GESTIÓN INTERGRAL DEL AGUA EN LA CUENCA ALTA DEL RIO PASTO, MEDIANTE UN ESQUEMA DE PAGO POR SERVICIOS AMBIENTALES

LUIS FERNANDO MORENO DELGADO

UNIVERSIDAD DE NARIÑO

MAESTRÍA EN CIENCIAS AGRARIAS

ÁREA DE ÉNFASIS PRODUCCIÓN DE CULTIVOS

SAN JUAN DE PASTO

2013

GESTIÓN INTEGRAL DEL AGUA EN LA CUENCA ALTA DEL RIO PASTO, MEDIANTE UN ESQUEMA DE PAGO POR SERVICIOS AMBIENTALES

LUIS FERNANDO MORENO DELGADO

Trabajo de Grado presentado como requisito parcial para optar al título de: Magíster en Ciencias Agrarias con Énfasis en Producción de Cultivos

Director de Tesis
HUGO FERNEY LEONEL Ph.D.
Universidad de Nariño

UNIVERSIDAD DE NARIÑO

MAESTRÍA EN CIENCIAS AGRARIAS

ÁREA DE ÉNFASIS PRODUCCIÓN DE CULTIVOS

SAN JUAN DE PASTO

NOTA DE RESPONSABILIDAD

"Las ideas y conclusiones aportadas en la tesis de grado son responsabilidad exclusiva de los autores"

Artículo 1º del Acuerdo Nº 324 de Octubre 11 de 1966 emanado por el Honorable Consejo Directivo de la Universidad de Nariño.

Nota de Aceptación
JESUS CASTILLO Ph.D
Jurado delegado
ORLANDO BENAVIDES
Jurado
LAIDO MOCOUEDA
JAIRO MOSQUERA
Jurado
HUGO FERNEY LEONEL Ph.D
Presidente

AGRADECIMIENTOS

Deseo dar los más grandes y sinceros agradecimientos a la universidad de Nariño por su aporte en mi formación académica y profesional.

Al Ph.D. Hugo Ferney Leonel, por su orientación y apoyo como presidente de tesis y amigo en todo este proceso.

A mis jurados Ph.D Jesus Castillo Franco, M.Sc. Orlando Benavides y M.Sc. Jairo Mosquera por su asesoría y direccionamiento en el presente documento.

Al Ph.D Hernando Criollo y M.Sc. Carlos Betancourt directores de la maestría en Ciencias Agrarias.

A los profesores del Programa Ingeniería Agroforestal Ph. D Jorge Fernando Navia, M.Sc. Jorge Vélez por su colaboración.

A Empopasto S.A E.S.P. por la financiación, respaldo y confianza brindada para el desarrollo de esta investigación, especialmente su gerente Dr. Fernando Vargas Mesias, la Dra. Adriana Guerrero Rodríguez Jefe Oficina de Planeación, Dra. Victoria Benavides y el Ingeniero Hugo Gómez por su colaboración y apoyo. A Corponariño principalmente al Dr. Fernando Burbano y al Ing. Mauricio por la información suministrada.

Un agradecimiento especial a la Ing. AF Samia Yela por trabajo en campo y oficina para la culminación con éxito de la presente investigación.

Al CIAT en especial a la Dra. Marcela Quintero directora DAPA y a los Ing. Natalia Uribe y Jefferson Valencia por su asesoría en la calibración y validación del modelo SWAT.

A todos y cada una de las personas que hicieron posible esta investigación, muchas gracias.

Dedico a:

Mi familia, especialmente a mis padres Luis Alfonso Moreno y Mary Luz Delgado, autores y artífices de cada una de mis metas logradas; son ustedes quienes han hecho de mí una persona comprometida con la vida para el bien de nuestra sociedad y la naturaleza. A mi esposa Liliana y mi hijo Juan Fernando por ser el motor de mi vida y el motivo para lograr las más hermosas y grandes metas; a mis cinco hermanitas Mirtha, Ximena, Adriana, Marielena, Lida por su apoyo y fortaleza incondicional. Mis sobrinas y sobrinos los cuales llenan cada día de alegrías y esperanza. Son todos ustedes la razón de mi vida.

CONTENIDO

		Pag.
RESU	MEN	15
INTRO	DUCCION	17
1.	OBJETIVOS	20
1.1	OBJETIVO GENERAL	20
1.2	OBJETIVOS ESPECIFICOS	20
2.	MARCO TEORICO	22
2.1	CUENCA HIDROGRÁFICA	22
2.2	MANEJO INTEGRAL DE CUENCAS HIDROGRÁFICAS	23
2.3	GESTIÓN INTEGRAL DE LA CUENCA HIDROGRÁFICA	24
2.3.1	Gestión del Agua al Nivel de Cuencas Hidrográficas	25
2.3.2	Gestión Integrada de los Recursos Hídricos	26
2.4	COGESTIÓN DE CUENCAS	27
2.5	GOBERNANZA Y GOBERNABILIDAD DE LA CUENCA HIDROGR	ÁFICA 27
2.5.1	Gobernanza y Gobernabilidad del Agua	29
2.6	SERVICIOS ECOSISTÉMICOS	29
2.7	PAGO POR SERVICIOS ECOSISTÉMICOS (PSE)	31
2.7.1	Oferentes de Servicios Ecosistémicos	33
2.7.2	Demandantes de Servicios Ecosistémicos	33
2.7.3	Pago por Servicios Ambientales en las Cuencas Hidrográficas	34
2.7.4	Esquema de PSA	36
2.8	ECOSISTEMAS AGRÍCOLAS	38
2.9	CAMBIOS EN LA PRODUCTIVIDAD	38
2. 10	RESTAURACIÓN ECOLÓGICA	40
2.11	SELECCIÓN DE ALTERNATIVAS DE MANEJO PARA LA GENERA	4CIÓN
	DE SE	40
2.12	EL SIMULADOR HIDROLÓGICO SWAT	41
3.	MATERIALES Y METODOS	43
3.1	LOCALIZACIÓN	43

3.2	GENERACIÓN DEL MODELO DIGITAL HIDROLÓGICO46		
3.3	PRIORIZACIÓN DE MICROCUENCA48		
3.4	IDENTIFICACIÓN DE SISTEMAS PRODUCTIVOS50		
3.5	IDENTIFICACIÓN DE ESCENARIOS FAVORABLES51		
3.6	PROPUESTA PARA LA RESTAURACIÓN ECOLÓGICA54		
3.7	IDENTIFICACIÓN DE ACTORES54		
3.8	MECANISMOS DE MONITOREO Y EVALUACIÓN PSAH55		
3.9	PROPUESTA PAGO POR SERVICIOS AMBIENTALES HIDROLÓGICOS		
	EN LA MICROCUENCA LAS TIENDAS, SUBCUECA ALTA DEL RÍO		
	PASTO55		
3. 10	ANÁLISIS ESTADÍSTICO57		
4.	ANÁLISIS Y DISCUCIÓN DE RESULTADOS59		
4.1	ÁREA DE ESTUDIO59		
4.2	ANÁLISIS DE CORRESPONDENCIA MULTIPLE (ACM)62		
4.3	MODELO HIDROLÓGICA CON SWAT87		
4.4	PRIORIZACIÓN DE MICROCUENCA LAS TIENDAS102		
4.5	IDENTIFICACIÓN DE SISTEMAS PRODUCTIVOS107		
4.6	ANÁLISIS ESTADÍSTICO DE SISTEMAS PRODUCTIVOS107		
4.7	IDENTIFICACIÓN DE ESCENARIOS FAVORABLES134		
4.8	SISTEMA DE MONITOREO Y SEGUIMIENTO136		
4.9	PROPUESTA DE RESTAURACIÓN139		
4.10	IDENTIFICACIÓN DE ACTORES155		
4.11	ESQUEMA DE PAGO POR SERVICIOS AMBIENTALES177		
4.11.1	FASE DE DISEÑO		
4.11.2	LA DISPONIBILIDAD A ACEPTAR (DAA)		
4.11.3	LA DISPONIBILIDAD A PAGAR (DAP)191		
5.	CONCLUSIONES215		
6.	RECOMENDACIONES		
BIBLIOGRAFÍA219			

LISTA DE TABLAS

	Pág.
Tabla 1.	Composición florística bosque denso, cuenca alta del río Pasto46
Tabla 2.	Análisis de la demanda y la oferta para la priorización de áreas para
	PSAH
Tabla 3.	Análisis de Correspondencia Múltiple (ACM). Histograma de
	frecuencias para las variables categorizadas en calidad, cantidad,
	servicio, conocimiento del manejo de la cuenca, protección de la
	fuente de agua, institucionalidad, confianza y participación71
Tabla 4.	Histograma de los primeros 55 valores propios, que explican la
	variabilidad (%) de las encuestas de calidad, cantidad, servicio,
	conocimiento del manejo de la cuenca, protección de la fuente de
	agua, institucionalidad, confianza y participación (Variables
	cualitativas)74
Tabla 5.	Contribución de las variables cualitativas evaluadas en la encuesta
	de calidad, cantidad, servicio, conocimiento del manejo de la cuenca,
	protección de la fuente de agua, institucionalidad, confianza y
	participación, a la contribución de los primeros cinco (5) factores79
Tabla 6.	Identificación de los usuarios que conforman cada uno de los cinco
	(5) grupos en que se divide la muestra encuestada, con base en las
	variables cualitativas83
Tabla 7.	Descripción de los grupos o clases conformadas en el ACM del
	estudio gestión integral del recurso hídrico en la cuenca alta del río
	Pasto85
Tabla 8.	Áreas de las cuencas generadas90
Tabla 9.	Coberturas con el código de SWAT93
Tabla 10.	Parámetros de Suelos Iniciales95
Tabla 11.	Coeficiente de Correlación y Nash, para la Verificación del Modelo 98
Tabla 12.	Caudales (m3/s) mensuales simulados y observados en las
	estaciones99

Factores considerados mediante la metodología de cogestión

Tabla 13.

	adaptativa de cuencas, para la priorización del área en la subcuenca
	alta del río Pasto103
Tabla 14.	Análisis de Correspondencia Múltiple (ACM) para la tipificación de
	sistemas productivos. Histograma de frecuencia para las variables
	categorizadas109
Tabla 15.	Histograma de los primeros 23 valores propios, que explican la
	variabilidad (%) de las encuestas los sistemas productivos (Variables
	cualitativas)112
Tabla 16.	Contribución de las variables cualitativas evaluadas en la encuesta
	de identificación de sistemas productivos, a la contribución de los
	primeros cinco (5) factores115
Tabla 17.	Identificación de los usuarios que conforman cada uno de los cuatro
	(4) en que se divide la muestra encuestada, con base en las
	variables cualitativas119
Tabla 18.	Descripción de los grupos o clases conformadas en el ACM del
	estudio gestión integral del recurso hídrico en la cuenca alta del río
	Pasto, para la demanda120
Tabla 19.	Cobertura en sistemas productivos presentes en el área de estudio. 123
Tabla 20.	Cobertura de pastos en la cuenca alta del río Pasto130
Tabla 21.	Tipos de cobertura forestal132
Tabla 22.	Tamaño de la muestra aplicada en esta investigación182
Tabla 23.	Formatos de encuestas aplicadas para la investigación
Tabla 24.	Análisis de Correspondencia Múltiple (ACM). Histograma de
	frecuencias para las variables categorizadas para la oferta187
Tabla 25.	Histograma de los primeros 5 valores propios, que explican la
	variabilidad (%) de oferta del servicio (Variables cualitativas)188
Tabla 26.	Contribución de las variables cualitativas evaluadas en la encuesta
	de la oferta, a la contribución de los primeros tres (3) factores188
Tabla 27.	Identificación de los usuarios que conforman cada uno de los tres
	(3) en que se divide la muestra encuestada, con base en las
	variables cualitativas para la oferta189

Tabla 28.	Descripción de los grupos o clases conformadas en el ACM de		
	estudio gestión integral del recurso hídrico en la cuenca alta del río		
	Pasto, para la demanda190		
Tabla 29.	Análisis de Correspondencia Múltiple (ACM). Histograma de		
	frecuencias para las variables categorizadas192		
Tabla 30.	Histograma de los primeros 55 valores propios, que explican la		
	variabilidad (%) de las encuestas de demanda (Variables		
	cualitativas)192		
Tabla 31.	Contribución de las variables cualitativas evaluadas en la encuesta		
	de demanda, a la contribución de los primeros tres (3) factores193		
Tabla 32.	Identificación de los usuarios que conforman cada uno de los cinco		
	(5) en que se divide la muestra encuestada, con base en las		
	variables cualitativas194		
Tabla 33.	Descripción de los grupos o clases conformadas en el ACM del		
	estudio gestión integral del recurso hídrico en la cuenca alta del río		
	Pasto, para la demanda196		

Figura 1.	Esquema de PSA, propuesto en zona norte del departamento de		
	Nariño. Fuente: Proyecto Incorporación de la biodiversidad en el		
	sector cafetero en Colombia 2011. (GEF, FEDERACAFE,		
	UDENAR)		
Figura 2.	Localización de la cuenca alta del río Pasto. Fuente: PORH, 201144		
Figura 3.	Información espacial y climática necesaria para calibrar y validar el		
	modelo SWAT. Fuente: CIAT, 200952		
Figura 4.	Cuenca alta del río Pasto y algunas características60		
Figura 5. Conformación de grupos de acuerdo a las característ			
	cualitativas evaluadas en el estudio de gestión integral del recurso		
	hídrico en la cuenca alta del río Pasto84		
Figura 6.	Red de drenaje simulado por SWAT88		
Figura 7.	Definición de microcuencas y puntos de cierres91		
Figura 8.	Clasificación de cobertura de la cuenca alta del río Pasto. Fuente:		
	PORH, 2011, modificada por el autor92		
Figura 9.	Clasificación taxonómica de los suelos de la cuenca alta del río		
	Pasto. Fuente: IGAC, 200494		
Figura 10.	Distribución de HRUs en la cuenca96		
Figura 11.	Caudal simulado con SWAT contra caudal real periodo de		
	calibración97		
Figura 12.	Caudal simulado con SWAT contra caudal real periodo de		
validación.	98		
Figura 13.	Producción de agua por cada HRUs de la cuenca101		
Figura 14.	Producción de sedimentos por cada HRUs de la cuenca102		
Figura 15.	Conformación de grupos de acuerdo a las características		
	cualitativas evaluadas en el estudio de gestión integral del recurso		
	hídrico en la cuenca alta del río Pasto para los Sistemas		
	Productivos119		
Figura 16.	Mosaico de cultivos cuenca alta del río Pasto125		
Figura 17	Cultivos de papa y cebolla junça, en la cuenca alta de río Pasto. 127		

