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Capítulo 1 

Historia de la óptica

 
________________________ 

 

Fotografía de agosto de 2017, en el Corregimiento de Cimarrones, municipio de Chachagüí.  Fuente propia.

1. Introducción  
La palabra “óptica” tiene raíces en el griego “optikos”, palabra compuesta 
de “ops”, que significa “vista”, y el sufijo “-tikos”, que indica una relación; 
de ahí las palabras que terminan en -tica, como: acústica, cinemática, 
aritmética, láctica, etc.  

Como esta palabra, hay muchas cosas que estudiaron los griegos y que hoy 
recordamos al analizar etimológicamente el origen de las palabras en ciencia 
y, en general, en muchas otras cosas, como la filosofía, la política, etc. 

1.1 Un vistazo hacia atrás, en la línea del tiempo 

• Hace 3.5 – 3.2 millones de años surge el Australopithecus afarensis 
(conocido como Lucy), que vivió en África del Este, en lo que hoy es 
Etiopía, Tanzania y Kenia; de acuerdo a la configuración de la cadera, 
rodillas y tobillos, se cree que Lucy ya caminaba erguida; la mayoría 
de la comunidad científica coincide en que este pudo haber sido el 
punto de partida de la especie humana.  

• Hace 1.8 millones de años, se considera que aparece el primer Homo 
hábiles.  

• Hace 0.5 millones de años, se conoce el fuego y se empieza a utilizar.  
• Desde el descubrimiento del fuego hasta hace 45 mil años, existe un 

vacío en la Historia.  
• El Homo sapiens apareció en el periodo comprendido entre 45 y 38 mil 

años, periodo cuando aparecen los animales domésticos. 

Hace unos 15 mil años, se establece Jericó, la primera ciudad en la 
Historia de la humanidad, construida cerca del Río Jordán, en 
Cisjordania, Palestina. https://psicologiaymente.com/cultura/primeras-
ciudades-historia) 

La narrativa histórica se torna un tanto difusa hasta aproximadamente 
el año 5000 a. C., cuando emergen diversas civilizaciones a lo largo de la 
costa oriental del Mediterráneo. Entre estas, se encuentran los caldeos, 
fenicios y egipcios, a quienes se reconoce por sus impresionantes logros 
arquitectónicos, como la construcción de las pirámides de Keops, Kefrén 
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y Micerino. La construcción de las pirámides de Guiza ha logrado su 
objetivo: perdurar por una eternidad. Las monumentales tumbas son 
reliquias de la época del Reino Antiguo de Egipto, que se construyeron 
hace unos 4500 años. Mucho más tarde se encuentra al pueblo griego, que 
sintetiza los conocimientos de los antiguos pueblos y constituye un 
conocimiento a partir de ellos, más innovaciones; además, dieron los 
nombres que hoy seguimos utilizando en muchos ámbitos.   

Los hallazgos prehistóricos muestran que hace unos 5000 años ya se tenían 
platos pulidos metálicos y platos planos para hacer espejos de agua.  

Aproximadamente 500 años a. C., los griegos Leucipo, Demócrito y 
Epicuro proponían que a la materia la formaban unas partículas 
llamadas átomos, por lo que la materia no se puede dividir 
indefinidamente. Por tanto, la luz es o se hace de partículas que emiten 
los cuerpos que, luego, llegan a nuestros ojos (reflexión), y así se produce 
la sensación de ver los cuerpos. 

En el año 384 a. C., Aristóteles consideraba que los objetos emitían ondas 
de luz ultralivianas que, al entrar en contacto con nuestros ojos, se 
producen la visión.  

Arquímedes de Siracusa (287 – 212 a.C.) matemático, astrónomo, 
Ingeniero e inventor muy reconocido por el principio de Arquímedes en la 
hidrostática, se cree que en óptica estudio la reflexión de superficies 
planas y cuenta la leyenda que mantuvo a raya a la flota romana cuando 
intentaban tomarse la ciudad de Siracusa mediante el descubierto por él, 
“rayo de Arquímedes” consistía en reflejar la luz solar mediante espejos 
cóncavos hacia donde estába la flota logrando incendiar alguna de ellas. 

Para el año 200 d. C., Tolomeo, uno de los últimos sabios griegos y gran 
sintetizador de las teorías científicas del momento, también estudió la 
mecánica y la óptica. En esta última rama, trabajó con la reflexión y la 
refracción de la luz, para encontrar cómo se relacionan el ángulo de 
incidencia y el ángulo de refracción.  

Alhazen (965-1040 d.C.) Nació en Basora hoy ciudad Iraki Cientifico 
Musulman moderno físico, matemático, astrónomo su verdadero nombre 
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Al-Basri. Alhazen creía que podía realizar una represa adjunta al rio Nilo 
cuando crecía, lo que llevó a ser contratado por el Califa d’Al-Hakim, en 
el Cairo, pero al darse cuenta de que no era posible fingió estar loco, sin 
embargo el califa lo condeno a 10 años de prisión, tiempo de reclusión que 
le permitió estudiar en su celda oscura las principales características de 
la luz, fue el primero en desarrollar el método científico, y estudiar con 
gran profundidad el ojo humano, descubrió sus estructura óptico, 
descubrió que la luz viaja en línea recta con lo cual inventa la cámara 
oscura a la que le llamó cámara estenopeica, también se dice que 
desarrollo estudios de la refracción y dispersión de la luz, en sus siete 
colores, estudio las sombras, eclipses, el arcoiris y con la entrada de la luz 
solar por entre las nubes realizó un cálculo aproximado del espesor de la 
atmosfera en 100 km, su obra fue monumental libro traducido al español 
y otros idiomas. 

Galileo Galilei (1564-1642), al estudiar la luz, se preguntaba si tenía una 
velocidad finita. Fue el primero en intentar calcularla.  

Willebrord Snell (1580-1626) y René Descartes (1596-1650) descubrieron los 
fenómenos de la reflexión y la refracción. Según Snell, en la reflexión en 
superficies reflectantes, el ángulo de incidencia de un rayo de luz es igual al 
ángulo con el que se refleja dicho rayo, mientras que la refracción responde a 
una relación matemática entre el ángulo de incidencia y el ángulo de refracción: 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑟𝑟𝑟𝑟

= 𝑛𝑛𝑛𝑛 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶.      
donde n se conoce como índice de refracción, característico de los medios 
refringentes. 

En 1640, Francesco María Grimaldi (1618-1663) y Christiaan Huygens 
(1629-1695) observaron que la luz tiene la propiedad de bordear objetos 
comparables con su longitud de onda, fenómeno al que se llamó difracción. 
Huygens, convencido de que la luz es un fenómeno ondulatorio, demostró 
que la reflexión y la refracción constituyen un fenómeno ondulatorio. 

Isaac Newton (1642-1727), autoridad científica del momento y de 
actualidad, sintetizó el conocimiento previo y construyó un nuevo 
conocimiento en Óptica. En cuanto a la naturaleza de la luz, propuso una 
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teoría corpuscular, para dejar de lado la teoría ondulatoria, aunque esta 
teoría no podía explicar los fenómenos de interferencia, difracción y 
polarización, pero, al utilizar la idea del éter, daba alguna forma de 
explicación a esta fenomenología. 

1.2 Teoría corpuscular de la luz  
Como se vio en un comienzo, a la luz se la consideraba de naturaleza 
corpuscular, pues las finas partículas que conforman la materia se 
movían de un cuerpo hasta nuestros ojos y nos daban la sensación del 
cuerpo, desde estas afirmaciones y una forma de entender la 
fenomenología de la visión hasta entender a la luz como corpúsculos de 
energía; Newton estableció la teoría corpuscular de la luz, con la cual 
pudo explicar con absoluta claridad el fenómeno de la propagación de la 
luz en línea recta, la reflexión, la refracción.   

Propagación de la luz en línea recta   

Plantear que la luz viaja en línea 
recta facilitó el entendimiento de los 
eclipses de sol y de luna; así se estudió 
la sombra y la penumbra y no hubo 
objeción ante lo propuesto; el gran 
misterio de los eclipses de luna y sol 
quedaba desvelado y lo único que 
inquietaba era su predicción, aunque, 
en el vulgo, no había dejado de existir 
la sensación referida a que allí había 
algo misterioso, con augurios de mala 
suerte. Con la idea de la propagación 
lineal, resultó sencillo explicar la 
reflexión y la refracción de la luz, al 
considerar un rayo vector que incide 
y se refleja o refracta. 

En la Fig. 1.1, se puede ver un rayo de luz láser que se refleja en una 
atmósfera de humo de cigarrillo en el laboratorio de óptica de la 

Fig. 1.1. Trazo rectilíneo de un rayo de luz 
láser. Fuente propia. 
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la sensación referida a que allí había 
algo misterioso, con augurios de mala 
suerte. Con la idea de la propagación 
lineal, resultó sencillo explicar la 
reflexión y la refracción de la luz, al 
considerar un rayo vector que incide 
y se refleja o refracta. 

En la Fig. 1.1, se puede ver un rayo de luz láser que se refleja en una 
atmósfera de humo de cigarrillo en el laboratorio de óptica de la 

Fig. 1.1. Trazo rectilíneo de un rayo de luz 
láser. Fuente propia. 

Universidad de Nariño; puede verse en una atmósfera cargada de 
humedad, como neblina, debido a estas finas partículas, donde se refleja 
la luz; de no estar estas partículas, la luz no tendría en qué reflejarse y, 
por tanto, no se vería.  

Cámara oscura  

Fue Alhazen quien dio una explicación del funcionamiento del artefacto 
conocido desde hace mucho tiempo posiblemente mucho antes de los griegos 
usada por  magos que la mostraban en los poblados como algo mágico, por 
supuesto que despertaba curiosidad,  en la Fig. 1.2, se puede apreciar un 

esquema de la cámara oscura, que no 
es más que una caja elaborada de 
algún material opaco, en lo posible de 
color negro en su parte interna; en la 
parte frontal, hay un agujero por 
donde entra la luz, el agujero  puede 
ser de un diámetro de  entre 0.6 y 
0.15mm siendo el más óptimo  
0.35mm  los rayos de luz que salen 
desde el objeto penetran a la cámara 
por el agujero generando una imagen 
en la pantalla translucida colocada en 

la parte posterior de la cámara; aquí se puede ver como los rayos de luz siguen 
una línea recta desde el objeto a la pantalla; como se puede ver en la figura1.2 
los rayos salen desde el punto A y B  del árbol y entran a la cámara, donde se 
invierten; así, el punto A, ahora está en la parte baja de la pantalla, y el B en 
la parte superior con lo cual se tiene una imagen invertida y de menor tamaño.  

1.3 Cálculo de la velocidad de la luz 

Desde la Antigüedad, existía la pregunta sobre si la luz tiene velocidad o 
no; al no tener la menor idea de cómo responderla, con la entrada de la 
Edad Moderna, la pregunta se había tornado cada vez más insistente.  

Fig. 1.2. Esquema de una cámara oscura. 
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Método de Galileo 

Entre las preguntas que más 
llamaban la atención estaba: 
¿la luz tiene velocidad? 
Galileo Galilei fue de los 
primeros que se planteó el 
problema y, para saberlo, 
diseñó este experimento: 
consistía en subir a dos montañas con visual de la una a la otra; además, se 
conocía la distancia que las separaba; había dos observadores, con 
antorchas, uno en cada montaña; el Observador 1 mostraba la antorcha 
encendida; el Observador 2 mostraba la antorcha una vez hubiera visto la 
luz de la antorcha del Observador 1 y un ayudante del Observador 1 medía 
el tiempo que tardaba la luz en ir y volver. Como se puede ver en la Fig. 1.3, 
la velocidad de la luz se podría calcular así: 
 

𝑣𝑣𝑣𝑣 = 2𝐷𝐷𝐷𝐷
𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥

      (1.1) 
 

El experimento fracasó debido a que el tiempo de reacción del Observador 
2 era significativamente mayor que el tiempo que le tomaba a la luz 
recorrer la distancia de ida y vuelta, pero logró incentivar a otros 
científicos para continuar en la búsqueda de nuevos métodos que 
permitieran realizar el cálculo de la velocidad de la luz. 
 

Método de Ole Romer   

Ole Romer (1644-1710) fue un astrónomo danés, conocido por otorgar un 
valor a la velocidad de la luz. De modo accidental, encontró un error al 
medir el periodo de rotación de la luna Io, de Júpiter; sin tener en claro 
la distancia desde la tierra hasta Júpiter y sin conocer el diámetro de la 
órbita de la tierra, observó que, una vez se había calculado el periodo del 
satélite de Júpiter, cuando la tierra se hallaba cerca de Júpiter, se podía 
predecir la hora de salida del cono de sombra.  Seis meses después, es 
decir, cuando la tierra se hallaba alejada del planeta gigante, el 
pronóstico no se cumplía; el fenómeno se había repetido una y otra vez, y 

Fig. 1.3. Método de Galileo para medir la velocidad 
de la luz. 
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siempre se había obtenido el mismo error de retardo. Este error tenía que 
ver con D, la distancia desde el primer punto de observación al segundo.  
 
 
 
 
 
 
 
 
 
 
 
En la Fig 1.4, se puede ver la posición de los dos observadores y, claro, en 
el caso del segundo observador, la luz tiene que recorrer además el 
diámetro de la órbita terrestre, razón por la cual la señal o la luz llegaba 
más tarde de lo predicho en el punto A.  
 
Así:  

  𝑣𝑣𝑣𝑣 = 𝐷𝐷𝐷𝐷
𝛥𝛥𝛥𝛥
 

𝑣𝑣𝑣𝑣 = 225.000 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘
𝑠𝑠𝑠𝑠

  
El valor estimado incluye un error del 75%. Esto se entiende, porque, en 
su momento, no se tenía en claro el diámetro de la tierra. 

Método de Hipólito Fizeau. 

El francés Hippolyte Louis Fizeau (1819 -1896) dedicó mucho tiempo a 
calcular la velocidad de la luz. Para ello diseñó un experimento que, 
básicamente, consistía en un disco dentado, que puede girar a gran 
velocidad angular; la luz, cuando sale de la fuente, puede pasar por los 
espacios entre diente y diente; estos pulsos de luz deben viajar una 
distancia d y reflejarse en un espejo y regresar hasta donde se halla el 
disco dentado que gira a gran velocidad angular; si la luz, al llegar, se 
encuentra con un diente, el observador que se encuentra justamente 
detrás del disco no verá la luz, pero, si logra pasar por el espacio que 

Fig. 1.4. Método de Ole Romer para medir la velocidad de la luz. 
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sigue, el observador advertirá que la luz llegó;  el esquema del 
experimento se puede ver en la Fig. 1.5.  

El desarrollo matemático del experimento parte de la expresión (1.1), que 
había propuesto Galileo: 

𝑣𝑣𝑣𝑣 = 2𝑑𝑑𝑑𝑑
𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥

 ,       

donde Δt es el tiempo para pasar de un diente a un espacio. Así que: 

𝛥𝛥𝛥𝛥𝐶𝐶𝐶𝐶 = 𝑇𝑇𝑇𝑇
2𝑁𝑁𝑁𝑁

      (1.2), 
 
donde T es el periodo de 
rotación y N es el 
número de dientes del 
disco; es el doble, porque 
después de un diente 
sigue un espacio, que 
también cuenta. 
 

Al reemplazar la ecuación (1.2) en (1.1), se tiene: 

𝑣𝑣𝑣𝑣 = 2𝑑𝑑𝑑𝑑
𝑇𝑇𝑇𝑇
2𝑁𝑁𝑁𝑁�

= 4𝑁𝑁𝑁𝑁𝑑𝑑𝑑𝑑
𝑇𝑇𝑇𝑇

. 

Ahora bien, como 𝑓𝑓𝑓𝑓 = 1
𝑇𝑇𝑇𝑇
, (que representa el número de vueltas por unidad 

de tiempo), al remplazar, se tiene: 

𝑣𝑣𝑣𝑣 = 4𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑓𝑓𝑓𝑓            (1.3). 

De modo que, si se tienen estos datos: 𝑁𝑁𝑁𝑁 = 8633𝑚𝑚𝑚𝑚 = 8.63𝐾𝐾𝐾𝐾𝑚𝑚𝑚𝑚,𝑁𝑁𝑁𝑁 = 720 y 𝑓𝑓𝑓𝑓 =
12.3𝑠𝑠𝑠𝑠−1, se llega a que:   

𝑣𝑣𝑣𝑣 = 4(8633𝑚𝑚𝑚𝑚)(720)(12.3𝑠𝑠𝑠𝑠−1) = 305815392 𝑚𝑚𝑚𝑚/𝑠𝑠𝑠𝑠 

Fig. 1.5. Método de Fizeau para medir la velocidad de 
la luz. 
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Este es un resultado, por primera vez, cercano a la velocidad de la luz. 

Método de León Foucault. 

León Foucault (1819-1868), colega y 
ayudante de Fizeau, desarrolló un 
método para calcular la velocidad de la 
luz similar al de Fizeut, pero con 
utilización de medidas de laboratorio; 
en la Figura 1.6, se puede ver el 
esquema de ese experimento; la luz que 
sale desde la fuente luminosa atraviesa 
el orificio, con lo cual llega hasta el 
espejo rotativo, de este al espejo fijo E 
y, luego, rebota hasta el espejo rotativo; 
si este ha girado un pequeño ángulo, el 
rayo se reflejará en un ángulo doble del 

de rotación, con lo cual el rayo llegará hasta un punto en la pantalla a una 
distancia 𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥 del orificio. 

En Matemáticas, la expresión para calcular la velocidad corresponde a la 
expresión que había propuesto Galileo; o sea, (1.1): 

𝑣𝑣𝑣𝑣 = 2𝑑𝑑𝑑𝑑
𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥

.        

Como se puede ver en la Fig. 1.6, D es la distancia desde la pantalla al 
espejo rotativo. Por otra parte, la velocidad angular del espejo se puede 
expresar como: 

𝑤𝑤𝑤𝑤 = 𝛼𝛼𝛼𝛼
𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥

       (1.4). 

Por tanto,  

𝛥𝛥𝛥𝛥𝐶𝐶𝐶𝐶 = 𝛼𝛼𝛼𝛼
𝑤𝑤𝑤𝑤

       (1.5), 

y el ángulo 𝛼𝛼𝛼𝛼 se puede calcular del triángulo EOP, de tal forma que:  

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛2𝛼𝛼𝛼𝛼 = 𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥
𝐷𝐷𝐷𝐷

       (1.6). 

Fig. 1.6. Método de Foucault para medir 
la velocidad de la luz. 
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Cuando se tiene un ángulo medido en radianes y es muy pequeño, se 
puede aproximar, de tal manera que:  

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛2𝛼𝛼𝛼𝛼 𝛼 2𝛼𝛼𝛼𝛼; por tanto,  2𝛼𝛼𝛼𝛼 = 𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥
𝐷𝐷𝐷𝐷

, de donde se obtiene:   

𝛼𝛼𝛼𝛼 = 𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥
2𝐷𝐷𝐷𝐷

       (1.7). 

Al reemplazar (1.7) en (1.5), se tiene: 

𝛥𝛥𝛥𝛥𝐶𝐶𝐶𝐶 = 𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥
2𝐷𝐷𝐷𝐷𝑤𝑤𝑤𝑤

       (1.8). 

Ahora bien, si se remplaza (1.8) en (1.1), se obtiene: 

𝑣𝑣𝑣𝑣 = 4𝑑𝑑𝑑𝑑𝐷𝐷𝐷𝐷𝑤𝑤𝑤𝑤
𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥

. 

Como 𝜔𝜔𝜔𝜔 = 2𝜋𝜋𝜋𝜋𝑓𝑓𝑓𝑓, entonces se tiene: 

𝑣𝑣𝑣𝑣 = 8𝜋𝜋𝜋𝜋𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝜋𝜋𝜋𝜋
𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥

       (1.9). 

Si se tienen estos datos experimentales: 𝐷𝐷𝐷𝐷 = 50𝑚𝑚𝑚𝑚;𝑁𝑁𝑁𝑁 = 8𝑚𝑚𝑚𝑚;∆𝛥𝛥𝛥𝛥 = 12𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 y 
𝑓𝑓𝑓𝑓 = 358𝑠𝑠𝑠𝑠−1, al remplazar en (1.9), se tiene:  

𝑣𝑣𝑣𝑣 =
8𝜋𝜋𝜋𝜋(50𝑚𝑚𝑚𝑚)(8𝑚𝑚𝑚𝑚)(358𝑠𝑠𝑠𝑠−1)

0.012𝑚𝑚𝑚𝑚
 

𝑣𝑣𝑣𝑣 = 299918080𝑚𝑚𝑚𝑚/𝑠𝑠𝑠𝑠 

𝑣𝑣𝑣𝑣 = 299918,08𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚/𝑠𝑠𝑠𝑠 

Así que la velocidad de la luz es muy cercana a 300000 Km/s, que 
corresponde a la velocidad más grande que se conoce en el universo. 
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8𝜋𝜋𝜋𝜋(50𝑚𝑚𝑚𝑚)(8𝑚𝑚𝑚𝑚)(358𝑠𝑠𝑠𝑠−1)

0.012𝑚𝑚𝑚𝑚
 

𝑣𝑣𝑣𝑣 = 299918080𝑚𝑚𝑚𝑚/𝑠𝑠𝑠𝑠 

𝑣𝑣𝑣𝑣 = 299918,08𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚/𝑠𝑠𝑠𝑠 

Así que la velocidad de la luz es muy cercana a 300000 Km/s, que 
corresponde a la velocidad más grande que se conoce en el universo. 

Método de Albert Michelson. 

Por otra parte, Albert Michelson (1852-1931), un militar estadounidense, 
dedicó su vida a calcular la velocidad de la luz, con más de 1020 experimentos 
dedicados a la luz, y alcanzó un Premio Nobel de Física, en 1907, por el 
experimento, en compañía de Edward Morley, sobre la NO existencia del Éter, 
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En 1882, mediante un informe sobre la velocidad de la luz, explicó el 
método que se había utilizado y el valor obtenido una y otra vez es: 

𝐶𝐶𝐶𝐶 = 299.853
𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚
𝑠𝑠𝑠𝑠

 
 

 
Con un proceso similar al de Foucault, pero mejorado, como se puede ver 
en el esquema del montaje, de la Fig. 1.7, que consiste en un espejo 
rotativo de ocho lados, una gran fuente luminosa, un espejo cóncavo 
emisor y un espejo reflector colocado en la cima de una montaña situada 
a 35 Km de distancia, y un telescopio de observación. Así ocurre que, 
cuando todo está alineado y el espejo rotativo está en reposo, la luz que 
emite la fuente pasa a través de un diafragma y se refleja en una de las 
caras del espejo rotativo; luego, incide en el espejo parabólico y se refleja 
hasta llegar al espejo de la montaña situado a 35 Km de distancia; desde 
allí se refleja hasta alcanzar el espejo parabólico y de este al espejo 

Fig. 1.7. Método de Michelson para calcular la velocidad de la luz. 

 D

Monte Willson

Observador

Espejo de ocho lados

Espejo parabólico

Fuente luminosa

Espejo



24

Curso de óptica

rotativo; si, al reflejarse,  llega al telescopio y el observador lo puede ver 
en la retícula a escala, entonces lo puede medir.      

Si el espejo rota un ángulo determinado, mientras la luz va hasta la 
montaña y retorna, el observador no logrará ver la luz, pero si el espejo 
logró girar 45º en ese tiempo, el observador verá la luz. Con 45º que gire 
el espejo, se habrá ubicado el espejo que sigue en el lugar correcto de 
reflexión hacia el telescopio. Esto es: 
 

𝐶𝐶𝐶𝐶 = 2𝐷𝐷𝐷𝐷
𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥

,        
 
 
 
donde D = 35Km, ∆𝐶𝐶𝐶𝐶 el tiempo para girar 45º: 
 

𝛥𝛥𝛥𝛥𝐶𝐶𝐶𝐶 = 𝑇𝑇𝑇𝑇
8
. 

Además, 𝑇𝑇𝑇𝑇 = 2𝜋𝜋𝜋𝜋
𝑤𝑤𝑤𝑤

 y  𝑇𝑇𝑇𝑇 = 1
𝜋𝜋𝜋𝜋
; si todo esto se reemplaza en (1), se obtiene: 

𝐶𝐶𝐶𝐶 =
2𝑁𝑁𝑁𝑁
𝑇𝑇𝑇𝑇/8

 

𝐶𝐶𝐶𝐶 =
16𝑁𝑁𝑁𝑁
𝑇𝑇𝑇𝑇

 

𝐶𝐶𝐶𝐶 = 16𝑁𝑁𝑁𝑁𝑓𝑓𝑓𝑓        (1.10). 
 
Con los datos experimentales, al remplazar en (1.10), se tiene: 

 
Si 𝑁𝑁𝑁𝑁 = 3,5 × 107𝑚𝑚𝑚𝑚    𝑓𝑓𝑓𝑓 = 535 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠/𝑠𝑠𝑠𝑠, entonces:  

𝐶𝐶𝐶𝐶 = 16(3.5 × 107𝑚𝑚𝑚𝑚)(535𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠/𝑠𝑠𝑠𝑠) 

𝐶𝐶𝐶𝐶 = 299600 𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚/𝑠𝑠𝑠𝑠 

Importante: en este caso, cualquier valor de cifras significativas que se 
quisiera agregar resulta todo un reto técnico y científico; “además, 
recuérdese que, en el tiempo de Michelson, aún no se había inventado el 
rayo láser”. 
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quisiera agregar resulta todo un reto técnico y científico; “además, 
recuérdese que, en el tiempo de Michelson, aún no se había inventado el 
rayo láser”. 

1.4 Espectrometría   

Joseph von Fraunhofer (1787-1826), de nacionalidad alemana, fue un 
astrónomo y físico dedicado a la óptica. Después del prisma de Newton, hubo 
varios experimentos, cada vez más rigurosos, para tratar de descomponer la 
luz blanca en los diferentes colores; los físicos fueron asociando espectros con 
algunos elementos químicos en combustión conocidos en ese entonces; la 
creación de nuevos instrumentos ópticos, como el espectroscopio, para 
observar la descomposición de la luz, mostró que había algo más de la banda 
de colores: “se encontraron líneas brillantes”.  

Fraunhofer descompuso la luz al llevar a que pasara por rendijas muy 
finas, para aprovechar la difracción de la luz, con lo cual mejoró la 
observación de los espectros. En ese entonces, ya estaba claro que cada 
elemento químico tiene su propio espectro, con lo cual se dio comienzo a 
una nueva disciplina de la Física: “la observación de estrellas para 
descubrir su composición química”. 

Al observar el sol, se encontraron unas líneas no observadas antes; sin 
embargo, en 1895, se descubrió el helio en la tierra, pero ya se había 
observado en el sol. Así, Fraunhofer fue el inventor del espectroscopio y 
una nueva línea de investigación, al extremo de convertirse en una 
industria muy próspera para caracterizar materiales. 

En Física, se conocen dos tipos de espectros: de emisión y de absorción; el 
primero se presenta cuando se obtiene el espectro directamente al 
observar la fuente luminosa, mientras que el segundo se halla cuando la 
luz blanca proveniente de la fuente luminosa atraviesa el vapor del 
producto químico que se va analizar y, luego, se produce el espectro.  

Entre los espectroscopios, actualmente se tiene el de prisma y el de 
difracción, como los de Fraunhofer. 

Cuando se trata de analizar un compuesto químico, en muchas ocasiones basta 
con un espectroscopio de prisma, pero, si se trata de un elemento químico, en 
muchas ocasiones es necesario un espectroscopio de difracción. 
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Ahora bien, los investigadores de espectros desarrollaron series 
matemáticas de forma empírica, que muestran la distribución de líneas 
espectrales, tal como se puede ver en esta tabla. 

Tabla 1.1. Series espectrales del campo visible, infrarrojos y 
ultravioletas. Fuente: Acosta. 
 

Serie Región espectral Ecuación de la 
serie 

Límite de la 
serie 

Lyman Ultravioleta 
1
𝜆𝜆𝜆𝜆 = 𝑅𝑅𝑅𝑅 𝑅

1
12 −

1
𝑛𝑛𝑛𝑛2� 

911.27Å 
𝑛𝑛𝑛𝑛 = 2,3,4 

Balmer Visible 
1
𝜆𝜆𝜆𝜆 = 𝑅𝑅𝑅𝑅 𝑅

1
22 −

1
𝑛𝑛𝑛𝑛2� 

3645.1Å 
𝑛𝑛𝑛𝑛 = 3,4,5 

Paschen Infrarrojo 
1
𝜆𝜆𝜆𝜆 = 𝑅𝑅𝑅𝑅 𝑅

1
32 −

1
𝑛𝑛𝑛𝑛2� 

8201.4Å 
𝑛𝑛𝑛𝑛 = 4,5,6 

Brackett Infrarrojo 
1
𝜆𝜆𝜆𝜆 = 𝑅𝑅𝑅𝑅 𝑅

1
42 −

1
𝑛𝑛𝑛𝑛2� 

14.580Å 
𝑛𝑛𝑛𝑛 = 5,6,7 

Pfund Infrarrojo 
1
𝜆𝜆𝜆𝜆 = 𝑅𝑅𝑅𝑅 𝑅

1
52 −

1
𝑛𝑛𝑛𝑛2� 

22782Å 
𝑛𝑛𝑛𝑛 = 6,7,8 

 
J. R. Rydberg (1854-1919) encontró de forma empírica la fórmula general:  

 
1
𝜆𝜆𝜆𝜆

= 𝑅𝑅𝑅𝑅 𝑅 1
22
− 1

𝑆𝑆𝑆𝑆2
� ;  𝐷𝐷𝐷𝐷𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑛𝑛𝑛𝑛 = 3,  4,  5 . ..        (1.11), 

 
con la cual se puede calcular la longitud de onda en cada una de las series.  
En la fórmula, R es la constante de Rydberg, que tiene un valor de: 
𝑅𝑅𝑅𝑅 = 1.0973731 × 10−3Å−1. 
 
Para 𝑛𝑛𝑛𝑛 = 3,  𝜆𝜆𝜆𝜆 = 6563𝐴𝐴𝐴𝐴°, que se identifica con la línea roja. 
Para 𝑛𝑛𝑛𝑛 = 4,  𝜆𝜆𝜆𝜆 = 4681𝐴𝐴𝐴𝐴°, que se identifica con la línea azul. 
Para valores de n crecientes, las longitudes de onda se juntan cada vez 
más; así que para: 

 
 𝑛𝑛𝑛𝑛 𝑛 𝑛; 𝜆𝜆𝜆𝜆 = 3.645Å. 
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 𝑛𝑛𝑛𝑛 𝑛 𝑛; 𝜆𝜆𝜆𝜆 = 3.645Å. 

Johann Jakob Balmer, profesor de escuela, en 1885, publicó un artículo 
titulado: Avisos sobre líneas espectrales del hidrógeno; en este artículo, 
Balmer presenta una ecuación desarrollada mediante ensayo y error, con 
la cual se podían calcular las longitudes de onda de cuatro líneas visibles: 

𝜆𝜆𝜆𝜆 = ℎ𝑘𝑘𝑘𝑘2

𝑘𝑘𝑘𝑘2−𝑆𝑆𝑆𝑆2
, 

 
donde h es la constante de Balmer: 3.6456; m puede ser: 3, 4, 5, y n = 2; 
más tarde se demostró que la ecuación de Balmer era un caso particular 
de la ecuación (1.11). 

1.5 El electromagnetismo y la teoría ondulatoria de la luz 

James Clerk Maxwell (1831-1879) fue un científico escocés. Como físico 
teórico, se propuso revisar las leyes de la electricidad y el magnetismo 
para concluir con una teoría unificadora: “El Electromagnetismo”, que se 
puede resumir en estas afirmaciones: 

Cargas en reposo, generan: campo eléctrico  
Cargas con movimiento uniforme generan: campo eléctrico, corriente 
eléctrica y campo magnético. 
Cargas aceleradas generan: campo eléctrico, corriente eléctrica, 
campo magnético y radiación electromagnética. 

La radiación electromagnética se propone como una onda que se desplaza 
en el espacio vacío y, además, lo hace a la velocidad de la luz. 

Como un subproducto, Maxwell encontró la ecuación de onda del campo 
eléctrico y magnético: 

𝜕𝜕𝜕𝜕2𝐸𝐸𝐸𝐸
𝜕𝜕𝜕𝜕𝐶𝐶𝐶𝐶2

=
1

𝜇𝜇𝜇𝜇0𝜀𝜀𝜀𝜀0
𝜕𝜕𝜕𝜕2𝐸𝐸𝐸𝐸
𝜕𝜕𝜕𝜕𝑥𝑥𝑥𝑥2

 

 
𝜕𝜕𝜕𝜕2𝐵𝐵𝐵𝐵
𝜕𝜕𝜕𝜕𝐶𝐶𝐶𝐶2

=
1

𝜇𝜇𝜇𝜇0𝜀𝜀𝜀𝜀0
𝜕𝜕𝜕𝜕2𝐵𝐵𝐵𝐵
𝜕𝜕𝜕𝜕𝑥𝑥𝑥𝑥2
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donde la velocidad de propagación es: 𝑣𝑣𝑣𝑣 = 1
�𝜇𝜇𝜇𝜇0𝜀𝜀𝜀𝜀0

; 𝜇𝜇𝜇𝜇0 es el coeficiente de 

permitividad magnética en el vacío y 𝜖𝜖𝜖𝜖0 es el coeficiente de permitividad 
eléctrica en el vacío, lo que significa que “hay ondas en el vacío”. 

De seguro, jamás se habían imaginado algo semejante; además, la 
velocidad de propagación es igual a la de la velocidad de la luz y, por 
primera vez, así se tiene un marco teórico sobre la naturaleza de la luz. 
Veinticinco años más tarde, el alemán Heinrich Hertz demostró la 
existencia de las ondas electromagnéticas y produjo reflexión, refracción, 
difracción e interferencia. De modo que, tras 160 años, las ideas de 
Newton sobre la naturaleza de la luz se rebatieron y, en adelante, se 
considera a la luz como una onda electromagnética. 

Con ajustes posteriores, se confirma el espectro del electromagnetismo, 
como se puede ver en la Tabla 1.2: 

Tabla 1.2. Espectro electromagnético. 
 

Fenomenología Longitud de onda Frecuencia 

Descarga Eléctrica 105 - 104 300Hz         3000Hz 

Onda de Radio Larga 104 - 103 3000Hz       3kHz 

Onda de Radio Media 103 - 102 3kHz           300kHz 

Onda de Radio Corta 102 - 101 300kHz       3MHz 

Onda de Radio Microonda 101 - 100 3MHz          30MHz 

Televisión 100  ≡ 1𝑚𝑚𝑚𝑚 30MHz 

Señal Satelital 10−2 3000MHz 

Señal Celulares 10−3 30× 1010      30000MHz 

Horno Microondas 10−4 30× 1011 ≡ 0.3GH 

Infrarrojos 10−4 - 10−5 3.0 × 1011     3GH 

Espectro Visible 10−6 micrón 30GHz 

Ultravioletas 10−7 - 10−9 300GHz 

Rayos X 1 10−9 - 10−10 3.0 × 1016 

Rayos X 2 10−10 - 10−11 3.0 × 1017 

Rayos 𝛾𝛾𝛾𝛾 10−11 - 10−12 3.0 × 1018 

Rayos Cósmicos 10−12 - 10−13 3.0 × 1019 
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eléctrica en el vacío, lo que significa que “hay ondas en el vacío”. 

De seguro, jamás se habían imaginado algo semejante; además, la 
velocidad de propagación es igual a la de la velocidad de la luz y, por 
primera vez, así se tiene un marco teórico sobre la naturaleza de la luz. 
Veinticinco años más tarde, el alemán Heinrich Hertz demostró la 
existencia de las ondas electromagnéticas y produjo reflexión, refracción, 
difracción e interferencia. De modo que, tras 160 años, las ideas de 
Newton sobre la naturaleza de la luz se rebatieron y, en adelante, se 
considera a la luz como una onda electromagnética. 

Con ajustes posteriores, se confirma el espectro del electromagnetismo, 
como se puede ver en la Tabla 1.2: 

Tabla 1.2. Espectro electromagnético. 
 

Fenomenología Longitud de onda Frecuencia 

Descarga Eléctrica 105 - 104 300Hz         3000Hz 

Onda de Radio Larga 104 - 103 3000Hz       3kHz 

Onda de Radio Media 103 - 102 3kHz           300kHz 

Onda de Radio Corta 102 - 101 300kHz       3MHz 

Onda de Radio Microonda 101 - 100 3MHz          30MHz 

Televisión 100  ≡ 1𝑚𝑚𝑚𝑚 30MHz 

Señal Satelital 10−2 3000MHz 

Señal Celulares 10−3 30× 1010      30000MHz 

Horno Microondas 10−4 30× 1011 ≡ 0.3GH 

Infrarrojos 10−4 - 10−5 3.0 × 1011     3GH 

Espectro Visible 10−6 micrón 30GHz 

Ultravioletas 10−7 - 10−9 300GHz 

Rayos X 1 10−9 - 10−10 3.0 × 1016 

Rayos X 2 10−10 - 10−11 3.0 × 1017 

Rayos 𝛾𝛾𝛾𝛾 10−11 - 10−12 3.0 × 1018 

Rayos Cósmicos 10−12 - 10−13 3.0 × 1019 
 

Nuevas mentes humanas comienzan a revolucionar lo que, aparentemente, 
tenía en claro el físico alemán Hermann von Helmholtz, físico y médico. De 
finales del siglo XIX, según este científico todo se había dicho; lo único que 
quedaba por hacer eran las aplicaciones en todos los campos de la técnica y la 
ciencia; sin embargo, un puñado de fenómenos no tenía explicaciones con la 
Física Clásica, como: naturaleza de la corriente eléctrica, efecto fotoeléctrico, 
radioactividad y, desde hacía años, se tenía la experiencia de hornos de 
metalurgia, cuyo único manejo de la temperatura se efectuaba de acuerdo con 
el ojo del técnico con mayor experiencia. 

Thomas Young (1773-1820) y Augustin Fresnel (1788-1827) lograron 
producir unas interferencias luminosas, algo que solo se había reservado 
para las ondas mecánicas; el experimento fue muy importante, pues, con 
esto, se llevaba a que tambaleara la teoría de Newton sobre una 
naturaleza de la luz corpuscular; sin embargo, algunos seguidores aún 
sustentaban la autoridad científica de Newton. 

William Crookes (1832-1919), un libre investigador inglés dedicado al 
estudio de la Física, la Química y el espiritismo, descubrió el talio y la 
construcción de los tubos al vacío para realizar descargas eléctricas en 
gases con baja presión, que llevan su nombre: “Tubos de Crookes”, en los 
que identifica que los rayos catódicos responden a campos magnéticos. 

Jean Perrin (1870-1942) utilizó aparatos similares a los de Crookes para 
demostrar que unas partículas cargadas negativamente forman los rayos 
catódicos. 

1.6 Descubrimiento del electrón  

Joseph John Thomson (1856-1940), un físico inglés, continuó con los 
experimentos de Crookes y Perrin, de tal modo logró determinar la 
relación de carga y masa de los rayos catódicos. Experimentalmente con 
el equipo de la Leybold se puede establecer los siguiente: 

Del manual del equipo se puede extraer lo siguiente: La fuerza magnética 
que actúa sobre una partícula con carga q y que se mueve con velocidad 
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𝑣𝑣𝑣𝑣→en una región donde hay un campo magnético 𝐵𝐵𝐵𝐵→ , está dada por la 
fuerza de Lorentz:    

𝐹𝐹𝐹𝐹→ = 𝑞𝑞𝑞𝑞 𝑉𝑉𝑉𝑉→ × 𝐵𝐵𝐵𝐵→           (1.12) 

De acuerdo a la figura 1.9 en donde el campo magnético está entrando al libro, 
y la partícula cargada entra al campo, por ser el resultado de un producto 
vectorial, esta fuerza es perpendicular tanto al campo magnético 𝐵𝐵𝐵𝐵→  como a la 
velocidad 𝑣𝑣𝑣𝑣→ y, por tanto, al desplazamiento. Como la fuerza magnética es 
perpendicular al desplazamiento, no hace trabajo sobre la partícula y, en 
consecuencia, no puede cambiar la energía cinética de la misma, entonces: la 
rapidez de una partícula cargada que se mueve dentro de un campo 
magnético, sin la presencia de otro campo: es constante.   

La ley de fuerza magnética, o ley de Lorentz, establece que sólo la 
componente de la velocidad perpendicular a 𝐵𝐵𝐵𝐵→ es la que contribuye a la 
fuerza y, a su vez, es afectada en su dirección por el campo. La 
componente de la velocidad paralela al campo, ni contribuye a la fuerza 
magnética, ni es afectada por esta. 

Fig. 1.8.   Tubo al vacío que utilizó J. J. Thomson, con el cual descubrió 
el electrón, la primera partícula subatómica en ser descubierta. Museo 
del Laboratorio de Cavendish. 



31

Capítulo 1. Historia de la óptica

𝑣𝑣𝑣𝑣→en una región donde hay un campo magnético 𝐵𝐵𝐵𝐵→ , está dada por la 
fuerza de Lorentz:    

𝐹𝐹𝐹𝐹→ = 𝑞𝑞𝑞𝑞 𝑉𝑉𝑉𝑉→ × 𝐵𝐵𝐵𝐵→           (1.12) 

De acuerdo a la figura 1.9 en donde el campo magnético está entrando al libro, 
y la partícula cargada entra al campo, por ser el resultado de un producto 
vectorial, esta fuerza es perpendicular tanto al campo magnético 𝐵𝐵𝐵𝐵→  como a la 
velocidad 𝑣𝑣𝑣𝑣→ y, por tanto, al desplazamiento. Como la fuerza magnética es 
perpendicular al desplazamiento, no hace trabajo sobre la partícula y, en 
consecuencia, no puede cambiar la energía cinética de la misma, entonces: la 
rapidez de una partícula cargada que se mueve dentro de un campo 
magnético, sin la presencia de otro campo: es constante.   

La ley de fuerza magnética, o ley de Lorentz, establece que sólo la 
componente de la velocidad perpendicular a 𝐵𝐵𝐵𝐵→ es la que contribuye a la 
fuerza y, a su vez, es afectada en su dirección por el campo. La 
componente de la velocidad paralela al campo, ni contribuye a la fuerza 
magnética, ni es afectada por esta. 

Fig. 1.8.   Tubo al vacío que utilizó J. J. Thomson, con el cual descubrió 
el electrón, la primera partícula subatómica en ser descubierta. Museo 
del Laboratorio de Cavendish. 

Cuando la velocidad y el campo 
magnético son perpendiculares 
entonces, se puede afirmar que: 
𝐹𝐹𝐹𝐹 = 𝑞𝑞𝑞𝑞𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉. En consecuencia, la 
aceleración de la partícula 
también es de módulo constante y 
perpendicular a la velocidad, lo 
cual es característico de un 
movimiento circular uniforme. 
Para este tipo de movimiento la 
dirección de la aceleración es 
hacia el centro de la trayectoria 
circular ver figura 1.9, y de 
magnitud:            

𝑇𝑇𝑇𝑇 = 𝑣𝑣𝑣𝑣2

𝑅𝑅𝑅𝑅
                 (1.13) 

Por la segunda ley de Newton:  𝐹𝐹𝐹𝐹 = 𝑚𝑚𝑚𝑚𝑇𝑇𝑇𝑇 y con el resultado anterior se tiene: 
𝐹𝐹𝐹𝐹 = 𝑚𝑚𝑚𝑚𝑣𝑣𝑣𝑣2

𝑅𝑅𝑅𝑅
   y como la fuerza es la de Lorentz entonces:  

𝑞𝑞𝑞𝑞𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 = 𝑚𝑚𝑚𝑚𝑣𝑣𝑣𝑣2

𝑅𝑅𝑅𝑅
                 (1.14) 

Ahora bien, el sentido de rotación depende de:  

a) del sentido que tenga la velocidad cuando la partícula entra a la 
región de campo,  

b) del sentido del campo y,  
c) del signo de la carga.   

Así que el radio de curvatura de la trayectoria, despejado de la ecuación 
1.14, es igual a:      

𝑅𝑅𝑅𝑅 = 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘
𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞

                 (1.15) 

De manera que; mientras mayor sea 𝐵𝐵𝐵𝐵, menor es el radio de giro y más 
cerrada la trayectoria curva. La dependencia del radio con la rapidez de 
la partícula, es todo lo contrario; aumenta al aumentar la rapidez 
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Fig. 1.9 Rotación circular de una carga al 
penetrar en un campo magnético (el campo 
magnético entra al libro) 
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haciendo la curva más abierta. Si se quiere que la partícula cargada entre 
al campo 𝐵𝐵𝐵𝐵con una rapidez v conocida, debemos acelerarla desde el reposo 
haciéndola pasar a través de una diferencia de potencial 𝑉𝑉𝑉𝑉, conocida.  Así, 
el trabajo 𝑞𝑞𝑞𝑞𝑉𝑉𝑉𝑉 efectuado sobre ella, será igual a la energía cinética que 
adquiera, y, si no sufre ninguna perturbación en su recorrido, entrará al 
campo con esta misma energía esto es.                                                                  

𝑞𝑞𝑞𝑞𝑣𝑣𝑣𝑣 = 1
2
𝑚𝑚𝑚𝑚𝑣𝑣𝑣𝑣2                    (1.16)     

Combinando las ecuaciones1.15 y 1.16 se obtiene: 

𝑞𝑞𝑞𝑞
𝑘𝑘𝑘𝑘

= 2𝑉𝑉𝑉𝑉
𝑅𝑅𝑅𝑅2𝑞𝑞𝑞𝑞2

                   (1.17) 

Si se conoce la diferencia de potencial 𝑉𝑉𝑉𝑉 y el campo magnético 𝐵𝐵𝐵𝐵, y se mide 
el radio de giro 𝑅𝑅𝑅𝑅, se puede determinar la relación 𝑞𝑞𝑞𝑞

𝑘𝑘𝑘𝑘
 denominada, 

relación carga masa, esta relación, es de gran importancia en el 
estudio de las partículas subatómicas.             

Sir Joseph John Thomson, midió la relación carga masa para el electrón, 
usando un dispositivo llamado selector de velocidades. 

Con este resultado, surgió la cuantización de la carga eléctrica y una 
revisión al átomo. En ese entonces, Thomson propuso el primer modelo 
del átomo: “modelo de Pudín o Pastel de pasas”, consistente en una masa 
a modo de núcleo, en la cual se encuentran regadas las partículas 
eléctricas o electrones.  

1.7 Origen de la mecánica cuántica 

Max Planck (1858-1947), fue un físico alemán, músico y muy conservador 
con la Física Clásica; así lo presenta Emilio Segre, en su obra Personajes 
extraordinarios (p. 25): “a pesar de su carácter conservador e íntegro, 
Planck ha sido un gran revolucionario”. Se graduó como físico a los 21 
años y se dedicó a estudiar los trabajos de los clásicos sobre 
termodinámica; entre ellos, cómo se calientan y enfrían los cuerpos.  
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Los trabajadores de los hornos de metalurgia habían obtenido curvas 
experimentales sobre el comportamiento de la temperatura de los cuerpos, un 
tema de fundamental importancia para el manejo de la temperatura de las 
coladas de metal en fundición, lo que se le compartía, mediante la 
comunicación oral, del más experimentado trabajador al aprendiz. 

 

Gustav Kirchhoff, en 1860, desarrolló la idea de cuerpo negro como algo 
que puede absorber toda la energía que llega y, de igual forma, la puede 
irradiar; así se obtuvo una curva experimental: Fig. 1.10.  

Hubo muchas propuestas para proveer una explicación a la curva experimental. 
Cincuenta años antes de Planck, se había comenzado a plantear explicaciones, 
como Wilhelm Wien, que, al seguir un proceso matemático que consideraba a la 
energía como un proceso continuo, llegó a obtener la Ley conocida como 
desplazamiento de Wien: 

𝜆𝜆𝜆𝜆𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑏𝑏𝑏𝑏
𝑇𝑇𝑇𝑇

, 

donde b es la constante de desplazamiento: 

𝑏𝑏𝑏𝑏 = 2.8977 × 10−3𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾.𝑚𝑚𝑚𝑚 

Stefan-Boltzman, al integrar 𝐵𝐵𝐵𝐵0(𝑇𝑇𝑇𝑇) sobre la frecuencia, obtuvieron la 
conocida Ley:  
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Fig. 1.10. Curva de la radiación de un cuerpo negro. 
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𝐿𝐿𝐿𝐿 =
2𝜋𝜋𝜋𝜋5𝐾𝐾𝐾𝐾4𝑇𝑇𝑇𝑇4

15𝐶𝐶𝐶𝐶2ℎ3
1
𝜋𝜋𝜋𝜋

:
𝜎𝜎𝜎𝜎𝜎𝜎𝜎𝜎4

𝜋𝜋𝜋𝜋
 

o 

𝐸𝐸𝐸𝐸 = 𝜎𝜎𝜎𝜎(𝑇𝑇𝑇𝑇14 − 𝑇𝑇𝑇𝑇24). 

Por último, Planck, al trabajar sobre la Ley de Wien, deducida de la 
termodinámica: 

𝐸𝐸𝐸𝐸(𝑣𝑣𝑣𝑣.𝑇𝑇𝑇𝑇) = 𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼3𝐶𝐶𝐶𝐶
−𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽
𝑇𝑇𝑇𝑇  . 

Al aplicar un proceso discreto (sumatoria en vez de integral), se encontró: 
 

𝐸𝐸𝐸𝐸(𝜈𝜈𝜈𝜈,  𝑇𝑇𝑇𝑇) = 𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼3

𝑆𝑆𝑆𝑆
𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽
𝑇𝑇𝑇𝑇 −1

. 

 
El 19 de octubre de 1900, se discutió, en el Seminario de Física, en Berlín, 
“según Planck”; al día siguiente de la presentación, el colega Heinrich 
Rubens casi amaneció para comprobar la nueva ecuación con datos 
experimentales; lo mismo lograron Otto Lummer y Ernst Pringsheim; 
una vez comprobada, se debía justificar teóricamente y, solo después de 
seis años, apareció el concepto de Quantum: 

 𝐸𝐸𝐸𝐸(𝜙𝜙𝜙𝜙.𝑇𝑇𝑇𝑇) = 8𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋3

𝑐𝑐𝑐𝑐3
∙ ℎ

𝑆𝑆𝑆𝑆
ℎ𝑣𝑣𝑣𝑣
𝐾𝐾𝐾𝐾𝑇𝑇𝑇𝑇−1

 . 

De modo que 𝐸𝐸𝐸𝐸 = 𝑛𝑛𝑛𝑛 𝑛𝑛𝑛𝑛𝑛𝑛𝑛   , donde 𝑛𝑛𝑛𝑛 = 0,1,2, … 

1.8 Experimento de Michelson y Morley. 

En 1887, Albert Abraham Michelson y Edward Morley realizan un 
experimento de interferometría, con el que llevaron a que se dejara de lado 
la idea de más de 2500 años de existencia sobre el “Éter”; este fue un 
experimento que afectó la concepción de la Física Clásica y Moderna y dio 
pie para que se iniciara con nuevos temas, como la teoría de la relatividad, y 
donde la luz no necesita un medio para viajar en el universo, pues solo los 
campos magnéticos y eléctricos viajan, como lo había pronosticado Maxwell. 
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𝑐𝑐𝑐𝑐3
∙ ℎ

𝑆𝑆𝑆𝑆
ℎ𝑣𝑣𝑣𝑣
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De modo que 𝐸𝐸𝐸𝐸 = 𝑛𝑛𝑛𝑛 𝑛𝑛𝑛𝑛𝑛𝑛𝑛   , donde 𝑛𝑛𝑛𝑛 = 0,1,2, … 

1.8 Experimento de Michelson y Morley. 

En 1887, Albert Abraham Michelson y Edward Morley realizan un 
experimento de interferometría, con el que llevaron a que se dejara de lado 
la idea de más de 2500 años de existencia sobre el “Éter”; este fue un 
experimento que afectó la concepción de la Física Clásica y Moderna y dio 
pie para que se iniciara con nuevos temas, como la teoría de la relatividad, y 
donde la luz no necesita un medio para viajar en el universo, pues solo los 
campos magnéticos y eléctricos viajan, como lo había pronosticado Maxwell. 

El experimento básicamente consistió en establecer una observación de 
un patrón de interferencia a las 12 de la noche y 12 del día, comparar las 
observaciones y hacer lo mismo, pero repetirlo seis meses más tarde y 
comparar los resultados, que consistían en una superposición de la 
interferencia que se obtiene en las dos observaciones. 

Como la tierra viaja en una órbita elíptica alrededor del sol, en el 
perihelio la tierra se halla más cerca del sol y, por tanto, la velocidad de 
traslación es mayor debido a la excentricidad de la órbita, mientras que 
en el afelio la velocidad es menor. En el Capítulo 7 se efectúa el análisis 
matemático del experimento. 

En la Fig. 1.11 (que no corresponde a escala), se tiene la posición de la tierra 
respecto al sol en los dos puntos de perihelio y afelio, denominados también 
solsticio de verano y solsticio de invierno; puntos de medición. También, se 
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Por otra parte, como la tierra rota en horas de la noche y, justamente, a 
las 24 horas, la velocidad de rotación y traslación se suman: 𝑣𝑣𝑣𝑣 = 𝑣𝑣𝑣𝑣𝑇𝑇𝑇𝑇 + 𝑣𝑣𝑣𝑣𝑅𝑅𝑅𝑅, 
mientras que, en el día, y justamente a mediodía, la velocidad relativa se 
resta: 𝑣𝑣𝑣𝑣 = 𝑣𝑣𝑣𝑣𝑇𝑇𝑇𝑇 − 𝑣𝑣𝑣𝑣𝑅𝑅𝑅𝑅, el instrumento de medida, un interferómetro, 
detectaría si existía una variación cuando se sumaran las velocidades de 
la luz y de la tierra 𝑣𝑣𝑣𝑣2 y 𝑣𝑣𝑣𝑣1.  

Fig. 1.11. Puntos en la órbita terrestre. 
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21 de julio
Perihelio
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Debido al sistema de observación, el asunto, tal como se había planteado, no 
resultó, pues Michelson esperaba comprobar la existencia del éter; sin 
embargo, el experimento mostraba lo contrario: la NO existencia del ÉTER.  

Como conclusión del experimento, se tiene que no había forma de dirimir 
que existiera el éter; por el contrario, se pudo concluir que NO lo había. 
Este experimento lo han realizado muchos investigadores en diferentes 
años, lugares, y con instrumentos de interferencia, para alcanzar 
resultados que, en la práctica, han resultado similares; es decir, ninguno 
ha concluido en la posibilidad de que hubiera el éter, como se puede ver 
en esta tabla: 
 
Tabla 1.3. Principales investigadores que han repetido el experimento de 
Michelson en diferentes años y lugares, con resultados similares. Fuente: 
recopilación de datos. 
   

Ítem Investigador Año Tamaño del 
instrumento Corrimiento Lugar 

1 Michelson 1881 1.2 m. 0.4 Potsdam 

2 Michelson y 
Morley 1887 11 0.4 Cleveland 

3 Morley y Miller 1902-
1904 1.13 0.015 Cleveland 

4 Miller 1921 32 1.12 Mt. 
Wilson 

5 Miller (luz solar) 1924 32 1.12 Cleveland 

6 Tomaschek (luz 
estelar) 1924 8.6 0.3 Heielberg 

7 Miller 1925-
1926 32 1.12 Mte. 

Wilson 

8 Kennedy 1926 2 0.07 Pasadena 

9 Illingworth 1927 2 0.07 Pasadena 

10 Piccard 1927 2.8 0.13 Mte. Rigi 

11 Michelson y 
colaboradores 1929 25.9 0.9 Mte. 

Wilson 

12 Joos 1930 21 0.75 Jena 
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1.9 Efecto Fotoeléctrico. 
En 1905, se dan a conocer cuatro artículos, que había escrito una persona algo 
desconocida. Provenían de un oficinista de una oficina de patentes; los 
artículos se publicaron a lo largo de un año en la revista Annalen der Physik. 
 

1. Primer artículo, publicado en Annalen der Physik, No. 17, el 17 de marzo 
de 1905, pp. 132-148 (Sobre un punto de vista heurístico concerniente a 
la producción y transformación de la luz) (efecto fotoeléctrico). 

2. Segundo artículo, publicado en Annalen der Physik, No. 17, el 11 
de mayo de 1905, pp. 549-560 (Sobre el movimiento requerido por 
la teoría cinética molecular del calor de pequeñas partículas 
suspendidas en un líquido estacionario) (movimiento browniano). 

3. Tercer artículo, publicado en Annalen der Physik, No. 17, el 30 de 
junio de 1905, pp. 891-920 (Sobre la Electrodinámica de los 
Cuerpos en movimiento).  

4. Cuarto artículo, publicado en Annalen der Physik, No. 17, el 27 de 
septiembre de 1905, pp. 639-641 (Dependencia de la energía de la 
masa inercial y la velocidad de la luz) (e = 𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐2). 

 
Los cuatro artículos resultaron revolucionarios y cambiaron la forma de 
pensar sobre la Física; el primer artículo, sobre el efecto fotoeléctrico, lo 
había descubierto Heinrich Hertz, en 1887, al observar que el arco que 
salta entre dos electrodos conectados a alta tensión alcanza distancias 
mayores cuando se ilumina con luz ultravioleta que cuando se ilumina 
con luz roja y prácticamente desaparece en la oscuridad. 

La primera célula solar la había fabricado Charles Fritts, en 1884, 
constituida por selenio y oro; de acuerdo a la Física Clásica, se afirma: 
 
 A mayor intensidad de la radiación incidente, más energéticos 

serán los electrones emitidos por el metal. 
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 Si la intensidad de la radiación incidente es muy débil, se espera 
clásicamente que pase cierto tiempo hasta que el metal 
almacenase suficiente energía para expulsar electrones. 

Sin embargo, los experimentos mostraban todo lo contrario. La energía 
cinética de los electrones no dependía de la intensidad, sino de la 
frecuencia incidente, y no hay una demora apreciable para expulsar 
electrones por más débil que fuese la radiación incidente. 

Con los nuevos conceptos de la Mecánica Cuántica, Albert Einstein 
asumió que la radiación incidente es un paquete de energía: 𝐸𝐸𝐸𝐸 = ℎ𝑣𝑣𝑣𝑣, que 
viaja a la velocidad de la luz, con estas afirmaciones: 

1. Los fotones pueden ser reflejados de acuerdo con las Leyes de la 
óptica. 

2. Los fotones pueden desaparecer al ceder toda su energía para 
expulsar a los electrones.  

Un esquema del efecto fotoeléctrico puede ser el de la Fig. 1.12, donde se 
ve la radiación que llega al material de la celda fotovoltaica, de la cual se 
desprenden electrones que constituyen un flujo que llega hasta el ánodo 
(electrodo positivo); así, ya se ha generado una corriente eléctrica, que 
puede medirse con el amperímetro; el suiche permutador permite 

cambiar la polaridad para establecer 
un voltaje de frenado al variar el 
reóstato o resistencia variable. 
 
De acuerdo con la teoría que había 
propuesto Einstein, se tiene que la 
energía se puede expresar mediante: 

𝐾𝐾𝐾𝐾𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 𝐶𝐶𝐶𝐶𝑉𝑉𝑉𝑉0 = ℎ𝑣𝑣𝑣𝑣 − 𝜙𝜙𝜙𝜙. 

La ecuación es una función lineal, en la 
que se puede establecer que la pendiente 
h de la función es la constante de Planck, 
y a la intersección 𝜙𝜙𝜙𝜙 se la denomina 
función de trabajo, que es la cantidad 

Fig. 1.12. Esquema eléctrico de un 
circuito de una celda fotovoltaica. 

 
A

V

flujo de electrones.

Radiación
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mínima de energía que se requiere para extraer un electrón de la superficie 
del metal, que “depende del metal”. 

 

En la Fig. 1.13, se puede ver que las rectas son paralelas, debido a que la 
pendiente es “la constante de Planck”, separadas, ya que cada metal tiene 
su propia función de trabajo y responde a diferente frecuencia. 

 
Cuando la frecuencia está por debajo de la frecuencia umbral de cualquier 
material, simplemente no hay efecto fotoeléctrico, “únicamente una 
extrapolación de las rectas hasta la intersección con el eje de energía o 
función de trabajo 𝜙𝜙𝜙𝜙. (Véase Fig. 1.14). 
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Fig. 1.13. Energía cinética contra la frecuencia 
de la radiación incidente, rectas con igual 
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Fig. 1.14. Corriente fotoeléctrica contra el 
potencial acelerador para luz monocromática 
de diferente intensidad.  
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En esta Fig. 1.14, se puede ver cómo una fuente monocromática puede 
producir tres valores de corriente de acuerdo a la intensidad, pero tiene 
un mismo punto de partida, que es Vo. 

En 1914, Robert Millikan produjo la primera prueba experimental directa 
de la ecuación que había desarrollado Einstein y, al mismo tiempo, 
efectuó la primera determinación fotoeléctrica de la constante de Planck, 
donde ℎ = 6.625 × 10−34 julio.seg.          

En resumen: 

1. El número de electrones liberados es proporcional a la intensidad de la 
radiación incidente. 

2. La energía cinética máxima de los fotoelectrones depende de la 
frecuencia, no de la intensidad de luz incidente. 

3.𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 se relaciona linealmente con 𝜈𝜈𝜈𝜈 a través de la ecuación𝐾𝐾𝐾𝐾𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = ℎ𝑣𝑣𝑣𝑣 − 𝜙𝜙𝜙𝜙. 

4. El potencial de frenado 𝑉𝑉𝑉𝑉0 depende de la función de trabajo (mínima 
frecuencia). 

5. Existe una frecuencia umbral 𝑉𝑉𝑉𝑉0, por debajo de la cual no ocurre el 
efecto fotoeléctrico. 

6. La emisión empieza, sin demora alguna observable de tiempo, en 𝜈𝜈𝜈𝜈 ≥
𝜈𝜈𝜈𝜈0 aun para luz incidente de intensidad muy baja. 

Con esto queda demostrada la naturaleza corpuscular de la luz y, 
también, es suficiente demostración del comportamiento ondulatorio en 
el vacío. 

1.10 Modelos atómicos. 
En Grecia 400 a. C., Demócrito y Leucipo fueron los primeros en 
preguntarse qué hace a la materia; imaginaron unas partículas muy 
pequeñas indivisibles, y de allí su nombre: átomos (a, sin; tomos, 
división); afirmaron que los átomos tienen forma, tamaño y peso 
diferente; la propuesta no se acogió bien y pronto quedó en el olvido por 
más de 2000 años. 
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En 1827, el químico John Dalton planteó la hipótesis respecto a que la 
materia se forma de átomos, unas minúsculas partículas esféricas 
indivisibles bajo unas estipulaciones:  

• Unas partículas indivisibles constituyen a la materia.  
• Los átomos de un mismo elemento son iguales. 
• Los átomos de distinto elemento se unen para formar compuestos. 
• Una reacción química es un reordenamiento de los átomos. 
 
Modelo de J. J. Thomson. 

La teoría de Dalton se aceptó durante casi un siglo. Sin embargo, las 
investigaciones de William Crookes, con los tubos a baja presión, plantearon 
una nueva discusión sobre la naturaleza de los rayos catódicos observados en 
los tubos; si bien se conocía el andamiaje matemático que había propuesto 

Maxwell sobre el electromagnetismo, la 
inquietud sobre la naturaleza de la 
electricidad seguía en pie. Thomson 
decidió continuar con la investigación de 
los rayos catódicos generados por gases 
colocados en el interior de los tubos a baja 
presión, con lo cual, al llevar a que pasara 
una corriente eléctrica se generaba un 
brillo, una luz, que era justamente el 
asunto de la investigación. Thomson 
encontró la relación 𝑆𝑆𝑆𝑆

𝑘𝑘𝑘𝑘
, carga de la 

partícula respecto a su masa; a futuro 
quedaba la condición que quien 
encontrara primero el valor de la carga iba 
a encontrar el valor de la masa, y 

viceversa; en este tema, lo relacionado con encontrar el valor de la carga, que 
no es más ni menos que la carga del electrón, le correspondió a Millikan.  

Para ajustar sus investigaciones, Thomson propuso que los electrones de 
carga negativa se encontraban diseminados en un medio positivo; así surgió 
el modelo atómico de Thomson o del pudín de pasas, que se puede ver en la 

Fig. 1.15. Modelo atómico de J. J. 
Thomson o modelo del budín de pasas. 
Fuente:https://es.khanacademy.or
g/science/ap-chemistry/electronic-
structure-of-atoms-ap/history-of-
atomic-structure-ap/a/discovery-
of-the-electron-and-nucleus 
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Fig.1.15; por las investigaciones y haber sido el descubridor del electrón, J.J. 
Thomson recibió el Premio Nobel de Física en 1906; así, el electrón se convirtió 
en la primera partícula subatómica en ser descubierta.  

Modelo de Rutherford        

 
Por otra parte, el estudiante avanzado de Thomson, Ernest Rutherford (1871-
1937), tras haber llevado a cabo numerosos experimentos desde la existencia 
de ondas electromagnéticas, descubrió la radioactividad de varios elementos 
químicos, como el torio, al bombardear con elementos radioactivos un material 
nuevo, la “mica” (primeros plásticos); observó, en la dispersión que realizan 
las partículas, un patrón que lo llevó a intuir la idea del átomo, lo que ocurrió 
en Montreal; de regreso a Manchester,  entre 1907 y 1909, junto a Hans 
Geiger, inventaron el contador de Geiger; al grupo se unió un colaborador más: 
Ernest Marsden, con quien realizaron el experimento de la dispersión de 
Rutherford, al utilizar una fina lámina de oro. Obsérvese el montaje 
esquematizado en la Fig. 1.16. 

En 1908, Rutherford recibió el Premio Nobel de Química por la 
transmutación de elementos químicos que resultó del bombardeo que 
realizó sobre unas laminillas de oro. Al recibir el premio, señaló que esa 
era la mayor transmutación que había visto (paradoja: al ser un físico, el 
Premio Nobel que recibió fue el premio de Química).           

Fig. 1.16. Esquema del montaje de bombardeo sobre una lámina de oro, de Rutherford. 
Fuente. https://www.tplaboratorioquimico.com/quimica-general/teoria-atomica/el-
experimento-de-ernest-rutherford-el-proton-y-el-nucleo.html 
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nuevo, la “mica” (primeros plásticos); observó, en la dispersión que realizan 
las partículas, un patrón que lo llevó a intuir la idea del átomo, lo que ocurrió 
en Montreal; de regreso a Manchester,  entre 1907 y 1909, junto a Hans 
Geiger, inventaron el contador de Geiger; al grupo se unió un colaborador más: 
Ernest Marsden, con quien realizaron el experimento de la dispersión de 
Rutherford, al utilizar una fina lámina de oro. Obsérvese el montaje 
esquematizado en la Fig. 1.16. 

En 1908, Rutherford recibió el Premio Nobel de Química por la 
transmutación de elementos químicos que resultó del bombardeo que 
realizó sobre unas laminillas de oro. Al recibir el premio, señaló que esa 
era la mayor transmutación que había visto (paradoja: al ser un físico, el 
Premio Nobel que recibió fue el premio de Química).           

