y/x) 
 
 
 
 



Mathematical foundations for computer science with MATLAB

81

 

It contains the output parameters, the input parameters, the title and the body 
for the function syntax. 
 
Step 3: For this case the output parameters of the function are x, y, r, t 
(Cartesian and polar coordinates), the input parameters are x, y, r, t (Cartesian 
and polar coordinates) and the title for the function is CartesianPolar. 

function[x,y,r,t] = CartesianPolar(x,y,r,t) 

Step 4: With fprintf a menu is created for the user to select the type of 
conversion desired, 1 (Cartesian - Polar), 2 (Polar - Cartesian), and an S 
variable is created with the input command to store the user's selection. 

    fprintf("Select conversion\n 1 Cartesian - Polar\n 2 Polar 
- Cartesian\n") 
    S = input ("conversion: "); 

Step 5: A switch case sentence is created to execute one of several groups of 
instructions. For this program, the input variable S entered by the user is 
evaluated, which corresponds to the conversion type. 

switch S 
    case 1  
        fprintf("conversion Cartesian - Polar\n") 
        x = input("enter the value of x: "); 
        disp(" ") 
        y = input("enter the value of y: "); 
        disp(" ") 
 
        fprintf("The polar coordinates are\n") 
        fprintf("Distance: \n") 
        r = sqrt((x)^2+(y)^2) 
        fprintf("Angle: ") 
        t = atan(y/x) 
 
 
 
 

 

    case 2 
        fprintf("conversion Polar - Cartesian \n") 
        x = input("enter the value of r: "); 
        disp(" ") 
        y = input("enter the value of t: "); 
        disp(" ") 
 
        fprintf("The cartesian coordinates are\n") 
        fprintf("x-coordinate: \n") 
        x = r*cos(t) 
        fprintf("Angle: ") 
        y = r*sin(t) 
 
    otherwise 
        fprintf("incorrect entered conversion") 

If the user enters the value 1, the program will ask him to enter the input 
values to the function of x,y (Cartesian coordinates) and perform the 
corresponding transformations to obtain the output values of the function r 
and t (polar coordinates) and display these values on the screen, on the other 
hand if the option is 2 the input values to the function that the user must enter 
are r and t (polar coordinates) and the output values of the function will be 
x,y (Cartesian coordinates). 
 
Step 6: Finally in Command Window the function is called with its name 
to execute the program, it will ask to enter the type of conversion and the 
parameters for the function to print the corresponding values. The angle to 
be entered and the one calculated by the program is in radians. 
 



Jairo Guerrero García

82

 

 
Figure 7-3. Command Window. FUNCTIONS: Conversion Coordinates Polar - 

Cartesian 

• Building a script with a function for calculating the number of active, 
communicative extraterrestrial civilizations in the Milky Way Galaxy 
according to the Drake’s equation. 

Step 1: A new script with function is created. 
 
Step 2: click on function and we get the following: 

function[outputArg1, outputArg2] = untitled(inputArg1, 
inputArg2) 
% UNITITLED Summary of this function goes here 
% Detailed explanation goes here 
outputArg1 = inputArg1; 
outputArg2 = inputArg2; 
end 

It contains the output parameters, the input parameters, the title and the body 
for the function syntax. 
 
 
 



Mathematical foundations for computer science with MATLAB

83

 

 
Figure 7-3. Command Window. FUNCTIONS: Conversion Coordinates Polar - 

Cartesian 

• Building a script with a function for calculating the number of active, 
communicative extraterrestrial civilizations in the Milky Way Galaxy 
according to the Drake’s equation. 

Step 1: A new script with function is created. 
 
Step 2: click on function and we get the following: 

function[outputArg1, outputArg2] = untitled(inputArg1, 
inputArg2) 
% UNITITLED Summary of this function goes here 
% Detailed explanation goes here 
outputArg1 = inputArg1; 
outputArg2 = inputArg2; 
end 

It contains the output parameters, the input parameters, the title and the body 
for the function syntax. 
 
 
 

 

Step 3: For this case the output parameter of the function is N (Number of 
civilizations that could communicate in our galaxy, the Milky Way), the input 
parameters are R, fp, ne, fl, fi, fc, L (The other parameters that must be 
considered for the Drake’s equation) and the title for the function is DrakeE. 

function[N] = DrakeE(R,fp,ne,fl,fi,fc,L) 

Step 4: A brief description of what each parameter means is given in the commentary. 

%R* Annual rate of  formation of "proper" stars in the galaxy 
%fp Fraction of stars that have planets in their orbit 
%ne Number of those planets orbiting within the habitable zone 
of the star 
%fl Fraction of those planets within the habitable zone on 
which life has developed 
%fi Fraction of those planets on which intelligent life has 
developed 
%fc Fraction of those planets where intelligent life has 
developed a technology and attempts to communicate 
%L Time span, measured in years, during which an intelligent 
and communicative civilization can exist 

Step 5: The corresponding values previously consulted are assigned to each input 
variable and Drake's equation is applied and print the result. 
Drake´s equation is:  
 

𝑁𝑁 = 𝑅𝑅 ∗ 𝒇𝒇𝒑𝒑 ∗ 𝒏𝒏𝒆𝒆 ∗ 𝒇𝒇𝒍𝒍 ∗ 𝒇𝒇𝒊𝒊 ∗ 𝒇𝒇𝒄𝒄 ∗ 𝑳𝑳 
 

R = 10; Fp =  1/2; ne = 2; fl = 1; fi = 0.01; fc = 0.01; L = 
10000; 
 
fprintf("The number of civilization that could communicate in 
the Milky way Galaxy are: ") 
N = R*fp*ne*fl*fi*fc*L; 
end 



Jairo Guerrero García

84

 

Step 6: Finally in Command Window the function is called with the name 
assigned to it and we can obtain the result of Drake's Equation. 

Figure 7-4. Command Window. FUNCTIONS: DrakeE 
• Building a script with a function for determining if a number given by the 
user is prime number or not. 

Step 1: A new script with function is created. 
 
Step 2: click on function and we get the following: 

function[outputArg1, outputArg2] = untitled(inputArg1, 
inputArg2) 
% UNITITLED Summary of this function goes here 
% Detailed explanation goes here 
outputArg1 = inputArg1; 
outputArg2 = inputArg2; 
end 

It contains the output parameters, the input parameters, the title and the body 
for the function syntax. 
 
Step 3: For this case the output parameter of the function is P (Variable that 
determines whether the number is prime or not), the input parameters is N 
(Number entered by user) and the title for the function is Prime. 

function[P] = Prime(N) 



Mathematical foundations for computer science with MATLAB

85

 

Step 6: Finally in Command Window the function is called with the name 
assigned to it and we can obtain the result of Drake's Equation. 

Figure 7-4. Command Window. FUNCTIONS: DrakeE 
• Building a script with a function for determining if a number given by the 
user is prime number or not. 

Step 1: A new script with function is created. 
 