Figura 18.	Microcuenca Las Tiendas. Degradación del suelo129		
Figura 19.	Pastos enmalezados en la cuenca alta del río Pasto1		
Figura 20.	Pastos limpios en la cuenca alta del río Pasto1		
Figura 21.	Composición florística de la microcuenca Las Tiendas1		
Figura 22.	Se presenta la secuencia que se tuvo en cuenta para el desarrollo		
	de la propuesta en la restauración ecológica. Fuente: Vargas, 200	07.141	
Figura 23.	Parcelas, núcleos y perchas para la restauración ecológica. Fuer	nte:	
	Barrera, 2013	150	
Figura 24.	Recreación de estrategias de restauración en el área Fuer	ite.	
	Barrera, 2013	151	
Figura 25.	Microcuenca Q. Las Tiendas	180	
Figura 26.	Mapa de cobertura de la plantas de tratamiento Centena	rio.	
	Fuente: EMPOPASTO, 2008	181	
Figura 27.	Conformación de grupos de acuerdo a las característic	cas	
	cualitativas evaluadas en el estudio de gestión integral del recu	rso	
	hídrico en la cuenca alta del río Pasto para la oferta	190	
Figura 28.	Conformación de grupos de acuerdo a las característic	cas	
	cualitativas evaluadas en el estudio de gestión integral del recu	rso	
	hídrico en la cuenca alta del río Pasto para la demanda	195	
Figura 29.	Articulación de instrumentos de planificación y otros instrumen	tos	
	económicos	198	
Figura 30.	Esquema del decreto 0953 del 17 de mayo del 2013	199	
Figura 31.	La tasa retributiva	200	
Figura 32.	La tasa por utilización del agua	201	
Figura 33.	Instrumentos reglamentarios	202	
Figura 34.	Instrumentos institucionales	203	
Figura 35.	Manejo de sistemas productivos sostenibles	204	
Figura 36.	Instrumentos de planificación	205	
Figura 37.	Costo oportunidad	206	
Figura 38.	Pasos importantes para calcular los beneficios netos	208	
Figura 39.	Valor de renta de la tierra	209	
Figura 40.	Definición del monto a pagar	210	
Figura 41.	Intervensiones que posibilitan la restauración y rehabilitación	de	

	áreas	212
Figura 42.	Esquema de PSA	214

RESUMEN

La presente investigación se llevó a cabo en la cuenca alta del río Pasto, en el área priorizada de la microcuencas las Tiendas del municipio de Pasto. Con el objetivo de identificar los componentes necesarios de una propuesta para el pago por servicio ambientales hidrológicos-PSAH, en tanto se convierta en uno de los elementos articuladores de la gestión integral del recurso hídrico, de esta importante área para la ciudad de Pasto, el departamento de Nariño y Colombia. Para lograr este objetivo se realizaron talleres participativos y encuestas con los propietarios de predios en la cuenca y los habitantes del municipio de Pasto. La metodología empleada para el muestro fue "Muestreo Aleatorio de Proporciones" (Cochran, 1996)" y un análisis de componentes múltiples (ACM), se resalta la participación proactiva de la comunidad. Parte fundamental de la gestión integral del agua en la cuenca es involucrar y responsabilizar a las organizaciones comunitarias, ONGs, Alcaldía Municipal de Pasto, Gobernación de Nariño, Empopasto, Corponariño, Parques Naturales Nacionales, etc. en cada una de las etapas y procesos, mediante roles y funciones específica. La propuesta PSAH, está enmarcada dentro de los lineamientos del decreto nacional que reglamenta los PSA en Colombia; cabe resaltar que esta investigación aportó en la estructuración y discusión de este (Decreto 0953 del 17 de Mayo del 2013 ""Por el cual se reglamenta el artículo 111 de la Ley 99 de 1993 modificado por el artículo 210 de la Ley 1450 de 2011"") y la Guia Metodológica para el Diseño e Implementación del Incentivo Económico de Pago Por Servicios Ambientales – PSA del 2012 (documento para discusión) del Ministerio de Ambiente y Desarrollo Sostenible. En la cual se obtuvo como resultados la articulación de las metodologías de priorización de áreas para la implementación de PSA, la generación del modelo SWAT con su calibración y ajuste, una propuesta de restauración ecológica acorde a las condiciones biofísicas y socioeconómicas del área, identificación de sistemas productivos representativos, identificación de actores claves en el proceso de gestión integral e implementación del PSA, pautas para el monitoreo y seguimiento del esquema PSAH propuesto.

Palabras claves: PSAH, SWAT, Cogestión, Gobernanza, Sistemas Productivos

ABSTRACT

This research was conducted in the upper basin of Pasto, in the area of microprioritized the municipality of Pasto shops. In order to identify the necessary components of a proposal for the environmental service payment hydrological -PSAH, while becoming one of the articulators of the integrated management of water resources in this important area for the city of Pasto, the Colombia Nariño department. To achieve this objective, participatory workshops and surveys with landowners in the watershed and the inhabitants of the municipality of Pasto. The methodology used for the show was "Random Sampling Proportions" (Cochran, 1996) " and multiple component analysis (MCA), highlights the proactive participation of the community. A fundamental part of integrated water management in the basin is to engage and empower community organizations, NGOs, Municipality of Pasto, Nariño Governorate, EMPOPASTO, Corponariño, National Parks, etc. in each of the steps and processes by specific roles and functions. PSAH proposal is framed within the guidelines of the national decree that regulates the PSA in Colombia, it should be noted that this research provided in the structuring and discussion of this (Decree 0953 of May 17, 2013 " " By regulating the Article 111 of Law 99 of 1993 as amended by Article 210 of Law 1450 of 2011 "") and the Methodological Guide for the Design and Implementation of Economic Incentive Payment for Ecosystem Services - PSA 2012 (discussion paper) of the Ministry Environment and Sustainable Development. In which was obtained as the joint results of the methodologies for prioritizing areas for the implementation of PSA, the generation of SWAT model calibration and adjustment, a proposed ecological restoration according to the biophysical and socio-economic conditions of the area, identifying representative production systems, identification of key actors in the process of comprehensive management and implementation of the PSA, guidelines for monitoring and tracking the proposed PWS scheme.

Keywords: PSAH, SWAT, Co-Management, Governance, Production Systems

INTRODUCCION

Los problemas ambientales relacionados con el agua, se evidencian principalmente en la distribución y contaminación, lo cual obedece a un manejo no racional de los recursos naturales en general, a la insuficiencia tecnológica que permita aumentar la conducción y tratamiento del agua. Esta labor se pretende hacer sin haber pasado, en la mayoría de los casos, por construir por lo menos las bases necesarias para lograr el uso múltiple del agua por cuenca (Dourojeanni, A. y Jouravley, A. 2005).

El reto social fundamental es conciliar los objetivos de desarrollo con los de conservación, manteniendo el equilibrio ecológico, actualmente debilitado y frágil. Esto es fundamental para el mantenimiento de las funciones de los ecosistemas, de modo que se mantenga o mejore el flujo de bienes y servicios ambientales a la población, particularmente el flujo del servicio ambiental hídrico. Este esfuerzo, además de mejorar en calidad y cantidad de las condiciones del recurso hídrico, debe mejorar las oportunidades de desarrollo de las comunidades campesinas y urbanas, minimizando el riesgo inminente al que se ha sometido todo el aparato productivo debido a la escasez creciente de recursos naturales y específicamente del agua.

Rojas (2007) plantea que es imprescindible comprender la dinámica de los sistemas de producción agrícolas, localizados en la cuenca, teniendo en cuenta que estos son uno de los principales factores de presión sobre los recursos naturales. De su comprensión y entendimiento surge la posibilidad de desarrollar, innovar, apropiar y transferir alternativas tecnológicas que propendan por la conservación de la base natural, así como de estrategias de manejo y políticas que permitan regular su funcionamiento y relacionamiento con las áreas protegidas y las que se encuentran en producción.

Los sistemas productivos son un factor determinante en el desarrollo sustentable y gestión integral de los recursos naturales; de ahí la necesidad de caracterizarlos y realizar propuestas de manejo y mejoras, que logren un impacto sustancial en el recurso hídrico, del cual dependerá su productividad.

En la medida que se evite la transformación fuerte de los paisajes que se quieren proteger, permitiendo la implementación de proyectos y procesos productivos sostenibles, aprovechando de manera adecuada especies, ecosistemas o recursos genéticos, hídricos o edáficos de la cuenca, será posible lograr el objetivo propuesto de aumentar cantidad y mejorar la calidad del recurso hídrico, en las mismas.

Una de las estrategias planteadas en esta investigación, para lograr la solución de la problemática expresada, es mediante los esquemas de Pagos por Servicios Ambientales-PSA, que han emergido como mecanismos para generar cambios en diversos actores socioeconómicos, mediante un reconocimiento o pago voluntario que realizan unos beneficiarios de los PSA, a los propietarios o poseedores de predios (Borda, 2010).

Los PSA, establecen condiciones de mercado, por lo que para su operación, se requiere la existencia de al menos un comprador de los servicio, un vendedor, un servicio ambiental a transar y un pago condicionado al cumplimiento (Wunder, 2005). Estos mecanismos de mercado, han mostrado ser eficientes para conservar la biodiversidad y los bienes públicos, que de la misma, se proveen; así, como el ofrecimiento simultáneo de nuevas fuentes de ingreso a las poblaciones rurales (Daza y Noriega, 2009).

En casos exitosos de PSA de tipo hidrológico, es casi generalizada la aplicación de modelos que permiten simular el efecto de diferentes usos del suelo y prácticas agropecuarias sobre los flujos de agua y de sedimentos como es el modelo SWAT (Soil Water Assesment Tool), y el cual es aceptado en la guia metodológica para el diseño e implementación del incentivo económico de pago por servicios ambientales-PSA del Ministerio de Ambiente y Desarrollo Sostenible, 2002.

El modelo SWAT es un programa de modelamiento hidrológico -diseñado por el Departamento de Agricultura de los Estados Unidos en conjunto con la Universidad de Texas (Arnold *et al.*, 1998), ampliamente validado en cuencas andinas y adaptado a las condiciones nacionales a través de los procesos de investigación desarrollados por el Centro de Investigación en Agricultura Tropical (CIAT). El

modelo SWAT articulado con las condiciones socioeconómicas, permite la construcción de propuestas para el PSA.

La presente investigación tiene como objetivo, la construcción de una propuesta para el pago por servicios ambientales hídricos, en la microcuenca las Tiendas, de la cuenca alta del río Pasto, planteándose alternativas factibles y viables para los principales usos presentes en la cuenca (sistemas productivos) y las condiciones socioeconómicas y culturales de sus habitantes.

En este sentido, esta investigación se convierte en una de las alternativas para la gestión integral del recurso hídrico, mediante el esquema de PSA, de tal forma, que en un futuro no lejano se pueda contribuir con el bienestar de pequeños productores de la cuenca alta del río Pasto y con la gobernanza ambiental, incentivando el flujo de bienes y servicios, la conservación y manejo adecuado de los recursos naturales, específicamente el agua.

1. OBJETIVOS

1.1 OBJETIVO GENERAL

Construir una propuesta de PSAH, en la cual se promueva la gestión del agua y se identifique los sistemas productivos de mayor impacto en cantidad y calidad del agua en una de las microcuencas de la cuenca alta del rio Pasto.

1.2 OBJETIVOS ESPECIFICOS

Generación del modelo digital hidrológica y ajuste mediante SWAT (Soil and Water Assessment Tool), con la extensión ArcSWAT para el programa ArcGIS 9.3. Para la cuenca del río Pasto.

Priorización de una microcuenca o Unidad de Respuesta Hidrológica (URH), en la cual se llevará acabo la propuesta de esquema de Pago por Servicios Ambientales.

Identificar los sistemas productivos agrícolas relevantes y de mayor impacto en la calidad y cantidad de agua, tipificando fincas modales, con condiciones biofísicas y socioeconómicas similares.

Identificación de escenarios favorables para la calidad y cantidad de agua, mediante el software SWAT, el cual plantea impactos de la actividad agrícola en los sistemas productivos, sobre los servicios hidrológicos de regulación y control de sedimentos en la microcuenca priorizada, mediante la adaptación de cambios tecnológicos en el sistema productivo de mayor impacto.

Realizar una propuesta de restauración ecológica de la microcuenca que beneficie la regulación hídrica y el control de sedimentos.

Identificar actores relevantes en el proceso de PSAH y los mecanismos de cooperación institucionales para la ejecución de acciones conjuntas orientadas a la conservación y mejoramiento de los servicios hidrológicos. Lo cual pueda llevar a

generar un conjunto de incentivos económicos para los propietarios o poseedores de la tierra, que adelanten acciones en pro del mejoramiento de los servicios hidrológicos en la microcuenca priorizada.

Formular mecanismos de determinación y monitoreo del mejoramiento de los servicios hidrológicos de regulación y control de sedimentos que permitan la réplica de este caso piloto en el resto de la cuenca alta del rio Pasto.

2. MARCO TEORICO

2.1 CUENCA HIDROGRÁFICA

De acuerdo al decreto 1729 del 2002, de la normatividad colombiana, "Entiéndase por cuenca u hoya hidrográfica el área de aguas superficiales o subterráneas, que vierten a una red natural con uno o varios cauces naturales, de caudal continuo o intermitente, que confluyen en un curso mayor que, a su vez, puede desembocar en un río principal, en un depósito natural de aguas, en un pantano o directamente en el mar." En el decreto 1640 del 2 de agosto del 2012, sobre "Por medio del cual se reglamentan los instrumentos para la planificación, ordenación y manejo de las cuencas hidrográficas y acuíferos, y se dictan otras disposiciones" se conserva esta definición.

Las cuencas hidrográficas se reconocen como un sistema debido a la existencia de interacciones entre el sistema natural del suelo, el agua, biodiversidad, el aire y el sistema socioeconómico, que si bien éste no tiene un límite físico, sí depende de la oferta, calidad y disposición de los recursos (IDEAM, 2008).

La cuenca se puede dividir en subcuencas y microcuencas. En este sentido, el área de la subcuenca está delimitada por la divisoria de aguas de un afluente que forma parte de otra cuenca, que es la del cauce principal al que fluyen sus aguas; mientras que la microcuenca es una agrupación de una subcuenca o parte de ella (Ranmakrishna 1997).