Fig. 1.16. Esquema del montaje de bombardeo sobre una lámina de oro, de Rutherford. 
Fuente. https://www.tplaboratorioquimico.com/quimica-general/teoria-atomica/el-
experimento-de-ernest-rutherford-el-proton-y-el-nucleo.html 

En 1911, descubrió el núcleo del átomo y planteó un nuevo modelo 
atómico, similar a un sistema planetario; las críticas sobre el modelo 
aparecen de inmediato, por no cumplir con las leyes del 
electromagnetismo; uno de los cuestionamientos fuertes consistía en que 
los electrones, al estar girando, se someten a la aceleración centrípeta, lo 
que significa que se encuentran acelerados, con lo cual, según el 
electromagnetismo, los electrones estarían irradiando energía; esto los 
lleva a perder energía y, en consecuencia, el electrón terminaría por 
colapsar con el núcleo. 

Modelo de Bohr 

Niels Bohr (1885-1962), danés, había nacido en Copenhague, donde inició sus 
primeros estudios; una vez concluidos, viajó hasta Inglaterra con intención de 
estudiar con J. J. Thomson; quizá por recargo de trabajo, no lo aceptaron y, 
ante el rechazo, buscó estudiar con Rutherford, de quien recibió la idea del 
átomo como un sistema planetario, y lo reformuló con ideas totalmente 
innovadoras, que hoy se conocen como los postulados de Bohr: 

1. El electrón gira alrededor del protón en el átomo de hidrógeno con 
movimiento circular uniforme, debido a la fuerza de coulomb y de acuerdo 
a las leyes de Newton. 

2. Las únicas órbitas permitidas son aquellas en las que el momento 
angular del electrón orbitante es un múltiplo entero de  ℎ

2𝜋𝜋𝜋𝜋
= ℏ, así que los 

momentos angulares de las únicas órbitas permitidas se dan por: 

𝐿𝐿𝐿𝐿 = 𝑚𝑚𝑚𝑚𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚 = 𝑛𝑛𝑛𝑛
ℎ

2𝜋𝜋𝜋𝜋
 , 

 
𝐿𝐿𝐿𝐿 = 𝑛𝑛𝑛𝑛𝑛; donde, 𝑛𝑛𝑛𝑛 = 1,2,3,  ℎ es la constante de Planck ℏ = 8.05 ×

10−34julio.seg 

3. Cuando un electrón está en una órbita permitida, el átomo no irradia 
energía.  

4.  Si el electrón salta desde una órbita inicial de energía 𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖 a una órbita 
final de energía 𝐸𝐸𝐸𝐸𝜋𝜋𝜋𝜋 , se emite un fotón de energía:  
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𝑣𝑣𝑣𝑣 =
𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖 − 𝐸𝐸𝐸𝐸𝜋𝜋𝜋𝜋
ℏ

 . 

Y para que un electrón saltase de una órbita a otra, es necesario que el 
electrón hubiera absorbido una energía equivalente a ℏ𝑣𝑣𝑣𝑣. 

Esto describe o explica el carácter discreto de las frecuencias o longitudes 
de onda obtenidas en los espectros de emisión y, cuando un fotón de 
energía ℏ𝑣𝑣𝑣𝑣 = 𝐸𝐸𝐸𝐸𝑆𝑆𝑆𝑆+1 − 𝐸𝐸𝐸𝐸𝑆𝑆𝑆𝑆 incide sobre un átomo, puede ser absorbido y 
saltar desde un nivel bajo a otro y, en este caso, se está frente a un 
espectro de absorción. 

El modelo atómico de Bohr proporcionó la primera explicación 
satisfactoria de la estructura atómica para el hidrógeno; sin embargo, con 
los nuevos descubrimientos en espectroscopia durante los siguientes diez 
años, los nuevos ajustes los realizó Arnold Sommerfeld (1868-1951).  

Modelo de Sommerfeld  

Arnold Sommerfeld nació en Königsberg y murió en Múnich (1868-1951). 
En 1916, introdujo el concepto de la estructura fina, para la cual modificó 
los postulados de Bohr (1 y 2), así que las órbitas no son circulares, sino 
elípticas, y velocidades relativistas, lo que originó un nuevo número 
cuántico: “el número cuántico azimutal”, que determina la forma de las 
órbitas, así:  

L = 0 produce órbitas Sharp 

L = 1 produce órbitas Principal 

L = 2 produce órbitas Difasse  

L = 3 produce órbitas Fundamentales 

Así, entonces, en adelante, las posibles órbitas se simbolizarán como: S, 
P, D y F. 

Según el modelo de Bohr, se pueden ver, en la Fig. 1.17, los niveles n1, n2, 
n3; además, por cada nivel hay subniveles, de tal modo que en el primer 
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elípticas, y velocidades relativistas, lo que originó un nuevo número 
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L = 2 produce órbitas Difasse  
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Así, entonces, en adelante, las posibles órbitas se simbolizarán como: S, 
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nivel solo hay un subnivel, mientras que en el segundo nivel hay dos 
subniveles, en el tercero hay tres y así sucesivamente. 

En la Fig. 1.17 también se puede ver que, cuando una radiación llega 
hasta el átomo, si la energía es suficiente para mover un electrón de su 
orbital, este puede saltar a un nivel superior, pero, de inmediato, 
regresará a su estado natural; en el momento de regresar, el electrón 
acelera, con lo cual irradia una energía equivalente a la que fue capaz de 
sacar al electrón. 

De esto se puede deducir la Tabla Periódica de los físicos, con lo cual 
queda lo suficientemente clara la naturaleza del átomo.  

Tabla 1.4. Distribución electrónica. Fuente: Alonso y Fin tomo III 

Nivel Subnivel Número 
orbitales 

Número máximo 
electrones por 

subnivel 

Número máximo 
electrones por nivel 

1 S 1 2 2 

2 S 
P 

1 
3 

2 
6 8 

Fig. 1.17. En el modelo de Bohr, se tienen niveles cuánticos y, en cada 
nivel, hay subniveles: esta es la estructura superfina.  

 
A B

A'

B'

Estructura
hiperfina

Fotón absorbido
con energía
E = hν

Fotón emitido con
energía   ν = (Ε3 − Ε2) / h

N

n1

n2

n3
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Como ejemplo, se tiene la distribución electrónica del cobre: 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶29. 

Cu29 → 1𝑆𝑆𝑆𝑆22𝑆𝑆𝑆𝑆22𝑃𝑃𝑃𝑃63𝑆𝑆𝑆𝑆23𝑃𝑃𝑃𝑃63𝑁𝑁𝑁𝑁104𝑆𝑆𝑆𝑆1 

Obsérvese que la suma de los superíndices da 29, que es justamente el 
número atómico del elemento químico. 

Modelo de Schrödinger 

Erwin Schrödinger nació y murió en Viena (1887-1961). Su modelo ató-
mico concibe a los electrones como ondas de materia, razón por la cual se 
plantea una ecuación de onda que detalla la evolución en el tiempo y en 
el espacio; más tarde, Max Born propuso una interpretación probabilís-
tica de esta función de onda, que resulta compatible con el modelo de 
Schrödinger y con niveles de energía bajo la presencia de campos magné-
ticos y eléctricos.  

La solución estacionaria de la ecuación de Schrödinger en un campo cen-
tral electrostático se encuentra caracterizada por tres números cuánticos 
(n, l, m), solución que se puede interpretar como:  

𝛹𝛹𝛹𝛹𝑆𝑆𝑆𝑆𝑛𝑛𝑛𝑛𝑘𝑘𝑘𝑘(𝜃𝜃𝜃𝜃,𝜑𝜑𝜑𝜑,𝑟𝑟𝑟𝑟) = � 𝑚𝑚𝑚𝑚→𝑛𝑛𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐� = ��
2
𝑛𝑛𝑛𝑛𝑇𝑇𝑇𝑇𝑜𝑜𝑜𝑜

�
3 (𝑛𝑛𝑛𝑛 𝑛 𝑐𝑐𝑐𝑐 − 1)!

2𝑛𝑛𝑛𝑛[(𝑛𝑛𝑛𝑛 + 𝑐𝑐𝑐𝑐)!]
2𝐶𝐶𝐶𝐶−

𝑟𝑟𝑟𝑟
𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚𝑜𝑜𝑜𝑜 �

2𝑚𝑚𝑚𝑚
𝑛𝑛𝑛𝑛𝑇𝑇𝑇𝑇𝑜𝑜𝑜𝑜

�
𝑛𝑛𝑛𝑛

𝐿𝐿𝐿𝐿𝑆𝑆𝑆𝑆−𝑛𝑛𝑛𝑛−12𝑛𝑛𝑛𝑛+1 �
2𝑚𝑚𝑚𝑚
𝑛𝑛𝑛𝑛𝑇𝑇𝑇𝑇𝑜𝑜𝑜𝑜

� 𝑌𝑌𝑌𝑌𝑛𝑛𝑛𝑛,𝑘𝑘𝑘𝑘(𝜃𝜃𝜃𝜃,𝜑𝜑𝜑𝜑) 

Si bien el modelo de Schrödinger detalla adecuadamente la estructura 
electrónica de los átomos, resulta incompleto en otros aspectos: 
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Si bien el modelo de Schrödinger detalla adecuadamente la estructura 
electrónica de los átomos, resulta incompleto en otros aspectos: 

1. En su formulación original, el modelo de Schrödinger no tiene en 
cuenta el espin de los electrones; esta deficiencia la corrige el modelo de 
Schrödinger-Pauli. 

2. El modelo de Schrödinger ignora los efectos relativistas de los electro-
nes rápidos; esta deficiencia la corrige la ecuación de Dirac que, además, 
incorpora la descripción del espín electrónico. 

3. Si bien predice razonablemente bien los niveles energéticos, el modelo 
de Schrödinger por sí mismo no explica por qué un electrón en un estado 
cuántico excitado decae hacia un nivel inferior, si existe alguno libre. Esto 
lo explicó por primera vez la electrodinámica cuántica y es un efecto de 
la energía del punto cero del vacío cuántico.  

4. Cuando se considera un átomo de hidrógeno, los dos primeros aspectos pue-
den corregirse al añadir términos correctivos al hamiltoniano atómico.  

1.11 Carácter dual de la luz 

En 1927, Einstein advirtió sobre una tesis que había formulado un joven 
físico Louis de Broglie (1892-1987), un francés Licenciado en Ciencias, en 
1913, de la Universidad la Soborna de París, con su tesis doctoral en 
Física, en 1924. Las investigaciones sobre la teoría cuántica postulan la 
naturaleza ondulatoria de los electrones, generalizada más tarde a toda 
la materia; así que la longitud de onda asociada a una partícula se da por: 

𝜆𝜆𝜆𝜆 = ℎ
𝑝𝑝𝑝𝑝
      o    𝜐𝜐𝜐𝜐 = 𝐸𝐸𝐸𝐸

ℎ
, 

donde h es la constante de Planck y P el momento lineal. 

Con esto la luz permite un estudio bajo los dos modelos: corpuscular y 
ondulatorio, por lo cual hay preferencia por una de sus naturalezas para 
ciertas fenomenologías: corpuscular, para lo que corresponde a la óptica 
geométrica, y ondulatoria, para fenómenos propios de la Óptica Física, 
como: difracción, polarización e interferencia. 
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En la Fig. 1.18, se presenta un cilindro, cuyo diámetro es igual a su altura; 
las sombras, o proyecciones sobre los planos (x, z) y (y, z), son un círculo 
y un cuadrado, con lo cual se muestra cómo un mismo objeto puede 
presentarse de dos formas: cuadrada y circular.  

 

 

Fig. 1.18. Interpretación de la dualidad de la materia. Fuente: 
https://es.wikipedia.org/wiki/ Dualidad_onda_corp%C3%BAsculo 
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Eclipse total de sol, el 8 de abril de 2024, desde México. Se puede ver la atmósfera solar. 

Capítulo 2 

Naturaleza corpuscular de la luz

 
________________________ 
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2.1 Propagación rectilínea de la luz 

En un medio isótropo y lineal, la 
mayor parte de la energía luminosa 
que proviene de alguna fuente 
luminosa se propaga en línea recta; 
esto se demuestra al estudiar la 
formación de la sombra de objetos o 
cuerpos opacos; en estos casos 
macroscópicos, la luz se entiende 
como un corpúsculo que viaja en 
línea recta, de acuerdo a la 
geometría euclidiana; sin embargo, 
es necesario precisar algunos 
conceptos, como:  

Fuentes puntiformes o fuentes ideales. son fuentes cuyas dimensiones 
se reducen a un punto luminoso, desde donde sale la luz y se propaga en 
un medio isotrópico y lineal, lo que significa que 𝜀𝜀𝜀𝜀0 = 𝑐𝑐𝑐𝑐𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶  y   𝐶𝐶𝐶𝐶 = 𝑐𝑐𝑐𝑐𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶. 

Rayo de luz: este rayo se representa por un radio vector, cuyo origen es 
la fuente luminosa puntiforme y su propagación es en línea recta. 

2.2 Sombra y penumbra: eclipses  

Cuando la fuente luminosa es puntiforme permite generar sombras bien 
definidas del cuerpo que se interpone entre la fuente y la pantalla, como 
se ve en la Fig. 2.2. 

La sombra del objeto se define mucho debido a que la fuente luminosa es 
puntiforme. 

Fig. 2.1. Propagación rectilínea de un rayo 
láser; dispersión en atmósfera de humo. 
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definidas del cuerpo que se interpone entre la fuente y la pantalla, como 
se ve en la Fig. 2.2. 

La sombra del objeto se define mucho debido a que la fuente luminosa es 
puntiforme. 

Fig. 2.1. Propagación rectilínea de un rayo 
láser; dispersión en atmósfera de humo. 

  

 
En el caso de tener dos fuentes luminosas puntiformes, como se ve en la 
Fig. 2.3, cada fuente puntiforme produce una sombra, pero la intersección 
de las dos sombras produce una verdadera sombra, lugar donde se 
encuentran eclipsadas las dos fuentes puntiformes; a la sombra por fuera 
de ella, se la denomina penumbra, como se puede ver en la Fig. 2.3. 

Cuando la fuente luminosa deja de ser puntiforme, y su tamaño es 
comparable con la del objeto, es como si hubiera muchísimas fuentes 
puntiformes que forman una sombra del objeto, capaz de eclipsar toda la 
fuente luminosa, como se puede ver en la Fig. 2.4, mientras que, por fuera 
de esta sombra, la sombra es parcial o penumbra, y más aún cuando se 
aleja de la sombra total hasta salir totalmente de la zona.  

En el caso del sol, que es una fuente luminosa muy grande, si se la 
compara con cualquier objeto del sistema solar, como ocurre en los 
eclipses, la luna o la tierra pueden eclipsar al sol, lo que genera un cono 
de sombra convergente y un cono de penumbra divergente, como se puede 
ver en la Fig. 2.5. 

Fig. 2.3. Sombra y penumbra formada 
por dos fuentes puntiformes. 
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Fig. 2.2. Sombra del objeto sobre la pantalla 
debido a que el objeto se interpone entre la 
fuente puntiforme y la pantalla. 
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Eclipse de luna.  

Este eclipse ocurre cuando el sol, la tierra y la luna nueva se encuentran 
alineados, de tal modo que, cuando la luna pasa por el cono de sombra de 
la tierra, pierde su brillantez durante varios minutos debido a que el 
diámetro del cono de sombra de la tierra es varias veces mayor que el 
diámetro de la luna; así, estará totalmente inmersa en el cono de sombra 
formado por la tierra, lo cual, al verse desde la tierra, desde cualquier 
parte, en horas de la noche se verá con baja brillantez; si la sombra no 
cubre totalmente a la luna, entonces el eclipse será parcial, pero la 
penumbra de la sombra de la tierra siempre va a cubrir a la luna, por lo 

que su brillantez cambia de aspecto, 
desde un color rojizo, la que 
denomina “luna de fuego”,  como se 
puede ver en la Fig. 2.5, hasta un 
color grisáceo.   

Los eclipses de luna han sido 
estudiados desde hace mucho tiempo; 
sin embargo, pasaron miles de años 
sin que se pudiera dar una explicación 
al fenómeno; los pueblos antiguos 
pensaban en una manifestación de la 
divinidad, a la que se le rendía culto o 
se consideraba un presagio de alguna 
desgracia por venir.  

Fig. 2.6. Eclipse de luna, visible en 
Puebla, México, el 19 de enero de 2019. 
Fuente: https://www.elsoldemexico.co 
m.mx/doble-via/ciencia/cuando-es-el-
eclipse-de-luna-mas-largo-del-siglo-
7467666.html 

Fig. 2.4. Sombra y penumbra de una 
fuente luminosa NO puntiforme. 
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Fig. 2.5. Esquema de un eclipse de luna (la 
sombra de la tierra alcanza a la luna). 

 
Sol

Orbita de la
Tierra

Penumbra

Penumbra

Sombra

Orbita de la
Luna



53

Capítulo 2. Naturaleza corpuscular de la luz

Eclipse de luna.  
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En la Historia, se encuentra un registro de un eclipse de luna en el libro 
chino Zhou-Shu, que se descubrió en 280 d. C., en la tumba de un rey o 
noble. El eclipse mencionado en este libro tuvo lugar muchos siglos antes 
de esa época; estudios avanzados demuestran que ese eclipse debió haber 
ocurrido en el año 1137 a. C.  

Cuando aún no se tenía en claro la naturaleza de los eclipses, en el año 
413 a. C., ocurrió un eclipse de luna justamente durante la segunda 
batalla de Siracusa. La decisión de esperar un tiempo para continuar la 
guerra, producto de una superstición, la aprovecharon los siracusanos y 
con la derrota de los atenienses.  

 

El 22 de mayo de 1453 ocurrió un eclipse de luna, durante la caída de 
Constantinopla, capital del imperio bizantino, por los otomanos; se consideró 
que con el eclipse de luna se estaba cumpliendo con la predicción sobre la 
desaparición de la ciudad.  

Sin embargo, para los griegos como Aristóteles, los eclipses eran un 
producto de la sombra del cuerpo eclipsante y destaca que los eclipses de 
luna son una prueba de la esfericidad de la tierra, en la medida en que el 
borde circular de la sombra de la tierra se evidencia con gran claridad 
sobre la superficie de la luna.  

 Movimiento
de traslación

Movimiento
de rotación

Penumbra
eclipse parcial

Sombra
Eclipse total

Fig. 2.7. Eclipse de sol: la sombra de la luna alcanza a algunos países, 
donde el eclipse es total; debido a la rotación de la tierra, se alarga y la 
penumbra alcanza a muchos países, lo que genera un eclipse parcial.  
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Eclipse de Sol             

El eclipse de sol se presenta cuando sol, luna y tierra se alinean 
perfectamente y el cono de sombra de la luna llega hasta la tierra, para 
generar así un eclipse total de sol, por donde pasa la sombra de la luna, y 
un eclipse parcial en las zonas donde cae la penumbra de la luna, con lo 
cual el sol se verá cubierto parcialmente.  
 

Los eclipses de sol ocurren 
siempre en luna nueva, y esto 
puede ocurrir cuando la luna 
esta lo más lejos o lo más cerca 
posible; en el caso de estar lo 
más lejos, o afelio, la luna no 
alcanza a cubrir totalmente al 
sol, por lo que deja visible la 
corona solar, con lo cual se 
tiene un espectacular eclipse 
anular de sol, como el que se ve 
en la Fig. 2.8. 
 

El otro caso se presenta cuando la luna se encuentra lo más cerca de la 
tierra, es decir en perihelio; en este caso, los tamaños aparentes de la luna 
y el sol resultan muy similares; así, la luna puede cubrir por completo al 
sol, en el que se puede ver la atmósfera solar, algo que no es posible de 
ver en otras condiciones, debido al brillo del sol, como se puede ver en la 
Fig. 2.9. La sombra de la luna siempre recorre de occidente a oriente 
debido a la rotación de la tierra (véase Fig. 2.7). Debido a que en la 
superficie de la tierra hay más agua que países, gran parte de los eclipses 
de sol totales se presentan en el mar, por lo que se logran ver desde los 
países eclipses parciales.  

Fig. 2.8. Eclipse anular de sol visible en Nuevo 
México, en 2012. Fuente: Fotografía vía Getty 
Imagenes)/ssucsy 
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Eclipse de Sol             
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El otro caso se presenta cuando la luna se encuentra lo más cerca de la 
tierra, es decir en perihelio; en este caso, los tamaños aparentes de la luna 
y el sol resultan muy similares; así, la luna puede cubrir por completo al 
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superficie de la tierra hay más agua que países, gran parte de los eclipses 
de sol totales se presentan en el mar, por lo que se logran ver desde los 
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Fig. 2.8. Eclipse anular de sol visible en Nuevo 
México, en 2012. Fuente: Fotografía vía Getty 
Imagenes)/ssucsy 

Es muy importante tomar en cuenta 
que, para observar un eclipse, se 
debe utilizar una protección 
adecuada; en cualquier caso, se 
sugiere utilizar gafas especiales, 
para poder ver directamente el 
eclipse; de lo contrario, resulta muy 
dañino para los ojos, pues la luz del 
sol, aun en eclipse, es lo 
suficientemente fuerte como para 
quemar la retina.  

Año tras año, los astrónomos 
predicen eclipses y el trayecto de 

la sombra sobre la superficie terrestre; de igual forma lo hacen con los 
eclipses de luna. 

2.3 Fotometría 

En la vida diaria, se dice que una luz es más fuerte o más intensa que 
otra o que una superficie está más o menos iluminada que otra; la rama 
que estudia este tema se denomina Fotometría y, para entender sus 
enunciados, es necesario conocer algunas definiciones importantes. 

Intensidad luminosa  

Para referirse a intensidad luminosa, es necesario indicar la unidad que 
permitiese establecer comparaciones o mediciones.  

En el Congreso de Electrotecnia de 1884, Jules Violle propuso como 
unidad de medida de la intensidad luminosa la luz emitida por un 
centímetro cuadrado de platino cuando pasa del estado sólido a líquido, o 
estado de fusión, lo que se produce a 1200 °C; así, la unidad se aceptó y 
se la denominó Violle. 

Debido a que siempre hay errores a la hora de medir, de casi el 15%, en 
1948 se propuso una nueva unidad de medida: la nueva bujía BN, como 

Fig. 2.9. Eclipse total de sol, el 8 de abril de 
2024, captado desde México; allí se puede 
ver la atmósfera solar.  
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la sesentava parte de la intensidad luminosa de un centímetro cuadrado 
del platino en fusión; o sea, la sesentava parte de un Violle. 

Iluminación 

La iluminación de una superficie depende de qué tan lejos se hallase la 
fuente luminosa de la superficie; este es un hecho común, que todos 
hemos experimentado. La pregunta que surge es: ¿cómo varía la 
iluminación con la distancia? 

 

En la Fig. 2.10, obsérvese que la luz que llega a la segunda pantalla es 
cuatro veces menor que la luz que llega a la primera pantalla, ya que la 
segunda pantalla está al doble de la distancia de la primera; esto quiere 
decir que varía en forma inversamente proporcional al cuadrado de la 
distancia. Por otra parte, la iluminación de las pantallas es directamente 
proporcional a la intensidad que emite la fuente.  

En general, si la fuente ilumina en todas las direcciones, formaría una 
esfera simétrica; es decir, la iluminación decae con el cuadrado de la 
distancia que, en este caso, corresponde al radio de la esfera. 

Ahora bien, como la superficie de la esfera es 4𝜋𝜋𝜋𝜋𝑚𝑚𝑚𝑚2, entonces la 
iluminación es:  

𝐸𝐸𝐸𝐸 = 𝐼𝐼𝐼𝐼
4𝜋𝜋𝜋𝜋.𝑟𝑟𝑟𝑟2

      (2.1), 

Fig. 2.10. La iluminación al doble de la distancia se 
ha reducido en la cuarta parte.  

 
2m1m

1m2
4m2P1

P2

Fuente luminosa
puntiforme



57

Capítulo 2. Naturaleza corpuscular de la luz

la sesentava parte de la intensidad luminosa de un centímetro cuadrado 
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donde I es la intensidad de la fuente; ahora bien, como unidad de medida 
de iluminación es intensidad sobre área y, además, la unidad de la 
intensidad de la fuente puede ser la candela (1cd), que, a su vez, se define 
como 1cd = 1

20
 violle, y como la unidad de área es 1𝑚𝑚𝑚𝑚2, entonces: 

[𝑬𝑬𝑬𝑬] = �𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏
𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟐𝟐𝟐𝟐�=  𝟏𝟏𝟏𝟏 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏

𝒎𝒎𝒎𝒎𝟐𝟐𝟐𝟐 = 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 = 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 

Ejemplo: En una habitación, una fuente luminosa de 50cd se encuentra 
a 5m de altura. ¿Cuál es la iluminación?  

Solución 

𝐸𝐸𝐸𝐸 =
𝐼𝐼𝐼𝐼
𝑁𝑁𝑁𝑁2

 

𝐸𝐸𝐸𝐸 =
50𝑐𝑐𝑐𝑐𝑁𝑁𝑁𝑁

(5𝑚𝑚𝑚𝑚)2
 

𝐸𝐸𝐸𝐸 = 2𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 

Por tanto, en la habitación hay una iluminación de 2 Lux. 

Pero si se disminuye a la mitad de la altura, se tiene: 

𝐸𝐸𝐸𝐸 =
𝐼𝐼𝐼𝐼
𝑁𝑁𝑁𝑁2

 

𝐸𝐸𝐸𝐸 =
50𝑐𝑐𝑐𝑐𝑁𝑁𝑁𝑁

(2.5𝑚𝑚𝑚𝑚)2
 

𝐸𝐸𝐸𝐸 = 8𝐿𝐿𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 

O sea que, en este caso, la iluminación de la habitación es cuatro veces 
mayor y, si se baja la fuente de luz a un metro de altura, la iluminación 
de la habitación será de 50 Lux; es decir, resulta 25 veces mayor. 

Importante: Para leer cómodamente, se requieren al menos 50 Lux; en 
las salas de cirugía se necesitan 800 Lux; en cambio, en la calle puede 
estar a 1 lux. Resulta muy perniciosa tanto una iluminación deficiente 
como una excesiva; por ejemplo, no es conveniente leer a la luz del sol 
directamente, ni leer a la luz de la luna en luna llena.  
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Hasta ahora no se ha indicado cómo se puede medir la intensidad de la 
luz de una fuente ni cómo medir la iluminación; por lo pronto, resulta 
sencillo decir: “si hay dos fuentes luminosas y se conoce la intensidad de 
una de ellas, se puede conocer la intensidad de la otra fuente”.  

Cantidad de luz o flujo luminoso 

La luz de una fuente luminosa puede iluminar E lux a una pantalla P, 
situada a una distancia d; ahora bien, si se coloca un diafragma (hueco 
con abertura variable) a la iluminación, entonces, se puede aumentar o 
disminuir la cantidad de luz que llega a la pantalla; de modo que: si a 
través de un agujero de un diámetro D1 pasa la luz de una fuente f  para 
iluminar una parte de la pantalla (se vería un círculo iluminado), si el 
agujero es de mayor diámetro (D2),  la luz que va a pasar iluminará más 
área de la pantalla, pero con la misma iluminación; es decir, si aumentó 
el área iluminada se debe a que se aumentó el área del agujero; así que 
la cantidad de luz que llega a la pantalla depende del área del agujero: 
entre mayor diámetro, mayor cantidad de luz, pero siempre la misma 
iluminación, o sea: E1 = E2 = E3.                 

De modo que la iluminación es directamente proporcional a la cantidad 
de luz e inversamente proporcional a la superficie iluminada; o sea: 

𝐸𝐸𝐸𝐸 = 𝐿𝐿𝐿𝐿
𝑆𝑆𝑆𝑆

= 𝐿𝐿𝐿𝐿´
𝑆𝑆𝑆𝑆´ = 𝐿𝐿𝐿𝐿´´

𝑆𝑆𝑆𝑆´´. 

 

Por tanto, la cantidad de luz o flujo luminoso se expresa como: 

𝐿𝐿𝐿𝐿 = 𝐸𝐸𝐸𝐸𝑆𝑆𝑆𝑆. 

Así, la cantidad de luz L necesaria para iluminar una superficie S, con 
una iluminación E, es directamente proporcional a la iluminación y a la 
superficie. La cantidad de luz o flujo luminoso tiene como unidad de 
medida el lumen. 

Ejemplo: ¿Cuantos lúmenes debe emitir una lámpara para iluminar con 
500 lux una superficie de 900cm2 ? 
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iluminar una parte de la pantalla (se vería un círculo iluminado), si el 
agujero es de mayor diámetro (D2),  la luz que va a pasar iluminará más 
área de la pantalla, pero con la misma iluminación; es decir, si aumentó 
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Por tanto, la cantidad de luz o flujo luminoso se expresa como: 

𝐿𝐿𝐿𝐿 = 𝐸𝐸𝐸𝐸𝑆𝑆𝑆𝑆. 
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Ejemplo: ¿Cuantos lúmenes debe emitir una lámpara para iluminar con 
500 lux una superficie de 900cm2 ? 

Solución. A partir de la ecuación de flujo luminoso, se tiene: 

𝐿𝐿𝐿𝐿 = 𝐸𝐸𝐸𝐸𝑆𝑆𝑆𝑆 

𝐿𝐿𝐿𝐿 = (500𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑥𝑥𝑥𝑥)(0.09𝑚𝑚𝑚𝑚2) 

𝐿𝐿𝐿𝐿 = 45𝐿𝐿𝐿𝐿𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 

𝐿𝐿𝐿𝐿 = 45𝐿𝐿𝐿𝐿𝑚𝑚𝑚𝑚 

Respuesta: para iluminar la superficie con dicha lámpara se necesitan 
45 lúmenes.  

¡Atención!: se asume que toda la luz de la lámpara recae sobre la superficie, 
lo que implica tener una superficie reflectora que llevase a que la luz de la 
parte opuesta fuera hacia la superficie; así funcionan las lámparas reflectoras 
de una linterna, las farolas de un vehículo, entre otras. 

Si una fuente ilumina un escritorio en el que hay un libro, solo una parte 
de la luz cae sobre el libro y el resto cae sobre la superficie del mismo 
escritorio, cuerpos cercanos, paredes, etc., pero la luz requerida para leer 
es muy pequeña, a esto se lo denomina factor de utilidad (fu). 

Ejemplo            

1. ¿Qué cantidad de luz debe emitir una fuente luminosa para iluminar 
con 200 lux una superficie de 2400 cm2, si con la pantalla reflectora se 
logra 70% de la luz emitida y el factor de utilización es del 30%? 

Solución  

Se sabe que 𝐸𝐸𝐸𝐸 = 𝐿𝐿𝐿𝐿
𝑆𝑆𝑆𝑆
 , cuando hay un porcentaje por reflexión de una 

pantalla y lo que se logra iluminar es una parte; entonces, se tiene: 

𝐸𝐸𝐸𝐸 = 𝑓𝑓𝑓𝑓𝑚𝑚𝑚𝑚. 𝐿𝐿𝐿𝐿
𝑆𝑆𝑆𝑆

.𝑓𝑓𝑓𝑓𝐶𝐶𝐶𝐶, 

donde fr es el factor de reflectancia de la fuente y fu el factor de 
utilización; así que, al despejar L, se tiene: 

𝐿𝐿𝐿𝐿 =
𝐸𝐸𝐸𝐸. 𝑆𝑆𝑆𝑆
𝑓𝑓𝑓𝑓𝑚𝑚𝑚𝑚.𝑓𝑓𝑓𝑓𝐶𝐶𝐶𝐶
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𝐿𝐿𝐿𝐿 =
(200𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)(0.24𝑚𝑚𝑚𝑚2)

(0.7)(0.3)
 

𝐿𝐿𝐿𝐿 = 230𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 

De modo que, para iluminar la superficie, la fuente luminosa puede emitir 
una cantidad de luz de 230 lúmenes. 

En las lámparas analógicas de arco de tungsteno, se encuentran estas 
especificaciones: voltaje al que se debe conectar, potencia y cantidad de 
luz que emiten, así: 120𝑉𝑉𝑉𝑉;  100𝑊𝑊𝑊𝑊;  1180𝐿𝐿𝐿𝐿𝑚𝑚𝑚𝑚. 

En general, producen unos 10 lúmenes por cada vatio, de modo que la 
lámpara del ejercicio es de unos 25 vatios de potencia. 

2. Los escritorios de un aula deben ser iluminados con 420 lux; si la 
superficie total de los escritorios es de 10m², que representa el 20% de la 
superficie iluminada del aula, ¿qué cantidad de luz es necesaria para el 
requerimiento del aula, si la lámpara refleja el 70%.  

Solución  
Entonces, se tiene: 

𝐿𝐿𝐿𝐿 =
𝐸𝐸𝐸𝐸. 𝑆𝑆𝑆𝑆
𝑓𝑓𝑓𝑓𝑚𝑚𝑚𝑚.𝑓𝑓𝑓𝑓𝐶𝐶𝐶𝐶

 

𝐿𝐿𝐿𝐿 =
(420𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)(10𝑚𝑚𝑚𝑚2)

(0.7)(0.2)
 

𝐿𝐿𝐿𝐿 =
4200
0.14

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 

𝐿𝐿𝐿𝐿 = 30000𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 

De modo que la cantidad de luz requerida para iluminar el aula es de 
30.000 lúmenes. 

Para ilustración, esta tabla: 
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Tabla 2.1. Equivalencia entre LED y la luz normal. 

Lúmenes Potencia 
LED 

Potencia 
lámpara 

fluorescente 
Potencia 
Halógena 

Potencia 
lámpara 

incandescente 

80 - 90 1 w   10 w 

240 - 270 3 8 w  20 

400 - 450 5 11  35 

560 - 630 7 13 29 w 50 

800 - 900 10 20 40 80 

960 - 1080 12 24 49 100 

4800 - 5400 15 30 62 120 

6400 - 7200  40 80 150 

7200 - 8100  120 250 400 

Fuente: https://www.masferreteria.com/blog/equivalencia-entre-led-y-luz-normal/ 

Ángulo de incidencia 

No todas las superficies 
iluminadas reciben los rayos 
luminosos de forma perpendicular, 
razón por la cual se requiere 
definir el ángulo de incidencia 
como el ángulo que forman los 
rayos incidentes y la normal a la 
superficie justamente en el punto 
de incidencia, tal como se puede 
ver en la Fig. 2.11. 

Ley de Lambert 

Se conoce también como ley de los cosenos; indica el valor de la 
iluminación cuando los rayos incidentes bajo un ángulo 𝜃𝜃𝜃𝜃 difiere del cero. 

Fig. 2.11. Ángulo de incidencia respecto a la 
normal. 
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En la Fig. 2.12, se puede ver la 
superficie S, en la cual los rayos de 
luz caen de forma perpendicular, 
mientras que en la superficie S' los 
rayos caen con un ángulo de 
incidencia 𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 respecto a la normal. 

Las bombillas de las alcobas 
generan luz, pero esa radiación cae 
y forma un ángulo y, en general, 
ese ángulo es variable respecto a la 
normal. De modo que la relación 
para expresar este tipo de 
iluminación es: 

𝐸𝐸𝐸𝐸 = 𝐼𝐼𝐼𝐼
𝑟𝑟𝑟𝑟2
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖. 

Fotómetro de sombras 

Denominado también de Lambert y de Rumford, es el más sencillo de 
todos (véase Fig. 2.13). Consiste en un objeto largo (varilla) colocado cerca 
de una pantalla traslúcida, en la que se forman las sombras provenientes 
de dos fuentes luminosas; la iluminación de la pantalla será homogénea 
si las sombras aparentan igual brillo, igual atenuación o igual intensidad. 

En este caso de igualdad de brillo 
de las sombras, se puede 
establecer esta relación: 

𝐼𝐼𝐼𝐼1
𝑑𝑑𝑑𝑑12

= 𝐼𝐼𝐼𝐼2
𝑑𝑑𝑑𝑑22

. 

A partir de una de las intensidades 
conocida, se deduce la otra 
intensidad; también se puede 
establecer la misma relación si se 
trata de encontrar la distancia de 
una de ellas. 

 
θι

S

S'

N

Fig. 2.12. Superficie iluminada bajo un 
ángulo de incidencia. 

Fig. 2.13. Fotómetro de sombras 
generadas por las fuentes luminosas. 
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luz caen de forma perpendicular, 
mientras que en la superficie S' los 
rayos caen con un ángulo de 
incidencia 𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 respecto a la normal. 

Las bombillas de las alcobas 
generan luz, pero esa radiación cae 
y forma un ángulo y, en general, 
ese ángulo es variable respecto a la 
normal. De modo que la relación 
para expresar este tipo de 
iluminación es: 

𝐸𝐸𝐸𝐸 = 𝐼𝐼𝐼𝐼
𝑟𝑟𝑟𝑟2
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖. 

Fotómetro de sombras 

Denominado también de Lambert y de Rumford, es el más sencillo de 
todos (véase Fig. 2.13). Consiste en un objeto largo (varilla) colocado cerca 
de una pantalla traslúcida, en la que se forman las sombras provenientes 
de dos fuentes luminosas; la iluminación de la pantalla será homogénea 
si las sombras aparentan igual brillo, igual atenuación o igual intensidad. 

En este caso de igualdad de brillo 
de las sombras, se puede 
establecer esta relación: 

𝐼𝐼𝐼𝐼1
𝑑𝑑𝑑𝑑12

= 𝐼𝐼𝐼𝐼2
𝑑𝑑𝑑𝑑22

. 

A partir de una de las intensidades 
conocida, se deduce la otra 
intensidad; también se puede 
establecer la misma relación si se 
trata de encontrar la distancia de 
una de ellas. 

 
θι

S

S'

N

Fig. 2.12. Superficie iluminada bajo un 
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Fig. 2.13. Fotómetro de sombras 
generadas por las fuentes luminosas. 

 
I1

I2

S2

S1

P
Objeto

Pantalla

d1

d2

Fotómetro de Bunsen 

Consiste en tener una pantalla de papel algo traslúcido con una mancha 
de aceite en el centro; mediante dos espejos, colocados en un ángulo de 
90° en la bisectante, permiten observar las manchas de aceite sobre la 
pantalla en los espejos angulares desde el punto de observación cuando 
las iluminan las fuentes f1 y f2, como se puede ver en la Fig. 2.14. 

En la mancha de aceite, se ilumina o se pierde al depender de la 
iluminación que producen las fuentes f1 y f2, colocadas a las distancias d1 
y d2. Cuando las distancias están de acuerdo con la intensidad de las 
fuentes, la mancha de aceite se pierde en el fondo de la pantalla debido a 
la misma cantidad de luz que atraviesa en sentido contrario. 

Pero si la mancha se ilumina más 
por un lado que por el otro, 
entonces las fuentes no están 
iluminando de forma equitativa, 
con lo cual se deberá mover una 
de las fuentes, alejarla o 
acercarla de forma ortogonal a un 
eje de observación, como se ve en 
la Fig. 2.14. 

Existen otros fotómetros, como el 
de Lummer-Brodhun, que se 
utilizaba en antiguas cámaras 
fotográficas. 

Para medir la iluminación, en la práctica, se efectúa con células 
fotovoltaicas; fuera cual fuese la tecnología analógica o digital, la célula 
fotovoltaica convierte el flujo luminoso recibido en corriente eléctrica y, 
de acuerdo a la tecnología, el resultado puede mostrarse en una escala 
(sistema analógico) o directamente se muestra la cantidad medida 
(sistema digital) en unidades, que serán lux. 

Fig. 2.14. Fotómetro de Bunsen; desde el 
punto de observación se pueden ver los dos 
puntos brillantes de la pantalla E. 
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En la Fig. 2.15, se puede ver una 
fotografía de un fotómetro de 
Bunsen del laboratorio de la 
Universidad de Nariño; en ella, se 
puede apreciar, en el lado derecho, 
un círculo pequeño más brillante 
que el entorno, lo que significa que 
no se ha calibrado correctamente 
para que se pudiera apreciar; de 
corregirlo, el círculo brillante se 
debería perder con el color del 
entorno, tanto para el lado derecho 
como para el lado izquierdo.  

 

Ejemplo  

Una fuente luminosa de 2560 cd se encuentra a cinco 5 m sobre suelo: ¿a 
qué distancia de la vertical de la fuente la iluminación del pavimento es 
de 25 Lux? (Véase Fig. 2.16). 

Solución  

El punto a calcular está en C, a una distancia X de la vertical AB. 

 

Fig. 2.15. Fotómetro de Bunsen, del 
Laboratorio de Óptica de la Universidad de 
Nariño. Fuente propia. 

Fig. 2.16. Esquema de la disposición de la lámpara. 
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Entonces: 

𝐸𝐸𝐸𝐸 = 𝐼𝐼𝐼𝐼
𝑟𝑟𝑟𝑟2
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜃𝜃𝜃𝜃. 

Además, se tiene que: 

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜃𝜃𝜃𝜃 =
5
𝑚𝑚𝑚𝑚

 

   

Al combinar, se tiene: 

𝐸𝐸𝐸𝐸 =
𝐼𝐼𝐼𝐼(5)
𝑚𝑚𝑚𝑚3

 

y, al despejar r, se tiene que: 

𝑚𝑚𝑚𝑚 = �𝐼𝐼𝐼𝐼. 5
𝐸𝐸𝐸𝐸

3
 

𝑚𝑚𝑚𝑚 = �2560𝑐𝑐𝑐𝑐𝑁𝑁𝑁𝑁. 5𝑚𝑚𝑚𝑚
25𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

3
 

𝑚𝑚𝑚𝑚 = 8𝑚𝑚𝑚𝑚 

Para encontrar el valor de X, se tiene: 

𝑋𝑋𝑋𝑋 = �𝑚𝑚𝑚𝑚2 − 52 

𝑋𝑋𝑋𝑋 = �(8𝑚𝑚𝑚𝑚)2 − (5𝑚𝑚𝑚𝑚)2 

𝑋𝑋𝑋𝑋 = �39𝑚𝑚𝑚𝑚2 

𝑋𝑋𝑋𝑋 = 6.245𝑚𝑚𝑚𝑚 

Por tanto, la iluminación del pavimento es de unos 25 Lux, a una 
distancia de 6.245 metros de la vertical de la fuente de iluminación. 

 



Capítulo 3 

Ley de Snell para la reflexión

 
________________________ 

 

Horno solar en Odeillo, Francia. Construido en los Pirineos orientales, con una potencia térmica de 1000 KW, equivalente a 
3000 °C, se conforma de 54 heliostatos de espejos planos, que siguen el movimiento del sol para reflejar la luz captada al 
gran espejo parabólico que concentra a la torre que se encuentra frente al espejo, donde está el horno de metales; funcionó 
desde su construcción 1962 hasta 1968.
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Capítulo 3 

Ley de Snell para la reflexión

 
________________________ 

 

Horno solar en Odeillo, Francia. Construido en los Pirineos orientales, con una potencia térmica de 1000 KW, equivalente a 
3000 °C, se conforma de 54 heliostatos de espejos planos, que siguen el movimiento del sol para reflejar la luz captada al 
gran espejo parabólico que concentra a la torre que se encuentra frente al espejo, donde está el horno de metales; funcionó 
desde su construcción 1962 hasta 1968.

3.1 Reflexión de la luz 

La luz puede llegar hasta una superficie y reflejarse según ciertas reglas 
geométricas, en el punto de incidencia de un rayo de luz; todas las superficies 
tienen una normal, con la cual se define el ángulo de incidencia y de reflexión; 
entonces, entre el rayo incidente y la normal está el ángulo 𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖, o ángulo de 
incidencia, y entre la normal y el rayo reflejado se forma el ángulo  
𝜃𝜃𝜃𝜃𝑅𝑅𝑅𝑅, o ángulo de reflexión, como se ve en la Fig. 3.1. 

 

Como axioma, el ángulo de incidencia es igual al ángulo de reflexión; si 
la normal a la superficie reflectora se levanta en el punto de incidencia, 
esto se convierte en la Primera Ley de Snell; es decir: 

𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 = 𝜃𝜃𝜃𝜃𝑅𝑅𝑅𝑅, 

para cualquier superficie en la que hay una normal en el punto de inci-
dencia del rayo de luz. 

Fig.  3.1. Ángulo de incidencia y reflexión en una superficie. 
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3.2 Espejos  

Son unas superficies reflectoras que permiten reflejar la luz que llega 
hasta ellas. 

La propiedad de la superficie, en ese punto de absoluta planitud, tal como 
la superficie del agua en total quietud, superficies metálicas muy pulidas, 
como el aluminio, superficies de vidrio, al que se le ha depositado plata, 
en un proceso que desarrolló Justus von Liebig (1835), un químico 
alemán, quien depositó plata sobre superficies planas de vidrios, con lo 
cual inventó el espejo que conocemos hoy. 

En la Fig. 3.2, se tiene una fotografía de la reflexión de un rayo láser sobre un 
espejo plano; allí se puede ver claramente la Ley de Snell, en que el ángulo de 
incidencia es igual al ángulo de reflexión; el rayo incidente es el de la parte 
superior. En el Recuadro 1, se tiene al rayo de luz láser; en el Recuadro 2, se 
tiene el rayo de luz que incide de forma normal sobre el espejo; por esa 
geometría, el rayo reflejado lo hace en igual dirección al rayo incidente; y, por 
último, en el Recuadro 3, ya hay un ángulo incidente; se observa que el ángulo 
de reflexión es igual al ángulo de incidencia. 

Espejos planos  

Son superficies planas reflectoras, en las que se forman imágenes de objetos 
que se encuentran delante de la superficie. En la Fig. 3.3, se pueden observar 

Fig. 3.2. Fotografía de un rayo láser que se refleja sobre una superficie 
reflectora: 1) un rayo de luz láser sobre el disco de Hart; 2) el rayo de luz láser 
llega a una superficie reflectora y se refleja por la misma dirección; 3) el rayo 
de luz láser incide con un ángulo de incidencia de 20°; en la parte superior, 
el rayo reflejado lo hace con el mismo ángulo de 20° por la parte inferior de 
la normal a la superficie reflectora. Fuente propia. 
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3.2 Espejos  

Son unas superficies reflectoras que permiten reflejar la luz que llega 
hasta ellas. 

La propiedad de la superficie, en ese punto de absoluta planitud, tal como 
la superficie del agua en total quietud, superficies metálicas muy pulidas, 
como el aluminio, superficies de vidrio, al que se le ha depositado plata, 
en un proceso que desarrolló Justus von Liebig (1835), un químico 
alemán, quien depositó plata sobre superficies planas de vidrios, con lo 
cual inventó el espejo que conocemos hoy. 

En la Fig. 3.2, se tiene una fotografía de la reflexión de un rayo láser sobre un 
espejo plano; allí se puede ver claramente la Ley de Snell, en que el ángulo de 
incidencia es igual al ángulo de reflexión; el rayo incidente es el de la parte 
superior. En el Recuadro 1, se tiene al rayo de luz láser; en el Recuadro 2, se 
tiene el rayo de luz que incide de forma normal sobre el espejo; por esa 
geometría, el rayo reflejado lo hace en igual dirección al rayo incidente; y, por 
último, en el Recuadro 3, ya hay un ángulo incidente; se observa que el ángulo 
de reflexión es igual al ángulo de incidencia. 

Espejos planos  

Son superficies planas reflectoras, en las que se forman imágenes de objetos 
que se encuentran delante de la superficie. En la Fig. 3.3, se pueden observar 

Fig. 3.2. Fotografía de un rayo láser que se refleja sobre una superficie 
reflectora: 1) un rayo de luz láser sobre el disco de Hart; 2) el rayo de luz láser 
llega a una superficie reflectora y se refleja por la misma dirección; 3) el rayo 
de luz láser incide con un ángulo de incidencia de 20°; en la parte superior, 
el rayo reflejado lo hace con el mismo ángulo de 20° por la parte inferior de 
la normal a la superficie reflectora. Fuente propia. 

los triángulos IVP y VOP; en principio, los dos triángulos son semejantes, 
debido a que tienen un lado en común h; de igual forma el ángulo 𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟 es común, 
por ser ángulos opuestos; por la Ley de Snell, es igual a 𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖. Por otra parte, el 
lado IV del triángulo IVP es una prolongación del lado OV del triángulo OVP 
y lo hace con el mismo ángulo 𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖; es decir, la recta IO es paralela a la normal 
N; por tanto, 𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 = 𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟 y h resultan comunes para los dos triángulos.  

 

Los triángulos IVP y OVP son iguales, con un lado en común y un ángulo; 
por tanto, los lados IV y OV son iguales; esto es:  𝑁𝑁𝑁𝑁0 = −𝑁𝑁𝑁𝑁𝐼𝐼𝐼𝐼; o sea que la 
imagen del objeto se ha formado a la misma distancia del objeto al espejo. 
Además, la imagen se ha formado por prolongación de los rayos 
reflejados, lo que lleva a que la imagen fuese virtual. 

Formación de imágenes en espejos planos  

La propiedad de los espejos es reflejar la luz que incide sobre ellos; por tanto, 
son excelentes formadores de imágenes de los objetos que se encuentren 
dentro del campo óptico del espejo; es decir, los puntos que forman la imagen 
del objeto se encuentran a la misma distancia respecto a la superficie del 
espejo de sus similares en el objeto, con lo cual da una apariencia de observar 
una imagen izquierda del objeto, tal como se puede ver en la Fig. 3.4; esto se 
debe a que estamos acostumbrados a observar a las personas de frente; 
cuando se saluda de mano a una persona, esta estira su mano contraria a la 
nuestra; sin embargo, es la misma mano derecha, con la que queremos 

Fig. 3.3. Fotografía de la reflexión de un rayo láser sobre un espejo 
plano (Fuente propia). En la segunda parte, se tiene un esquema 
sobre la formación de imágenes en una superficie reflectora. 
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saludarlo; frente a un espejo, al levantar la mano derecha, la imagen del 
espejo corresponde, de igual forma, a la derecha, pero la persona que observa 
hacia el espejo tiene la sensación de que se trata de la mano izquierda, pero 
resulta solo una apreciación rápida que se establece.   

 

Aplicaciones        

A lo largo de la historia se encuentran objetos diseñados por la mente 
humana para beneficio y provecho propio, desde la superficie del agua en 
reposo como espejo hasta complicados instrumentos ópticos.  

• Periscopio  
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Fig. 3.4. Formación de imagen en un espejo plano. 

Fig. 3.5. Esquema de un periscopio que puede llevar la 
imagen de un objeto hasta un lugar distante. 
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resulta solo una apreciación rápida que se establece.   
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El origen del periscopio se remonta a 1845, cuando Sarah Mather1 
patentó el aparato que permitía efectuar observaciones en la profundidad 

del mar. Básicamente, la luz 
que se desprende de un objeto 
iluminado R1 y R2 penetra por 
el tubo; en el codo de este se 
encuentra un espejo a 45°, lo 
que permite desviar la luz 
hasta el siguiente espejo, y así 
sucesivamente hasta llegar la 
luz al observador, como se 
puede ver en la Fig. 3.5. En la 
actualidad, el instrumento es 
un complejo aparato óptico,  
con ayuda de la electrónica 
digital, armado con cámaras 

CCD y muchos avances de última tecnología ubicados en los más 
modernos submarinos del mundo; en la Fig. 3.6, se puede ver la fotografía 
de un submarino equipado con este tipo de tecnología; el instrumento 
permite tomar fotografías, elaborar videos y establecer observación en 
tiempo real; se debe entender que un periscopio es un potente telescopio 
con múltiples lentes de acercamiento, que permiten ver detalles de 
buques enemigos y puertos que se encontrasen en su camino a unos 
cuantos kilómetros de distancia.  

La aplicación de llevar la imagen de lugares inobservables, como el 
interior del cuerpo humano y de animales, para la medicina ha sido de 
gran utilidad; con la invención de la fibra óptica, se ha logrado ver el 
interior de nuestro cuerpo, con una tecnología denominada endoscopia, 
con la que se pueden observar las paredes del estómago, el intestino y 
muchos órganos más; también la utilizan equipos de rescate para buscar 
sobrevivientes en el interior de escombros, y muchas aplicaciones más.      

 
1 Podcastilla. Sarah Mather. (ag. 11 de 2020). https://mujereslila.com/sarah-
mather/ 

Fig. 3.6. Submarino turco de la Línea 209, 
mejorado con sus periscopios.  
Fuente: https://www.defensa.com/otan-y-europa 
/hensoldt-mejora-submarinos-turcos-clase-209-
periscopios 
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• Sextante 

Al seguir las reglas del periscopio, de llevar la imagen de un objeto hasta 
nuestros ojos, en la Fig. 3.7, se puede ver el esquema básico de un 
sextante, que consta de dos espejos: el primero, colocado sobre el cuerpo, 
puede ser semi transparente (E1) o puede tener una mitad transparente 
y otra reflectiva; el segundo espejo, totalmente reflectivo (E2), colocado en 
el cursor que permite establecer medidas en grados sobre la escala; 
entonces, con el aparato, a través del primer espejo se puede observar el 
horizonte y, a la vez, la imagen de la estrella a la que se quiere calcular 
la altura sobre el horizonte; la medida se efectúa en la escala en grados 
inscrita sobre el marco del aparato; la medida que se tiene es la altura 
sobre el horizonte.  

En general, en la escala hay hasta 60° (de ahí su nombre sextante9, con 
lo cual se logran mediciones de hasta 120°, debido a la relación:  

𝛼𝛼𝛼𝛼 = 2𝜃𝜃𝜃𝜃. 

Reflexión en superficies rugosas  

Los objetos observables tienen superficies rugosas que reflejan la luz en 
todas las direcciones, como se ve en la figura 3.8, razón por lo cual los 
objetos pueden observarse desde diferentes ángulos. De tener superficies 
que fuesen netamente pulidas, la observación se complicaría, pues, en 

Fig. 3.7. Esquema de un sextante. 
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este caso, se tendría solo un ángulo para poder observar; así se ven las 
montañas, nevados, paisajes, etc.   

Espejos curvos   

Son superficies reflectantes, cuyo plano depende de tres variables x, y, z; 
entre las más utilizadas para efectos ópticos, pueden ser esféricas, 
parabólicas, elíptica, entre otras. Las superficies reflectivas pueden ser: 
externa o interna; en el caso de tener superficie reflectiva interna, se la 
denomina espejo cóncavo y, por el contrario, si la superficie reflectiva es 
la externa, entonces el espejo es convexo. El plano que genera la superficie 
lleva el nombre de espejo; por ejemplo, espejo parabólico cóncavo quiere 
decir que el plano de la superficie es un paraboloide, con la superficie 
interna reflectiva. 

Espejos esféricos  

Son superficies reflectantes que corresponden a casquetes esféricos muy 
pulidos; cuando la superficie reflectante es la interior, se convierte en 
espejo cóncavo, mientras que si la superficie reflectante es la exterior es 
un espejo convexo. 

 
Luz incidente Luz reflejada en

todas las direcciones

Objeto
iluminado

Fig. 3.8 Reflexión dispersa por superficies rugosas.  
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Espejos cóncavos  

Son superficies que pertenecen a un 
casquete (parte de una esfera) 
esférico de radio R, en el cual la 
parte reflectante del casquete 
esférico es la parte interna, como la 
correspondiente a la Fig. 3.9.  

Elementos principales de un 
espejo cóncavo  

 
Es muy importante definir las partes 
más importantes de un espejo esférico; 
en la Fig. 3.10, se pueden ver los 
elementos importantes de un espejo 
cóncavo esférico.  

AB es la abertura del casquete esférico 
(abertura del espejo cóncavo); 

V es el vértice del espejo; 

R es el radio del espejo; 

E es el eje de simetría; 

C es centro de curvatura o centro del 
casquete esférico; 

F es la distancia focal o foco óptico.  

Rayos notables de un espejo esférico, cóncavo 

1) Rayo paralelo:  es el rayo que incide de forma paralela al eje de simetría y 
se refleja por el foco, punto que queda a R/2 respecto al vértice del espejo.  

2) Rayo focal: es el rayo que incide justamente por el punto focal o foco del 
espejo y se refleja de forma paralela al eje de simetría.  

 R
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S

Fig. 3.9. Casquete esférico de R, radio de 
curvatura, con centro en C. 

Fig. 3.10. Elementos de un espejo 
cóncavo. 
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Espejos cóncavos  
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Rayos notables de un espejo esférico, cóncavo 

1) Rayo paralelo:  es el rayo que incide de forma paralela al eje de simetría y 
se refleja por el foco, punto que queda a R/2 respecto al vértice del espejo.  

2) Rayo focal: es el rayo que incide justamente por el punto focal o foco del 
espejo y se refleja de forma paralela al eje de simetría.  
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Fig. 3.10. Elementos de un espejo 
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3) Rayo central: es el rayo que, cuando incide, lo hace por el centro de 
curvatura; es decir, forma parte del radio de curvatura del casquete esfé-
rico; como el radio de una curva es normal a esa superficie, entonces el 
rayo central es normal en ese punto, razón por la cual el rayo reflejado lo 
hace por la misma dirección, o sea por el centro de curvatura. 

 
4) Rayo del vértice: es el rayo 
que incide justamente en el 
punto del vértice; el rayo refle-
jado lo hace bajo el mismo án-
gulo con el que llegó, o ángulo de 
incidencia; estos ángulos medi-
dos con respecto a la normal 
que, en este caso, es el mismo eje 
de simetría. 
 

En la Fig. 3.12, se tienen fotografías de los rayos mencionados obtenidos 
con un espejo curvo y un rayo láser sobre el disco de Hartl: en el Cuadro 
1, se tiene el rayo paralelo al eje de simetría; en el Cuadro 2, se tiene una 
fotografía similar a la anterior, pero el rayo que incide lo hace por el foco 
y se refleja paralelo al eje de simetría; en el Cuadro 3, se tiene el rayo que 
pasa por el centro de curvatura del espejo; este rayo no sufre ninguna 
desviación; por tanto, se refleja con igual dirección que el rayo incidente. 
Por último, en el Cuadro 4, se tiene el rayo que incide justamente en el 
vértice del espejo; este rayo se refleja al cumplir la ley de Snell; es decir, 
el ángulo de reflexión igual al ángulo de incidencia.  
 
Nota. Se entiende que el rayo incidente siempre va de izquierda a dere-
cha y lo hace por la parte superior.  

Foco principal: el foco principal de un espejo es el punto f, donde todo 
rayo paralelo se refleja por el foco.  

Distancia focal: es la distancia del foco principal al vértice; en los 
espejos esféricos de “pequeña abertura”, comparada con el radio de 

Fig. 3.11. Rayos paralelos convergen al foco. 
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curvatura, la distancia focal es muy aproximada a 𝑅𝑅𝑅𝑅
2
, donde R es el radio 

de curvatura del espejo. 

Muy importante. En los espejos cóncavos resulta que el punto focal es parte 
de una superficie algo más extensa cuanto mayor fuese la abertura del espejo 
respecto al radio de curvatura; esto se conoce como aberración esférica.       

Puntos conjugados 

Dado un punto luminoso O cercano al eje principal de un espejo esférico 
de pequeña abertura, existe otro punto Imagen I, donde realmente se cor-
tan todos los rayos reflejados. 

Fig. 3.12. Fotografías obtenidas en el Laboratorio de 
Física, Óptica, de la Universidad de Nariño: 1) Rayo 
paralelo; 2) Rayo focal (similar al anterior); 3) Rayo del 
vértice y 4) Rayo del centro de curvatura. Fuente propia. 
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curvatura, la distancia focal es muy aproximada a 𝑅𝑅𝑅𝑅
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Puntos conjugados 
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En la Fig. 3.13, se ve que el radio 
de curvatura es normal en los 
puntos P, P', P'' de incidencia, lo 
que cumple con la Ley de Snell  
𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 = 𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟 para espejos de abertura 
AB pequeña y radio grande; en la 
Fig. 3.13, se detalla cómo el radio 
de curvatura es la normal en el 
punto de incidencia del rayo de luz.  

Formación de imágenes con espejos cóncavos 

Los espejos cóncavos tienen la 
posibilidad de formar imágenes 
que se pudieran proyectar en 
pantallas y se presentan de 
acuerdo a estos casos: 

1) Cuando el objeto está entre el 
centro de curvatura y el infinito, 
es decir: 

𝑅𝑅𝑅𝑅 < 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 < ∞. 

Ahora bien, este caso permite ver dos casos particulares: 

1a) Cuando el objeto está muy lejos; es decir, 𝑁𝑁𝑁𝑁𝑜𝑜𝑜𝑜 ⇒ ∞. 

Los rayos que provienen del infinito, donde se “encuentra el objeto”, 
llegan al espejo de forma paralela al eje de simetría; esos rayos se reflejan 
y pasan por el foco. Debido a que el objeto está muy retirado del espejo, 
los demás rayos carecen de importancia; por ello solo se mencionan los 
rayos paralelos, como se puede ver en la Fig. 3.14. 

Fig. 3.13. El radio de curvatura es normal 
en cada punto P, P', P''. 
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Fig. 3.14. Rayo paralelo que proviene de un 
objeto que se encuentra muy distante del espejo. 
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Este es el caso en que se recogen los 
rayos del sol y se los concentra a un 
punto (foco), con lo que se pueden 
obtener altas temperaturas; con esto 
se pueden tener hornos de metalurgia 
con energía solar, como en el caso del 
horno de Odeillo, en los Pirineos 
franceses, cerca de la frontera 
española, en Girona construido en 
1970 con 63 espejos planos de 45 m² 
cada uno; estos espejos siguen el 

recorrido del sol de forma automática y la reflejan a un Espejo cóncavo de 1830 
m², el cual, a su vez, refleja la luz y la concentra en apenas 40 centímetros de 
diámetro sobre el horno, lo que produce una potencia de 1000 Kilowatts y una 
temperatura de 3400 °C, lo que equivale a concentrar 1000 soles; esto permite 
producir acero de muy alta calidad; de igual forma, este mismo sistema se ha 
utilizado para producir energía eléctrica, en un proyecto desarrollado en 2008, 
debido a que el proyecto del horno se había abandonado en 1986. (Véase Fig. 
de la portada de este Capítulo). 

b) Cuando el objeto no está muy lejos del espejo; es decir: 𝑅𝑅𝑅𝑅 < 𝑁𝑁𝑁𝑁𝑜𝑜𝑜𝑜 << ∞. 

Entonces, del extremo del 
objeto de altura AB salen tres 
rayos: el primero es un rayo 
paralelo al eje de simetría que 
se refleja por el foco; el 
siguiente es un rayo focal que 
se refleja paralelo, y el tercero 
puede ser el rayo central que se 
refleja por sí mismo; en la Fig. 
3.16, se puede observar que 

hay un punto de intersección A' entre los rayos reflejados, con lo cual se 
forma la imagen del objeto, como se puede ver en la Fig. 3.16.  
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S

Fig. 3.15. Rayos paralelos que pasan por 
el foco. 

Fig. 3.16. Formación de la imagen cuando el 
objeto es mayor que el radio. 
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Este es el caso en que se recogen los 
rayos del sol y se los concentra a un 
punto (foco), con lo que se pueden 
obtener altas temperaturas; con esto 
se pueden tener hornos de metalurgia 
con energía solar, como en el caso del 
horno de Odeillo, en los Pirineos 
franceses, cerca de la frontera 
española, en Girona construido en 
1970 con 63 espejos planos de 45 m² 
cada uno; estos espejos siguen el 

recorrido del sol de forma automática y la reflejan a un Espejo cóncavo de 1830 
m², el cual, a su vez, refleja la luz y la concentra en apenas 40 centímetros de 
diámetro sobre el horno, lo que produce una potencia de 1000 Kilowatts y una 
temperatura de 3400 °C, lo que equivale a concentrar 1000 soles; esto permite 
producir acero de muy alta calidad; de igual forma, este mismo sistema se ha 
utilizado para producir energía eléctrica, en un proyecto desarrollado en 2008, 
debido a que el proyecto del horno se había abandonado en 1986. (Véase Fig. 
de la portada de este Capítulo). 

b) Cuando el objeto no está muy lejos del espejo; es decir: 𝑅𝑅𝑅𝑅 < 𝑁𝑁𝑁𝑁𝑜𝑜𝑜𝑜 << ∞. 

Entonces, del extremo del 
objeto de altura AB salen tres 
rayos: el primero es un rayo 
paralelo al eje de simetría que 
se refleja por el foco; el 
siguiente es un rayo focal que 
se refleja paralelo, y el tercero 
puede ser el rayo central que se 
refleja por sí mismo; en la Fig. 
3.16, se puede observar que 

hay un punto de intersección A' entre los rayos reflejados, con lo cual se 
forma la imagen del objeto, como se puede ver en la Fig. 3.16.  
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Fig. 3.15. Rayos paralelos que pasan por 
el foco. 

Fig. 3.16. Formación de la imagen cuando el 
objeto es mayor que el radio. 
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Características de la imagen   

i) La imagen es real, porque la forman rayos reflejados. 

ii) La imagen es invertida con respecto al objeto. 

iii) La imagen es de menor tamaño que el objeto.  

iv) La imagen se forma entre el foco y el centro de curvatura del espejo; 
es decir, 𝑓𝑓𝑓𝑓 < 𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖 < 𝑅𝑅𝑅𝑅, como se ve en la Fig. 3.16. 

do es la “distancia” del vértice a donde se encuentra el objeto. 

di es la distancia del vértice a donde se encuentra la imagen. 

2) Cuando el objeto se encuentra 𝑓𝑓𝑓𝑓 < 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 ≤ 𝑅𝑅𝑅𝑅se presentan dos casos:  
2a) Cuando el objeto se encuentra sobre el centro de curvatura; es decir, 
do = R. 

En la Fig. 3.17, se puede ver que 
del extremo el objeto de altura 
AB salen dos rayos: el primero es 
un rayo paralelo que se refleja 
por el foco; el segundo es un rayo 
focal que se refleja paralelo; se 
puede observar que hay un punto 
de intersección B' entre los rayos 
reflejados, con lo cual se forma la 
imagen del objeto. 

• Características de la imagen 

i) La imagen es real, porque la forman rayos reflejados. 

ii) La imagen es invertida con respecto al objeto. 

iii) La imagen es de igual tamaño que el objeto. 

iv) La imagen se forma justamente en el centro de curvatura 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 𝑅𝑅𝑅𝑅, como 
se ve en la Fig. 3.17. 

 VA
B

A'
B'

F
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di

Fig. 3.17. Imagen de un objeto que se 
encuentra en el radio de curvatura. 
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2b) Cuando el objeto se coloca entre el foco y el centro de curvatura; es decir, 

𝑓𝑓𝑓𝑓 < 𝑁𝑁𝑁𝑁𝑜𝑜𝑜𝑜 < 𝑅𝑅𝑅𝑅. 

En la Fig. 3.18, se puede ver 
que del extremo el objeto de 
altura AB salen dos rayos: el 
primero es un rayo paralelo 
que se refleja por el foco, y el 
segundo es un rayo focal que 
se refleja de forma paralela, 
con lo cual se forma un punto 
de intersección de los rayos 
reflejados B' donde se forma la 
imagen del objeto. 

 
• Características de la imagen 

i) La imagen es real, porque la forman rayos reflejados. 
ii) La imagen es invertida con respecto al objeto. 
iii) La imagen es de mayor tamaño que el objeto. 
iv) La imagen se forma después del centro de curvatura del espejo; es 
decir: 𝑅𝑅𝑅𝑅 < 𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖 < ∞, como se puede ver en la Fig. 3.18. 
 