Step 2: click on function and we get the following: 

function[outputArg1, outputArg2] = untitled(inputArg1, 
inputArg2) 
% UNITITLED Summary of this function goes here 
% Detailed explanation goes here 
outputArg1 = inputArg1; 
outputArg2 = inputArg2; 
end 

It contains the output parameters, the input parameters, the title and the body 
for the function syntax. 
 
Step 3: For this case the output parameter of the function is P (Variable that 
determines whether the number is prime or not), the input parameters is N 
(Number entered by user) and the title for the function is Prime. 

function[P] = Prime(N) 

 

Step 4: With the fprintf command we enter a title to be displayed on the screen. 
And with input we ask the user to enter the input value (N) to the function. 

    fprintf("determine if a number is prime\n\n") 
    N = input("Enter the number: "); 

Step 5: By means of the for loop we validate if the number entered by the user 
is prime, this is done with the mod command that gives us the remainder of a 
division, the conditional if validates that if the remainder of that division is or, 
then the message that the number is not prime is printed, but if the condition is 
not met and the program exits the for loop it validates that the number is prime. 

    for i = 2: N-1 
        r = mod (N,i); 
        if r==0 
            fprintf("The number %i is not prime \n", N) 
            return 
        end 
    end 
 
    fprintf("The number %i is prime \n", N) 
 
end 

Step 6: Finally with Command Window the function is called with the 
assigned name and the program asks the user to enter a number to determine 
if it is prime or not. 
 



Jairo Guerrero García

86

 

 
Figure 7-5. Command window. FUNCTIONS: Determinate if a number is prime 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



87

 

 
Figure 7-5. Command window. FUNCTIONS: Determinate if a number is prime 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[CHAPTER 8] — ARRAYS 

In computer programming, an array is a data structure that stores a collection of 
elements, all the same type, in contiguous memory locations. Each element in 
the array is identified by an index or a key that represents its position in the array. 

Arrays are useful when you need to store a large amount of data of the same 
type and want to access it quickly and efficiently. By using an index or a key, 
you can easily access any element in the array, making it easy to search, sort, 
and manipulate the data stored in the array. 

Arrays are commonly used in programming languages like C, C++, Java, 
Python, MATLAB, and others. There are different types of arrays such as 
one-dimensional arrays, multi-dimensional arrays, and jagged arrays, each 
with its own specific uses and properties. 

There are several types of arrays in computer programming, including: 

• One-dimensional arrays: Also known as a flat array or a vector, a one-
dimensional array stores elements in a single row or sequence. Each 
element in the array is accessed using a single index or subscript, 
which represents its position in the sequence. 

• Multi-dimensional arrays: Multi-dimensional arrays are arrays with 
more than one index or subscript. They are often used to represent 
matrices or tables. A two-dimensional array, for example, has rows 
and columns, and its elements are accessed using two indices. 

• Jagged arrays: A jagged array is an array of arrays, where each 
element in the array is itself an array. Unlike multi-dimensional 
arrays, jagged arrays can have different lengths for each subarray. 



Jairo Guerrero García

88

 

• Dynamic arrays: A dynamic array is an array whose size can be 
dynamically adjusted during runtime. This allows you to add or 
remove elements from the array as needed. In some programming 
languages, dynamic arrays are implemented using data structures such 
as linked lists or resizable arrays. 

• Associative arrays: Also known as a map, dictionary, or hash table, 
an associative array is an array where the elements are accessed 
using a key instead of an index. The key-value pairs are stored in 
the array, and the key is used to retrieve the corresponding value. 

• Sparse arrays: A sparse array is an array that contains mostly empty 
or null values. To save memory, only non-empty values are stored, 
along with their corresponding indices. 

The specific types of arrays available in a programming language may vary, 
and some languages may support additional types of arrays not listed here. 

In MATLAB, you can declare and use arrays using the following syntax: 

One-dimensional arrays: To declare a one-dimensional array, use square 
brackets [] to enclose a comma-separated list of elements. For example: 

a = [1, 2, 3, 4, 5]; 

You can access elements in the array using their index: 

disp(a(2)); % Output:2 

Multi-dimensional arrays: To declare a multi-dimensional array, use square 
brackets [] and semicolons ; to separate rows. For example: 

b = [1, 2, 3, 4, 5, 6, 7, 8, 9]; 

You can access elements in the array using their row and column indices: 

disp(b(2, 3)); % Output:6 

 



Mathematical foundations for computer science with MATLAB

89

 

• Dynamic arrays: A dynamic array is an array whose size can be 
dynamically adjusted during runtime. This allows you to add or 
remove elements from the array as needed. In some programming 
languages, dynamic arrays are implemented using data structures such 
as linked lists or resizable arrays. 

• Associative arrays: Also known as a map, dictionary, or hash table, 
an associative array is an array where the elements are accessed 
using a key instead of an index. The key-value pairs are stored in 
the array, and the key is used to retrieve the corresponding value. 

• Sparse arrays: A sparse array is an array that contains mostly empty 
or null values. To save memory, only non-empty values are stored, 
along with their corresponding indices. 

The specific types of arrays available in a programming language may vary, 
and some languages may support additional types of arrays not listed here. 

In MATLAB, you can declare and use arrays using the following syntax: 

One-dimensional arrays: To declare a one-dimensional array, use square 
brackets [] to enclose a comma-separated list of elements. For example: 

a = [1, 2, 3, 4, 5]; 

You can access elements in the array using their index: 

disp(a(2)); % Output:2 

Multi-dimensional arrays: To declare a multi-dimensional array, use square 
brackets [] and semicolons ; to separate rows. For example: 

b = [1, 2, 3, 4, 5, 6, 7, 8, 9]; 

You can access elements in the array using their row and column indices: 

disp(b(2, 3)); % Output:6 

 

 

Jagged arrays: To declare a jagged array, use cell arrays, which are arrays that 
can hold elements of different data types. For example: 

c = {1, [2, 3], [4, 5, 6, 7]}; 

You can access elements in the array using their index: 

disp(c{2}(1)); % Output: 2 

Dynamic arrays: In MATLAB, arrays are dynamic by default, so you can add 
or remove elements from an array using the following syntax: 

a(6) = 6; 
disp(a); % Output: [1, 2, 3, 4, 5, 6] 

Associative arrays: To declare an associative array, use the containers.Map 
class, which allows you to map keys to values. For example: 

d = containers.Map({'one', 'two', 'three'}, [1, 2, 3]); 

You can access elements in the array using their keys: 

disp(d('two')); % Output:2 

These are just a few examples of how to declare and use arrays in MATLAB. 
There are many more features and functions available for working with arrays 
in MATLAB, including built-in functions for sorting, searching, and 
manipulating arrays. 

MATLAB has several built-in functions for performing arithmetic 
calculations with vectors. Here are some common examples: 

Vector Addition and Subtraction 

You can add or subtract two vectors of the same size using the + and - 
operators, respectively. 