El concepto de cuenca hidrográfica posee connotaciones amplias dependiendo de los objetivos que se persiga. Los intereses perseguidos determinan, de algún modo, su definición y caracterización, y por consiguiente su planificación y manejo. En general, para efectos de la gestión y administración de los recursos naturales, la cuenca hidrográfica se ha entendido, bien como una fuente de recursos hidráulicos, bien como un espacio ocupado por un grupo humano, que genera una demanda sobre la oferta de los recursos naturales renovables y realiza transformaciones del

medio, bien como un sistema organizado de relaciones complejas, tanto internas como externas. (García, 2012)

2.2 MANEJO INTEGRAL DE CUENCAS HIDROGRÁFICAS

El manejo integral incluye las acciones implementadas a los fines de "proteger, conservar, utilizar, aprovechar, manejar y rehabilitar" los recursos naturales existentes en determinada cuenca hidrográfica de manera apropiada, desde los enfoques "sistémico, socio ambiental, integral, multi e interdisciplinario, multi e intersectorial" que consideran como recurso integrador el agua (Jiménez 2010).

En la cuenca hidrográfica se ubican todos los recursos naturales y actividades que realiza el ser humano; allí interactúan el sistema biofísico con el socioeconómico y están en una dinámica integral que permite valorar el nivel de intervención de la población, los problemas generados en forma natural y antrópica (Azuero, 2005).

Esa estrecha interdependencia entre los sistemas biofísicos y el sistema socioeconómico, formado por los habitantes de las cuencas, genera la necesidad de establecer mecanismos de gobernabilidad e institucionalidad. Por esta razón, la cuenca hidrográfica puede ser una adecuada unidad para la gestión ambiental, a condición de que se logren compatibilizar los intereses de los habitantes de sus diferentes zonas funcionales y las actividades productivas y de conservación de las mismas (Jiménez, 2010).

Dentro de una cuenca hidrográfica no solo debe de considerar como eje articulador el recurso hídrico, como uno de los recursos contenedores, sino al hombre como principal y único dinamizador y actor para que una realidad que no está acorde con el potencial de la cuenca se reoriente y así alcanzar la sostenibilidad y sustentabilidad. Ante esto una cuenca hidrográfica es una unidad de análisis que el IDEAM (2008) indica que implica el reconocimiento de la interacción entre los diferentes elementos existentes internamente y en su entorno. Por lo tanto, la comprensión de estas relaciones constituye la base para la identificación de las

problemáticas, potencialidades y restricciones de la cuenca (causas, efectos, soluciones) y posteriormente de su manejo integral.

2.3 GESTIÓN INTEGRAL DE LA CUENCA HIDROGRÁFICA

Abarca, tanto el manejo integral como las acciones mediante las cuales se canalizan los recursos humanos, económicos, administrativos y logísticos, requeridos para lograr dicho manejo (Jiménez, 2010); también se gestiona el fortalecimiento de las organizaciones y el apoyo institucional (Faustino *et ál.* 2006). La gestión integral debe ser edificada a partir de las necesidades, intereses y propuestas de los actores que habitan en el territorio definido por la cuenca (Soares *et ál.* 2008).

La validez de usar las cuencas hidrográficas como el territorio base para la gestión integrada del recurso hídrico ha sido enfatizada y recomendada por todas las grandes conferencias internacionales sobre los recursos hídricos y que en la Conferencia Internacional sobre el Agua Dulce en Boon Alemania (2001), se ratifica a las "cuencas hidrográficas como el marco de referencia indicado para la gestión de los recurso hídricos" (Faustino, et ál. 2006).

Las cuencas hidrográficas proporcionan a la sociedad muchos bienes y servicios, incluidos el suministro de agua limpia, contención de la erosión, fijación de carbono, conservación de la biodiversidad y mantenimiento de la belleza del paisaje. Con todo, pocas veces se expresa el valor de esos servicios en dinero y no hay mercados donde se puedan vender o comprar. Los proveedores de estos bienes y servicios ambientales no reciben compensación alguna por suministrarlos, ni los tienen en cuenta al tomar decisiones sobre el uso de la tierra, lo que puede poner en peligro que dichos bienes y servicios se sigan proporcionando en el futuro (FAO, 2007).

Es el conjunto de acciones que se realizan para proteger, conservar, utilizar, aprovechar, manejar y rehabilitar adecuadamente los recursos naturales en las cuencas hidrográficas de acuerdo a los enfoques sistémico, socio-ambiental, integral, multi e interdisciplinario, multi e intersectorial y del agua como recurso

integrador de la cuenca. Promueve y busca la sostenibilidad ecológica, social y económica de los recursos naturales y el ambiente en el contexto de la intervención humana, sus necesidades y responsabilidades y del riesgo y la ocurrencia de desastres, principalmente de origen hidro-meteorológico (Jiménez, 2010)

2.3.1 Gestión del Agua al Nivel de Cuencas Hidrográficas. La cuenca, sea en forma independiente o interconectada con otras, es reconocida como la unidad territorial más adecuada para la gestión integrada de los recursos hídricos. La validez de usar el espacio conformado por una cuenca, o cuencas interconectadas, como territorio base para la gestión integrada del agua ha sido enfatizada y recomendada en todas las grandes conferencias internacionales sobre los recursos hídricos (Dourojeanni, et al. 2002).

Las políticas para utilizar el territorio de una cuenca como base para la gestión del agua han tenido diferentes enfoques y una desigual evolución en los países de América Latina y el Caribe (Dourojeanni y Jouravlev, 1999 y 2001). Estos mismos autores señalan que los proyectos sobre manejo de cuencas en la región Centroamericana han surgido con gran fuerza como respuesta a eventos naturales de gran envergadura, como los huracanes y tormentas tropicales, el más evocado en la actualidad para justificar proyectos y programas ha sido el Mitch y las sequías causadas por el fenómeno de El Niño.

En la actualidad, los proyectos relacionados con manejo de cuencas buscan el objetivo de ejercer una mejor administración y control sobre el recurso agua en sus características físicas (cantidad), químicas (calidad) y biológicas (biodiversidad). Paradójicamente, para tener impacto es estos tres aspectos, todas las acciones se tienen que realizar en el sistema hídrico, en los recursos suelo, bosque y tener gran influencia en los sistemas productivos (agrícolas e industriales) (Jiménez, 2010).

2.3.2 Gestión Integrada de los Recursos Hídricos. Los problemas ambientales relacionados con el agua, se evidencian principalmente en la distribución y contaminación, lo cual obedece a un manejo no racional de los recursos naturales en general, a la insuficiencia tecnológica que permita aumentar la conducción y tratamiento del agua. En general, en los países de américa Latina, hay más investigaciones y programas de estudio de "manejo de cuencas" (ligados a escuelas hidrológico—forestales y de conservación de suelos) que de gestión del uso múltiple del agua por cuenca (vinculados a programas de ingeniería civil hidráulica y de administración de empresas), y casi ninguno orientado a la concepción moderna de "gestión integrada" del agua. (Dourojeanni, A. y Jouravley, A. 2005).

Es importante entender que la base de la gestión ambiental está en el buen conocimiento y en una gestión razonablemente eficaz de los ecosistemas, las cuencas, el agua, los suelos, los bosques, la fauna y la biodiversidad, así como, de los territorios asociados a estos recursos, y que para ello, no es indispensable reordenar e integrar a las entidades de gobierno en sistemas más complejos. Por el contrario, tender a la simplificación de las estructuras y a privilegiar las oportunidades de coordinación y de concertación parece una opción de mayor viabilidad y eficacia para atender los problemas del agua y del medio ambiente. (Dourojeanni, A. et. al 2002)

Abarca, tanto el manejo integral como las acciones mediante las cuales se canalizan los recursos humanos, económicos, administrativos y logísticos, requeridos para lograr dicho manejo (Jiménez, 2010); también se gestiona el fortalecimiento de las organizaciones y el apoyo institucional (Faustino, *et ál.* 1996). La gestión integral debe ser edificada a partir de las necesidades, intereses y propuestas de los actores sociales que habitan en el territorio definido por la cuenca (Soares *et ál.* 2008).

El modelo conceptual, operativo e institucional para el manejo integral y sostenible del recurso hídrico que desarrolla el Ministerio de Ambiente, Vivienda y Desarrollo Territorial hoy Ministerio de Ambiente y Desarrollo Sostenible a través de la Dirección de Agua Potable y Saneamiento Básico y Ambiental, además de sustentarse en aspectos normativos y legales, se fundamenta en la concepción del

ciclo del agua desde la fuente abastecedora, microcuenca, hasta su entrega final en un cuerpo de agua, pasando por el proceso de administración del recurso que realizan los prestadores del servicio en zonas urbanas o rural (Gestión Integral del agua, 2004)

2.4 COGESTIÓN DE CUENCAS

Se entiende por cogestión de cuencas el trabajo conjunto, compartido y colaborativo entre diferentes actores locales, como productores, grupos organizados, gobiernos locales, empresa privada, ONG, instituciones nacionales, organismos donantes y cooperantes. Todos ellos juntan esfuerzos, recursos, experiencias y conocimientos para desarrollar procesos que causen impactos favorables y sostenibles en el manejo de los recursos naturales y en el ambiente de las cuencas hidrográficas. Se busca que todos participen en la toma de decisiones, pero también que asuman responsabilidades. (Orozco, et. al 2008)

Con este nuevo enfoque de trabajo se busca integrar a todos los actores en todas las etapas del proceso de manejo y conservación de una cuenca. Las principales etapas de ese proceso son el análisis de los problemas, la búsqueda de soluciones y la definición de planes de acción que ayuden a restaurar y proteger la cuenca de las actividades que destruyen sus recursos naturales. También se trata de movilizar los recursos existentes (humanos, materiales y económicos), en función de una agenda común y un acuerdo participativo de ordenamiento del territorio de la cuenca. Por ello es necesario identificar la función que cada uno puede asumir, distribuirse las tareas y mantener una comunicación permanente sobre el trabajo y los avances que se vayan obteniendo. Si se mejora la cuenca sobrevivimos nosotros. (Orozco, *et. al* 2008)

2.5 GOBERNANZA Y GOBERNABILIDAD DE LA CUENCA HIDROGRÁFICA

Frecuentemente se confunde el término "gobernanza" con el de "gobernabilidad". Sin embargo, ambos tienen significados distintos, pero no excluyentes y es importante

considerar su diferencia al abordar el tema de gobernanza de los recursos naturales, en especial del recurso hídrico.

La gobernabilidad está relacionada con el fortalecimiento de estructuras verticales para el apropiado ejercicio del poder y la toma de decisiones por los gobiernos, sea a nivel local o nacional (Revesz, 2006). En otras palabras, es el ejercicio eficiente, legítimo y eficaz del poder y la autoridad para alcanzar determinados objetivos sociales y económicos (Luciano, 2010).

La gobernanza se refiere a una forma de ejercer la autoridad política, económica y administrativa, que favorece la interacción del Estado y los demás sectores de la sociedad (Revesz 2006). A través de una estructura de gobernanza, las organizaciones sociales permiten a las personas "tomar decisiones, ejecutar actividades, los procedimientos y normas que regulan sus relaciones, acuerdos y transacciones" (Barriga, et ál. 2007).

Prats (citado por El Institut Internacional de Covernabilitat 2004) define a la gobernanza como los procesos de toma de decisiones sobre los asuntos colectivos. Indica que a diferencia de los enfoques tradicionales que se basan en decisiones jerárquicas y unilaterales, la gobernanza presupone un estilo de gobierno innovador. Es "el sistema de reglas formales e informales (normas, procedimientos, costumbres) que establecen las pautas de interacción y cooperación entre actores relevantes en el proceso de toma de decisiones, entendiendo por "actores relevantes" tanto a los poderes públicos como a los diversos agentes sociales y económicos. Por eso, un buen esquema de gobernanza requiere que la sociedad tenga un cierto nivel de capital social y de cultura cívica para mejorar la acción y coordinación colectivas".

2.5.1 Gobernanza y Gobernabilidad del Agua. Al abordar los términos de gobernanza y gobernabilidad, primero debemos referirnos a La Gestión Integrada de Recursos hídricos (GIRH), la cual se define como un proceso que fomenta el manejo y desarrollo coordinado del agua, la tierra y los recursos relacionados, con el fin de maximizar el bienestar social y económico resultante de manera equitativa sin comprometer la sustentabilidad de los ecosistemas vitales (GWP, 2000).

En consideración a aspectos legales, institucionalidad y políticas, la GWP (2000) subraya que la realización de políticas, la planificación, la asignación del agua, el monitoreo, la ejecución y la solución final de conflictos, aún debe ser responsabilidad del gobierno.

El ambiente propicio, el marco general de las políticas nacionales, legislaciones y regulaciones y la información del manejo de los recursos de agua para los interesados.

Los roles institucionales y las funciones de los niveles administrativos y los interesados; los instrumentos de manejo, incluyendo instrumentos operacionales para una regulación efectiva, monitoreo y cumplimiento que permita a los gestores de políticas realizar elecciones informales entre distintas alternativas de acción. Estas elecciones deben basarse en políticas acoradas, recursos disponibles, impactos medioambientales y consecuencias sociales y económicas (GWP 2000).

2.6 SERVICIOS ECOSISTÉMICOS

Los servicios ecosistémicos son catalogados en su mayoría como bienes públicos debido principalmente a sus características de no exclusión. A pesar del bienestar que generan no existe un mercado que incentive a pagar por mantenerlos. De igual manera, si la degradación de alguno de ellos afecta a otros individuos, no existe un mecanismo de mercado que asegure una compensación para quien sufren los daños producidos (MEA, 2005).

La Evaluación de los Ecosistemas del Milenio define los "servicios ecosistémicos" como aquellos beneficios que la gente obtiene de los ecosistemas. Esos beneficios pueden ser de dos tipos: directos e indirectos. Se consideran beneficios directos la producción de provisiones –agua y alimentos (servicios de aprovisionamiento), o la regulación de ciclos como las inundaciones, degradación de los suelos, desecación y salinización, pestes y enfermedades (servicios de regulación). Los beneficios indirectos se relacionan con el funcionamiento de procesos del ecosistema que genera los servicios directos (servicios de apoyo), como el proceso de fotosíntesis y la formación y almacenamiento de materia orgánica; el ciclo de nutrientes; la creación y asimilación del suelo y la neutralización de desechos tóxicos. Los ecosistemas también ofrecen beneficios no materiales, como los valores estéticos y espirituales y culturales, o las oportunidades de recreación (servicios culturales). Existe, entonces, una amplia gama de servicios ecosistémicos, algunos de los cuales benefician a la gente directamente y otros de manera indirecta. (CIFOR, 2011).