3) Cuando el objeto se acerca al espejo y llega hasta el foco; es decir,  
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 ≤ 𝑓𝑓𝑓𝑓; en este caso, se presentan dos posibilidades:  
3a) Cuando el objeto se coloca sobre el foco del espejo; es decir do = f. 

 
VA

B
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Fig. 3.18. Imagen del objeto cuando do es 
mayor que el radio. 
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2b) Cuando el objeto se coloca entre el foco y el centro de curvatura; es decir, 

𝑓𝑓𝑓𝑓 < 𝑁𝑁𝑁𝑁𝑜𝑜𝑜𝑜 < 𝑅𝑅𝑅𝑅. 

En la Fig. 3.18, se puede ver 
que del extremo el objeto de 
altura AB salen dos rayos: el 
primero es un rayo paralelo 
que se refleja por el foco, y el 
segundo es un rayo focal que 
se refleja de forma paralela, 
con lo cual se forma un punto 
de intersección de los rayos 
reflejados B' donde se forma la 
imagen del objeto. 

 
• Características de la imagen 

i) La imagen es real, porque la forman rayos reflejados. 
ii) La imagen es invertida con respecto al objeto. 
iii) La imagen es de mayor tamaño que el objeto. 
iv) La imagen se forma después del centro de curvatura del espejo; es 
decir: 𝑅𝑅𝑅𝑅 < 𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖 < ∞, como se puede ver en la Fig. 3.18. 
 
3) Cuando el objeto se acerca al espejo y llega hasta el foco; es decir,  
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 ≤ 𝑓𝑓𝑓𝑓; en este caso, se presentan dos posibilidades:  
3a) Cuando el objeto se coloca sobre el foco del espejo; es decir do = f. 
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Fig. 3.18. Imagen del objeto cuando do es 
mayor que el radio. 

En la Fig. 3.19, se puede ver que 
del extremo del objeto de altura 
AB salen dos rayos: el primero es 
un rayo paralelo que se refleja 
por el foco; el segundo es un rayo 
del vértice que se refleja con el 
mismo ángulo que incide; puede 
haber un tercer rayo, como el 
central que se refleja por sí 
mismo; de todos modos, se puede 

observar que todos los rayos que se reflejan lo hacen de forma paralela 
entre sí; por tanto, la imagen se forma en el infinito; es decir: no hay 
formación de imagen; matemáticamente, la imagen estará:  𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖 → ∞.          

Si la fuente es puntiforme y se 
ubica en el foco, se convierte en un 
reflector, como se puede ver en la 
Fig. 3.20; esto es, desde la fuente 
puntiforme salen rayos focales, los 
que se reflejan de forma paralela al 
eje de simetría, con lo cual se tiene 
un haz de luz, tal como lo que 
ocurre en una linterna o en las 
farolas de un vehículo.  

3b) Cuando dO es menor que la distancia focal; esto es:  d0 < f. 

En la Fig. 3.21, se puede ver cómo se forma la imagen del objeto detrás 
del espejo, constituida por la prolongación de los rayos reflejados; es decir, 
el rayo paralelo se refleja por el foco, la prolongación de este rayo pasa 
por el punto B'; de igual forma, con el rayo del vértice, la prolongación de 
la reflexión de este rayo también pasa por el punto B'; por tanto, la 
imagen se forma justamente donde se cortan estos rayos prolongados y 
así se tiene una imagen virtual. 

 
VA

B

F

do

Fig. 3.19. Cuando el objeto está sobre el foco, 
no hay imagen. 

 
V

F

Fig. 3.20. Cuando el objeto es puntiforme y 
se encuentra en el foco. 
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• Características de la imagen 
 

i) La imagen es virtual se forma por la prolongación de rayos reflejados. 
ii) La imagen es derecha con respecto al objeto.  
iii) La imagen es de mayor tamaño que el objeto. 
iv) La imagen se forma detrás del espejo; es decir, la distancia de la ima-
gen es negativa, o sea: −𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖, como se puede ver en la Fig. 3.20. 

3.3 Ecuación para los espejos esféricos 

Se considera un espejo esférico cóncavo de abertura pequeña respecto al 
radio de curvatura. 

De acuerdo a la Fig. 3.22, se considera un objeto O puntiforme a una 
distancia do al espejo, desde el cual sale un rayo que incide en el espejo 

Fig. 3.21. Imagen virtual de un objeto que se encuentra 
entre el vértice y el foco. 
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Fig. 3.22. Ángulos que se forman con los elementos de un espejo. 
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• Características de la imagen 
 

i) La imagen es virtual se forma por la prolongación de rayos reflejados. 
ii) La imagen es derecha con respecto al objeto.  
iii) La imagen es de mayor tamaño que el objeto. 
iv) La imagen se forma detrás del espejo; es decir, la distancia de la ima-
gen es negativa, o sea: −𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖, como se puede ver en la Fig. 3.20. 

3.3 Ecuación para los espejos esféricos 

Se considera un espejo esférico cóncavo de abertura pequeña respecto al 
radio de curvatura. 

De acuerdo a la Fig. 3.22, se considera un objeto O puntiforme a una 
distancia do al espejo, desde el cual sale un rayo que incide en el espejo 

Fig. 3.21. Imagen virtual de un objeto que se encuentra 
entre el vértice y el foco. 
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Fig. 3.22. Ángulos que se forman con los elementos de un espejo. 
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en el punto A del espejo; según la Ley de Snell, el rayo se refleja con un 
ángulo igual al de incidencia respecto a la normal (radio de curvatura), 
que corta al eje de simetría en el punto I , donde se forma la imagen a una 
distancia 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁. 
 
Dada la curvatura del espejo, se presenta una inconsistencia geométrica 
en el vértice del espejo VB: entre menor sea la abertura respecto al radio 
de curvatura del espejo, menor será la inconsistencia, con lo cual se puede 
expresar: 
 
Sean los triángulos ACO y AIC. En los triángulos se puede confirmar: 𝛽𝛽𝛽𝛽 
es un ángulo externo al triángulo ACO; por tanto, se puede decir: 

 
𝛽𝛽𝛽𝛽 = 𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 + 𝛼𝛼𝛼𝛼       (3.1). 

En el triángulo AIC se tiene que 𝛾𝛾𝛾𝛾 es el ángulo externo al triángulo; por tanto, se 
dice: 

𝛾𝛾𝛾𝛾 = 𝜃𝜃𝜃𝜃𝑅𝑅𝑅𝑅 + 𝛽𝛽𝛽𝛽     (3.2). 

De acuerdo a la Ley de Snell para la reflexión: 𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 = 𝜃𝜃𝜃𝜃𝑅𝑅𝑅𝑅; por tanto, la 
ecuación (3.2) se puede escribir como: 

𝛾𝛾𝛾𝛾 = 𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 + 𝛽𝛽𝛽𝛽       (3.3). 

Al eliminar 𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 de (3.1) y (3.3), se tiene: 

𝛽𝛽𝛽𝛽 − 𝛾𝛾𝛾𝛾 = 𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 − 𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 + 𝛼𝛼𝛼𝛼 − 𝛽𝛽𝛽𝛽, 

de donde: 

𝛼𝛼𝛼𝛼 + 𝛾𝛾𝛾𝛾 = 2𝛽𝛽𝛽𝛽        (3.4). 

Ahora bien: 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 =
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴

=
ℎ
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁

 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 =
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴

=
ℎ
𝑅𝑅𝑅𝑅
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𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 =
ℎ
𝑁𝑁𝑁𝑁𝑐𝑐𝑐𝑐

 

Al remplazar en (3.4), se tiene que, para ángulos pequeños: 

𝛼𝛼𝛼𝛼 𝛼 𝐶𝐶𝐶𝐶𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇;  𝛽𝛽𝛽𝛽 𝛽 𝐶𝐶𝐶𝐶𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇;  𝛾𝛾𝛾𝛾𝛾  𝐶𝐶𝐶𝐶𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇. 

De modo que:  

𝛼𝛼𝛼𝛼 𝛼 ℎ
𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜

;  𝛽𝛽𝛽𝛽 𝛽 ℎ
𝑅𝑅𝑅𝑅

;  𝛾𝛾𝛾𝛾𝛾  ℎ
𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖

. 

Por tanto, la ecuación (4) queda: 

 
ℎ
𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜

+ ℎ
𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖

= 2 ℎ
𝑅𝑅𝑅𝑅
. 

Por último, se tiene: 
1
𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜

+ 1
𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖

= 2
𝑅𝑅𝑅𝑅
       (3.5). 

Ahora bien, como la distancia focal es la mitad del radio de curvatura, 
entonces: 

𝑓𝑓𝑓𝑓 = 𝑅𝑅𝑅𝑅
2
. 

Así que la ecuación (3.5) queda: 
1
𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜

+ 1
𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖

= 1
𝜋𝜋𝜋𝜋
       (3.6), 

expresión conocida como ecuación de Descartes o del fabricante: 

Como siempre, hay una relación de la distancia a la que se forma la 
imagen, respecto a la distancia a la que se encuentra el objeto, al tomar 
en cuenta el tamaño del objeto y la imagen.  
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𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 =
ℎ
𝑁𝑁𝑁𝑁𝑐𝑐𝑐𝑐

 

Al remplazar en (3.4), se tiene que, para ángulos pequeños: 

𝛼𝛼𝛼𝛼 𝛼 𝐶𝐶𝐶𝐶𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇;  𝛽𝛽𝛽𝛽 𝛽 𝐶𝐶𝐶𝐶𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇;  𝛾𝛾𝛾𝛾𝛾  𝐶𝐶𝐶𝐶𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇. 

De modo que:  

𝛼𝛼𝛼𝛼 𝛼 ℎ
𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜

;  𝛽𝛽𝛽𝛽 𝛽 ℎ
𝑅𝑅𝑅𝑅

;  𝛾𝛾𝛾𝛾𝛾  ℎ
𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖

. 

Por tanto, la ecuación (4) queda: 

 
ℎ
𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜

+ ℎ
𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖

= 2 ℎ
𝑅𝑅𝑅𝑅
. 

Por último, se tiene: 
1
𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜

+ 1
𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖

= 2
𝑅𝑅𝑅𝑅
       (3.5). 

Ahora bien, como la distancia focal es la mitad del radio de curvatura, 
entonces: 

𝑓𝑓𝑓𝑓 = 𝑅𝑅𝑅𝑅
2
. 

Así que la ecuación (3.5) queda: 
1
𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜

+ 1
𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖

= 1
𝜋𝜋𝜋𝜋
       (3.6), 

expresión conocida como ecuación de Descartes o del fabricante: 

Como siempre, hay una relación de la distancia a la que se forma la 
imagen, respecto a la distancia a la que se encuentra el objeto, al tomar 
en cuenta el tamaño del objeto y la imagen.  

 

En la Fig. 3.23, se pueden ver los triángulos VAB y VA'B', de donde se 
tiene: 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 =
𝐶𝐶𝐶𝐶. 𝑐𝑐𝑐𝑐𝑜𝑜𝑜𝑜𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
𝐶𝐶𝐶𝐶.𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 = 𝑞𝑞𝑞𝑞𝐵𝐵𝐵𝐵
𝑉𝑉𝑉𝑉𝐵𝐵𝐵𝐵

. 

Al remplazar: 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 = 𝑂𝑂𝑂𝑂
𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜

: 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝜃𝜃𝜃𝜃𝑅𝑅𝑅𝑅 = 𝐵𝐵𝐵𝐵´𝑞𝑞𝑞𝑞´
𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖

. 

Con el remplazo: 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝜃𝜃𝜃𝜃𝑅𝑅𝑅𝑅 = 𝐼𝐼𝐼𝐼
𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖

. 

Según la Ley de Snell 𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 = 𝜃𝜃𝜃𝜃𝑅𝑅𝑅𝑅, se tiene: 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝜃𝜃𝜃𝜃𝑅𝑅𝑅𝑅 
𝐶𝐶𝐶𝐶
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁

=
𝐼𝐼𝐼𝐼
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁

 

Con lo cual se tiene: 
𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜
𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖

= 𝑂𝑂𝑂𝑂
𝐼𝐼𝐼𝐼
. 

Fig. 3.23. Rayos del vértice con ángulos incidente y 
reflejado iguales. 
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Así, existe una relación de tamaño entre objeto e imagen y sus 
correspondientes distancias, de modo que el tamaño de la imagen se 
puede calcular como: 

𝐼𝐼𝐼𝐼 = −𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖
𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜

𝐶𝐶𝐶𝐶, 

Donde 𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖
𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜

es el aumento, expresión que puede ser positiva o negativa. 

Al combinar las dos ecuaciones: 

1
𝑁𝑁𝑁𝑁𝑐𝑐𝑐𝑐

+
1
𝑁𝑁𝑁𝑁𝑐𝑐𝑐𝑐

=
1
𝑓𝑓𝑓𝑓

 

  y   

𝑁𝑁𝑁𝑁𝑐𝑐𝑐𝑐
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁

=
−𝐶𝐶𝐶𝐶
𝐼𝐼𝐼𝐼

; 

de donde:  

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 𝑁𝑁𝑁𝑁𝑐𝑐𝑐𝑐 𝑂𝑂𝑂𝑂
𝐼𝐼𝐼𝐼
, 

se tiene: 
−𝐼𝐼𝐼𝐼
𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖𝑂𝑂𝑂𝑂

+ 1
𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖

= 1
𝜋𝜋𝜋𝜋
.  

Entonces:  
1
𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖
�−𝐼𝐼𝐼𝐼
𝑂𝑂𝑂𝑂

+ 1� = 1
𝜋𝜋𝜋𝜋
. 

Por tanto:  

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 𝑓𝑓𝑓𝑓 𝑓−𝐼𝐼𝐼𝐼
𝑂𝑂𝑂𝑂

+ 1�. 

Ejercicios        

1) ¿Qué características debe tener un espejo cóncavo esférico para que un 
objeto que se encuentra a 5m forme una imagen virtual a 2m? 
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Así, existe una relación de tamaño entre objeto e imagen y sus 
correspondientes distancias, de modo que el tamaño de la imagen se 
puede calcular como: 

𝐼𝐼𝐼𝐼 = −𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖
𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜

𝐶𝐶𝐶𝐶, 

Donde 𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖
𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜

es el aumento, expresión que puede ser positiva o negativa. 

Al combinar las dos ecuaciones: 

1
𝑁𝑁𝑁𝑁𝑐𝑐𝑐𝑐

+
1
𝑁𝑁𝑁𝑁𝑐𝑐𝑐𝑐

=
1
𝑓𝑓𝑓𝑓

 

  y   

𝑁𝑁𝑁𝑁𝑐𝑐𝑐𝑐
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁

=
−𝐶𝐶𝐶𝐶
𝐼𝐼𝐼𝐼

; 

de donde:  

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 𝑁𝑁𝑁𝑁𝑐𝑐𝑐𝑐 𝑂𝑂𝑂𝑂
𝐼𝐼𝐼𝐼
, 

se tiene: 
−𝐼𝐼𝐼𝐼
𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖𝑂𝑂𝑂𝑂

+ 1
𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖

= 1
𝜋𝜋𝜋𝜋
.  

Entonces:  
1
𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖
�−𝐼𝐼𝐼𝐼
𝑂𝑂𝑂𝑂

+ 1� = 1
𝜋𝜋𝜋𝜋
. 

Por tanto:  

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 𝑓𝑓𝑓𝑓 𝑓−𝐼𝐼𝐼𝐼
𝑂𝑂𝑂𝑂

+ 1�. 

Ejercicios        

1) ¿Qué características debe tener un espejo cóncavo esférico para que un 
objeto que se encuentra a 5m forme una imagen virtual a 2m? 

 

Solución 

R = ? 

𝑁𝑁𝑁𝑁𝑐𝑐𝑐𝑐 =5m 

𝑁𝑁𝑁𝑁𝑐𝑐𝑐𝑐 =2m 

Al utilizar la ecuación de Descartes, se tiene: 

1
𝑁𝑁𝑁𝑁𝑐𝑐𝑐𝑐

+
1
𝑁𝑁𝑁𝑁𝑐𝑐𝑐𝑐

=
2
𝑅𝑅𝑅𝑅

 

1
5

+
1
2

=
2
𝑅𝑅𝑅𝑅

 

𝑅𝑅𝑅𝑅 = (2)(10)
7

= 2.86𝑚𝑚𝑚𝑚. 

2) Si el objeto es de 0.15m, ¿de qué tamaño es la imagen del ejercicio an-
terior? 

Solución 

𝑁𝑁𝑁𝑁𝑐𝑐𝑐𝑐 = 5m 
𝑁𝑁𝑁𝑁𝑐𝑐𝑐𝑐 = 2m 
𝑅𝑅𝑅𝑅 = 2.86𝑚𝑚𝑚𝑚 
𝐶𝐶𝐶𝐶 = 0.15𝑚𝑚𝑚𝑚 

Como  

𝑁𝑁𝑁𝑁𝑐𝑐𝑐𝑐
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁

=
−𝐶𝐶𝐶𝐶
𝐼𝐼𝐼𝐼

 

𝐼𝐼𝐼𝐼 = −
𝑁𝑁𝑁𝑁𝑐𝑐𝑐𝑐
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁

𝐶𝐶𝐶𝐶 

 

𝐼𝐼𝐼𝐼 = −
2
6

(0.15) 

𝐼𝐼𝐼𝐼 = −0.06𝑀𝑀𝑀𝑀 = −6𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚 

3) ¿Qué características debe tener un espejo cóncavo esférico para que 
produzca una imagen 3 veces mayor que el objeto, que es de 2cm y se 
encuentra a 40cm del espejo? 
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Solución 

𝟏𝟏𝟏𝟏
𝟏𝟏𝟏𝟏𝒅𝒅𝒅𝒅

+
𝟏𝟏𝟏𝟏
𝟏𝟏𝟏𝟏𝒅𝒅𝒅𝒅

=
𝟐𝟐𝟐𝟐
𝑹𝑹𝑹𝑹

 

𝟏𝟏𝟏𝟏𝒅𝒅𝒅𝒅
𝟏𝟏𝟏𝟏𝒅𝒅𝒅𝒅

=
−𝟎𝟎𝟎𝟎
𝑰𝑰𝑰𝑰

. 

      

Al combinar las dos ecuaciones, se tiene: 

1
𝑁𝑁𝑁𝑁𝑐𝑐𝑐𝑐

+ �
−𝐶𝐶𝐶𝐶
𝐼𝐼𝐼𝐼𝑁𝑁𝑁𝑁𝑐𝑐𝑐𝑐

� =
2
𝑅𝑅𝑅𝑅

 

1
𝑁𝑁𝑁𝑁𝑐𝑐𝑐𝑐

�1−
𝐶𝐶𝐶𝐶
𝐼𝐼𝐼𝐼
� =

2
𝑅𝑅𝑅𝑅

 

𝑅𝑅𝑅𝑅 =
2𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁
𝐼𝐼𝐼𝐼 𝐼 𝐶𝐶𝐶𝐶

. 

 

Con el remplazo de los valores, se tiene: 

𝑅𝑅𝑅𝑅 =
2(0.4)(0.02)

3(0.02)− 0.02
 

𝑅𝑅𝑅𝑅 =
0.016
0.040

 

𝑅𝑅𝑅𝑅 = 0.4𝑚𝑚𝑚𝑚 

4) Un objeto de 6cm de altura se encuentra a 60cm de un espejo cóncavo 
cuya longitud focal es de 20cm. Calcule la posición, naturaleza y tamaño 
de la imagen.  

Solución 

A partir de la ecuación: 1
𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜

+ 1
𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖

= 1
𝜋𝜋𝜋𝜋
, se puede calcular 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁: 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋
𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜−𝜋𝜋𝜋𝜋

. 

Al remplazar valores, se tiene:  
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Solución 

𝟏𝟏𝟏𝟏
𝟏𝟏𝟏𝟏𝒅𝒅𝒅𝒅

+
𝟏𝟏𝟏𝟏
𝟏𝟏𝟏𝟏𝒅𝒅𝒅𝒅

=
𝟐𝟐𝟐𝟐
𝑹𝑹𝑹𝑹

 

𝟏𝟏𝟏𝟏𝒅𝒅𝒅𝒅
𝟏𝟏𝟏𝟏𝒅𝒅𝒅𝒅

=
−𝟎𝟎𝟎𝟎
𝑰𝑰𝑰𝑰

. 

      

Al combinar las dos ecuaciones, se tiene: 

1
𝑁𝑁𝑁𝑁𝑐𝑐𝑐𝑐

+ �
−𝐶𝐶𝐶𝐶
𝐼𝐼𝐼𝐼𝑁𝑁𝑁𝑁𝑐𝑐𝑐𝑐

� =
2
𝑅𝑅𝑅𝑅

 

1
𝑁𝑁𝑁𝑁𝑐𝑐𝑐𝑐

�1−
𝐶𝐶𝐶𝐶
𝐼𝐼𝐼𝐼
� =

2
𝑅𝑅𝑅𝑅

 

𝑅𝑅𝑅𝑅 =
2𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁
𝐼𝐼𝐼𝐼 𝐼 𝐶𝐶𝐶𝐶

. 

 

Con el remplazo de los valores, se tiene: 

𝑅𝑅𝑅𝑅 =
2(0.4)(0.02)

3(0.02)− 0.02
 

𝑅𝑅𝑅𝑅 =
0.016
0.040

 

𝑅𝑅𝑅𝑅 = 0.4𝑚𝑚𝑚𝑚 

4) Un objeto de 6cm de altura se encuentra a 60cm de un espejo cóncavo 
cuya longitud focal es de 20cm. Calcule la posición, naturaleza y tamaño 
de la imagen.  

Solución 

A partir de la ecuación: 1
𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜

+ 1
𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖

= 1
𝜋𝜋𝜋𝜋
, se puede calcular 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁: 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋
𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜−𝜋𝜋𝜋𝜋

. 

Al remplazar valores, se tiene:  

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = (20𝑐𝑐𝑐𝑐𝑘𝑘𝑘𝑘)(60𝑐𝑐𝑐𝑐𝑘𝑘𝑘𝑘)
(60𝑐𝑐𝑐𝑐𝑘𝑘𝑘𝑘−20𝑐𝑐𝑐𝑐𝑘𝑘𝑘𝑘)  

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 1200𝑐𝑐𝑐𝑐𝑘𝑘𝑘𝑘2

40𝑐𝑐𝑐𝑐𝑘𝑘𝑘𝑘
  

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 30𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚 

Como la distancia 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 es positiva, entonces la imagen es REAL. 

Para el tamaño, se tiene: 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁

= −
𝐶𝐶𝐶𝐶
𝐼𝐼𝐼𝐼
 

𝐼𝐼𝐼𝐼 = −
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁

𝐶𝐶𝐶𝐶 

𝐼𝐼𝐼𝐼 = −
30𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚
60𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚

(6𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚) 

𝐼𝐼𝐼𝐼 = −3𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚 

El signo menos está indicando que está invertida.  

5) Un objeto de 4cm de alto se encuentra frente a un espejo cóncavo esfé-
rico que genera una imagen virtual 5 veces mayor. Si el objeto está a 50cm 
del espejo, ¿dónde está la imagen? 

Solución 

Como:  

𝟏𝟏𝟏𝟏
𝟏𝟏𝟏𝟏𝒅𝒅𝒅𝒅

+
𝟏𝟏𝟏𝟏
𝟏𝟏𝟏𝟏𝒅𝒅𝒅𝒅

=
𝟏𝟏𝟏𝟏
𝒇𝒇𝒇𝒇

 

𝟏𝟏𝟏𝟏𝒅𝒅𝒅𝒅
𝟏𝟏𝟏𝟏𝒅𝒅𝒅𝒅

= −
𝑶𝑶𝑶𝑶
𝑰𝑰𝑰𝑰

. 

 

El tamaño de la imagen es cinco veces el tamaño del objeto, entonces:  

𝐼𝐼𝐼𝐼 = 5(4𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚) 

𝐼𝐼𝐼𝐼 = 20𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚 
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La distancia de la imagen es:  

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =
−𝐼𝐼𝐼𝐼
𝐶𝐶𝐶𝐶
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = −
(5)(4)

4
(50𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚) 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = −250𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚 

El signo negativo indica que se encuentra detrás del espejo. 

Las características del espejo son: 

1
𝑓𝑓𝑓𝑓

=
1
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁

+
1
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁

 

1
𝑓𝑓𝑓𝑓

=
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁
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𝑓𝑓𝑓𝑓 =
−12500𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚2
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𝑓𝑓𝑓𝑓 = 62.5𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚 

3.4 Espejos convexos       

Estos espejos se presentan cuando la superficie externa del casquete 
esférico es la superficie reflectora. 

En la Fig. 3.24, se pueden ver los 
elementos fundamentales de los 
espejos convexos: 

R. Radio de curvatura  

C. Centro de curvatura  

V. Vértice o punto de intersección 
con el eje de simetría.  

F. Foco óptico. 

Fig. 3.24. Espejo convexo. 
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La distancia de la imagen es:  

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =
−𝐼𝐼𝐼𝐼
𝐶𝐶𝐶𝐶
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = −
(5)(4)

4
(50𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚) 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = −250𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚 

El signo negativo indica que se encuentra detrás del espejo. 

Las características del espejo son: 

1
𝑓𝑓𝑓𝑓

=
1
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁

+
1
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁

 

1
𝑓𝑓𝑓𝑓

=
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁

 

𝑓𝑓𝑓𝑓 =
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁

 

𝑓𝑓𝑓𝑓 =
(50𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚)(−250𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚)

(−250𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚) + (50𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚) 
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−12500𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚2

−200𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚
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AB Abertura del espejo respecto al eje de simetría. 

Al igual que en el espejo cóncavo, el punto medio del radio de curvatura se 
convierte en el foco del espejo; de modo que VF es la distancia focal del espejo. 

La abertura del espejo AB, tal como para los espejos cóncavos, debe ser pequeña 
comparada con el radio de curvatura, así como en los espejos cóncavos.  

Rayos notables del espejo convexo. 

En la Fig. 3.25, se pueden ver estos rayos: 

1) Rayo paralelo: incide de 
forma paralela al eje de sime-
tría, se refleja y cumple con la 
Ley de Snell, respecto a la nor-
mal, que es el mismo radio de 
curvatura. Esto lleva a que la 
prolongación del rayo reflejado 
pasara por el foco. 

2) Rayo Focal. El rayo incidente apunta al foco que se encuentra detrás 
del espejo y solo la prolongación pasa por el foco; la reflexión del rayo es 
paralela al eje de simetría. 

3) Rayo Central: el rayo apunta al centro de curvatura del espejo y se 
refleja por la misma dirección, de tal modo que el punto de intersección 
de la prolongación de los rayos reflejados forma la imagen. 

4) Rayo del vértice: el eje de simetría es el mismo radio de curvatura, lo que 
significa que en el punto de incidencia se cumple la Ley de Snell, con lo cual 
el rayo rebota y constituye un ángulo igual al ángulo de incidencia. 

En la Fig. 3.26, se muestran tres fotografías de los rayos fundamentales: 
1) rayo paralelo, que incide de forma paralela al eje de simetría y se re-
fleja; la prolongación de este rayo reflejado pasa por el foco; 2) rayo que 
incide proyectado a pasar por el centro de curvatura, con lo cual se refleja 
por la misma dirección del incidente; 3) rayo del vértice, que es el rayo 

1 2 

Fig. 3.25. Rayos notables en los espejos 
convexos. 
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que incide en el vértice; el rayo reflejado lo hace con el mismo ángulo de 
incidencia. La luz con la que se logra el rayo es un láser de neón del La-
boratorio de Óptica de la Universidad de Nariño. 

 
Formación de imágenes con espejos convexos. 

En la Fig. 3.27, la imagen del objeto AB se forma detrás del espejo A'B', 
al realizar la prolongación de rayos reflejados tanto paralelo como central; 
por tanto, la imagen es VIRTUAL, de menor tamaño y derecha. 

Para cualquier posición del objeto respecto al vértice de espejo siempre se 
van a formar imágenes virtuales derechas y de menor tamaño. 

Su aplicación es muy amplia, como en los almacenes; sirve para que los 
vigilantes tuvieran mayor visual, sin que se percatase el personal; los espejos 
retrovisores y de cabina de los vehículos tienen este tipo de espejos para ampliar 
el campo visual, y en el caso de algunos telescopios especiales.  

Fig. 3.26. Fotografía de tres rayos notables en espejos convexos, tomada en 
el Laboratorio de Óptica de la Universidad de Nariño. Fuente propia. 

3 

Fig. 3.27. Formación de la imagen de un objeto 
en un espejo convexo. 
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Fig. 3.27. Formación de la imagen de un objeto 
en un espejo convexo. 
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Para los espejos convexos, por tener el foco detrás del espejo, la distancia 
focal es negativa; por tanto, la ecuación de Descartes para este tipo de 
espejos es: 

1
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁

+
1
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁

= −
1
𝑓𝑓𝑓𝑓

 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁

=
𝐶𝐶𝐶𝐶
𝐼𝐼𝐼𝐼
 

• Ejemplos    

1) A 60cm de un espejo convexo de distancia focal de 20cm se coloca un 
objeto. ¿A qué distancia del espejo se forma la imagen? 
 
Solución  

𝟏𝟏𝟏𝟏
𝟏𝟏𝟏𝟏𝒅𝒅𝒅𝒅

+
𝟏𝟏𝟏𝟏
𝟏𝟏𝟏𝟏𝒅𝒅𝒅𝒅

= −
𝟏𝟏𝟏𝟏
𝒇𝒇𝒇𝒇

 

 
𝟏𝟏𝟏𝟏
𝟏𝟏𝟏𝟏𝒅𝒅𝒅𝒅

= −
𝟏𝟏𝟏𝟏
𝒇𝒇𝒇𝒇
−

𝟏𝟏𝟏𝟏
𝟏𝟏𝟏𝟏𝒅𝒅𝒅𝒅

 

Al remplazar valores, se tiene: 

1
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁

= −
1

20
−

1
60

 

 
1
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁

=
−60− 20

1200
 

 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =
1200

80
∴ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = −15𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚 

El signo menos se debe a que está detrás del espejo y es una imagen 
virtual. 

2) ¿Cuál será la altura de la imagen de un objeto de 6cm colocado a 80cm 
de un espejo convexo, cuya distancia focal es:  f = 40cm? 
 
Solución   
A partir de la ecuación de Descartes y la relación de tamaños:   
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1
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁

+
1
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁

= −
1
𝑓𝑓𝑓𝑓

 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁

=
𝐶𝐶𝐶𝐶
𝐼𝐼𝐼𝐼
 

Si se combinan y despeja di, se tiene: 

𝐼𝐼𝐼𝐼 = −
𝑓𝑓𝑓𝑓 𝐶𝐶𝐶𝐶

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑓𝑓𝑓𝑓
 

 

 

Al remplazar los valores, se tiene:  

𝐼𝐼𝐼𝐼 = −
(40𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚)(6𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚)

(80𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚) + (40𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚) 

𝐼𝐼𝐼𝐼 = −2𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚 

Importante. Una vez más es negativo por ser una imagen virtual, 
aunque la imagen es derecha.  

3) ¿A qué distancia de un espejo cóncavo de f = 50cm habrá que colocar un 
objeto de 1cm de altura para que su imagen tuviera una altura de 3cm? 

Solución   

A partir de las ecuaciones de Descartes y la relación de tamaños, se puede 
deducir que:  

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 𝑓𝑓𝑓𝑓 �1 + 𝑂𝑂𝑂𝑂
𝐼𝐼𝐼𝐼
�. 

Al remplazar los valores que se dan en el ejercicio, se tiene: 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 50𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚 �1 +
1
3
� 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 50𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚 �
4
3
� 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 66.67𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚 
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1
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁

+
1
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁

= −
1
𝑓𝑓𝑓𝑓

 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁

=
𝐶𝐶𝐶𝐶
𝐼𝐼𝐼𝐼
 

Si se combinan y despeja di, se tiene: 

𝐼𝐼𝐼𝐼 = −
𝑓𝑓𝑓𝑓 𝐶𝐶𝐶𝐶

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑓𝑓𝑓𝑓
 

 

 

Al remplazar los valores, se tiene:  

𝐼𝐼𝐼𝐼 = −
(40𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚)(6𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚)

(80𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚) + (40𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚) 

𝐼𝐼𝐼𝐼 = −2𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚 

Importante. Una vez más es negativo por ser una imagen virtual, 
aunque la imagen es derecha.  

3) ¿A qué distancia de un espejo cóncavo de f = 50cm habrá que colocar un 
objeto de 1cm de altura para que su imagen tuviera una altura de 3cm? 

Solución   

A partir de las ecuaciones de Descartes y la relación de tamaños, se puede 
deducir que:  

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 𝑓𝑓𝑓𝑓 �1 + 𝑂𝑂𝑂𝑂
𝐼𝐼𝐼𝐼
�. 

Al remplazar los valores que se dan en el ejercicio, se tiene: 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 50𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚 �1 +
1
3
� 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 50𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚 �
4
3
� 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 66.67𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚 

Muy importante: este ejercicio tiene dos soluciones; la primera solución es 
para imagen real y la segunda para imagen virtual. Para ambas soluciones 
habrá que atribuirles un signo a las alturas de las imágenes, así: 

Si la imagen y el objeto están en un semiplano opuestos (uno arriba y otro 
abajo), serán positivas, y negativo, en caso contrario, así: 

1
𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜

+ 1
𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖

= 1
𝜋𝜋𝜋𝜋
   

 𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜
𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖

= −𝑂𝑂𝑂𝑂
𝐼𝐼𝐼𝐼
 

Por último: 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 𝑓𝑓𝑓𝑓 �1 − 𝑂𝑂𝑂𝑂
𝐼𝐼𝐼𝐼
�. 

Al remplazar: 

  𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 50𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚 �1 − 1
3
� 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 33.33𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚 

Como se ve, hay dos soluciones para una imagen real y una imagen 
virtual, ambas de alturas iguales y simétricas respecto al foco. 

3.5 Ecuación de Newton para los espejos esféricos  

En la Fig. 3.27, se puede apreciar que las distancias del objeto y de las 
imágenes se establecen respecto al foco del espejo cóncavo, mientras que 

Fig. 3.28. Variables de un espejo cóncavo para encontrar la 
ecuación de espejos según Newton. 
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la ecuación de Descartes se establece respecto al vértice del espejo; esto 
es, según Descartes:  

1
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁

+
1
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁

=
1
𝑓𝑓𝑓𝑓

 . 

Según la Fig. 3.28, se tiene que:  

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁´ + 𝑓𝑓𝑓𝑓;  𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁´ + 𝑓𝑓𝑓𝑓 

Y al remplazar este resultado en la ecuación anterior:  

1
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁´ + 𝑓𝑓𝑓𝑓

+
1

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁′ + 𝑓𝑓𝑓𝑓
=

1
𝑓𝑓𝑓𝑓

 

Resolviendo la ecuación da:  

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁´ + 𝑓𝑓𝑓𝑓 + 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁´ + 𝑓𝑓𝑓𝑓
(𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁´ + 𝑓𝑓𝑓𝑓)(𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁´ + 𝑓𝑓𝑓𝑓) =

1
𝑓𝑓𝑓𝑓

 

𝑓𝑓𝑓𝑓(𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁´ + 𝑓𝑓𝑓𝑓 + 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁´ + 𝑓𝑓𝑓𝑓) = (𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁´ + 𝑓𝑓𝑓𝑓)(𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁´ + 𝑓𝑓𝑓𝑓) 
 
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁´𝑓𝑓𝑓𝑓 + 𝑓𝑓𝑓𝑓2 + 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁´𝑓𝑓𝑓𝑓 + 𝑓𝑓𝑓𝑓2 = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁´𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁´ + 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁´𝑓𝑓𝑓𝑓 + 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁´𝑓𝑓𝑓𝑓 + 𝑓𝑓𝑓𝑓2 
 
2𝑓𝑓𝑓𝑓2 = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁´𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁´ + 𝑓𝑓𝑓𝑓2 

Es decir: 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁´𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁´ = 𝑓𝑓𝑓𝑓2 

En muchos textos, se la puede encontrar como:  

𝑥𝑥𝑥𝑥 𝛥𝛥𝛥𝛥 = 𝑓𝑓𝑓𝑓2, 

donde do y di se remplazan por las variables x y y.  

• Ejercicios 

1) ¿A qué distancia se debe colocar el observador delante de un espejo 
cóncavo para ver su imagen aumentada y derecha a 2,5 veces? 

2) ¿Cuál es el aumento producido por el espejo del numeral anterior si  
f = 12cm, cuando el objeto está a 15cm? 
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la ecuación de Descartes se establece respecto al vértice del espejo; esto 
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1
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁

+
1
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁

=
1
𝑓𝑓𝑓𝑓

 . 
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+
1

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁′ + 𝑓𝑓𝑓𝑓
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1
𝑓𝑓𝑓𝑓
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3.6 Aberración por esfericidad            

También denominada aberración esférica, se presenta en los espejos esféricos; 
la dificultad se presenta cuando la abertura del espejo respecto al radio de 
curvatura es grande; los rayos, al reflejarse, no pasan por un solo punto focal, 

sino que hay una serie de puntos 
focales en el eje axial y el corte de los 
rayos reflejados que tienden a pasar 
por el foco, lo hacen en una 
superficie, como lo que se ve en la 
Fig. 3.29 (en la Figura se ve una 
línea S, por estar el dibujo en dos 
dimensiones; de estar en tres 
dimensiones, se convierte en una 
superficie), de tal modo que la 

imagen se deforma y no aparece nítida; así, cuando la abertura del espejo es 
grande, de modo que aceptase rayos de gran inclinación, la ecuación de 
Descartes no es una adecuada aproximación para estos casos, pues no hay una 
imagen nítida; si se trata de un objeto puntiforme que genera una imagen 
igualmente puntiforme, en este caso hay  una serie de infinitos puntos que 
forman una coma, por lo cual la aberración recibe dicho nombre. 

Los rayos reflejados provenientes de rayos paralelos cercanos al eje de 
simetría cortan al eje en un rango qq'; los demás se cortan por fuera del 
eje de simetría, lo que genera una superficie qs, a la que se la denomina 
CÁUSTICA por reflexión. 

La aberración como tal no se puede eliminar, pero se puede diseñar 
convenientemente la superficie y eliminar para ciertas posiciones 
denominadas ANASTIGMÁTICAS; por ejemplo, para un objeto puntual 
colocado en el centro del espejo, la imagen es exactamente un punto y está 
en el centro del espejo; por tanto, no tiene astigmatismo, es 
anastigmática; los espejos parabólicos no producen aberración con los 

Fig. 3.29. Aberración de los rayos reflejados 
en espejos cóncavos esféricos. 
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rayos paralelos, razón por lo cual en los telescopios reflectores 
profesionales se utilizan espejos parabólicos tanto para espectro visible 
como para los no visibles. 

3.7 Espejos elípticos.       

En la Fig. 3.30, se tiene una línea 
con la que se  forma el espejo 
elíptico; en su interior hay dos 
focos f1 y f2, que son precisamente 
los puntos con los que se puede 
trazar la curva; al utilizar  una 
cuerda cerrada y colocar un par 
de puntillas justamente en los 
focos, se deja deslizar un lapicero 
por la cuerda templada y se 
obtiene una elipse, como se 
representa en la Fig. 3.31; ahora 
bien, si esta elipse se la traza en 
icopor de unos 2 cm de espesor y 
se hace un corte muy bien 
definido, se puede obtener una 
superficie elíptica; a esta 
superficie se le colocan pequeños 
espejos de 2 x 2cm fijados con 
pegamento para icopor; así se 
obtiene un espejo elíptico, como el 
representado en la Fig. 3.31. 

3.8 Espejo parabólico 

Se trata de un casquete resultado de la revolución de una parábola; es 
decir, un paraboloide; en este caso, los rayos que inciden de forma 
paralela al eje de simetría se reflejan por un solo punto, que corresponde 
al foco de la parábola, con lo cual estos espejos no tienen aberración por 
esfericidad y se utilizan mucho en telescopios y en aparatos ópticos de 
precisión, en los que se utilicen espejos cóncavos de superficie 

 
f1 f2

Elipse

Fig. 3.30. Espejo elíptico cerrado.  

Fig. 3.31. Espejo elíptico elaborado por 
estudiantes de Física, en la asignatura de 
Óptica.  
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paraboloide, superficie que resulta de la revolución de la ecuación de una 
parábola: 𝒚𝒚𝒚𝒚 = 𝒂𝒂𝒂𝒂𝟏𝟏𝟏𝟏𝟐𝟐𝟐𝟐 + 𝒃𝒃𝒃𝒃𝟏𝟏𝟏𝟏 + 𝟏𝟏𝟏𝟏. 

 
En la Fig. 3.32, se puede apreciar la 
principal característica, relacionada 
con que todos los rayos paralelos que 
inciden en el espejo se reflejan por el 
foco, con cero aberraciones por 
esfericidad, por lo que logran reflejarse 
todos por el punto focal. Ahora bien, si 
a esta línea se la lleva a girar sobre el 
eje axial, se genera una superficie 
parabólica, que puede ser reflectiva 
tanto en la parte cóncava como en la 
parte convexa.  
 

En la Fig. 3.33, se muestra una forma práctica para trazar una curva 
parabólica, así: sobre el eje axial se trazan dos rectas que forman un 
ángulo entre ellas, de acuerdo a la abertura del espejo que se desee; luego, 
se establecen divisiones entre el vértice y el punto de abertura iguales, 
por las cuales se trazan círculos o simplemente se muestran las 
divisiones; si desde los extremos de las rectas de abertura se trazan rectas 
hasta los puntos de intersección de los círculos con las rectas AC y BC, 
como se ve en la Fig. 3.32, van a resultar tantos puntos de intersección 
como líneas se hubieran trazado; estos puntos generan la línea de color 
rojo de la Fig. 3.33.  

Ahora bien, si a esta curva se la lleva a girar sobre el eje de simetría, genera una 
superficie parabólica.  En la Fig. 3.33, se tiene un espejo parabólico formado por 
pequeños espejos de 2 x 2cm pegados a una lámina de icopor de 2 cm. 

 
F

A

B

Fig. 3.32. Superficie paraboloide.  
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3.9 Ecuación de los espejos para amplitudes grandes. 

Cuando un espejo esférico tiene una gran abertura y puede reflejar rayos 
muy inclinados, la ecuación de Descartes deja de ser útil debido a que la 
aproximación de los ángulos 𝛼𝛼𝛼𝛼,𝛽𝛽𝛽𝛽, 𝛾𝛾𝛾𝛾debe remplazarse por 𝐶𝐶𝐶𝐶𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇, 𝐶𝐶𝐶𝐶𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇, 𝐶𝐶𝐶𝐶𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇; 
de modo que se puede obtener una nueva aproximación para estos casos. 

A partir de la Fig. 3.35, se tienen los triángulos PCO y PIC.  

Sobre el primero, se puede decir que: 
𝐶𝐶𝐶𝐶𝑂𝑂𝑂𝑂
𝑃𝑃𝑃𝑃𝑂𝑂𝑂𝑂

= 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

  

 

o Ley de los Senos. 

Como 𝛿𝛿𝛿𝛿 = 𝜋𝜋𝜋𝜋 𝜋 𝜋𝜋𝜋𝜋, si se remplaza, se tiene: 
𝐶𝐶𝐶𝐶𝑂𝑂𝑂𝑂
𝑃𝑃𝑃𝑃𝑂𝑂𝑂𝑂

= 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋)  

Ahora bien, como: 

𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝑛𝑛𝑛𝑛(𝜋𝜋𝜋𝜋 𝜋 𝜋𝜋𝜋𝜋) = 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋 − 𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝐶𝐶𝐶𝐶𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛, 

 A

B

C

S

Fig. 3.33. Sistema para trazar 
una parábola. 

Fig. 3.34. Espejo parabólico elaborado por 
estudiantes de Física, en Óptica. Fuente propia. 
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Fig. 3.34. Espejo parabólico elaborado por 
estudiantes de Física, en Óptica. Fuente propia. 

al remplazar, se tiene:  
𝐶𝐶𝐶𝐶𝑂𝑂𝑂𝑂
𝑃𝑃𝑃𝑃𝑂𝑂𝑂𝑂

= 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝛽𝛽𝛽𝛽

 (3.8). 

Por otra parte, sobre el triángulo PIC, se puede decir que:  
𝐼𝐼𝐼𝐼𝐶𝐶𝐶𝐶
𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼

= 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝜃𝜃𝜃𝜃𝑅𝑅𝑅𝑅
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝛽𝛽𝛽𝛽

       (3.9). 

Como 𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 = 𝜃𝜃𝜃𝜃𝑅𝑅𝑅𝑅, entonces, al 
combinar la ecuación (3.8) y (3.9), 
queda: 

𝐶𝐶𝐶𝐶𝑂𝑂𝑂𝑂
𝑃𝑃𝑃𝑃𝑂𝑂𝑂𝑂

= 𝐼𝐼𝐼𝐼𝐶𝐶𝐶𝐶
𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼

        (3.10). 

Ahora bien, si: 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑅𝑅𝑅𝑅  y  
𝐼𝐼𝐼𝐼𝐶𝐶𝐶𝐶 = 𝑅𝑅𝑅𝑅 − 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁,  

al remplazar, se tiene: 
𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜−𝑅𝑅𝑅𝑅
𝑃𝑃𝑃𝑃𝑂𝑂𝑂𝑂

= 𝑅𝑅𝑅𝑅−𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖
𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼

 .  

Al factorizar 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁,𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁,𝑅𝑅𝑅𝑅, se tiene: 
𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜
𝑃𝑃𝑃𝑃𝑂𝑂𝑂𝑂
�1 − 𝑅𝑅𝑅𝑅

𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜
� = 𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖

𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼
�𝑅𝑅𝑅𝑅
𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖
− 1� .  

Ahora se factoriza R y se organiza: 

�1
𝑅𝑅𝑅𝑅
− 1

𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜
� 𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜
𝑃𝑃𝑃𝑃𝑂𝑂𝑂𝑂

= � 1
𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖
− 1

𝑅𝑅𝑅𝑅
� 𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖
𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼

       (3.11). 

Cuando 𝛼𝛼𝛼𝛼,𝛽𝛽𝛽𝛽, 𝛾𝛾𝛾𝛾 son pequeños, permiten establecer una aproximación; esto es: 
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 ≅ 𝑃𝑃𝑃𝑃𝐶𝐶𝐶𝐶 y 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 ≅ 𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼; entonces, la ecuación 3.11 se podría escribir como:  

1
𝑅𝑅𝑅𝑅
− 1

𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜
= 1

𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖
− 1

𝑅𝑅𝑅𝑅
. 

Al organizar los términos, 

− 1
𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜
− 1

𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖
= −2 1

𝑅𝑅𝑅𝑅
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Fig. 3.35. Parámetros para encontrar la 
ecuación de un espejo con abertura grande 
respecto al radio de curvatura. 
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Curso de óptica

o simplemente:  
1
𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜

+ 1
𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖

= 2
𝑅𝑅𝑅𝑅
  

Esta expresión es la ya conocida ecuación de Descartes. 

Pero, para casos en los cuales no se permite establecer estas 
aproximaciones, entonces se deberá calcular 𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜

𝑃𝑃𝑃𝑃𝑂𝑂𝑂𝑂
; de modo que, a partir del 

triángulo PCO, se puede utilizar el Teorema del Coseno; esto es: 

𝑃𝑃𝑃𝑃𝐶𝐶𝐶𝐶2 = 𝑅𝑅𝑅𝑅2 + 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶2 + 2𝑅𝑅𝑅𝑅𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶. 

Como CO es 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑅𝑅𝑅𝑅, entonces: 

𝑃𝑃𝑃𝑃𝐶𝐶𝐶𝐶2 = 𝑅𝑅𝑅𝑅2 + (𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑅𝑅𝑅𝑅)2 + 2𝑅𝑅𝑅𝑅(𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑅𝑅𝑅𝑅)𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐. 

Al resolver el binomio de esta ecuación, se tiene: 

𝑃𝑃𝑃𝑃𝐶𝐶𝐶𝐶2 = 𝑅𝑅𝑅𝑅2 + 𝑁𝑁𝑁𝑁𝑐𝑐𝑐𝑐2 + 𝑅𝑅𝑅𝑅2 − 2𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 + 2𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 − 2𝑅𝑅𝑅𝑅2𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 
 
𝑃𝑃𝑃𝑃𝐶𝐶𝐶𝐶2 = 2𝑅𝑅𝑅𝑅2 + 𝑁𝑁𝑁𝑁𝑐𝑐𝑐𝑐2 − 2𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(1 − 𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) − 2𝑅𝑅𝑅𝑅2𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 
 
𝑃𝑃𝑃𝑃𝐶𝐶𝐶𝐶2 = 2𝑅𝑅𝑅𝑅2(1− 𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) + 𝑁𝑁𝑁𝑁𝑐𝑐𝑐𝑐2 − 2𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(1 − 𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) 
 
𝑃𝑃𝑃𝑃𝐶𝐶𝐶𝐶2 = (2𝑅𝑅𝑅𝑅2 − 2𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁)(1− 𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) + 𝑁𝑁𝑁𝑁𝑐𝑐𝑐𝑐2 
 
𝑃𝑃𝑃𝑃𝐶𝐶𝐶𝐶2 = 2𝑅𝑅𝑅𝑅(𝑅𝑅𝑅𝑅 − 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁)(1 − 𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) + 𝑁𝑁𝑁𝑁𝑐𝑐𝑐𝑐2 
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Fig. 3.36 Ángulos respecto al eje de simetría.  
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Capítulo 3. Ley de Snell para la reflexión

o simplemente:  
1
𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜

+ 1
𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖

= 2
𝑅𝑅𝑅𝑅
  

Esta expresión es la ya conocida ecuación de Descartes. 

Pero, para casos en los cuales no se permite establecer estas 
aproximaciones, entonces se deberá calcular 𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜

𝑃𝑃𝑃𝑃𝑂𝑂𝑂𝑂
; de modo que, a partir del 

triángulo PCO, se puede utilizar el Teorema del Coseno; esto es: 

𝑃𝑃𝑃𝑃𝐶𝐶𝐶𝐶2 = 𝑅𝑅𝑅𝑅2 + 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶2 + 2𝑅𝑅𝑅𝑅𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶. 

Como CO es 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑅𝑅𝑅𝑅, entonces: 

𝑃𝑃𝑃𝑃𝐶𝐶𝐶𝐶2 = 𝑅𝑅𝑅𝑅2 + (𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑅𝑅𝑅𝑅)2 + 2𝑅𝑅𝑅𝑅(𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑅𝑅𝑅𝑅)𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐. 

Al resolver el binomio de esta ecuación, se tiene: 

𝑃𝑃𝑃𝑃𝐶𝐶𝐶𝐶2 = 𝑅𝑅𝑅𝑅2 + 𝑁𝑁𝑁𝑁𝑐𝑐𝑐𝑐2 + 𝑅𝑅𝑅𝑅2 − 2𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 + 2𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 − 2𝑅𝑅𝑅𝑅2𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 
 
𝑃𝑃𝑃𝑃𝐶𝐶𝐶𝐶2 = 2𝑅𝑅𝑅𝑅2 + 𝑁𝑁𝑁𝑁𝑐𝑐𝑐𝑐2 − 2𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(1 − 𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) − 2𝑅𝑅𝑅𝑅2𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 
 
𝑃𝑃𝑃𝑃𝐶𝐶𝐶𝐶2 = 2𝑅𝑅𝑅𝑅2(1− 𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) + 𝑁𝑁𝑁𝑁𝑐𝑐𝑐𝑐2 − 2𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(1 − 𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) 
 
𝑃𝑃𝑃𝑃𝐶𝐶𝐶𝐶2 = (2𝑅𝑅𝑅𝑅2 − 2𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁)(1− 𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) + 𝑁𝑁𝑁𝑁𝑐𝑐𝑐𝑐2 
 
𝑃𝑃𝑃𝑃𝐶𝐶𝐶𝐶2 = 2𝑅𝑅𝑅𝑅(𝑅𝑅𝑅𝑅 − 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁)(1 − 𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) + 𝑁𝑁𝑁𝑁𝑐𝑐𝑐𝑐2 
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Fig. 3.36 Ángulos respecto al eje de simetría.  

También, se puede escribir como:  

𝑃𝑃𝑃𝑃𝐶𝐶𝐶𝐶2 = 𝑁𝑁𝑁𝑁𝑐𝑐𝑐𝑐2 + 2𝑅𝑅𝑅𝑅(𝑅𝑅𝑅𝑅 − 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁)(1 − 𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)  
Ó 

𝑃𝑃𝑃𝑃𝐶𝐶𝐶𝐶2 = 𝑁𝑁𝑁𝑁𝑐𝑐𝑐𝑐2 − 2𝑅𝑅𝑅𝑅(𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑅𝑅𝑅𝑅)(1− 𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)  

Ahora bien, como 1 − 𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 2𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝑛𝑛𝑛𝑛2 𝛽𝛽𝛽𝛽
2
, entonces al remplazar, queda: 

𝑃𝑃𝑃𝑃𝐶𝐶𝐶𝐶2 = 𝑁𝑁𝑁𝑁𝑐𝑐𝑐𝑐2 − 2𝑅𝑅𝑅𝑅(𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑅𝑅𝑅𝑅)2𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝑛𝑛𝑛𝑛2 𝛽𝛽𝛽𝛽
2
  

𝑃𝑃𝑃𝑃𝐶𝐶𝐶𝐶2 = 𝑁𝑁𝑁𝑁𝑐𝑐𝑐𝑐2 − 4𝑅𝑅𝑅𝑅(𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑅𝑅𝑅𝑅)𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝑛𝑛𝑛𝑛2 𝛽𝛽𝛽𝛽
2
  

Al aproximar, como 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = ℎ
𝑅𝑅𝑅𝑅
⇒ 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝛽𝛽𝛽𝛽

2
≅ 𝛽𝛽𝛽𝛽

2
, es decir: 𝛽𝛽𝛽𝛽

2
= ℎ

2𝑅𝑅𝑅𝑅
,   

Entonces:  

𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝑛𝑛𝑛𝑛2 𝛽𝛽𝛽𝛽
2
≅ � ℎ

2𝑅𝑅𝑅𝑅
�
2

= ℎ2

4𝑅𝑅𝑅𝑅2
. 

Al remplazar, se tiene: 

𝑃𝑃𝑃𝑃𝐶𝐶𝐶𝐶2 = 𝑁𝑁𝑁𝑁𝑐𝑐𝑐𝑐2 − 4𝑅𝑅𝑅𝑅(𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑅𝑅𝑅𝑅) ℎ2

4𝑅𝑅𝑅𝑅2
  

𝑃𝑃𝑃𝑃𝐶𝐶𝐶𝐶2 = 𝑁𝑁𝑁𝑁𝑐𝑐𝑐𝑐2 − ℎ2

𝑅𝑅𝑅𝑅
(𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑅𝑅𝑅𝑅)  

 
si se factorizan𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 y 𝑅𝑅𝑅𝑅: 

𝑃𝑃𝑃𝑃𝐶𝐶𝐶𝐶2 = 𝑁𝑁𝑁𝑁𝑐𝑐𝑐𝑐2 − ℎ2𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜
𝑅𝑅𝑅𝑅

�1 − 𝑅𝑅𝑅𝑅
𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜
�  

Ó 

𝑃𝑃𝑃𝑃𝐶𝐶𝐶𝐶2 = 𝑁𝑁𝑁𝑁𝑐𝑐𝑐𝑐2 − ℎ2𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
𝑅𝑅𝑅𝑅

�1
𝑅𝑅𝑅𝑅
− 1

𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜
�  

Al factorizar do: 

𝑃𝑃𝑃𝑃𝐶𝐶𝐶𝐶2 = 𝑁𝑁𝑁𝑁𝑐𝑐𝑐𝑐2 �1− ℎ2

𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜
�1
𝑅𝑅𝑅𝑅
− 1

𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜
��. 

Como se busca 𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜
𝑃𝑃𝑃𝑃𝑂𝑂𝑂𝑂

, entonces: 

𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜
𝑃𝑃𝑃𝑃𝑂𝑂𝑂𝑂

= �1− ℎ2

𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜
�1
𝑅𝑅𝑅𝑅
− 1

𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜
��
−1 2� . 
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Ahora bien, como (1 − 𝑥𝑥𝑥𝑥)−
1
2 ≈ 1 + 𝑚𝑚𝑚𝑚

2
, 

entonces: 

𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜
𝑃𝑃𝑃𝑃𝑂𝑂𝑂𝑂

= 1 + ℎ2

2𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜
�1
𝑅𝑅𝑅𝑅
− 1

𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜
�       (3.12). 

De igual forma, se puede operar para deducir: 𝑑𝑑𝑑𝑑𝐼𝐼𝐼𝐼
𝑃𝑃𝑃𝑃𝐶𝐶𝐶𝐶

. Entonces. 

𝑑𝑑𝑑𝑑𝐼𝐼𝐼𝐼
𝑃𝑃𝑃𝑃𝐶𝐶𝐶𝐶

= 1 + ℎ2

2𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖
�1
𝑅𝑅𝑅𝑅
− 1

𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖
�       (3.13). 

 

Al remplazar (3.11) y (3.12) en (3.13), se tiene: 

�1
𝑅𝑅𝑅𝑅
− 1

𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜
� 𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜
𝑃𝑃𝑃𝑃𝑂𝑂𝑂𝑂

= � 1
𝑑𝑑𝑑𝑑𝐼𝐼𝐼𝐼
− 1

𝑅𝑅𝑅𝑅
� 𝑑𝑑𝑑𝑑𝐼𝐼𝐼𝐼
𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼

  

�1
𝑅𝑅𝑅𝑅
− 1

𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜
� �1 + ℎ2

2𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜
�1
𝑅𝑅𝑅𝑅
− 1

𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜
�� = � 1

𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖
− 1

𝑅𝑅𝑅𝑅
� �1 + ℎ2

2𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖
�1
𝑅𝑅𝑅𝑅
− 1

𝑑𝑑𝑑𝑑𝐼𝐼𝐼𝐼
��  

Al operar, se tiene: 

�1
𝑅𝑅𝑅𝑅
− 1

𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜
� + ℎ2

2𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜
�1
𝑅𝑅𝑅𝑅
− 1

𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜
� �1

𝑅𝑅𝑅𝑅
− 1

𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜
� = � 1

𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖
− 1

𝑅𝑅𝑅𝑅
� + ℎ2

2𝑑𝑑𝑑𝑑𝐼𝐼𝐼𝐼
� 1
𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖
− 1

𝑅𝑅𝑅𝑅
� �1

𝑅𝑅𝑅𝑅
− 1

𝑑𝑑𝑑𝑑𝐼𝐼𝐼𝐼
�  

 
1
𝑅𝑅𝑅𝑅
− 1

𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜
− 1

𝑑𝑑𝑑𝑑𝐼𝐼𝐼𝐼
+ 1

𝑅𝑅𝑅𝑅
= −ℎ2

2𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜
�1
𝑅𝑅𝑅𝑅
− 1

𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜
�
2
− ℎ2

2𝑑𝑑𝑑𝑑𝐼𝐼𝐼𝐼
�1
𝑅𝑅𝑅𝑅
− 1

𝑑𝑑𝑑𝑑𝐼𝐼𝐼𝐼
�
2
  

 

− 1
𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜
− 1

𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖
+ 2

𝑅𝑅𝑅𝑅
= −ℎ2

2
� 1
𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜
�1
𝑅𝑅𝑅𝑅
− 1

𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜
�
2
− 1

𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖
�1
𝑅𝑅𝑅𝑅
− 1

𝑑𝑑𝑑𝑑𝐼𝐼𝐼𝐼
�
2
�  

Para eliminar di, se puede utilizar 1
𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜

+ 1
𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖

= 2
𝑅𝑅𝑅𝑅
,  

De tal modo que: 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 𝑅𝑅𝑅𝑅𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
2𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜−𝑅𝑅𝑅𝑅

.  

Al remplazar, se tiene: 

1
𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜

+ 1
𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖

= 2
𝑅𝑅𝑅𝑅

+ ℎ2

𝑅𝑅𝑅𝑅
�1
𝑅𝑅𝑅𝑅
− 1

𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜
�
2
       (3.14). 

La inclinación de los rayos determina la distancia h y cuanto mayor es h 
menor es do. 
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Ahora bien, como (1 − 𝑥𝑥𝑥𝑥)−
1
2 ≈ 1 + 𝑚𝑚𝑚𝑚

2
, 

entonces: 

𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜
𝑃𝑃𝑃𝑃𝑂𝑂𝑂𝑂

= 1 + ℎ2

2𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜
�1
𝑅𝑅𝑅𝑅
− 1

𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜
�       (3.12). 

De igual forma, se puede operar para deducir: 𝑑𝑑𝑑𝑑𝐼𝐼𝐼𝐼
𝑃𝑃𝑃𝑃𝐶𝐶𝐶𝐶

. Entonces. 

𝑑𝑑𝑑𝑑𝐼𝐼𝐼𝐼
𝑃𝑃𝑃𝑃𝐶𝐶𝐶𝐶

= 1 + ℎ2

2𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖
�1
𝑅𝑅𝑅𝑅
− 1

𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖
�       (3.13). 

 

Al remplazar (3.11) y (3.12) en (3.13), se tiene: 

�1
𝑅𝑅𝑅𝑅
− 1

𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜
� 𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜
𝑃𝑃𝑃𝑃𝑂𝑂𝑂𝑂

= � 1
𝑑𝑑𝑑𝑑𝐼𝐼𝐼𝐼
− 1

𝑅𝑅𝑅𝑅
� 𝑑𝑑𝑑𝑑𝐼𝐼𝐼𝐼
𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼

  

�1
𝑅𝑅𝑅𝑅
− 1

𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜
� �1 + ℎ2

2𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜
�1
𝑅𝑅𝑅𝑅
− 1

𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜
�� = � 1

𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖
− 1

𝑅𝑅𝑅𝑅
� �1 + ℎ2

2𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖
�1
𝑅𝑅𝑅𝑅
− 1

𝑑𝑑𝑑𝑑𝐼𝐼𝐼𝐼
��  

Al operar, se tiene: 

�1
𝑅𝑅𝑅𝑅
− 1

𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜
� + ℎ2

2𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜
�1
𝑅𝑅𝑅𝑅
− 1

𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜
� �1

𝑅𝑅𝑅𝑅
− 1

𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜
� = � 1

𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖
− 1

𝑅𝑅𝑅𝑅
� + ℎ2

2𝑑𝑑𝑑𝑑𝐼𝐼𝐼𝐼
� 1
𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖
− 1

𝑅𝑅𝑅𝑅
� �1

𝑅𝑅𝑅𝑅
− 1

𝑑𝑑𝑑𝑑𝐼𝐼𝐼𝐼
�  

 
1
𝑅𝑅𝑅𝑅
− 1

𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜
− 1

𝑑𝑑𝑑𝑑𝐼𝐼𝐼𝐼
+ 1

𝑅𝑅𝑅𝑅
= −ℎ2

2𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜
�1
𝑅𝑅𝑅𝑅
− 1

𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜
�
2
− ℎ2

2𝑑𝑑𝑑𝑑𝐼𝐼𝐼𝐼
�1
𝑅𝑅𝑅𝑅
− 1

𝑑𝑑𝑑𝑑𝐼𝐼𝐼𝐼
�
2
  

 

− 1
𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜
− 1

𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖
+ 2

𝑅𝑅𝑅𝑅
= −ℎ2

2
� 1
𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜
�1
𝑅𝑅𝑅𝑅
− 1

𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜
�
2
− 1

𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖
�1
𝑅𝑅𝑅𝑅
− 1

𝑑𝑑𝑑𝑑𝐼𝐼𝐼𝐼
�
2
�  

Para eliminar di, se puede utilizar 1
𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜

+ 1
𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖

= 2
𝑅𝑅𝑅𝑅
,  

De tal modo que: 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 𝑅𝑅𝑅𝑅𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
2𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜−𝑅𝑅𝑅𝑅

.  

Al remplazar, se tiene: 

1
𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜

+ 1
𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖

= 2
𝑅𝑅𝑅𝑅

+ ℎ2

𝑅𝑅𝑅𝑅
�1
𝑅𝑅𝑅𝑅
− 1

𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜
�
2
       (3.14). 

La inclinación de los rayos determina la distancia h y cuanto mayor es h 
menor es do. 

En consecuencia, todos los rayos que salen del punto P sobre el eje 
principal NO se interceptan en un mismo punto, sino sobre un segmento 
QQ' (aberración por esfericidad). 

• Ejercicio 

En un espejo cóncavo de radio R = 0.6m se coloca un objeto a 1 m. 
Encontrar la imagen más próxima y la más lejana producida por el espejo, 
si se supone que la abertura es de 20°.  

Solución 

Para rayos paraaxiales: R = 0.6m y do = 1m; por tanto, al remplazar en 
1
𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜

+ 1
𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖

= 2
𝑅𝑅𝑅𝑅
, se tiene: 

+ 1
𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖

= 2
𝑅𝑅𝑅𝑅
− 1

𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜
  

1
𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖

= −1
𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜

+ 2
𝑅𝑅𝑅𝑅
  

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
−𝑅𝑅𝑅𝑅+2𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜

  

Al remplazar valores del ejercicio, se tiene: 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = (1𝑘𝑘𝑘𝑘)(0.6𝑘𝑘𝑘𝑘)
(0.6𝑘𝑘𝑘𝑘)−2(1𝑘𝑘𝑘𝑘)  

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 0.429𝑚𝑚𝑚𝑚 

Los rayos de máxima inclinación producen una imagen que se obtiene al 
emplear la ecuación por aberturas grandes: 

1
𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜

+ 1
𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖

= 2
𝑅𝑅𝑅𝑅

+ ℎ2

𝑅𝑅𝑅𝑅
�1
𝑅𝑅𝑅𝑅
− 1

𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜
�
2
. 

Como ℎ = 𝑅𝑅𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆y como la abertura es de 20°, entonces: 𝛽𝛽𝛽𝛽
2

= 10°.  

Luego: 

ℎ = 𝑅𝑅𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆10° 
ℎ = 0.6𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶10° 
ℎ = 0.104 
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ℎ2 = 0.011 

De modo que: 

1
1.0

+ 1
𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖

= 2
0.6

+ 0.1042

𝑅𝑅𝑅𝑅
� 1
0.6
− 1

1.00
�
2
  

1
1.0

+ 1
𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖

= 2
0.6

+ 0.1042

0.6
(0.444)  

1
1.0

+ 1
𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖

= 2
0.6

+ 0.008  
1
𝑑𝑑𝑑𝑑𝐼𝐼𝐼𝐼

= 3.341− 1  
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 0.427  

Así que las imágenes se forman en un segmento de: 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁´ = 0.429− 0.427 
𝛥𝛥𝛥𝛥𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 0.002𝑚𝑚𝑚𝑚 
𝛥𝛥𝛥𝛥𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 2𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 

A lo largo del eje principal. 
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Capítulo 4 

Leyes de Snell para la Refracción

 
________________________ 

 

Arco iris, en la vereda La Merced, Corregimiento de Morasurco, municipio de Pasto. Fuente propia.
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4 Refracción 
Fenómenos como el arco iris, el halo de la luna o del sol, el efecto de ver 
desplazada una cuchara en un vaso con agua, el fondo de una piscina, 
parecen no ser tan profundos; al observar un pececito dentro de una 
pecera esférica y nuestros propios ojos, entre otros, tienen algo en común, 
que se denomina refracción.  