 



Jairo Guerrero García

90

 

v1 = [1 2 3]; 
v2 = [4 5 6]; 
v3 = v1 + v2; % Vector addition 
v4 = v1 - v2; % Vector subtraction 

Scalar Multiplication and Division 

You can multiply or divide a vector by a scalar using the * and / operators, respectively. 

v1 = [1 2 3]; 
s = 2; 
v2 = s * v1; % Scalar multiplication 
v3 = v1 / s; % Scalar division 

Dot Product 

You can calculate the dot product of two vectors using the dot() function. 

v1 = [1 2 3]; 
v2 = [4 5 6]; 
dp = dot(v1, v2); % Dot product 

Cross Product 

You can calculate the cross product of two vectors using the cross() function. 

v1 = [1 2 3]; 
v2 = [4 5 6]; 
cp = cross (v1, v2); % Cross product 

Magnitude and Normalization 

You can calculate the magnitude of a vector using the norm() function, and you 
can normalize a vector (i.e., make it a unit vector) using the normalize() function. 

v1 = [1 2 3]; 
mag = norm(v1); % Magnitude of v1 
v2 = normalize(v1); % Normalize v1 



Mathematical foundations for computer science with MATLAB

91

 

v1 = [1 2 3]; 
v2 = [4 5 6]; 
v3 = v1 + v2; % Vector addition 
v4 = v1 - v2; % Vector subtraction 

Scalar Multiplication and Division 

You can multiply or divide a vector by a scalar using the * and / operators, respectively. 

v1 = [1 2 3]; 
s = 2; 
v2 = s * v1; % Scalar multiplication 
v3 = v1 / s; % Scalar division 

Dot Product 

You can calculate the dot product of two vectors using the dot() function. 

v1 = [1 2 3]; 
v2 = [4 5 6]; 
dp = dot(v1, v2); % Dot product 

Cross Product 

You can calculate the cross product of two vectors using the cross() function. 

v1 = [1 2 3]; 
v2 = [4 5 6]; 
cp = cross (v1, v2); % Cross product 

Magnitude and Normalization 

You can calculate the magnitude of a vector using the norm() function, and you 
can normalize a vector (i.e., make it a unit vector) using the normalize() function. 

v1 = [1 2 3]; 
mag = norm(v1); % Magnitude of v1 
v2 = normalize(v1); % Normalize v1 

 

In order to work with matrices, here is a MATLAB script that can solve any 
linear system of equations using Gaussian elimination and back substitution. 
To use the script, simply run it in MATLAB and enter the coefficient matrix 
A and the constant terms b when prompted. The script will then solve the 
system of equations and print the solution vector x. 

Note that the script assumes that the coefficient matrix is square and that there 
is a unique solution to the system of equations. If these assumptions are not 
met, the script will produce an error message. 

%---------------------------------------------------------- 
% >>> Solving a linear equation system <<< 
% by Jairo Guerrero, University of Nariño 
%---------------------------------------------------------- 
 
A = input('Enter the coefficient matrix A: '); 
b = input('Enter the constant terms b: '); 
[m, n] = size(A); 
if m ~= n 
    error('The coefficient matrix must be square. '); 
end 
A = [A b]; 
for i = 1:n-l 
    if A(i,i) == 0 
        error( 'Zero pivot encountered. The system has no 
unique solution. '); 
    end 
    for j = i+1:n 
        factor = A(j,i)) / A(i,i); 
        A(j,:) = A(j,:) - factor * A (i,:); 
    end 
end 
x = zeros(n,l); 
x(n) = A(n,n+1) / A(n,n); 
 
for i = n-1:-1:1 
    x(i) = (A(i,n+1) - A(i,i+1:n)*x(i+1:n)) / A(i,i); 
end 
fprintf( ' The solution is: \n'); 
disp(x); 
%---------------------------------------------------------- 



Jairo Guerrero García

92

 

For understanding the MATLAB script above, we need to check the code 
lines inside. This script solves a linear equation system of the form Ax = b 
using Gaussian elimination and back substitution. Here's how it works: 

• The script prompts the user to input the coefficient matrix A and the 
constant terms b. 

• The script checks that the coefficient matrix is square, meaning that it 
has the same number of rows and columns. If the matrix is not square, 
the script produces an error message. 

• The script augments the coefficient matrix A with the constant terms b. 

• The script performs Gaussian elimination to transform the augmented 
matrix A into row echelon form, with all elements below the diagonal 
set to zero. 

• The script performs back substitution to solve for the unknowns x. 
Starting from the last row of the row echelon form, it solves for each 
unknown x(i) in terms of the previously solved unknowns x (i+1: n). 

• Finally, the script prints the solution vector x. 

8.1 WORKSHOP #4 — ARRAYS IN MATLAB 

This workshop will work on arrays. An array—matrix—is an ordered collection 
of data—either primitives or objects depending on the language—. Arrays are 
used to store multiple values in a single variable, as opposed to variables that can 
only store one value—for each variable—. Each element of the array—matrix—
has a number associated with it, called a "numeric index", which allows you to 
access it. 

Proposed Exercises 

• Write a script that allows to obtain the number of positive elements of an 
array (one-dimensional vector). Populate said vector with random values 
between -100 and 100. 



Mathematical foundations for computer science with MATLAB

93

 

For understanding the MATLAB script above, we need to check the code 
lines inside. This script solves a linear equation system of the form Ax = b 
using Gaussian elimination and back substitution. Here's how it works: 

• The script prompts the user to input the coefficient matrix A and the 
constant terms b. 

• The script checks that the coefficient matrix is square, meaning that it 
has the same number of rows and columns. If the matrix is not square, 
the script produces an error message. 

• The script augments the coefficient matrix A with the constant terms b. 

• The script performs Gaussian elimination to transform the augmented 
matrix A into row echelon form, with all elements below the diagonal 
set to zero. 

• The script performs back substitution to solve for the unknowns x. 
Starting from the last row of the row echelon form, it solves for each 
unknown x(i) in terms of the previously solved unknowns x (i+1: n). 

• Finally, the script prints the solution vector x. 

8.1 WORKSHOP #4 — ARRAYS IN MATLAB 

This workshop will work on arrays. An array—matrix—is an ordered collection 
of data—either primitives or objects depending on the language—. Arrays are 
used to store multiple values in a single variable, as opposed to variables that can 
only store one value—for each variable—. Each element of the array—matrix—
has a number associated with it, called a "numeric index", which allows you to 
access it. 

Proposed Exercises 

• Write a script that allows to obtain the number of positive elements of an 
array (one-dimensional vector). Populate said vector with random values 
between -100 and 100. 