A menos que los diferentes elementos de un ecosistema –y por lo tanto los varios servicios que ofrece - estén funcionalmente interconectados, es más probable que un comprador de "servicios ecosistémicos" (más comúnmente conocidos como servicios ambientales) esté interesado en los beneficios mensurables, o al menos verificables, de un servicio en particular, más que en la totalidad de los mismos. El manejo necesario para ofrecer esos servicios también variará según el servicio ofrecido. Por ello, los servicios ambientales se clasifican en cuatro categorías: servicios de las cuencas, principalmente la provisión de cantidades adecuadas de agua de buena calidad y, en segundo plano, el control hidrológico de fenómenos como inundaciones, erosión y salinización de los suelos; secuestro de carbono, el almacenamiento a largo plazo del carbono en la biomasa leñosa y materia orgánica del suelo; conservación de la biodiversidad, los procesos que determinan y mantienen la biodiversidad en todos los niveles (paisaje, especies, genes); valores estéticos o belleza del paisaje, el mantenimiento de lo que sirve como fuente de inspiración, cultura y espiritualidad, así como la comercialización en forma de ecoturismo. Hasta el momento, se han aplicado pagos por servicios ambientales en estas cuatro áreas. (CIFOR, 2011)

La mayoría de estos servicios se asocian desde el punto de vista económico al concepto de "externalidades positivas"; entendiéndose como externalidad cuando las elecciones de consumo o producción de una persona o empresa entran en la función de G utilidad o producción de otra, sin el permiso o la compensación de ese agente (Kolstad, 2001). Bajo éste marco, el pago por servicios ecosistémicos constituye el mecanismo para internalizar esos beneficios externos, constituyéndose según MEA (2005) en una respuesta efectiva que refuerza los servicios de los ecosistemas y contribuye al bienestar de las poblaciones.

2.7 PAGO POR SERVICIOS ECOSISTÉMICOS (PSE)

De acuerdo a la guia metodológica para el diseño e implementación del incentivo económico de pago por servicios ambientales-PSA del 2012 en Colombia, (documento en discusión) los PSA son una clase de incentivos económicos cuyo mecanismo gira en torno a un típico mercado (oferta vs demanda) en el cual los propietarios y poseedores regulares de predios, donde se encuentran ubicados los ecosistemas naturales que suministran este tipo de servicios, reciben voluntariamente y en forma periódica un reconocimiento (dinero, especie, mixto) por parte de algunos usuarios finales en razón al beneficio individual o colectivo que les causa contar con su permanente provisión.

La protección de las cuencas hidrográficas, resulta ser un factor determinante para la generación de los servicios ecosistémicos. La falta de recursos o incentivos económicos para lograr estos objetivos, se convierte en una de las causas del progresivo deterioro de las mismas. Ante esta situación, la Cumbre de Río de Janeiro sobre Medio Ambiente y Desarrollo (1992) toma en cuenta los Sistemas de Pagos por Servicios ecosistémicos (PSE), como un instrumento con el cual se valora los servicios del ecosistema, para de ésta forma determinar los mecanismos económicos y legales que conduzcan a su protección.

La compensación a los usuarios de la tierra (en éstas áreas de importancia) por los servicios ecosistémicos que pueden prestar, crea un incentivo directo para que dichos usuarios incluyan estos servicios en sus decisiones sobre el uso del suelo

(Pagiola, 2003). Autores como Pagiola *et al.* (2003) exponen que para dicho efecto el principio que los rige es el de: "el que conserva recibe un pago". De ésta manera, los mercados para los servicios ecosistémicos son equitativos o al menos justos en la medida en que los costos y beneficios reales son reconocidos y remunerados.

Obviamente, el cambio de uso del suelo también hace una diferencia en cuanto al tipo de servicios que el ecosistema puede producir. Algunos servicios se consideran "bienes públicos", de cuyo disfrute no se puede excluir a nadie; el uso de ese servicio por una persona no disminuye significativamente la disponibilidad del mismo para otros usuarios. Sin embargo, la gente puede degradar la capacidad del ecosistema de seguir ofreciendo el servicio, ya sea porque se cambia la composición y estructura del sistema o su funcionamiento, o porque se extraen materiales del ecosistema a un ritmo superior a su capacidad de recuperación. El pago por los servicios del ecosistema busca ofrecer un incentivo a los usuarios de la tierra para que no degraden los ecosistemas y sus servicios y para que más bien los protejan. (CIFOR, 2011)

Desde la perspectiva del impacto de PSE sobre las condiciones de pobreza, Pagiola et al. (2005) asegura que existen dos aspectos importantes que pueden definirse; primero, porque los servicios son el resultado de un uso particular del suelo y su pago bajo un esquema de PSE son hechos a los usuarios directos de dichas tierras; y segundo, porque la participación en éstos programas es voluntaria y los participantes reciben el pago por hacer esto, presumiéndose que ninguno estaría mejor en una situación sin el programa de PSE; de lo contrario, ellos simplemente rechazarían la propuesta.

Según lo anterior, el pago por servicios ecosistémicos (PSE) puede considerarse como un mecanismo de compensación flexible, directo y promisorio. Para el caso de cuencas hidrográficas implica la creación de mecanismos de mercado que compensen a los propietarios de las tierras aguas arriba con el fin de que ellos se encarguen de mantener o de algún modo modificar un tipo de uso que puede afectar la disponibilidad y calidad del recurso hídrico aguas abajo (FAO 2003).

Según las experiencias desarrolladas en algunos países, el éxito de éste tipo de mecanismo basado en el mercado radica en el cuidadoso diseño e implementación para alcanzar las metas ambientales deseadas a menores costos. Su implementación puede conducir a una mayor eficiencia, efectividad y equidad en la distribución de los costos y beneficios (Pagiola *et al.* 2003).

- 2.7.1 Oferentes de Servicios Ecosistémicos. Los oferentes de servicios ecosistémicos son aquellos propietarios y/o usufructuarios de recursos naturales renovables o no renovables de determinada región o microcuenca, y que de alguna forma, inciden para bien o para mal en la generación de servicios ecosistémicos. Estos pueden recibir una compensación por los servicios prestados y de esta manera contribuir a un ambiente más sano y al disfrute del paisaje. Así mismo, tienen que asumir el compromiso de demostrar y de asegurar la cantidad y la calidad del servicio que prestan a lo largo del tiempo. Dentro de ésta clasificación entran productores y productoras individuales, grupos de productores, comunidades enteras o países que protegen el ambiente (Campos, et al. 2006).
- 2.7.2 Demandantes de Servicios Ecosistémicos. Puede decirse que todos los seres humanos son demandantes de estos servicios para su propio bienestar. Desde el punto de vista de pago por estos servicios, los demandantes pueden ser diversos. Son ellos quienes deben tomar conciencia de que es necesario pagar por el disfrute de las bondades que éstos brindan y entender que para perpetuarlos es necesario contribuir con los dueños del recurso. Dentro de éste grupo, entran las colectividades a diferentes niveles, como son municipios, estado central, cooperación internacional o también empresas privadas e individuos (Campos *et al.* 2006).

2.7.3 Pago por Servicios Ambientales en las Cuencas Hidrográficas. Los esquemas de PSA, son arreglos institucionales mediante los cuales los dueños de las tierras que ofrece un servicio ecosistémico reciban una retribución monetaria por parte de los beneficiarios, en términos generales, los PSA constan de tres componentes esenciales: la demanda, la oferta y el marco operativo. El primero se refiere a los usuarios que se benefician del servicio y que idealmente contribuyen con la sostenibilidad financiera del esquema. El segundo componente lo constituyen las áreas prioritarias del Servicio Ecosotémico-SE, así como los costos asociados con la conservación y el manejo de los usos del suelo. El último, componente engloba la planificación, administración y control del esquema de PSE (Retamal. et al, 2008).

En el caso del agua, los esquemas de pagos por servicios ecosistémicos hídricos para el consumo humano apuntan a una compensación de los demandantes o usuarios del servicio de agua potable ofrecen a los productores y/o dueños de las tierras en las zonas productoras de agua (oferentes del SEH), siempre y cuando estos realicen las inversiones necesarias y mantengan determinados usos del suelo que contribuyan positivamente con la disponibilidad y/o calidad del recurso hídrico. Los demandantes del SEH son aquellas personas que se benefician de la conexión al sistema de abastecimiento de agua potable y mediante ella pueden realizar actividades como bañarse, beber, cocinar. Estas personas destinan una parte de sus ingresos a compensar a los dueños de la tierra donde se generan los SEH, tales como productores agropecuarios en cuyas propiedades se encuentran nacientes de agua. (Retamal, et al, 2008).

Los esquemas de PSEH buscan un cambio de actitud tanto de oferentes como en demandantes. Los demandantes destinarían una parte de sus ingresos por un beneficio que tradicionalmente ha sido gratuito, pero que con el aumento de la población y el mal manejo de los ecosistemas está disminuyendo y afectando negativamente su bienestar. (Retamal, *et al*, 2008)

Los mecanismos de pago por servicios ambientales son mecanismos de compensación directa, flexibles, a través de los cuales los usuarios del servicio

pagan a los proveedores del mismo por el suministro de un determinado servicio. Los sistemas de PSA en las cuencas hidrográficas por lo general incluyen la aplicación de sistemas de mercado, para compensar a los dueños de las tierras rio arriba por mantener o modificar un determinado uso de la tierra que repercute en la disponibilidad o en la calidad de los recursos hídricos rio abajo (FAO, 2007).

Valoración Económica

La valoración económica de los bienes y servicios ambientales puede contribuir a crear conciencia sobre bienes públicos cuyo suministro suele tomarse como algo "natural". Puede ayudar a establecer prioridades para las actividades de gestión de las cuencas hidrográficas. La valoración económica es un base importante para establecer esquemas de pagos por los servicios ambientales en las cuencas hidrográficas, lo que puede mejorar la distribución de los beneficios y los costos entre los usuarios del rio arriba y los de rio abajo (FAO, 2007).

Valoración Contingente

Existen muchas formas de calcular el valor monetario de los servicios ambientales. Se ofrecen un breve panorama general de los métodos comunes para estimar la oferta y la demanda de servicios ambientales (FAO, 2007).

Método de valoración contingente, analiza la disposición de los beneficiarios para pagar por un determinado servicio, y la percepción que tienen de los valores de los servicios ambientales que utilizan. En los resultados de este método pueden influir la disponibilidad de información, factores sociales y económicos, y el sesgo de los participantes (FAO, 2007).

2.7.4 Esquema de PSA. Aunque temas como "incentivos a la conservación" y "Pago por Servicios Ambientales – PSA" no son nuevos en la literatura económica, es evidente que aún existe poco o muy desigual conocimiento de estos entre los distintos actores sociales que por normas legales deben, o voluntariamente quieren adelantar acciones para conservar y usar sosteniblemente los recursos naturales existentes en un determinado sitio geográfico con el propósito de evitar, en el tiempo, la disminución o pérdida de las diversas funciones ecosistémicas cuya oferta le genera a las comunidades humanas beneficios tanto directos (suministro de bienes tangibles: madera, alimentos, medicinas) como indirectos (provisión de servicios intangibles: regulación del agua, control de la erosión).(Minambiente, 2012)

Un mecanismo de pagos por servicios ecosistémicos reconoce el esfuerzo que hacen los productores para producir bienes agrícolas y ofrecer al tiempo servicios ecosistémicos. La venta de dichos servicios se convierte en un instrumento financiero que les permite transformar las prácticas de uso que pueden degradar los recursos naturales en sistemas de producción más amigables con el ambiente. De esta forma, logran mejorar sus rubros productivos y generan los servicios esperados dentro de la cuenca hidrográfica (Rosa *et al.* 1999).

Respecto a lo anterior, Porras (2003) agrega que las externalidades generadas en las partes altas de la cuenca provocan costos adicionales en los usuarios en las partes bajas, por lo cual, el principio básico de los mercados de servicios ecosistémicos es que los usuarios de las partes bajas estarían dispuestos a pagar por mejoras en la provisión de los servicios generados por cambios en el uso del suelo en las partes altas de la cuenca. Por su parte, los habitantes en la parte alta de la cuenca estarán dispuestos a aceptar una compensación por cambiar sus patrones de uso del suelo.

Los esquemas de Pago por Servicios Ambientales (PSA) han emergido como un enfoque novedoso para la conservación de los recursos naturales, en el que las acciones o inacciones de los propietarios, poseedores o tenedores de la tierra son compensadas por aquellos que se benefician de servicios ecosistémicos para garantizar su provisión.

¿PSA? La lógica del argumento que fundamenta los PSA es la siguiente: cuando los servicios ambientales "gratuitos" escasean debido a la explotación, éstos adquieren un valor económico.

De acuerdo con Wunder (2005) los PSA (1) una transacción voluntaria, (2) donde existen uno o más servicios ambientales claramente identificados, (3) que son provistos por al menos un vendedor (4) comprados por al menos un comprador y (5) que está directamente condicionada a la prestación continua del servicio.

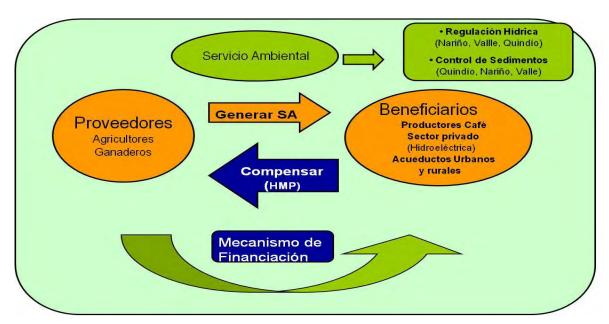


Figura 1. Esquema de PSA, propuesto en zona norte del departamento de Nariño.

Fuente: Proyecto Incorporación de la biodiversidad en el sector cafetero en Colombia 2011. (GEF, FEDERACAFE, UDENAR).

El Pago por servicios ambientales debe tener las siguientes condiciones:

- Vulnerabilidad del recurso hídrico, erosión hídrica, contaminación.
- Disponibilidad a pagar por Servicio (DAP), mayor número de beneficiarios.
- DAP> Costo de Oportunidad
- Voluntad Política
- Condicionalidad: Generación del Servicio Hidrológico
- Instrumento de Apoyo a las herramientas de conservación de Biodiversidad

- Articulación con otro Instrumento de Política
- Beneficios a población asentada en la cuenca.

2.8 ECOSISTEMAS AGRÍCOLAS

Los ecosistemas agrícolas son sistemas antropogénicos, es decir, su origen y mantenimiento van asociados a la actividad del hombre, que ha transformado la naturaleza para obtener principalmente alimentos (Sans, 2007).

Las actividades que se realizan en estas áreas pueden llegar a ser insostenibles cuando generan procesos erosivos en los suelos, sedimentan los cursos de agua, reducen el área mínima viable para la supervivencia de especies de fauna y flora y se aceleran los procesos de colonización (Sans, 2007).