Así que por ahora se podría decir que la refracción de la luz se presenta 
cuando un rayo de luz pasa de un medio translúcido a otro, que se 
encuentran separados por una superficie de la que forman parte los dos 
medios. Los medios translúcidos tienen características ópticas diferentes, 
como es el caso aire-vidrio, vidrio-agua o aire-agua. 

Esto presupone que la velocidad de la luz, al viajar en los medios, no es 
igual, pues depende de naturaleza del medio; de modo que dos materiales 
translucidos permiten que la luz se propagase con velocidades diferentes, 
con lo que la relación entre las velocidades de propagación define una 
característica relativa, así: 

𝑣𝑣𝑣𝑣1
𝑣𝑣𝑣𝑣2

= 𝑛𝑛𝑛𝑛𝑟𝑟𝑟𝑟       (4.1). 

Al ser 𝑣𝑣𝑣𝑣1 y 𝑣𝑣𝑣𝑣2las velocidades de la luz en cada medio, al cociente de esta 
relación se lo denomina Índice de refracción relativa, un número 
adimensional que se denota como nr; cuando se mide respecto a la 
velocidad de la luz en el vacío, se tiene un índice de refracción absoluto; 
esto es: 𝑐𝑐𝑐𝑐

𝑣𝑣𝑣𝑣
= 𝑛𝑛𝑛𝑛. Como la velocidad de la luz en el vacío es: 300.000 Km/s, 

entonces, en cualquier otro medio será menor, razón por la cual 𝑛𝑛𝑛𝑛 𝑛 1. 

A partir de la expresión 𝑛𝑛𝑛𝑛𝑜𝑜𝑜𝑜 = 𝑐𝑐𝑐𝑐
𝑣𝑣𝑣𝑣
, el índice de refracción relativo se podría 

escribir como: 

𝑛𝑛𝑛𝑛𝑟𝑟𝑟𝑟 =
𝐶𝐶𝐶𝐶
𝑛𝑛𝑛𝑛1
𝐶𝐶𝐶𝐶
𝑛𝑛𝑛𝑛2

= 𝑆𝑆𝑆𝑆2
𝑆𝑆𝑆𝑆1

       (4.2). 
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= 𝑛𝑛𝑛𝑛. Como la velocidad de la luz en el vacío es: 300.000 Km/s, 

entonces, en cualquier otro medio será menor, razón por la cual 𝑛𝑛𝑛𝑛 𝑛 1. 

A partir de la expresión 𝑛𝑛𝑛𝑛𝑜𝑜𝑜𝑜 = 𝑐𝑐𝑐𝑐
𝑣𝑣𝑣𝑣
, el índice de refracción relativo se podría 

escribir como: 

𝑛𝑛𝑛𝑛𝑟𝑟𝑟𝑟 =
𝐶𝐶𝐶𝐶
𝑛𝑛𝑛𝑛1
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𝑛𝑛𝑛𝑛2

= 𝑆𝑆𝑆𝑆2
𝑆𝑆𝑆𝑆1

       (4.2). 

Con esto se tiene otra forma de 
expresar el índice de refracción 
relativo. 

En la Fig. 4.1, se puede observar un 
rayo de luz que atraviesa dos medios 
translucidos, el medio I y el medio II, 
donde el medio II es más denso que 
el medio I, con lo cual:  

I. Medio 1, transparente; II. Medio 
2, transparente; Ri.  Rayo incidente; 
Rr. Rayo refractado; N.  Normal a la 
superficie; 𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 Ángulo de incidencia; 
𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟 Ángulo de refracción. 

El rayo, al pasar del medio I al 
medio II, se acerca a la normal. 
Ahora bien, en el caso de tener aire 
como medio I y agua como medio 
II, experimentalmente se tiene la 
geometría de la Fig. 4.2; allí se 
pueden observar dos triángulos 
entre el rayo incidente y la normal 
OTP y el triángulo entre el rayo 
refractado y la normal OMQ. 

En el triángulo OTP, se establece 
que 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 = 𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇

𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖
, y en el triángulo 

OMQ, se establece que 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟

.  

R es el radio del círculo que, en este caso, coincide con los rayos de luz Ri 
y Rr; si se considera que es igual a la unidad, se tiene: 

𝑅𝑅𝑅𝑅 = 𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖

= 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟

, 

por lo que se puede escribir: 

Fig. 4.1. Refracción de un rayo de luz. 
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Fig. 4.2. Refracción aire-agua. 
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𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

= 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟

. 

Según la Fig. 4.2, se tiene: PT = 4 unidades y MQ = 3 unidades, entonces:  
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟

= 4
3

= 1.333 = 𝑛𝑛𝑛𝑛𝑟𝑟𝑟𝑟       (4.3). 

Lo que corresponde al índice de refracción del agua, en el experimento, si se 
considera que el índice de refracción del aire es muy cercano al índice de 
refracción del vacío. 

A partir de esta proporción, se tiene la Ley de la refracción o Ley de Snell: 

𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝑛𝑛𝑛𝑛𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 = 𝑛𝑛𝑛𝑛𝑟𝑟𝑟𝑟𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝑛𝑛𝑛𝑛𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟. 

Ahora bien, como el índice de refracción relativo es: 𝑛𝑛𝑛𝑛𝑟𝑟𝑟𝑟 = 𝑆𝑆𝑆𝑆2
𝑆𝑆𝑆𝑆1

, entonces la 

Ley de Snell se expresa como: 

𝑛𝑛𝑛𝑛1𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝑛𝑛𝑛𝑛𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 = 𝑛𝑛𝑛𝑛2𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟, 

donde n1 y n2 serían los índices de refracción absolutos y nr el índice de 
refracción relativo. 

Como el índice de refracción del aire es n = 1.00029 y resulta muy 
aproximado al índice de refracción del vacío, se deja la expresión simple, 
si no existen aclaraciones o recomendaciones; es decir: 

𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 = 𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑛𝑛𝑛𝑛𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟. 

En la Tabla 4.1, se puede ver el índice de refracción relativo de algunos 
materiales, como sólidos, líquidos y gaseosos. 

Tabla 4.1. Índices de refracción de diferentes medios: sólido, líquido y 
gaseoso. 

Sólidos Líquidos Gaseosos 

Material N Material n Material n 

Yodo 3.340 Hidrógeno 1.097 Aire 1.00029 

Sodio 4.820 Nitrógeno 1.205 Argón 1.00028 

Diamante 2.419 Oxígeno 1.225 Dióxido de C 1.00045 
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Tabla 4.1. Índices de refracción de diferentes medios: sólido, líquido y 
gaseoso. 

Sólidos Líquidos Gaseosos 

Material N Material n Material n 

Yodo 3.340 Hidrógeno 1.097 Aire 1.00029 

Sodio 4.820 Nitrógeno 1.205 Argón 1.00028 

Diamante 2.419 Oxígeno 1.225 Dióxido de C 1.00045 

Cuarzo fundido 1.458 Agua 1.333 Helio 1.00004 

Fluorita 1.434 Alcohol etílico 1.360 Hidrógeno 1.00013 

Vidrio Crown 
ligero 1.610 Alcohol 

metílico 1.329 Oxígeno 1.00029 

Vidrio Crown 
denso 1.569 Éter etílico 1.351 Vapor agua 1.00025 

Vidrio Flint 
ligero 1.573 Bisulfuro de 

carbono 1.625   

Vidrio Flint 
denso  1.655 Acetona 1.359   

Vidrio Flint 
pesado 1.765     

Vidrio Flint 
más pesado 1.890     

Vidrio Flint 
tantánico 1.795     

 

 

En la Fig. 4.3, se tiene un rayo de luz láser refractado en una figura de media 
luna: el rayo incide en la parte izquierda y se refracta hacia la parte derecha; 
resulta muy notorio el cambio de dirección que ocurre cuando el rayo atraviesa 
del medio translucido que, en este caso, es acrílico. 

Fig. 4.3. Fotografía de la refracción de un rayo de 
luz. Fuente propia. 



112

Curso de óptica

En la Fig. 4.4, se puede ver la refracción 
de la luz que ocurre en el agua, cuyo índice 
de refracción es 1.33: la cucharilla 
colocada en el interior del vaso con agua 
se ve desplazada cuando la imagen se 
obtiene desde el agua por el lado del vaso, 
lo que da la sensación de observar que la 
cuchara se hubiera quebrado o doblado, al 
depender del ángulo con que se observa o 
se tomase la fotografía, al igual como 
desde el borde de una piscina se ve su 
fondo con poca profundidad, asunto serio 
cuando un niño se lanza a la piscina con 
la creencia de que el fondo no es tan 
profundo; con el tiempo, se aprende que 
esto es una simple ilusión. 

4.1 Reflexión total        

La reflexión total se presenta cuando el rayo de luz pasa del medio más 
denso al menos denso; es decir, del medio II al medio I, como se ve en la 
Fig. 4.5.  

El rayo tres incide, con un ángulo de incidencia, desde el agua y emerge 
en el aire, lo que la aleja de la normal. 

En otras palabras, es como si el rayo saliera de una piscina: el rayo 3, al 
salir del agua, se aleja de la normal 𝜃𝜃𝜃𝜃3 mayor que con el rayo que incide. 
El rayo 2 se aleja tanto de la normal que se encuentra rasante a la 
superficie; es decir, el ángulo respecto a la normal es de 90° y el rayo 1, 
que incide con un ángulo mayor al rayo 2, se refleja totalmente, con lo que 
se queda dentro del medio II; en adelante solo habrá rayos reflejados; 
entonces, el rayo 2, que es el último rayo que se refracta, corresponde al 
rayo cuyo ángulo de incidencia es el límite. 

Fig. 4.4. Refracción de la luz en el 
agua contenida en un vaso de 
vidrio. Fuente propia. 
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A partir de la ecuación: 𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 =
𝑛𝑛𝑛𝑛′𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟, donde n' es el inverso de n, 
por pasar del medio II al medio I, de 
modo que 𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 = 1

𝑆𝑆𝑆𝑆
𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟,  en el caso 

del agua el índice de refracción es 
1.333; por tanto, el ángulo de 
incidencia crítico se presentará 
cuando 𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟 = 90; esto es:  
 

𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 = 1
1.333

𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐90  

𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 = 𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑛𝑛𝑛𝑛−1(0.750) 

𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 = 48° 35′ 

Esto significa que el ángulo límite es de 48º 35'; para ángulos mayores de 
este valor, se va a tener siempre una reflexión total; como no hay 
refracción, entonces toda la energía que incide se refleja, lo que significa 
que no hay una pérdida de energía, ningún porcentaje queda en 
refracción, como ocurre cuando está por debajo de 48º, en que la 
intensidad debe distribuirse entre lo refractado y lo reflejado. 
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Fig. 4.5. Reflexión total. 

1 2 3 3 
Fig. 4.6. Fotografías de la refracción de un rayo láser sobre un cuerpo 
translucido: 1) refracción de un rayo de luz, al pasar del medio aire al medio 
acrílico; 2) el rayo de luz entra por la parte circular de la figura de media luna 
en dirección al centro de curvatura; por tanto, el rayo entra de forma normal 
a la superficie, lo que significa que no presenta desviación angular; al pasar 
del acrílico al aire sufre una refracción, lo que lo aleja de la normal, como se 
puede ver en la figura; 3) cuando el rayo entra por la superficie circular con 
40° respecto a la normal, se presenta refracción y reflexión. Fuente propia. 
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En la Fig. 4.7, se tiene la fotografía de un rayo de luz láser que se refleja 
por completo sobre la superficie plana de la figura de media luna de 
acrílico; al pasar del acrílico al aire, cuando el ángulo de incidencia es 
mayor al ángulo crítico, esa reflexión total se produce para un ángulo 
mayor a 42°. 

Ejemplo 

¿Cuál es el ángulo crítico para el vidrio Crown, si el índice de refracción 
es: n = 1,51? 

𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 = 𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑛𝑛𝑛𝑛−1 �
1

1.51
� 

𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 = 41.48 

Fibra óptica 

Respecto a la fibra óptica, para un ángulo de incidencia mayor de 41° se 
tendrá una reflexión total. Con este principio funcionan la guía de ondas, 
el cable óptico o fibras ópticas en general 

Fig. 4.7. Fotografía de reflexión total de un rayo de luz 
láser sobre una superficie plana que incide a 42° 
respecto a la normal de la figura de media luna. 
Fuente propia. 
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Fig. 4.7. Fotografía de reflexión total de un rayo de luz 
láser sobre una superficie plana que incide a 42° 
respecto a la normal de la figura de media luna. 
Fuente propia. 

En la Fig. 4.8, se puede ver el esquema 
de una fibra óptica: el rayo incidente Ri 
tiene múltiples reflexiones sin pérdida 
de energía por refracción, con lo cual se 
torna ideal para la transmisión de 
señales; hoy en día, la fibra óptica tiene 
una amplia gama de aplicaciones, tales 
como: redes de comunicaciones, TV 
cable, y la comunicación por Internet de 

alta velocidad y calidad, entre otras; también se la utiliza en la medicina, en 
usos militares y científicos.  

Entre las ventajas de la fibra óptica están: potencia, alcance, velocidad, 
durabilidad, fiabilidad y seguridad, razones por las que la comunicación 
de datos puede llegar a las ciudades, industrias y hogares. 

En el campo de la medicina, el uso de la fibra óptica es muy amplio, desde 
fibras ópticas flexibles para observar el interior del cuerpo, como el 
estómago, intestinos, entre otros, (como se puede ver en la Fig. 4.9, un 
equipo de endoscopias), hasta fibras ópticas para enviar rayos láser a los 
tumores en el interior del cuerpo y quemar células malignas.  

 
S

S

R

Fig. 4.8. Esquema de una fibra óptica. 

Fig. 4.9. Equipo de endoscopias que utiliza una fibra óptica 
para poder observar en el monitor el interior del estómago. 
Fuente. https://ieced.com.ec/que-tipos-de-endoscopias-existen/ 



116

Curso de óptica

Cabe aclarar que una fibra óptica es una fibra de vidrio de altísima 
pureza de un diámetro muy pequeño, que solo alcanza 8.3𝜇𝜇𝜇𝜇𝑚𝑚𝑚𝑚, que soporta 
un solo modo de transmisión luminosa. 
Prisma de reflexión total 

En un prisma, cuyas secciones rectas corresponden a un triángulo rectángulo 
isósceles, se presenta una reflexión total si la luz entra perpendicular a una 
cara del “triángulo rectángulo”. Debido a que el ángulo de incidencia respecto 
a la normal de la superficie donde incide el rayo es de 45°, mayor a los 41° ya 
calculados en el ejemplo, como se puede ver en la Fig. 4.10. 

Esta forma de reflexión se utiliza en 
numerosos instrumentos ópticos para 
desviar los rayos de luz; uno de los ins-
trumentos más utilizados es el refe-
rente a los larga-vistas o prismáticos; 
con un par de ellos, se logran invertir 
las imágenes que se obtienen en una 
primera fase como telescopios; así, se 
logran ver en estos instrumentos imá-
genes derechas.  

 

1 2 

Fig. 4.11. Fotografías de la reflexión total en un prisma recto: 1) el rayo 
incide normal a uno de los lados del prisma recto; 2) el rayo incide por el 

             

 Ri

RR

P

Fig. 4.10. Prisma de reflexión total. 
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Fig. 4.10. Prisma de reflexión total. 

En la Fig. 4.12, se puede ver el interior de unos prismáticos; allí se 
observa el juego de prismas que hay entre la lente objetivo y la lente 
ocular del instrumento. De allí que resulta muy sencillo observar 
paisajes, personas, edificios. Los aparatos son de uso común.  

 

4.2 Figura de caras paralelas   

Considérese una lámina de vidrio (vidrio de ventanas) en el que un rayo de 
luz llega de forma inclinada respecto a la normal de la superficie de dicha 
lámina; es decir, con un ángulo 𝜃𝜃𝜃𝜃𝑐𝑐𝑐𝑐; cuando pasa a la lámina de vidrio, se 
refracta con un ángulo de refracción 𝜃𝜃𝜃𝜃𝑚𝑚𝑚𝑚;  luego emerge al medio-aire donde 
vuelve a refractarse y se aleja de la normal. Entonces, en la Fig. 4.13, se 
puede ver la trayectoria del rayo y se observa que ha sufrido un 
desplazamiento lateral; la pregunta ahora es: ¿cuál es el desplazamiento 
lateral que sufre el rayo incidente Ri?; además, ¿el rayo incidente y 
emergente serán paralelos? 

i) En el punto a, la Ley de Snell es:  

𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 = 𝑛𝑛𝑛𝑛12𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟. 

En el punto c, la Ley de Snell es:  

𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟 = 𝑛𝑛𝑛𝑛21𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝜃𝜃𝜃𝜃𝑆𝑆𝑆𝑆. 

Fig. 4.12. Binoculares con juego de prismas para voltear la imagen. Fuente. 
https://aprender andando.blogspot.com/2011/03/la-luz-lentes-aplicaciones-3.html 
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Como n12 y n21 son índices de refracción inversos, por tanto: 

𝑛𝑛𝑛𝑛21 = 1
𝑆𝑆𝑆𝑆12

, 

con lo cual  

𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 = 𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝜃𝜃𝑆𝑆𝑆𝑆, 

lo que significa que: 𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 = 𝜃𝜃𝜃𝜃𝑆𝑆𝑆𝑆, con lo cual el ángulo de incidencia es igual al 
ángulo de emergencia; así que el rayo incidente es paralelo al rayo emergente 

ii) Desviación lateral 

 

A partir de la Fig. 4.13, se puede observar que: 

𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 − 𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟) = 𝑆𝑆𝑆𝑆
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

. 

De modo que: 

𝛿𝛿𝛿𝛿 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 − 𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟), 

pero como 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑆𝑆𝑆𝑆
𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

, al remplazar, se tiene:  

𝛿𝛿𝛿𝛿 = 𝑆𝑆𝑆𝑆
𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟

𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 − 𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟)       (4.4). 
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Fig. 4.13. Recorrido de un rayo de luz en una 
lámina de caras paralelas. 
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Como n12 y n21 son índices de refracción inversos, por tanto: 
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Fig. 4.13. Recorrido de un rayo de luz en una 
lámina de caras paralelas. 

Así, el desplazamiento o desviación lateral depende del ángulo de 
incidencia; el ángulo de refracción define el tipo de material de la lámina 
refringente. 

En la Fig. 4.14, se tiene una fotografía en la que se puede apreciar la 
desviación lateral que sufre un rayo de luz láser al atravesar una lámina 
de caras paralelas y el paralelismo entre el rayo incidente y el rayo 
emergente.  

 

4.4 Desviación angular de la luz al pasar por un prisma   

Si se considera un prisma equilátero en el que incide un rayo de luz, tal 
como se puede ver en la Fig. 4.15, el rayo incidente en el punto A forma 
un ángulo de incidencia 𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 con la normal N1 de dicha superficie y emerge 
por el punto B de la cara opuesta con un ángulo 𝜃𝜃𝜃𝜃𝑆𝑆𝑆𝑆 respecto a la normal 
N2, la desviación angular 𝛿𝛿𝛿𝛿se debe a las dos refracciones que ocurren al 
pasar del aire al vidrio en el punto A y de este de nuevo al aire en el punto 
B, de tal forma que la suma de estas desviaciones es el resultado de la 
desviación angular  𝛿𝛿𝛿𝛿 del rayo emergente Re respecto al rayo incidente. 

 

Fig. 4.14. Fotografía de un rayo de luz láser que 
atraviesa una figura de caras paralelas. Fuente propia.   
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Así, la Ley de Snell en el punto A es:  

𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 = 𝑛𝑛𝑛𝑛12𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟. 

La misma Ley de Snell en el punto B es:  

𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟 = 𝑛𝑛𝑛𝑛21𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝜃𝜃𝑆𝑆𝑆𝑆. 

Al combinar estas dos ecuaciones, se tiene: 

𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 = 𝑛𝑛𝑛𝑛12𝑛𝑛𝑛𝑛21𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝜃𝜃𝑆𝑆𝑆𝑆. 

Como 𝑛𝑛𝑛𝑛12 = 1
𝑆𝑆𝑆𝑆21

, entonces la expresión queda: 

𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 = 𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝜃𝜃𝑆𝑆𝑆𝑆, 

lo que implica que los ángulos de incidencia y emergencia son iguales: 

𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 = 𝜃𝜃𝜃𝜃𝑆𝑆𝑆𝑆. 

Por otra parte, según la Fig. 4.15, se tiene:  

𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 = 𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟 + 𝛼𝛼𝛼𝛼 
𝜃𝜃𝜃𝜃𝑆𝑆𝑆𝑆 = 𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟′ + 𝛽𝛽𝛽𝛽       (4.5). 

Como 𝛿𝛿𝛿𝛿es el ángulo externo al triángulo APB, entonces:  

𝛿𝛿𝛿𝛿 = 𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽        (4.6). 

Fig. 4.15. Trayectoria de un rayo de luz al pasar por un prisma. 
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Así, la Ley de Snell en el punto A es:  

𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 = 𝑛𝑛𝑛𝑛12𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟. 

La misma Ley de Snell en el punto B es:  

𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟 = 𝑛𝑛𝑛𝑛21𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝜃𝜃𝑆𝑆𝑆𝑆. 

Al combinar estas dos ecuaciones, se tiene: 

𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 = 𝑛𝑛𝑛𝑛12𝑛𝑛𝑛𝑛21𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝜃𝜃𝑆𝑆𝑆𝑆. 

Como 𝑛𝑛𝑛𝑛12 = 1
𝑆𝑆𝑆𝑆21

, entonces la expresión queda: 

𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 = 𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝜃𝜃𝑆𝑆𝑆𝑆, 

lo que implica que los ángulos de incidencia y emergencia son iguales: 

𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 = 𝜃𝜃𝜃𝜃𝑆𝑆𝑆𝑆. 

Por otra parte, según la Fig. 4.15, se tiene:  

𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 = 𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟 + 𝛼𝛼𝛼𝛼 
𝜃𝜃𝜃𝜃𝑆𝑆𝑆𝑆 = 𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟′ + 𝛽𝛽𝛽𝛽       (4.5). 

Como 𝛿𝛿𝛿𝛿es el ángulo externo al triángulo APB, entonces:  

𝛿𝛿𝛿𝛿 = 𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽        (4.6). 

Fig. 4.15. Trayectoria de un rayo de luz al pasar por un prisma. 
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Y 𝛺𝛺𝛺𝛺 es el ángulo externo al triángulo AQB, por tanto:  

𝛺𝛺𝛺𝛺 = 𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟 + 𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟′       (4.7). 

Ahora bien, como  

𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 = 𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟 + 𝛼𝛼𝛼𝛼, 

entonces: 

𝛼𝛼𝛼𝛼 = 𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 − 𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟. 

Además, como 

𝛿𝛿𝛿𝛿 = 𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽;  𝛼𝛼𝛼𝛼 = 𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 − 𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟  y  𝛽𝛽𝛽𝛽 = 𝜃𝜃𝜃𝜃𝑆𝑆𝑆𝑆 − 𝜃𝜃𝜃𝜃′𝑟𝑟𝑟𝑟, 

entonces:  

𝛿𝛿𝛿𝛿 = 𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 + 𝜃𝜃𝜃𝜃𝑆𝑆𝑆𝑆 − (𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟 + 𝜃𝜃𝜃𝜃′𝑟𝑟𝑟𝑟). 

Al tomar en cuenta la ecuación (4.7), se tiene: 

𝛿𝛿𝛿𝛿 = 𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 + 𝜃𝜃𝜃𝜃𝑆𝑆𝑆𝑆 − 𝛺𝛺𝛺𝛺. 

Ahora bien, al aplicar la Ley de Snell en A: 

𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 = 𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑛𝑛𝑛𝑛𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟, 

y al tratarse de ángulos pequeños, se puede decir que: 𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 ≈ 𝑛𝑛𝑛𝑛𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟, con lo cual 
se puede escribir: 

𝛿𝛿𝛿𝛿 = 𝑛𝑛𝑛𝑛(𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟 + 𝜃𝜃𝜃𝜃′𝑟𝑟𝑟𝑟) − 𝛺𝛺𝛺𝛺. 

Como  

𝛺𝛺𝛺𝛺 = 𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟 + 𝜃𝜃𝜃𝜃′𝑟𝑟𝑟𝑟, 

Al combinar con la ecuación (4.7), se tiene: 

𝛿𝛿𝛿𝛿 = 𝛺𝛺𝛺𝛺(𝑛𝑛𝑛𝑛 − 1),            

que corresponde al ángulo de desviación mínimo, cuando se conoce el 
ángulo diedro 𝛺𝛺𝛺𝛺 dentro del prisma y el índice del material. 
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A partir de la misma Fig. 4.15, también se tiene, en el punto A, la Ley de 
Snell: 

𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 = 𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑛𝑛𝑛𝑛𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟, 

de donde:  

𝑛𝑛𝑛𝑛 = 𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖𝑆𝑆𝑆𝑆𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖
𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖𝑆𝑆𝑆𝑆𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟

. 

Como para la desviación mínima se cumple que: 𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 = 𝜃𝜃𝜃𝜃𝑆𝑆𝑆𝑆, entonces: 𝛼𝛼𝛼𝛼 = 𝛽𝛽𝛽𝛽.       

Por tanto:  𝛿𝛿𝛿𝛿 = 2𝛼𝛼𝛼𝛼y  𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟′ = 𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟,   lo que lleva a: 𝛺𝛺𝛺𝛺 = 2𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟. 

De modo que: 𝛼𝛼𝛼𝛼 = 𝑆𝑆𝑆𝑆
2
  y 𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟 = 𝛺𝛺𝛺𝛺

2
. 

Por otra parte, 𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 = 𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟 + 𝛼𝛼𝛼𝛼; al remplazar, se tiene: 𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 = 𝛺𝛺𝛺𝛺
2

+ 𝑆𝑆𝑆𝑆
2

= 𝛺𝛺𝛺𝛺+𝑆𝑆𝑆𝑆
2

, 

Con lo cual se llega a que el índice de refracción en un prisma es:  

𝑛𝑛𝑛𝑛 =
𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖𝑆𝑆𝑆𝑆�𝛺𝛺𝛺𝛺+𝛿𝛿𝛿𝛿2 �

𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖𝑆𝑆𝑆𝑆�𝛺𝛺𝛺𝛺2�
        (4.8). 

Esta se conoce como la Fórmula del Prisma, que permite calcular el índice 
de refracción cuando se conocen el ángulo de desviación angular y las 
características geométricas del prisma. 

 

Fig. 4.16. Fotografía de la desviación angular de un rayo de 
luz al pasar por dos superficies angulares. Fuente propia. 
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A partir de la misma Fig. 4.15, también se tiene, en el punto A, la Ley de 
Snell: 

𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 = 𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑛𝑛𝑛𝑛𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟, 

de donde:  

𝑛𝑛𝑛𝑛 = 𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖𝑆𝑆𝑆𝑆𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖
𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖𝑆𝑆𝑆𝑆𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟

. 

Como para la desviación mínima se cumple que: 𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 = 𝜃𝜃𝜃𝜃𝑆𝑆𝑆𝑆, entonces: 𝛼𝛼𝛼𝛼 = 𝛽𝛽𝛽𝛽.       

Por tanto:  𝛿𝛿𝛿𝛿 = 2𝛼𝛼𝛼𝛼y  𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟′ = 𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟,   lo que lleva a: 𝛺𝛺𝛺𝛺 = 2𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟. 

De modo que: 𝛼𝛼𝛼𝛼 = 𝑆𝑆𝑆𝑆
2
  y 𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟 = 𝛺𝛺𝛺𝛺

2
. 

Por otra parte, 𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 = 𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟 + 𝛼𝛼𝛼𝛼; al remplazar, se tiene: 𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 = 𝛺𝛺𝛺𝛺
2

+ 𝑆𝑆𝑆𝑆
2

= 𝛺𝛺𝛺𝛺+𝑆𝑆𝑆𝑆
2

, 

Con lo cual se llega a que el índice de refracción en un prisma es:  

𝑛𝑛𝑛𝑛 =
𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖𝑆𝑆𝑆𝑆�𝛺𝛺𝛺𝛺+𝛿𝛿𝛿𝛿2 �

𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖𝑆𝑆𝑆𝑆�𝛺𝛺𝛺𝛺2�
        (4.8). 

Esta se conoce como la Fórmula del Prisma, que permite calcular el índice 
de refracción cuando se conocen el ángulo de desviación angular y las 
características geométricas del prisma. 

 

Fig. 4.16. Fotografía de la desviación angular de un rayo de 
luz al pasar por dos superficies angulares. Fuente propia. 

4.5 Descomposición de la luz. Teoría del color       
Entre  tantas de las cosas que Newton descubrió, una de ellas fue la 
descomposición de la luz, fenómeno que le sirvió para demostrar que el 
color no era una propiedad de los cuerpos, como lo aseguraba la ciencia 
aristotélica, sino se trataba de una interacción de la superficie de los 
cuerpos con la luz blanca y, por tanto, la luz se componía de todos los 
colores. Este fenómeno despertó mucho interés, hasta forjar una nueva 
línea de investigación en Física, con la que se logró saber los componentes 
del sol y las estrellas.   

 
Teoría del color. La primera de las teorías se debe al griego Aristóteles, alrededor 
del siglo IV a. C., en la que se establecía que, para formar los colores, se lograba a 
través de una mezcla de únicamente cuatro colores básicos: el color tierra (amarillo), 
el agua (verde), el fuego (rojo) y el cielo (azul), los cuales se hallaban en perfecta 
armonía con los cuatro elementos que regían el planeta; también se añadió que la luz 
y la sombra podían afectar a estos colores, ya fuera al oscurecerlos o aclararlos, para 
dar lugar a ciertas variaciones. 

Mucho tiempo pasó sin que se despertara un interés por tratar el fenómeno 
cotidiano de ver colores; sin embargo, los romanos conocieron el prisma, con el 
que se generaba el arco iris de colores; mucho después, en 1311, Teodorico 
Thierry de Friburgo describió la dispersión refractiva de la luz mediante un 
dióptrico grueso e intentó describir la naturaleza del arco iris.  

El italiano Leonardo da Vinci (1452-1519) definió el color como algo pro-
pio de la materia; además, profundizó en la escala de colores básicos, que 

Fig. 4.17. Descomposición de la luz por medio de un prisma. 
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había establecido Aristóteles, que daban lugar a todos los demás; desde 
su experiencia como pintor, estableció al blanco como el color principal, 
pues era el único que permitía recibir al resto de colores; sin embargo, al 
final de sus días puso en duda su teoría.  

Otros científicos como: Atana-
sio Kircher (1646), Johannes 
Marcus Marci (1648), Robert 
Boyle (1664) y Francesco Ma-
ría Grimaldi, sacerdote jesuita 
(1665), obtuvieron la descom-
posición de luz con prismas y 
plantearon su respectiva ex-
plicación al fenómeno.  

En 1665, el joven Newton, que 
había retornado, a los 23 años, 
a su pequeña aldea natal 

de Woolsthorpe, en Lincolnshire (Inglaterra), para huir de la peste bubó-
nica que había provocado el cierre de la Universidad de Cambridge, le 
escribió a uno de sus corresponsales:  

“les haré saber, sin más ceremonias que, a principios de 1666, 
obtuve un prisma de vidrio triangular para experimentar el 
famoso fenómeno de los colores […] Fue agradable contem-
plar los colores brillantes e intensos así producidos”.  

A partir de estas observaciones, concluyó que la luz se forma por unos 
colores fundamentales, que no se podían dividir en más; como verificación 
a esta afirmación, ubicó un segundo prisma sobre el espectro formado por 
el primero, de tal modo que el espectro formado por el primero lograra 
reunirse en un solo rayo; así, volvió a obtener la luz blanca.  

Además, Newton observó que la luz proveniente de los objetos era una forma 
de reflexión de la luz que llegaba del exterior y el color justamente carecía 
de un objeto; es decir, la superficie de dicho objeto tiene todos los colores que 
tiene la luz blanca, menos el color visible que capta el ojo humano.  

Fig. 4.18. Fotografía del espectro visible, 
obtenida en el Laboratorio de Óptica de la 
Universidad de Nariño. Fuente propia.  
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En 1703 publicó la obra Opticks, donde plantea la teoría sobre la 
naturaleza corpuscular de la luz, el espectro formado por los colores: rojo, 
naranja, amarillo verde, azul, añil y violeta. Estos eran los mismos colores 
que, desde la Antigüedad, distinguían, cuyo número, como el número de 
los planetas del sistema solar, despertó mucha inquietud; de igual modo, 
la geometría para entender los fenómenos de reflexión y refracción; como 
toda obra nueva, recibió muchas críticas; sin embargo, los principios de 
la óptica geométrica se mantienen hasta el día de hoy.  

En 1802, William Hyde Wollaston fue el primero en construir un 
espectroscopio, en el que se incluía una lente para enfocar el espectro 
solar sobre una pantalla; de igual forma, se descompuso la luz producida 
por sales en combustión y pudo observar un espectro formado por finas 
líneas brillantes entre zonas oscuras, a las que creía Wollaston eran los 
límites naturales entre los colores, asunto que descartó Joseph von 
Fraunhofer (1787-1826). Inventor de la espectroscopia por difracción, con 
lo cual se obtuvo espectros por emisión y absorción, donde las líneas 
oscuras de los espectros por emisión son justamente las líneas que se 
obtienen en espectros por absorción, tal como se puede ver en la Fig. 4.19.  

En los años siguientes a 1751 aparecieron muchos investigadores y se 
produjo muchos descubrimientos, hasta llegar a la teoría atómica de Niels 
Bohr, en que la espectroscopia accedía a una explicación científica de lo 

que ocurría en el interior de los 
átomos, el verdadero origen de 
los colores. En la actualidad, la 
espectroscopia es una forma 
indirecta de estudiar los 
elementos químicos, pues cada 
elemento químico tiene su 
propio espectro, de modo que 
es como la huella dactilar de 
los elementos químicos, por lo 
cual la espectroscopia sigue 

vigente en el descubrimiento de compuestos químicos y la composición 
química de las estrellas y demás astros.  

Fig. 4.19. Espectro de bandas, de absorción y 
emisión.  



126

Curso de óptica

4.7 Dispersión de la luz       

La experiencia muestra que el índice de refracción aumenta cuando crece 
la frecuencia de la luz. Por tanto, la desviación de un rayo aumenta 
cuando aumenta la frecuencia, como se ve en la Fig. 4.17. 

Así, si la luz blanca incide sobre un prisma, se observa un espectro 
continuo de todos los colores igual al arco iris (Rojo-Naranja-Amarillo-
Verde-Azul-Añil-Violeta); es el fenómeno de dispersión. Algunos gases, 
como el sodio, mercurio, neón y en general, todos los gases y vapores a 
baja presión, producen espectros discontinuos formados por algunos 
colores que forman líneas, lo que se denomina espectro de líneas (véase 
Fig. 4.19).  

Como la luz blanca está formada por intervalos de frecuencias, la 
refracción que sufre la luz al pasar de un medio a otro más denso, como 
aire-agua o vidrio, se establece por intervalos; aquellos cercanos al azul 
tendrán una refracción o un ángulo característico y aquellos cercanos al 
rojo lo harán con otro ángulo. 

Así que se define la dispersión de un prisma como: 

𝐷𝐷𝐷𝐷 = 𝑑𝑑𝑑𝑑𝑆𝑆𝑆𝑆
𝑑𝑑𝑑𝑑𝜆𝜆𝜆𝜆

        (4.9), 

una derivada de la desviación angular respecto a la longitud de onda, 
expresión que se puede escribir como: 

𝐷𝐷𝐷𝐷 = 𝑑𝑑𝑑𝑑𝑆𝑆𝑆𝑆
𝑑𝑑𝑑𝑑𝜆𝜆𝜆𝜆

= 𝑑𝑑𝑑𝑑𝑆𝑆𝑆𝑆
𝑑𝑑𝑑𝑑𝑆𝑆𝑆𝑆

𝑑𝑑𝑑𝑑𝑆𝑆𝑆𝑆
𝑑𝑑𝑑𝑑𝜆𝜆𝜆𝜆

       (4.10). 

El término 𝑑𝑑𝑑𝑑𝑆𝑆𝑆𝑆
𝑑𝑑𝑑𝑑𝑆𝑆𝑆𝑆

 depende del tipo de geometría del sistema óptico, mientras 

que el sistema 𝑑𝑑𝑑𝑑𝑆𝑆𝑆𝑆
𝑑𝑑𝑑𝑑𝜆𝜆𝜆𝜆

 depende del material con el que se ha elaborado el 
prisma. 

A partir de las cuatro ecuaciones del prisma: 

𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 = 𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑛𝑛𝑛𝑛𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟 

𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝜃𝜃𝑆𝑆𝑆𝑆 = 𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑛𝑛𝑛𝑛𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟′ 
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𝛺𝛺𝛺𝛺 = 𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟 + 𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟′ 

𝛿𝛿𝛿𝛿 = 𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 + 𝜃𝜃𝜃𝜃𝑆𝑆𝑆𝑆 − 𝛺𝛺𝛺𝛺, 

al derivarlas, se tiene: 

𝑁𝑁𝑁𝑁
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁

(𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 = 𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑛𝑛𝑛𝑛𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟) 

0 = 𝑑𝑑𝑑𝑑𝑆𝑆𝑆𝑆
𝑑𝑑𝑑𝑑𝑆𝑆𝑆𝑆
𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟 + 𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟

𝑑𝑑𝑑𝑑𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟
𝑑𝑑𝑑𝑑𝑆𝑆𝑆𝑆

        (4.11). 

Al derivar la segunda: 

𝑁𝑁𝑁𝑁
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁

(𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝜃𝜃𝑆𝑆𝑆𝑆 = 𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑛𝑛𝑛𝑛𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟′) 

𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝜃𝜃𝑆𝑆𝑆𝑆
𝑑𝑑𝑑𝑑𝜃𝜃𝜃𝜃𝑒𝑒𝑒𝑒
𝑑𝑑𝑑𝑑𝑆𝑆𝑆𝑆

= 𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟′ + 𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟′
𝑑𝑑𝑑𝑑𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟′
𝑑𝑑𝑑𝑑𝑆𝑆𝑆𝑆

        (4.12). 

Al derivar la tercera: 
𝑑𝑑𝑑𝑑𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟
𝑑𝑑𝑑𝑑𝑆𝑆𝑆𝑆

+ 𝑑𝑑𝑑𝑑𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟′
𝑑𝑑𝑑𝑑𝑆𝑆𝑆𝑆

= 0       (4.13). 

Por último, al derivar la cuarta: 
𝑑𝑑𝑑𝑑𝑆𝑆𝑆𝑆
𝑑𝑑𝑑𝑑𝑆𝑆𝑆𝑆

= 𝑑𝑑𝑑𝑑𝜃𝜃𝜃𝜃𝑒𝑒𝑒𝑒
𝑑𝑑𝑑𝑑𝑆𝑆𝑆𝑆

        (4.14). 

A partir de la ecuación (4.12): 

𝑑𝑑𝑑𝑑𝜃𝜃𝜃𝜃𝑒𝑒𝑒𝑒
𝑑𝑑𝑑𝑑𝑆𝑆𝑆𝑆

=
𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖𝑆𝑆𝑆𝑆𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟′+𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟′

𝑑𝑑𝑑𝑑𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟′
𝑑𝑑𝑑𝑑𝑛𝑛𝑛𝑛

𝑐𝑐𝑐𝑐𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝜃𝜃𝜃𝜃𝑒𝑒𝑒𝑒
        (4.15). 

A partir de la ecuación (4.11):  

−𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟 = 𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟
𝑑𝑑𝑑𝑑𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟
𝑑𝑑𝑑𝑑𝑆𝑆𝑆𝑆

. 

Entonces,  
𝑑𝑑𝑑𝑑𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟
𝑑𝑑𝑑𝑑𝑆𝑆𝑆𝑆

= − 𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖𝑆𝑆𝑆𝑆𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟

       (4.16). 

Como 𝑑𝑑𝑑𝑑𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟′
𝑑𝑑𝑑𝑑𝑆𝑆𝑆𝑆

= 𝑑𝑑𝑑𝑑𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟
𝑑𝑑𝑑𝑑𝑆𝑆𝑆𝑆

, entonces (4.16) se puede remplazar en (4.15):  
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𝑁𝑁𝑁𝑁𝜃𝜃𝜃𝜃𝑆𝑆𝑆𝑆
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁

=
𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟′ + 𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟′ �−

𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟
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. 
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= 𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖𝑆𝑆𝑆𝑆𝛺𝛺𝛺𝛺
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𝑑𝑑𝑑𝑑𝑆𝑆𝑆𝑆

       (4.17). 

Si se orienta el prisma hasta la desviación mínima, se obtiene: 

𝑑𝑑𝑑𝑑𝑆𝑆𝑆𝑆
𝑑𝑑𝑑𝑑𝑆𝑆𝑆𝑆

=
2𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖𝑆𝑆𝑆𝑆𝛺𝛺𝛺𝛺2

𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜�𝛿𝛿𝛿𝛿𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
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       (4.18). 

El segundo factor,  𝑑𝑑𝑑𝑑𝑆𝑆𝑆𝑆
𝑑𝑑𝑑𝑑𝜆𝜆𝜆𝜆

, depende de la naturaleza de la radiación y del 
medio; en el caso de la luz y en lo que corresponde al espectro visible, se 
tiene una expresión que se denomina expresión de Cauchy: 

𝑛𝑛𝑛𝑛 = 𝐴𝐴𝐴𝐴 + 𝑞𝑞𝑞𝑞
𝜆𝜆𝜆𝜆2

, 

donde A y B son constantes características de cada material, de modo que: 
𝑑𝑑𝑑𝑑𝑆𝑆𝑆𝑆
𝑑𝑑𝑑𝑑𝜆𝜆𝜆𝜆

= −2𝑞𝑞𝑞𝑞
𝜆𝜆𝜆𝜆3

. 

Entonces, la dispersión completa será: 

𝐷𝐷𝐷𝐷 = 𝑑𝑑𝑑𝑑𝑆𝑆𝑆𝑆
𝑑𝑑𝑑𝑑𝜆𝜆𝜆𝜆

= 𝑑𝑑𝑑𝑑𝑆𝑆𝑆𝑆
𝑑𝑑𝑑𝑑𝑆𝑆𝑆𝑆

𝑑𝑑𝑑𝑑𝑆𝑆𝑆𝑆
𝑑𝑑𝑑𝑑𝜆𝜆𝜆𝜆

. 

Al remplazar en esta ecuación, se tiene: 

𝐷𝐷𝐷𝐷 =
2𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖𝑆𝑆𝑆𝑆𝛺𝛺𝛺𝛺2

�𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝛿𝛿𝛿𝛿𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖+𝛺𝛺𝛺𝛺
2 �

�− 2𝑞𝑞𝑞𝑞
𝜆𝜆𝜆𝜆3
�    (4.19). 

El signo menos significa que la desviación disminuye cuando la longitud 
de onda aumenta, con lo cual el color rojo se desvía menos que el violeta. 
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2𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖𝑆𝑆𝑆𝑆𝛺𝛺𝛺𝛺2
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Entonces, la dispersión completa será: 
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Al remplazar en esta ecuación, se tiene: 
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�− 2𝑞𝑞𝑞𝑞
𝜆𝜆𝜆𝜆3
�    (4.19). 

El signo menos significa que la desviación disminuye cuando la longitud 
de onda aumenta, con lo cual el color rojo se desvía menos que el violeta. 

Así, queda por averiguar acerca de A y B. 

En la Fig. 4.20, se tiene la variación del índice de refracción en función de 
la longitud de onda para el espectro visible. 

Arco iris o Cueche  

Este es un fenómeno natural que existe desde que hubo precipitación o 
llovizna en la atmósfera, así que le dio la bienvenida a la vida en este 
planeta; arco iris es una palabra que proviene del latín: arcus  que signi-
fica arco y el griego iris, nombre de una diosa mensajera entre la tierra y 
el cielo; entre nuestros  campesinos es muy común oír que lo denominan 
cueche, palabra de origen quechua, así como en el Japón lo denominan 
Niji, y así en cada idioma y lengua tendrá una expresión esta maravilla 
de la naturaleza, con millones de años más viejo que la humanidad, con 
presencia en todas partes del mundo siempre y cuando hubiera una fina 
llovizna a la que le llega el sol por la espalda del observador.  

En la Fig. 4.21, se tiene una fotografía del arco iris visto desde un avión; 
resulta asombroso ver que el arco iris es un círculo completo en la Fig. 
4.22, que también es una fotografía tomada desde un avión; se lo ve al 
revés de lo normal, que es con los extremos sobre la tierra, asunto que en 
la mitología irlandesa llevó a la creencia referida a que en los extremos 
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se hallaba un duende que cuidaba un tesoro; este hecho se ha generali-
zado tanto que, hoy en día, en muchas culturas y sociedades rurales aún 
creen en esa historia; también, genera respeto y temor pues se cree que, 
al mirarlo directamente, puede enfermar con afecciones de la piel, sobre 
todo en niños pequeños, a quienes se los cuida al prohibirles o advertirles 
de lo que les puede ocurrir si ven el fenómeno, etc. 

 

 

Fig. 4.21. Arco iris observado desde un avión. Fuente: 
https://www.tiempo.com/noticias/ actualidad/mitos-
leyendas-y-realidades-sobre-el-arcoiris.html 

Fig. 4.22. Arco iris observado desde un avión en 
un vuelo de Pasto a Bogotá. Fuente propia. 
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Fig. 4.22. Arco iris observado desde un avión en 
un vuelo de Pasto a Bogotá. Fuente propia. 

Se debe recordar que al Homo sapiens se lo considera desde hace unos 
40.000 años, y solo desde hace 15.000 años aparece la ciudad de Jericó, 
como la primera ciudad en la que se puede decir que hay algún tipo de 
organización; al carecer de una explicación científica, resultaba muy nor-
mal atribuirle al arco iris la presencia de alguna divinidad; una antigua 
representación del arco iris se incluye en la Epopeya de Gilgamesh (entre 
el 2500 y el 2000 a. C.), donde el arco iris es el collar de pedrería de la 
gran madre Ishtar.  

En la Biblia hebrea, en el libro del Génesis, el arco iris es el 
símbolo de la alianza de Dios con Noé y su promesa de que 
no habría más diluvios que destruyeran la tierra.  

En la mitología griega, como ya se dijo, el arco iris se 
relacionaba con una diosa mensajera entre el cielo y la 
tierra, llamada Iris, hija de Taumante y la oceánide Electra. 

En la mitología nórdica, el arco iris, o Bifröst, era un puente 
que unía Midgard (el mundo de los hombres) y Asgard (el 
mundo de los dioses).  

En la mitología incaica, al arco iris se lo consideraba la 
personificación del dios Cuychi, lo que se puede traducir como: 
Cu, agua; inti, sol y churi, hijo; por tanto, hijo del agua y del sol 
(Toribio 1900). Quizá por esto los incas se consideraron hijos del 
sol, de donde tomaron como emblema lo multicolor del arco iris; 
en cada avistamiento, se lo asociaba con el advenimiento de 
eventos benéficos o nefastos. 

En el mundo occidental europeo, Aristóteles (384-322) fue el 
primero en tratar de proveer una explicación racional a la 
formación del arco iris al aducir que era un reflejo del rayo 
visual; la explicación, un tanto coherente, no tuvo opositores 
en su momento y durante mucho tiempo. 

Alejandro de Afrodisias (200 d. C), describió la banda oscura entre el arco 
primario y el secundario, que hoy lleva su nombre: “Zona de Alejandro”. 
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Epicuro (370-270) también escribió sobre el arco iris, al advertir que surge 
cuando el sol brilla sobre el aire húmedo; o, también, debido a una cierta 
mezcla especial de la luz con el aire; la forma circular que adopta se debe 
a que la vista percibe que la distancia de cada punto es igual, o puede ser 
que, una vez unidos los átomos del aire o de las nubes y los rayos que 
proceden del sol, su conjunto da una especie de redondez. 

En el año 65 d. C., Séneca, en su libro “Naturales Quaestiones”, plantea 
varias teorías sobre la fenomenología del arco iris, como que se presenta 
cuando hay gotas finas de agua y que aparece de forma opuesta al sol; 
también señala que el fenómeno es similar al observado en finas varillas 
de vidrio (virgulae), lo cual resulta una anticipación al descubrimiento de 
Newton con prismas de vidrio. Otros tratados sobre el mismo fenómeno 
en China, en la India, concluyeron que el arco iris se forma bajo la pre-
sencia de finas gotas de agua.  

Qutb al-Din al-Shirazi (1236-1311), astrónomo persa, 
planteó una explicación bastante precisa sobre el fenómeno 
del arco iris que, a su vez, elaboró su alumno, Al-
Farisi (1267-1319), que proporcionó una explicación más 
satisfactoria matemáticamente, al proponer un modelo en el 
que una gota de agua refractaba dos veces el rayo de luz del 
sol, por lo que ocurrían uno o más reflejos entre las dos 
refracciones. Para este estudio se realizó un experimento 
con una esfera de vidrio llena de agua: Al-Farisi mostró que 
las refracciones adicionales debidas al vidrio podían 
ignorarse; con el modelo dentro de una caja oscura, donde 
podía controlar la entrada de luz, pudo concluir que los 
rayos salían del modelo de la gota de agua.  

En Europa, en el Libro de “óptica”, de Alhacén, traducido al latín y que 
estudió Robert Grosseteste, que tuvo en cuenta las cuatro hipótesis para 
su teoría del arco iris, trabajo que continuó el franciscano Roger Bacon, 
el Doctor Mirabilis, quien escribió, en su Opus Majus, de 1268, sobre ex-
perimentos con luz que brilla a través de cristales y gotas de agua, donde 
se mostraban los colores del arco iris; además, Bacon fue el primero en 
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calcular su tamaño angular: afirmó que la cima no puede aparecer a más 
de 42° sobre el horizonte.  

Teodorico de Friburgo, en 1307, dio una explicación teórica precisa tanto 
sobre el arco iris primario como el secundario, trabajo que también había 
desarrollado Antonius de Demini, en 1611. Explicó sobre el arco iris pri-
mario y señaló que, cuando la luz del sol cae sobre gotas individuales de 
humedad, los rayos experimentan dos refracciones y una reflexión; así 
concluyó que el arco iris se debe a dos refracciones y dos reflexiones.      

Así, entonces, con toda la información que se tenía sobre el arco iris, René 
Descartes se interesó en su estudio; en su obra Discurso del método, en 
1637, plantea los resultados obtenidos con la esfera llena de agua: los ta-
maños de las gotas de agua no influyen en la formación de los colores; el 
ángulo entre el rayo incidente  y emergente, tras  establecer dos refrac-
ciones y una reflexión en la parte interna de la gota,  debe ser de 42° para 
el arco principal y de 52° después de establecer dos refracciones y dos 
reflexiones en la parte interna de la gota  para el arco secundario.  

En la Fig. 4.23 se tiene el grá-
fico de René Descartes, donde 
muestra la formación de los 
dos arcos sobre una cortina de 
gotas de agua;  para un obser-
vador, el rayo A incide por la 
parte superior de la gota, 
donde se refracta al entrar a 
la gota de agua; en C se re-
fleja en la parte interna de la 
gota y, luego, en D, se refracta 
al pasar de la gota de agua al 
aire,  donde se produce la des-
composición de la luz; por otra 
parte, el rayo F incide por la 

parte inferior de la gota y sufre dos refracciones y dos reflexiones en la 
parte interna de la gota de agua, lo que lleva a que perdiera luminosidad; 

Fig. 4.23. Bosquejo de Rene Descartes sobre cómo 
se forman los arcos iris primario y secundario. 
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el efecto óptico puede observarse desde el punto E; como cada gota forma 
un espectro, para poderse observar completamente, el observador tendría 
que moverse entre 42° y 50°, por tanto, el arco que se observa es el resul-
tado de ver el conjunto de múltiples gotas de agua; cuando el observador 
se mueve y observa el arco, otras gotas están generando el espectro, con 
lo cual nunca se posibilitaría llegar al punto de origen del arco y menos 
alcanzarlo, por lo que cada observador tiene su propio arco iris; es decir, 
resulta único para cada persona.  

Con el estudio de Descartes, queda un poco más descrita la formación del 
arco iris; sin embargo, se debió esperar a Newton para que planteara una 
explicación acerca de la formación de los colores; el experimento con el 
prisma para descomponer la luz y volverla a componer en luz blanca, le 
permitió señalar que la luz se descompone en siete colores: Rojo, Naranja, 
Amarillo, Verde, Azul, Añil y Violeta, como también con una adecuada 
combinación de estos colores se puede obtener la luz blanca.   
 

 

Fig. 4.24. Formación del arco iris en una cortina de gotas de agua que caen 
o se encuentran suspendidas y las condiciones para poder ver los dos arcos. 

 Luz solar

Observador

Gotas de agua cayendo o
suspendidas
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Para que se pudiera proporcionar una explicación sobre la formación de 
los arcos iris supernumerarios, como los que se ven en la Fig. 4.25, se 
debió esperar para referirse a interferencia constructiva y destructiva de 
la luz, tema que ocupó a Thomas Young (1803), que indica que para su 
observación se deben cumplir unas condiciones muy específicas: primero, 
que las gotas de agua fuesen muy pequeñas y, segundo, que el rayo, 
cuando emerge de la gota de agua, pudiera interferir con el rayo de la 

gota de agua vecina para que se pudiera 
presentar una interferencia; como la luz 
del sol es policromática, entonces las 
longitudes de onda del rojo se interfieren 
con las del mismo color, pero formadas 
por otras gotas y así ocurre algo parecido 
para los demás colores, como cuando se 
riega gasolina sobre una película de 
agua a la luz del sol.  

Ahora bien, ¿cómo se calcula el ángulo de 
observación de un arco iris? Para esto con-
sideremos una gota de agua, como la que 

Fig. 4.25. Arcos iris supernumerarios. 

Fig. 4.26. Descomposición de la 
luz en una gota de agua.  
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se ve en la Fig. 4.26, donde el rayo de luz blanca entra por la parte superior, 
justamente por el punto A; allí la luz sufre una primera refracción; en el punto 
C, el rayo se refleja; parte de la energía se transmite, pero la mayor parte de 
la energía se refleja con una primera descomposición de colores; en el punto 
A', el rayo vuelve a refractarse al pasar del medio agua al medio aire, donde 
la descomposición de colores se acentúa más. 

¡Atención!: cada gota produce la descomposición de la luz a medida que va 
cayendo, pero el observador, que capta a la vez la combinación de colores, lo 
hace en un rango angular pequeño de alrededor de 42°; el rojo se formará por 
las gotas que están pasando por dicho ángulo; el color amarillo lo formarán las 
gotas que están pasando un poco más abajo y así sucesivamente para el resto 
de colores, hasta el violeta. 
 

 
En la figura 4.27, donde se tiene un esquema de lo que ocurre dentro de 
la gota de agua, en el punto A el rayo de luz penetra hacia la gota con un 
ángulo de incidencia θi respecto a la normal, que es el mismo radio de 
curvatura trazado en dicho punto; en el punto B, el rayo se refleja, parte 
de la energía pasa al medio, como ya se señaló; lo que se refleja llega hasta 
el punto C, donde se vuelve a refractar; para el análisis geométrico, se va 
a considerar únicamente el rayo que corresponda al color rojo; por tanto, 
la desviación total del rayo de luz, según la Fig. 4.27, es: 

 
Luz solar

Gota de agua

Punto de observacion de
los colores del arcoíris

θι

θr

θr

θe

δ1

δ2

δ3

δ

δΤ

A

B

C

D

Fig. 4.27. Desviaciones angulares del rayo incidente 
fuera, dentro y cuando emerge de la gota de agua. 
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𝛿𝛿𝛿𝛿𝑇𝑇𝑇𝑇 = 𝛿𝛿𝛿𝛿1 + 𝛿𝛿𝛿𝛿2 + 𝛿𝛿𝛿𝛿3      (4.20), 

donde 𝛿𝛿𝛿𝛿1 es igual a: 𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 − 𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟; 𝛿𝛿𝛿𝛿2 = 𝜋𝜋𝜋𝜋 𝜋 2𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟 y, por último, en el punto C, 
donde la situación es similar al punto A; es decir: 

𝛿𝛿𝛿𝛿3 = 𝜃𝜃𝜃𝜃𝑆𝑆𝑆𝑆 − 𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟; para una desviación mínima: 𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 = 𝜃𝜃𝜃𝜃𝑆𝑆𝑆𝑆; por tanto, al llevar a 
cabo estos remplazos en la ecuación (4.20), se tiene: 

𝛿𝛿𝛿𝛿𝑇𝑇𝑇𝑇 = 𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 − 𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟 + 𝜋𝜋𝜋𝜋 𝜋 2𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟 + 𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 − 𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟 

𝛿𝛿𝛿𝛿𝑇𝑇𝑇𝑇 = 𝜋𝜋𝜋𝜋 + 2𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 − 4𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟       (4.21).  

Este es el ángulo de refracción 𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟 en el agua, donde el índice de refracción 
es 1.33, si se considera que el índice de refracción del aire fuese muy pa-
recido al del vacío: 1. Como en el punto A se presenta una primera refrac-
ción, el ángulo refractado se lo puede calcular con la Ley de Snell; esto es: 

𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝑛𝑛𝑛𝑛𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 = 𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑛𝑛𝑛𝑛𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟. 

Al despejar 𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟, se tiene: 

𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟 = 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝑛𝑛𝑛𝑛−1 �1
2
𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝑛𝑛𝑛𝑛𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖�       (4.22). 

 

Fig. 4.28. Fotografía de la refracción que sufre un rayo 
de luz al pasar por un círculo de material refringente. 
Fuente propia. 
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Al remplazar en (4.21), la ecuación queda: 

𝛿𝛿𝛿𝛿𝑇𝑇𝑇𝑇 = 𝜋𝜋𝜋𝜋 + 2𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 − 4𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝑛𝑛𝑛𝑛−1 �𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖
𝑆𝑆𝑆𝑆
�       (4.23). 

Ahora bien, se requiere conocer el ángulo de desviación mínima, para lo 
cual se precisa establecer la derivada del ángulo de desviación respecto 
al ángulo de incidencia e igualarlo a cero; esto es: 

𝑁𝑁𝑁𝑁𝛿𝛿𝛿𝛿𝑇𝑇𝑇𝑇
𝑁𝑁𝑁𝑁𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖

= 0 

𝑑𝑑𝑑𝑑𝑆𝑆𝑆𝑆𝑇𝑇𝑇𝑇
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖

= 2 − 4𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖
𝑆𝑆𝑆𝑆

1

�1−�𝑆𝑆𝑆𝑆𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛 �
2 = 0. 

Si se factoriza el índice de refracción, se tiene: 

𝑁𝑁𝑁𝑁𝛿𝛿𝛿𝛿𝑇𝑇𝑇𝑇
𝑁𝑁𝑁𝑁𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖

= 2 −
4𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖
𝑛𝑛𝑛𝑛
𝑛𝑛𝑛𝑛

1

�𝑛𝑛𝑛𝑛2 − 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝑛𝑛𝑛𝑛2𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖
= 0 

2𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖
1

�𝑛𝑛𝑛𝑛2 − 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝑛𝑛𝑛𝑛2𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖
= 1 

𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 = �𝑛𝑛𝑛𝑛
2 − 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝑛𝑛𝑛𝑛2𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖

4
 

𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 = 𝑆𝑆𝑆𝑆2−𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖
4

. 

Como 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝑛𝑛𝑛𝑛2𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 = 1 − 𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖, entonces: 

𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 =
𝑛𝑛𝑛𝑛2 − 1 + 𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖

4
 

𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 = 𝑆𝑆𝑆𝑆2−1
3

. 
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Al remplazar en (4.21), la ecuación queda: 

𝛿𝛿𝛿𝛿𝑇𝑇𝑇𝑇 = 𝜋𝜋𝜋𝜋 + 2𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 − 4𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝑛𝑛𝑛𝑛−1 �𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖
𝑆𝑆𝑆𝑆
�       (4.23). 

Ahora bien, se requiere conocer el ángulo de desviación mínima, para lo 
cual se precisa establecer la derivada del ángulo de desviación respecto 
al ángulo de incidencia e igualarlo a cero; esto es: 

𝑁𝑁𝑁𝑁𝛿𝛿𝛿𝛿𝑇𝑇𝑇𝑇
𝑁𝑁𝑁𝑁𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖

= 0 

𝑑𝑑𝑑𝑑𝑆𝑆𝑆𝑆𝑇𝑇𝑇𝑇
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖

= 2 − 4𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖
𝑆𝑆𝑆𝑆

1

�1−�𝑆𝑆𝑆𝑆𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛 �
2 = 0. 

Si se factoriza el índice de refracción, se tiene: 

𝑁𝑁𝑁𝑁𝛿𝛿𝛿𝛿𝑇𝑇𝑇𝑇
𝑁𝑁𝑁𝑁𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖

= 2 −
4𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖
𝑛𝑛𝑛𝑛
𝑛𝑛𝑛𝑛

1

�𝑛𝑛𝑛𝑛2 − 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝑛𝑛𝑛𝑛2𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖
= 0 

2𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖
1

�𝑛𝑛𝑛𝑛2 − 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝑛𝑛𝑛𝑛2𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖
= 1 

𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 = �𝑛𝑛𝑛𝑛
2 − 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝑛𝑛𝑛𝑛2𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖

4
 

𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 = 𝑆𝑆𝑆𝑆2−𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖
4

. 

Como 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝑛𝑛𝑛𝑛2𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 = 1 − 𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖, entonces: 

𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 =
𝑛𝑛𝑛𝑛2 − 1 + 𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖

4
 

𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 = 𝑆𝑆𝑆𝑆2−1
3

. 

 

De donde: 

𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 = 𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠−1�𝑆𝑆𝑆𝑆2−1
3

        (4.24). 

Al remplazar en la ecuación (4.23), queda: 

𝛿𝛿𝛿𝛿𝑇𝑇𝑇𝑇 = 𝜋𝜋𝜋𝜋 + 2𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠−1 ��𝑆𝑆𝑆𝑆2−1
3
� − 4𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝑛𝑛𝑛𝑛−1 �

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆�𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜𝑠𝑠𝑠𝑠−1�𝑛𝑛𝑛𝑛
2−1
3 �

𝑆𝑆𝑆𝑆
�        (4.25). 

Esta ecuación solo depende del índice de refracción del medio que, en este 
caso, es del agua, n=1.333; al remplazar, se tiene: 

𝛿𝛿𝛿𝛿𝑇𝑇𝑇𝑇 = 𝜋𝜋𝜋𝜋 + 2𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠−1 ��
1.332 − 1

3
� − 4𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝑛𝑛𝑛𝑛−1

⎝

⎜
⎛
𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 �𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠−1�1.332 − 1

3 �

1.33

⎠

⎟
⎞

 

𝛿𝛿𝛿𝛿𝑇𝑇𝑇𝑇 = 𝜋𝜋𝜋𝜋 + 2𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠−1(0.50626)− 4𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝑛𝑛𝑛𝑛−1 �
𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝑛𝑛𝑛𝑛(𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠−10.50626)

1.33 � 

𝛿𝛿𝛿𝛿𝑇𝑇𝑇𝑇 = 𝜋𝜋𝜋𝜋 + 2(59.58492)− 4𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝑛𝑛𝑛𝑛−1 �
𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝑛𝑛𝑛𝑛59.58492

1.33
� 

𝛿𝛿𝛿𝛿𝑇𝑇𝑇𝑇 = 𝜋𝜋𝜋𝜋 + 119.16994− 4𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝑛𝑛𝑛𝑛−1(0.64841) 

𝛿𝛿𝛿𝛿𝑇𝑇𝑇𝑇 = 299.16994− 161.686222 

𝛿𝛿𝛿𝛿𝑇𝑇𝑇𝑇 = 137.48262 

137° 28′ 57′′. 

Esta es la desviación angular del rayo incidente; para conocer el ángulo 
de observación, será la diferencia con el ángulo suplementario; es decir:          

𝛿𝛿𝛿𝛿 = 180− 𝛿𝛿𝛿𝛿𝑇𝑇𝑇𝑇 
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𝛿𝛿𝛿𝛿 = 180− 137.48262 

𝛿𝛿𝛿𝛿 = 42° 31′. 

Este es el ángulo que había 
calculado experimentalmente 
Descartes y, muchos otros, y 
aquí comienza el arco iris con 
el color rojo; de modo que ha-
brá un ángulo para cada color 
y, por supuesto, otros valores 
para el arco secundario. Como 
la refracción de la luz depende 
del color o longitud de onda, 
entonces se puede decir que 
hay un índice de refracción 
para cada color. Según la 
ecuación de Cauchy, el índice 
de refracción se puede expre-
sar como:  

𝑛𝑛𝑛𝑛𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚(𝜆𝜆𝜆𝜆) = �1.3184 + 6.662
𝜆𝜆𝜆𝜆𝜆129.2

�. 

En la Fig. 4.30, se puede ver 
como se distribuye el índice de 
refracción para cada color; por 
ejemplo, para el color violeta, 
el índice es de 1.345, mientras 
que para el color rojo el índice 
de refracción puede ser 1.33, 
razón por la cual cada color 
tiene su propio ángulo.  

En la Fig. 4.29, se puede ver que el ángulo de observación del arco iris va desde 
42.5°, para el color rojo, y 40.5° para el color violeta; dentro de este rango que-
dan los demás colores.  

Fig. 4.30. Índice de refracción versus longitud de 
onda. Fuente: https://fisiquimicamente. 
com/blog/ 2022/02/13/como-se-forma-el-arcoiris/ 

Fig. 4.29. Distribución del ángulo de observa-
ción en función de la longitud de onda. Fuente: 
https:// fisiquimicamente.com/blog/2022/02/13 
/como-se-forma-el-arcoiris/ 
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𝛿𝛿𝛿𝛿 = 180− 137.48262 

𝛿𝛿𝛿𝛿 = 42° 31′. 
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para cada color. Según la 
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de refracción se puede expre-
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𝜆𝜆𝜆𝜆𝜆129.2

�. 

En la Fig. 4.30, se puede ver 
como se distribuye el índice de 
refracción para cada color; por 
ejemplo, para el color violeta, 
el índice es de 1.345, mientras 
que para el color rojo el índice 
de refracción puede ser 1.33, 
razón por la cual cada color 
tiene su propio ángulo.  

En la Fig. 4.29, se puede ver que el ángulo de observación del arco iris va desde 
42.5°, para el color rojo, y 40.5° para el color violeta; dentro de este rango que-
dan los demás colores.  

Fig. 4.30. Índice de refracción versus longitud de 
onda. Fuente: https://fisiquimicamente. 
com/blog/ 2022/02/13/como-se-forma-el-arcoiris/ 

Fig. 4.29. Distribución del ángulo de observa-
ción en función de la longitud de onda. Fuente: 
https:// fisiquimicamente.com/blog/2022/02/13 
/como-se-forma-el-arcoiris/ 

Con un análisis similar un poco más complejo, que se establecería para enten-
der el arco secundario, cuya observación se logra a los 50°, en la Fig. 4.31 se 
puede ver la formación de los dos arcos: el primario, formado por una sola 
reflexión, dentro de la gota genera la escala de colores con el color rojo en la 
parte externa del arco, y el arco secundario, formado por dos reflexiones inter-
nas dentro de la gota de agua, genera una escala de colores en una franja más 
amplia que el arco primario; esta escala resulta invertida respecto al arco pri-
mario, observación que se logra a los 50°. 

En la Fig. 4.28, se tiene una fotografía de la refracción que sufre la luz 
láser cuando penetra en una figura circular, que haría las veces de una 
gota de agua, como una esfera; allí se puede ver el trayecto del rayo de 
luz dentro de la figura circular y, al final, sale al medio aire tras tener 
una refracción y una reflexión; la refracción que ocurre detrás de la figura 
de alta intensidad no es posible verla en la vida real; significa mirar de-
trás de la cortina de gotas de agua y de frente al Sol.  