 

Step 1: we open a new script and execute the clc, clear, and close commands 
to clear the screen and delete variables. 

clc; clear; close all; %Clear sreen and delete variables 

Step 2: with disp command we print the title of project, in this case “Write a 
script that allows to obtain the number of positive elements of in an array.” 

disp(" Write a script that allows to obtain the number of 
positive element of in an array") 

Step 3: A variable n is created to determine the number of elements with which 
the vector will be filled, to enter the value it is done with the command input. 

n = input ("enter the number of elements to populate the 
vector: ") 

Step 4: A vector (v) is created with the randi function that allows to obtain the 
random numbers between -100 and 100 with which the vector will be filled. n is 
the number of elements that the vector will have. 

v = randi([-100,100], 1, n); 

Step 5: To determine the number of positive elements in the vector, the 
positive variable is created and the condition that vector is greater than zero 
is added (v>0) to count only the positive elements. 

disp("The number of positive elements is ") 
positive = sum(v>0) 



Jairo Guerrero García

94

 

Step 6: Finally, some tests are performed in Command Window to check 
the correct functioning of the program. Also, the variables used can be 
consulted in the Workspace. 

 

Figure 8-1. Command window and Workspace. ARRAYS: obtain the number 
of positive elements of an array. 

• Fill a 4x4 identity matrix, element by element in an algorithmic way by 
using loops. Then create the same identity matrix with pre-defined functions. 

Step 1: we open a new script and execute the clc, clear, and close commands 
to clear the screen and delete variables. 

clc; clear; close all; %Clear sreen and delete variables 

Step 2: with disp command we print the title of project, in this case “Fill a 
4x4 identity matrix, element by element”.  

disp("Fill a 4x4 identity matrix, element by element") 
 

Step 3:  variable M is created, which is a 4x4 matrix of zeros that will allow 
the creation of the identity matrix later. 

M = zeros(4, 4); 

 
 



Mathematical foundations for computer science with MATLAB

95

 

Step 6: Finally, some tests are performed in Command Window to check 
the correct functioning of the program. Also, the variables used can be 
consulted in the Workspace. 

 

Figure 8-1. Command window and Workspace. ARRAYS: obtain the number 
of positive elements of an array. 

• Fill a 4x4 identity matrix, element by element in an algorithmic way by 
using loops. Then create the same identity matrix with pre-defined functions. 

Step 1: we open a new script and execute the clc, clear, and close commands 
to clear the screen and delete variables. 

clc; clear; close all; %Clear sreen and delete variables 

Step 2: with disp command we print the title of project, in this case “Fill a 
4x4 identity matrix, element by element”.  

disp("Fill a 4x4 identity matrix, element by element") 
 

Step 3:  variable M is created, which is a 4x4 matrix of zeros that will allow 
the creation of the identity matrix later. 

M = zeros(4, 4); 

 
 

 

Step 4:  Subsequently, two loops for are used to create the rows and columns 
of the vector, and a conditional if is added to make it an identity matrix, when 
the row is equal to the column (i=j) a one is added, otherwise the rest is zero. 
Finally, M is printed. 

for i = 1:4 
    for j = 1:4 
        if i == j 
            M(i,j) = 1; 
        else 
            M(i,j) = 0; 
        end 
    end 
end 
M 

Step 5:  to perform the matrix identity with the default functions of the eye 
command and add the matrix dimension. 

disp("with pre-defined functions") 
disp(eye(4)) 

Step 6: Finally, some tests are performed in Command Window to check 
the correct functioning of the program. Also, the variables used can be 
consulted in the Workspace. 

 
 
 
 
 
 
 
 
 
 

Figure 8-2. Command window and Workspace. ARRAYS: Fill a 4x4 identity matrix. 



Jairo Guerrero García

96

 

• Fill a 3 x 3 matrix of numbers typed by the user. Reading the elements from such 
a matrix and calculate the sum of each of its rows and columns, leaving these 
results in two vectors, one of the sums of the rows and another of the columns. 

Step 1: we open a new script and execute the clc, clear, and close commands 
to clear the screen and delete variables. 

clc; clear; close all; %Clear sreen and delete variables 

Step 2: with disp command we print the title of project, in this case “Fill a 
3x3 matrix of numbers typed by the user and sum and add up the elements of 
the rows and columns”. 

disp("Fill a 3x3 matrix of numbers typed by the user and sum 
and add up the elements of the rows and columns ") 

Step 3:  Variable M is created, which is a 3x3 matrix of zeros that will later 
be used to fill it with the values that the user enters by keyboard. 

M= zeros(3, 3); 

Step 4:  Two for loops are performed to determine the rows and columns of 
the matrix, i corresponds to the rows and j are the columns, for the user to 
enter the values in each corresponding position the input command is added, 
also the position in which each value is entered is printed and the values are 
added to the matrix M. Finally, the result of the matrix is printed. 

for i = 1:3 
 
    for j=1:3 
        fprintf('enter the element (%i,%i', i, j); 
        M(i,j) = input(':'); 
    end 
     
end 
disp("Entered matrix") 
M 



Mathematical foundations for computer science with MATLAB

97

 

• Fill a 3 x 3 matrix of numbers typed by the user. Reading the elements from such 
a matrix and calculate the sum of each of its rows and columns, leaving these 
results in two vectors, one of the sums of the rows and another of the columns. 

Step 1: we open a new script and execute the clc, clear, and close commands 
to clear the screen and delete variables. 

clc; clear; close all; %Clear sreen and delete variables 

Step 2: with disp command we print the title of project, in this case “Fill a 
3x3 matrix of numbers typed by the user and sum and add up the elements of 
the rows and columns”. 

disp("Fill a 3x3 matrix of numbers typed by the user and sum 
and add up the elements of the rows and columns ") 

Step 3:  Variable M is created, which is a 3x3 matrix of zeros that will later 
be used to fill it with the values that the user enters by keyboard. 

M= zeros(3, 3); 

Step 4:  Two for loops are performed to determine the rows and columns of 
the matrix, i corresponds to the rows and j are the columns, for the user to 
enter the values in each corresponding position the input command is added, 
also the position in which each value is entered is printed and the values are 
added to the matrix M. Finally, the result of the matrix is printed. 

for i = 1:3 
 
    for j=1:3 
        fprintf('enter the element (%i,%i', i, j); 
        M(i,j) = input(':'); 
    end 
     
end 
disp("Entered matrix") 
M 

 

Step 5:  The next step is to create the row and column sum vectors, for the 
column sum vector we use the command sum(M), which directly performs 
the sum of the columns and adds them to the vsc vector, for the arrows sum 
we use the command sum (M,2) which performs the sum of the rows but adds 
them to a column vector, so we add the transpose command to convert the 
vsr vector to a row vector. finally, we print the results. 

disp(" ") 
disp("Vector sum columns") 
vsc = sum(M) 
 
disp(" ") 
disp("vector sum rows") 
vsr = transpose(sum(M,2)) 

Step 6: Finally, some tests are performed in Command Window to check 
the correct functioning of the program. Also, the variables used can be 
consulted in the Workspace. 

 



Jairo Guerrero García

98

 

 
 
 

 

 

Figure 8-3. Command window and Workspace. ARRAYS: Fill a 3x3 matrix of 
numbers typed by the user 

• Calculate the sum of all the elements of a vector of n elements of random 
numbers between 1 and 100, as well as the arithmetic mean (average); the 
calculations will be performed algorithmically step by step. At the end, use 
predefined functions. 