Por el contrario, el manejo adecuado de estos agroecosistemas puede preservar o aumentar la capacidad para producir los beneficios deseados a largo plazo. Es decir, se logra aumentar la producción alimentaria de forma sostenible y se minimizan los impactos negativos sobre el medio ambiente y sobre los agricultores.

Los sistemas producción se define como la interacción de diferentes componentes de tipo: físico, social, económico, biológico y cultural. Al respecto, PROFOGAN (1993) indica que las interrelaciones presentes entre componentes son variables, múltiples y flexibles, formando así una organización compleja y adaptable permitiendo alcanzar un objetivo dentro de un periodo determinado.

2.9 CAMBIOS EN LA PRODUCTIVIDAD

La provisión del servicio ecosistémico podría requerir cambios en la tecnología de producción y la combinación de insumos que pueden resultar en cambios en la productividad. Estos cambios se pueden valorar usando precios de mercado para los insumos y el producto final y darnos una medida de los costos incurridos en la producción del servicio ecosistémico (Freeman, 1993).

Según Barbier (2000) citado por Núñez et al. (2006) el primer paso llevando a cabo este método, es determinar los efectos físicos de los cambios en un recurso natural o la función ecológica sobre una actividad económica. Posteriormente y como segundo paso, el impacto de estas alteraciones medioambientales son estimadas por lo que se refiere al cambio en el rendimiento comercializado. Como resultado, el valor económico es calculado como el cambio en el producto físico marginal del servicio del, valorado al precio del mercado del bien (Núñez et al. 2006).

A ésta metodología se la puede considerar como una extensión directa del análisis tradicional de costo-beneficio. Los cambios que producen los proyectos de desarrollo que afectan la producción y productividad ya sea en forma positiva o negativa, pueden valorarse usándose precios analizados (Izco y Burneo 2003).

Según Dixon, et al (1994) citado por Izco y Burneo (2003), para éste método es necesario tomar en cuenta todos los cambios de productividad tanto dentro, como fuera del sitio en estudio. Los análisis fuera del sitio incluyen todas las externalidades positivas y negativas, las cuales son útiles para dar una verdadera visión del proyecto. Así, un análisis que tome en cuenta la situación con y sin proyecto ayudará a conocer el grado de daño causado o evitado, como resultado de la implementación del proyecto. Para el caso de la valoración de la opción sin proyecto, deberá tenerse en cuenta las disminuciones que se prevean en la productividad al no realizarse el proyecto.

Este método es conocido también como función de producción, ya que en algunos casos estima el impacto en la producción y puede servir para estimar pérdidas directas en el consumo. En él se deben cumplir dos etapas: primero determinar los efectos físicos que se producen por el cambio en el ambiente, lo cual puede hacerse mediante investigaciones en el campo, experimentación en laboratorio o técnicas estadísticas. Y segundo valorar los cambios resultantes en la producción o consumo, utilizando precios de mercado (Izco y Burneo 2003).

2. 10 RESTAURACIÓN ECOLÓGICA

La restauración ecológica es entendida como el proceso de ayudar el restablecimiento de un ecosistema que se ha degradado, dañado o destruido (Society for Ecological Restoration - SER, 2004), (Barrera C & Valdés, 2007). La restauración intenta devolver un ecosistema alterado a su trayectoria sucesional histórica (SER 2004, Barrera y Valdés 2007). Dependiendo de las metas de restauración de un área degradada se puede hablar de tres niveles: restauración ecológica propiamente dicha, rehabilitación y recuperación.

En un proceso de restauración ecológica es muy importante conocer el estado inicial de degradación del sitio a ser restaurado, así como el estado de los sistemas vecinos. Dicho conocimiento permitirá diseñar de la mejor manera posible las estrategias para alcanzar las metas de restauración en el menor tiempo posible. Dependiendo de las metas de restauración de un área degradada se puede hablar de tres niveles: restauración ecológica propiamente dicha, rehabilitación y recuperación.

2.11 SELECCIÓN DE ALTERNATIVAS DE MANEJO PARA LA GENERACIÓN DE SE

Las decisiones que toman las personas que viven en las partes altas de la cuenca pueden beneficiar o dañar a aquellas que viven en las partes bajas. Para evitar que se produzcan daños que afecten un bienestar social, se tiene en cuenta un enfoque precautorio como una medida temporal de protección (Boege, 2002). En este sentido, se plantean alternativas que prevengan del efecto generado por la degradación de importantes áreas para la provisión y regulación del recurso hídrico.

Las prácticas agrícolas y pecuarias inadecuadas pueden generar problemas en cuanto a la calidad del agua; las fuentes pueden contaminarse con sedimentos y/o elementos tóxicos provenientes de las diferentes actividades en el sector rural, por lo cual su aprovechamiento puede llegar a ser muy limitado. Las tierras agrícolas se erosionan perdiendo su fertilidad y productividad. En muchas de las cuencas del

mundo se tala y quema el bosque, se explota la madera y no se llega a recuperar nuevamente, por ejemplo, mediante la reforestación (Ranmakrishna 1997).

Este tipo de situación sustenta la necesidad de estudiar las causas de los problemas relacionados con éste importante recurso, para analizar sus consecuencias y así lograr plantear alternativas de solución que pueden ser implementadas dentro de un contexto social, cultural, económico y ambiental en el que se dan.

El diagnóstico de la zona debe conectarse con la caracterización social, cultural y económica, para idear estrategias que conlleven a hacer un adecuado manejo o recuperación de la cuenca en estudio. Bajo ésta perspectiva es fundamental valorar la tecnología tradicional, la cultura de conservar y la percepción de los pobladores frente a éste tipo de problemática (Ranmakrishna 1997).

2.12 EL SIMULADOR HIDROLÓGICO SWAT

El simulador hidrológico SWAT es un programa de modelamiento hidrológico - diseñado por el Departamento de Agricultura de los Estados Unidos en conjunto con la Universidad de Texas (Arnold, *et al.*, 1998), que permite simular, en cuencas hidrográficas, el efecto que tienen diferentes usos del suelo y prácticas agropecuarias sobre los flujos de agua y de sedimentos. El SWAT se basa en un balance hídrico para determinar la entrada, salida y el almacenamiento de agua en la cuenca. Los principales componentes del modelo pueden ser ubicados en ocho módulos principales: hidrología, clima, sedimentación, temperatura del suelo, crecimiento de cultivos, nutrientes, pesticidas y manejo de cultivos.

El modelo SWAT (Soil and Water Assessment Tool) fue desarrollado por el USDA-ARS (Agricultural Research Service) para predecir el impacto en el manejo del suelo y la vegetación en la producción de agua, sedimentos y químicos agrícolas en grandes y complejas cuencas con variación en suelos, uso de suelo y condiciones de manejo en largos periodos. El modelo tiene como principal objetivo predecir el efecto en la toma de decisiones en el manejo de la producción de agua, sedimentos,

nutrientes y pesticidas con razonable precisión, en cuencas que no cuentan con estaciones de aforo (Arnold, *et al.*, 1987).

El modelo está conformado por un conjunto de sub-modelos, los cuales se emplean para simular distintos procesos hidrológicos. El modelo hidrológico está basado en la ecuación general de balance hídrico:

dónde SWt es el contenido final de agua en el suelo (mm H2O), SW0 es el contenido inicial de agua del suelo en un día i (mm H2O), t es el tiempo (días), Rday es la cantidad de precipitación en un día i (mm H2O), Qsurf es la cantidad de escorrentía de la superficie en un día i (mm H2O), Ea es la cantidad de evapotranspiración en día i (Mm H2O), Wseep es la cantidad de agua que entra la zona de vadosa del perfil del suelo en un día i (mm H2O), y Qgw es la cantidad de flujo de retorno en un día i (mm H2O). La subdivisión de la cuenca permite al modelo reflejar las diferencias en la evapotranspiración para varias cosechas y suelos. Las escorrentías son predichas separadamente para cada Unidad de Respuesta Hidrológica (HRU) por sus siglas en inglés y dirigidas para obtener las escorrentías totales para las cuencas. Esto aumenta la certeza y da una mejor descripción física del equilibrio del agua.

Los principales componentes del modelo pueden ser ubicados en ocho divisiones principales: hidrología, clima, sedimentación, temperatura del suelo, crecimiento de cultivos, nutrientes, pesticidas y manejo de cultivos. Uno de los más importantes es el que calcula el escurrimiento, dado que sirve de base para los otros sub modelos.

3. MATERIALES Y METODOS

3.1 LOCALIZACIÓN

La cuenca del río Pasto, se localiza en la vertiente occidental del sistema orográfico de los Andes, al noroccidente del municipio de Pasto, como afluente del río Juanambú, dentro de la gran cuenca del río Patía, en la vertiente del Pacífico. Agenda Ambiental Municipio de Pasto, 2004.

De acuerdo al POMCH, 2010, la zona alta del río Pasto inicia desde su nacimiento con la confluencia de la Q. Pozo Hondo y la Q. La Pila, que de acuerdo a esta investigación se plantea que es la Q. Las Tiendas y Q. Pozo Hondo, hasta la entrada al área urbana del municipio de pasto en el sector del barrio popular, en la bocatoma Centenario. Abarca un área de 8.126,8 hectáreas, donde se encuentran 15 microcuencas entre las cuales se destacan: quebrada El Tejar, Purgatorio, Cabrera, Aguapamba, La Chorrera, Campoalegre, El Flautal, Las Tiendas, El Retiro, Pozo Hondo, Las Minas, El Barbero, Rascaloma, Pejendino y Dolores (Ver Anexos del 1 al 16).

La subcuenca tiene 48.258,6 Has y es considerada de gran importancia no solo en el contexto local, sino a nivel regional y nacional, teniendo en cuenta que en esta subcuenca se encuentran habitando 431.114 habitantes, que hacen parte de seis municipios, incluida la ciudad capital del departamento de Nariño, y de ella se proveen de bienes y servicios ambientales, PORCH, 2010.

Del flujo principal que es el río Pasto, se capta en el sitio El Centenario, el agua para abastecer gran parte de la ciudad de San Juan de Pasto (85%). Con 5 centros poblados, así: Cabrera, La Laguna, San Fernando, Dolores y Mocondino (Figura 2).

Corresponde al área montañosa limitada en su parte superior por la línea divisoria de agua, asociadas a los ecosistemas paramunos y de bosque alto andino, a una altura superior de 3600 m.s.n.m, donde permite que la cuenca capte el agua de precipitación y se convierta en agua superficial, y va hasta la represa de Julian

Bravo, cubre un área de 22.265,13 ha, correspondiente al 46,13% del área total de la cuenca. POMCA, 2010.

Dentro del proceso de ciclo hidrológico, esta sección de la cuenca, es de alta importancia dado que es la zona de recarga, donde nace el río Pasto; en la actualidad se encuentra en un 30% bajo cobertura vegetal de páramos, subparamos y bosque alto andino y el 70% bajo uso agropecuario, tiene 15 afluentes que alimental el caudal inicial del río Pasto. Administrativamente corresponde al municipio de Pasto. POMCA, 2010.

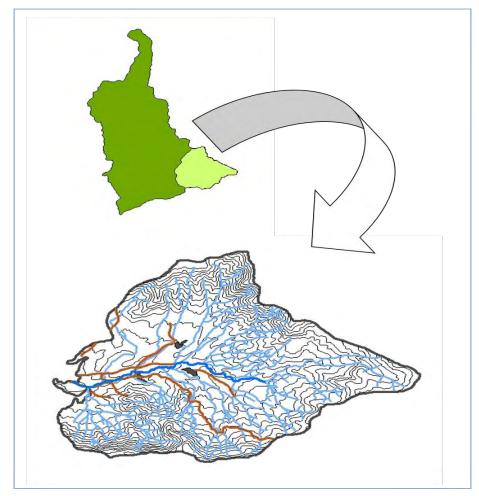


Figura 2. Localización de la cuenca alta del río Pasto. Fuente: PORH, 2011.

Usos del Suelo de Zona Alta de la Cuenca del Rio Pasto.

En esta zona se desarrolla una explotación agropecuaria de tipo minifundista generando una explotación primordialmente extractiva donde predominan cultivos de papa, zanahoria, cebolla, maíz y hortalizas; en cuanto a lo pecuario, se encuentran

bovinos y otras especies menores (cuyes, cerdos y gallinas). Frente a las desventajas del bajo nivel de vida y la carencia de servicios públicos de calidad, la comunidad se ve obligada a intervenir el sistema ecológico lo que se percibe con la expansión de fronteras agrícolas sobre zonas de importancia para el mantenimiento de las fuentes hídricas (EMPOPASTO, 2011).

El tipo de cobertura por microcuencas en la parte alta de la subcuenca, se caracteriza por poseer en más del 50% por delimitación de superficie: pastos limpios, bosque secundario, cultivos de maíz, frijol, papa, cebolla, hortalizas y mosaico de cultivos, pastos y espacios naturales (CORPONARIÑO, 2008).

La cobertura vegetal de la cuenca se encuentra definida respecto al nivel altitudinal y climático lo que refleja la biodiversidad de ecosistemas, sin embargo los recursos forestales, se han reducido paulatinamente, siendo remplazada por actividades agrícolas y pecuarias; como practica inicial se tiene la tala de los bosques que ha conllevado al uso inadecuado de los suelos, desequilibrios ecológicos, erosión, alteración del régimen hídrico y perdida de la biodiversidad (flora y fauna) (POMCA, 2008).

Biodiversidad

En el estudio de la biodiversidad del departamento elaborado por CORPONARIÑO y La Universidad de Nariño en el 2008, se realizó un inventario forestal en la microcuenca las Tiendas donde se presenta vegetación natural continua. Aspecto que es relevante en esta investigación, comprobándose que esta situación está cambiando debido al uso de la vegetación para extraer carbón, postes para las cercas y ampliación de la frontera agropecuaria.

Composición Florística

En los resultados del estudio anteriormente citado, para el componente de flora encontraron que las especies que reportaron un mayor número de individuos fueron el Chilco (*Joseanthus crassilanatus*) y Amarrillo (*Miconia sp.*) con un total de 63

especies cada una; seguido por la especie de Encino liso (*Weinmannia rollote*) y en menor proporción se dieron las especies de cordoncillo (*Piper sp.*), Rayo (*Axinaea macrophylla*), Charmolan (*Geissanthus serrulatus*), Palo rosa (*Gaiadendrom punctatum*) y Mate (*Clusia multiflora*), con un individuo por cada especie (Tabla 1) (POMCA, 2008). Situación que en la actualidad se mantiene.

Tabla 1. Composición florística bosque denso, cuenca alta del río Pasto.