 

A partir de las últimas teorías sobre la formación de los arcos supernu-
merarios afloran nuevas conclusiones sobre el arco iris; actualmente 
existe una ocasión en la que se celebra el día del arco iris: el 3 de abril. 

Fig. 4.31. Formación de la escala de colores en el arco 
primario y secundario. 
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Tipos de arco iris 

• Arco circuncenital. Se caracteriza por su forma de cuarto de esfera invertida 
en dirección al sol; se origina debido a la interacción de los rayos de luz y los 
cristales de hielo que conforman a algunas nubes (véase Fig. 4.32).  
 

 
• Arco circunhorizontal. Conocido también como arco iris de fuego, por su pare-
cido con una llama, de forma corta, gruesa; son mucho más raros de visualizar que 
los arcos iris comunes. Se originan por la incidencia de la luz al pasar por los cristales 
de hielo en nubes tipo cirrus (véase Fig. 4.33).  

 

Fig. 4.32 Arcoíris formado por cristales de agua en nubes altas. 
Fuente.  

Fig. 4.33. Arco iris de tipo horizontal (sector circular de radio muy 
grande) formado por refracción en cristales de agua. Fuente. https://fi-
siquimicamente. com/blog/2022/02/13/como-se-forma-el-arcoiris/ 



143

Capítulo 4. Ley de Snell para la refracción

Tipos de arco iris 

• Arco circuncenital. Se caracteriza por su forma de cuarto de esfera invertida 
en dirección al sol; se origina debido a la interacción de los rayos de luz y los 
cristales de hielo que conforman a algunas nubes (véase Fig. 4.32).  
 

 
• Arco circunhorizontal. Conocido también como arco iris de fuego, por su pare-
cido con una llama, de forma corta, gruesa; son mucho más raros de visualizar que 
los arcos iris comunes. Se originan por la incidencia de la luz al pasar por los cristales 
de hielo en nubes tipo cirrus (véase Fig. 4.33).  

 

Fig. 4.32 Arcoíris formado por cristales de agua en nubes altas. 
Fuente.  

Fig. 4.33. Arco iris de tipo horizontal (sector circular de radio muy 
grande) formado por refracción en cristales de agua. Fuente. https://fi-
siquimicamente. com/blog/2022/02/13/como-se-forma-el-arcoiris/ 

 • Halo Solar   

No es sencillo de observar; se requieren unas condiciones atmosféricas 
muy especiales alrededor del sol y, en ocasiones, alrededor de la luna, con 
una coloración algo débil y de forma invertida, respecto a los arcos iris 
comunes (véase Fig. 4.34). 

 
• Arco iris lunar. Se origina en una noche de luna llena, sobre las gotas 
de lluvia o niebla; su color es muy débil, producto de la escasa luz que 
proyecta la luna; la coloración es casi imperceptible para el ojo humano; 
en la mayoría de los casos, solo se ve un débil arco blanquecino. Sin em-
bargo, al fotografiarlo con una cámara de larga exposición, se puede ob-
servar su coloración (véase Fig. 4.35).  

 

Fig. 4.34. Halo solar. Fuente: https://fisiquimica mente.com 
/blog/2022/02/13/como-se-forma-el-arcoiris/ 

Fig. 4.35. Arco iris formado por la luz lunar. Fuente. https://fisi-
quimicamente.com/blog/2022/02/13/como-se-forma-el-arcoiris/ 
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Descomposición de la luz por una esfera de vidrio llena de agua. En 
la Fig. 4.36, se puede ver la descomposición de luz led de una linterna, 
que incide sobre una esfera de vidrio llena de agua colocada sobre el disco 

de Hart, en el que se puede 
ver la descomposición de la 
luz blanca en colores del es-
pectro visible, experimento 
similar al de Descartes y 
contemporáneos para que 
se pudiera entender la na-
turaleza del arco iris; los 
colores que se pueden ver 
en la superficie los genera 
una sola gota; al observar 
directamente hacia la es-
fera, solo se detecta un co-
lor; para poder observar to-
dos colores, se debe despla-
zar de un lado a otro en 
forma horizontal, debido a 
que cada color se obtiene a 

diferente ángulo; en el arco iris, el color rojo se forma por millones de 
gotas de agua que, al pasar por esa zona, permiten la descomposición de 
ese color; metros más abajo se descompone el color amarillo, y así sucesi-
vamente; esto para un observador único; otro observador, aun al hallarse 
lo más cerca posible del primero, verá su arco iris geométricamente simi-
lar, NO igual al primero;  esto resulta lo más interesante.  

Así que cuando una persona observe un arco iris, ese es único y solo suyo.     
(Fotografía tomada en el primer semestre de 2024, en el curso de Óptica, 
Universidad de Nariño).  

 

 

 

Fig. 4.36. Descomposición de la luz mediante una 
esfera de vidrio con agua. Fuente propia. 
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Capítulo 5 

Superficies curvas de medios refringentes

 
________________________ 

 

Telescopio Hubble, puesto en órbita a 612 kilómetros de altura por el transbordador Discovery, el 24 de abril de 1990; 
lanzado desde la rampa 39B del Centro Espacial Kennedy. La misión fue una de las más esperadas del programa STS; su 
fabricación se inició en los años 70’s; fue el primer artefacto reparado en el espacio para eliminar el astigmatismo. Fuente: 
https://www.farodevigo.es/sociedad/2018/12/22/ telescopio-hubble-permite-detectar-materia-15816239.html
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5 Refracción en superficies curvas (esféricas) 
Ahora, considérese la refracción en una superficie esférica que separa dos 
medios con índices de refracción absoluto n1 y n2. 

Según la Fig. 5.1, desde el punto O (objeto) sale un rayo que incide en el 
punto A, de modo que el rayo OA se refracta al seguir el segmento AD, el 
que, al prolongarse, corta al eje principal en el punto I, en el primer 
medio, para así generarse una imagen virtual. 

 

Según los triángulos:  

IAC y OAC, se tiene que 𝛾𝛾𝛾𝛾 es el ángulo externo al triángulo OAC; de igual 
forma para el triángulo IAC, por lo que se puede decir: 
 

𝛾𝛾𝛾𝛾 = 𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 + 𝛼𝛼𝛼𝛼 y 𝛾𝛾𝛾𝛾 = 𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟 + 𝛽𝛽𝛽𝛽       (5.1) 

Por otra parte, al aplicar la Ley de Snell en A, se tiene: 

𝑛𝑛𝑛𝑛1𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 = 𝑛𝑛𝑛𝑛2𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟. 

Como se trata de ángulos muy pequeños, entonces la Ley de Snell se 
puede aproximar a: 

𝑛𝑛𝑛𝑛1𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 = 𝑛𝑛𝑛𝑛2𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟.        

 

Fig. 5.1. Rayos refractados en un medio transparente con curva cóncava. 
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Al combinar con la expresión (5.1), se tiene: 

𝑛𝑛𝑛𝑛1(𝛾𝛾𝛾𝛾 𝛾 𝛾𝛾𝛾𝛾) = 𝑛𝑛𝑛𝑛2(𝛾𝛾𝛾𝛾 𝛾 𝛾𝛾𝛾𝛾)       (5.2). 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝛼𝛼𝛼𝛼 = ℎ
𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜

A partir de la Fig. 5.1, se tiene que: 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝛼𝛼𝛼𝛼 = ℎ
𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜

 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝛾𝛾𝛾𝛾 = ℎ
𝑅𝑅𝑅𝑅
 

 

De igual modo, en ángulos pequeños: 

𝛼𝛼𝛼𝛼 = ℎ
𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜

   𝛽𝛽𝛽𝛽 = ℎ
𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖

   𝛾𝛾𝛾𝛾 = ℎ
𝑅𝑅𝑅𝑅
. 

Si se remplaza en (5.2), se tiene: 

𝑛𝑛𝑛𝑛1 �
ℎ
𝑅𝑅𝑅𝑅
−

ℎ
𝑁𝑁𝑁𝑁𝑐𝑐𝑐𝑐
� = 𝑛𝑛𝑛𝑛2 �

ℎ
𝑅𝑅𝑅𝑅
−
ℎ
𝑁𝑁𝑁𝑁𝑐𝑐𝑐𝑐
� 

𝑛𝑛𝑛𝑛1 �
1
𝑅𝑅𝑅𝑅
−

1
𝑁𝑁𝑁𝑁𝑐𝑐𝑐𝑐
� = 𝑛𝑛𝑛𝑛2 �

1
𝑅𝑅𝑅𝑅
−

1
𝑁𝑁𝑁𝑁𝑐𝑐𝑐𝑐
� 

𝑆𝑆𝑆𝑆1
𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜
− 𝑆𝑆𝑆𝑆2

𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖
= 1

𝑅𝑅𝑅𝑅
(𝑛𝑛𝑛𝑛1 − 𝑛𝑛𝑛𝑛2)         (5.3), 

que es la fórmula de Descartes para la refracción en superficies esféricas, 
el signo menos de di es porque la imagen puede ser virtual. 

El foco, o primer punto focal de una superficie esférica transparente, 
define condiciones cuando el objeto ocupa su lugar, así: 

Si un objeto se encuentra en el punto focal, de este saldrán rayos hacia la 
superficie esférica de tal forma que los rayos refractados son paralelos al 
eje principal, lo cual equivale a tener la imagen del punto en el infinito; 
es decir que 𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖 = ∞, para lo cual 𝑁𝑁𝑁𝑁𝑜𝑜𝑜𝑜 = 𝑓𝑓𝑓𝑓; entonces: 

𝑆𝑆𝑆𝑆1
𝜋𝜋𝜋𝜋
− 𝑆𝑆𝑆𝑆2

∞ = 𝑆𝑆𝑆𝑆1−𝑆𝑆𝑆𝑆2
𝑅𝑅𝑅𝑅

. 

A partir de esto se puede llegar a que un foco de objeto es:  

𝑓𝑓𝑓𝑓0 = 𝑆𝑆𝑆𝑆1
𝑆𝑆𝑆𝑆1−𝑆𝑆𝑆𝑆2

𝑅𝑅𝑅𝑅         (5.4). 

do
h

=αtan
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De forma análoga, cuando los rayos inciden y son paralelos al eje principal, los 
rayos refractados van a pasar por el foco. Así que, en este caso, la distancia de 
la imagen a la superficie esférica se denomina distancia focal imagen y se 
designa con fi, lo que lleva a que do →∞; entonces, 

𝑆𝑆𝑆𝑆1
∞ − 𝑆𝑆𝑆𝑆2

𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖
= 𝑆𝑆𝑆𝑆1−𝑆𝑆𝑆𝑆2

𝑅𝑅𝑅𝑅
. 

Como 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 ≅ 𝑓𝑓𝑓𝑓, entonces: 

𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖 = − 𝑆𝑆𝑆𝑆2
𝑆𝑆𝑆𝑆1−𝑆𝑆𝑆𝑆2

𝑅𝑅𝑅𝑅        (5.5). 

Como 𝑓𝑓𝑓𝑓0 + 𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖 = 𝑅𝑅𝑅𝑅, al combinar, se tendrá: 
𝑆𝑆𝑆𝑆1
𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜
− 𝑆𝑆𝑆𝑆2

𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖
= 𝑆𝑆𝑆𝑆1−𝑆𝑆𝑆𝑆2

𝑓𝑓𝑓𝑓0(𝑛𝑛𝑛𝑛1−𝑛𝑛𝑛𝑛2)
𝑛𝑛𝑛𝑛1

. 

De modo que:   
𝑆𝑆𝑆𝑆1
𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜
− 𝑆𝑆𝑆𝑆2

𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖
= 𝑆𝑆𝑆𝑆1

𝜋𝜋𝜋𝜋0
, 

o  −𝑆𝑆𝑆𝑆2
𝜋𝜋𝜋𝜋𝑖𝑖𝑖𝑖

, para una segunda combinación. 

5.1 Lentes 

Cuando se refiere a lentes, la primera 
idea que se tiene se relaciona con las 
lentes de los anteojos de los padres o 
abuelos, de compañeros o, ¿por qué no?, 
las mismas que utiliza y, claro, entre 
ellas hay de múltiples funciones de 
acuerdo a la necesidad del paciente, 

desde anteojos deportivos hasta complicados lentes, que permiten tener 
una visión adecuada. 

No obstante, las lentes de los anteojos son dispositivos ópticos que permiten 
ver con claridad y nitidez los objetos a corta, mediana y larga distancia; estos 
dispositivos se elaboran de cristal, acrílico u otra sustancia que resultase 
altamente transparente; en la naturaleza, se los encuentra de material 
transparente gelatinoso y hasta en estado líquido, como es el caso de los ojos 

Fig. 5.2. Lentes en anteojos.  
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de todos los seres sobre la superficie de la tierra capaces de ver; de igual modo, 
puede ocurrir con cavidades rellenas de gases, como lo que sucede en ocasiones 
en la atmósfera. 

Otras lentes de uso cotidiano son las lupas o 
elementos que permiten ver cosas muy 
pequeñas debido a su poder de aumento, 
elementos que se consiguen con gran 
facilidad en el mercado, como lo que se puede 
ver en la Fig. 5.3.  

En general, se puede decir que las lentes son 
elementos de material refringente cuyas 
superficies corresponden a curvas; lo usual 
es que fuesen esferas, como se ve en la Fig. 

5.4; así entonces, la lente se forma por la intersección de dos esferas que tienen 
dos superficies: la primera tiene un radio de curvatura R1 y la segunda tiene 
el radio de curvatura R2; los extremos AB, que se definen como abertura de la 
lente, limitan las superficies. 

La recta que une los dos centros de curvatura C1 y C2 se convierte en el eje de 
simetría de las superficies refringente y forma parte de los elementos 
fundamentales de las lentes; el centro de la lente, con el eje de simetría, será 
el centro óptico; con esta sencillez, se puede describir la geometría de las 
lentes; ahora es necesario conocer que tipos de lentes existentes. 

 

 
Fig. 5.4. Intersección de dos esferas de diferente diámetro. 

 
C1 C2

R1

R2

A

B

Fig. 5.3. Lupa escolar o lente 
convergente. Fuente propia 
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5.2 Clasificación   de lentes 
 

Lentes convergentes   

Son elementos ópticos tallados en material refringente cuyas superficies se 
combinan entre planas y curvas, de diferentes radios; por lo general, las 
superficies curvas corresponden a esferas; la característica fundamental de 
estos lentes radica en que los rayos refractados convergen hacia un punto 
denominado foco, después de que el haz de luz hubiera llegado al lente de 
forma paralela al eje de simetría; entre la gran variedad de este tipo de lentes, 

se pueden clasificar en: 

• Biconvexos. Son lentes formados por la 
intersección de dos casquetes esféricos 
convexos de igual radio de curvatura. 

• Plano convexos. Lentes que se forman 
por la intersección de una superficie plana y 
una superficie esférica convexa.  

• Menisco convergentes. Lentes formados 
por la intersección de dos superficies esféricas; 
la interna es de mayor radio que la externa, tal 
como se puede ver en la Fig. 5.5. 

Lentes divergentes 

Son elementos ópticos tallados en material refringente cuyas superficies 
se combinan entre planas y curvas, de diferentes radios; por lo general, 
las superficies curvas corresponden a esferas; a diferencia de los lentes 
convergentes, estos lentes se tallan de tal forma que las superficies curvas 
no se cortan, como se puede ver en la Fig. 5.6; la característica 
fundamental de estos lentes radica en que los rayos refractados divergen,  
pero su prolongación pasa por un punto denominado foco virtual, en el 
lado opuesto de la divergencia, después de que el haz de luz hubiera 
llegado al lente de forma paralela al eje de simetría; entre la gran 
variedad de este tipo de lentes, se pueden clasificar en: 

 
Biconvexo

Plano convexo

Menisco convergente

Fig. 5.5. Lentes convergentes. 
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Biconvexo

Plano convexo
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Fig. 5.5. Lentes convergentes. 

• Bicóncavos. Son lentes cuyas superficies 
cóncavas son simétricas y están opuestas.  

• Plano cóncavos. Lentes que tienen una su-
perficie plana y otra cóncava. 

• Menisco divergente. Lentes que tienen 
dos superficies, una cóncava de menor ra-
dio y otra convexa, orientadas hacia un 
mismo lado, como se ve en la Fig. 5.6. 

5.3 Elementos fundamentales de 
una lente convergente 

En la Fig. 5.7, se pueden apreciar los 
elementos fundamentales de una lente 

convergente; entre ellos, se destacan: 

Eje principal o recta que pasa por los centros de las superficies esféri-
cas; cuando una de las caras es plana, el eje principal se convierte en la 
normal a la superficie plana desde el centro de la cara esférica. 

Foco principal.  Punto de corte 
de los rayos refractados prove-
nientes de rayos que inciden de 
forma paralela al eje de simetría. 

Centro óptico. Es el punto que se 
encuentra situado en el centro de 
la lente, justamente sobre el eje 
de simetría: “es similar al vértice 
en los espejos esféricos”. 

Distancia focal.  Todas las lentes tienen dos focos, uno por cada superfi-
cie esférica; si la lente es biconvexa, los focos están a igual distancia del 
centro óptico; en las demás lentes las distancias son diferentes. 

 Biconcavo

Plano concavo

Menisco divergente

Fig. 5.6. Lentes divergentes. 

Fig. 5.7. Lente convergente con superficies 
de diferente radio. 
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R2
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Eje de simetríao
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Plano focal. Es un plano cuya normal es el eje de simetría y se encuentra 
justamente en el foco, “uno por cada foco”.   

5.4 Rayos fundamentales o paraxiales de una lente 
convergente biconvexa  

En la Fig. 5.8 se pueden ver los rayos fundamentales de una lente 
convergente, así: 

Rayo paralelo. Es el rayo de luz 
que incide de forma paralela al eje 
de simetría por la primera 
superficie y se refracta por el foco f1. 

Rayo focal. Es lo contrario del an-
terior: el rayo incidente pasa por el 
foco 2 y se refracta de forma para-
lela al eje de simetría. 

Rayo del centro de curvatura. Este rayo incide por el centro de curvatura 
2 y se refracta por el centro de curvatura 1; este rayo es sumamente impor-
tante, porque permite calcular experimentalmente el foco de la lente.   

Rayo del centro óptico.  Este rayo incide por el centro de la lente y pro-
sigue en la dirección que llevaba el rayo incidente. 

En la Fig. 5.9, se tienen fotografías de rayos de luz que atraviesan una 
figura de lente convergente, con lo cual se muestran los rayos fundamen-
tales; en este caso, el rayo incide de izquierda a derecha. En el recuadro 
1, el rayo incide de forma paralela al eje de simetría, se refracta por el 
foco 2; en el recuadro 2, el rayo incide por el foco 2 y se refracta de forma 
paralela; en el recuadro 3, el rayo incidente lo hace por el centro de cur-
vatura 2 y se refracta por el centro de curvatura 1. Y, por último, en el 
recuadro 4, el rayo incide por el centro óptico; como se ve en la fotografía, 
este rayo tiene una leve desviación lateral para rayos paraxiales. 

Fig. 5.8. Rayos fundamentales en una lente.  
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Plano focal. Es un plano cuya normal es el eje de simetría y se encuentra 
justamente en el foco, “uno por cada foco”.   

5.4 Rayos fundamentales o paraxiales de una lente 
convergente biconvexa  

En la Fig. 5.8 se pueden ver los rayos fundamentales de una lente 
convergente, así: 

Rayo paralelo. Es el rayo de luz 
que incide de forma paralela al eje 
de simetría por la primera 
superficie y se refracta por el foco f1. 

Rayo focal. Es lo contrario del an-
terior: el rayo incidente pasa por el 
foco 2 y se refracta de forma para-
lela al eje de simetría. 

Rayo del centro de curvatura. Este rayo incide por el centro de curvatura 
2 y se refracta por el centro de curvatura 1; este rayo es sumamente impor-
tante, porque permite calcular experimentalmente el foco de la lente.   

Rayo del centro óptico.  Este rayo incide por el centro de la lente y pro-
sigue en la dirección que llevaba el rayo incidente. 

En la Fig. 5.9, se tienen fotografías de rayos de luz que atraviesan una 
figura de lente convergente, con lo cual se muestran los rayos fundamen-
tales; en este caso, el rayo incide de izquierda a derecha. En el recuadro 
1, el rayo incide de forma paralela al eje de simetría, se refracta por el 
foco 2; en el recuadro 2, el rayo incide por el foco 2 y se refracta de forma 
paralela; en el recuadro 3, el rayo incidente lo hace por el centro de cur-
vatura 2 y se refracta por el centro de curvatura 1. Y, por último, en el 
recuadro 4, el rayo incide por el centro óptico; como se ve en la fotografía, 
este rayo tiene una leve desviación lateral para rayos paraxiales. 

Fig. 5.8. Rayos fundamentales en una lente.  
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5.5 Desplazamiento lateral para el rayo no paraxial que pasa 
por el centro óptico 

Sea el rayo de luz ABCD no paraxial, que pasa por el centro óptico 0, pero 
debido al espesor de la lente sufre una desviación lateral δ; el camino o 

dirección original del rayo 
AB se ve modificado al pasar 
por la lente al tomar la 
dirección BC y, como el rayo 
emergente CD se aleja de la 
dirección original del rayo 
AB, como se puede ver en la 
Fig. 5.10, esa desviación 
lateral resulta de atravesar 
la lámina de caras paraleles 
formada por las tangentes T1 

1 2 

3 4 

Fig. 5.9. Fotografía de la refracción de la luz láser al pasar por una figura 
translúcida en forma de lente: 1) Rayo paralelo; 2) rayo focal; 3) Rayo de 
los centros de curvatura; 4) Rayo del centro óptico. Fuente propia.  

Fig. 5.10. Desviación lateral de una lente debido a 
su espesor. 
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en el punto B y  T2 en el punto C; en dichos puntos, el radio de curvatura 
de las dos superficies resulta normal a las tangentes; esto siempre va a 
ocurrir cuando los rayos llegan de esa forma a la lente que, en realidad, 
tiene un espesor , razón por la cual se establece que los rayos fuesen 
paralelos al eje de simetría para evitar desviaciones laterales que 
afectasen la formación de imágenes, tal como se puede ver en la Fig. 5.10.       

5.6 Formación de imágenes con lentes convergentes y 
características de la imagen 

De forma análoga a los espejos cóncavos, se llevará a cabo la formación 
de imágenes con lentes biconvexos o lentes convergentes, así: 

1) Cuando ∞ ≥ 𝑁𝑁𝑁𝑁0 > 𝑅𝑅𝑅𝑅; para lentes simétricos, aquí existen dos casos: 

1a) cuando 𝑁𝑁𝑁𝑁𝑜𝑜𝑜𝑜 → ∞. 

En este caso, los rayos inciden de 
forma paralela al eje de simetría 
y este tipo de rayo se refracta por 
el foco, como se ve en la Fig. 5.11.  

De ser un haz de rayos paralelos, 
todos se concentrarían en un solo 
punto: el foco 1; como es un 
punto, no habrá formación de 
imagen como tal. Una aplicación 
es la concentración de rayos de 
sol con una lupa para producir 
fuego; como se puede ver en la 
Fig. 5.12, los rayos refractados 
se concentran en el foco.  

1b) ∞ >> d0 > R. 
En este caso, el objeto se 
encuentra cuando do tiene una 

distancia mayor que el radio y, por supuesto, muchas veces menor que el 
infinito, como se puede ver en la Fig. 5.13. 

Fig. 5.11. Rayo paralelo que se refracta y 
pasa por el foco de la lente. 
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Fig. 5.12. Rayos paralelos que cruzan el 
foco de la lente. 
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en el punto B y  T2 en el punto C; en dichos puntos, el radio de curvatura 
de las dos superficies resulta normal a las tangentes; esto siempre va a 
ocurrir cuando los rayos llegan de esa forma a la lente que, en realidad, 
tiene un espesor , razón por la cual se establece que los rayos fuesen 
paralelos al eje de simetría para evitar desviaciones laterales que 
afectasen la formación de imágenes, tal como se puede ver en la Fig. 5.10.       

5.6 Formación de imágenes con lentes convergentes y 
características de la imagen 

De forma análoga a los espejos cóncavos, se llevará a cabo la formación 
de imágenes con lentes biconvexos o lentes convergentes, así: 

1) Cuando ∞ ≥ 𝑁𝑁𝑁𝑁0 > 𝑅𝑅𝑅𝑅; para lentes simétricos, aquí existen dos casos: 

1a) cuando 𝑁𝑁𝑁𝑁𝑜𝑜𝑜𝑜 → ∞. 

En este caso, los rayos inciden de 
forma paralela al eje de simetría 
y este tipo de rayo se refracta por 
el foco, como se ve en la Fig. 5.11.  

De ser un haz de rayos paralelos, 
todos se concentrarían en un solo 
punto: el foco 1; como es un 
punto, no habrá formación de 
imagen como tal. Una aplicación 
es la concentración de rayos de 
sol con una lupa para producir 
fuego; como se puede ver en la 
Fig. 5.12, los rayos refractados 
se concentran en el foco.  

1b) ∞ >> d0 > R. 
En este caso, el objeto se 
encuentra cuando do tiene una 

distancia mayor que el radio y, por supuesto, muchas veces menor que el 
infinito, como se puede ver en la Fig. 5.13. 

Fig. 5.11. Rayo paralelo que se refracta y 
pasa por el foco de la lente. 
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Fig. 5.12. Rayos paralelos que cruzan el 
foco de la lente. 
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• Características de la imagen 

i) La imagen se invierte; 
ii) la imagen es de menor tamaño 
que el objeto; 
iii) la imagen es real y la forman 
rayos refractados; 
iv) la imagen se encuentra en el 
rango R > di > F (véase la Fig. 
5.13). 
 
2) R ≥ d0 > F; aquí también se 
presentan dos casos: 

2a) Cuando R = d0. Este caso es 
muy importante, pues permite 
encontrar de forma experimental el 
radio de curvatura de la lente 
(véase la Fig. 5.14). 

 

Características de la imagen 

i) La imagen se invierte; 
ii) la imagen es de igual tamaño 
que el objeto;  
iii) la imagen es real, ya que la 
forman rayos refractados;  
iv) la imagen se encuentra justa-
mente en el centro de curvatura 
de la superficie; por tanto, di = R1. 

2b) R > d0 > F; en este caso, el 
objeto se acerca a la lente, pero con una posición mayor que la del foco 
(véase Fig. 5.15). 

Fig. 5.13. Imagen del objeto cuando se 
encuentra entre el infinito y el radio.   C1C2
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Fig. 5.14. Formación de la imagen en el 
centro de curvatura. 
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Fig. 5.15. Imagen del objeto cuando se halla 
entre el centro y el foco. 
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Características de la imagen 

i) La imagen se invierte; 
ii) la imagen es de mayor tamaño que el objeto; 
iii) la imagen es real, pues la forman rayos refractados; 
iv) la imagen se forma en el rango  
∞ >> di > R. 

Este es el caso de los aparatos que sirven para proyectar imágenes en el 
cine, retroproyectores, proyectores de diapositivas, etc. Hoy en día, 

modernos sistemas ópticos 
digitales, como el Video 
Beam, han remplazado a 
estos aparatos.  

3)  f ≥ d0; aquí también hay 
dos casos: 

3a) d0 = F; el objeto se ubica 
justamente en la distancia 
focal (véase Fig. 5.16). 

Características de la imagen 

Desde el extremo superior B del objeto salen rayos paralelos y del centro 
óptico que, al refractarse, estos rayos adquieren direcciones similares; es 
decir, se tienen rayos paralelos, con lo cual no habría posibilidad de 
formación de imagen o se podría decir que la imagen se ha formado en el 

infinito, o sea: di = ∞; en la 
práctica, no hay imagen. 

Como aplicación de esta 
posición se encuentra algún 
tipo de reflectores, farolas de 
vehículos, linternas, etc. Los 
rayos que emergen desde el 
punto focal se refractan de 
forma paralela al eje de 

Fig. 5.16. Cuando el objeto está en el foco, no hay 
formación de imagen. 
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Fig. 5.17. Rayos paralelos cuando el objeto es 
puntiforme y está en el foco. 
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Características de la imagen 

i) La imagen se invierte; 
ii) la imagen es de mayor tamaño que el objeto; 
iii) la imagen es real, pues la forman rayos refractados; 
iv) la imagen se forma en el rango  
∞ >> di > R. 

Este es el caso de los aparatos que sirven para proyectar imágenes en el 
cine, retroproyectores, proyectores de diapositivas, etc. Hoy en día, 

modernos sistemas ópticos 
digitales, como el Video 
Beam, han remplazado a 
estos aparatos.  

3)  f ≥ d0; aquí también hay 
dos casos: 

3a) d0 = F; el objeto se ubica 
justamente en la distancia 
focal (véase Fig. 5.16). 

Características de la imagen 

Desde el extremo superior B del objeto salen rayos paralelos y del centro 
óptico que, al refractarse, estos rayos adquieren direcciones similares; es 
decir, se tienen rayos paralelos, con lo cual no habría posibilidad de 
formación de imagen o se podría decir que la imagen se ha formado en el 

infinito, o sea: di = ∞; en la 
práctica, no hay imagen. 

Como aplicación de esta 
posición se encuentra algún 
tipo de reflectores, farolas de 
vehículos, linternas, etc. Los 
rayos que emergen desde el 
punto focal se refractan de 
forma paralela al eje de 

Fig. 5.16. Cuando el objeto está en el foco, no hay 
formación de imagen. 
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Fig. 5.17. Rayos paralelos cuando el objeto es 
puntiforme y está en el foco. 
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simetría, lo que determina un chorro de luz más o menos uniforme, como 
lo que se tiene en la Fig. 5.17. 

3b) f > d0; el objeto se acerca tanto a la lente, que queda entre esta y el 
foco de la lente (véase Fig. 5.18). 

Características de la imagen 

i) La imagen está derecha; 

ii) La imagen es de mayor ta-
maño que el objeto; 
iii) la imagen es virtual; se forma 
por la prolongación de los rayos 
refractados del rayo paralelo y el 
rayo del centro óptico; 
iv) la imagen se forma en el mismo 
lado en el que se encuentra el ob-
jeto; por tanto, di < 0 (negativa). 

Este es el caso de la observación 
que se establece con lupas o 
lentes biconvexas.  

5.7 Ecuación de las lentes        

Una lente es un medio refringente limitado por dos superficies curvas, 
por lo general esferas en medio del aire; por tanto, el índice de refracción 
del aire se puede considerar como 1 y el índice del medio refringente de 
la lente como n.  

A partir de la ecuación de la refracción en medios refringentes limitados 
por superficies curvas, se tiene: 

𝑆𝑆𝑆𝑆1
𝑑𝑑𝑑𝑑0
− 𝑆𝑆𝑆𝑆2

𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖
= 1

𝑅𝑅𝑅𝑅
(𝑛𝑛𝑛𝑛1 − 𝑛𝑛𝑛𝑛2).        

Si se considera que el medio uno es aire, donde el índice de refracción es 
n =1, se tiene: 

Fig. 5.18. Imagen virtual producida por una 
lente convergente. 
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1
𝑑𝑑𝑑𝑑0
− 𝑆𝑆𝑆𝑆

𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖′
= 1−𝑆𝑆𝑆𝑆

𝑅𝑅𝑅𝑅
       (5.6). 

En la figura 5.19, se puede 
ver que la ecuación (5.6) se 
refiere a la refracción que 
ocurre en el punto P.  

En realidad, para el rayo 
incidente que sale desde el 

objeto O y llega al punto P, si no hubiera una segunda refracción, la 
imagen se formaría en I' a una distancia di', una refracción que 
corresponde a la línea de color magenta.  
 
Ahora bien, la segunda refracción que ocurre en el punto Q se debe a la 
segunda superficie esférica de radio R2; el rayo nuevamente se dobla para 
cortar al eje de simetría en el punto I a la distancia di del vértice v'. En 
este caso, es como si el rayo incidente proviniera desde el punto Q; por 
tanto, la ecuación quedará: 

𝑆𝑆𝑆𝑆
𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖′

+ 1
𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖

= 𝑆𝑆𝑆𝑆−1
𝑅𝑅𝑅𝑅2

       (5.7). 

Como a la primera refracción se le aumenta una segunda, eso equivale a 
decir que se suman (5.6) y (5.7); esto es: 

1
𝑑𝑑𝑑𝑑0
− 𝑆𝑆𝑆𝑆

𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖′
+ 𝑆𝑆𝑆𝑆

𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖′
+ 1

𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖
= 1−𝑆𝑆𝑆𝑆

𝑅𝑅𝑅𝑅1
+ 𝑆𝑆𝑆𝑆−1

𝑅𝑅𝑅𝑅2
. 

O sea: 
1
𝑑𝑑𝑑𝑑0

+ 1
𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖

= (𝑛𝑛𝑛𝑛 𝑛 1) � 1
𝑅𝑅𝑅𝑅2
− 1

𝑅𝑅𝑅𝑅1
�       (5.8). 

Esta ecuación se conoce como ecuación de Descartes para lentes delgados. 

Si se considera la construcción de imágenes cuando el objeto se encuentra 
en el foco y es puntiforme, la imagen se forma en el infinito; esto es:  

1
𝜋𝜋𝜋𝜋

= (𝑛𝑛𝑛𝑛 𝑛 1) � 1
𝑅𝑅𝑅𝑅2
− 1

𝑅𝑅𝑅𝑅1
�       (5.9). 

Fig. 5.19. Un rayo proveniente de un objeto 
puntiforme forma una imagen puntiforme. 
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1
𝑑𝑑𝑑𝑑0
− 𝑆𝑆𝑆𝑆

𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖′
= 1−𝑆𝑆𝑆𝑆

𝑅𝑅𝑅𝑅
       (5.6). 

En la figura 5.19, se puede 
ver que la ecuación (5.6) se 
refiere a la refracción que 
ocurre en el punto P.  

En realidad, para el rayo 
incidente que sale desde el 

objeto O y llega al punto P, si no hubiera una segunda refracción, la 
imagen se formaría en I' a una distancia di', una refracción que 
corresponde a la línea de color magenta.  
 
Ahora bien, la segunda refracción que ocurre en el punto Q se debe a la 
segunda superficie esférica de radio R2; el rayo nuevamente se dobla para 
cortar al eje de simetría en el punto I a la distancia di del vértice v'. En 
este caso, es como si el rayo incidente proviniera desde el punto Q; por 
tanto, la ecuación quedará: 

𝑆𝑆𝑆𝑆
𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖′

+ 1
𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖

= 𝑆𝑆𝑆𝑆−1
𝑅𝑅𝑅𝑅2

       (5.7). 

Como a la primera refracción se le aumenta una segunda, eso equivale a 
decir que se suman (5.6) y (5.7); esto es: 

1
𝑑𝑑𝑑𝑑0
− 𝑆𝑆𝑆𝑆

𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖′
+ 𝑆𝑆𝑆𝑆

𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖′
+ 1

𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖
= 1−𝑆𝑆𝑆𝑆

𝑅𝑅𝑅𝑅1
+ 𝑆𝑆𝑆𝑆−1

𝑅𝑅𝑅𝑅2
. 

O sea: 
1
𝑑𝑑𝑑𝑑0

+ 1
𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖

= (𝑛𝑛𝑛𝑛 𝑛 1) � 1
𝑅𝑅𝑅𝑅2
− 1

𝑅𝑅𝑅𝑅1
�       (5.8). 

Esta ecuación se conoce como ecuación de Descartes para lentes delgados. 

Si se considera la construcción de imágenes cuando el objeto se encuentra 
en el foco y es puntiforme, la imagen se forma en el infinito; esto es:  

1
𝜋𝜋𝜋𝜋

= (𝑛𝑛𝑛𝑛 𝑛 1) � 1
𝑅𝑅𝑅𝑅2
− 1

𝑅𝑅𝑅𝑅1
�       (5.9). 

Fig. 5.19. Un rayo proveniente de un objeto 
puntiforme forma una imagen puntiforme. 
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De modo que la ecuación de Descartes para lentes delgados se puede 
escribir como:  

1
𝑑𝑑𝑑𝑑0

+ 1
𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖

= 1
𝜋𝜋𝜋𝜋
. 

Esta ecuación resulta similar a la ecuación de los espejos esféricos y se la 
conoce como ecuación de Descartes, la ecuación 5.9 se conoce con el 
nombre de ecuación del constructor de lente. 

Por otra parte, también se pueden establecer algunas deducciones 
geométricas, así: 

 

En la gráfica de la Fig. 5.20, se pueden ver los triángulos B'PB y Of1B'; 
los dos triángulos son semejantes; de igual modo, el triángulo BB'Q es 
semejante con Bf2O. Respecto al primer triángulo, se puede decir: 

𝜋𝜋𝜋𝜋1𝑂𝑂𝑂𝑂
𝑃𝑃𝑃𝑃𝑞𝑞𝑞𝑞

= 𝑘𝑘𝑘𝑘
𝑘𝑘𝑘𝑘+𝑆𝑆𝑆𝑆

     (5.10) 

Donde n y m son las distancias del objeto y de la imagen al centro óptico, 
además.  f1O = f y BP es do 

 

Por otra parte, respecto al segundo triángulo, se tiene: 
𝜋𝜋𝜋𝜋2𝑂𝑂𝑂𝑂
𝑞𝑞𝑞𝑞′𝑀𝑀𝑀𝑀 = 𝑆𝑆𝑆𝑆

𝑘𝑘𝑘𝑘+𝑆𝑆𝑆𝑆
     (5.11) 

 

Fig. 5.20. Elementos para deducir la ecuación de Newton para 
las lentes. 
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Como B’Q = di 

Así, se considera que la lente es simétrica; por tanto, las distancias focales 
son iguales; es decir:  f1 = f2 = f.  Al sumar (5.10) y (5.11), se tiene:  

𝜋𝜋𝜋𝜋
𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜

+ 𝜋𝜋𝜋𝜋
𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖

= 𝑘𝑘𝑘𝑘
𝑘𝑘𝑘𝑘+𝑆𝑆𝑆𝑆

+ 𝑆𝑆𝑆𝑆
𝑘𝑘𝑘𝑘+𝑆𝑆𝑆𝑆

. 

De modo que: 
𝜋𝜋𝜋𝜋
𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜

+ 𝜋𝜋𝜋𝜋
𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖

= 𝑘𝑘𝑘𝑘+𝑆𝑆𝑆𝑆
𝑘𝑘𝑘𝑘+𝑆𝑆𝑆𝑆

= 1, 

con lo cual se tiene:  
1
𝑑𝑑𝑑𝑑0

+ 1
𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖

= 1
𝜋𝜋𝜋𝜋
. 

Esta ecuación corresponde a las lentes delgadas convergentes. 

Respecto a la Fig. 5.20, se puede observar que 

𝑁𝑁𝑁𝑁0 = 𝐶𝐶𝐶𝐶𝑓𝑓𝑓𝑓2 + 𝑓𝑓𝑓𝑓2𝐴𝐴𝐴𝐴. 

Esta expresión también se puede expresar como:  

𝑁𝑁𝑁𝑁𝑜𝑜𝑜𝑜 = 𝑥𝑥𝑥𝑥 + 𝑓𝑓𝑓𝑓 y 𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖 = 𝛥𝛥𝛥𝛥 + 𝑓𝑓𝑓𝑓. 

Al reemplazar en la ecuación del constructor de lentes, se tiene: 
1

𝑚𝑚𝑚𝑚+𝜋𝜋𝜋𝜋
+ 1

𝛥𝛥𝛥𝛥+𝜋𝜋𝜋𝜋
= 1

𝜋𝜋𝜋𝜋
. 

Al operar, se tiene 

𝑥𝑥𝑥𝑥𝛥𝛥𝛥𝛥 = 𝑓𝑓𝑓𝑓2       (5.12). 

Esta expresión se conoce como la ecuación de Newton, donde “x” es la 
distancia del objeto al punto focal y “y” la distancia del punto donde se 
forma la imagen al punto focal. 
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Como B’Q = di 

Así, se considera que la lente es simétrica; por tanto, las distancias focales 
son iguales; es decir:  f1 = f2 = f.  Al sumar (5.10) y (5.11), se tiene:  

𝜋𝜋𝜋𝜋
𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜

+ 𝜋𝜋𝜋𝜋
𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖

= 𝑘𝑘𝑘𝑘
𝑘𝑘𝑘𝑘+𝑆𝑆𝑆𝑆

+ 𝑆𝑆𝑆𝑆
𝑘𝑘𝑘𝑘+𝑆𝑆𝑆𝑆

. 

De modo que: 
𝜋𝜋𝜋𝜋
𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜

+ 𝜋𝜋𝜋𝜋
𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖

= 𝑘𝑘𝑘𝑘+𝑆𝑆𝑆𝑆
𝑘𝑘𝑘𝑘+𝑆𝑆𝑆𝑆

= 1, 

con lo cual se tiene:  
1
𝑑𝑑𝑑𝑑0

+ 1
𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖

= 1
𝜋𝜋𝜋𝜋
. 

Esta ecuación corresponde a las lentes delgadas convergentes. 

Respecto a la Fig. 5.20, se puede observar que 

𝑁𝑁𝑁𝑁0 = 𝐶𝐶𝐶𝐶𝑓𝑓𝑓𝑓2 + 𝑓𝑓𝑓𝑓2𝐴𝐴𝐴𝐴. 

Esta expresión también se puede expresar como:  

𝑁𝑁𝑁𝑁𝑜𝑜𝑜𝑜 = 𝑥𝑥𝑥𝑥 + 𝑓𝑓𝑓𝑓 y 𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖 = 𝛥𝛥𝛥𝛥 + 𝑓𝑓𝑓𝑓. 

Al reemplazar en la ecuación del constructor de lentes, se tiene: 
1

𝑚𝑚𝑚𝑚+𝜋𝜋𝜋𝜋
+ 1

𝛥𝛥𝛥𝛥+𝜋𝜋𝜋𝜋
= 1

𝜋𝜋𝜋𝜋
. 

Al operar, se tiene 

𝑥𝑥𝑥𝑥𝛥𝛥𝛥𝛥 = 𝑓𝑓𝑓𝑓2       (5.12). 

Esta expresión se conoce como la ecuación de Newton, donde “x” es la 
distancia del objeto al punto focal y “y” la distancia del punto donde se 
forma la imagen al punto focal. 

5.8 Lente divergente (bicóncava)   
Esta lente se forma por medio refringente (vidrio, agua, acrílico, etc.); la 
limitan dos superficies cóncavas esféricas; así, su principal característica 
óptica radica en que los rayos de luz que la atraviesan, divergen.  

En la Fig. 5.21, se pueden ver 
los centros de curvatura C1 y 
C2, de tal forma que los radios 
de curvatura R1 y R2 generan 
las superficies refractantes de 
la lente; el eje de simetría de 
la lente une los puntos C1 y C2; 
además, el centro de la lente 
corresponde al centro óptico, 

un punto sobre el eje de simetría. Las distancias focales para lentes 
delgadas es la mitad de los centros de curvatura. 

Rayos fundamentales o paraxiales en las lentes divergentes 

Así como ocurre con las lentes convergentes, en las lentes divergentes también 
se tienen unos rayos fundamentales; en la Fig. 5.22, se pueden apreciar: 

• Rayo paralelo. Corresponde 
al rayo de luz que incide de 
forma paralela al eje de sime-
tría; al pasar, la lente se re-
fracta de tal modo que su pro-
longación pasa por el foco f1 

(véase línea de color fucsia).  

• Rayo del centro óptico. Co-
rresponde al rayo que incide di-

rectamente sobre el centro óptico al pasar la lente; el rayo continúa con 
la misma dirección; se debe entender que son lentes delgadas y que el 
ángulo de incidencia respecto al eje de simetría es pequeño, con lo cual la 
desviación lateral resulta insignificante. 

Fig. 5.21. Radios de curvatura de una lente 
divergente. 

 
C2C1 f1 f2
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Fig. 5.22. Rayos fundamentales de una lente 
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• Rayo focal. Corresponde al rayo que, al incidir, su proyección lo haría 
por el foco f2; sin embargo, el rayo refractado emerge de forma paralela al 
eje de simetría  

• Rayo del centro de curvatura. Corresponde al rayo cuya prolongación 
pasaría por el centro de curvatura C2; sin embargo, el rayo, al emerger, 
se refracta de tal forma que su prolongación pasa por el centro de curva-
tura C1; las prolongaciones corresponden a las líneas de color fucsia. 
 

 
En la Fig. 5.23, se tiene una fotografía de lente divergente sobre un disco 
de Hart: 1) El rayo incidente de luz láser lo hace de forma paralela al eje 
de simetría; el rayo refractado sale de forma divergente, pero la prolon-
gación de dicho rayo pasa por el foco virtual 1, de la lente; 2) ahora, el 
rayo de luz apunta al foco de la lente del lado opuesto; al pasar, el rayo se 
refracta, pero lo hace de forma paralela al eje de simetría de la lente (se 
trata del caso contrario al anterior); 3) el rayo incidente apunta el centro 
de curvatura 2, el rayo refractado diverge y se aleja de la lente, pero la 

1 2 

3 4 

Fig. 5.23. Fotografías de rayos de luz cuando atraviesan una figura con corte 
de lente divergente; la explicación se halla en el texto. Fuente propia. 
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• Rayo focal. Corresponde al rayo que, al incidir, su proyección lo haría 
por el foco f2; sin embargo, el rayo refractado emerge de forma paralela al 
eje de simetría  

• Rayo del centro de curvatura. Corresponde al rayo cuya prolongación 
pasaría por el centro de curvatura C2; sin embargo, el rayo, al emerger, 
se refracta de tal forma que su prolongación pasa por el centro de curva-
tura C1; las prolongaciones corresponden a las líneas de color fucsia. 
 

 
En la Fig. 5.23, se tiene una fotografía de lente divergente sobre un disco 
de Hart: 1) El rayo incidente de luz láser lo hace de forma paralela al eje 
de simetría; el rayo refractado sale de forma divergente, pero la prolon-
gación de dicho rayo pasa por el foco virtual 1, de la lente; 2) ahora, el 
rayo de luz apunta al foco de la lente del lado opuesto; al pasar, el rayo se 
refracta, pero lo hace de forma paralela al eje de simetría de la lente (se 
trata del caso contrario al anterior); 3) el rayo incidente apunta el centro 
de curvatura 2, el rayo refractado diverge y se aleja de la lente, pero la 

1 2 

3 4 

Fig. 5.23. Fotografías de rayos de luz cuando atraviesan una figura con corte 
de lente divergente; la explicación se halla en el texto. Fuente propia. 

prolongación pasa por el centro de curvatura 1; 4) el rayo de luz pasa por 
el centro óptico de la lente; el rayo refractado sigue con igual dirección, 
solo que sufre una desviación lateral. 

5.9 Formación de imágenes 

Para formar la imagen del objeto, en la Fig. 5.24 se ha utilizado el rayo 
paralelo, que se refracta de forma divergente; la prolongación del rayo corta al 
foco f1; el segundo rayo utilizado es el rayo focal, que apunta al foco f2, que, al 
refractarse, lo hace de forma paralela; la prolongación de este rayo corta a la 
prolongación del rayo paralelo, en cuyo punto se forma la imagen I; de igual 
modo, se tiene el rayo del centro óptico. 

• Características de la imagen. Según la Fig. 5.24, se tiene: 

i) La imagen está derecha; es decir, se halla en el mismo sentido en el que 
se encuentra orientado el objeto  

ii) La imagen es virtual, por 
formarse mediante la prolon-
gación de rayos refractados. 
iii) La imagen se encuentra en 
el mismo lado donde se 
encuentra el objeto. 
iv) Las lentes divergentes solo 
forman imágenes virtuales de 
menor tamaño.  
 

5.10 Representación gráfica de la ecuación de Newton     

Según la ecuación de Descartes: 
1
𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜

+ 1
𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖

= 1
𝜋𝜋𝜋𝜋
, 

Fig. 5.24. Formación de la imagen de un objeto 
con una lente divergente. 
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164

Curso de óptica

perfectamente válida para espejos 
cóncavos o lentes convergentes, y la 
ecuación de Newton para lentes y 
espejos cóncavos:  

𝑥𝑥𝑥𝑥𝛥𝛥𝛥𝛥 = 𝑓𝑓𝑓𝑓2. 

Así se obtiene la gráfica de la Fig. 5.25, 
en la que se ven curvas hipérbolas, 
cuando se grafica di en función de do.  

En el primer cuadrante corresponde a 
lentes convergentes y espejos cóncavos y en 
el tercer cuadrante corresponde a espejos 
convexos y lentes divergentes. 

5.11 Aumento lineal  

Es la relación del tamaño de la imagen con respecto al tamaño del objeto, 
similar a los espejos esféricos, así: 

𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖
𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜

= − 𝐼𝐼𝐼𝐼
𝑂𝑂𝑂𝑂

= 𝑇𝑇𝑇𝑇         (5.13). 

Pero, también, se puede dar en función de la distancia focal, así: 

1
𝑁𝑁𝑁𝑁𝑜𝑜𝑜𝑜

+
1
𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖

=
1
𝑓𝑓𝑓𝑓

 

A partir de aquí, se tiene: 

  𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓 + 𝑁𝑁𝑁𝑁𝑜𝑜𝑜𝑜𝑓𝑓𝑓𝑓 = 𝑁𝑁𝑁𝑁𝑜𝑜𝑜𝑜𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖 

𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓 = 𝑁𝑁𝑁𝑁𝑜𝑜𝑜𝑜𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖 − 𝑁𝑁𝑁𝑁𝑜𝑜𝑜𝑜𝑓𝑓𝑓𝑓,      

con lo cual se tiene la distancia del objeto do:      

 𝑁𝑁𝑁𝑁𝑜𝑜𝑜𝑜 = 𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖𝜋𝜋𝜋𝜋
𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖−𝜋𝜋𝜋𝜋

. 

De la misma forma para 𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖: 

𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖 = 𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜𝜋𝜋𝜋𝜋
𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜−𝜋𝜋𝜋𝜋

. 

 
f2

di

d0

Fig. 5.25. Gráficas de di en función 
de do.  
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perfectamente válida para espejos 
cóncavos o lentes convergentes, y la 
ecuación de Newton para lentes y 
espejos cóncavos:  

𝑥𝑥𝑥𝑥𝛥𝛥𝛥𝛥 = 𝑓𝑓𝑓𝑓2. 

Así se obtiene la gráfica de la Fig. 5.25, 
en la que se ven curvas hipérbolas, 
cuando se grafica di en función de do.  

En el primer cuadrante corresponde a 
lentes convergentes y espejos cóncavos y en 
el tercer cuadrante corresponde a espejos 
convexos y lentes divergentes. 

5.11 Aumento lineal  

Es la relación del tamaño de la imagen con respecto al tamaño del objeto, 
similar a los espejos esféricos, así: 

𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖
𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜

= − 𝐼𝐼𝐼𝐼
𝑂𝑂𝑂𝑂

= 𝑇𝑇𝑇𝑇         (5.13). 

Pero, también, se puede dar en función de la distancia focal, así: 

1
𝑁𝑁𝑁𝑁𝑜𝑜𝑜𝑜

+
1
𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖

=
1
𝑓𝑓𝑓𝑓

 

A partir de aquí, se tiene: 

  𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓 + 𝑁𝑁𝑁𝑁𝑜𝑜𝑜𝑜𝑓𝑓𝑓𝑓 = 𝑁𝑁𝑁𝑁𝑜𝑜𝑜𝑜𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖 

𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓 = 𝑁𝑁𝑁𝑁𝑜𝑜𝑜𝑜𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖 − 𝑁𝑁𝑁𝑁𝑜𝑜𝑜𝑜𝑓𝑓𝑓𝑓,      

con lo cual se tiene la distancia del objeto do:      

 𝑁𝑁𝑁𝑁𝑜𝑜𝑜𝑜 = 𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖𝜋𝜋𝜋𝜋
𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖−𝜋𝜋𝜋𝜋

. 

De la misma forma para 𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖: 

𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖 = 𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜𝜋𝜋𝜋𝜋
𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜−𝜋𝜋𝜋𝜋

. 

 
f2

di

d0

Fig. 5.25. Gráficas de di en función 
de do.  

Como el aumento de manera alterna se ha definido también como 𝑇𝑇𝑇𝑇 = 𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖
𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜

, 
entonces: 

𝑇𝑇𝑇𝑇 =
𝑁𝑁𝑁𝑁𝑜𝑜𝑜𝑜𝑓𝑓𝑓𝑓/(𝑁𝑁𝑁𝑁𝑜𝑜𝑜𝑜 − 𝑓𝑓𝑓𝑓)
𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓/(𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖 − 𝑓𝑓𝑓𝑓)

 

𝑇𝑇𝑇𝑇 = 𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜(𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖−𝜋𝜋𝜋𝜋)
𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖(𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜−𝜋𝜋𝜋𝜋)

. 

Por último, el aumento es: 

𝑇𝑇𝑇𝑇 = 𝜋𝜋𝜋𝜋
𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜−𝜋𝜋𝜋𝜋

         (5.14), 

o también: 

𝑇𝑇𝑇𝑇 = 𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖−𝜋𝜋𝜋𝜋
𝜋𝜋𝜋𝜋

        (5.15). 

5.12 Poder convergente o poder dióptrico.   
La potencia de una lente se puede indicar mediante 𝜑𝜑𝜑𝜑, que resulta 
inversamente proporcional a la distancia focal; por tanto: 

𝜑𝜑𝜑𝜑 = 𝑘𝑘𝑘𝑘
𝜋𝜋𝜋𝜋
          (5.16). 

Si 𝑘𝑘𝑘𝑘 = 1,  entonces: 𝜑𝜑𝜑𝜑 = 1
𝜋𝜋𝜋𝜋
, donde 𝑓𝑓𝑓𝑓se mide en metros; 𝜑𝜑𝜑𝜑 puede ser positivo 

o negativo, pues depende del tipo de lente (convergentes o divergentes).  

5.13 Grupo de Lentes Delgadas o lentes compuestas   
Cuando se superponen lentes delgados, la agrupación define un poder 
dióptrico, así:  

𝜑𝜑𝜑𝜑 = 𝜑𝜑𝜑𝜑1 + 𝜑𝜑𝜑𝜑2        (5.17). 

Obviamente se aleja cuando las lentes son gruesas, cuyo tratamiento 
matemático es un poco diferente.  
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¡Atención!: La imagen que forma la primera lente por separado, actúa como 
objeto para la segunda lente. 
Ahora bien, como está a una 
distancia 𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖 = 𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖 − 𝐶𝐶𝐶𝐶 detrás de la 
segunda lente, se trata como 
negativa: 𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖′. Desde la segunda 
lente, en la que se forma la 
imagen, se escribiría así:  

− 1
𝜋𝜋𝜋𝜋1−𝑆𝑆𝑆𝑆

+ 1
𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖

= 1
𝜋𝜋𝜋𝜋2

; 

es decir: 
1
𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖

= 1
𝜋𝜋𝜋𝜋2

+ 1
𝜋𝜋𝜋𝜋1−𝑆𝑆𝑆𝑆

. 

Si 𝐶𝐶𝐶𝐶es muy pequeño comparado con 𝑁𝑁𝑁𝑁𝑜𝑜𝑜𝑜 y 𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖, entonces: 
1
𝜋𝜋𝜋𝜋

= 1
𝜋𝜋𝜋𝜋2

+ 1
𝜋𝜋𝜋𝜋1

       (5.18), 

donde 𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖está en 𝑓𝑓𝑓𝑓. 

• Ejemplo  

Dos lentes cuyos focos son: 0.5𝑚𝑚𝑚𝑚 y 0.75𝑚𝑚𝑚𝑚; de acuerdo con la ecuación 
(5.18), se tiene una distancia focal: 

1
𝑓𝑓𝑓𝑓

=
1

0.5𝑚𝑚𝑚𝑚
+

1
0,75𝑚𝑚𝑚𝑚

 

1
𝜋𝜋𝜋𝜋

= 2𝑚𝑚𝑚𝑚−1 + 1.33𝑚𝑚𝑚𝑚−1. 

De modo que: 

𝑓𝑓𝑓𝑓 = 0.3𝑚𝑚𝑚𝑚. 

Así, la potencia de la lente queda bien definida como 1
𝜋𝜋𝜋𝜋
; por tanto, la 

potencia o poder dióptrico de un conjunto de lentes es: 𝜑𝜑𝜑𝜑 = 𝜑𝜑𝜑𝜑1 +
𝜑𝜑𝜑𝜑2+. . . +𝜑𝜑𝜑𝜑𝑆𝑆𝑆𝑆. 

Fig. 5.26. Lentes compuestas delgadas.  f2f1 f1f2

e

A
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A

5.14 Aberraciones en las lentes  

Aberración por esfericidad  

En la Fig. 5.27, se puede apreciar que en los extremos de la lente se 
aproxima mucho a un prisma; por tanto, se va a producir una desviación 
angular con dispersión de la luz tal como ocurre en un prisma, con lo que 

los rayos que llegan al borde 
de una lente no tienen un 
mismo foco; es decir, hay un 
foco para el color rojo y demás 
colores cercanos y un 
segundo foco para el color 
violeta y demás colores 
cercanos; esto lleva a que las 
imágenes se deformasen; en 

general, esto se puede ver en un largavista de baja calidad, cuando, al 
mirar las montañas, se vean con bordes rojizos o violetas.   

Así, el rayo de luz que llega de forma paralela se refracta y, en la segunda 
refracción, descompone la luz blanca, lo que genera dos focos extremos: 𝐹𝐹𝐹𝐹para 
los colores rojos, y 𝐹𝐹𝐹𝐹′para los colores violetas. Entre 𝐹𝐹𝐹𝐹 y 𝐹𝐹𝐹𝐹′ están los demás 
colores que, al combinarse, producen luz blanca sin mayor distorsión, como se 
puede ver en la Fig. 5.27. 

Aberración astigmática 

Se refiere a lentes cuyas superficies no son exactamente una esfera o se podría 
decir que la curva no tiene el mismo radio; por tanto, es deforme, con lo cual 

una serie de puntos 
alrededor del punto focal 
principal remplaza al punto 
que debería ser el foco; es 
decir, la lente no es 
simétrica o simplemente no 
todos los rayos llegan al 
mismo punto de corte; así, a 

 f'
f

Fig. 5.27. El extremo de una lente es similar a 
un prisma.  

Fig. 5.28. Aberración por esfericidad.  

 
I'C2O Io
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través de esta lente se verán imágenes con los trazos horizontales borrosos 
respecto a los verticales o en cualquier ángulo, al depender de la deformación 
de la lente.  

Por la asimetría de la lente se formarán alrededor del eje principal puntos 
de corte que constituyen una nube de puntos, pero nunca un punto, como 
es lo ideal.  

Para solucionar el astigmatismo de una lente es necesario volver a tallar 
la superficie de forma correcta o, si no es posible, entonces se 
superpondrán sobre la lente defectuosa lentes astigmáticas, pero en 
sentido contrario, para corregir el daño original; por ejemplo, si el daño 
de la lente es una deformación que define un astigmatismo horizontal, se 
debería ubicar una lente con astigmatismo vertical, con lo cual se corrige 
la deformación; a estas lentes se las conoce como lentes anastigmáticas.  

Aberración cromática  

Como el índice de refracción de 
una lente no es el mismo para 
las diferentes longitudes de 
onda —por ejemplo, los rayos 
violetas son más refractivos 
que los rojos, así que la luz 
blanca tendría tendencia a 
descomponerse y las imágenes 
resultan irisadas—, un juego 
de lentes puede disminuir la 
anomalía óptica, pues al dejar 

que entrase la luz más cercana al eje de simetría, la corrección completa 
se logra si se combinan los índices de refracción en las lentes que se 
agrupan, como se puede ver en la Fig. 5.29. 

Si la primera lente tiene un índice de refracción 𝑛𝑛𝑛𝑛1, puede ser de vidrio Flint; 
y 𝑛𝑛𝑛𝑛2 puede ser de vidrio Crown, la combinación de índices de refracción y 
lentes lleva a que disminuyera notoriamente la aberración cromática.  

 
n1 n2

Fig. 5.29. Composición de lentes con diferentes 
índices de refracción.  
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Si la primera lente tiene un índice de refracción 𝑛𝑛𝑛𝑛1, puede ser de vidrio Flint; 
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n1 n2

Fig. 5.29. Composición de lentes con diferentes 
índices de refracción.  

5.15 Instrumentos ópticos    

A través de la historia, los primeros instrumentos ópticos fueron los 
espejos planos y, en su parte más primaria, los espejos de agua, que 
consistían en recipientes más o menos planos, en los que se les colocaba 
agua; así, el ser humano aprendió a reconocerse.  

Se han encontrado vestigios de espejos pulidos en cobre que datan unos 
5000 años; también, se ha encontrado lajas preciosas, como la obsidiana 
o cristal volcánico de color verde negruzco, roca ígnea, entre otras piedras 
de buena reflectancia. En los años 1400, ya se utilizaban lupas para poder 
ver cosas pequeñas. 

En 1608, el holandés Hans Lippershey, en plena guerra civil, colocó en 
un tubo un par de lentes, lo que denominó lentes espías; así, con el 
artefacto podían ver al enemigo; sin embargo, hay mucha controversia si 
primero lo construyeron en España o en Italia;  lo interesante consiste en 
que los aparatos se difundieron con rapidez, con lo cual llegó a las manos 
de Galileo Galilei (1564-1642), quien lo dirigió hacia el incógnito cielo y, 
con mucha paciencia, observó los planetas; así descubrió los cráteres de 
la luna, las fases de Venus, la forma misteriosa de Saturno, las manchas 
solares, los satélites de Júpiter, con lo cual se planteó una gran polémica 
con el Santo Oficio, con el contemporáneo Johannes Kepler (1571-1630), 
con quien nunca tuvieron la posibilidad de conocerse, pero desarrollaron 
la astronomía de forma independiente y crearon sus propios telescopios, 
para bien de la ciencia.  

 
Fig. 5.30. Telescopio refractor. 
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Telescopio refractor o de Kepler  

En el telescopio de Kepler, Fig. 5.30, se 
tienen dos lentes convergentes: el 
objetivo de gran distancia focal y el ocular 
de distancia focal mucho más corta. El 
objeto forma una imagen real 𝐴𝐴𝐴𝐴′𝐵𝐵𝐵𝐵′ entre 
la lente ocular y su distancia focal. En 
estas condiciones, la lente ocular forma 
una imagen virtual de gran tamaño, por 
lo cual el aparato funciona como una gran 
lupa, donde 𝐼𝐼𝐼𝐼 A’’B’’ (la imagen) es de 
tamaño aparente, mucho más grande que 
el objeto 𝐹𝐹𝐹𝐹′.  

Respecto al aumento angular del 
telescopio, para lograr un gran aumento 
se necesita una lente objetiva de 
distancia focal grande; esto lleva a que 
este tipo de telescopio refractor fuera 
muy largo y su característica consiste en 
que la imagen se invierte.   

Por otra parte, con un telescopio de este tipo también se puede obtener 
una imagen real, que requiere una pantalla, donde se pudiera proyectar 
la imagen; resulta muy útil para ver imágenes del sol, como lo que se 
puede ver en la Fig. 6.32. 

 
Fig. 5.32. Telescopio refractor que proyecta una imagen real. 
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Fig. 5.31. Telescopio refractor del 
Observatorio de Niza. Fuente.  
https://www.wikiwand.com/es/art
icles/Telescopio 
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Telescopio refractor de Galileo (catalejo) 

Resulta curioso que, cuando Galileo visitaba Venecia, en 1609, se enteró 
del invento de Lippershey; a su regreso, en Padua, decidió construir su 
propio telescopio y, rápido, aprendió a tallar lentes y, por error o en forma 
deliberada, no se sabe, utilizó en el ocular, una lente divergente, con lo 
cual logró obtener imágenes derechas. 

Así, cuando logró descubrir los cráteres de la Luna, las lunas de Júpiter 
y los anillos de Saturno, acabó con las apreciaciones de Aristóteles, al 
advertir que los astros son de materia incorruptible, muy diferente a la 
naturaleza de la tierra. Esto resultó un cambio conceptual muy fuerte, de 
modo que solo algunos se atrevían a mirar por el telescopio de Galileo; la 
mayoría se resistía hacerlo; sin embargo, y con tozudez, seguían acabando 
con las viejas ideas de Aristóteles. Por supuesto, esto también le valió 
para enriquecer los actos de herejía juzgados por el Santo Oficio, cuyo 
castigo lo decidía la Inquisición.  

Al anteojo o telescopio lo conforma una lente convergente, denominada 
objetivo, de gran distancia focal, como se ve en la Fig. 5.33, que forma una 
imagen real,𝐴𝐴𝐴𝐴′𝐵𝐵𝐵𝐵′, y, a su vez, esta imagen se forma en el lugar donde se 
debería formar una imagen virtual del objeto 𝐴𝐴𝐴𝐴′′𝐵𝐵𝐵𝐵′′, de tal modo que ese 
objeto es la imagen formada por la lente divergente; es como un caso 
invertido de la imagen virtual del objeto 𝐴𝐴𝐴𝐴′′𝐵𝐵𝐵𝐵′′, tal como se ve en la imagen 
de la Fig. 5.33. 

 

La característica de este telescopio es formar una imagen con la misma 
forma que se encuentra el objeto; es decir, es una imagen derecha; por 

Fig. 5.33. Telescopio refractor de Galileo. 
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esta razón, lo utilizaron en la marina y denominaron “catalejo”. Algunos 
binoculares también utilizan este tipo de combinación de lentes.  

Telescopio reflector o de Newton 

Se considera que fue Isaac Newton el inventor de este tipo de telescopios, 
que es el más utilizado en la actualidad por el bajo consumo de 
luminosidad, como se ve en la Fig. 5.34.  

 

Al telescopio fundamentalmente lo forma un espejo “esférico cóncavo”. En la 
práctica, se utiliza un espejo parabólico de gran abertura y una gran 
distancia focal. En el camino de los rayos reflejados se halla un espejo plano 
o un prisma de reflexión total para desviar los rayos de forma lateral y esto 
lleva a que la longitud del telescopio disminuyera. En adelante se utiliza una 
lente convergente como ocular de pequeña distancia focal y, por último, la 
lente ocular forma una imagen virtual de gran tamaño; al igual que en el 
telescopio refractor, la imagen se invierte; también puede formar una 
imagen real por fuera del aparato sobre una pantalla. 

Las correcciones por aberración cromática se logran al mejorar la 
combinación de lentes en el ocular; es decir, que la lente ocular es una 
lente compuesta y, en el caso del espejo, se mejora muchísimo al utilizar 
una lente parabólica en vez de una esférica.  

Fig. 5.34. Telescopio reflector o de Newton. 
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En la Fig. 5.35, se tiene un tipo de 
telescopio comercial de este tipo. 

• Poder óptico de los 
telescopios      

Como el telescopio es un 
instrumento de dos lentes diseñado 
para observar objetos que se 
encuentran muy distantes, por esta 
condición se observan muy pequeños 
a simple vista o no se ven; entonces, 
el acercamiento que establece el 
instrumento, permite agrandar el 
objeto, así: 

Como las dos lentes tienen 
distancias focales f1 y f2 separadas por una distancia d, de tal forma que: 
d =  f1 + f2 , de modo que el plano focal posterior de la lente 1 y el plano 
focal anterior de la lente 2 coinciden, o sea los rayos paralelos que 
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nuevamente paralelos al salir de la lente 2; esta disposición se dice que 
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ver en la Fig. 5.36. 