Step 1: we open a new script and execute the clc, clear, and close commands 
to clear the screen and delete variables. 

clc; clear; close all; %Clear sreen and delete variables 

Step 2: with disp command we print the title of project, in this case 
“Calculate the sum of all the elements of a vector of n elements of random 
numbers between 1 and 100 as well as the arithmetic mean (average)” 

disp("Calculate the sum of all the elements of a vector of n 
elements of random numbers between 1 and 100") 
disp("as well as the arithmetic mean (averange)") 

Step 3:  The variable n is created with the input command so that the user can 
enter the number of values to fill the vector, also with the randi function the 
values will be added to the vector (v) with random numbers between 1 and 100. 

n = input("enter the number of elements to populate the 
vector: ") 
v = randi([1,100],1,n); 



Mathematical foundations for computer science with MATLAB

99

 

 
 
 

 

 

Figure 8-3. Command window and Workspace. ARRAYS: Fill a 3x3 matrix of 
numbers typed by the user 

• Calculate the sum of all the elements of a vector of n elements of random 
numbers between 1 and 100, as well as the arithmetic mean (average); the 
calculations will be performed algorithmically step by step. At the end, use 
predefined functions. 

Step 1: we open a new script and execute the clc, clear, and close commands 
to clear the screen and delete variables. 

clc; clear; close all; %Clear sreen and delete variables 

Step 2: with disp command we print the title of project, in this case 
“Calculate the sum of all the elements of a vector of n elements of random 
numbers between 1 and 100 as well as the arithmetic mean (average)” 

disp("Calculate the sum of all the elements of a vector of n 
elements of random numbers between 1 and 100") 
disp("as well as the arithmetic mean (averange)") 

Step 3:  The variable n is created with the input command so that the user can 
enter the number of values to fill the vector, also with the randi function the 
values will be added to the vector (v) with random numbers between 1 and 100. 

n = input("enter the number of elements to populate the 
vector: ") 
v = randi([1,100],1,n); 

 

Step 4: to calculate the sum and arithmetic mean with a predefined function, 
sum(v) and mean(v) were used and the values were stored in the variables M 
and S1. 

M= mean(v); 
S1 = sum(v); 

Step 5:  To perform the algorithm step by step, we define a counter S that allows us 
to keep the sum of the elements in the vector, we create a for loop to go through the 
vector (v), perform the sum and store the values in S; the sum is performed with 
S = S + v(i), once this sum is obtained, the arithmetic mean is calculated with S/n 
and stored in the variable mean, the arithmetic mean corresponds to the sum of the 
elements of the vector over the number of elements. finally, the results are printed. 

S = 0; 
for i = 1:length(v) 
 
    S = S + v(i); 
end 
disp("The sun is") 
disp(" ") 
S 
 
disp("The arithmetic mean (averange) is: ") 
mean = S/n 

Step 6: The values obtained with the default functions are printed out. 

disp("with predefined functions") 
disp("The sum is") 
S1 
disp(" ") 
disp("The arithmetic mean (averange) is: ") 
M 



Jairo Guerrero García

100

 

Step 7: Finally, some tests are performed in Command Window to check 
the correct functioning of the program. Also, the variables used can be 
consulted in the Workspace. 

 

 

Figure 8-4. Command window and Workspace. ARRAY: Calculate the sum of all 
the elements of a vector of n elements of random numbers between 1 and 100. 

• Create a 4 x 4 matrix of numeric values typed by the user. Create a new 
matrix as the transposed matrix step by step algorithmically. Finally use the 
predefined functions. 



Mathematical foundations for computer science with MATLAB

101

 

Step 7: Finally, some tests are performed in Command Window to check 
the correct functioning of the program. Also, the variables used can be 
consulted in the Workspace. 

 

 

Figure 8-4. Command window and Workspace. ARRAY: Calculate the sum of all 
the elements of a vector of n elements of random numbers between 1 and 100. 

• Create a 4 x 4 matrix of numeric values typed by the user. Create a new 
matrix as the transposed matrix step by step algorithmically. Finally use the 
predefined functions. 

 

Step 1: we open a new script and execute the clc, clear, and close commands 
to clear the screen and delete variables. 

clc; clear; close all; %Clear sreen and delete variables 

Step 2: with disp command we print the title of project, in this case 
“Create a 4x4 matrix of numeric values typed by the user. Create a new 
matrix as the transposed.” 

disp("Create a 4x4 matrix of numeric values typed by the user. 
Create a new metrix as the transposed") 

Step 3:  Variable M is created, which is a 4x4 matrix of zeros that will later 
be used to fill it with the values that the user enters by keyboard. 
 

M = zeros(4,4;) 
 

Step 4:  Two for loops are performed to determine the rows and columns of 
the matrix, i corresponds to the rows and j are the columns, for the user to 
enter the values in each corresponding position the input command is added, 
also the position in which each value is entered is printed and the values are 
added to the matrix M(i,j). Finally, the result of the matrix is printed. 

for i = 1:4 
 
    for j = 1:4 
        fprintf('enter the element (%i,%i)', i, j); 
        M(i,j) = input(':'); 
    end 
end 

Step 5:  for the transposed matrix we create again two for loops that will allow 
us to add the elements to the rows and columns of the matrix, but now we 
define T(i,j) = M(j,i) so that the columns become rows and the condition of 
the transposed matrix. 
 



Jairo Guerrero García

102

 

for i = 1:4 
 
    for j = 1:4 
        T(i,j) = M(j,i); 
    end 
end 

Step 6:  for this step, the normal and transposed matrices are printed on the screen. 
disp("Entered matrix") 
M 
disp(" ") 
disp("transposed matrix") 
T 
Step 7:  To calculate the transposed matrix with default function, the 
transpose command is used. 
disp("with pre-defined functions") 
Trans= transpose(M) 
Step 8: Finally, some tests are performed in Command Window to check 
the correct functioning of the program. Also, the variables used can be 
consulted in the Workspace. 



Mathematical foundations for computer science with MATLAB

103

 

for i = 1:4 
 
    for j = 1:4 
        T(i,j) = M(j,i); 
    end 
end 

Step 6:  for this step, the normal and transposed matrices are printed on the screen. 
disp("Entered matrix") 
M 
disp(" ") 
disp("transposed matrix") 
T 
Step 7:  To calculate the transposed matrix with default function, the 
transpose command is used. 
disp("with pre-defined functions") 
Trans= transpose(M) 
Step 8: Finally, some tests are performed in Command Window to check 
the correct functioning of the program. Also, the variables used can be 
consulted in the Workspace. 

 

 
Figure 8-5. Command Window and Workspace. ARRAYS: Create a 4x4 

matrix of numeric values typed by the user. 