Nombre común	Nombre Científico	Número de Individuos	
Manduro	Clethra fagifolia	12	
Cucharo	Geissanthus andinus	34	
Chilco	Joseanthus crassilanatus	63	
Amarillo	Miconia sp.	63	
Mano de Oso	Oreopanax discolor	34	
Cordoncillo	Piper sp.	1	
Pumamaque	Schefflera marginata	32	
Encino Rugoso	Weinmannia pubescens	32	
Encino liso	Weinmannia rollotii	53	
Aliso	Alnus jorullensis 23		
Rayo	Axinaea macrophylla	1	
Cancho	Brunellia tomentosa	9	
Charmolan	Geissanthus serrulatus	1	
Salado	Hedyosmum translucidum	2	
Olloco	Hedyosmun bomplandianum 2		
Malvo	Sin nombre	1	
Helecho Arbustivo	Polypodrum sp,	9	
Flor de Mayo	Meriania splendens 32		
Cujaco	Solanum spp 12		
Motilon Silvestre	Freziera canescens 3		
Mate	Clusia multiflora	1	
Acacia	Acacia escladita	2	
TOTAL		420	

Fuente: POMCA, 2008.

3.2 GENERACIÓN DEL MODELO DIGITAL HIDROLÓGICO.

Se necesitó de las siguientes herramientas informáticas

SOFTWARE Y HARDWARE

Para la generación y ejecución del modelo propuesto se necesitó de SWAT (Soil and Water Assessment Tool), con la extensión ArcSWAT 2.3.4, para el programa ArcGIS 9.3. SP1, la cual se descarga de internet de la página WEB http://www.brc.tamus.edu/swat.

Requisitos del sistema

ArcSWAT para ArcGIS 9.3.1, usted debe tener:

Microsoft Windows XP o Windows 2000

ArcGIS 9.3.1, Service Pack 2 (build 4000)

Nota: Otras versiones 9.3.x de ArcGIS deben ser compatibles.

ArcGIS Spatial Analyst 9.3.1

ArcGIS Dot Net apoyo (por lo general se encuentra en: C: \ Archivos de programa \ ArcGIS \ DotNet)

Microsoft. Net Framework 2.0

Adobe Acrobat Reader versión 8 o superior.

Para lograr el primer objetivo planteado en la presente investigación, se contempla como eje central, la representación de los procesos naturales que ocurren al interior de la cuenca, mediante la modelación hidrológica. Para lo cual se usó el modelo hidrológico Soil & Water Assessment Tool (SWAT), el cual se configuró y corrió para un periodo referencial de 5 años (2007-2012). Mediante la metodología propuesta por Neitsch, *et al.* 2005 y Uribe, 2010.

En el programa ArcGIS 9.3 se seleccionó la extensión ArcSWAT

Se delineo la cuenca y definió las HRUs (incluyendo uso de la tierra, el suelo y la pendiente como una única HRU)

Se Editó SWAT bases de datos

Se definió los datos meteorológicos

Se Aplicó la entrada por defecto los archivos de escritor

Los archivos de entrada por defecto se editaron

Se configuró (la especificación del período de simulación, el método de cálculo de PET, etc) y se ejecutó SWAT

Posteriormente se aplicó una herramienta de calibración (test de los parámetros observados y simulados)

Por último se analizó, la trama y la producción gráfica de SWAT (VizSWAT)

3.3 PRIORIZACIÓN DE MICROCUENCA.

Para la delimitación y priorización del área de la subcuenca alta del río Pasto, donde se espera desarrollar la propuesta de PSAH aquí propuesta, se utilizó varias metodologías a diferentes escalas, como la propuesta por el IDEAM "criterios y parámetros para la clasificación y priorización de cuencas hidrográficas" mediante resolución 104 del 2003.

Resolución 865 de Julio 22 de 2004. Por la cual se adopta la metodología a que se refiere el Decreto 155 de 2004, para el cálculo del índice de escasez para aguas superficiales (IES). Desarrollada por el Instituto de Hidrología, Meteorología y Estudios Ambientales, IDEAM.

La metodología en la resolución 865 de 2004 del IDEAM (cálculo de Índice de Escasez para Aguas Superficiales, ajustada por Infante y Ortiz, 2006.). CORPONARIÑO lo desarrollo en el año 2008, la cual nos da también una priorización de las áreas a intervenir en esta investigación.

CORPONARIÑO realizó la priorización con la metodología planteada, para el proceso de ordenamiento y manejo de las principales cuencas del Departamento de Nariño, dándole la categoría de índice de escasez de 88.18% (alta prioridad) a la subzona Río Pasto Alto, sector Río Pasto Alto-Alto, Microcuenca las Tiendas (Resolución 0989 de 2008 Corponariño).

Tabla 2. Análisis de la demanda y la oferta para la priorización de áreas para PSAH.

	Servicios Hidrológico				
Demanda/Oferta	Alta	Media	Baja		
Alta	Media	Alta	Alta		
Media	Baja	Media	Alta		
Baja	Baja	Baja	Media		

Fuente: Borda, 2011.

Una cuenca con "alta demanda potencial de agua para uso agrícola", localizada en una zona con una baja capacidad de retención hídrica, se considerada como vulnerable y prioritaria para el desarrollo de un esquema de PSAH.

Mediante la utilización del modelo SWAT (Soil and Water Assessment Tool) se logró realizar un análisis hidrológico de la subcuenca alta de río Pasto, el cual no solo pretendía proveer un balance hídrico, sino identificar las zonas que contribuyen con más agua (URH) al caudal que llega a la parte baja de la subcuenca (planta Centenario).

Para lo cual, en esta investigación se realizó un análisis que relacionó de manera combinada el tipo de uso del suelo, la pendiente, la precipitación y el tipo del suelo con la generación de caudales y sedimentos, elementos fundamentales para priorizar áreas por su importancia actual o potencial para producir agua y retener sedimentos. Esto es especialmente importante para el diseño de un esquema de PSA, ya que sobre todo en cuencas o subcuenca, se deberá tarde o temprano que priorizar los pagos a las áreas más importantes por sus impactos en los servicios ambientales hídricos. Estas áreas no deberán ser únicamente aquellas que actualmente proveen la mayor cantidad de agua sino las que con un cambio en su uso o manejo pueden mejorar su nivel de provisión actual.

Luego de este proceso se propuso la intervención en el área priorizada, a través del enfoque de cogestión adaptativa de cuencas, propuesto en el programa FOCUENCAS II (Banegas y León, 2009). Donde se tuvo en cuenta los factores y

criterios por ellos identificados y los que se presentan en la cuenca alta del río Pasto, los cuales son comunes en cada una de las microcuencas analizadas, así como las diferencias o arreglos realizados en cada una de ellas según su particularidad y contexto.

3.4 IDENTIFICACIÓN DE SISTEMAS PRODUCTIVOS

Para la identificación de los sistemas agrícolas de importancia en la microcuenca se utilizó la metodología propuesta por Jaramillo, *et al.* (1996). En el trabajo de tipificación de sistemas de producción papa-pastos-leche en el oriente Antioqueño. Boletín de investigación N° 4.

Para determinar el tamaño de la muestra de la población a encuestar (calidad, cantidad, servicio, demanda, oferta, sistemas productivos) se utilizó la metodología conocido como "Muestreo Aleatorio de Proporciones" (Cochran, 1996). La fórmula condensada para definir el tamaño de la muestra fue la siguiente:

$$n = \frac{Z^2 \propto /2 \times (P.Q)}{E^2}$$

Dónde:

n = tamaño de la muestra.

 \propto = nivel de significancia estadístico.

E = error permisible máximo. Se asumió el 10% debido al presupuesto disponible para el trabajo.

$$N' = n/(1+(n-1/N))$$

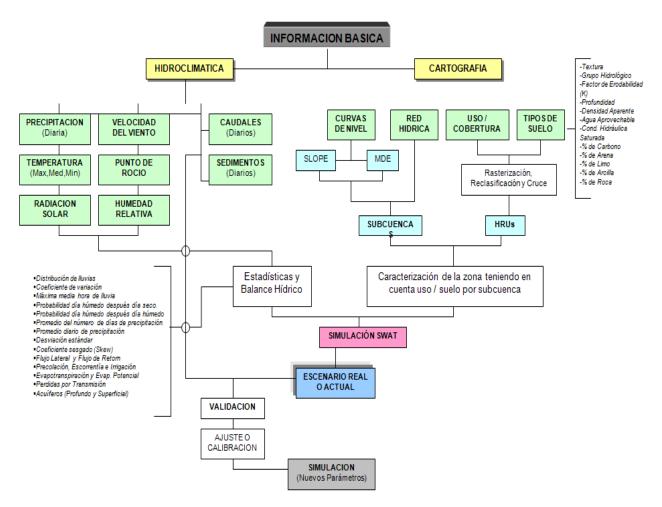
 $N' = 92/(1+(92-1/Total estrato))$

3.5 IDENTIFICACIÓN DE ESCENARIOS FAVORABLES

Para determinar la adicionalidad ambiental se estructuró la información del modelo SWAT información cartográfica (suelos, curvas de nivel, cobertura y uso del suelo) información hidrológica (precipitación, temperatura máxima, temperatura mínima, radiación, caudal y sedimentos)

Etapa I de Calibración Modelo SWAT

La calibración consistió en realizar un test de los parámetros de salida (caudal, sedimentos.) entre los datos simulados y los observados o tomados en campo.


Etapa II Validación

La validación consistió en evaluar el ajuste del modelo con los parámetros calibrados, pero en un periodo diferente de tiempo.

Etapa III: Generación de los Escenarios: Que promuevan servicios de oferta hídrica y calidad hídrica en la cuenca alta del río Pasto.

Conservación: Propuesta de Corredores de Conservación (restauración)

Conversión Productiva: Incorporación de prácticas de Conservación en los sistemas productivos existentes.

Figura 3. Información espacial y climática necesaria para calibrar y validar el modelo SWAT.

Fuente: CIAT, 2009.

Información necesaria

✓ Datos de Entrada y Configuración del Modelo

- Cobertura y Uso del Suelo
- Modelo Digital de Elevación
- Información Hidroclimática
- Información de Suelos

✓ Procedimiento de Calibración y Validación

La calibración de un modelo como SWAT se hizo realizando un test de los parámetros de salida (caudal, sedimentos) entre los caudales simulados y los observados; con la finalidad de poder determinar cuáles parámetros de entrada deben ser ajustados en el modelo. La fase de validación del modelo consistió en evaluar la capacidad predictiva del modelo calibrado. La simulación hidrológica para la cuenca se realizó en forma diaria para un periodo de simulación de 3 años, la información de caudales aforado y concentración de sedimentos fue relevante. Se realizó una fase de calibración en el periodo (2005-2012) y luego una fase de validación para otro periodo (2012-2015).

✓ Modelación de Escenarios

Para el modelamiento hidrológico, la cuenca seleccionada se dividió en pequeñas subcuencas con el fin de mejorar la exactitud de los cálculos (Arnold *et al.*, 1998). Adicionalmente, mediante SWAT se establecieron las unidades de respuesta hidrológica (URH), obtenidas a partir de cruzar los diferentes tipos de suelo con las coberturas presentes. Estas URH permiten diferenciar espacialmente el comportamiento de los sedimentos y la producción de agua dentro la cuenca, y específicamente identificar las áreas más críticas para la provisión del servicio.

Para evaluar el comportamiento del caudal y de los sedimentos en la cuenca se propuso dos escenarios favorables y factibles, para el establecimiento de un esquema de pago por servicios ambientales hidrológico:

Se parte de la línea base, para la modelación hidrológica de la subcuenca (escenario actual), es decir antes de la implementación del esquema PSAH, con cultivos y pastos y la desprotección de la ronda del río con un uso del suelo asociado a pastos y dedicadas a la producción de ganadería; y papa, hortalizas etc.

a) **Escenario 1**. Corredores de Conservación. Este escenario corresponde a la restauración ecológica de la microcuenca, a 5 metros a cada lado de los cuerpos de

agua de la cuenca a través de corredores de vegetación riparia o los propuestos por la normatividad Colombiana.

b) **Escenario 2**. Conversión de los Sistemas Productiva. Este escenario corresponde a la conversión de algunas prácticas de los sistemas productivos, mediante la utilización de sistemas agroforestales (silvopastoriles), cultivos densos, cobertura permanente. La cobertura permanente cumplen con la función de proteger el suelo contra los efectos de la erosión y adicionar materia orgánica para recuperar y mantener tanto las propiedades físicas, químicas y biológicas que determinan su capacidad productiva; mientras que la sombra aporta considerablemente a la retención de agua en suelo y a la protección de la erosión por efectos directos de la lluvia.

3.6 PROPUESTA PARA LA RESTAURACIÓN ECOLÓGICA.

Para la propuesta de restauración ecológica fue mediante criterios de la Red Colombiana de Restauración Ecológica-REDCRE y mediante experiencias exitosas desarrolladas en la zona alto andina (Vargas, *et al.* 2007), con la finalidad de lograr la regulación hídrica y el control de sedimentos.

3.7 IDENTIFICACIÓN DE ACTORES.

Para cumplir el objetivo de identificar actores relevantes en el proceso de PSAH, se realizó talleres participativos con la comunidad de la subcuenca y mediante la aplicación de encuestas, para realizar una aproximación a la gobernanza del recurso hídrico en la microcuenca las Tiendas, haciendo énfasis en el desarrollo de conflictos asociados al uso, acceso y aprovechamiento del mismo.

Se utilizaron diferentes metodologías de recopilación de información como entrevistas, encuestas, DRP, observación participante, análisis documental, consultas con informantes claves, análisis CLIP, análisis de redes sociales (Salgado, 2012) y la cogestión de cuencas propuesta por Faustino y Jiménez, 2005.

3.8 MECANISMOS DE MONITOREO Y EVALUACIÓN PSAH.

Para el monitoreo y evaluación propuestos, se tuvo en cuenta la propuesta del Ministerio de Ambiente, Vivienda y Desarrollo Territorial y el fondo para la Biodiversidad y áreas protegidas-Patrimonio Natural, 2008; mediante la "Metodologías técnicas en el ámbito biofísico para la determinación y monitoreo de los servicios ambientales relacionados con regulación hídrica y control de sedimento, y su relación con el uso del suelo y los propuestos por Borda, 2011.

3.9 PROPUESTA PAGO POR SERVICIOS AMBIENTALES HIDROLÓGICOS EN LA MICROCUENCA LAS TIENDAS, SUBCUECA ALTA DEL RÍO PASTO.

Para llegar a un esquema consolidado se requiere de un proceso metodológico muy afinado. En primera instancia para la implementación de la estrategia de negociación PSAH, se trabajaron talleres con diferentes actores de interés entre ellos participaron varios representantes de la comunidad, por consulta mediante encuesta los oferentes y demandantes del servicio hídrico (cogestión y gobernanza) plantearon sus pro y contra al esquema, y bajo los cuales se rige esta investigación.