 
Fig. 5.36. Poder óptico de los telescopios. 
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Fig. 5.35. Telescopio reflector o de Newton, 
de venta comercial Celeston. Fuente: 
https://colombia.bioweb.co/products/telesco
pio-reflector-newtonian-celestron-astro 
master-130eq-hasta-307x?variant=396 
23692091481 
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Por otra parte, como f2 < f1, entonces el ángulo 𝛼𝛼𝛼𝛼′con el que emergen los 
rayos es mayor que el ángulo 𝛼𝛼𝛼𝛼con el que llegan; esto genera el efecto de 
ampliar la imagen, de modo que la relación 𝛼𝛼𝛼𝛼′

𝛼𝛼𝛼𝛼
 es muy aproximada a sus 

tangentes, así: 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 =
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
𝑓𝑓𝑓𝑓1

 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾′ = 𝑐𝑐𝑐𝑐𝑑𝑑𝑑𝑑
𝜋𝜋𝜋𝜋2

. 

En consecuencia, se tiene: 

𝑇𝑇𝑇𝑇 = 𝑇𝑇𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚′
𝑇𝑇𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

. 

Como ab y cd son prácticamente iguales, el aumento angular es:  

𝑇𝑇𝑇𝑇 = −𝜋𝜋𝜋𝜋1
𝜋𝜋𝜋𝜋2

        (5.20). 

El signo menos se debe a que el telescopio forma una imagen invertida. 

Microscopio óptico  

El microscopio también tiene su propia historia. El término microscopio 
procede del griego micros, pequeño, y scópeo, mirar; así que se trata de 
un instrumento que permite mirar lo pequeño, lo que el ojo humano no 
alcanza a ver por sí mismo.  

La historia se remonta a los años del comienzo del telescopio. El instrumento 
como tal aparece con Zacharias Janssen (1590). En 1665, sale a la luz la obra 
de William Harvey sobre la circulación de la sangre por capilares. Robert 
Hooke, poco antes de Newton (rivales científicos), publicó la obra 
Micrographia, donde señala que había observado con una lente delgada las 
células muertas de un trozo de corcho. Un año más tarde, Marcello Malpighi 
(1628-94), anatomista y biólogo italiano, observó células y tejidos vivos.  

A mediados del siglo XVIII (1750), el neerlandés Anton van 
Leeuwenhoek, con la ayuda de microscopios simples (una sola lente) de 
fabricación propia, observó protozoarios, bacterias, espermatozoides y 
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        (5.20). 

El signo menos se debe a que el telescopio forma una imagen invertida. 

Microscopio óptico  

El microscopio también tiene su propia historia. El término microscopio 
procede del griego micros, pequeño, y scópeo, mirar; así que se trata de 
un instrumento que permite mirar lo pequeño, lo que el ojo humano no 
alcanza a ver por sí mismo.  

La historia se remonta a los años del comienzo del telescopio. El instrumento 
como tal aparece con Zacharias Janssen (1590). En 1665, sale a la luz la obra 
de William Harvey sobre la circulación de la sangre por capilares. Robert 
Hooke, poco antes de Newton (rivales científicos), publicó la obra 
Micrographia, donde señala que había observado con una lente delgada las 
células muertas de un trozo de corcho. Un año más tarde, Marcello Malpighi 
(1628-94), anatomista y biólogo italiano, observó células y tejidos vivos.  

A mediados del siglo XVIII (1750), el neerlandés Anton van 
Leeuwenhoek, con la ayuda de microscopios simples (una sola lente) de 
fabricación propia, observó protozoarios, bacterias, espermatozoides y 

glóbulos rojos, razón por la cual se lo considera el fundador de la 
Microbiología (Bacteriología), ayudado de lentes cuyo diámetro no 

superaba 1 mm, con lo cual alcanzaba 
280 aumentos.  

En 1877, Carl Zeiss mejoró un nuevo 
método de observación con objetivos de 
inmersión al cambiar agua por aceite 
de cedro, con lo cual se lograron 2000 
aumentos.  

En 1930, se llegó al límite teórico para los 
microscopios, al estandarizar 
observaciones de 500x y 1000x. 

Un poco más tarde aparece el 
microscopio electrónico, en el cual, se 
utiliza un haz de electrones en vez de 
luz, con lo cual se logró un aumento de 
100.000x.  

Para los años 40’s, se desarrolló el 
microscopio de barrido y una vez más 
aparece un límite teórico (¿Cuál es ese 
límite teórico?).  

• Esquema básico            

En la Fig. 5.37, se tiene un esquema de 
un microscopio; en el esquema se 
encuentra el objetivo de corta distancia 
focal, que forma una imagen real 𝐴𝐴𝐴𝐴′𝐵𝐵𝐵𝐵′ 

de mayor tamaño que el objeto (igual a un proyector); es decir, el objeto 
debe estar entre el foco y el centro de curvatura.  

El ocular de gran distancia focal (opuesto al telescopio) forma una imagen 
virtual; es decir, la imagen real 𝐴𝐴𝐴𝐴′𝐵𝐵𝐵𝐵′ debe estar entre la lente y la 

Fig. 5.37. Esquema de un 
microscopio. 

 
A B

A' B'

A'' B''

Lente objetivo

Lente ocular
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distancia focal. Así forma una imagen 
virtual 𝐴𝐴𝐴𝐴′′𝐵𝐵𝐵𝐵′′ de mayor tamaño que la 
imagen real y, por supuesto, varias 
veces mayor que el objeto. De esta 
forma se logra tener un aumento del 
tamaño del objeto. 

• Aumento en el microscopio  

La observación en el microscopio 
depende de la combinación que 
hubiera en las lentes entre objetivo y 
ocular. Tanto el objetivo como el 
ocular tienen unos números que 
indican el poder óptico de cada uno, 
así que el poder óptico del aparato 
resulta de: 

A = A1 x A2 

O sea, si en el ocular aparece 50 y en el objetivo 10, el aumento se dará 
por 𝐴𝐴𝐴𝐴 = 50 × 10 = 500 veces. 

Ahora, ¿resulta suficiente el aumento?  

A veces se cree que lo más importante es el aumento lineal de este tipo de 
instrumentos ópticos, pero ¿qué se gana con aumentar, si en realidad no 
se ven nuevos detalles? Por ejemplo, los mejores microscopios tienen 2000 
aumentos, pero a partir de 600 no se descubren nuevos detalles, solo un 
aumento de tamaño, de modo que hay dos conceptos claves: abertura 
numérica y poder separador.  

• Abertura numérica  
El propósito de todo objetivo es recibir y combinar en una imagen un cono 
de luz mayor que el que normalmente puede recibir el ojo. La claridad de 
la imagen y la resolución de los detalles finos depende en parte del valor 
numérico del ángulo de ese cono de luz, pero la cantidad de luz que recibe 

Fig. 5.38. Microscopio compuesto en 
marco de metal 40x-1000x. Laboratorio 
de Óptica - Universidad de Nariño. 
Fuente propia.   
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Fig. 5.38. Microscopio compuesto en 
marco de metal 40x-1000x. Laboratorio 
de Óptica - Universidad de Nariño. 
Fuente propia.   

el objetivo depende no solo del valor de ese ángulo, sino también del índice 
de refracción del medio interpuesto entre el objeto y el objetivo. Así, en 
un objetivo seco (el medio interpuesto es aire), se observa en la Fig. 5.39 
que solo penetra al objetivo el cono de rayos luminosos menores a 30°. 
Pero si entre el objeto y el objetivo se interpone un medio con índice de 
refracción mayor a 1, penetra al objetivo una cantidad mayor de luz, de 
modo que la abertura numérica se define como:  

𝑁𝑁𝑁𝑁𝐴𝐴𝐴𝐴 = 𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑛𝑛𝑛𝑛𝛼𝛼𝛼𝛼       (5.21). 

En el caso de la Fig. 5.39, si 𝛼𝛼𝛼𝛼 = 30°y 𝑛𝑛𝑛𝑛1 = 1; 𝑛𝑛𝑛𝑛2 = 1.5, entonces: 

𝑁𝑁𝑁𝑁𝐴𝐴𝐴𝐴1 = 1𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐30 = 0.5. 

Ahora, con inmersión se tiene: 

𝑁𝑁𝑁𝑁𝐴𝐴𝐴𝐴1 = (1.5)𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐30 = (1.5)(0.5) = 0.75. 

Como se puede observar en los resultados, cuando hay inmersión se tiene 
una mayor amplitud numérica.  

 

• Poder separador 

El poder separador “S” se define como:  

𝑆𝑆𝑆𝑆 = 𝜆𝜆𝜆𝜆
2𝑁𝑁𝑁𝑁𝐵𝐵𝐵𝐵

         (5.22), 

donde el poder separador depende de la longitud de onda empleada en la 
observación y muestra la mínima distancia entre dos puntos para que 

Fig. 5.39. Parámetros del aumento en el microscopio. 
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resultasen distinguibles. Por ejemplo, en un microscopio con 𝑁𝑁𝑁𝑁𝐴𝐴𝐴𝐴 = 1, al 
observar con luz verde, cuya longitud de onda es 𝜆𝜆𝜆𝜆 = 0.00053𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, se tiene que: 
 

𝑆𝑆𝑆𝑆 = 0.00053𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘
2×1

= 0.000265𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚. 

Esto quiere decir que, con esta luz, pueden verse dos puntos que se 
encuentran separados 2.65diezmillonésimas de metro. En el caso de ser 
mayor, no se podrán ver dos puntos separados y, por el contrario, se verá 
un solo punto de mayor tamaño. Ahora, no es suficiente que el microscopio 
los separe; es necesario que también nuestros ojos los vean separados. Se 
sabe que a 25.6𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚, el ojo puede ver separados dos puntos que distan como 
mínimo 0.1𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚. Por tanto, si en el ejemplo anterior suponemos que el 
aumento del objetivo vale 100, para que los puntos que distan entre sí 
0.000265𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 distasen 0.1𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 para el ojo, el aumento del ocular debe ser: 

0.1𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘
(0.00026)(100)

≅ 4. 

Por ende, el aumento del microscopio debe ser por lo menos 400. Ahora 
bien, esto tiene un límite; teóricamente, se puede decir que, si se 
disminuye la longitud de onda, se mejora el poder de separación; el asunto 
está en que el espectro visible termina en el violeta. Por otra parte, el 
vidrio común absorbe la radiación ultravioleta y, por tanto, las lentes 
para observar con luz ultravioleta a través de fotografías deben ser de 
cuarzo o no habría ninguna esperanza de observar; sin embargo, si se 
logra aumentar la abertura numérica, para la luz ultravioleta será:  

𝜆𝜆𝜆𝜆𝑈𝑈𝑈𝑈𝑉𝑉𝑉𝑉 = 0.000002𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚. 

De modo que: 

𝑆𝑆𝑆𝑆 = 𝜆𝜆𝜆𝜆
2𝑁𝑁𝑁𝑁𝐵𝐵𝐵𝐵

= 0.000002𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘
2×1.6

= 0.0000012𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚. 

5.16 Cámara fotográfica: partes fundamentales        

Se remonta a los comienzos del telescopio y el microscopio; Johann Zahn 
(1685) diseñó una cámara oscura, a la que se le colocó una lente 
convergente, con lo cual se pudo tener una imagen mucho más nítida; con 
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el tiempo, se mejoraba en la parte óptica, sobre las películas donde se 
plasmaba la imagen. 

 

Respecto a la cámara fotográfica, sus partes son:  

Lente objetivo. Encargada de captar la mayor cantidad de luz proveniente 
del objeto a fotografiar y proyectarlo sobre la película; con el tiempo, este 
dispositivo se convertía en potentes lentes compuestas que eliminaban la 
aberración cromática. 

Mecanismo para desplazar la lente objetiva. Para poder tener 
imágenes bien nítidas, se necesitaba mover la lente objetiva; un fuelle en 
forma de cono o pirámide, elaborado en cuero, acompañó por muchos años 
a las cámaras fotográfica profesionales y amateur.  

Diafragma. Este mecanismo permitía elegir la cantidad de luz que se 
necesitaba; por ejemplo, en un, día soleado hay mucha luz y, por tanto, el 
diafragma se cierra y lo contrario ocurre en un día oscuro o la misma 
noche; en este caso, el obturador debe estar totalmente abierto. 

Caja oscura. Prácticamente es el armazón de todo el equipo; en su interior no 
podía haber ninguna fuente luminosa o lugar por donde ingresara luz, aparte 
de la lente; solo así se garantizaba que la película no se dañara; en 
consecuencia, la caja era un elemento totalmente hermético. 

Película. Sobre este asunto, hay toda una historia por contar: los químicos 
llevaron a cabo todo el desarrollo; inicialmente, elaboraron láminas metálicas; 
más tarde, en láminas de plástico y, por último, en rollos de acetato plástico 

Fig. 5.40. Esquema de una cámara fotográfica. 
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transparente, en la mayoría de los casos flexible, recubierta de una delgada 
capa de emulsión fotográfica formada por gelatina, en la que se introduce una 
sustancia sensible a la luz, como el bromuro de plata. Al inicio, se plasmaron 
imágenes en blanco y negro, lo que significa que la lámina tenía una sola 
película; con el tiempo, se logró plasmar en color; así, las láminas de plástico 
tenían al menos tres películas; al depender de la emulsión, se tenía la 
sensibilidad; es decir, películas que con escasa luz lograban imprimir 
imágenes; para esto, la cámara debía tener otro dispositivo de tiempo; es decir, 
un mecanismo que le permitiera a la cámara abrir el obturador por el tiempo 
que fuese necesario. 

La sensibilidad de la película fotográfica se medía según la escala de la 
ASA (Asociación Estadounidense de estándares); hoy hay una correspon-
dencia con la escala ISO.   

La escala ASA es lineal; es decir, cuando el número se duplica, la 
sensibilidad de la película también se duplica; con este principio, el 
fotógrafo profesional jugaba, al tomar fotografías que resultaban 
verdaderas obras de arte, con el obturador o sistema que permite la 
entrada de luz en el preciso momento que se requiere (el disparo). Esta 
apertura tiene un tiempo que se necesita para que entrase más o menos 
luz, definido por la sensibilidad de la película. Así, el manejo de las dos 
variables: tiempo y sensibilidad, resultaban muy importante a la hora de 
tomar las fotografías.  

Al tomar una fotografía, la película que se encuentra en la cámara graba 
la imagen del objeto, imagen que se denomina negativo; una vez realizado 
el proceso de revelado, había que, con esa película, tomar una segunda 
fotografía sobre la película definitiva, para obtener el positivo de la 
fotografía, proceso que se lograba al llevar a que pasara luz a través del 
negativo y proyectarla sobre la película definitiva; así se lograba tener 
imágenes, como la que se puede ver en la Fig. 5.41. 



181

Capítulo 5. Superficies curvas de medios refringentes

transparente, en la mayoría de los casos flexible, recubierta de una delgada 
capa de emulsión fotográfica formada por gelatina, en la que se introduce una 
sustancia sensible a la luz, como el bromuro de plata. Al inicio, se plasmaron 
imágenes en blanco y negro, lo que significa que la lámina tenía una sola 
película; con el tiempo, se logró plasmar en color; así, las láminas de plástico 
tenían al menos tres películas; al depender de la emulsión, se tenía la 
sensibilidad; es decir, películas que con escasa luz lograban imprimir 
imágenes; para esto, la cámara debía tener otro dispositivo de tiempo; es decir, 
un mecanismo que le permitiera a la cámara abrir el obturador por el tiempo 
que fuese necesario. 

La sensibilidad de la película fotográfica se medía según la escala de la 
ASA (Asociación Estadounidense de estándares); hoy hay una correspon-
dencia con la escala ISO.   

La escala ASA es lineal; es decir, cuando el número se duplica, la 
sensibilidad de la película también se duplica; con este principio, el 
fotógrafo profesional jugaba, al tomar fotografías que resultaban 
verdaderas obras de arte, con el obturador o sistema que permite la 
entrada de luz en el preciso momento que se requiere (el disparo). Esta 
apertura tiene un tiempo que se necesita para que entrase más o menos 
luz, definido por la sensibilidad de la película. Así, el manejo de las dos 
variables: tiempo y sensibilidad, resultaban muy importante a la hora de 
tomar las fotografías.  

Al tomar una fotografía, la película que se encuentra en la cámara graba 
la imagen del objeto, imagen que se denomina negativo; una vez realizado 
el proceso de revelado, había que, con esa película, tomar una segunda 
fotografía sobre la película definitiva, para obtener el positivo de la 
fotografía, proceso que se lograba al llevar a que pasara luz a través del 
negativo y proyectarla sobre la película definitiva; así se lograba tener 
imágenes, como la que se puede ver en la Fig. 5.41. 

 

5.17 Lentes gruesas         

 

Debido a la aberración cromática en los instrumentos ópticos de precisión, se 
necesitan lentes de muchísima calidad que no tuvieran ningún tipo de 
aberración. La corrección se logra al combinar índices de refracción del vidrio 
Flint y Crown; en la Fig. 5.42, se tiene un esquema de una lente gruesa. 

En la práctica, se tienen lentes gruesas un poco lejos del ideal teórico, así: 

de acuerdo a la refracción del medio, se tenía:  

 𝑆𝑆𝑆𝑆1
𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜
− 𝑆𝑆𝑆𝑆2

𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖′
= 𝑆𝑆𝑆𝑆2−𝑆𝑆𝑆𝑆1

𝑅𝑅𝑅𝑅1
.                                            

Fig. 5.41. Centro de la ciudad de Sevilla, España, 2008; 
foto tomada con una cámara Zenit réflex. Fuente propia. 

Fig. 5.42. Parámetros de una lente gruesa. 
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Para la segunda refracción, se tiene: 

 𝑆𝑆𝑆𝑆2
𝑆𝑆𝑆𝑆+𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖′

+ 𝑆𝑆𝑆𝑆1
𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖

= 𝑆𝑆𝑆𝑆1−𝑆𝑆𝑆𝑆2
𝑅𝑅𝑅𝑅2

.                                        

Cuando 𝐶𝐶𝐶𝐶 se compara con 𝑁𝑁𝑁𝑁𝑜𝑜𝑜𝑜, y resulta muy pequeño, entonces se lo 
desprecia; así, al sumar las dos ecuaciones y llevar a que n1 = 1, se obtiene:  

1
𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜

+ 1
𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖

= (𝑛𝑛𝑛𝑛2 − 1) � 1
𝑅𝑅𝑅𝑅1
− 1

𝑅𝑅𝑅𝑅2
�. 

Pero si no se desprecia e, debido a que resulta significativo, entonces se 
tiene: 

𝒏𝒏𝒏𝒏𝟏𝟏𝟏𝟏
𝟏𝟏𝟏𝟏𝒅𝒅𝒅𝒅

+ 𝒏𝒏𝒏𝒏𝟏𝟏𝟏𝟏
𝟏𝟏𝟏𝟏𝒅𝒅𝒅𝒅

= (𝒏𝒏𝒏𝒏𝟐𝟐𝟐𝟐 − 𝒏𝒏𝒏𝒏𝟏𝟏𝟏𝟏) � 𝟏𝟏𝟏𝟏
𝑹𝑹𝑹𝑹𝟏𝟏𝟏𝟏
− 𝟏𝟏𝟏𝟏

𝑹𝑹𝑹𝑹𝟐𝟐𝟐𝟐
+ (𝒏𝒏𝒏𝒏𝟐𝟐𝟐𝟐−𝒏𝒏𝒏𝒏𝟏𝟏𝟏𝟏)𝒆𝒆𝒆𝒆

𝒏𝒏𝒏𝒏𝟐𝟐𝟐𝟐𝑹𝑹𝑹𝑹𝟏𝟏𝟏𝟏𝑹𝑹𝑹𝑹𝟐𝟐𝟐𝟐
�        (5.23). 

Cuando se trata de lentes en el aire, es decir: 𝑛𝑛𝑛𝑛1 = 1, la ecuación quedaría: 
1
𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜

+ 1
𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖

= (𝑛𝑛𝑛𝑛2 − 1) � 1
𝑅𝑅𝑅𝑅1
− 1

𝑅𝑅𝑅𝑅2
+ (𝑆𝑆𝑆𝑆2−1)

𝑆𝑆𝑆𝑆2𝑅𝑅𝑅𝑅1𝑅𝑅𝑅𝑅2
𝐶𝐶𝐶𝐶�.   

O sea que: 
1
𝜋𝜋𝜋𝜋

= (𝑛𝑛𝑛𝑛2 − 1) � 1
𝑅𝑅𝑅𝑅1
− 1

𝑅𝑅𝑅𝑅2
+ (𝑆𝑆𝑆𝑆2−1)

𝑆𝑆𝑆𝑆2𝑅𝑅𝑅𝑅1𝑅𝑅𝑅𝑅2
𝐶𝐶𝐶𝐶�       (5.24). 

 

Ahora bien, en la Fig. 5.43, se pueden apreciar los planos principales; a 
su vez, pueden localizarse con respecto a los vértices al utilizar las 
ecuaciones: 

𝑉𝑉𝑉𝑉1𝐻𝐻𝐻𝐻1 = ℎ1 = −𝜋𝜋𝜋𝜋(𝑆𝑆𝑆𝑆2−1)
𝑅𝑅𝑅𝑅2𝑆𝑆𝑆𝑆2

𝐶𝐶𝐶𝐶       (5.25), 

Fig. 5.43. Parámetros ópticos de las lentes gruesas. 
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y: 

𝑉𝑉𝑉𝑉2𝐻𝐻𝐻𝐻2 = ℎ2 = −𝜋𝜋𝜋𝜋(𝑆𝑆𝑆𝑆2−1)
𝑅𝑅𝑅𝑅1𝑆𝑆𝑆𝑆2

𝐶𝐶𝐶𝐶         (5.26). 

5.18 Lentes compuestas: aplicaciones      

En la Fig. 5.44, se tiene un sistema de dos lentes que se combinan para formar 
una sola lente, donde la distancia focal efectiva del sistema se da por: 

1
𝜋𝜋𝜋𝜋

= 1
𝜋𝜋𝜋𝜋1

+ 1
𝜋𝜋𝜋𝜋2
− 𝑑𝑑𝑑𝑑

𝜋𝜋𝜋𝜋1𝜋𝜋𝜋𝜋2
       (5.27). 

 

En cuanto a las distancias focales individuales (𝑓𝑓𝑓𝑓1 𝛥𝛥𝛥𝛥 𝑓𝑓𝑓𝑓2) y la separación 
de las lentes 𝑁𝑁𝑁𝑁, cada una tiene su propio par de puntos principales 𝐻𝐻𝐻𝐻11,𝐻𝐻𝐻𝐻12 
y 𝐻𝐻𝐻𝐻21,𝐻𝐻𝐻𝐻22, así como lo tienen las lentes compuestas. Un haz de luz que 
entra a la lente compuesta emerge hacia un foco situado en Fi a una 
distancia 𝑓𝑓𝑓𝑓, se encuentra 𝐻𝐻𝐻𝐻2 y, por tanto, las expresiones son: 

𝐻𝐻𝐻𝐻22𝐻𝐻𝐻𝐻1 = 𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋
𝜋𝜋𝜋𝜋2

,           𝐻𝐻𝐻𝐻22𝐻𝐻𝐻𝐻2 = −𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋
𝜋𝜋𝜋𝜋1

. 

Para un sistema de lentes delgadas, los planos principales individuales 
se juntan y 𝑁𝑁𝑁𝑁 es únicamente la separación entre centros. Este sistema se 
comporta como una lente gruesa, cuya distancia focal y puntos ya se han 

Fig. 5.44. Parámetros de lentes compuestas. 
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dado; es decir, al combinar lentes, su comportamiento es como si se 
tratara de una lente gruesa.  

• Ejemplo 

Dos lentes biconvexas gruesas idénticas se alinean con una separación de 
25.7𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚; cada lente tiene radios de 60𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 y 40𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, un espesor de 20𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 y 
un índice de refracción de 1.5. Calcular la distancia focal de cada uno, 
localizar los puntos 𝐻𝐻𝐻𝐻11,𝐻𝐻𝐻𝐻12 y 𝐻𝐻𝐻𝐻21,𝐻𝐻𝐻𝐻22 y determinar, además, la distancia 
focal del sistema sumergido en aire.  

Rta.   

A partir de: 

1
𝑓𝑓𝑓𝑓

= (𝑛𝑛𝑛𝑛2 − 1) �
1
𝑅𝑅𝑅𝑅1

−
1
𝑅𝑅𝑅𝑅2

+
(𝑛𝑛𝑛𝑛2 − 1)𝑁𝑁𝑁𝑁
𝑛𝑛𝑛𝑛2𝑅𝑅𝑅𝑅1𝑅𝑅𝑅𝑅2

� 

1
𝑓𝑓𝑓𝑓

= (1.5 − 1) �
1

60
−

1
−40

+
(1.5− 1)20

(1.5)(60)(−40)�
 

1
𝑓𝑓𝑓𝑓

= (0.5) �0.017 + 0.025−
10

3600�
 

1
𝑓𝑓𝑓𝑓

= (0.5)(0.039) 

1
𝑓𝑓𝑓𝑓

= 0.02 

 

Por tanto: 

𝑓𝑓𝑓𝑓 = 51.4𝑚𝑚𝑚𝑚. 

Ahora, 𝑓𝑓𝑓𝑓1 = 𝑓𝑓𝑓𝑓2 = 51.4𝑚𝑚𝑚𝑚. 

Para calcular los puntos principales de las lentes individuales, se tiene: 

ℎ1 = −
𝑓𝑓𝑓𝑓(𝑛𝑛𝑛𝑛2 − 1)𝑁𝑁𝑁𝑁

𝑅𝑅𝑅𝑅2𝑛𝑛𝑛𝑛2
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Ahora, 𝑓𝑓𝑓𝑓1 = 𝑓𝑓𝑓𝑓2 = 51.4𝑚𝑚𝑚𝑚. 

Para calcular los puntos principales de las lentes individuales, se tiene: 

ℎ1 = −
𝑓𝑓𝑓𝑓(𝑛𝑛𝑛𝑛2 − 1)𝑁𝑁𝑁𝑁

𝑅𝑅𝑅𝑅2𝑛𝑛𝑛𝑛2
 

ℎ1 = −
(51.4)(0.5)(20)

(−40)(1.5)
 

ℎ1 =
514.0

60
= 8.6𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 

ℎ2 = −
𝑓𝑓𝑓𝑓(𝑛𝑛𝑛𝑛2 − 1)𝑁𝑁𝑁𝑁

𝑅𝑅𝑅𝑅1𝑛𝑛𝑛𝑛2
 

ℎ2 = −
(51.4)(0.5)(20)

(60)(1.5)
 

ℎ2 = −
514
90

= −5.71𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 

Como las lentes son idénticas, los valores se fijan en las posiciones de los 
planos principales.  

La distancia focal del paquete o sistema es: 

1
𝑓𝑓𝑓𝑓

=
1
𝑓𝑓𝑓𝑓1

+
1
𝑓𝑓𝑓𝑓2
−

𝑁𝑁𝑁𝑁
𝑓𝑓𝑓𝑓1𝑓𝑓𝑓𝑓2

 

1
𝑓𝑓𝑓𝑓

=
1

51.4
+

1
51.4

−
25.7

(51.4)(51.4)
 

1
𝑓𝑓𝑓𝑓

= 0.039− 0.01 

𝑓𝑓𝑓𝑓 = 34.4𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚. 

• Ejercicio  

Mostrar que la ecuación de Newton es válida para las lentes gruesas 

(𝑥𝑥𝑥𝑥𝛥𝛥𝛥𝛥 = 𝑓𝑓𝑓𝑓2). 

¿Qué clase de lente de vidrio sumergido en aire tiene una distancia focal 
independiente del espesor?  
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Rta. 

La dependencia desaparece cuando: 𝑅𝑅𝑅𝑅1 → ∞ o 𝑅𝑅𝑅𝑅2 → ∞. De modo que tanto una 
lente plana convexa como una lente plana cóncava cumplen con:  

1
𝜋𝜋𝜋𝜋

= (𝑛𝑛𝑛𝑛2 − 1) � 1
𝑅𝑅𝑅𝑅1
− 1

𝑅𝑅𝑅𝑅2
+ (𝑆𝑆𝑆𝑆2−1)

𝑆𝑆𝑆𝑆2𝑅𝑅𝑅𝑅1𝑅𝑅𝑅𝑅2
𝐶𝐶𝐶𝐶�. 

5.19 Lentes especiales          
Existen muchas lentes especiales; 
entre ellas se encuentran las len-
tes que inventó Augustin Fresnel 
(1788 – 1827), un físico e inge-
niero francés que contribuyó no-
tablemente a la teoría ondulato-
ria de la luz, tanto en lo teórico 
como en lo experimental; muy co-
nocido por las lentes que llevan su 
nombre, como el que se puede ver 
en la fotografía de la Fig. 5.45. 

En la Fig. 5.46, se tiene la 
comparación de dos lentes: la 
primera es una lente convergente 
plana convexa y la segunda es 
una lente de Fresnel; en el primer 
caso, la lente, por ser maciza, es 

muy pesada y, cuando se trata de lentes grandes, se tornan incómodas por su 
peso; sin embargo, en el segundo caso, se trata del corte de una lente de 
Fresnel, que puede desarrollar el mismo poder óptico, o sea, tener el mismo 
foco, con un peso reducido; la resolución de la imagen se define por el número 
de anillos concéntricos que tuviera; entre mayor fuese, mejor resolución  en la 
imagen; el escalamiento de los anillos cambia con el diámetro de la lente; la 

Fig. 5.45. Lente de Fresnel del faro de Montauk 
Point, sobre la playa, donde se unen el mar y el 
sonido, en Long Island. Fuente propia. 
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Rta. 
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lente plana convexa como una lente plana cóncava cumplen con:  

1
𝜋𝜋𝜋𝜋

= (𝑛𝑛𝑛𝑛2 − 1) � 1
𝑅𝑅𝑅𝑅1
− 1

𝑅𝑅𝑅𝑅2
+ (𝑆𝑆𝑆𝑆2−1)

𝑆𝑆𝑆𝑆2𝑅𝑅𝑅𝑅1𝑅𝑅𝑅𝑅2
𝐶𝐶𝐶𝐶�. 

5.19 Lentes especiales          
Existen muchas lentes especiales; 
entre ellas se encuentran las len-
tes que inventó Augustin Fresnel 
(1788 – 1827), un físico e inge-
niero francés que contribuyó no-
tablemente a la teoría ondulato-
ria de la luz, tanto en lo teórico 
como en lo experimental; muy co-
nocido por las lentes que llevan su 
nombre, como el que se puede ver 
en la fotografía de la Fig. 5.45. 

En la Fig. 5.46, se tiene la 
comparación de dos lentes: la 
primera es una lente convergente 
plana convexa y la segunda es 
una lente de Fresnel; en el primer 
caso, la lente, por ser maciza, es 

muy pesada y, cuando se trata de lentes grandes, se tornan incómodas por su 
peso; sin embargo, en el segundo caso, se trata del corte de una lente de 
Fresnel, que puede desarrollar el mismo poder óptico, o sea, tener el mismo 
foco, con un peso reducido; la resolución de la imagen se define por el número 
de anillos concéntricos que tuviera; entre mayor fuese, mejor resolución  en la 
imagen; el escalamiento de los anillos cambia con el diámetro de la lente; la 

Fig. 5.45. Lente de Fresnel del faro de Montauk 
Point, sobre la playa, donde se unen el mar y el 
sonido, en Long Island. Fuente propia. 

manufactura de la lente puede ser en 
vidrio o en plástico, con muy poco peso, 
debido a las secciones que se le retiran; 
como se puede ver en la Fig. 5.46, estas 
lentes tuvieron su aplicación 
inmediata en los  faros, como puntos 
guías para la navegación en el mar; en 
la Fig. 5.45, se tiene la fotografía de 
una de estas lentes muy grande, 
utilizada en el faro de Montauk Point, 
construido en el siglo XVIII, localizado 
en el extremo de Long Island, New 
York, lugar con una vista del mar 
espectacular; ha funcionado por más 
de 200 años y aún los marineros lo 
utilizan como punto de referencia. 

• Retroproyector  

Entre otras aplicaciones de gran 
importancia de este tipo de lentes, 
hasta hace poco respecto a la fecha 
en la que se ha escrito este libro, el 
retroproyector resultó un  aparato de 
gran utilidad en la educación y 
presentación de Seminarios y 
Congresos o siempre que se 
necesitara de un auditorio para una 
conferencia; en la Fig. 5.47,  se tiene 
un aparato, en el que se puede ver la 
lente de Fresnel, lámina 1, que 
prácticamente es una superficie 
completamente plana, en la que se 
puede escribir sobre una lámina 

transparente de acetato; en la parte superior (2), se encuentra una lente 
convergente sólida, de reducidas dimensiones; se encargaba de completar 

Fig. 5.47. Retroproyector de los años 
90’s. Fuente propia. 

2 

1 

 
Lente
convergente
plano convexa

Lente
convergente de
Fresnel

Eje de simetría.

A

B

A

B

Fig. 5.46. Comparación de una lente 
convencional con una lente de Fresnel. 
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la proyección un espejo, con el cual se podía redireccionar la proyección 
hacia una superficie vertical (pared o tablero); así, los estudiantes podían 
observar lo que el expositor escribía sobre la pantalla (lámina 1); unos 
marcadores especiales permitían que la proyección fuese en color. Hoy 
estos son aparatos de museo, pues los han remplazado otros aparatos 
electrónicos, como el Video beam.   

5.20 Principio de Fermat.  

También se conoce como 
principio de la mínima acción 
en la reflexión o refracción.  

En la naturaleza, todos los 
fenómenos ocurren con gasto de 
la mínima cantidad de energía; 
en Óptica, se puede observar 
tanto en la reflexión como en la 
refracción, de modo que, para la 
reflexión, se presenta de esta 
forma:  

En la Fig. 5.48, el rayo AB incide con el ángulo 𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 y el rayo reflejado lo hace 
con el ángulo 𝜃𝜃𝜃𝜃𝑅𝑅𝑅𝑅, de modo que el rayo de luz recorre un trayecto, que es:  

𝑐𝑐𝑐𝑐 = 𝑐𝑐𝑐𝑐1 + 𝑐𝑐𝑐𝑐2        (5.28);            

𝑐𝑐𝑐𝑐1 y 𝑐𝑐𝑐𝑐2 se pueden escribir como: 

𝑐𝑐𝑐𝑐1 = �𝑏𝑏𝑏𝑏12 + 𝑥𝑥𝑥𝑥2  y   𝑐𝑐𝑐𝑐2 = �𝑏𝑏𝑏𝑏22 + (𝑁𝑁𝑁𝑁 − 𝑥𝑥𝑥𝑥)2 

Por otra parte, la velocidad de la luz se la puede expresar como:  𝐶𝐶𝐶𝐶 = 𝑛𝑛𝑛𝑛
𝛥𝛥𝛥𝛥
, 

por lo que el tiempo será: 𝐶𝐶𝐶𝐶 = 𝑛𝑛𝑛𝑛
𝐶𝐶𝐶𝐶
; si esta expresión se remplaza en (5.28), 

se tiene: 

𝐶𝐶𝐶𝐶 = 1
𝐶𝐶𝐶𝐶
��𝑏𝑏𝑏𝑏12 + 𝑥𝑥𝑥𝑥2 + �𝑏𝑏𝑏𝑏22 + (𝑁𝑁𝑁𝑁 − 𝑥𝑥𝑥𝑥)2�        (5.29). 

Fig. 5.48. Reflexión de un rayo de luz. 
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hacia una superficie vertical (pared o tablero); así, los estudiantes podían 
observar lo que el expositor escribía sobre la pantalla (lámina 1); unos 
marcadores especiales permitían que la proyección fuese en color. Hoy 
estos son aparatos de museo, pues los han remplazado otros aparatos 
electrónicos, como el Video beam.   

5.20 Principio de Fermat.  

También se conoce como 
principio de la mínima acción 
en la reflexión o refracción.  

En la naturaleza, todos los 
fenómenos ocurren con gasto de 
la mínima cantidad de energía; 
en Óptica, se puede observar 
tanto en la reflexión como en la 
refracción, de modo que, para la 
reflexión, se presenta de esta 
forma:  

En la Fig. 5.48, el rayo AB incide con el ángulo 𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 y el rayo reflejado lo hace 
con el ángulo 𝜃𝜃𝜃𝜃𝑅𝑅𝑅𝑅, de modo que el rayo de luz recorre un trayecto, que es:  

𝑐𝑐𝑐𝑐 = 𝑐𝑐𝑐𝑐1 + 𝑐𝑐𝑐𝑐2        (5.28);            

𝑐𝑐𝑐𝑐1 y 𝑐𝑐𝑐𝑐2 se pueden escribir como: 

𝑐𝑐𝑐𝑐1 = �𝑏𝑏𝑏𝑏12 + 𝑥𝑥𝑥𝑥2  y   𝑐𝑐𝑐𝑐2 = �𝑏𝑏𝑏𝑏22 + (𝑁𝑁𝑁𝑁 − 𝑥𝑥𝑥𝑥)2 

Por otra parte, la velocidad de la luz se la puede expresar como:  𝐶𝐶𝐶𝐶 = 𝑛𝑛𝑛𝑛
𝛥𝛥𝛥𝛥
, 

por lo que el tiempo será: 𝐶𝐶𝐶𝐶 = 𝑛𝑛𝑛𝑛
𝐶𝐶𝐶𝐶
; si esta expresión se remplaza en (5.28), 

se tiene: 

𝐶𝐶𝐶𝐶 = 1
𝐶𝐶𝐶𝐶
��𝑏𝑏𝑏𝑏12 + 𝑥𝑥𝑥𝑥2 + �𝑏𝑏𝑏𝑏22 + (𝑁𝑁𝑁𝑁 − 𝑥𝑥𝑥𝑥)2�        (5.29). 

Fig. 5.48. Reflexión de un rayo de luz. 
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Ahora bien, el principio de mínima acción señala que la luz busca el trayecto 
por donde emplearía el menor tiempo; esto significa que gastaría la mínima 
energía. Para encontrarlo, matemáticamente significa encontrar un mínimo, 
con lo que derivamos respecto a x la expresión (5.29): 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁

=
1
𝐶𝐶𝐶𝐶 �

2𝑥𝑥𝑥𝑥

2�𝑏𝑏𝑏𝑏12 + 𝑥𝑥𝑥𝑥2
+

1
2

2(𝑁𝑁𝑁𝑁 − 𝑥𝑥𝑥𝑥)(−1)

�𝑏𝑏𝑏𝑏22 + (𝑁𝑁𝑁𝑁 − 𝑥𝑥𝑥𝑥)2
� = 0 

𝑚𝑚𝑚𝑚

�𝑏𝑏𝑏𝑏12+𝑚𝑚𝑚𝑚2
= 𝑑𝑑𝑑𝑑−𝑚𝑚𝑚𝑚

�𝑏𝑏𝑏𝑏22+(𝑑𝑑𝑑𝑑−𝑚𝑚𝑚𝑚)2
. 

A partir de la Fig. 5.46, se puede observar que: 

𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 =
𝑥𝑥𝑥𝑥

�𝑏𝑏𝑏𝑏12 + 𝑥𝑥𝑥𝑥2
 

𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝜃𝜃𝑅𝑅𝑅𝑅 = 𝑑𝑑𝑑𝑑−𝑚𝑚𝑚𝑚

�𝑏𝑏𝑏𝑏22+(𝑑𝑑𝑑𝑑−𝑚𝑚𝑚𝑚)2
. 

Por tanto, lo que se tiene es:  

𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 = 𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝜃𝜃𝑅𝑅𝑅𝑅, 

y esta es la Ley de Snell:  

𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 = 𝜃𝜃𝜃𝜃𝑅𝑅𝑅𝑅, 

con lo cual esta Ley de Snell se ha 
obtenido de un principio de 
mínima acción. 

En el caso de la refracción, se tiene: 

A partir de la Fig. 5.49, se puede 
observar que en el medio I se 
presenta el rayo de luz incidente Ri 

que, una vez llega al medio II, se 
refracta RR, lo que   genera un 
trayecto ABC, que responde a: 

𝑐𝑐𝑐𝑐 = 𝑐𝑐𝑐𝑐1 + 𝑐𝑐𝑐𝑐2. 
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Fig. 5.49. Refracción de un rayo de luz. 
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Por tanto, el tiempo empleado también es:  

𝐶𝐶𝐶𝐶 = 𝐶𝐶𝐶𝐶1 + 𝐶𝐶𝐶𝐶2. 

Ahora bien, como la velocidad en general es 𝑣𝑣𝑣𝑣 = 𝑛𝑛𝑛𝑛
𝛥𝛥𝛥𝛥
, por tanto: 𝐶𝐶𝐶𝐶1 = 𝑛𝑛𝑛𝑛1

𝑣𝑣𝑣𝑣1
  y   

𝐶𝐶𝐶𝐶2 = 𝑛𝑛𝑛𝑛2
𝑣𝑣𝑣𝑣2

l.  

Además, la velocidad de la luz en función del índice de refracción, para el 
medio I, es: 𝑣𝑣𝑣𝑣1 = 𝑐𝑐𝑐𝑐

𝑆𝑆𝑆𝑆1
,  y para el medio II: 𝑣𝑣𝑣𝑣2 = 𝑐𝑐𝑐𝑐

𝑆𝑆𝑆𝑆2
; por ende, al combinar 

estas expresiones, se tiene que el tiempo es: 

𝐶𝐶𝐶𝐶 =
𝑐𝑐𝑐𝑐1
𝑣𝑣𝑣𝑣1

+
𝑐𝑐𝑐𝑐2
𝑣𝑣𝑣𝑣2

 

𝐶𝐶𝐶𝐶 =
𝑛𝑛𝑛𝑛1𝑐𝑐𝑐𝑐1
𝑐𝑐𝑐𝑐

+
𝑛𝑛𝑛𝑛2𝑐𝑐𝑐𝑐2
𝑐𝑐𝑐𝑐

 

𝐶𝐶𝐶𝐶 = 1
𝑐𝑐𝑐𝑐

(𝑛𝑛𝑛𝑛1𝑐𝑐𝑐𝑐1 + 𝑛𝑛𝑛𝑛2𝑐𝑐𝑐𝑐2). 

Ahora bien: 𝑐𝑐𝑐𝑐1 = �𝑏𝑏𝑏𝑏12 + 𝑥𝑥𝑥𝑥2  y  𝑐𝑐𝑐𝑐2 = �𝑏𝑏𝑏𝑏22 + (𝑁𝑁𝑁𝑁 − 𝑥𝑥𝑥𝑥)2; por tanto, el tiempo es: 

𝐶𝐶𝐶𝐶 = 1
𝑐𝑐𝑐𝑐
�𝑛𝑛𝑛𝑛1�𝑏𝑏𝑏𝑏12 + 𝑥𝑥𝑥𝑥2 + 𝑛𝑛𝑛𝑛2�𝑏𝑏𝑏𝑏22 + (𝑁𝑁𝑁𝑁 − 𝑥𝑥𝑥𝑥)2�. 

Así, para encontrar el mínimo tiempo empleado para que el rayo de luz 
fuera del punto A al punto C, se procede a buscar el mínimo de la 
expresión anterior: 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁

=
1
𝑐𝑐𝑐𝑐 �

𝑛𝑛𝑛𝑛12𝑥𝑥𝑥𝑥

2�𝑏𝑏𝑏𝑏12 + 𝑥𝑥𝑥𝑥2
+

1
2
𝑛𝑛𝑛𝑛22(𝑁𝑁𝑁𝑁 − 𝑥𝑥𝑥𝑥)(−1)

�𝑏𝑏𝑏𝑏22 + (𝑁𝑁𝑁𝑁 − 𝑥𝑥𝑥𝑥)2
� = 0 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁

=
1
𝑐𝑐𝑐𝑐 �

𝑛𝑛𝑛𝑛1𝑥𝑥𝑥𝑥

�𝑏𝑏𝑏𝑏12 + 𝑥𝑥𝑥𝑥2
−

𝑛𝑛𝑛𝑛2(𝑁𝑁𝑁𝑁 − 𝑥𝑥𝑥𝑥)

�𝑏𝑏𝑏𝑏22 + (𝑁𝑁𝑁𝑁 − 𝑥𝑥𝑥𝑥)2
� = 0 

𝑛𝑛𝑛𝑛1
𝑚𝑚𝑚𝑚

�𝑏𝑏𝑏𝑏12+𝑚𝑚𝑚𝑚2
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Por tanto, el tiempo empleado también es:  
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Según la Fig. 5.47, la expresión de la derecha corresponde a: 

𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 =
𝑥𝑥𝑥𝑥

�𝑏𝑏𝑏𝑏12 + 𝑥𝑥𝑥𝑥2
 

Y la expresión de la derecha es: 

𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟 = 𝑑𝑑𝑑𝑑−𝑚𝑚𝑚𝑚

�𝑏𝑏𝑏𝑏22+(𝑑𝑑𝑑𝑑−𝑚𝑚𝑚𝑚)2
. 

Como se puede apreciar, una vez más se tiene la ecuación de Snell para 
la refracción: 

𝑛𝑛𝑛𝑛1𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 = 𝑛𝑛𝑛𝑛2𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟 

Así queda demostrado que el recorrido que realiza la luz lo hace por el 
trayecto donde emplea el menor tiempo posible. 
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El órgano de la visión

 
________________________ 

 

Ojos de una niña afgana, fotografiada en 1985 por Steven McCurry, considerados los ojos más hermosos.

6.1 La visión en la naturaleza 
En la naturaleza se encuentran cuatro tipos de ojos o interface que 
permite percibir el entorno de nuestro mundo:  

• Los ojos más rudimentarios, que funcionan como un simple agujero sin lente;  

• Los ojos compuestos de los insectos y crustáceos, que utilizan un número muy 
grande de lentes diminutos donde cada uno contiene un canal más parecido a 
una fibra óptica, como ocurre con la libélula predadora, que desarrolla gran 

rapidez, que tiene ojos compuestos 
formados por más de 30.000 sistemas 
en comparación con algunas hormigas 
de solo 50 sistemas, por lo que se puede 
decir que entre más facetas hubiera, 
mejor será la visión; es decir, la visión 
depende de la pixelación; 

• Focetas de las serpientes: a 
diferencia de la culebra no venenosa, 
este animal tiene unas focetas, con las 
que puede ver infrarrojos; en algunos 
casos, son simples poros o agujeros 
similares al primer caso; 

• los ojos conformados por un sistema óptico que recibe luz radiante y forman 
una única imagen en una pantalla mediante un juego de lentes. 

Esta maravilla, resultado de la evolución, es la interface que permite unir el 
entorno con el cerebro y tener una idea sobre el mundo físico que nos rodea; 
así como lo hacen otros órganos, como el oído, el tacto, el olfato y el gusto, el 
órgano de la visión, de todos los seres vivientes que lo poseen, ha evolucionado 
hasta llegar a unos ojos especializados en cada especie, debido a que en cada 
especie es todo un universo de conocimiento; en este capítulo, solo se referirá 
al ojo humano como representante de los mamíferos.  

Fig. 6.1. Ojos de Perlita, una hermosa 
gatica. Fuente propia. 
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6.2 El ojo humano  

Desde el punto de vista óptico, la evolución de la naturaleza ha diseñado 
unos ojos óptimos para lo que se debe ver. En Física, hay temas en los que 
nuestros ojos no alcanzan a ver, ni por muy grande ni por pequeño que 
fuese, con lo cual nos vemos acotados en este campo, como ocurre con la 
inmensidad del cosmos y lo inconmensurable de lo pequeño. 

Respecto a los colores, el ojo humano solo puede ver siete colores:  Rojo, 
Naranja, Amarillo, Verde, Azul, Añil y Violeta. La mezcla de estos colores 
da todo un universo de coloración; sin embargo, después del rojo están los 
infrarrojos y después del violeta están los ultravioletas colores que 
quedan por fuera de nuestra visión; de todas formas, nuestros ojos 
comparten muchas estructuras con el resto de los ojos de los mamíferos, 
como ocurre con la gata de la Fig. 6.1; también existe una frontera con 
respecto a la intensidad luminosa: estudios recientes señalan que, para 
estimular un fotorreceptor, es necesario un mínimo de energía luminosa, 
equivalente a un fotón, sin importar qué tan distante estuviera el cuerpo 
de donde proviene el fotón, tema que se aclarará en su momento. Por 
ahora, interesa conocer las partes fundamentales del ojo humano.  

6.3 Partes fundamentales   

Córnea: es la capa que se encuentra en contacto con el aire de la atmósfera; 
es decir, la capa más externa del ojo, totalmente transparente y que, según su 
forma, es un casquete elipsoidal de caras aproximadamente paralelas, con un 
espesor en el centro de 0.8 mm, mientras que en la periferia alcanza hasta 1 
mm, y un índice de refracción de 1.376; justo en la parte posterior interna se 
encuentra el humor acuoso que, en conjunto con esta lente, forman la cama 
anterior, para configurar así una lente cóncavo convexa; según la simetría y 
la transparencia de la córnea es la calidad de imagen que se forma en la retina. 

Humor acuoso. Esta lente, formada por líquido, está por detrás de la córnea 
y delante del iris; según su forma, corresponde a un menisco convergente, 
con índice de refracción similar al del agua; 1.3365, que, en conjunto con la 
córnea, forman la cámara anterior, como se puede ver en las Figs. 6.2 y 6.3.  
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Diafragma o iris. Conocido también como iris, es el causante de dar color 
a los ojos azules, verdes, negros, entre otros (véase Fig. 6.2); la función de 
este órgano es controlar la entrada de luz de forma automática; cuando 
hay mucha luz, como ocurre en un día soleado, el diafragma se dilata y 
deja entrar poca luz, mientras que en la oscuridad se contrae y deja entrar 
la cantidad de luz que se requiera  

Cristalino. Es una lente menisco convergente flexible “biconvexa”, con 
índice de refracción 1.4085, formada por varias capas de células “total-
mente transparentes”, con la característica de que las células del centro 
son las mismas que cuando se formó: “no hay cambio celular”. Se encuen-
tra en una cápsula conformada por músculos ciliares que accionan como 
un anillo que disminuye su diámetro, lo cual lleva a que el cristalino joven 
se ensanchara, para tornarlo “más convexo” en la parte media; es decir, 
aumenta el espesor de la lente, con lo cual cambia la distancia focal, lo 
que permite enfocar, llevar a que la imagen fuese lo más nítida posible en 
la pantalla; así, cuando se mira a lo lejos, la lente se encuentra relajada, 
mientras que cuando se mira objetos cercanos (lectura), el cristalino se 
engrosa, lo que significa que el ojo tiene su propio sistema de enfoque.  

Fig. 6.2. Esquema del ojo humano. 
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Cápsula del cristalino. Es una envoltura que rodea al cristalino; se trata 
de una estructura elástica que espontáneamente tiende a disminuir su diá-
metro y, por tanto, aumentar el espesor del cristalino; esta retracción se ha-
lla impedida, en estado de reposo, por un ligamento radial insertado en el 
ecuador: la zónula de Zinn; los músculos ciliares, al contraerse, llevan a que 
disminuyera el diámetro de la cápsula; así, el ojo puede acomodarse para 
que pudiera observar tanto de lejos como de cerca. 

Humor vítreo. Esta es otra lente de características líquidas; por su 
forma, al último lente se lo puede considerar como una lente cóncava con-
vexa, con lo cual corresponde a un menisco convergente; en la superficie 
convexa, se encuentra en contacto con la retina, pantalla donde se forman 
las imágenes, pero debido a que está en contacto con la retina a igual 
distancia, entonces se comporta como una superficie plana; por tanto, en 
la práctica, esta lente correspondería a un plano cóncavo. Por otra parte, 
cabe aclarar que el humor vítreo se encuentra envuelto en una membrana 
transparente, denominada hialoides, que realmente lo separa de la es-
tructura que lo rodea; su función es evitar que el humor vítreo, por su 
naturaleza acuosa, disminuyera movimientos de convección o de res-
puesta a movimiento bruscos de la cabeza. El índice de refracción es igual 
al índice del humor acuoso: 1.3365 (véanse Figs. 6.2. y 6.3).  

Retina o pantalla del ojo. En esta membrana especializada se forman 
las imágenes que proyecta el sistema óptico del ojo; en ella se encuentran 
los fotorreceptores o unidades de recepción de la imagen; hay dos tipos de 
células: conos, y bastones, de los que nos ocuparemos en su momento.  

Mácula lútea. Es un área de 2mm de diámetro, en cuyo centro se halla 
la fóvea central. En esta depresión, solo se encuentran conos yuxtapues-
tos, de modo que sus secciones adquieren forma hexagonal; es el primer 
sistema de recepción de imágenes.  

Punto ciego. Es el lugar por donde sale el nervio óptico, razón por la cual 
no hay fotorreceptores y, si en algún momento se forma aquí una imagen, 
se ignorará totalmente. 
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Retina o pantalla del ojo. En esta membrana especializada se forman 
las imágenes que proyecta el sistema óptico del ojo; en ella se encuentran 
los fotorreceptores o unidades de recepción de la imagen; hay dos tipos de 
células: conos, y bastones, de los que nos ocuparemos en su momento.  

Mácula lútea. Es un área de 2mm de diámetro, en cuyo centro se halla 
la fóvea central. En esta depresión, solo se encuentran conos yuxtapues-
tos, de modo que sus secciones adquieren forma hexagonal; es el primer 
sistema de recepción de imágenes.  

Punto ciego. Es el lugar por donde sale el nervio óptico, razón por la cual 
no hay fotorreceptores y, si en algún momento se forma aquí una imagen, 
se ignorará totalmente. 

Coroides. Se trata de una membrana de color oscuro que rodea al globo 
ocular; tiene dos aberturas: una en la parte posterior, para dar paso al 
nervio óptico, y otra en la parte frontal, donde se encuentra la córnea; la 
función del color oscuro es proteger al sistema óptico de entradas de luz 
que no fuesen por la córnea. 

Esclerótica. Es la parte blanca del ojo; se trata de un tejido fuerte y fibroso  
que se extiende desde la periferia de la córnea hasta el nervio óptico en la 
parte posterior del ojo: toma el nombre de conjuntiva; el mismo tipo de 
colágeno forma a la córnea y la esclerótica; en la córnea, a diferencia del resto 
el tejido, se encuentra organizado en láminas y capas, lo que lo torna un tejido 
transparente, mientras que en el resto del tejido, justo en la parte blanca del 
ojo, las células se organizan de forma aleatoria.    

Nervio óptico. Es un sistema de neuronas que lleva la información de lo 
que los ojos ven a zonas especializadas del cerebro.  

 

Fig. 6.3. Fotografía de un afiche, en el que se encuentra la mayoría de 
los órganos que componen el ojo humano. Fuente propia. 
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En la Fig. 6.3, se tiene una fotografía de un afiche del ojo humano, en el 
que se puede apreciar la mayoría de los componentes del ojo; por fuera 
del ojo están los párpados y debajo de estos se hallan las glándulas 
lagrimales, fundamentales para mantener la humedad necesaria en la 
córnea; con la edad y debido a algunas afecciones del ojo, estas glándulas 
dejan de operar con normalidad, lo que lleva a dificultades para la visión; 
asimismo, las pestañas son protectores de cuerpos extraños que llegan al 
ojo, pues quedan enredados en ellas.   
 
 
 
 
 
 
 
 
 
 
 
 

Células fotorreceptoras 

Estas células son los conos y los bastones. 

Conos se han especializado en reaccionar a los colores; por supuesto que 
un solo cono no podrá dar la sensación de imagen; para ello, se necesita 
que un mínimo de estas células quedase dentro de la imagen que se forma 
en la retina. 

Bastones se han especializado en reaccionar al movimiento y dar una 
imagen en blanco y negro, con lo cual se caracterizan por generar unos 
reflejos periféricos o tener un visón, con poca luminosidad, información 

Fig. 6.4. Lentes del ojo de los mamíferos terrestres. 
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En la Fig. 6.3, se tiene una fotografía de un afiche del ojo humano, en el 
que se puede apreciar la mayoría de los componentes del ojo; por fuera 
del ojo están los párpados y debajo de estos se hallan las glándulas 
lagrimales, fundamentales para mantener la humedad necesaria en la 
córnea; con la edad y debido a algunas afecciones del ojo, estas glándulas 
dejan de operar con normalidad, lo que lleva a dificultades para la visión; 
asimismo, las pestañas son protectores de cuerpos extraños que llegan al 
ojo, pues quedan enredados en ellas.   
 
 
 
 
 
 
 
 
 
 
 
 

Células fotorreceptoras 
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que, al final, viaja a través del nervio óptico a lugares especializados en 
el cerebro. Se considera que hay unos 108 bastones y 7 × 106 conos. 

6.4 El ojo como un sistema óptico centrado  

El sistema óptico del ojo corresponde a un sistema centrado, ya que se 
forma por medios refringentes de distintos índices de refracción, 
separados por superficies esféricas, cuyos centros de curvatura se 
encuentran en un mismo eje de simetría. Así los sistemas ópticos 
centrados cumplen con unas propiedades importantes:  
 
En la Fig. 6.5, en la Parte 1, se puede observar que los rayos paraxiales 1, 2 y 
3, al pasar por los distintos medios refringentes, sufren desviaciones; sin 
embargo, todos cortan al eje de simetría en el punto F', al que se lo denomina 
foco imagen. Las prolongaciones de estos rayos, en su última refracción, cortan 
en el plano P'Q', denominado plano principal imagen; al plano L'M' se lo 
denomina plano focal imagen.  

Ahora bien, en la Parte 2, se puede observar que los rayos que pasan por 
el foco emergen paralelos al eje de simetría; por tanto, son normales al 
plano PQ, denominado plano principal objeto, de la misma forma como se 
determina el plano principal imagen P'Q', que se ve en la Parte 1; al plano 
LM se lo denomina plano focal objeto. 

Por otra parte, en la Parte 3, se pueden observar dos puntos nodales: N y N', 
de modo que todo rayo incidente corresponde a una recta que pasa por uno de 
ellos (a, b), conserva su dirección cuando emerge del sistema, con lo cual 
corresponde a la recta que pasa por el otro punto nodal: rayo 1 o rayo 2. 
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6.5 Formación de la imagen en un sistema óptico centrado      

Como ya se entiende, en definitiva, un sistema óptico centrado es una 
gran lente y, por tanto, formará imágenes de los objetos que se 
encuentran frente a él; en la Fig. 6.6, se puede ver como los rayos que 
salen del punto A del objeto uno paralelo, y otro focal, después de 
atravesar todas las lentes, al final se encuentran en el punto A', donde 
forman la imagen; el espacio entre los planos PQ y P'Q' corresponde al 
grosor del sistema óptico centrado, F es el foco objeto, F' el foco imagen y 
N y N' son los puntos nodales correspondientes a la imagen.  

Fig. 6.5. Elementos y propiedades del sistema centrado del ojo.  
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Por otra parte, en la Fig. 6.7, se puede ver cómo, al alejarse el objeto, la 
imagen se torna más pequeña al acercarse al plano focal, de modo que, para 
los objetos que se encuentran muy alejados, la imagen prácticamente está 
en el plano focal. 

6.6 Elementos ópticos del ojo 

 

Para describir al ojo como un sistema óptico, es suficiente con dar las 
ubicaciones de los planos principales, focos y puntos nodales; la ubicación 
de estos elementos se puede ver en la Fig. 6.7: córnea, cristalino y retina. 
Las distancias que tienen estos elementos respecto a la superficie 
anterior de la córnea se presentan en la tabla que sigue: 

 

Fig. 6.6. Formación de imagen en un sistema óptico centrado.  
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Fig. 6.7. Ubicación de los elementos ópticos: córnea, 
cristalino y retina.  
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Tabla 6.1. Distancias promedio de los diferentes elementos ópticos del 
ojo humano. 

Elemento Magnitud 
Primer plano principal 1.7 mm 
Segundo plano principal 2.0 mm 
Primer punto nodal 7.0 mm 
Segundo punto nodal 7.3 mm 
Foco posterior 24.1 mm 
Foco anterior 15.7 mm 

 

 

 

Tal como se ve en la Fig. 6.8, cuando el ojo está en reposo, el foco 
prácticamente está sobre la retina, con lo que los puntos nodales se 
encuentran muy cerca uno de otro, de tal modo que no hay mayor error si 
se remplaza por uno solo, como ocurre en la Fig. 6.8, donde se tiene un ojo 
reducido con un punto nodal equivalente, en el que se tiene un solo índice 
de refracción equivalente a 1.333, confinado por una superficie anterior 
de 5 mm de radio y por la parte posterior una superficie esférica, donde 
está la retina a 15 mm; el foco anterior también está a 15 mm respecto a 
la superficie anterior (la que está junto con la atmósfera), la córnea.  

 
5 mm

15 mm 5 mm 15 mm

F

N

F'

P

Q

Fig. 6.8. Ojo reducido. 

Fuente: Elementos de Biofísica, de Antonio Frumento, Editorial Intermédica, 
1979, p. 19.5. 
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Fuente: Elementos de Biofísica, de Antonio Frumento, Editorial Intermédica, 
1979, p. 19.5. 

6.7 Visión de la figura plana 

De acuerdo a lo visto, la imagen de un punto cualquiera siempre estará 
sobre el rayo que pasa por el punto nodal y, si el objeto se encuentra muy 

lejos, la imagen estará en 
el punto focal posterior; 
por tanto, como el ojo en 
reposo tiene su foco 
imagen sobre la retina, allí 
se formará la imagen de 
cualquier objeto que se 
encuentre muy retirado; es 
decir, a más de 6 m del ojo. 

Cuando el objeto se acerca, interviene un mecanismo muy interesante, 
que pronto se verá. Sin embargo, la imagen siempre estará sobre el rayo 
que pasa por el punto nodal equivalente.  

6.8 Tamaño real y aparente de la imagen 
Sobre la base de la Fig. 6.10, se puede calcular el tamaño de la imagen 
A'B' según los triángulos ABN y NA'B', que son semejantes por tener un 
ángulo en común y ser opuestos por el vértice; sin tomar en cuenta la 
curvatura de la retina, en que, para el tamaño de la imagen, el radio de 
curvatura es muy grande, entonces se tiene: 

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵
𝐵𝐵𝐵𝐵′𝑞𝑞𝑞𝑞′ = 𝑁𝑁𝑁𝑁𝑞𝑞𝑞𝑞

𝑁𝑁𝑁𝑁𝑞𝑞𝑞𝑞′, 

 Con lo cual se puede calcular A'B', que sería el tamaño de la imagen: 

𝐴𝐴𝐴𝐴′𝐵𝐵𝐵𝐵′ = 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵⋅𝑁𝑁𝑁𝑁𝑞𝑞𝑞𝑞′
𝑁𝑁𝑁𝑁𝑞𝑞𝑞𝑞

, 

De tal modo que si el objeto es de 10 cm de alto y se encuentra a 6m de 
distancia y el ojo normal mide aproximadamente unos 17 mm, el tamaño 
de la imagen es: 

𝐴𝐴𝐴𝐴′𝐵𝐵𝐵𝐵′ =
(10𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚)(1.7𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚)

600𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚
= 0.028𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚 

Fig. 6.9. Formación de la imagen de un objeto 
sobre la retina. 
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𝐴𝐴𝐴𝐴′𝐵𝐵𝐵𝐵′ = 0.28𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚. 

Aproximadamente, la imagen es de unos 0.3 mm. 

Por otra parte, un observador puede mirar un objeto que se encuentra a 
diferentes distancias y, debido a esta condición, constituiría diferentes 

tamaños de imágenes, de tal 
modo que el objeto lejano 
forma una imagen pequeña, 
si se compara con la imagen 
del objeto más cercano; por 
tanto, la información de esta 
experiencia indica que el 
objeto lejano es muy pequeño 
y lo contrario ocurre con el 
objeto cercano, tal como se ve 
en la Fig. 6.10, Parte 1.  

En la Parte 2, las tres 
posiciones de los objetos de 

tamaños diferentes, pero que coinciden en la línea que pasa por el punto 
nodal, forman una misma imagen; por tanto, el observador no podrá 
distinguir qué está más cerca o más lejos y lo que tiene es una imagen 
aparente; esto es lo que ocurre cuando se mira de forma descuidada una 
mosca que se desplaza como un monstruo sobre una colina que se ve a 
través de una ventana, cuando lo que hace la mosca es moverse sobre el 
vidrio. Otro de los aspectos que se tiene aquí es cómo la luna se ve grande 
cuando está junto a las montañas, pero de menor tamaño cuando está en 
cielo abierto; en este caso, existe una visión más compleja, que tiene que 
ver con la comparación de tamaños que realiza el cerebro: en cielo abierto, 
no hay objetos con los que se pudiera comparar y, por ende, el tamaño 
aparente es menor.  

Fig. 6.10. Tamaño real y aparente de un objeto.  
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6.9 Acomodación del ojo    

 

Se ha considerado que el ojo se encuentra en reposo cuando ve un objeto a 6m 
de distancia; en adelante, la imagen del objeto estará en el mismo plano focal, 
pero si el objeto se acerca, la imagen se corre más allá del foco.  

En la Fig. 6.11, se puede apreciar cómo la imagen se forma a di más allá de 
la retina, con lo cual se tiene una visión totalmente borrosa; solo cuando el 
objeto se encuentra a una distancia considerable, de más de 6 m, la imagen 
llega a la retina; para evitar este corrimiento de la formación de la imagen, 
el ojo ha evolucionado y se ha ingeniado un mecanismo maravilloso de 
acomodación: “el cristalino”, por ser una lente flexible, puede corregir la 
posición de la imagen que se forma detrás de la retina, modifica su geometría 
y se torna más convergente; para lograrlo, el cristalino se ensancha en la 
parte central debido a la presión que se establece sobre la cápsula del 
cristalino debido a la contracción de los músculos ciliares, mientras que la 
cara posterior permanece estable. Con este proceso, se logra desplazar el foco 
imagen hacia adelante; a este proceso se lo conoce como acomodación del ojo. 
En la Fig. 6.12, se puede apreciar el vector fuerza de los músculos ciliares y 
la deformación del cristalino para producir el corrimiento del punto nodal y 
lograr la formación de una imagen nítida en la retina. 
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Fig. 6.11. Variación de la distancia de la formación 
de la imagen de acuerdo a la posición del objeto. 
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Este proceso se efectúa de forma automática; cuando se ve a lo lejos, como 
ocurre con las montañas, el ojo se encuentra relajado y, en caso contrario, 
cuando se está leyendo o se ven objetos muy cercanos, el ojo se acomoda 
para lograr un enfoque perfecto.  Con esto se tienen dos extremos: el 
primero para mirar de lejos, el punto remoto, y el segundo para mirar de 
cerca o punto proximal.      

Fig. 6.12. Efecto de abombamiento del cristalino 
por la tensión que establecen los músculos ciliares. 
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Fig. 6.13. Amplitud de la acomodación del ojo. 
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Fig. 6.13. Amplitud de la acomodación del ojo. 

Punto remoto. Como mínimo, se refiere a los 6m de distancia, cuando el ojo se 
relaja; también, se indica que un ojo saludable puede ver dos puntos separados 
por 1 mm, si se encuentra a 3m de distancia; en este caso, se tendría: 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝛼𝛼𝛼𝛼 ≅ 𝛼𝛼𝛼𝛼 = 1𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘
3000𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘

= 0.00033. 