 
• Write a script that allows to type a number N. Create a NxN square matrix 
in order to represent the Pascal’s triangle within it, for instance: 

N = 6 

1 0 0 0 0 0 

1 1 0 0 0 0 

1 2 1 0 0 0 

1 3 3 1 0 0 

1 4 6 4 1 0 

1 5 10 10 5 1 

Table 8-1. Example of square matrix of order 6 

Step 1: we open a new script and execute the clc, clear, and close commands 
to clear the screen and delete variables. 

clc; clear; close all; %Clear sreen and delete variables 

 

 
Figure 8-5. Command Window and Workspace. ARRAYS: Create a 4x4 

matrix of numeric values typed by the user. 

 
• Write a script that allows to type a number N. Create a NxN square matrix 
in order to represent the Pascal’s triangle within it, for instance: 

N = 6 

1 0 0 0 0 0 

1 1 0 0 0 0 

1 2 1 0 0 0 

1 3 3 1 0 0 

1 4 6 4 1 0 

1 5 10 10 5 1 

Table 8-1. Example of square matrix of order 6 

Step 1: we open a new script and execute the clc, clear, and close commands 
to clear the screen and delete variables. 

clc; clear; close all; %Clear sreen and delete variables 

 

 
Figure 8-5. Command Window and Workspace. ARRAYS: Create a 4x4 

matrix of numeric values typed by the user. 

 
• Write a script that allows to type a number N. Create a NxN square matrix 
in order to represent the Pascal’s triangle within it, for instance: 

N = 6 

1 0 0 0 0 0 

1 1 0 0 0 0 

1 2 1 0 0 0 

1 3 3 1 0 0 

1 4 6 4 1 0 

1 5 10 10 5 1 

Table 8-1. Example of square matrix of order 6 

Step 1: we open a new script and execute the clc, clear, and close commands 
to clear the screen and delete variables. 

clc; clear; close all; %Clear sreen and delete variables 

 

 
Figure 8-5. Command Window and Workspace. ARRAYS: Create a 4x4 

matrix of numeric values typed by the user. 

 
• Write a script that allows to type a number N. Create a NxN square matrix 
in order to represent the Pascal’s triangle within it, for instance: 

N = 6 

1 0 0 0 0 0 

1 1 0 0 0 0 

1 2 1 0 0 0 

1 3 3 1 0 0 

1 4 6 4 1 0 

1 5 10 10 5 1 

Table 8-1. Example of square matrix of order 6 

Step 1: we open a new script and execute the clc, clear, and close commands 
to clear the screen and delete variables. 

clc; clear; close all; %Clear sreen and delete variables 



Jairo Guerrero García

104

 

Step 2: with disp command we print the title of project, in this case “Create 
a NxN square matrix in order to represent the Pascal’s triangle”. 

disp("Create a NxN square matrix in order to represent the 
Pascal's triangle") 

Step 3: A variable N is created with the input command for the user to define 
the dimension of the square matrix NxN. 

N = input("index to create the square matrix :"); 

Step 4: To create the pascal triangle we use two for lop, the first one 
allows us to determine the row in which the values are located and for 
the second for and determine the values that will be found in each row 
we use the following equation: 
 

𝑃𝑃𝑃𝑃 =  𝑖𝑖!
𝑗𝑗! (𝑖𝑖 − 𝑗𝑗)! 

 
The values calculated in the equation are stored in the vector a(1,j+1), the 
rows do not change, what we are interested in knowing are the values 
calculated in j, therefore j+1 is added. 
 
Then we create the cell A{i+1} that stores and organizes the vectors to form 
the pascal triangle, we also set a=0 so that each time the vector is reset and 
stores the new values. 

for i = 0:N 
 
    for j = 0: i 
        a(1,j+1)=factorial(i)/(factorial(j)*factorial(i-j)); 
    end 
    A{i+1} = a; 
    a = 0; 
end 



Mathematical foundations for computer science with MATLAB

105

 

Step 2: with disp command we print the title of project, in this case “Create 
a NxN square matrix in order to represent the Pascal’s triangle”. 

disp("Create a NxN square matrix in order to represent the 
Pascal's triangle") 

Step 3: A variable N is created with the input command for the user to define 
the dimension of the square matrix NxN. 

N = input("index to create the square matrix :"); 

Step 4: To create the pascal triangle we use two for lop, the first one 
allows us to determine the row in which the values are located and for 
the second for and determine the values that will be found in each row 
we use the following equation: 
 

𝑃𝑃𝑃𝑃 =  𝑖𝑖!
𝑗𝑗! (𝑖𝑖 − 𝑗𝑗)! 

 
The values calculated in the equation are stored in the vector a(1,j+1), the 
rows do not change, what we are interested in knowing are the values 
calculated in j, therefore j+1 is added. 
 
Then we create the cell A{i+1} that stores and organizes the vectors to form 
the pascal triangle, we also set a=0 so that each time the vector is reset and 
stores the new values. 

for i = 0:N 
 
    for j = 0: i 
        a(1,j+1)=factorial(i)/(factorial(j)*factorial(i-j)); 
    end 
    A{i+1} = a; 
    a = 0; 
end 

 

Step 5: to print the pascal triangle, a for loop is created to display on the 
screen what we have stored in cell A.  

disp("Pascal's triangle is: " 
for k = 1:N 
    disp(A{k}) 
end 

Step 6: Finally, some tests are performed in Command Window to check 
the correct functioning of the program. Also, the variables used can be 
consulted in the Workspace. 
 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8-6. Command Window and Workspace. ARRAY: Create a NxN 
square matrix in order to represent the Pascal’s triangle. 



106

 

 

 

 

[CHAPTER 9] — EPILOGUE 

MATLAB is a high-level programming language widely used for numerical 
computing and scientific data analysis. Some of the main characteristics of 
programming with MATLAB are: 

Easy to use: MATLAB is known for its user-friendly syntax and interactive 
development environment. Its simple and intuitive syntax allows developers 
to express complex mathematical operations with ease. 

Powerful data visualization capabilities: MATLAB provides powerful tools 
for data visualization, making it easy to create plots, graphs, and other visual 
representations of data. 

Numerical computing capabilities: MATLAB is designed for numerical 
computing, making it easy to perform complex calculations and manipulate 
large data sets. It comes with a wide range of built-in functions for linear 
algebra, statistics, optimization, and signal processing. 

Wide range of toolboxes: MATLAB provides a wide range of toolboxes that 
extend its functionality for specialized applications. These toolboxes include 
image processing, control systems, signal processing, and optimization. 

Interoperability: MATLAB can be easily integrated with other programming 
languages and applications, such as Python, Java, C, and Excel. 

Community support: MATLAB has a large and active community of users 
and developers, providing access to a wealth of resources, including forums, 
tutorials, and documentation. 



Mathematical foundations for computer science with MATLAB

107

 

 

 

 

[CHAPTER 9] — EPILOGUE 

MATLAB is a high-level programming language widely used for numerical 
computing and scientific data analysis. Some of the main characteristics of 
programming with MATLAB are: 

Easy to use: MATLAB is known for its user-friendly syntax and interactive 
development environment. Its simple and intuitive syntax allows developers 
to express complex mathematical operations with ease. 