Posterior a estos procesos se realizó la propuesta como tal de PASH, en la microcuenca las Tiendas, zona que fue priorizada por ser un área que impacta considerable en la calidad (sedimentos) y cantidad (regulación) de agua de la cuenca alta del río Pasto. La metodología desarrollada tiene en cuenta lo propuesto en la Guía Metodológica para el Diseño e Implementación del Incentivo Económico de Pago por Servicios Ambientales-PSA, del Ministerio de Ambiente y Desarrollo Sostenible, 2012 (documento para discusión) y la metodología desarrollada por Borda, 2011 en el proyecto "incorporación de la biodiversidad en paisajes cafeteros de Colombia".

Se planteó las rutas de implementación del esquema propuesto.

Valoración Económica

En la cuenca alta del río Pasto se realizó una valoración económica mediante el método de costo de oportunidad, realizada por Del Castillo, 2008, la cual es referente en esta investigación y dio paso a una nueva propuesta de valoración económica.

Específicamente se propuso la valoración económica, mediante la metodología de valoración contingente-VC propuesto por Davis (1963) y ajustado por Borda (2011). Como parte complementaria del estudio de costo de oportunidad ya desarrollado. El método VC consiste en identificar:

Para la disponibilidad de pago de los usuarios del recurso hídrico y aceptación por parte de los productores, para la conservación del bosque, con el fin de mejorar la calidad y cantidad de agua que consumen se utilizó un formato de encuestas para estimar la voluntad de pago y aceptación de las personas por el bien y los servicios ambiental. La finalidad del método es pretender crear un mercado hipotético donde es posible "comprar" una mejora por el bien en cuestión. (Anexos 17 y 18)

Disposición a pagar DAP (Valoración Contingente a los usuarios). Intenta estimar la valoración de los individuos sobre un componente o cualidad del medio ambiente, como expresión directa de éstos, es decir su Disposición a Pagar (DAP), o a ser compensado, es decir Disposición a Aceptar (DAA).

Construcción de la encuesta, considerando:

- (a) Diseño del escenario hipotético,
- (b) Decidir si preguntar por DAP y estimación de los puntos de partida,
- (c) Decidir la forma de pago o medio de compensación.

Formatos de encuestas y lista de variables tenidas en cuenta para el análisis estadístico (Anexos 19).

Abiertos: ¿Cuánto vale para usted...? ¿Cuánto pagaría por...? (Anexo 17 y 18) Referendo: Se entregan distintos valores a individuos, quienes responden sí o no al valor propuesto.

Aplicación de la encuesta:

La aplicación de encuestas con los usuarios del acueducto y propietarios de los predios en la zona de recarga hídrica; se realizó entre los meses de enero y marzo del presente año. Para determinar el tamaño de la muestra a aplicar, se utilizó la metodología conocido como "Muestreo Aleatorio de Proporciones" (Cochran, 1996) descrita anteriormente, con un margen de error del 10%.

3.10 ANÁLISIS ESTADÍSTICO

Para interpretar los datos estadísticos se realizó un análisis de correspondencia múltiple-ACM, mediante el cual se utilizó una matriz de individuos por variables cualitativas o nominales que fueron categorizadas, consistió en pasar de las variables categóricas originales a un pequeño número de nuevas variables o factores, tales que sinteticen la información de las variables originales (Morineau y Aluja, 1994).

Los datos correspondientes a las variables cualitativas se procesaron mediante el Análisis de Correspondencia Múltiple (ACM). El cual permitió detectar las correlaciones entre caracteres de una población y estructurar la variabilidad existente, de tal modo que es posible encontrar diferentes tipos de información (Factores) contenida en las variables y la cantidad de información del mismo tipo (Factor) que contiene cada variable. Se partió del supuesto de que una variable determinada contiene en parte información ya suministrada por otra u otras variables (Bautista y Ramos, 1988)

Para el análisis de agrupamiento (Clúster), se utilizó el método de clasificación jerárquicas planteado por Pla (1986) el procedimiento de clúster establece una jerarquía de grupo, en un conjunto de datos, basados en criterios de agrupación que

pueden ser coordenadas o distancias. Crivisqui, 1997 afirmó que uno de los criterios de agrupación, es el método de Ward, el cual consiste en minimizar el crecimiento de la varianza intragrupo, permitiendo agrupar las características de la población oferente y demandante de los servicio ambientales, con base en los datos obtenidos de la muestra poblacional tomada, resultante de la agregación de dos grupos en una clase. El procedimiento se hizo mediante la utilización del Sofware Spad 5.6.

4. ANÁLISIS Y DISCUCIÓN DE RESULTADOS

4.1 ÁREA DE ESTUDIO

La cuenca alta del río Pasto, es determinante para el desarrollo sustentable del municipio de Pasto y la zona sur del país, su principal virtud son los bienes y servicios ambientales que ofrece "per se" a la población rural allí asentada y los habitantes de la ciudad de Pasto y sus al rededores (agua principalmente). Esta característica no ha sido valorada y resaltada, logrando un degradación y deterioro de los recursos naturales presentes en este lugar.

Este espacio es importante ya que existen ecosistemas estratégicos (paramo y bosque alto andino), donde se conserva la diversidad biológica, también es la zona de producción de alimentos para la soberanía y seguridad alimentaria de la zona rurales, urbana; local y regional. Los principales sistemas productivos son la explotación artesanal y comercial de cuyes, ganado de leche, agrícolas (papa, hortalizas, flores, aromáticas, arveja, etc.) y es un espacio para la recreación y el deporte de la población local y la ciudad de Pasto.

Todo esto hace que sea un reto loable, el desarrollar sistemas productivos sustentables y la conservación de los ecositemas estratégicos, logrando así un verdadero desarrollo sostenible en la región. Hoy en día esta situación no es posible debido a que la demanda hídrica supero al oferta y como alternativa ya existe el bombeo de agua del embalse de río Bobo a las plantas de tratamiento de Centenario y Mijitayo, con costos elevados transferidos directamente al usuario final en el pago de su factura.

De acuerdo al diagnóstico realizado por el Clúster del agua, nodo Nariño en el 2005, en la cuenca alta del rio Pasto, se encontró alta deforestación, asociada a la expansión de la frontera agropecuaria, apertura de vías sin planificación, en áreas de gran importancia para la recarga hídrica, contaminación por agroquímicos, escasa cultura ambiental. En la bocatoma, se encuentra acumulación de basuras, sedimentación y disminución del cauce debido a rellenos con escombros de

construcción. Crecimiento poblacional preocupante. Todas estas son problemáticas sistemáticas y crecientes, que solo con un enfoque de gestión integral del recurso hídrico se pueden comenzar a disminuir sus impactos en un periodo considerable de tiempo (10 años)

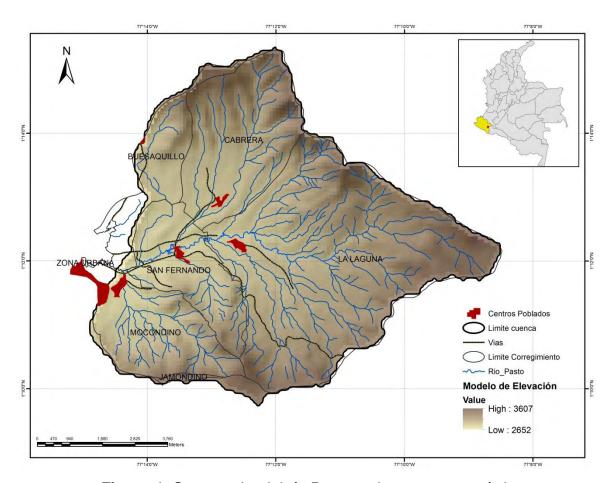


Figura 4. Cuenca alta del río Pasto y algunas características.

La parte alta de la cuenca está irrigada por varias quebradas que favorecen la productividad de sus suelos utilizados en agricultura y ganadería principalmente. Es un territorio que presenta un alto potencial agropecuario, con pocas oportunidades para desarrollar otro renglón de la economía nacional, habiendo unas pocas iniciativas de turismo rural (ecoturismo, agroturismo, etc.). Esta área en la actualidad presenta un potencial cambio de uso del suelo hacia la construcción de viviendas campestres por parte de los habitantes de la ciudad de San Juan de Pasto, con los impactos que esta actividad tiene en los recursos naturales.

Por lo tanto se reitera la importancia de esta área para el desarrollo de esquemas de pago por servicios ambientales hidrológicos y de otro tipo, con la finalidad de evitar posible impactos negativos irreversibles y mucho más costosos para la sociedad.

Del Castillo, 2008. El agua es un recurso esencial en todos los aspectos de la vida y parte fundamental de los ecosistemas terrestres. Según Sánchez (2003), y es de esta área que se toma cerca del 70% del agua que consume la ciudad de Pasto, EMPOPASTO, 2008. La mayor parte del mundo está cubierta por este recurso, solo alrededor de un 1% es apta para consumo humano. Adicionalmente el agua está distribuida desigualmente, es decir, es abundante en algunas áreas y muy escasa en otras. Con frecuencia éste recurso es considerado como un bien público, razón por la cual se le ha hecho un uso irracional e insostenible, lo cual ha ocasionado preocupación por el acelerado crecimiento de su demanda y de su consecuente escasez.

Alpízar y Madrigal (2005) plantean que para obtener estado de conservación deseado se debe partir de una estimación de los incentivos económicos que deberían ser transferidos a los productores involucrados en la oferta del servicio ecosistémico hídrico. Para el caso específico de la microcuenca Las Tiendas, este incentivo se estimó por el método de valoración contingente, para llevarlo al esquema de PSAH propuesto, bajo los paradigmas de la cogestión y gobernanza desarrollados en el programa FOCUENCAS II, esto con el objetivo de lograr la transformación del entorno bajo principios del modelo económico neoliberal prevalente en Colombia, con lo cual se espera ejecutar los procesos de conservación, recuperación y producción sostenibles en el esquema propuesto.

Microcuenca quebrada Las Tiendas. (POMCH, 2010) La microcuenca las Tiendas se encuentra localizada en el corregimiento la Laguna, municipio de Pasto, nace a una altura de 3.600 m.s.n.m. en el páramo de Bordoncillo, con temperaturas promedio entre 3º a 6º C y con un área de 1.097,59 hectáreas.

De acuerdo a la zonificación ambiental por microcuencas realizada en el POMCH, 2010. Se plantea que en esta microcuenca se pueden llevar a cabo actividades de producción sostenible en un 87% de su área, dejándose claridad que esta

producción está condicionada al tipo de manejo de cultivos, en los cuales deberá realizarse bajo criterios de conservación de suelos y aguas.

Esta investigación no está de acuerdo con esta zonificación, por no ser concurrentes con la realidad. Esta es una zona con vegetación natural y con posibilidades de restauración de las rondas de los causes y las zonas de recarga hídrica. Estas dos características son parte importante en está microcuenca, y con lo cual se logrará consolidar un proceso de gestión integral del agua, mediante el esquema de PSAH promisorio.

La microcuenca presenta en la actualidad una alta intervención del bosque nativo, la frontera agropecuaria está llegando a límites de los 3300 metros de altura, del mismo modo hay presencia de pastos entre los 2900 y 3300 m.s.n.m, donde se presenta ganadería de pastoreo, con pastos de corte y pastos tradicionales POMCH, 2010.

4.2 ANÁLISIS DE CORRESPONDENCIA MULTIPLE (ACM).

El análisis descriptivo de las variables cualitativas evaluadas para la gestión integral del recurso hídrico en la cuenca alta del río Pasto, mediante los siguientes aspectos: calidad, cantidad, servicio, conocimiento del manejo de la cuenca, protección de la fuente de agua, institucionalidad, confianza y participación; se observan en la Tabla 1, donde se tiene en cuenta las variables sobresalientes, como la predominancia de los propietarios masculinos (V3=1) (260 propietarios), el doble de las propietarias femeninas (V3=2) (131 propietarias), del total encuestado la mayoría trabajan (V6=2) (324 personas) y su ingreso promedio mensual es menos del salario mínimo (V7=1) (0 a 589.500 miles de pesos).

Los resultados muestran una población con bajos ingresos, en edades adultas (41 y 64 años) la mayoría de los propietarios son hombres, el trabajo que realizan es dentro de su predio o como jornaleros donde los vecinos. Aspectos que son relevantes para analizar y entender la relación naturaleza-sociedad, que dentro del

sector rural se presenta, con las implicaciones que actualmente tienen sobre el medio ambiente.

Galafassi, 1993, afirma que la intervención del hombre sobre la naturaleza, se da cuando los recursos son apropiados y transformados, para satisfacer necesidades sociales de acuerdo a una valoración, donde se determina la utilidad o no de los recursos naturales. Esta intervención requiere medios técnicos como herramientas y técnicas de trabajo, que potencian el desgaste de energía por parte del hombre y lo independizan de las determinaciones del medio natural, logrando modificar los ecosistemas. Cuando el sector rural participa en las relaciones de mercado de la sociedad moderna, mayor importancia y diversificación tendrán los medios de trabajo, y mayor será también la capacidad de transformación del ambiente.

Por lo tanto se plantea que las transformaciones generalmente son negativas para los ecosistemas, en su estructura, función y composición, impactando de forma significativa los servicios ecosistémicos que ellos ofrecen a la sociedad.

Al entrar en el análisis de las variables propuestas, se observa que la calidad del agua que reciben los usuarios del servicio, en ocasiones les ha llegado sucia (V10=2) (320 personas), afirman que en los dos últimos años no han presentado enfermedades por el agua que consumen (V13=2) (305 personas), y que la cantidad que reciben es adecuada (V14=1) (368 personas), durante todos los meses del año (V15=1) (333 personas), pero que cuando se realizan trabajos en la red de agua potable, se limita su distribución (V16=1) (363 personas) ocasionando cortes de agua.

En términos de calidad se plantea que es buena, pero se manifiesta que en algunas ocasiones llega sucia, esto puede ser debido a las actividades agrícolas, pecuarias y cotidianas (cocinar, lavar, etc.) que se realizan en la parte alta, situación que no es relevante en épocas secas o de pocas lluvias, a diferencia de cuando se presentan periodos fuertes de lluvias, lo cual incrementa la sedimentación, reflejándose en una menor calidad del agua.