Como el foco del globo ocular alcanza 15𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, en un ojo reducido, tal como 
se ve en la Fig. 6.8.  Ahora bien, en la Fig. 6.11, se tienen dos triángulos: 
ABN y NB'A', donde, 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝛼𝛼𝛼𝛼 es AB respecto a AN y, a partir del triángulo 
NB'A', también se tiene una relación similar; esto es: 

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵

= 𝐵𝐵𝐵𝐵′𝑞𝑞𝑞𝑞′
1.7𝑐𝑐𝑐𝑐𝑘𝑘𝑘𝑘

⇒ 𝐴𝐴𝐴𝐴′𝐵𝐵𝐵𝐵′ = 0.00033 × 17𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 0.006𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚. 

O sea, que 6𝜇𝜇𝜇𝜇𝑚𝑚𝑚𝑚 sería la separación entre los ejes de las células 
fotorreceptoras, lo cual indica que tienen un diámetro aproximado de 
6 micrómetros. 

En el caso de las aves rapaces, el punto remoto es muchas veces mayor, lo 
que implica que las células fotorreceptoras fuesen de un menor diámetro.  

En el ojo humano, un objeto de 10𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚 localizado a 3𝑚𝑚𝑚𝑚 de distancia forma 
una imagen de: 

𝐴𝐴𝐴𝐴′𝐵𝐵𝐵𝐵′ = (100𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘)(17𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘)
3000𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘

= 0.6𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚. 

0.6 milímetro, que alcanza a excitar a 100 fotorreceptores. Las imágenes 
en las retinas de las aves son un centenar de veces más pequeñas. 

Punto próximo. El límite de este punto próximo está en alrededor de 
25𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚; es decir, que puedo leer hasta a una distancia de 25𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚, pues, a una 
distancia menor, resulta muy incómodo en el momento de ver imágenes 
nítidas; las imágenes se tornan totalmente borrosas, lo que quiere decir 
que se ha llegado al límite de acomodación (incluso puede resultar 
doloroso). El cristalino no se puede ensanchar, no puede engrosarse más, 
su elasticidad no da más. Esto se conoce como amplitud de la 
acomodación, que cambia con la edad; en el caso de los niños, la 
elasticidad es grande, puesto que alcanza hasta los 15 cm de 
aproximación, lo que significa que, si colocamos una lente convergente de 
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15cm de foco, los rayos van a entrar al ojo de forma paralela, como si 
estuviera en un estado de reposo, de modo que el poder dióptrico de la 
lente mencionada es el inverso de la distancia focal: 

        𝐴𝐴𝐴𝐴 = 1
0.15

= 6.66 dioptrías. 

6.10 Anomalías del ojo o defectos de la visión     

Debido a diferentes motivos, en muchos casos el ojo resulta incapaz de 
formar imágenes nítidas en la retina, lo que lleva a una mala visión; las 
personas con estos defectos ven borroso, lo cual perturba la vida 
cotidiana; entre estas anomalías, están:  

Miopía. Por alguna causa o circunstancia, el diámetro anteroposterior 
del ojo es mayor que lo normal, de modo que, aun en ausencia de acomo-
dación, la imagen del punto remoto se forma delante de la retina, es 
decir, el sistema óptico es muy convergente; por tanto, la imagen resulta 
borrosa, como se puede ver en la Fig. 6.14. 

 

• Corrección. Con la ayuda de lentes divergentes, se pueden abrir los 
rayos para que la imagen se forme justamente en la retina, como se puede 
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Fig. 6.14. Geometría de un ojo miope. 

 
f '

La imagen se
forma antes
de la retina.
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15cm de foco, los rayos van a entrar al ojo de forma paralela, como si 
estuviera en un estado de reposo, de modo que el poder dióptrico de la 
lente mencionada es el inverso de la distancia focal: 

        𝐴𝐴𝐴𝐴 = 1
0.15

= 6.66 dioptrías. 
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f '
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de la retina.

 

• Hipermetropía. Es el efecto contrario a la miopía; es decir, el diámetro 
anteroposterior del globo ocular es menor y, por tanto, la imagen nítida 
se forma detrás de la retina; es decir, el sistema óptico del ojo no resulta 
lo suficientemente convergente, como se puede ver en la Fig. 6.16.    

 

• Corrección. Con la ayuda de una lente convergente se logra que el ojo 
pudiera formar la imagen en el punto justo de la retina; es decir, el ojo se 
torna más convergente, como se ve en la Fig. 6.17.  

 

Fig. 6.15. Sistema geométrico para corregir la miopía. 

 
f

Lente
divergente de
corrección

La imagen se
forma
justamente
en la retina.

Fig. 6.16. Geometría de un ojo hipermétrope. 

 
f
La imagen se
forma
despues de la
retina

Fig. 6.17. Geometría de mejoramiento de un ojo 
hipermétrope. 

 
f

Lente
convergente
de corrección

La imagen se
forma
justamente
en la retina.
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• Astigmatismo. En general, el defecto está en la córnea; el elipsoide no es 
de perfecta resolución, lo que indica que la córnea no es simétrica; es decir, 
el radio de curvatura en un punto dado no coincide con el radio del punto an-
tagónico. Puede ser que la córnea se encuentre “aplastada”; entonces, el radio 
de curvatura horizontal es menor que el vertical, o lo contrario, pero no solo 
en la parte horizontal o vertical; la asimetría puede darse en cualquier ángulo; 
la solución al problema está colocar una lente exactamente astigmática, pero 
en sentido contrario; o sea, si la anomalía es vertical, entonces la lente será 
astigmática horizontal y viceversa o en cualquier otro ángulo que requiera la 
anomalía; para diagnosticar la fenomenología, se necesita que un médico es-
pecialista u optómetra lo analice. 

6.11 Visión de relieve        
Todas las imágenes que se forman en la retina del ojo son planas, así 
provengan de objetos tridimensionales; sin embargo, en el proceso evolu-
tivo, los seres necesitaban tener una idea de la profundidad o la distancia 
a la que se puede encontrar un objeto cercano; esta es una de las razones 
de por qué tenemos dos ojos; la visión monocular o de un solo ojo puede 
enviar suficiente información como para que los centros superiores pudie-
ran adquirir una noción de la distancia a la que se encuentra el objeto, 
pero, en muchos casos, es muy difícil que esto se lograse, como es el caso 
de tratar de alcanzar una mosca en vuelo (para esto, se puede hacer la 
prueba de taparse un ojo y tratar de alcanzar un lápiz o la mosca volando); 
lo que se pierde con este tipo de visión es la profundidad o la distancia a 
la que se encuentra el objeto.  

6.12 Visión binocular  

Este tipo de visión depende de dos elementos: el esfuerzo de convergencia 
de los ojos y la denominada visión estereoscópica.  

Esfuerzo de convergencia.  Como los centros de los ojos se encuentran 
separados en aproximadamente 6 cm, para observar el punto B de la Fig. 
6.18, los ojos deben converger; esta convergencia es mayor cuanto más 
cerca estuviese el objeto; el esfuerzo para llevar a que rotaran los globos 
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oculares se logra mediante 
músculos del globo ocular, así 
que la convergencia contribuye 
a generar la sensación de pro-
fundidad. 

Visión estereoscópica. Este 
es el elemento que más contri-
buye a la visión de relieve; 
cuando se observa una figura 
plana, una pintura o un dibujo 
en el tablero o pared, ambos 
ojos ven exactamente lo 
mismo, pero, si observamos un 
objeto tridimensional y no tan 
distante, los ojos ven dos imá-
genes diferentes, así: el ojo de-
recho ve la cara izquierda del 
objeto y el izquierdo ve la cara 
derecha del objeto; cuando se 
unen los dos nervios ópticos en 
el punto denominado quiasma, 
las señales de las imágenes se 
superponen y el cerebro ter-
mina por configurar que la 
imagen corresponde a un 
cuerpo que se encuentra a una 
determinada distancia y que 

tiene volumen; esto también nos da un efecto de profundidad o distancia 
a la que se encuentra el objeto, en un efecto que se conoce como paralaje.  

Cuando se entendió la paralaje, de inmediato los científicos observaron el 
cielo desde la tierra; al observar la misma estrella en dos épocas del año, 
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Fig. 6.18. Convergencia de los globos oculares. 
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Fig. 6.19. Observación de un objeto plano.  
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separadas por 6 meses, es 
como si la separación de los 
ojos ahora resulta el diámetro 
de la órbita terrestre y el án-
gulo de convergencia se pudo 
medir con mucha precisión; 
así, al conocer el diámetro de la 
órbita y el ángulo de conver-
gencia, se pudo calcular la dis-
tancia del astro observado. 

Para generar la sensación de relieve, los artistas pintan una imagen con 
una tonalidad de color y superpuesta, pero corrida a un lado y, de modo 
conveniente, otra con otra tonalidad; al observador se le coloca un par de 
anteojos con una lente de cierta tonalidad y al otro con otra tonalidad; así, 
los ojos ven imágenes diferentes; en adelante resulta un asunto del cere-
bro lograr la combinación y, al final, tener la sensación de relieve; asi-
mismo, se puede establecer con polarizadores una imagen polarizada en 
una dirección y otra superpuesta en dirección contraria; los anteojos para 
observar son dos polarizadores;, de este modo, cada ojo puede ver una 
única imagen.  
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Fig. 6.20. Visión de un cuerpo tridimensional. 
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Fig. 6.20. Visión de un cuerpo tridimensional. 
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________________________ 

 

Interferencia lograda por un rayo láser al llevar a que pasara por dos ranuras separadas 0.75 mm, en el Laboratorio de 
Óptica de la Universidad de Nariño. Fuente propia.
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Introducción 
Al iniciar el libro, se plateó algo de Historia de la Óptica tanto geométrica 
como física; en esta parte, se debe reconocer a los ya mencionados 
científicos que colaboraron en la construcción del conocimiento de la 
ciencia de la Óptica, por lo que se sugiere efectuar una lectura. 

Sin embargo, es necesario recordar al sacerdote jesuita Francesco María 
Grimaldi, en Bolonia, con su postura sobre la naturaleza ondulatoria de 
la luz después de observar la difracción de la luz; Cristian Huygens, sobre 
la base del experimento de Grimaldi, propuso que la luz es una especie de 
ondas longitudinales en el aire; por otra parte, Robert Boyle y Evangelista 
Torricelli muestran que también hay luz en el vacío; décadas más tarde, 
Tomas Young, en su calidad de médico, estudia el ojo y el oído humano 
experimentalmente; realiza el experimento del doble agujero o ranura, 
que hoy lleva su nombre, y encuentra la interferencia de la luz; resultaba 
muy interesante e inquietante a la vez al decir que luz más luz da 
oscuridad o más luz; más tarde los trabajos de Augustin Fresnel tuvieron 
tanto reconocimiento, que se inició un movimiento de abandono de la 
teoría corpuscular de Isaac Newton, que termina definitivamente al 
comprobar que la velocidad de la luz en el agua es menor que en el aire, 
experimentos realizados por Léon Foucault. El desarrollo teórico de 
James Maxwell, al identificar que la luz es un fenómeno 
electromagnético, un esfuerzo de Fresnel por encontrar el éter, que debía 
ser de gran rigidez, comportarse como un sólido elástico, ser tan sutil que 
pueden pasar los objetos y ser muy tenue para dejar pasar los cuerpos 
celestes; así, en las décadas siguientes, se dedicó mucho esfuerzo por 
determinar la naturaleza del éter. 

Al finalizar el siglo XIX, Albert Michelson, y luego con Edward Morley, 
mostraron que la velocidad de la luz resultaba invariante con el 
movimiento de la tierra y, en consecuencia, el éter no era estacionario; 
Henri Poincaré puso en duda la existencia del éter; en 1905, Albert 
Einstein, en la teoría de la relatividad, rechaza la hipótesis del éter; a 
partir de entonces, la velocidad de la luz se ha considerado invariante; 
entrado el siglo XX, se comenzó a formular la teoría cuántica, para 
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reconocer a la luz como un corpúsculo portador de energía y momento; la 
explicación del átomo de hidrógeno, por Niels Bohr, llegó a la naturaleza 
de la luz y, por último, Louis de Broglie plantea la dualidad de la luz, con 
lo cual, queda planteada la naturaleza de la luz; esperemos que tanto nos 
depara el futuro de la Óptica.  

7.1 Movimiento ondulatorio 

Como la Óptica Física trata de estudiar la luz como si fuera una onda, 
entonces es muy importante recordar algunas generalidades de las ondas 
mecánicas: lo fundamental del movimiento ondulatorio es la propagación 
de la energía en un medio elástico para las ondas mecánicas, y el vacío 
para las ondas electromagnéticas, en este caso “la luz”.  

En el movimiento ondulatorio, la propagación de la perturbación en 
medios elásticos se puede analizar así: 

 

En la Fig. 7.1, se puede observar que la perturbación A antes del origen 
del sistema de referencia, luego en B y más tarde en C, tiene una 
característica muy importante entre las posiciones B y C, pues se 
encuentran separadas por una distancia 𝑇𝑇𝑇𝑇 = 𝑣𝑣𝑣𝑣𝐶𝐶𝐶𝐶; es decir, las 
perturbaciones se separan en tiempo y en distancia. De modo que, en 
general, la amplitud de la perturbación es: 𝜓𝜓𝜓𝜓 = 𝑓𝑓𝑓𝑓(𝑥𝑥𝑥𝑥; 𝐶𝐶𝐶𝐶); la perturbación de 
la amplitud en el punto C es: 𝜓𝜓𝜓𝜓 = 𝑓𝑓𝑓𝑓(𝑥𝑥𝑥𝑥 − 𝑇𝑇𝑇𝑇), pero como ya se sabe el valor 
de a, entonces se tiene: 

𝜓𝜓𝜓𝜓 = 𝑓𝑓𝑓𝑓(𝑥𝑥𝑥𝑥 − 𝑣𝑣𝑣𝑣𝐶𝐶𝐶𝐶)       (7.1). 

Fig. 7.1. Perturbación del medio. 

 
a = vt
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x
t
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Esto quiere decir que la perturbación llega t segundos más tarde al punto 
C y, cuanto más lejos se encuentre el punto de observación, también será 
en tiempo. 

Ahora bien, si se considera un cambio de variable, como: 𝑧𝑧𝑧𝑧 = 𝑥𝑥𝑥𝑥 − 𝑣𝑣𝑣𝑣𝐶𝐶𝐶𝐶, 
entonces la expresión que representa la perturbación en C es: 

𝜓𝜓𝜓𝜓 = 𝑓𝑓𝑓𝑓(𝑧𝑧𝑧𝑧). 

Si a esta expresión se la deriva respecto a x y t, se tiene: 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑚𝑚𝑚𝑚

= 𝑑𝑑𝑑𝑑𝜋𝜋𝜋𝜋
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝜕𝜕𝜕𝜕𝑑𝑑𝑑𝑑
𝜕𝜕𝜕𝜕𝑚𝑚𝑚𝑚

; como 

ya se sabe que z depende de x y de t, entonces: 𝜕𝜕𝜕𝜕𝑑𝑑𝑑𝑑
𝜕𝜕𝜕𝜕𝑚𝑚𝑚𝑚

= 1.  

Por tanto, se tiene: 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑚𝑚𝑚𝑚

= 𝑑𝑑𝑑𝑑𝜋𝜋𝜋𝜋
𝑑𝑑𝑑𝑑𝑚𝑚𝑚𝑚

. 

La segunda derivada de esta ecuación es: 

𝜕𝜕𝜕𝜕2𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑚𝑚𝑚𝑚2

= 𝑑𝑑𝑑𝑑2𝜋𝜋𝜋𝜋
𝑑𝑑𝑑𝑑𝑚𝑚𝑚𝑚2

       (7.2). 

Como la función depende de x y t, entonces ahora corresponde derivar 
respecto al tiempo: 

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝛥𝛥𝛥𝛥

= 𝑑𝑑𝑑𝑑𝜋𝜋𝜋𝜋
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝜕𝜕𝜕𝜕𝑑𝑑𝑑𝑑
𝜕𝜕𝜕𝜕𝛥𝛥𝛥𝛥

. 

Debido a que z es función de t, entonces: 𝜕𝜕𝜕𝜕𝑑𝑑𝑑𝑑
𝜕𝜕𝜕𝜕𝛥𝛥𝛥𝛥

= 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝛥𝛥𝛥𝛥

(𝑥𝑥𝑥𝑥 − 𝑣𝑣𝑣𝑣𝐶𝐶𝐶𝐶); por tanto,  
𝜕𝜕𝜕𝜕𝑑𝑑𝑑𝑑
𝜕𝜕𝜕𝜕𝛥𝛥𝛥𝛥

= −𝑣𝑣𝑣𝑣.  

Ahora bien, como la velocidad de propagación es constante, entonces la 
segunda derivada es:  

𝜕𝜕𝜕𝜕2𝑑𝑑𝑑𝑑
𝜕𝜕𝜕𝜕𝛥𝛥𝛥𝛥2

= 0.  

Entonces: 
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝛥𝛥𝛥𝛥

= 𝑑𝑑𝑑𝑑𝜋𝜋𝜋𝜋
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

(−𝑣𝑣𝑣𝑣).  
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𝜕𝜕𝜕𝜕𝑚𝑚𝑚𝑚

= 1.  

Por tanto, se tiene: 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑚𝑚𝑚𝑚

= 𝑑𝑑𝑑𝑑𝜋𝜋𝜋𝜋
𝑑𝑑𝑑𝑑𝑚𝑚𝑚𝑚

. 

La segunda derivada de esta ecuación es: 

𝜕𝜕𝜕𝜕2𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑚𝑚𝑚𝑚2

= 𝑑𝑑𝑑𝑑2𝜋𝜋𝜋𝜋
𝑑𝑑𝑑𝑑𝑚𝑚𝑚𝑚2

       (7.2). 

Como la función depende de x y t, entonces ahora corresponde derivar 
respecto al tiempo: 

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝛥𝛥𝛥𝛥

= 𝑑𝑑𝑑𝑑𝜋𝜋𝜋𝜋
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝜕𝜕𝜕𝜕𝑑𝑑𝑑𝑑
𝜕𝜕𝜕𝜕𝛥𝛥𝛥𝛥

. 

Debido a que z es función de t, entonces: 𝜕𝜕𝜕𝜕𝑑𝑑𝑑𝑑
𝜕𝜕𝜕𝜕𝛥𝛥𝛥𝛥

= 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝛥𝛥𝛥𝛥

(𝑥𝑥𝑥𝑥 − 𝑣𝑣𝑣𝑣𝐶𝐶𝐶𝐶); por tanto,  
𝜕𝜕𝜕𝜕𝑑𝑑𝑑𝑑
𝜕𝜕𝜕𝜕𝛥𝛥𝛥𝛥

= −𝑣𝑣𝑣𝑣.  

Ahora bien, como la velocidad de propagación es constante, entonces la 
segunda derivada es:  

𝜕𝜕𝜕𝜕2𝑑𝑑𝑑𝑑
𝜕𝜕𝜕𝜕𝛥𝛥𝛥𝛥2

= 0.  

Entonces: 
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝛥𝛥𝛥𝛥

= 𝑑𝑑𝑑𝑑𝜋𝜋𝜋𝜋
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

(−𝑣𝑣𝑣𝑣).  

 

 

La segunda derivada es: 

𝜕𝜕𝜕𝜕2𝜓𝜓𝜓𝜓
𝜕𝜕𝜕𝜕𝐶𝐶𝐶𝐶2

= −𝑣𝑣𝑣𝑣
𝑁𝑁𝑁𝑁
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁
�
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁
�
𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧
𝜕𝜕𝜕𝜕𝐶𝐶𝐶𝐶

 

𝜕𝜕𝜕𝜕2𝜓𝜓𝜓𝜓
𝜕𝜕𝜕𝜕𝐶𝐶𝐶𝐶2

= −𝑣𝑣𝑣𝑣
𝑁𝑁𝑁𝑁2𝑓𝑓𝑓𝑓
𝑁𝑁𝑁𝑁𝐶𝐶𝐶𝐶2

(−𝑣𝑣𝑣𝑣) 

𝜕𝜕𝜕𝜕2𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝛥𝛥𝛥𝛥2

= 𝑣𝑣𝑣𝑣2 𝑑𝑑𝑑𝑑
2𝜋𝜋𝜋𝜋

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑2
          (7.3). 

Al igualar las ecuaciones (7.2) y (7.3), se tiene:  

𝜕𝜕𝜕𝜕2𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝛥𝛥𝛥𝛥2

= 𝑣𝑣𝑣𝑣2 𝜕𝜕𝜕𝜕
2𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑚𝑚𝑚𝑚2

        (7.4), 

expresión que se conoce como ecuación de onda.  

En este caso, se ha realizado respecto al eje x, pero también se puede 
tener una expresión para el eje y y el eje z; esto es: 

𝜕𝜕𝜕𝜕2𝜓𝜓𝜓𝜓
𝜕𝜕𝜕𝜕𝐶𝐶𝐶𝐶2

= 𝑣𝑣𝑣𝑣2
𝜕𝜕𝜕𝜕2𝜓𝜓𝜓𝜓
𝜕𝜕𝜕𝜕𝛥𝛥𝛥𝛥2

 

𝜕𝜕𝜕𝜕2𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝛥𝛥𝛥𝛥2

= 𝑣𝑣𝑣𝑣2 𝜕𝜕𝜕𝜕
2𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑑𝑑𝑑𝑑2

. 

Cuando la onda se encuentra en el espacio tridimensional, se puede 
expresar como:  

𝜓𝜓𝜓𝜓 = 𝑓𝑓𝑓𝑓(𝑥𝑥𝑥𝑥,𝛥𝛥𝛥𝛥, 𝑧𝑧𝑧𝑧, 𝐶𝐶𝐶𝐶). 

Por tanto, para plantear la ecuación de onda en las tres dimensiones, se 
tiene: 

𝜕𝜕𝜕𝜕2𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑚𝑚𝑚𝑚2

+ 𝜕𝜕𝜕𝜕2𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝛥𝛥𝛥𝛥2

+ 𝜕𝜕𝜕𝜕2𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑑𝑑𝑑𝑑2

= 1
𝑣𝑣𝑣𝑣2
�𝜕𝜕𝜕𝜕

2𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝛥𝛥𝛥𝛥2

�  

� 𝜕𝜕𝜕𝜕
2

𝜕𝜕𝜕𝜕𝑚𝑚𝑚𝑚2
+ 𝜕𝜕𝜕𝜕2

𝜕𝜕𝜕𝜕𝛥𝛥𝛥𝛥2
+ 𝜕𝜕𝜕𝜕2

𝜕𝜕𝜕𝜕𝑑𝑑𝑑𝑑2
�𝜓𝜓𝜓𝜓 = 1

𝑣𝑣𝑣𝑣2
𝜕𝜕𝜕𝜕2𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝛥𝛥𝛥𝛥2

 (7.5). 

A la expresión encerrada en el paréntesis se la conoce como laplaciano, 
que se puede simbolizar como: 

𝛻𝛻𝛻𝛻2𝜓𝜓𝜓𝜓 = 1
𝑣𝑣𝑣𝑣2

𝜕𝜕𝜕𝜕2𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝛥𝛥𝛥𝛥2

. 
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Esta expresión también se puede expresar como:  

𝛻𝛻𝛻𝛻2𝜓𝜓𝜓𝜓 − 1
𝑣𝑣𝑣𝑣2

𝜕𝜕𝜕𝜕2𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝛥𝛥𝛥𝛥2

= 0. 

También:  

�𝛻𝛻𝛻𝛻2 − 1
𝑣𝑣𝑣𝑣2

𝜕𝜕𝜕𝜕2

𝜕𝜕𝜕𝜕𝛥𝛥𝛥𝛥2
�𝜓𝜓𝜓𝜓 = 0        (7.6). 

A lo expresado en el paréntesis se lo conoce como operador de D’Alembert 
y se lo denota como  ∅; así que la expresión  

∅𝜓𝜓𝜓𝜓 = 0        (7.8). 

Esto denota una onda viajera por el espacio tridimensional; puede haber 
otras formas de expresar la ecuación de onda, como en coordenadas 
esféricas, cilíndricas, etc. 

7.2 Ecuación de la onda electromagnética        

Cuando unificó la electricidad y el magnetismo en lo que denominó 
electromagnetismo, Maxwell obtuvo la ecuación de onda de las ondas 
electromagnéticas, en la que al fin se entendió que la luz es una onda 
electromagnética, trabajo matemático que se encuentra desarrollado en 
el último Capítulo del curso de Física III, para estudiantes de Ciencias, 
Ingeniería y licenciatura en Educación; en resumen: 

Se conocen como ecuaciones de Maxwell:  

Ecuación de Faraday: 𝛻𝛻𝛻𝛻 × 𝐸𝐸𝐸𝐸 = −
𝜕𝜕𝜕𝜕𝐵𝐵𝐵𝐵
𝜕𝜕𝜕𝜕𝐶𝐶𝐶𝐶

 

Ecuación de Gauss para E: 𝛻𝛻𝛻𝛻 ⋅ 𝐷𝐷𝐷𝐷 = 𝜌𝜌𝜌𝜌 

Ecuación de Ampere-Maxwell: 𝛻𝛻𝛻𝛻 × 𝐻𝐻𝐻𝐻 = 𝐽𝐽𝐽𝐽 +
𝜕𝜕𝜕𝜕𝜌𝜌𝜌𝜌
𝜕𝜕𝜕𝜕𝐶𝐶𝐶𝐶

 

Ecuación de Gauss para B: 𝛻𝛻𝛻𝛻 ⋅ 𝐵𝐵𝐵𝐵 = 0, 

donde 𝐵𝐵𝐵𝐵 = 𝜇𝜇𝜇𝜇0𝐻𝐻𝐻𝐻  y 𝐷𝐷𝐷𝐷 = 𝜀𝜀𝜀𝜀0 𝐸𝐸𝐸𝐸. 
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Esta expresión también se puede expresar como:  

𝛻𝛻𝛻𝛻2𝜓𝜓𝜓𝜓 − 1
𝑣𝑣𝑣𝑣2

𝜕𝜕𝜕𝜕2𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝛥𝛥𝛥𝛥2

= 0. 

También:  

�𝛻𝛻𝛻𝛻2 − 1
𝑣𝑣𝑣𝑣2

𝜕𝜕𝜕𝜕2

𝜕𝜕𝜕𝜕𝛥𝛥𝛥𝛥2
�𝜓𝜓𝜓𝜓 = 0        (7.6). 

A lo expresado en el paréntesis se lo conoce como operador de D’Alembert 
y se lo denota como  ∅; así que la expresión  

∅𝜓𝜓𝜓𝜓 = 0        (7.8). 

Esto denota una onda viajera por el espacio tridimensional; puede haber 
otras formas de expresar la ecuación de onda, como en coordenadas 
esféricas, cilíndricas, etc. 

7.2 Ecuación de la onda electromagnética        

Cuando unificó la electricidad y el magnetismo en lo que denominó 
electromagnetismo, Maxwell obtuvo la ecuación de onda de las ondas 
electromagnéticas, en la que al fin se entendió que la luz es una onda 
electromagnética, trabajo matemático que se encuentra desarrollado en 
el último Capítulo del curso de Física III, para estudiantes de Ciencias, 
Ingeniería y licenciatura en Educación; en resumen: 

Se conocen como ecuaciones de Maxwell:  

Ecuación de Faraday: 𝛻𝛻𝛻𝛻 × 𝐸𝐸𝐸𝐸 = −
𝜕𝜕𝜕𝜕𝐵𝐵𝐵𝐵
𝜕𝜕𝜕𝜕𝐶𝐶𝐶𝐶

 

Ecuación de Gauss para E: 𝛻𝛻𝛻𝛻 ⋅ 𝐷𝐷𝐷𝐷 = 𝜌𝜌𝜌𝜌 

Ecuación de Ampere-Maxwell: 𝛻𝛻𝛻𝛻 × 𝐻𝐻𝐻𝐻 = 𝐽𝐽𝐽𝐽 +
𝜕𝜕𝜕𝜕𝜌𝜌𝜌𝜌
𝜕𝜕𝜕𝜕𝐶𝐶𝐶𝐶

 

Ecuación de Gauss para B: 𝛻𝛻𝛻𝛻 ⋅ 𝐵𝐵𝐵𝐵 = 0, 

donde 𝐵𝐵𝐵𝐵 = 𝜇𝜇𝜇𝜇0𝐻𝐻𝐻𝐻  y 𝐷𝐷𝐷𝐷 = 𝜀𝜀𝜀𝜀0 𝐸𝐸𝐸𝐸. 

 

 

Así que la Ley de Faraday se escribiría como:  

𝛻𝛻𝛻𝛻 × 𝐸𝐸𝐸𝐸 = −𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕0𝐻𝐻𝐻𝐻
𝜕𝜕𝜕𝜕𝛥𝛥𝛥𝛥

                     

𝛻𝛻𝛻𝛻 × 𝐸𝐸𝐸𝐸 = −𝜇𝜇𝜇𝜇0
𝜕𝜕𝜕𝜕𝐻𝐻𝐻𝐻
𝜕𝜕𝜕𝜕𝛥𝛥𝛥𝛥

. 

Ahora bien, si se opera nuevamente por Nabla, se tiene: 

𝛻𝛻𝛻𝛻 × (𝛻𝛻𝛻𝛻 × 𝐸𝐸𝐸𝐸) = −𝜇𝜇𝜇𝜇0
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝛥𝛥𝛥𝛥
𝛻𝛻𝛻𝛻 × 𝐻𝐻𝐻𝐻        (7.9). 

Como 𝛻𝛻𝛻𝛻 × 𝐻𝐻𝐻𝐻 = 𝐽𝐽𝐽𝐽 + 𝜕𝜕𝜕𝜕𝐷𝐷𝐷𝐷
𝜕𝜕𝜕𝜕𝛥𝛥𝛥𝛥

, entonces queda: 

𝛻𝛻𝛻𝛻 × (𝛻𝛻𝛻𝛻 × 𝐸𝐸𝐸𝐸) = −𝜇𝜇𝜇𝜇0
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝛥𝛥𝛥𝛥
�𝐽𝐽𝐽𝐽 + 𝜕𝜕𝜕𝜕𝐷𝐷𝐷𝐷

𝜕𝜕𝜕𝜕𝛥𝛥𝛥𝛥
�. 

Además, como 𝐷𝐷𝐷𝐷 = 𝜀𝜀𝜀𝜀0 ⋅ 𝐸𝐸𝐸𝐸, entonces se puede escribir como: 

𝛻𝛻𝛻𝛻 × (𝛻𝛻𝛻𝛻 × 𝐸𝐸𝐸𝐸) = −𝜇𝜇𝜇𝜇0
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝛥𝛥𝛥𝛥
�𝐽𝐽𝐽𝐽 + 𝜕𝜕𝜕𝜕(𝜀𝜀𝜀𝜀0𝐸𝐸𝐸𝐸)

𝜕𝜕𝜕𝜕𝛥𝛥𝛥𝛥
�        (7.10). 

Por otra parte, la expresión 𝛻𝛻𝛻𝛻 × (𝛻𝛻𝛻𝛻 × 𝐸𝐸𝐸𝐸) = 𝛻𝛻𝛻𝛻(𝛻𝛻𝛻𝛻 𝛻𝛻𝛻𝛻𝛻 ) − 𝛻𝛻𝛻𝛻2𝐸𝐸𝐸𝐸, a su vez:  
𝛻𝛻𝛻𝛻 𝛻𝛻𝛻𝛻𝛻  = 𝜌𝜌𝜌𝜌

𝜀𝜀𝜀𝜀0
, 

por lo que se tiene: 

𝛻𝛻𝛻𝛻 𝜌𝜌𝜌𝜌
𝜀𝜀𝜀𝜀0
− 𝛻𝛻𝛻𝛻2𝐸𝐸𝐸𝐸 = −𝜇𝜇𝜇𝜇0

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝛥𝛥𝛥𝛥
�𝐽𝐽𝐽𝐽 + 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕0𝐸𝐸𝐸𝐸

𝜕𝜕𝜕𝜕𝛥𝛥𝛥𝛥
�         (7.11). 

Al operar el paréntesis, se tiene:  

𝛻𝛻𝛻𝛻𝛻𝛻𝛻𝛻
𝜀𝜀𝜀𝜀0
− 𝛻𝛻𝛻𝛻2𝐸𝐸𝐸𝐸 = −𝜇𝜇𝜇𝜇0

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝛥𝛥𝛥𝛥
𝐽𝐽𝐽𝐽 𝐽𝐽𝐽𝐽𝐽 0𝜀𝜀𝜀𝜀0

𝜕𝜕𝜕𝜕2𝐸𝐸𝐸𝐸
𝜕𝜕𝜕𝜕𝛥𝛥𝛥𝛥2

. 

Si se organizan los términos, queda: 

𝛻𝛻𝛻𝛻2𝐸𝐸𝐸𝐸 𝐸𝐸𝐸𝐸𝐸 0𝜀𝜀𝜀𝜀0
𝜕𝜕𝜕𝜕2𝐸𝐸𝐸𝐸
𝜕𝜕𝜕𝜕𝛥𝛥𝛥𝛥2

= 𝜇𝜇𝜇𝜇0
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝛥𝛥𝛥𝛥

+ 𝛻𝛻𝛻𝛻𝛻𝛻𝛻𝛻
𝜀𝜀𝜀𝜀0

          (7.12). 

�𝛻𝛻𝛻𝛻2 − 𝜇𝜇𝜇𝜇0𝜀𝜀𝜀𝜀0
𝜕𝜕𝜕𝜕2

𝜕𝜕𝜕𝜕𝛥𝛥𝛥𝛥2
�𝐸𝐸𝐸𝐸 = 𝜇𝜇𝜇𝜇0

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝛥𝛥𝛥𝛥

+ 𝛻𝛻𝛻𝛻𝛻𝛻𝛻𝛻
𝜀𝜀𝜀𝜀0

. 

Como en el vacío no hay densidad de carga ni densidad de corriente, 
entonces las expresiones: 
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𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝛥𝛥𝛥𝛥

= 0   y  𝛻𝛻𝛻𝛻𝛻𝛻𝛻𝛻
𝜀𝜀𝜀𝜀0

= 0. 

Por tanto: 

�𝛻𝛻𝛻𝛻2 − 𝜇𝜇𝜇𝜇0𝜀𝜀𝜀𝜀0
𝜕𝜕𝜕𝜕2

𝜕𝜕𝜕𝜕𝛥𝛥𝛥𝛥2
�𝐸𝐸𝐸𝐸 = 0         (7.13). 

Lo que está en el paréntesis corresponde al operador de D’Alembert: 
�𝛻𝛻𝛻𝛻2 − 1

𝑣𝑣𝑣𝑣2
𝜕𝜕𝜕𝜕2

𝜕𝜕𝜕𝜕𝛥𝛥𝛥𝛥2
� = ∅. 

Por ende, 1
𝑣𝑣𝑣𝑣2

= 𝜇𝜇𝜇𝜇𝑜𝑜𝑜𝑜𝜀𝜀𝜀𝜀0, con lo que la velocidad de propagación de la onda 
electromagnética es:  

𝑣𝑣𝑣𝑣 = 1
�𝜇𝜇𝜇𝜇0𝜀𝜀𝜀𝜀0

. 

Lo concluyente del trabajo de Maxwell radica en que la velocidad de la 
onda electromagnética es la misma velocidad de la luz.  

A partir de la expresión (7.13), se puede deducir que la ecuación de onda 
para el campo eléctrico es:  

𝛻𝛻𝛻𝛻2𝐸𝐸𝐸𝐸 = 𝜇𝜇𝜇𝜇0𝜀𝜀𝜀𝜀0
𝜕𝜕𝜕𝜕2𝐸𝐸𝐸𝐸
𝜕𝜕𝜕𝜕𝛥𝛥𝛥𝛥2

        (7.14). 

Y, de igual forma, para el campo magnético:  

𝛻𝛻𝛻𝛻2𝐵𝐵𝐵𝐵 = 𝜇𝜇𝜇𝜇0𝜀𝜀𝜀𝜀0
𝜕𝜕𝜕𝜕2𝑞𝑞𝑞𝑞
𝜕𝜕𝜕𝜕𝛥𝛥𝛥𝛥2

        (7.15). 

Estas son ecuaciones de onda para el campo eléctrico y magnético en el 
vacío. 

7.3 Función de onda         
Es una función matemática que satisface a la ecuación de onda, de modo 
que, por ejemplo, la función 𝜓𝜓𝜓𝜓 = 𝜓𝜓𝜓𝜓0𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝑛𝑛𝑛𝑛(𝑘𝑘𝑘𝑘𝑥𝑥𝑥𝑥 − 𝑤𝑤𝑤𝑤𝐶𝐶𝐶𝐶): ¿satisface o no a la 
ecuación de onda general? Para resolverlo, se deberá hacer lo que se hizo 
con la ecuación de onda cuando se la estaba deduciendo; es decir: 

Como: 𝜓𝜓𝜓𝜓 = 𝜓𝜓𝜓𝜓0(𝑥𝑥𝑥𝑥; 𝐶𝐶𝐶𝐶), entonces:  
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que, por ejemplo, la función 𝜓𝜓𝜓𝜓 = 𝜓𝜓𝜓𝜓0𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝑛𝑛𝑛𝑛(𝑘𝑘𝑘𝑘𝑥𝑥𝑥𝑥 − 𝑤𝑤𝑤𝑤𝐶𝐶𝐶𝐶): ¿satisface o no a la 
ecuación de onda general? Para resolverlo, se deberá hacer lo que se hizo 
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𝜕𝜕𝜕𝜕𝜓𝜓𝜓𝜓
𝜕𝜕𝜕𝜕𝑥𝑥𝑥𝑥

=
𝑁𝑁𝑁𝑁(𝜓𝜓𝜓𝜓0𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝑛𝑛𝑛𝑛(𝑘𝑘𝑘𝑘𝑥𝑥𝑥𝑥 − 𝑤𝑤𝑤𝑤𝐶𝐶𝐶𝐶))

𝑁𝑁𝑁𝑁𝑥𝑥𝑥𝑥
= 𝜓𝜓𝜓𝜓𝑜𝑜𝑜𝑜𝑘𝑘𝑘𝑘𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑘𝑘𝑘𝑘𝑥𝑥𝑥𝑥 − 𝑤𝑤𝑤𝑤𝐶𝐶𝐶𝐶) 

𝜕𝜕𝜕𝜕2𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑚𝑚𝑚𝑚2

= −𝜓𝜓𝜓𝜓0𝑘𝑘𝑘𝑘2𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝑛𝑛𝑛𝑛(𝑘𝑘𝑘𝑘𝑥𝑥𝑥𝑥 − 𝑤𝑤𝑤𝑤𝐶𝐶𝐶𝐶) = −𝑘𝑘𝑘𝑘2𝜓𝜓𝜓𝜓. 

Por otra parte: 

𝜕𝜕𝜕𝜕𝜓𝜓𝜓𝜓
𝜕𝜕𝜕𝜕𝐶𝐶𝐶𝐶

=
𝑁𝑁𝑁𝑁(𝜓𝜓𝜓𝜓0𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑘𝑘𝑘𝑘𝑥𝑥𝑥𝑥 − 𝑤𝑤𝑤𝑤𝐶𝐶𝐶𝐶))

𝑁𝑁𝑁𝑁𝐶𝐶𝐶𝐶
= −𝜓𝜓𝜓𝜓𝑜𝑜𝑜𝑜𝑤𝑤𝑤𝑤𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑘𝑘𝑘𝑘𝑥𝑥𝑥𝑥 − 𝑤𝑤𝑤𝑤𝐶𝐶𝐶𝐶) 

𝜕𝜕𝜕𝜕2𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝛥𝛥𝛥𝛥2

= −𝜓𝜓𝜓𝜓0𝑤𝑤𝑤𝑤2𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑘𝑘𝑘𝑘𝑥𝑥𝑥𝑥 − 𝑤𝑤𝑤𝑤𝐶𝐶𝐶𝐶) = −𝑤𝑤𝑤𝑤2𝜓𝜓𝜓𝜓. 

De modo que la ecuación de onda queda: 

−𝑘𝑘𝑘𝑘2𝜓𝜓𝜓𝜓 = 1
𝑣𝑣𝑣𝑣2

(−𝑤𝑤𝑤𝑤2𝜓𝜓𝜓𝜓), 

siempre y cuando 𝑣𝑣𝑣𝑣 = 𝑤𝑤𝑤𝑤
𝑘𝑘𝑘𝑘

= 𝑓𝑓𝑓𝑓𝜆𝜆𝜆𝜆, lo cual es una solución para la ecuación de 

onda, en la cual se define a la frecuencia angular 𝑤𝑤𝑤𝑤 = 2𝜋𝜋𝜋𝜋
𝑇𝑇𝑇𝑇

, donde T es el 

periodo, k el número de onda: 𝑘𝑘𝑘𝑘 = 2𝜋𝜋𝜋𝜋
𝜆𝜆𝜆𝜆

, donde 𝜆𝜆𝜆𝜆 es la longitud de onda; 
entonces, la función de onda propuesta también se la puede escribir como: 

𝜓𝜓𝜓𝜓 = 𝜓𝜓𝜓𝜓0𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 �
2𝜋𝜋𝜋𝜋
𝜆𝜆𝜆𝜆
𝑥𝑥𝑥𝑥 𝑥 2𝜋𝜋𝜋𝜋

𝑇𝑇𝑇𝑇
𝐶𝐶𝐶𝐶�. 

También: 

𝜓𝜓𝜓𝜓 = 𝜓𝜓𝜓𝜓0𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶2𝜋𝜋𝜋𝜋 𝜋𝑚𝑚𝑚𝑚
𝜆𝜆𝜆𝜆
− 𝛥𝛥𝛥𝛥

𝑇𝑇𝑇𝑇
�        (7.14). 

Todas estas expresiones son función de onda.  

 

 λ
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ψ

Fig. 7.2. Onda sinusoidal. 
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Ahora bien, se define velocidad de propagación de la perturbación como: 
𝑣𝑣𝑣𝑣 = 𝜆𝜆𝜆𝜆

𝑇𝑇𝑇𝑇
 y  𝜆𝜆𝜆𝜆 = 2𝜋𝜋𝜋𝜋

𝑘𝑘𝑘𝑘
, con lo cual la velocidad de propagación se expresa como: 

𝑣𝑣𝑣𝑣 = 𝑤𝑤𝑤𝑤
𝑘𝑘𝑘𝑘
. 

7.4 Propiedades de las ondas             

Frente de Onda. En la Fig. 7.3, se puede ver como 
varios puntos que oscilan a la vez, es decir, en fase, 
forman unas pequeñas ondas esféricas, pero la suma 
de estos frentes de onda genera el frente de onda de 
color rojo, que puede ser unidimensional, 
bidimensional o tridimensional, plano o esférico o 
cualquier otro tipo de frente de onda.  

En el caso de la luz, cuando se refiere a una fuente 
puntiforme, el frente de onda sería tridimensional, una 
esfera; más aún, si se cumple el principio de linealidad, 
homogeneidad e isotropía, la esfera sería simétrica.  

7.4.2 Principio de Huygens. 
Si se parte de una posición conocida, 
el principio de Huygens establece 
que cada punto de un frente de onda 
es una nueva fuente de ondas que se 
propagan a la misma velocidad de la 
propia onda; por tanto, el nuevo 
frente de onda es tangente a todas 
las ondas pequeñas generadas por 
los puntos vibrantes, todos en fase.  

En una cubeta de ondas, se puede 
ver como al generar ondas con 
varias puntas, el resultado es un 
frente de onda del tamaño del 
generador de ondas.  

Fig. 7.4. Frente de onda plano generado 
en la superficie de agua. Fuente propia. 

 
Frente de
Onda

Fig. 7.3. Generación 
de un frente de onda.   
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Frente de
Onda

Fig. 7.3. Generación 
de un frente de onda.   

En la Fig. 7.4, se tiene una fotografía de un frente de ondas plano, logrado 
en la cubeta de ondas del Laboratorio de Óptica de la Universidad de 
Nariño; las sombras oscuras y claras se logran al iluminar la superficie 
del agua perturbada sobre una superficie blanca.  

Reflexión de un tren de frente de onda plano.  En la Fig. 7.5, se 
puede observar que la superficie que separa a los dos medios, I y II, tiene 
su normal, de modo que el ángulo con el que llega el rayo incidente a la 
superficie se mide respecto a la normal; por tanto, 𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 es el ángulo de 
incidencia de ese frente de onda; tras golpear la superficie, se refleja con 
un ángulo de reflexión 𝜃𝜃𝜃𝜃𝑅𝑅𝑅𝑅. De acuerdo a la Ley de Snell, estos dos ángulos 
son iguales. En la Fig. 7.6, se puede ver la reflexión del frente de onda 
denotado por AB y A'B', de acuerdo a los triángulos formados por: ABB' 
y AA'B'; como los triángulos son iguales, por tanto los lados opuestos a 
los ángulos 𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 y 𝜃𝜃𝜃𝜃𝑅𝑅𝑅𝑅son iguales, con lo cual se cumple la Ley de Snell para 
la reflexión de frentes de onda.            

Refracción de un tren de frente de onda plano. En la Fig. 7.7, se 
puede ver que hay una superficie que separa a los dos medios I y II y 
sobre ella la normal a la superficie; el tren de ondas incidente cuyo rayo 
de onda forma un ángulo de incidencia 𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖; el frente de onda, una vez 
hubiera tocado la superficie del medio refringente, pasa al medio II, en el 
cual se puede observar como en el tren de onda cambia en su longitud de 

Fig. 7.5. Reflexión de un tren de ondas 
con frente plano. 
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Fig. 7.6. Reflexión de un frente de 
onda plano. 
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onda; es decir, se torna más estrecho, lo que lleva a que cambiase de 
dirección; en este caso, el tren de ondas se acerca a la normal, como se 
puede ver el ángulo entre la normal y el rayo refractado; respecto a la 
longitud de onda, se ve muy disminuido, en el medio II, debido al índice 
de refracción absoluto de este medio; ahora bien, la velocidad en este 
medio se puede expresar como: 𝑣𝑣𝑣𝑣2 = 𝑐𝑐𝑐𝑐

𝑆𝑆𝑆𝑆2
 y, en el medio I: 𝑣𝑣𝑣𝑣1 = 𝑐𝑐𝑐𝑐

𝑆𝑆𝑆𝑆1
, si el medio 

I es el aire, cuyo índice de refracción es muy cercano al vacío, donde  
𝑛𝑛𝑛𝑛0 = 1.  

En la Fig. 7.8, se puede apreciar el cambio de rumbo del frente de onda, 
lo cual genera una geometría donde los triángulos ABB' y AB'A' son 
triángulos semejantes, por tener un lado en común y un ángulo igual; a 
partir del primer triángulo, se tiene: 

𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 = 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞′
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵′ y 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟 = 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵′

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵′. 

Ahora bien, como: 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵′ = 𝑣𝑣𝑣𝑣1𝐶𝐶𝐶𝐶 y 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴′ = 𝑣𝑣𝑣𝑣2𝐶𝐶𝐶𝐶, se puede establecer que:  

𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 = 𝑣𝑣𝑣𝑣1𝛥𝛥𝛥𝛥
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵′   y   𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟 = 𝑣𝑣𝑣𝑣2𝛥𝛥𝛥𝛥

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵′. 

Al relacionar estas ecuaciones, se tiene: 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟

=
𝑣𝑣𝑣𝑣1𝛥𝛥𝛥𝛥

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵′�
𝑣𝑣𝑣𝑣2𝛥𝛥𝛥𝛥

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵′�
= 𝑣𝑣𝑣𝑣1𝛥𝛥𝛥𝛥

𝑣𝑣𝑣𝑣2𝛥𝛥𝛥𝛥
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Fig. 7.8. Refracción de un frente de onda.  
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Fig. 7.7. Refracción de un tren de ondas.  
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onda; es decir, se torna más estrecho, lo que lleva a que cambiase de 
dirección; en este caso, el tren de ondas se acerca a la normal, como se 
puede ver el ángulo entre la normal y el rayo refractado; respecto a la 
longitud de onda, se ve muy disminuido, en el medio II, debido al índice 
de refracción absoluto de este medio; ahora bien, la velocidad en este 
medio se puede expresar como: 𝑣𝑣𝑣𝑣2 = 𝑐𝑐𝑐𝑐

𝑆𝑆𝑆𝑆2
 y, en el medio I: 𝑣𝑣𝑣𝑣1 = 𝑐𝑐𝑐𝑐

𝑆𝑆𝑆𝑆1
, si el medio 

I es el aire, cuyo índice de refracción es muy cercano al vacío, donde  
𝑛𝑛𝑛𝑛0 = 1.  

En la Fig. 7.8, se puede apreciar el cambio de rumbo del frente de onda, 
lo cual genera una geometría donde los triángulos ABB' y AB'A' son 
triángulos semejantes, por tener un lado en común y un ángulo igual; a 
partir del primer triángulo, se tiene: 

𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 = 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞′
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵′ y 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟 = 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵′

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵′. 

Ahora bien, como: 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵′ = 𝑣𝑣𝑣𝑣1𝐶𝐶𝐶𝐶 y 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴′ = 𝑣𝑣𝑣𝑣2𝐶𝐶𝐶𝐶, se puede establecer que:  

𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 = 𝑣𝑣𝑣𝑣1𝛥𝛥𝛥𝛥
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵′   y   𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟 = 𝑣𝑣𝑣𝑣2𝛥𝛥𝛥𝛥

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵′. 

Al relacionar estas ecuaciones, se tiene: 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟

=
𝑣𝑣𝑣𝑣1𝛥𝛥𝛥𝛥

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵′�
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, 

 N

Medio I

Medio II

SuperficieA

B

A'

B'

vi

v2

θi
θr
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Fig. 7.7. Refracción de un tren de ondas.  

con lo cual se tiene:  

𝑣𝑣𝑣𝑣2𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 = 𝑣𝑣𝑣𝑣1𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟. 

Sin embargo, como 𝑣𝑣𝑣𝑣1 = 𝑐𝑐𝑐𝑐
𝑆𝑆𝑆𝑆1

   y   𝑣𝑣𝑣𝑣2 = 𝑐𝑐𝑐𝑐
𝑆𝑆𝑆𝑆2

, entonces, al remplazar, se tiene la 

Ley de Snell: 

𝑛𝑛𝑛𝑛1𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝜃𝜃𝜃𝜃1 = 𝑛𝑛𝑛𝑛2𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟 

Superposición de ondas. Cuando se tienen ondas en el espacio o en 
una superficie, pueden superponerse en suma o en resta, como en el caso 
de la superficie del agua de una piscina: cuando hay en ella usuarios que 
nadan, se generan tantas ondas que algunas de ellas logran sumarse y 
otras restarse. 

Sean las funciones de ondas: 

𝜓𝜓𝜓𝜓1 = 𝜓𝜓𝜓𝜓01𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑤𝑤𝑤𝑤1𝐶𝐶𝐶𝐶 − 𝑘𝑘𝑘𝑘1𝑥𝑥𝑥𝑥1) 

𝜓𝜓𝜓𝜓2 = 𝜓𝜓𝜓𝜓02𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑤𝑤𝑤𝑤2𝐶𝐶𝐶𝐶 − 𝑘𝑘𝑘𝑘2𝑥𝑥𝑥𝑥2) 

Superponer ondas es sumar estas funciones de onda, así: 

𝜓𝜓𝜓𝜓 = 𝜓𝜓𝜓𝜓1 + 𝜓𝜓𝜓𝜓2 

𝜓𝜓𝜓𝜓 = 𝜓𝜓𝜓𝜓01𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑤𝑤𝑤𝑤1𝐶𝐶𝐶𝐶 − 𝑘𝑘𝑘𝑘1𝑥𝑥𝑥𝑥1) + 𝜓𝜓𝜓𝜓02𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑤𝑤𝑤𝑤2𝐶𝐶𝐶𝐶 − 𝑘𝑘𝑘𝑘2𝑥𝑥𝑥𝑥2) 

Una manera sencilla de sumar estas funciones de onda es al utilizar la 
identidad trigonométrica y suponer que las amplitudes, frecuencias 
angulares y número de ondas son iguales; es decir: 𝜓𝜓𝜓𝜓01 = 𝜓𝜓𝜓𝜓02; 𝑤𝑤𝑤𝑤1 = 𝑤𝑤𝑤𝑤2y 
𝑘𝑘𝑘𝑘1 = 𝑘𝑘𝑘𝑘2, con lo cual se tiene: 

𝜓𝜓𝜓𝜓 = 2𝜓𝜓𝜓𝜓0𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 �
𝑤𝑤𝑤𝑤𝐶𝐶𝐶𝐶 − 𝑘𝑘𝑘𝑘𝑥𝑥𝑥𝑥1 − 𝑤𝑤𝑤𝑤𝐶𝐶𝐶𝐶 + 𝑘𝑘𝑘𝑘𝑥𝑥𝑥𝑥2

2
� 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 �

𝑤𝑤𝑤𝑤𝐶𝐶𝐶𝐶 − 𝑘𝑘𝑘𝑘𝑥𝑥𝑥𝑥1 + 𝑤𝑤𝑤𝑤𝐶𝐶𝐶𝐶 − 𝑘𝑘𝑘𝑘𝑥𝑥𝑥𝑥2
2

� 

𝜓𝜓𝜓𝜓 = 2𝜓𝜓𝜓𝜓0𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 �𝑘𝑘𝑘𝑘
𝑚𝑚𝑚𝑚1−𝑚𝑚𝑚𝑚2
2

� 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 �𝑘𝑘𝑘𝑘 𝑚𝑚𝑚𝑚1+𝑚𝑚𝑚𝑚2
2

− 𝑤𝑤𝑤𝑤𝐶𝐶𝐶𝐶�        (7.15). 

En esta expresión, se tienen dos partes: la primera corresponde a la 
amplitud del movimiento resultante, es decir, el movimiento resultante 
también es una función de onda, expresada así: 
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𝜓𝜓𝜓𝜓 = 𝐴𝐴𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 �𝑘𝑘𝑘𝑘 𝑚𝑚𝑚𝑚2+𝑚𝑚𝑚𝑚1
2

− 𝑤𝑤𝑤𝑤𝐶𝐶𝐶𝐶�        (7.16), 

donde: 𝐴𝐴𝐴𝐴 = 2𝜓𝜓𝜓𝜓0𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 �𝑘𝑘𝑘𝑘
𝑚𝑚𝑚𝑚1−𝑚𝑚𝑚𝑚2
2

�, con lo cual se pueden analizar dos casos: 

i) La amplitud es máxima cuando 𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = ±1; es decir, el ángulo 
𝑘𝑘𝑘𝑘 𝑘𝑚𝑚𝑚𝑚2−𝑚𝑚𝑚𝑚1

2
� = 𝑛𝑛𝑛𝑛𝜋𝜋𝜋𝜋 , donde 𝑛𝑛𝑛𝑛 = 0,  1,  2. .. 

Ahora bien, como 𝑘𝑘𝑘𝑘 = 2𝜋𝜋𝜋𝜋
𝜆𝜆𝜆𝜆

, entonces: 

2𝜋𝜋𝜋𝜋
𝜆𝜆𝜆𝜆
�
𝑥𝑥𝑥𝑥2 − 𝑥𝑥𝑥𝑥1

2
� = 𝑛𝑛𝑛𝑛𝜋𝜋𝜋𝜋 

𝑥𝑥𝑥𝑥2 − 𝑥𝑥𝑥𝑥1 = 𝑛𝑛𝑛𝑛𝜆𝜆𝜆𝜆        (7.17). 

En este caso, se tiene una 
interferencia constructiva o 
positiva; es decir, siempre que 
se tuviese una diferencia de 
camino igual a un número 
entero de 𝜆𝜆𝜆𝜆, se tendrá una 
interferencia positiva. 

 
En la Fig. 7.9, se puede ver la superposición de dos ondas, donde el 
desfase es de un múltiplo de longitud de onda. 

ii) La amplitud se anula, cuando 𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 0; es decir: 𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 �𝑘𝑘𝑘𝑘 𝑚𝑚𝑚𝑚2−𝑚𝑚𝑚𝑚1
2

� = 0.  

Para que esto se dé, se debe cumplir que el ángulo  𝑘𝑘𝑘𝑘 𝑚𝑚𝑚𝑚2−𝑚𝑚𝑚𝑚1
2

 =   (2𝑛𝑛𝑛𝑛 + 1) 𝜋𝜋𝜋𝜋
2
. 

Ahora bien, si 𝑘𝑘𝑘𝑘 = 2𝜋𝜋𝜋𝜋
𝜆𝜆𝜆𝜆

, entonces, al remplazar, se tiene: 2𝜋𝜋𝜋𝜋
𝜆𝜆𝜆𝜆

(𝑥𝑥𝑥𝑥2 − 𝑥𝑥𝑥𝑥1) =
(2𝑛𝑛𝑛𝑛 + 1)𝜋𝜋𝜋𝜋 

𝑥𝑥𝑥𝑥2 − 𝑥𝑥𝑥𝑥1 = (2𝑛𝑛𝑛𝑛 + 1) 𝜆𝜆𝜆𝜆
2
       (7.18). 

En este caso, se tiene una interferencia destructiva o negativa. 

Fig. 7.9.  Superposición de ondas. 
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Ahora bien, como 𝑘𝑘𝑘𝑘 = 2𝜋𝜋𝜋𝜋
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, entonces: 

2𝜋𝜋𝜋𝜋
𝜆𝜆𝜆𝜆
�
𝑥𝑥𝑥𝑥2 − 𝑥𝑥𝑥𝑥1

2
� = 𝑛𝑛𝑛𝑛𝜋𝜋𝜋𝜋 

𝑥𝑥𝑥𝑥2 − 𝑥𝑥𝑥𝑥1 = 𝑛𝑛𝑛𝑛𝜆𝜆𝜆𝜆        (7.17). 

En este caso, se tiene una 
interferencia constructiva o 
positiva; es decir, siempre que 
se tuviese una diferencia de 
camino igual a un número 
entero de 𝜆𝜆𝜆𝜆, se tendrá una 
interferencia positiva. 

 
En la Fig. 7.9, se puede ver la superposición de dos ondas, donde el 
desfase es de un múltiplo de longitud de onda. 
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� = 0.  

Para que esto se dé, se debe cumplir que el ángulo  𝑘𝑘𝑘𝑘 𝑚𝑚𝑚𝑚2−𝑚𝑚𝑚𝑚1
2

 =   (2𝑛𝑛𝑛𝑛 + 1) 𝜋𝜋𝜋𝜋
2
. 

Ahora bien, si 𝑘𝑘𝑘𝑘 = 2𝜋𝜋𝜋𝜋
𝜆𝜆𝜆𝜆

, entonces, al remplazar, se tiene: 2𝜋𝜋𝜋𝜋
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(𝑥𝑥𝑥𝑥2 − 𝑥𝑥𝑥𝑥1) =
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𝑥𝑥𝑥𝑥2 − 𝑥𝑥𝑥𝑥1 = (2𝑛𝑛𝑛𝑛 + 1) 𝜆𝜆𝜆𝜆
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En este caso, se tiene una interferencia destructiva o negativa. 

Fig. 7.9.  Superposición de ondas. 
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Al ver la Fig. 7.10, se puede afirmar que una onda de luz más otra onda de 
luz, si cumplen las condiciones de la interferencia destructiva, dará oscuridad.  

 

7.5 Interferencia  

La interferencia de ondas electromagnéticas, como las ondas de la luz, se 
produce al superponerse en un punto del espacio dos o más ondas armónicas; 
las ondas deben ser coherentes, de igual frecuencia; los campos eléctricos 
debes ser paralelos y las amplitudes deben ser muy cercanas.  

Experimento de Young. Este es uno 
de los experimentos cruciales en la 
historia de la Óptica, definitivo para 
empezar a cambiar el paradigma de la 
teoría corpuscular de la luz; en la 
práctica, es una corroboración del 
principio de Huygens, propuesto 
inicialmente para las ondas mecánicas. 
En este caso, el principio también actúa 
sobre la luz, lo que corrobora su 
comportamiento ondulatorio, donde 
cada punto de un frente de onda es un 
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Young, al llevar a que pasara un 
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Fig. 7.10. Interferencia de ondas destructivas. 

Fig. 7.11. Interferencia de un rayo 
láser al pasar por un par de ranuras 
que se encuentran separadas 
0.75mm. Fuente propia. 
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En la Fig. 7.11, se puede observar una fotografía de la interferencia de 
luz de un rayo láser al pasar por un par de orificios muy cercanos, cuya 
separación es de 0.75 mm.  

 

El esquema del experimento de Young se puede observar en la Fig. 7.12; los 
orificios A y B, están separados una distancia a, muy pequeña; es decir, debe ser  
comparable con la longitud de onda; a una distancia d está la pantalla y sobre ella 
se forma el patrón de interferencias de líneas brillantes y otras oscuras; la 
diferencia de trayecto 𝛥𝛥𝛥𝛥𝑚𝑚𝑚𝑚 define el tipo de interferencia, así:  

Si 𝛥𝛥𝛥𝛥𝑚𝑚𝑚𝑚 = 𝑁𝑁𝑁𝑁𝜆𝜆𝜆𝜆, donde N es un número entero, habrá una interferencia 
constructiva o positiva o una franja brillante. 

Según la Fig. 5.12, 𝛥𝛥𝛥𝛥𝑚𝑚𝑚𝑚 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇, pero 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥
𝑑𝑑𝑑𝑑

; en ángulos pequeños, 
como los que se tiene en la Fig. 7.12, seno y tangente son muy parecidos; 
esto es: 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ≅ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛; entonces, se puede establecer que: 

𝛥𝛥𝛥𝛥𝑚𝑚𝑚𝑚 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥
𝑑𝑑𝑑𝑑

. 

Ahora bien, como 𝛥𝛥𝛥𝛥𝑚𝑚𝑚𝑚 = 𝑁𝑁𝑁𝑁𝜆𝜆𝜆𝜆, y, para ángulos pequeños, 𝜃𝜃𝜃𝜃 ≅ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛, entonces: 

𝜆𝜆𝜆𝜆 = 𝑚𝑚𝑚𝑚
𝑁𝑁𝑁𝑁
𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥
𝑑𝑑𝑑𝑑

        (7.19), 

donde 𝜆𝜆𝜆𝜆 es la longitud de onda y N corresponde a: 1, 2, 3.    

En el caso de una interferencia destructiva o de zonas oscuras, se tiene: 
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Fig. 7.12. esquema del experimento de Young. 
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luz de un rayo láser al pasar por un par de orificios muy cercanos, cuya 
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Fig. 7.12. esquema del experimento de Young. 

𝛥𝛥𝛥𝛥𝑚𝑚𝑚𝑚 = (2𝑛𝑛𝑛𝑛 + 1) 𝜆𝜆𝜆𝜆
2
; 

es decir: 

𝑇𝑇𝑇𝑇 𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥
𝑑𝑑𝑑𝑑

= (2𝑛𝑛𝑛𝑛 + 1) 𝜆𝜆𝜆𝜆
2
. 

De donde  

𝜆𝜆𝜆𝜆 = 2𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑑𝑑𝑑𝑑(2𝑆𝑆𝑆𝑆+1)        (7.20). 

Ahora bien: de la interferencia constructiva y destructiva se tiene: 

𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥+ =
𝑛𝑛𝑛𝑛𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆
𝑇𝑇𝑇𝑇

 

𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥− = (2𝑆𝑆𝑆𝑆+1)𝑑𝑑𝑑𝑑𝜆𝜆𝜆𝜆
2𝑚𝑚𝑚𝑚

. 

De modo que la distancia entre una franja brillante y una oscura es: 

𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥+ − 𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥− =
𝑛𝑛𝑛𝑛𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆
𝑇𝑇𝑇𝑇

−
(2𝑛𝑛𝑛𝑛 + 1)𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁

2𝑇𝑇𝑇𝑇
 

𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥+− =
𝜆𝜆𝜆𝜆𝑁𝑁𝑁𝑁
𝑇𝑇𝑇𝑇
�𝑛𝑛𝑛𝑛 −

2𝑛𝑛𝑛𝑛 + 1
2

� 

𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥+− = 𝜆𝜆𝜆𝜆
2
𝑑𝑑𝑑𝑑
𝑚𝑚𝑚𝑚
. 

Esta es la distancia entre un máximo brillante y un mínimo oscuro, de 
donde se puede calcular la longitud de onda de la luz con la que se está 
haciendo el experimento: 

𝜆𝜆𝜆𝜆 = 2𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝛥𝛥𝛥𝛥+−
𝑑𝑑𝑑𝑑

. 

El éxito del experimento está en tener una medida exacta entre los ejes de los 
huecos y la distancia entre las zonas brillantes y oscuras sobre la pantalla; la 
distancia entre los huecos debe ser del orden de décimas de milímetro. 

También, se pueden tomar datos entre zonas brillantes; esto es: 
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Para n = 1 y 2:  𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥+2 = 2𝜆𝜆𝜆𝜆𝑑𝑑𝑑𝑑
𝑚𝑚𝑚𝑚

  y  𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥+1 = 1𝜆𝜆𝜆𝜆𝑑𝑑𝑑𝑑
𝑚𝑚𝑚𝑚

 ; al efectuar la diferencia, se 
tiene: 

𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥+2 − 𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥+1 =
2𝜆𝜆𝜆𝜆𝑁𝑁𝑁𝑁
𝑇𝑇𝑇𝑇

−
𝜆𝜆𝜆𝜆𝑁𝑁𝑁𝑁
𝑇𝑇𝑇𝑇

 

𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥+2 − 𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥+1 = 𝜆𝜆𝜆𝜆𝑑𝑑𝑑𝑑
𝑚𝑚𝑚𝑚

. 

De donde la longitud de onda de la luz que genera la interferencia se 
puede expresar como: 

𝜆𝜆𝜆𝜆 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝛥𝛥𝛥𝛥+21
𝑑𝑑𝑑𝑑

        (7.21). 

Interferencia en láminas delgadas. Láminas delgadas, como pompas de 
jabón, láminas polarizadoras de vidrios, anteojos, etc., siempre van a estar 
limitadas por dos superficies s1  y  s2;   según la Fig. 7.13, el rayo que incide en el 

punto A se refleja y refracta al 
pasar al medio II; es decir, se 
generan dos rayos; el rayo 
refractado, al llegar al punto  C,  
también se refleja, con lo cual, 
al llegar al punto B, se vuelve a 
refractar; esto es: en el medio I 
se tienen dos rayos r1 y r2 
desfasados, en una diferencia 
de trayecto 𝛥𝛥𝛥𝛥𝑚𝑚𝑚𝑚. 

El recorrido del rayo dos: r2, 
es: 

𝑚𝑚𝑚𝑚2 = (𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶 + 𝐶𝐶𝐶𝐶𝐵𝐵𝐵𝐵)𝑛𝑛𝑛𝑛.          

En este mismo tiempo, el rayo uno, r1, tiene este recorrido: 𝑚𝑚𝑚𝑚1 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 − 𝜆𝜆𝜆𝜆
2
 

(media longitud de onda, que se pierde por la reflexión).  

Por tanto, la diferencia de trayecto es: 

𝛥𝛥𝛥𝛥𝑚𝑚𝑚𝑚 = 𝑚𝑚𝑚𝑚2 − 𝑚𝑚𝑚𝑚1         

Fig. 7.13. esquema de la trayectoria de un rayo 
de luz cuando llega a una lámina delgada. 
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𝛥𝛥𝛥𝛥𝑚𝑚𝑚𝑚 = (𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶 + 𝐶𝐶𝐶𝐶𝐵𝐵𝐵𝐵)𝑛𝑛𝑛𝑛 − 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 + 𝜆𝜆𝜆𝜆
2
. 