Powerful data visualization capabilities: MATLAB provides powerful tools 
for data visualization, making it easy to create plots, graphs, and other visual 
representations of data. 

Numerical computing capabilities: MATLAB is designed for numerical 
computing, making it easy to perform complex calculations and manipulate 
large data sets. It comes with a wide range of built-in functions for linear 
algebra, statistics, optimization, and signal processing. 

Wide range of toolboxes: MATLAB provides a wide range of toolboxes that 
extend its functionality for specialized applications. These toolboxes include 
image processing, control systems, signal processing, and optimization. 

Interoperability: MATLAB can be easily integrated with other programming 
languages and applications, such as Python, Java, C, and Excel. 

Community support: MATLAB has a large and active community of users 
and developers, providing access to a wealth of resources, including forums, 
tutorials, and documentation. 

 

Overall, MATLAB is a powerful and versatile programming language that is 
well-suited for numerical computing and data analysis in a wide range of 
fields, including engineering, science, and finance.  

This book was created as an important part of academia for several reasons: 

Learning resource: This book provides a comprehensive and organized 
resource for students to learn from. They cover a range of topics and provide 
a structured approach to understanding a subject, in this case: Mathematical 
Foundations in computer programming. This book can also provide 
examples, explanations, and illustrations that help students better understand 
the material. 

Reference material: This book can serve as a reference material for students 
throughout their academic careers related to computing. They can be used to 
refresh knowledge, review concepts, and prepare for exams. 

Integration: This book can integrate multiple disciplines, theories, and 
approaches to a subject, but always focusing on mathematical foundations for 
computing. This can provide a holistic understanding of a topic, and help 
students connect different ideas and concepts. 

Overall, this book is an important resource in academia that provide a 
structured approach to learning, standardize information, serve as a reference 
material, and can integrate multiple disciplines related with computing. 

 

 

 

 

 

 

 

 



108

 

[CHAPTER 10] — REFERENCES 

ACM & IEEE-CS. (2020). Computing Curricula 2020 CC2020, Paradigms for 
Global Computing Education. [Internet] 
https://www.acm.org/binaries/content/assets/education/curricula-
recommendations/cc2020.pdf 

 
Aigner, M. (2023). Discrete mathematics. American Mathematical Society. 
 
Albaugh, L., McCann, J., Yao, L., & Hudson, S. E. (2021). Enabling Personal 

Computational Handweaving with a Low-Cost Jacquard Loom. In 
Proceedings of the 2021 CHI Conference on Human Factors in Computing 
Systems. 1-10. 

 
Avella-Medina, M. (2020). The role of robust statistics in private data 

analysis. Chance, 33(4), 37-42. 
 
Baker, A. (2022). Transcendental number theory. Cambridge university press. 
 
Bowen, J. (2019). The impact of Alan Turing: Formal methods and beyond. 

Engineering Trustworthy Software Systems: 4th International School, SETSS 
2018, Chongqing, China, April 7–12, 2018, Tutorial Lectures 4, 202-235. 

 
Farin, G. & Hansford, D. (2021). Practical linear algebra: a geometry toolbox. 

Chapman and Hall/CRC. 
 
Fortuna, L., Frasca, M., & Buscarino, A. (2021). Optimal and robust control: 

Advanced topics with Matlab®. CRC press. 
 
Haecker, R. (2022). Sacramental Engines: The Trinitarian Ontology of 

Computers in Charles Babbage’s Analytical Engine. Religions, 13(8), 757. 
 
Hosseini, M., Ouaknine, J. & Worrell, J. (2019). Termination of linear loops 

over the integers. arXiv preprint arXiv:1902.07465. 



109

 

[CHAPTER 10] — REFERENCES 

ACM & IEEE-CS. (2020). Computing Curricula 2020 CC2020, Paradigms for 
Global Computing Education. [Internet] 
https://www.acm.org/binaries/content/assets/education/curricula-
recommendations/cc2020.pdf 

 
Aigner, M. (2023). Discrete mathematics. American Mathematical Society. 
 
Albaugh, L., McCann, J., Yao, L., & Hudson, S. E. (2021). Enabling Personal 

Computational Handweaving with a Low-Cost Jacquard Loom. In 
Proceedings of the 2021 CHI Conference on Human Factors in Computing 
Systems. 1-10. 

 
Avella-Medina, M. (2020). The role of robust statistics in private data 

analysis. Chance, 33(4), 37-42. 
 
Baker, A. (2022). Transcendental number theory. Cambridge university press. 
 
Bowen, J. (2019). The impact of Alan Turing: Formal methods and beyond. 

Engineering Trustworthy Software Systems: 4th International School, SETSS 
2018, Chongqing, China, April 7–12, 2018, Tutorial Lectures 4, 202-235. 

 
Farin, G. & Hansford, D. (2021). Practical linear algebra: a geometry toolbox. 

Chapman and Hall/CRC. 
 
Fortuna, L., Frasca, M., & Buscarino, A. (2021). Optimal and robust control: 

Advanced topics with Matlab®. CRC press. 
 
Haecker, R. (2022). Sacramental Engines: The Trinitarian Ontology of 

Computers in Charles Babbage’s Analytical Engine. Religions, 13(8), 757. 
 
Hosseini, M., Ouaknine, J. & Worrell, J. (2019). Termination of linear loops 

over the integers. arXiv preprint arXiv:1902.07465. 

 

Kidron, I. (2020). Calculus teaching and learning. Encyclopedia of 
mathematics education, 87-94. 

 
Kirchner, D., Benzmüller, C. & Zalta, E. (2019). Computer science and 

metaphysics: A cross-fertilization. Open Philosophy, 2(1), 230-251. 
 
Kochenderfer, M. & Wheeler, T. (2019). Algorithms for optimization. Mit Press. 
 
Kossovsky, A. (2020). The Bitter Dispute with Leibniz over Calculus Priority. 

The Birth of Science, 161-161. 
 
Kumar, S., Azar, A., Inbarani, H., Liyaskar, O. & Almustafa, K. (2019). 

Weighted Rough Set Theory for Fetal Heart Rate Classification. 
International Journal of Sociotechnology and Knowledge Development 
(IJSKD), 11(4), 1-19. 

 
Macrae, N. (2019). John von Neumann: The scientific genius who pioneered 

the modern computer, game theory, nuclear deterrence, and much more. 
Plunkett Lake Press. 

 
Matloff, N. (2019). Probability and statistics for data science: Math+ R+ data. 

CRC Press. 
 
Magoun, A. (2019). The Mystery of Claude Shannon’s Personal Computer. In 

2019 6th IEEE History of Electrotechnology Conference (HISTELCON). 85-86 
 
Maričić, S. & Lazić, B. (2020). Abacus computing tool: From history to 

application in mathematical education. Inovacije u nastavi-časopis za 
savremenu nastavu, 33(1), 57-71. 

 
Martínez, F., Martínez, I., Kaabar, M., Ortíz-Munuera, R. & Paredes, S. (2020). 