Ahora bien, a partir de la Fig. 7.13, para conocer los valores de AC, CB y 
AQ, se tiene:  

𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟 = 𝑆𝑆𝑆𝑆
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵

; por tanto, 𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶 = 𝑆𝑆𝑆𝑆
𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟

. 

Por otra parte: 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖; además, AC y CB son iguales; por tanto, al 
remplazar, se tiene:  

𝛥𝛥𝛥𝛥𝑚𝑚𝑚𝑚 = 2𝑆𝑆𝑆𝑆
𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟

𝑛𝑛𝑛𝑛 − 𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 + 𝜆𝜆𝜆𝜆
2
. 

Si se considera la mitad de AB, se tiene: 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟 = 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵/2
𝑆𝑆𝑆𝑆

, de donde  
𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵 = 2𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟; por tanto:  

𝛥𝛥𝛥𝛥𝑚𝑚𝑚𝑚 = 2𝑆𝑆𝑆𝑆
𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟

𝑛𝑛𝑛𝑛 − 2𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 + 𝜆𝜆𝜆𝜆
2
. 

Según la Ley de Snell: 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 = 𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑛𝑛𝑛𝑛𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟, y como 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟
𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟

, entonces, al 

remplazar, se tiene: 

𝛥𝛥𝛥𝛥𝑚𝑚𝑚𝑚 =
2𝐶𝐶𝐶𝐶

𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟
𝑛𝑛𝑛𝑛 − 2𝐶𝐶𝐶𝐶

𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟
𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟

𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑛𝑛𝑛𝑛𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟 +
𝜆𝜆𝜆𝜆
2
 

𝛥𝛥𝛥𝛥𝑚𝑚𝑚𝑚 = 2𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟

− 2𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟
𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟

+ 𝜆𝜆𝜆𝜆
2
. 

Con la factorización, se tiene: 

𝛥𝛥𝛥𝛥𝑚𝑚𝑚𝑚 = 2𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟

(1 − 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝑛𝑛𝑛𝑛2𝜃𝜃𝜃𝜃𝑚𝑚𝑚𝑚) + 𝜆𝜆𝜆𝜆
2
. 

Ahora bien, como 1 − 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝑛𝑛𝑛𝑛2𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟 = 𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟, al remplazar, se tiene: 

𝛥𝛥𝛥𝛥𝑚𝑚𝑚𝑚 = 2𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟

𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟 + 𝜆𝜆𝜆𝜆
2
. 

Por último, se tiene: 

𝛥𝛥𝛥𝛥𝑚𝑚𝑚𝑚 = 2𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟 + 𝜆𝜆𝜆𝜆
2
        (7.22). 
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Curso de óptica

Así, conocida la diferencia de trayecto, se pueden tener expresiones para 
la interferencia constructiva o destructiva: 

• Interferencia constructiva. Este tipo de interferencia se obtiene cuando: 

𝛥𝛥𝛥𝛥𝑚𝑚𝑚𝑚 = 𝑁𝑁𝑁𝑁𝜆𝜆𝜆𝜆. 
Entonces:  

2𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟 + 𝜆𝜆𝜆𝜆
2

= 𝑁𝑁𝑁𝑁𝜆𝜆𝜆𝜆. 

Como: 1 = 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝑛𝑛𝑛𝑛2𝜃𝜃𝜃𝜃 + 𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2𝜃𝜃𝜃𝜃, entonces: 𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟 = �1 − 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝑛𝑛𝑛𝑛2𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟. 
Al remplazar, se tiene:  

𝑁𝑁𝑁𝑁𝜆𝜆𝜆𝜆 = 2𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶�1 − 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝑛𝑛𝑛𝑛2𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟 + 𝜆𝜆𝜆𝜆
2
. 

Según la Ley de Snell, 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 = 𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑛𝑛𝑛𝑛𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟, donde 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟 = 1
𝑆𝑆𝑆𝑆
𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖. Si se 

remplaza, se tiene: 

𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵 = 𝟐𝟐𝟐𝟐𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆�𝟏𝟏𝟏𝟏 −
𝟏𝟏𝟏𝟏
𝒏𝒏𝒏𝒏𝟐𝟐𝟐𝟐

𝑺𝑺𝑺𝑺𝒆𝒆𝒆𝒆𝒏𝒏𝒏𝒏𝟐𝟐𝟐𝟐𝜽𝜽𝜽𝜽𝒅𝒅𝒅𝒅 +
𝑵𝑵𝑵𝑵
𝟐𝟐𝟐𝟐

 

𝑁𝑁𝑁𝑁𝜆𝜆𝜆𝜆 −
𝜆𝜆𝜆𝜆
2

= 2𝐶𝐶𝐶𝐶�𝑛𝑛𝑛𝑛2 − 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝑛𝑛𝑛𝑛2𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 

(2𝑁𝑁𝑁𝑁 − 1) 𝜆𝜆𝜆𝜆
2

= 2𝐶𝐶𝐶𝐶�𝑛𝑛𝑛𝑛2 − 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝑛𝑛𝑛𝑛2𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖. 
 
De modo que, cuando 𝑁𝑁𝑁𝑁 = 0, se tiene el máximo central; esto es: 

2𝐶𝐶𝐶𝐶�𝑛𝑛𝑛𝑛2 − 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝑛𝑛𝑛𝑛2𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 = −𝜆𝜆𝜆𝜆
2
. 

Si 𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 = 0, el rayo cae de forma perpendicular; entonces: 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝑛𝑛𝑛𝑛2𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 = 0,  
por lo cual:  

2𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = −𝜆𝜆𝜆𝜆
2
. 

Por tanto, la longitud de onda es: 

𝜆𝜆𝜆𝜆 = 4𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶, 
y, si se conoce la longitud de onda, entonces se procede a calcular el 
espesor de la lámina:  

𝐶𝐶𝐶𝐶 = 𝜆𝜆𝜆𝜆
4𝑆𝑆𝑆𝑆

. 
 

La lámina más delgada dará el color violeta y, cuando es más gruesa, dará el 
color rojo, al ser irradiada por luz policromática; es decir, luz blanca.  
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Capítulo 7. Óptica Física

Así, conocida la diferencia de trayecto, se pueden tener expresiones para 
la interferencia constructiva o destructiva: 

• Interferencia constructiva. Este tipo de interferencia se obtiene cuando: 

𝛥𝛥𝛥𝛥𝑚𝑚𝑚𝑚 = 𝑁𝑁𝑁𝑁𝜆𝜆𝜆𝜆. 
Entonces:  

2𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟 + 𝜆𝜆𝜆𝜆
2

= 𝑁𝑁𝑁𝑁𝜆𝜆𝜆𝜆. 

Como: 1 = 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝑛𝑛𝑛𝑛2𝜃𝜃𝜃𝜃 + 𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2𝜃𝜃𝜃𝜃, entonces: 𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟 = �1 − 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝑛𝑛𝑛𝑛2𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟. 
Al remplazar, se tiene:  

𝑁𝑁𝑁𝑁𝜆𝜆𝜆𝜆 = 2𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶�1 − 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝑛𝑛𝑛𝑛2𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟 + 𝜆𝜆𝜆𝜆
2
. 

Según la Ley de Snell, 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 = 𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑛𝑛𝑛𝑛𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟, donde 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟 = 1
𝑆𝑆𝑆𝑆
𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖. Si se 

remplaza, se tiene: 

𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵 = 𝟐𝟐𝟐𝟐𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆�𝟏𝟏𝟏𝟏 −
𝟏𝟏𝟏𝟏
𝒏𝒏𝒏𝒏𝟐𝟐𝟐𝟐

𝑺𝑺𝑺𝑺𝒆𝒆𝒆𝒆𝒏𝒏𝒏𝒏𝟐𝟐𝟐𝟐𝜽𝜽𝜽𝜽𝒅𝒅𝒅𝒅 +
𝑵𝑵𝑵𝑵
𝟐𝟐𝟐𝟐

 

𝑁𝑁𝑁𝑁𝜆𝜆𝜆𝜆 −
𝜆𝜆𝜆𝜆
2

= 2𝐶𝐶𝐶𝐶�𝑛𝑛𝑛𝑛2 − 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝑛𝑛𝑛𝑛2𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 

(2𝑁𝑁𝑁𝑁 − 1) 𝜆𝜆𝜆𝜆
2

= 2𝐶𝐶𝐶𝐶�𝑛𝑛𝑛𝑛2 − 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝑛𝑛𝑛𝑛2𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖. 
 
De modo que, cuando 𝑁𝑁𝑁𝑁 = 0, se tiene el máximo central; esto es: 

2𝐶𝐶𝐶𝐶�𝑛𝑛𝑛𝑛2 − 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝑛𝑛𝑛𝑛2𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 = −𝜆𝜆𝜆𝜆
2
. 

Si 𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 = 0, el rayo cae de forma perpendicular; entonces: 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝑛𝑛𝑛𝑛2𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 = 0,  
por lo cual:  

2𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = −𝜆𝜆𝜆𝜆
2
. 

Por tanto, la longitud de onda es: 

𝜆𝜆𝜆𝜆 = 4𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶, 
y, si se conoce la longitud de onda, entonces se procede a calcular el 
espesor de la lámina:  

𝐶𝐶𝐶𝐶 = 𝜆𝜆𝜆𝜆
4𝑆𝑆𝑆𝑆

. 
 

La lámina más delgada dará el color violeta y, cuando es más gruesa, dará el 
color rojo, al ser irradiada por luz policromática; es decir, luz blanca.  

Por otra parte, con luz monocromática, se tendrán unos máximos y 
mínimos, así:  
 

(𝟐𝟐𝟐𝟐𝑵𝑵𝑵𝑵 + 𝟏𝟏𝟏𝟏)
𝑵𝑵𝑵𝑵
𝟐𝟐𝟐𝟐

= 𝟐𝟐𝟐𝟐𝒆𝒆𝒆𝒆�𝒏𝒏𝒏𝒏𝟐𝟐𝟐𝟐 − 𝑺𝑺𝑺𝑺𝒆𝒆𝒆𝒆𝒏𝒏𝒏𝒏𝟐𝟐𝟐𝟐𝜽𝜽𝜽𝜽𝒅𝒅𝒅𝒅 +
𝑵𝑵𝑵𝑵
𝟐𝟐𝟐𝟐

 

(𝟐𝟐𝟐𝟐𝑵𝑵𝑵𝑵 + 𝟏𝟏𝟏𝟏) 𝑵𝑵𝑵𝑵
𝟐𝟐𝟐𝟐
− 𝑵𝑵𝑵𝑵

𝟐𝟐𝟐𝟐
= 𝟐𝟐𝟐𝟐𝒆𝒆𝒆𝒆�𝒏𝒏𝒏𝒏𝟐𝟐𝟐𝟐 − 𝑺𝑺𝑺𝑺𝒆𝒆𝒆𝒆𝒏𝒏𝒏𝒏𝟐𝟐𝟐𝟐𝜽𝜽𝜽𝜽𝒅𝒅𝒅𝒅. 

 
Si se organizan los términos, se tiene: 
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𝟐𝟐𝟐𝟐
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En este caso, N debe ser diferente de cero; entonces, si 𝑁𝑁𝑁𝑁 = 1, se obtiene: 
 

𝜆𝜆𝜆𝜆 = 2𝐶𝐶𝐶𝐶�𝑛𝑛𝑛𝑛2 − 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝑛𝑛𝑛𝑛2𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖        (7.23), 
 

para la primera interferencia destructiva y, en adelante, para los valores 
𝑁𝑁𝑁𝑁 > 1. 

En la Fig. 7.14, se tiene una lámina de agua jabonosa, en la que se puede 
ver una serie de colores resultado de la interferencia que se produce 
cuando se ilumina con luz blanca; debido a su espesor, da los colores que 
se pueden observar. La pompa de agua jabonosa se fotografió en el Museo 
de la Ciencia y el Juego, de San Juan de Pasto.      

 
Fig. 7.14. Fotografía de una pompa de jabón. 
Fuente propia. 
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• Recubrimiento de lentes. Los ingenieros y técnicos que elaboran 
instrumentos ópticos informan que, respecto a la luz, al pasar del medio 
aire al vidrio de la lente, alrededor del 4% se refleja, lo que deja pasar 
solo el 96%. Este dato parece insignificante, pero, cuando se trata de 
instrumentos de precisión, resulta importante; la pérdida de luz por 
reflexión se logra minimizar cuando se cubre la superficie de la lente con 
una película delgada, cuyo espesor se elige para que, al reflejarse, se 
produjera una interferencia destructiva para el color amarillo, que se 
encuentra en el centro del espectro visible; de modo que lo que se cancela 
de luz reflejada, se aumenta a la luz transmitida, y este es el color que 
tienen algunas lentes de cámaras fotográficas y binoculares.  

Anillos de Newton. A pesar de que Newton sostuvo la teoría 
corpuscular de la luz, se cree, y a eso se debe su nombre, que obtuvo 
interferencia entre dos vidrios, uno plano y otro ligeramente convexo; la 
forma de explicar este fenómeno se atribuía a la vibración del éter. 

A partir de la Fig. 7.15, se 
puede ver un corte del montaje 
de un vidrio plano que genera 
la superficie s1 y una lente 
plano convexa, de radio R, 
genera la superficie s2 ; un rayo 
de luz que incidiera por la 
parte plana de la lente plano 
convexa genera dos rayos: el 
primero se refleja desde la 
superficie s2 y el segundo se 
refleja desde la superficie s1, 
de modo que la diferencia de 
trayecto de estos dos rayos es: 

𝛥𝛥𝛥𝛥𝑚𝑚𝑚𝑚 = 2𝑐𝑐𝑐𝑐 + 𝜆𝜆𝜆𝜆
2
          (7.24). 

Claro, el segundo rayo tiene que efectuar dos veces el recorrido l y, 
además, gana media longitud de onda. 

Fig. 7.15. Esquema de la trayectoria de un rayo 
de luz cuando llega a una lente plana convexa 
y forma los anillos de Newton 

 
R - l

l
ρ

s1

s2

c

r1
r2
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De modo que, para que hubiera una interferencia positiva, se debe 
cumplir: 

2𝑐𝑐𝑐𝑐 +
𝜆𝜆𝜆𝜆
2

= 𝑁𝑁𝑁𝑁𝜆𝜆𝜆𝜆 

2𝑐𝑐𝑐𝑐 = 𝑁𝑁𝑁𝑁𝜆𝜆𝜆𝜆 − 𝜆𝜆𝜆𝜆
2
. 

De tal forma que: 
𝑐𝑐𝑐𝑐 = (2𝑁𝑁𝑁𝑁 𝑁 1) 𝜆𝜆𝜆𝜆

4
. 

Ahora bien: la pregunta es,  ¿cómo se encuentra𝜆𝜆𝜆𝜆?. Para esto se tiene:  
a partir de la Fig. 7.15, se tiene que: 
 

𝑅𝑅𝑅𝑅2 = 𝜌𝜌𝜌𝜌2 + (𝑅𝑅𝑅𝑅 𝑅 𝑐𝑐𝑐𝑐)2. 
Si se resuelve, se tiene: 

𝑅𝑅𝑅𝑅2 = 𝜌𝜌𝜌𝜌2 + 𝑅𝑅𝑅𝑅2 + 𝑐𝑐𝑐𝑐2 − 2𝑅𝑅𝑅𝑅𝑐𝑐𝑐𝑐. 
 
De donde: 

𝜌𝜌𝜌𝜌2 = 2𝑅𝑅𝑅𝑅𝑐𝑐𝑐𝑐 − 𝑐𝑐𝑐𝑐2. 
Como l es muy pequeño comparado con R, entonces el cuadrado es mucho 
más pequeño, de modo que: 

𝜌𝜌𝜌𝜌 = √2𝑅𝑅𝑅𝑅𝑐𝑐𝑐𝑐. 
Si remplazamos en esta ecuación el valor de l, se tiene: 

𝜌𝜌𝜌𝜌 = �2𝑅𝑅𝑅𝑅(2𝑁𝑁𝑁𝑁 𝑁 1) 𝜆𝜆𝜆𝜆
4
  

𝜌𝜌𝜌𝜌 = �𝑅𝑅𝑅𝑅(2𝑁𝑁𝑁𝑁 𝑁 1) 𝜆𝜆𝜆𝜆
2
  

Este es el radio de los anillos de Newton; para la longitud de onda, se 
tiene esta expresión: 

𝜆𝜆𝜆𝜆 = 2𝜌𝜌𝜌𝜌2

𝑅𝑅𝑅𝑅(2𝑁𝑁𝑁𝑁𝑁𝑁)        (7.25). 
 
En la Fig. 7.16, se tiene una fotografía de anillos de Newton, interferencia 
que se obtiene al iluminar el conjunto de lentes con luz blanca; de allí los 
colores que se pueden apreciar.  
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Interferómetro de Michelson y Morley. Al proponer la teoría 
ondulatoria de la luz, la Física del siglo XIX suponía que así como las 
ondas mecánicas necesitan de un medio elástico, las ondas 
electromagnéticas debían tener un soporte en el que se pudieran 
desplazar; el “éter” resultaba un buen medio. Maxwell había demostrado 
la existencia de las ondas electromagnéticas en el vacío, pero incluso el 
vacío debía estar lleno del éter, debido a que la velocidad de la Luz es tan 
grande y al tomar en cuenta que los cuerpos materiales pasan a través de 
él, sin fricción aparente, se suponía que allí había una combinación de 
propiedades inusuales; por tanto, diseñar experimentos para investigar 
estas propiedades se tornó prioritario. 

Albert Michelson, un científico estadounidense que había dedicado toda 
su vida a calcular la velocidad de la luz, creyó tener una idea clara para 
encontrar esas propiedades inusuales. En 1881, Michelson y, luego, en 
1887, con la ayuda de Edward Morley, desarrollaron el experimento entre 
abril y julio en la Universidad Case de la Reserva Occidental, en 
Cleveland, Ohio; los resultados se publicaron en noviembre del mismo 
año. La intención por demostrar el movimiento relativo de la tierra en 
relación al éter se vio desvanecida, porque los resultados no fueron los 
esperados, ya que la velocidad de la luz resultaba la misma en cualquier 
dirección; el experimento básicamente comparaba los dos movimientos 

Fig. 7. 16. Fotografía de anillos de Newton en el Laboratorio de Óptica - 
Universidad de Nariño, primer semestre 2025. Fuente propia. 
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ortogonales, realizados el mismo día con una diferencia de 12 horas entre 
uno y otro, como también, en un mismo año, con diferencia de 6 meses. 

A partir de los resultados obtenidos, muchos científicos quedaron 
perplejos, pues esperaban otro resultado; sin embargo, los resultados 
fueron la base experimental para la teoría de la relatividad especial, de 
Albert Einstein. 

Desde entonces, el experimento se convirtió en la base fundamental para 
la Física Moderna y lo han repetido muchos científicos (véase Capítulo I), 
con una sensibilidad cada vez mayor; entre los últimos, se cuenta el 
experimento de 2009, cuya precisión fue de 10−17, que realizaron Herbert 
E. Ives y G. R. Stilwell (Ives-Stilwell) y, a la vez, Roy Kennedy y Edward 
Thorndike (Kennedy-Thorndike). 

 

 

En la Fig. 7.17, se puede ver el esquema del montaje del experimento: 
desde la fuente luminosa sale un rayo colimado hasta el espejo semipla-
teado E, que divide el haz en dos; el rayo 1 llega hasta el espejo E1 que, a 
su vez, lo retorna hasta el espejo E semitransparente que, en parte, lo 
transmite hacia la pantalla P; por otra parte, en el espejo semiplateado, 
el segundo rayo se refleja hasta alcanzar el espejo E2 que lo rebota hasta 
el espejo semiplateado, donde se transmite y logra superponerse con el 
rayo reflejado 1; si las distancias de los espejos E1 y E2  son exactamente 

Fig. 7.17. Esquema del experimento de Michelson y 
Morley. 
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iguales, en la pantalla P se genera un patrón de interferencia tanto cons-
tructiva como destructiva; el instrumento resulta altamente sensible, 
pues la vibración del montaje basta para perder la observación; de allí 
que el montaje original exigía una cama de mercurio para absorber las 
vibraciones del piso. Por otra parte, el montaje puede rotar de tal forma 
que uno de los brazos coincidiera con la dirección del movimiento de la 
tierra, mientras que el otro quedaría colocado de forma ortogonal; en esta 
posición, a las 12 de la noche, cuando las velocidades de traslación y ro-
tación se suman, la segunda observación sería a las doce del día; en esta 
posición, la velocidad de traslación y rotación se restarían; de igual modo, 
se establece la observación en épocas del año separadas por seis meses 
una de la otra.   

En la Fig. 7.17, se pueden ver los dos recorridos que realiza la luz: en el 
primer recorrido, la luz llega al espejo semitransparente y se transmite 
hacia el espejo E1;  si se supone que se está moviendo respecto al éter, a 
pesar de que la velocidad de la tierra es de 30 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘

𝑠𝑠𝑠𝑠
 la que, comparada con 

la velocidad de la luz de 300000 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘
𝑠𝑠𝑠𝑠

, resulta muy pequeña, esto significa 
que solo alcanza  0.1 milésima parte. 

Entonces, el tiempo que necesita la luz para ir del espejo E al espejo E1 es: 
𝐶𝐶𝐶𝐶𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸1 = 𝑛𝑛𝑛𝑛

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
, 

y el tiempo para el retorno es: 

𝐶𝐶𝐶𝐶𝐸𝐸𝐸𝐸1𝐸𝐸𝐸𝐸 = 𝑛𝑛𝑛𝑛
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

. 

De modo que el tiempo total es: 

𝐶𝐶𝐶𝐶1 = 𝐶𝐶𝐶𝐶𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸1 + 𝐶𝐶𝐶𝐶𝐸𝐸𝐸𝐸1𝐸𝐸𝐸𝐸 

𝐶𝐶𝐶𝐶1 = 𝑛𝑛𝑛𝑛
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

+ 𝑛𝑛𝑛𝑛
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

. 

Al organizar estos términos, queda: 

𝐶𝐶𝐶𝐶1 = 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛+𝑛𝑛𝑛𝑛𝑣𝑣𝑣𝑣+𝑛𝑛𝑛𝑛𝑐𝑐𝑐𝑐−𝑛𝑛𝑛𝑛𝑣𝑣𝑣𝑣
𝑐𝑐𝑐𝑐2−𝑣𝑣𝑣𝑣2
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𝑐𝑐𝑐𝑐2−𝑣𝑣𝑣𝑣2

  

𝐶𝐶𝐶𝐶1 = 2𝑛𝑛𝑛𝑛𝑐𝑐𝑐𝑐
𝑐𝑐𝑐𝑐2−𝑣𝑣𝑣𝑣2

  

𝐶𝐶𝐶𝐶1 = 2𝑛𝑛𝑛𝑛𝑐𝑐𝑐𝑐

𝑐𝑐𝑐𝑐2�1−𝑣𝑣𝑣𝑣
2

𝑐𝑐𝑐𝑐2�
  

𝐶𝐶𝐶𝐶1 = 2𝑛𝑛𝑛𝑛/𝑐𝑐𝑐𝑐

1−𝑣𝑣𝑣𝑣
2

𝑐𝑐𝑐𝑐2
            (7.26). 

 
Ahora bien, si se observa la Fig. 7.18, se puede apreciar que el recorrido 
que lleva a cabo la luz es un zigzag de E a E2 y el retorno; esto es: 

El tiempo que necesita la luz para ir del espejo E al espejo E2 es: 
𝐶𝐶𝐶𝐶𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸2 = 𝑛𝑛𝑛𝑛

√𝑐𝑐𝑐𝑐2−𝑣𝑣𝑣𝑣2
. 

El tiempo de retorno desde el espejo E2 al espejo E es: 

𝐶𝐶𝐶𝐶𝐸𝐸𝐸𝐸2𝐸𝐸𝐸𝐸 = 𝑛𝑛𝑛𝑛
√𝑐𝑐𝑐𝑐2−𝑣𝑣𝑣𝑣2

. 

De modo que el tiempo total de ida y vuelta será:  

𝐶𝐶𝐶𝐶2 = 𝐶𝐶𝐶𝐶𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸2 + 𝐶𝐶𝐶𝐶𝐸𝐸𝐸𝐸2𝐸𝐸𝐸𝐸 

𝐶𝐶𝐶𝐶2 =
𝑐𝑐𝑐𝑐

√𝑐𝑐𝑐𝑐2 − 𝑣𝑣𝑣𝑣2
+

𝑐𝑐𝑐𝑐
√𝑐𝑐𝑐𝑐2 − 𝑣𝑣𝑣𝑣2

 

𝐶𝐶𝐶𝐶2 = 2𝑛𝑛𝑛𝑛

𝑐𝑐𝑐𝑐�1−𝑣𝑣𝑣𝑣
2

𝑐𝑐𝑐𝑐2

. 

 

Fig. 7.18. Zigzagueo del rayo de luz cuando toma el 
rumbo del trayecto 1. 

 
l V
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Al final, queda: 

𝐶𝐶𝐶𝐶2 = 2𝑛𝑛𝑛𝑛/𝑐𝑐𝑐𝑐

�1−𝑣𝑣𝑣𝑣
2

𝑐𝑐𝑐𝑐2

          (7.27). 

Con los dos tiempos que se tiene, se busca alguna diferencia que debe 
haber entre ellos, para lo cual se establece la relación entre estos dos 
tiempos: 

𝐶𝐶𝐶𝐶2
𝐶𝐶𝐶𝐶1

=
(2𝑐𝑐𝑐𝑐/𝑐𝑐𝑐𝑐)/�1− 𝑣𝑣𝑣𝑣2

𝑐𝑐𝑐𝑐2

(2𝑐𝑐𝑐𝑐/𝑐𝑐𝑐𝑐) �1− 𝑣𝑣𝑣𝑣2
𝑐𝑐𝑐𝑐2�

 

𝐶𝐶𝐶𝐶2
𝐶𝐶𝐶𝐶1

=
�1 − 𝑣𝑣𝑣𝑣2

𝑐𝑐𝑐𝑐2

1 − 𝑣𝑣𝑣𝑣2
𝑐𝑐𝑐𝑐2

 

𝐶𝐶𝐶𝐶2
𝐶𝐶𝐶𝐶1

=
1

�1 − 𝑣𝑣𝑣𝑣2
𝑐𝑐𝑐𝑐2

 

Y, por último, para comparar los tiempos, se tiene: 

𝐶𝐶𝐶𝐶1 = �1 − �𝑣𝑣𝑣𝑣
𝑐𝑐𝑐𝑐
�
2
 𝐶𝐶𝐶𝐶2            (7.28), 

con lo cual se tiene que 𝐶𝐶𝐶𝐶1 > 𝐶𝐶𝐶𝐶2; como los dos haces de luz generan una 
interferencia en la pantalla, al llevar a que girara el montaje 90°, esto 
quiere decir que, como se han cambiado los recorridos, también debería 
producirse un corrimiento de la interferencia al menos de 0.4 de franja, 
pero solo alcanzó 0.005, lo cual no resulta significativo; con este resultado, 
se descartó la existencia del éter.  

Como la velocidad de la luz es muy grande, si se compara con la velocidad 

de la tierra, el radical �1 − �𝑣𝑣𝑣𝑣
𝑐𝑐𝑐𝑐
�
2

= 1 significa que 𝑣𝑣𝑣𝑣
2

𝑐𝑐𝑐𝑐2
≅ 0; por tanto, los 

tiempos son iguales; es decir: 
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Al final, queda: 

𝐶𝐶𝐶𝐶2 = 2𝑛𝑛𝑛𝑛/𝑐𝑐𝑐𝑐

�1−𝑣𝑣𝑣𝑣
2

𝑐𝑐𝑐𝑐2

          (7.27). 
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haber entre ellos, para lo cual se establece la relación entre estos dos 
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𝐶𝐶𝐶𝐶2
𝐶𝐶𝐶𝐶1

=
(2𝑐𝑐𝑐𝑐/𝑐𝑐𝑐𝑐)/�1− 𝑣𝑣𝑣𝑣2

𝑐𝑐𝑐𝑐2

(2𝑐𝑐𝑐𝑐/𝑐𝑐𝑐𝑐) �1− 𝑣𝑣𝑣𝑣2
𝑐𝑐𝑐𝑐2�

 

𝐶𝐶𝐶𝐶2
𝐶𝐶𝐶𝐶1

=
�1 − 𝑣𝑣𝑣𝑣2

𝑐𝑐𝑐𝑐2

1 − 𝑣𝑣𝑣𝑣2
𝑐𝑐𝑐𝑐2

 

𝐶𝐶𝐶𝐶2
𝐶𝐶𝐶𝐶1

=
1

�1 − 𝑣𝑣𝑣𝑣2
𝑐𝑐𝑐𝑐2

 

Y, por último, para comparar los tiempos, se tiene: 

𝐶𝐶𝐶𝐶1 = �1 − �𝑣𝑣𝑣𝑣
𝑐𝑐𝑐𝑐
�
2
 𝐶𝐶𝐶𝐶2            (7.28), 

con lo cual se tiene que 𝐶𝐶𝐶𝐶1 > 𝐶𝐶𝐶𝐶2; como los dos haces de luz generan una 
interferencia en la pantalla, al llevar a que girara el montaje 90°, esto 
quiere decir que, como se han cambiado los recorridos, también debería 
producirse un corrimiento de la interferencia al menos de 0.4 de franja, 
pero solo alcanzó 0.005, lo cual no resulta significativo; con este resultado, 
se descartó la existencia del éter.  

Como la velocidad de la luz es muy grande, si se compara con la velocidad 

de la tierra, el radical �1 − �𝑣𝑣𝑣𝑣
𝑐𝑐𝑐𝑐
�
2

= 1 significa que 𝑣𝑣𝑣𝑣
2

𝑐𝑐𝑐𝑐2
≅ 0; por tanto, los 

tiempos son iguales; es decir: 

𝐶𝐶𝐶𝐶1 =
2𝑐𝑐𝑐𝑐
𝑐𝑐𝑐𝑐

 

𝐶𝐶𝐶𝐶2 = 2𝑛𝑛𝑛𝑛
𝑐𝑐𝑐𝑐
. 

Como se ve, los dos tiempos son iguales, con lo cual se plantea un nuevo 
principio de la naturaleza: La invariancia de la velocidad de la Luz, un 
principio clave para el desarrollo de la Teoría de la Relatividad.           

7.6 Difracción  
Esta es una de las propiedades de las ondas; como resultado del principio 
de Huygens, las ondas bordean obstáculos que fuesen comparables con la 
longitud de onda, lo que significa que, al darse la difracción, se puede 
generar una superposición de ondas, cuyo resultado es una interferencia, 
como se puede ver en la Fig. 7.21, la difracción de un rayo láser al pasar 
por una ranura de 0.75 mm de espesor.  

Difracción por una ranura. En la Fig. 7.19, se tiene un esquema sobre 
cómo un rayo de luz que pasa por la ranura AB, de espesor a, se dobla al 
bordear las esquina A y B, hasta alcanzar la pantalla en el punto P; el 

rayo que bordea el punto A 
define un recorrido r1 y el 
rayo que bordea la esquina 
B define el rayo r2; así, entre 
r2 y r1 se tiene una 
diferencia de camino 𝛥𝛥𝛥𝛥𝑚𝑚𝑚𝑚 
que, si resulta comparable 
con la longitud de onda, 
produce una interferencia, 
de modo que se puede 
escribir:  

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 𝛥𝛥𝛥𝛥𝑚𝑚𝑚𝑚        (7.29). 

Ahora bien, a partir de la superposición de ondas se tiene: 

𝛹𝛹𝛹𝛹 = 2𝛹𝛹𝛹𝛹0𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝐶𝐶𝐶𝐶𝑛𝑛𝑛𝑛(𝑤𝑤𝑤𝑤𝐶𝐶𝐶𝐶 − 𝑘𝑘𝑘𝑘𝑥𝑥𝑥𝑥), 

 

a

A

B ∆r

θ

r1

r2

P

∆y

d

C

Fig. 7.19. Difracción por una ranura. 
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donde la amplitud es: 

𝐴𝐴𝐴𝐴 = 2𝛹𝛹𝛹𝛹0𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 

amplitud que depende del valor que tomase 𝛿𝛿𝛿𝛿; es decir, se tendrá la 
máxima amplitud cuando: 

𝐴𝐴𝐴𝐴𝑀𝑀𝑀𝑀 = 2𝛹𝛹𝛹𝛹0 

y, para que se dé este resultado: 𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = ±1; es decir: 

𝛿𝛿𝛿𝛿 = 𝑘𝑘𝑘𝑘(𝑚𝑚𝑚𝑚2 − 𝑚𝑚𝑚𝑚1) = 0,  2𝜋𝜋𝜋𝜋,  4𝜋𝜋𝜋𝜋. . = 2𝑛𝑛𝑛𝑛𝜋𝜋𝜋𝜋. 

Si se remplaza 𝑘𝑘𝑘𝑘 = 2𝜋𝜋𝜋𝜋
𝜆𝜆𝜆𝜆

, se tiene:  

𝛿𝛿𝛿𝛿 = 2𝜋𝜋𝜋𝜋
𝜆𝜆𝜆𝜆
𝛥𝛥𝛥𝛥𝑚𝑚𝑚𝑚, 

por lo que, al combinar con (7.29), se tiene: 

𝛿𝛿𝛿𝛿 = 2𝜋𝜋𝜋𝜋
𝜆𝜆𝜆𝜆
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇          (7.30). 

Pero, según la Fig. 7.19: 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 ≅ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥
𝑑𝑑𝑑𝑑

, y, en ángulos pequeños, se puede 

decir que: 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛 𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥
𝑑𝑑𝑑𝑑

= 𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥
𝑑𝑑𝑑𝑑

; por tanto, se tiene: 

𝛿𝛿𝛿𝛿 =
2𝜋𝜋𝜋𝜋
𝜆𝜆𝜆𝜆
𝑇𝑇𝑇𝑇
𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥
𝑁𝑁𝑁𝑁

= 2𝑛𝑛𝑛𝑛𝜋𝜋𝜋𝜋 

𝜆𝜆𝜆𝜆 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

             (7.31). 

Por otra parte, así como entre los puntos A y B hay infinitos puntos entre 
ellos, que son generadores de ondas y, por supuesto, también generan 
difracción y, por consiguiente, interferencias y, por tanto, hay una serie 
de vectores rotantes desfasados 𝛿𝛿𝛿𝛿, con lo cual la función resultante, de 
acuerdo a la Fig. 7.20, es:  

𝛹𝛹𝛹𝛹0 = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶. 

Como 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 𝑅𝑅𝑅𝑅𝛿𝛿𝛿𝛿, entonces: 

𝜓𝜓𝜓𝜓0 = 𝑅𝑅𝑅𝑅𝛿𝛿𝛿𝛿. 
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donde la amplitud es: 

𝐴𝐴𝐴𝐴 = 2𝛹𝛹𝛹𝛹0𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 

amplitud que depende del valor que tomase 𝛿𝛿𝛿𝛿; es decir, se tendrá la 
máxima amplitud cuando: 

𝐴𝐴𝐴𝐴𝑀𝑀𝑀𝑀 = 2𝛹𝛹𝛹𝛹0 

y, para que se dé este resultado: 𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = ±1; es decir: 
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𝜆𝜆𝜆𝜆
𝛥𝛥𝛥𝛥𝑚𝑚𝑚𝑚, 

por lo que, al combinar con (7.29), se tiene: 
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𝑑𝑑𝑑𝑑

, y, en ángulos pequeños, se puede 

decir que: 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛 𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥
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; por tanto, se tiene: 

𝛿𝛿𝛿𝛿 =
2𝜋𝜋𝜋𝜋
𝜆𝜆𝜆𝜆
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𝑁𝑁𝑁𝑁

= 2𝑛𝑛𝑛𝑛𝜋𝜋𝜋𝜋 

𝜆𝜆𝜆𝜆 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

             (7.31). 

Por otra parte, así como entre los puntos A y B hay infinitos puntos entre 
ellos, que son generadores de ondas y, por supuesto, también generan 
difracción y, por consiguiente, interferencias y, por tanto, hay una serie 
de vectores rotantes desfasados 𝛿𝛿𝛿𝛿, con lo cual la función resultante, de 
acuerdo a la Fig. 7.20, es:  

𝛹𝛹𝛹𝛹0 = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶. 

Como 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 𝑅𝑅𝑅𝑅𝛿𝛿𝛿𝛿, entonces: 

𝜓𝜓𝜓𝜓0 = 𝑅𝑅𝑅𝑅𝛿𝛿𝛿𝛿. 

En este rango toma todos los vectores 
rotantes.  

Por otra parte, la función resultante 
también se puede expresar así:  

𝛹𝛹𝛹𝛹𝑅𝑅𝑅𝑅 = 2𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴. 
 

Según la gráfica: 

𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑆𝑆𝑆𝑆
2

= 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
𝑅𝑅𝑅𝑅

. 

 

De donde: 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑅𝑅𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑆𝑆𝑆𝑆
2
; de modo que la función queda: 

𝛹𝛹𝛹𝛹𝑅𝑅𝑅𝑅 = 2𝑅𝑅𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑆𝑆𝑆𝑆
2
. 

Con lo cual se puede establecer una relación entre estas dos funciones:  

𝛹𝛹𝛹𝛹𝑅𝑅𝑅𝑅
𝛹𝛹𝛹𝛹0

=
2𝑅𝑅𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝛿𝛿𝛿𝛿2
𝑅𝑅𝑅𝑅𝑆𝑆𝑆𝑆

. 

 

En Fig. 7.21, se tiene una fotografía de difracción, que se logra cuando un 
rayo de luz láser pasa por una ranura formada por dos cuchillas, cuya 
separación es 0.75 mm; al centro muy brillante se lo denomina máximo 
central y a cada lado están los máximos secundarios, que se desvanecen 
a medida que se aleja del centro:  

Fig. 7.21. Difracción lograda al pasar un rayo láser por una 
ranura de 0.75 mm de espesor. Laboratorio de Óptica - 
Universidad de Nariño. Fuente propia. 

Fig. 7.20. Vectores rotantes. 

 δ δ/
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𝛹𝛹𝛹𝛹𝑅𝑅𝑅𝑅 = 𝛹𝛹𝛹𝛹0
2𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝛿𝛿𝛿𝛿2
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Intensidad de máximos generados por una ranura. Ahora bien, 
la intensidad luminosa es función del cuadrado de la amplitud, como en 
cualquier tipo de onda; es decir: 𝐼𝐼𝐼𝐼 𝐼 𝐼𝐼𝐼𝐼2. 
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         (7.33), 

que es la intensidad luminosa de cada línea 
brillante o un máximo que se observa en la 
pantalla.       

Difracción con un cabello. En la Fig. 7.22, 
se puede apreciar una fotografía de una 
difracción lograda con un cabello de una 
estudiante de Óptica; al ubicarlo como 
obstáculo al rayo de luz láser, lo mismo se logra 
al ubicar la punta de una aguja muy afilada; 
este tipo de difracciones corresponden a 
difracciones de Fresnel, con objetos físicos 
ubicados en el trayecto de un rayo, cuyo tamaño 
resulta comparable con la longitud de onda; a 
diferencia de la difracción obtenida cuando el 
rayo láser pasa por una ranura, como se puede 

Fig. 7.22. Fotografía de 
una difracción lograda 
con luz láser al pasar un 
cabello como obstáculo. 
Laboratorio de Óptica. 
Fuente propia.  
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observar en la Fig. 7.21, en este caso la ranura tiene una separación de 
0.75 mm; en ambas fotografías se tiene un máximo central y secundarios 
a los lados, dispuestos de forma simétrica, cuya intensidad va decreciendo 
de acuerdo a la expresión matemática (7.33). 

Difracción por una rejilla. En primer lugar, una rejilla consta de 
muchas ranuras muy finas o surcos grabados en un vidrio o una película 
de plástico; para que se pudiera tener una rejilla simétrica, es necesario 
tomar una fotografía de una rejilla y luego minimizarla a la necesidad; 
cuando se realizó la difracción por una ranura simple, se supuso que en 
la ranura había muchas fuentes con luz coherente; al considerar los 
extremos, por el principio de Huygens se tienen dos rayos que, al 
superponerse, producen interferencias tanto constructivas como 
destructivas, con lo cual en una rejilla se explicitan las fuentes puntuales, 
pues cada ranura actúa como tal.  

7.7 Polarización       

Modelo mecánico. En el libro Notas de Clase de Física II, en la sección 
de Características de las ondas, se encuentra la explicación respecto a 
cómo una onda transversal se puede polarizar; aquí, un resumen de ese 
aparte: de acuerdo a la Fig. 7.23, una cuerda, que se puede hacer girar 
como en el punto A, así que en el tramo B la cuerda está girando; ahora 
bien, si la cuerda pasa por una rejilla, como en el punto C, la cuerda no 
tiene otra forma de oscilar que la que le permite la rejilla, con lo cual la 
cuerda oscilaría de manera vertical, de modo que, en el tramo D, la cuerda 
está oscilando de forma vertical; es decir, el movimiento de la cuerda se 
ha polarizado verticalmente.    

 

Fig. 7.23. Modelo mecánico para demostrar la 
polarización de una onda transversal.  
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Si, una vez más, se ubica una baranda o rejilla E de forma horizontal, el 
movimiento oscilatorio de la cuerda desaparece en la zona F; en este caso, 
la baranda es la causa para que desapareciera el movimiento de la 
cuerda; las rejillas se comportan como polarizadores del movimiento de 
la cuerda; a la primera rejilla se la denominaría polarizador y a la 
segunda se la denominaría analizador de la señal. 

Los fenómenos de interferencia y difracción proporcionan evidencia de 
que la luz es un fenómeno ondulatorio; al comienzo, tanto Young como 
Fresnel creían que se trataba de ondas longitudinales, pero la evidencia 
experimental de que la luz es una onda transversal surgió del estudio de 
la polarización de la luz. 

Entonces, debido a que la luz tiene un carácter de onda electromagnética 
transversal y que su forma natural se transmite en todas las direcciones, 
con un campo eléctrico y magnético que vibra en todas las direcciones, 
conserva, eso sí, la ortogonalidad entre sí y la perpendicularidad a la 
dirección de propagación.  

Ahora bien, cuando la luz pasa a través de ciertos materiales o se refleja 
en superficies puede sufrir una restricción en el plano de vibración, 
fenómeno que tiene que ver con la polarización; según esto, se pueden 
presentar los siguientes casos de polarización electromagnética: 

i) Polarización lineal. Ocurre cuando el campo eléctrico y magnético 
vibran en una sola dirección y permanece fija. 

ii) Polarización circular. Ocurre cuando el campo eléctrico y magné-
tico, a medida que se propagan, van girando alrededor del vector 
de propagación. 

iii) Polarización elíptica. Ocurre cuando el campo eléctrico y magné-
tico, a medida que se propagan, la intensidad del campo magnético 
va variando de forma elíptica.  
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fenómeno que tiene que ver con la polarización; según esto, se pueden 
presentar los siguientes casos de polarización electromagnética: 

i) Polarización lineal. Ocurre cuando el campo eléctrico y magnético 
vibran en una sola dirección y permanece fija. 

ii) Polarización circular. Ocurre cuando el campo eléctrico y magné-
tico, a medida que se propagan, van girando alrededor del vector 
de propagación. 

iii) Polarización elíptica. Ocurre cuando el campo eléctrico y magné-
tico, a medida que se propagan, la intensidad del campo magnético 
va variando de forma elíptica.  

Por ejemplo, en las ondas electromagnéticas que provinieran de la antena 
de una radio que se encuentre vertical, el campo eléctrico, en cualquier 
parte del frente de onda, estará siempre vertical (aparentemente) y el 
campo magnético estará de forma horizontal; en este caso, se dice que la 
onda electromagnética se encuentra polarizada linealmente, como se 

puede ver en la Fig. 7.24, A,  pero en un 
haz de luz proveniente de una fuente 
luminosa cuya naturaleza es la 
vibración electrónica, la orientación de 
los campos eléctricos es completamente 
aleatoria; es decir, vibran en todas las 
direcciones, razón por la cual este tipo 
de haz es susceptible de polarizarse en 
cualquier forma de las ya mencionadas; 
en la Fig. 7.24 B, se simboliza un haz 
de luz cuya dirección de propagación es 
saliendo del libro, cuyo frente de onda 
vibra en todas las direcciones. 

Experimentalmente, se tiene que, 
cuando un rayo de luz atraviesa un medio refringente, se presentan dos 
alternativas: atravesar el medio y reflejarse en la primera superficie, tal 
como se puede ver en la Fig. 7.25; el rayo reflejado, cuando se encuentra 
a un ángulo determinado respecto a la normal de la superficie de la 
normal, puede polarizarse totalmente de forma lineal y, asimismo, el rayo 
transmitido también se encuentra parcialmente polarizado.  

En la Fig. 7.26, se puede ver un frente de onda cuya dirección sale del 
libro, en el cual se destaca el campo eléctrico de una onda polarizada 
linealmente, cuya dirección de vibración forma un ángulo  𝜃𝜃𝜃𝜃 con el eje x; 
así, la onda puede descomponerse en los eje x y y en dos ondas 
componentes polarizadas linealmente con amplitudes de: 𝐸𝐸𝐸𝐸𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 y 𝐸𝐸𝐸𝐸𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆, 
de modo que los rayos polarizados de la Fig. 7.26 también se podrían 
descomponer en dos componentes: uno perpendicular al otro. 

 
A B

Fig. 7.24. A. Frente de onda cuya 
dirección es saliendo del libro y se 
encuentra vibrando de forma 
vertical; es decir, se ha polarizado 
linealmente; B. frente de onda que 
sale del libro y vibra en todas las 
direcciones. 
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Así que, para simplificar, solo se tratará con el campo eléctrico. Entonces, 
el vector campo eléctrico se podría expresar como: 

 
𝐸𝐸𝐸𝐸(𝑧𝑧𝑧𝑧, 𝐶𝐶𝐶𝐶) = 𝐸𝐸𝐸𝐸𝑚𝑚𝑚𝑚(𝑧𝑧𝑧𝑧, 𝐶𝐶𝐶𝐶) + 𝐸𝐸𝐸𝐸𝛥𝛥𝛥𝛥(𝑧𝑧𝑧𝑧, 𝐶𝐶𝐶𝐶) 

𝐸𝐸𝐸𝐸(𝑧𝑧𝑧𝑧, 𝐶𝐶𝐶𝐶) = 𝐸𝐸𝐸𝐸0𝑚𝑚𝑚𝑚𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝐸𝐸𝐸𝐸0𝛥𝛥𝛥𝛥𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶. 

Fig. 7.25. Polarización de la luz cuando se refleja y 
se transmite con cierto ángulo de incidencia. 
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Fig. 7.26. Luz polarizada linealmente, descompuesta 
en dos componentes polarizados linealmente. 
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Fig. 7.26. Luz polarizada linealmente, descompuesta 
en dos componentes polarizados linealmente. 
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Si se considera que el ángulo de rotación 𝜃𝜃𝜃𝜃 es (𝑘𝑘𝑘𝑘𝑧𝑧𝑧𝑧 − 𝑤𝑤𝑤𝑤𝐶𝐶𝐶𝐶), la componente en 
y se puede escribir como: 𝐸𝐸𝐸𝐸(𝑧𝑧𝑧𝑧, 𝐶𝐶𝐶𝐶) = 𝐸𝐸𝐸𝐸0𝛥𝛥𝛥𝛥𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑘𝑘𝑘𝑘𝑧𝑧𝑧𝑧 − 𝑤𝑤𝑤𝑤𝐶𝐶𝐶𝐶 + 𝜀𝜀𝜀𝜀), de tal modo que 
𝜀𝜀𝜀𝜀 = 0o un múltiplo entero de ±2𝜋𝜋𝜋𝜋; los campos componentes están en fase 
y, por tanto, se puede escribir como: 
 

𝐸𝐸𝐸𝐸(𝑧𝑧𝑧𝑧, 𝐶𝐶𝐶𝐶) = �𝐸𝐸𝐸𝐸0𝑚𝑚𝑚𝑚 + 𝐸𝐸𝐸𝐸𝑜𝑜𝑜𝑜𝛥𝛥𝛥𝛥�𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑘𝑘𝑘𝑘𝑧𝑧𝑧𝑧 − 𝑤𝑤𝑤𝑤𝐶𝐶𝐶𝐶)        (7.34). 

La amplitud 𝐸𝐸𝐸𝐸0𝑚𝑚𝑚𝑚 + 𝐸𝐸𝐸𝐸𝑜𝑜𝑜𝑜𝛥𝛥𝛥𝛥 es constante y así la onda resultante en sí misma 
se ha polarizado en un plano o linealmente, como se muestra en la Fig. 
7.26; análogamente, cuando 𝜀𝜀𝜀𝜀 es un múltiplo impar ±𝜋𝜋𝜋𝜋:  

𝐸𝐸𝐸𝐸(𝑧𝑧𝑧𝑧, 𝐶𝐶𝐶𝐶) = �𝐸𝐸𝐸𝐸𝑜𝑜𝑜𝑜𝑚𝑚𝑚𝑚 − 𝐸𝐸𝐸𝐸𝑜𝑜𝑜𝑜𝛥𝛥𝛥𝛥�𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑘𝑘𝑘𝑘𝑧𝑧𝑧𝑧 − 𝑤𝑤𝑤𝑤𝐶𝐶𝐶𝐶) 

Una vez más, la amplitud 𝐸𝐸𝐸𝐸0𝑚𝑚𝑚𝑚 − 𝐸𝐸𝐸𝐸𝑜𝑜𝑜𝑜𝛥𝛥𝛥𝛥del vector resultante es constante y la 
onda se habrá polarizado linealmente. 
 
• Ejemplos 
1. Encontrar la expresión de una onda linealmente polarizada, de 
frecuencia𝑤𝑤𝑤𝑤, que se propaga en la dirección positiva de z, cuyo plano de 
vibración está a 30° del plano z, x.  
 
Solución  

Se supone que las amplitudes son iguales; por tanto, sus componentes en 
x y y son: 

𝐸𝐸𝐸𝐸0𝑚𝑚𝑚𝑚 = 𝐸𝐸𝐸𝐸0𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐30° = 0.86𝐸𝐸𝐸𝐸0 
𝐸𝐸𝐸𝐸0𝛥𝛥𝛥𝛥 = 𝐸𝐸𝐸𝐸0𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶30° = 0.5𝐸𝐸𝐸𝐸0. 

Por tanto:  

𝐸𝐸𝐸𝐸(𝑧𝑧𝑧𝑧, 𝐶𝐶𝐶𝐶) = (0.866𝐸𝐸𝐸𝐸0𝑐𝑐𝑐𝑐 + 0.5𝐸𝐸𝐸𝐸0𝑗𝑗𝑗𝑗) 𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑘𝑘𝑘𝑘𝑧𝑧𝑧𝑧 − 𝑤𝑤𝑤𝑤𝐶𝐶𝐶𝐶 + 𝜀𝜀𝜀𝜀), 

donde la constante 𝜀𝜀𝜀𝜀depende de las condiciones iniciales.  

2. Encontrar una expresión para la onda electromagnética polarizada en 
un plano de frecuencia angular 𝑤𝑤𝑤𝑤 que se propaga en la dirección positiva 
de z, de tal modo que el campo E establece un ángulo de 120° con la 
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dirección positiva de x para 𝐶𝐶𝐶𝐶 = 0 y 𝑧𝑧𝑧𝑧 = 0; verificar que esta onda resulta 
ortogonal a la onda del ejercicio anterior.  

Solución 

Se supone que las amplitudes son iguales; entonces: 

𝐸𝐸𝐸𝐸0𝑚𝑚𝑚𝑚 = 𝐸𝐸𝐸𝐸0𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐120° = −0.5𝐸𝐸𝐸𝐸0 
𝐸𝐸𝐸𝐸0𝛥𝛥𝛥𝛥 = 𝐸𝐸𝐸𝐸0𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶120° = 0.866𝐸𝐸𝐸𝐸0 

Por tanto, la expresión resultante es: 

𝐸𝐸𝐸𝐸(𝑧𝑧𝑧𝑧, 𝐶𝐶𝐶𝐶) = (−0.5𝐸𝐸𝐸𝐸𝑜𝑜𝑜𝑜𝑐𝑐𝑐𝑐 + 0.866𝐸𝐸𝐸𝐸0𝑗𝑗𝑗𝑗) 𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑘𝑘𝑘𝑘𝑧𝑧𝑧𝑧 − 𝑤𝑤𝑤𝑤𝐶𝐶𝐶𝐶). 

Para ver si resultan ortogonales o no con la expresión resultante en el 
ejemplo anterior, se puede establecer un producto escalar de las 
amplitudes; en el caso de ser cero, pues los planos son normales entre sí; 
es decir: 𝐴𝐴𝐴𝐴 ⋅ 𝐵𝐵𝐵𝐵 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜃𝜃𝜃𝜃 = 0 significa que el ángulo es de 90°; por tanto, 
son normales; en el ejercicio es: 

(0.866𝐸𝐸𝐸𝐸0𝑐𝑐𝑐𝑐 + 0.5𝐸𝐸𝐸𝐸0𝑗𝑗𝑗𝑗)  ⋅ (−0.5𝐸𝐸𝐸𝐸𝑜𝑜𝑜𝑜𝑐𝑐𝑐𝑐 + 0.866𝐸𝐸𝐸𝐸0𝑗𝑗𝑗𝑗) 
(0.866)(−0.5) + (0.5)(0.866).       

Como se puede ver, el resultado es cero; por tanto, los planos de vibración 
son normales.  
 
Ley de Malus. A comienzos del siglo XIX la única manera de obtener 
luz polarizada era dejando pasar luz por un cristal de Calcita; Malus 
descubrió que la luz reflejada por una superficie plana reflectante bajo un 
ángulo de 57° está polarizada, es decir podía ser extinguida con un 
analizador o polarizador si se coloca de manera ortogonal a la vibración 
del rayo reflejado. Dado a que la intensidad de la luz varía desde un 
mínimo a un máximo significa que la amplitud de la intensidad de luz 
varía en función del ángulo de rotación, esto es:  

𝐼𝐼𝐼𝐼 = 𝐼𝐼𝐼𝐼0𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2𝜃𝜃𝜃𝜃 
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dirección positiva de x para 𝐶𝐶𝐶𝐶 = 0 y 𝑧𝑧𝑧𝑧 = 0; verificar que esta onda resulta 
ortogonal a la onda del ejercicio anterior.  

Solución 

Se supone que las amplitudes son iguales; entonces: 
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Para ver si resultan ortogonales o no con la expresión resultante en el 
ejemplo anterior, se puede establecer un producto escalar de las 
amplitudes; en el caso de ser cero, pues los planos son normales entre sí; 
es decir: 𝐴𝐴𝐴𝐴 ⋅ 𝐵𝐵𝐵𝐵 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝜃𝜃𝜃𝜃 = 0 significa que el ángulo es de 90°; por tanto, 
son normales; en el ejercicio es: 

(0.866𝐸𝐸𝐸𝐸0𝑐𝑐𝑐𝑐 + 0.5𝐸𝐸𝐸𝐸0𝑗𝑗𝑗𝑗)  ⋅ (−0.5𝐸𝐸𝐸𝐸𝑜𝑜𝑜𝑜𝑐𝑐𝑐𝑐 + 0.866𝐸𝐸𝐸𝐸0𝑗𝑗𝑗𝑗) 
(0.866)(−0.5) + (0.5)(0.866).       

Como se puede ver, el resultado es cero; por tanto, los planos de vibración 
son normales.  
 
Ley de Malus. A comienzos del siglo XIX la única manera de obtener 
luz polarizada era dejando pasar luz por un cristal de Calcita; Malus 
descubrió que la luz reflejada por una superficie plana reflectante bajo un 
ángulo de 57° está polarizada, es decir podía ser extinguida con un 
analizador o polarizador si se coloca de manera ortogonal a la vibración 
del rayo reflejado. Dado a que la intensidad de la luz varía desde un 
mínimo a un máximo significa que la amplitud de la intensidad de luz 
varía en función del ángulo de rotación, esto es:  

𝐼𝐼𝐼𝐼 = 𝐼𝐼𝐼𝐼0𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2𝜃𝜃𝜃𝜃 

Donde I0 es la intensidad inicial de la luz incidente, y el ángulo 𝜃𝜃𝜃𝜃 es el 
ángulo de rotación entre el plano de vibración de la onda reflejada y el 
polarizador.  

En general la luz que pasa por un polarizador queda con un plano de 
vibración restringido, si esta luz polarizada vuelve a pasar por un 
segundo medio polarizaste, la intensidad de la luz depende del ángulo en 
el que se encuentren los dos polarizadores si el ángulo es 0° entonces el 
coseno vale 1 aquí no hay cambio en la intensidad, pero si el ángulo es de 
90°  es decir están de manera ortogonal pues el 𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐90° = 0 por tanto la 
intensidad transmitida se anula, esto es lo que se conoce con el nombre 
de Ley de Malus.  
 
Ley de Brewster. En 1812, el científico británico David Brewster 
descubrió que cuando el ángulo de incidencia de un rayo de luz que llega 
a un medio translucido y el ángulo de refracción suman 90°, el rayo 
reflejado y el rayo refractado se polarizan linealmente y, más aún, los 
rayos reflejado y refractado son mutuamente perpendiculares; esto es:  

𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 + 𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟 = 90°        (7.35). 

De la Ley de Snell, se tiene:  

𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 = 𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑛𝑛𝑛𝑛𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟. 

Al combinar con la ecuación (7.35), se tiene: 

𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 = 𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑛𝑛𝑛𝑛(90°− 𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖). 

Como 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(90− 𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖) = 𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖, ya que𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐90° = 0 y 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶90° = 1, por tanto, toda 
la expresión se reduce a: 𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 y, por consiguiente, al remplazar, se tiene: 

𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 = 𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 
𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖
𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖

= 𝑛𝑛𝑛𝑛 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 = 𝑛𝑛𝑛𝑛         (7.36). 
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De modo que, cuando se cumplen las condiciones geométricas, como se 
puede ver en la Fig. 7.27, se tiene esta expresión o, si se conoce el índice 
de refracción, se puede encontrar el ángulo de incidencia, con el cual se 
tienen los rayos polarizados. 

 

Otra forma de entender la Ley de Brewster también es al decir que, 
cuando el rayo reflejado en la superficie del medio y el rayo refractado son 
normales, los rayos refractados y reflejados se encuentran polarizados.   

Dicroísmo. Este término 
significa dos colores; un cristal 
dicroico puede verse de un color, 
pero, si se gira unos 90°, tendrá 
otro color, probablemente negro, 
y esto se debe a la absorción 
selectiva de una de las dos 
componentes ortogonales del 
estado natural de la luz.  

 56°

33°
90

°

N I

n = 1.52
II

Fig. 7.27. Disposición de los rayos incidentes reflejado y refractado 
polarizados cuando se cumple el ángulo crítico de incidencia; en el caso 
del vidrio, el ángulo es 56.56°39'33''. 

Fig. 7.28. Cristales de turmalina de 
diversas tonalidades de verdes. Fuente. 
https:// support.google.com/legal/answer/34 
63239?hl=es-419 
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De modo que, cuando se cumplen las condiciones geométricas, como se 
puede ver en la Fig. 7.27, se tiene esta expresión o, si se conoce el índice 
de refracción, se puede encontrar el ángulo de incidencia, con el cual se 
tienen los rayos polarizados. 

 

Otra forma de entender la Ley de Brewster también es al decir que, 
cuando el rayo reflejado en la superficie del medio y el rayo refractado son 
normales, los rayos refractados y reflejados se encuentran polarizados.   

Dicroísmo. Este término 
significa dos colores; un cristal 
dicroico puede verse de un color, 
pero, si se gira unos 90°, tendrá 
otro color, probablemente negro, 
y esto se debe a la absorción 
selectiva de una de las dos 
componentes ortogonales del 
estado natural de la luz.  
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del vidrio, el ángulo es 56.56°39'33''. 

Fig. 7.28. Cristales de turmalina de 
diversas tonalidades de verdes. Fuente. 
https:// support.google.com/legal/answer/34 
63239?hl=es-419 

Un polarizador dicroico es anisótropo; es decir, produce una fuerte asimetría 
por absorción de una componente del campo, mientras tiene un 
comportamiento totalmente transparente para la otra componente. 

Como los átomos dentro de un cristal se entrelazan fuertemente unos con 
otros por fuerzas de corto alcance, con lo cual forman redes periódicas, los 
electrones responsables de las propiedades ópticas se asocian a los átomos 
y bajo la influencia de átomos vecinos que modifican su posición inicial; 
por tanto, la respuesta al campo eléctrico armónico de las ondas de luz 
incidente varía de acuerdo a la distribución de electrones que encuentre.  

Cristales dicroicos o polarizantes. En la naturaleza, se encuentran 
materiales translúcidos que dejan pasar la luz, pero el rayo que los 
atraviesa se modifica en sus planos de vibración, con lo cual resultan 
altamente polarizados; entre estos materiales se encuentran los cristales, 
como el diamante, la esmeralda, el cristal de roca, entre otros.  

• La turmalina. Es un cristal de borosilicato de aluminio cristalizado; al 
recortarlo en láminas e incidirlo con luz normal, deja pasar la luz sin 
mayor dificultad aparente; cuando se ubique un segundo cristal, se puede 
percibir que, en determinada dirección, la luz no pasa, lo cual significa 
que la luz que atraviesa el primer cristal se encuentra polarizada. Con 
esta propiedad también está el sulfato de iodoquinina, conocido como 
herapatita; al utilizarlo en polvo y esparcirlo sobre plásticos 
transparentes, se pueden obtener polarizadores artificiales.  

 

Fig. 7.29. Cristales de calcita de diferentes colores. 
Fuente: https://vivescortadaimport. com/diccionario-
minerales/minerales/calcita/ index.php 
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• La calcita. Es un cristal de carbonato de calcio cristalizado en el 
sistema romboédrico, como se ve en la Fig. 7.30; el espato de Islandia es 
una variedad de la calcita, incolora y transparente. 

Debido a esta propiedad, la calcita se utiliza para  fabricar polarizadores 
lineales empleados en los equipos de rayos láser de alta potencia; el cristal de la 
calcita se puede ver en la Fig. 7.30 Una fascinante historia se tiene alrededor 
de la calcita o piedra solar, conocida por los vikingos y probablemente el 
principal instrumento de navegación antes de la brújula; la utilizaban los 
marineros nórdicos, pues con ella podían localizar el sol en los días nublados  y, 
con ello, la hora del día; en el cristal, hay dos esquinas romas menos 
sobresalientes, donde los planos de superficies se encuentran para formar tres 
ángulos obtusos, de 102°; una línea que pasa por el vértice de cualquiera de las 
esquinas menos agudas, orientada de tal modo que forma ángulos iguales en 
cada cara, de 45.54º, es claramente un eje de triple simetría; se trata del eje 
óptico, como se puede ver en la Fig. 7.33.  

La propiedad más importante del eje óptico consiste en que, cuando el 
rayo de luz penetra al cristal con esta dirección, no sufre una  doble 
refracción; se presenta la doble refracción cuando un rayo lo atraviesa y 
se tienen dos rayos (véase Fig. 7.31): uno invariante y un segundo rayo 
que pareciera girar cuando se gira el cristal sobre un objeto del cual se 
tiene la doble refracción, al que se le conoce con el nombre de rayo 
extraordinario; al ubicar un polarizador para mirar estos rayos, se 
comprueba que tanto el rayo ordinario como el extraordinario se han 

Fig. 7.30. Cristal de espato de Islandia 
totalmente transparente. Fuente: 
https://www.ecured.cu/ 

 

Fig. 7.31. Doble refracción producida 
por un cristal de espato de Islandia. 
Fuente: https://www.ecured.cu/Espa 
to_de_Islandia 
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polarizado linealmente y, si se analiza más profundamente, los rayos 
polarizados son ortogonales. 

Birrefringencia. En la doble refracción de la luz o birrefringencia, es 
evidente que a cada rayo incidente le correspondiera un rayo refractado, 
pero lo curioso se establece cuando a un rayo incidente le correspondieran 
dos rayos refractados; este es el caso de los cristales dicroicos, como el 
espato de Islandia; en la Fig. 7.31, se puede ver la doble imagen de la 
línea. A los rayos refractados se los denomina rayo ordinario y rayo 
extraordinario; la imagen que forma el rayo ordinario permanece fija, 
mientras que la imagen que forma el rayo extraordinario gira alrededor 
de la imagen que ha constituido el rayo ordinario; en el cristal, hay una 
dirección privilegiada, denominada eje óptico, en el que se produce la 
birrefringencia; al mirar por el cristal, en dicho eje solo se ve una imagen. 

Polarizadores. Se trata de láminas transparentes artificiales, que 
tienen las mismas propiedades de la turmalina; o sea, que pueden 
polarizar la luz. 

Al polarizar la luz con estos sistemas, ocurre esto: el haz de luz natural 
que incide sobre la lámina polarizadora encuentra unos finísimos hilos 
moleculares o cristales verticales; como se puede ver en la Fig. 7.34, los 
electrones que lo conforman se activan ante la presencia del campo 

Fig. 7.32. La doble refracción en el 
espato de Islandia; el rayo más desviado 
es el rayo extraordinario. 

 
A

B

A'

B'

O

E

 102°
102°

102°

102°

78
°

78°

Eje Óptico

Fig. 7.33. Eje óptico en un cristal de 
calcita.  
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eléctrico vertical y dejan su energía total o parcial en estos hilos. En 
consecuencia, el campo eléctrico horizontal que no ha sido afectado puede 
continuar, con lo cual se tiene un haz de luz polarizada horizontalmente 
que se propaga en la misma dirección que traía el rayo ordinario.                  

 

En la Fig. 7.35 se puede ver como la componente horizontal del rayo de 
luz que incide sobre el cristal se atenúa a medida que atraviesa el cristal, 
mientras que la componente vertical se atenúa, pero en menos 
proporción.           

 

Por otra parte, el prisma de Nicol (Fig. 7.36), llamado así por su inventor 
William Nicol, realiza eficazmente esta función de partir el rayo incidente 
en dos: uno ordinario y otro extraordinario; el rayo extraordinario se 

 
E

Fig. 7.34. Lámina polarizadora del rayo de luz. 

Fig. 7.35. La componente horizontal se atenúa a medida que 
atraviesa el cristal solo queda la componente vertical. 
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William Nicol, realiza eficazmente esta función de partir el rayo incidente 
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Fig. 7.34. Lámina polarizadora del rayo de luz. 

Fig. 7.35. La componente horizontal se atenúa a medida que 
atraviesa el cristal solo queda la componente vertical. 

 

genera cuando se encuentra con la superficie pegada con bálsamo del 
Canadá, cuyo índice de refracción es 1.549.      

 

El rayo ordinario se elimina cuando trata de salir por la superficie a la 
que se la ha ennegrecido para que no saliera; así, solo se tiene el rayo 
extraordinario.         

Rotación del plano de polarización. Cuando la luz pasa por un 
medio como el azúcar, o algunos cristales, el plano de vibración gira un 
cierto ángulo proporcional a la concentración de azúcar o al espesor del 
cristal;  a estas sustancias que llevan a que girara el plano de vibración 
se las denomina ópticamente activas; por supuesto, esto se debe a la 
configuración molecular de la sustancia; al depender del sentido de giro, 
la sustancia puede ser dextrógira (cuando gira a la derecha) o levógira 
(cuando gira a la izquierda),  con lo cual se ha diseñado un instrumento 
que permite medir el ángulo y con ello la concentración de los azúcares.  
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Fig. 7.36. Sección de un prisma de Nicol. 
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