Note on the conformable fractional derivatives and integrals of complex-
valued functions of a real variable. IAENG International Journal of Applied 
Mathematics, 50(3), 609-615. 



110

 

Miller, S. & Takloo-Bighash, R. (2021). An invitation to modern number theory. 
In An Invitation to Modern Number Theory. Princeton University Press. 

 
Mount, J. & Zumel, N. (2019). Practical data science with R. Simon and Schuster. 
 
National Academies of Sciences, Engineering, and Medicine. (2019). 

Quantum computing: progress and prospects. 
 
O’Regan, G. (2013). Giants of computing. Springer 
 
O’Regan, G. (2018). World of computing. Springer 
 
Potters, M., & Bouchaud, J. P. (2020). A First Course in Random Matrix 

Theory: For Physicists, Engineers and Data Scientists. Cambridge 
University Press. 

 
Pucik, A. (2022). Not Damsels in Distress: Women and the Video Game 

Industry. Arkansas State University. 
 
Roth Jr, C., Kinney, L. & John, E. (2020). Fundamentals of logic design. 

Cengage Learning. 
 
Rushdi, A. (2023). An Overview of Recent Developments in Big Boolean 

Equations. arXiv preprint arXiv:2302.09118. 
 
Steiglitz, K. (2020). Digital Signal Processing Primer. Courier Dover Publications. 
 
Sporns, O. (2022). Graph theory methods: applications in brain networks. 

Dialogues in clinical neuroscience. 
 
Sprunger, D. & Jacobs, B. (2019). The differential calculus of causal functions. 

arXiv preprint arXiv:1904.10611. 
 
The MathWorks. (2023). MATLAB & Simulink. [Internet] 
https://www.mathworks.com/products/matlab.html 



111

 

Miller, S. & Takloo-Bighash, R. (2021). An invitation to modern number theory. 
In An Invitation to Modern Number Theory. Princeton University Press. 

 
Mount, J. & Zumel, N. (2019). Practical data science with R. Simon and Schuster. 
 
National Academies of Sciences, Engineering, and Medicine. (2019). 

Quantum computing: progress and prospects. 
 
O’Regan, G. (2013). Giants of computing. Springer 
 
O’Regan, G. (2018). World of computing. Springer 
 
Potters, M., & Bouchaud, J. P. (2020). A First Course in Random Matrix 

Theory: For Physicists, Engineers and Data Scientists. Cambridge 
University Press. 

 
Pucik, A. (2022). Not Damsels in Distress: Women and the Video Game 

Industry. Arkansas State University. 
 
Roth Jr, C., Kinney, L. & John, E. (2020). Fundamentals of logic design. 

Cengage Learning. 
 
Rushdi, A. (2023). An Overview of Recent Developments in Big Boolean 

Equations. arXiv preprint arXiv:2302.09118. 
 
Steiglitz, K. (2020). Digital Signal Processing Primer. Courier Dover Publications. 
 
Sporns, O. (2022). Graph theory methods: applications in brain networks. 

Dialogues in clinical neuroscience. 
 
Sprunger, D. & Jacobs, B. (2019). The differential calculus of causal functions. 

arXiv preprint arXiv:1904.10611. 
 
The MathWorks. (2023). MATLAB & Simulink. [Internet] 
https://www.mathworks.com/products/matlab.html 

 

Tissenbaum, M., Sheldon, J. & Abelson, H. (2019). From computational thinking 
to computational action. Communications of the ACM, 62(3), 34-36. 

 
Trefethen, L. & Bau, D. (2022). Numerical linear algebra (Vol. 181). Siam. 
 
Ulmann, B. (2022). Analog computing. Walter de Gruyter GmbH & Co KG. 
 
West, D. (2020). Combinatorial mathematics. Cambridge University Press. 
 
Woodford, C. (2021). A brief history of computers. Explain that Stuff. 
 

 

 

 

 

 

 

 

 

 

 

 

 



112

Table of Figures

Figure 4 1. MATLAB main screen …………….....…................................. 33

Figure 5 1. Command Window –
Exercise 1 Comparisons in MATLAB ...................................... 42

Figure 5 2. Command Window –
Exercise 2 Comparisons in MATLAB ...................................... 43

Figure 5 3. Command Window and Workspace – 
Exercise 3 Comparisons in MATLAB ...................................... 45

Figure 5 4. Command Window and Workspace –
Exercise 4 Comparisons in MATLAB ...................................... 47

Figure 5 5 Command Window  –
Exercise 5 Comparisons in MATLAB ...................................... 48

Figure 5 6.  Command Window – 
Exercise 6 Comparisons in MATLAB ...................................... 51

Figure 6 1. MATLAB script calculates the factorial of
a positive integer entered by the user ........................................ 55

Figure 6 2. MATLAB script calculates the divisors of
a given number entered by the user .......................................... 56

Figure 6 3. MATLAB script generates a random
integer between 1 and 100 ......................................................... 58

Figure 6 4. Comand window and Workspace.
LOOPS IN MATLAB: Read a series of non-zeros numbers ......... 64

Figure 6 5. Command window and Workspace.
LOOPS IN MATLAB: Calculate and display thesum and
product of the even numbers between 20 and 400 ..................... 65

Figure 6 6. Command window and Workspace.
LOOPS IN MATLAB: Calculate the sum of the squares .......... 66

Figure 6 7. Command Window and Workspace.
LOOPS IN MATLAB: Add ten numbers entered by keyboard ..... 68

Figure 7 1. Icon for creating a new script .................................................... 76

Figure 7 2. Command window. FUNCTIONS:
Conversion Temperature ........................................................... 79



113

Figure 7 3. Command Window. FUNCTIONS:
Conversion Coordinates Polar - Cartesian ................................ 82

Figure 7 4. Command Window. FUNCTIONS: DrakeE ............................. 84

Figure 7 5. Command window. FUNCTIONS:
Determinate if a number is prime ............................................. 86

Figure 8 1. Command window and Workspace. ARRAYS:
obtain the number of positive elements of an array. .................. 94

Figure 8 2. Command window and Workspace. ARRAYS:
Fill a 4x4 identity matrix.	 ......................................................... 95

Figure 8 3. Command window and Workspace. ARRAYS:
Fill a 3x3 matrix of numbers typed by the user ........................ 98

Figure 8 4. Command window and Workspace. ARRAY:
Calculate the sum of all the elements of a vector of n
elements of random numbers between 1 and 100. ................. 100

Figure 8 5. Command Window and Workspace. ARRAYS:
Create a 4x4 matrix of numeric values typed by the user. ....... 103

Figure 8 6. Command Window and Workspace. ARRAY:
Create an NxN square matrix to represent Pascal’s triangle. .......... 105



114

Table of Tables
Table 5-1. Truth table based on three logical operators ............................... 36

Table 8-1. Example of a square matrix of order 6 ...................................... 103



Publication date: October 2025
San Juan de Pasto - Nariño - Colombia



ISBN: 978-628-7771-82-6