También se resalta el impacto de las vías de acceso (carreteras, caminos, etc.) al área, las cuales también generan gran cantidad de sedimentos en todo momento y en grandes volúmenes. Estas situaciones no es algo que repercutan directamente en la salud de los consumidores del servicio por el tratamiento realizado, pero si en el costo del servicio por parte de la empresa prestadora del servicio-EMPOPASTO S.A E.S.P y por ende en el consumidor final.

Se debe tener en cuenta estos aspectos, porque de acuerdo al índice de riesgo de la calidad de agua para consumo humano-IRCA, en el Municipio de Pasto es de 1.3 urbano (sin riesgo) y 26.3 rural (riesgo medio), situación que se resalta, debido a que el promedio departamental esta en 24.8, siendo no apta para el consumo humano (Superintendencia de Servicios Públicos Domiciliarios, 2008).

Con respecto a la cantidad del agua recibida los usuarios, afirman que es adecuada durante todos los meses del año, situación que pone en evidencia el adecuado manejo del servicio por parte de EMPOPASTO S.A E.S.P. Tan solo se presentan cortes, cuando se realizan trabajos en la red de agua potable, situación que es normal en cualquier sistema de acueducto de agua potable, que cumple con la norma (Reglamento técnico del sector de agua potable y saneamiento básico-RAS, 2000).

El tratamiento del agua se hace en la planta ubicada en el barrio Centenario, la cual fue creada en el año de 1939 gracias a la necesidad que surgió al querer que la población consuma agua de mejor calidad, La planta de tratamiento Centenario se abastece de las fuentes hídricas Barbero, Dolores, Purgatorio, Chorrera, Tejar, Minas y Lope, las cuales entregan sus aguas al río Pasto. EMPOPASTO 2012.

Estas aguas llegan a la planta con un caudal de 570 l/s, en caso de sequía se dispone del embalse de Río Bobo que suple la deficiencia de agua en épocas de verano, este es un sistema de abastecimiento de agua por bombeo desde el embalse hasta el tanque de almacenamiento de Cruz de Amarillo, el cual suministra agua a las plantas de Centenario y Mijitayo, que llega con un caudal de 400 l/s. Situación que incrementa los costos para los usuarios del servicio de agua potable.

El agua recibida del rio Pasto llega con una turbiedad de 56-58 NTU, pH de 7.5 y color 480 UPC, después de este análisis se pasa a realizar una -prueba de jarras en la cual se calcula la dosis optima de coagulante midiendo el caudal en la cámara Parshall , una vez hecho esto mediante un equipo electrónico se verifica el funcionamiento de la cámara Parshall y todos los componentes de la planta esto con el fin de verificar que la planta esté realizando un buen funcionamiento. EMPOPASTO 2012.

Las actividades agrícolas, pecuarias y cotidianas (cocina, lavar, etc.) impactan directamente la calidad y cantidad del recurso hídrico en la cuenca alta del río Pasto, mediante los procesos de sedimentación, contaminación y disminución del recurso hídrico. De acuerdo al PORH (2011), se afirma que la principal problemática identificada en la cuenca alta del río Pasto, es la contaminación y la falta de política y normas que contribuyan a su cuidado y recuperación. Donde se identificaron las siguientes causas:

- √ Aguas residuales domésticas y de ganadería
- ✓ Falta de educación y cultura ambiental
- √ Falta de intervención del estado con las comunidades rurales
- ✓ De la ciudad vienen a botar basura al rio
- ✓ La comunidad no conoce el reciclaje
- ✓ Tala y quema de Árboles
- ✓ Botan animales muertos al rio sobre todo en el Puente de san Fernando y
 Cabrera
- ✓ Los restaurantes contaminan el rio con el sacrificio de animales.
- ✓ Utilización de químicos como fungicidas, fertilizantes, plaguicidas
- ✓ Contaminación por el horno crematoria y SALVI
- ✓ Aguas residuales de fábricas
- ✓ Afectación de la cobertura vegetal por la construcción de la carretera Panamericana
- ✓ Vertimiento de aguas residuales del barrio Popular, y las tablas
- ✓ Crecimiento urbano
- ✓ Desprotección de los nacederos

✓ Deforestación

Se resalta la falta de educación y cultura ambiental, la nula intervención del estado con las comunidades rurales, mala disposición de los residuos orgánicos, vertimientos, construcción y adecuación vial, crecimiento poblacional, deforestación; que ponen de manifiesto la necesidad apremiante de buscar nuevas y mejores alternativas, como los Pagos Servicios Ambientales-PSA, integrados con soluciones paralelas como reducción de impuestos, sistemas productivos sustentables (Agroecología, Agroforestería), Red de mercados verdes, captura de CO₂, compra de predios con estrategias de manejo, aislamiento, procesos de restauración, etc.

En el PORH, 2011 reafirma que en la actualidad la problemática del rio Pasto, es la contaminación no solamente por las basuras y residuos sólidos, sino por la contaminación de descargas de aguas contaminadas desde la parte alta del rio. En conclusión, se puede observar que el río Pasto se viene afectando aguas arriba de la bocatoma por las descargas de aguas residuales domésticas, agroquímicos y funguicidas de La Laguna, San Fernando, Cabrera, Dolores, los desechos industriales de una fábrica de postes de concreto que le llegan por efecto de escorrentía superficial, factor que afecta las condiciones de la cuenca y la calidad del agua captada para consumo humano. Es de gran importancia señalar la existencia de estaciones de servicio que se han venido construyendo en un sector muy cercano al río.

Se resalta que el río y los afluentes ubicados en la parte alta, son las únicas fuentes de importancia que abastece a la ciudad y centros poblados, como corregimientos y veredas; las condiciones de calidad y cantidad de estas fuentes de agua resultan aptas para consumo humano y doméstico. Por esto la preservación de este recurso debe ser de las entidades gubernamentales, CORPONARIÑO, organizaciones y de todos los habitantes que de él se benefician.

Cundo se presenta problemas en el abastecimiento, otra alternativa para suplir la demanda existente, es realizar conducciones de agua de otras fuentes hídricas alternas, lo cual implicaría mayores costos y perjuicios graves a los ecosistemas

hídricos, por esta razón los vertimientos directos e indirectos de aguas residuales domésticas, industriales, agricultura, ganadería, deben ser controladas de igual forma la inadecuada disposición de los residuos sólidos, orgánicos, industriales que se depositan a orillas del rio Pasto.

En el análisis de los resultados se resalta, el reconocimiento por parte de los usuarios del servicio de acueducto, en que los dueños de los predios no son los únicos responsables de estos impactos, sino que también ellos como consumidores y la empresa prestadora del servicio, las entidades gubernamentales y no gubernamentales, deben ser los encargados de direccionar y reorientar sus acciones, metas y políticas, al logro de este propósito común, y la forma de hacerlo es trabajando articuladamente aunando esfuerzos y recurso para lograr el objetivo, también realizando esquemas innovadores, como los PSA, que en la actualidad ya tienen un soporte normativo y legal que permita su implementación en todo el territorio nacional (Decreto 0953 del 17 de Mayo del 2013), al cual esta investigación realizó aportes relevantes para su construcción.

Para lograr este propósito también se debe tener en cuenta lo planteado por Jiménez (2005), el cual afirma que para la gestión de cuencas, se incluya la visión de todos los actores en un sistema holístico, de interacción biofísica, socioeconómico y ambiental, en el cual el agua actúa como recurso integrador y donde un propósito básico es el uso y manejo adecuado a los recursos naturales para reducir la vulnerabilidad y riesgo a desastres.

El enfoque socio-ambiental implica que el ser humano, la familia y sus organizaciones constituyen el objetivo central de la gestión de cuencas, porque de sus decisiones y acciones dependen el uso, manejo, conservación y protección de los recursos naturales y el ambiente. Busca el cambio de actitudes y fortalecimiento de capacidades para el empoderamiento social, manteniendo una articulación adecuada entre los gobiernos locales, las instituciones nacionales y otras organizaciones responsables del manejo de cuencas. Las actividades que realiza el ser humano, sus actitudes y la forma como desarrolla sus actividades productivas y de desarrollo, constituyen el eje de la gestión integral de cuencas. Este enfoque

requiere de la innovación, el desarrollo de capacidades locales que faciliten la participación real y plena de todos los actores, el aprendizaje, la comunicación, la co-gestión adaptativa de los recursos naturales y la consideración de la institucionalidad, del marco regulatorio y financiero existente (Jiménez, 2005).

Cunando se habla del uso que se le da al agua, la principal utilidad es para cocinar y la limpieza de la casa (V17=1) (295 personas), seguido del aseo personal y lavado de ropa, en tercer lugar limpieza de calles, lavar automotores y regar jardines; lo cual muestra un uso priorizado hacia las necesidades básicas sobre el desperdicio en actividades menos necesarias pero importantes. Coincidiendo con lo planteado en la ley 373 de 1997 "Por la cual se establece el programa para el uso eficiente y ahorro del agua" y lo planteado en el PUEAA, en la ciudad de Pasto el uso en las actividades humanas es el más intenso, tanto para cubrir las necesidades básicas de tipo biológico y cultural, como para el desarrollo económico de la sociedad. (PUEAA, 2008).

El consumo del agua en Colombia, en un estudio realizado por el Departamento Nacional de Planeación -DNP, sobre consumos básicos de agua potable (1991) se encontró que el promedio de consumo por vivienda al mes es de 26.39 m³/mes en cinco ciudades (Bogotá, Barranquilla, Bucaramanga, Medellín, Cali). En la ciudad de Pasto esta en 16.76 m³/mes, mostrando un consumo por debajo del promedio nacional, pero abundante para la oferta del recurso en la zona.

Este estudio muestra que el 83,4% del consumo por vivienda está concentrado en: lavado de ropa, duchas, sanitarios y lavado de platos. El agua empleada en sanitarios y duchas representa el 41% del consumo total. Según el estudio las ciudades de mayor consumo son Cali y Bucaramanga y la de menor es la ciudad de Medellín (DPN, 1991).

Una de las alternativas para lograr la sostenibilidad del recurso hídrico, es lo que se viene desarrollando en el País, mediante el remplazo de tecnología obsoleta como las duchas, sanitarios, aparatos y griferías tradicionales, que al ser cambiados por

artefactos de bajo consumo, podrían obtener un ahorro aproximadamente del 30% en el consumo del agua residencial. (Salamanca, J. 1995 en el tiempo.com)

Al indagar, si la cantidad y calidad de agua disponible en la cuenca alta del río Pasto, está determinadas por las actividades (agrícolas, pecuarias, cotidianas, etc.) que se realizan en la misma y que impacta estas dos variables; los encuestados dicen que si son determinantes (V23=1) (349 personas); y que los dueños de los predios no son los únicos responsables en cuidar las fuentes de agua (V25=2) (342 personas) manifestando que deben ser todos los actores involucrados.

Con respecto a los bosques de la cuenca alta del rio Pasto, se afirma que no son suficientes para mantener el agua que están consumiendo (V27=2) (348 personas), y están dispuestos a contribuir con la conservación de los mismos (V29=1) (365 personas), aunque la mayoría no ha participado en proyectos para la protección de las fuentes de agua (V30=2) (308 personas), manifiestan que desconocen que organismo o institución está manejando proyectos con el recurso hídrico en la cuenca alta del río Pasto (V31=2) (322 personas).

Por lo tanto para el manejo de los bosques deben haber alternativas de reforestación, restauración, rehabilitación y conservación de áreas importantes para la recarga hídrica, las cuales se encuentran en conflicto de uso, el logro del cambio se puede realizar mediante acuerdos de concertación con los propietarios de los predios y los usuarios del servicio (estrategia PSA).

Las estrategias expuestas en la guía metodológica para el diseño e implementación del incentivo económico de PSA, 2012 en la cual se plantea que los PSA son una clase de incentivo económico cuyo mecanismo gira en torno a un típico mercado (oferta vs. demanda) en el cual los propietarios y poseedores regulares de predios, ubicados en los ecosistemas naturales que suministran este tipo de servicios, reciben voluntariamente y en forma periódica un reconocimiento (dinero, especie, mixto) por parte de algunos usuarios finales en razón al beneficio individual o colectivo que les causa contar con su permanente provisión.

Se reitera que las personas de la parte baja y alta de la cuenca, están de acuerdo en contribuir con la conservación y aumento de la cobertura boscosa, mediante diversas actividades, como campañas y actividades puntuales en la zona de recarga hídrica, aunque manifiestan que en la actualidad no lo han hecho, porque no hay alternativas para hacerlo, desconocen que organismos o instituciones están manejando proyectos con el agua en la cuenca alta y en todo el territorio. Mediante lo cual se evidencia una oferta potencial para realizar ecoturismo acompañado de campañas de intervención directamente en la zona y los PSA.

En los últimos años se ha despertado un enorme interés en la posibilidad de utilizar instrumentos económicos (PSA), con el fin de fomentar el uso sostenible y racional de los recursos naturales disponibles para consumo, y como insumo para la producción. Estos instrumentos generan diferentes incentivos para que los individuos se comporten de una manera más responsable con el ambiente, y lo que resulta aún más importante en el contexto de este trabajo, originan redistribución de la riqueza de unos grupos sociales a otros. Alpizar y Mercado, 2005.

Las personas que consumen el agua del acueducto desconocen el origen de la fuente de donde proviene el recurso hídrico (V22=2) (297 personas), esto poco les importa debido a que tienen continuidad en el servicio lo cual si es importante, afirmas que les interesa el cuidado y mantenimiento de las zonas de recarga hídrica, para que no falte el agua en sus viviendas. Esto pone en evidencia el poco sentido de pertenencia que los habitantes de la ciudad de Pastos tiene con respecto al recurso hídrico, siendo más evidente en los estratos 5 y 6, los cuales no les intereso colaborar con el diligenciamiento de la encuesta, siendo en algunos momentos agresivos y groseros. Por lo tanto se deja constancia de lo sucedido y se hace un llamado enérgico a esta población para que se comprometa con el cuidado y mantenimiento de los recursos naturales, especialmente el agua, que muchas veces son ellos los que más la desperdician.

En la parte institucional, manifiestan estar de acuerdo en la conformación de un fondo, donde se administre y gestione los recursos que existen y los próximos a aportar por los usuarios, para la protección de las fuentes de agua en la cuenca alta

del río Pasto (V32=1) (356 personas), estando de acuerdo en que esta propuesta se llevara a cabo con la participación de todas las instituciones involucradas, tanto públicas como privadas (V33=1) (358 personas), con respecto a la participación de las personas en grupos asociativos, estas no se encuentran asociadas a ninguna instituciones u organismos sociales o de desarrollo (V35=2) (364 personas).

Por lo tanto para la realización de proyectos de impacto en el área de estudio, se debe conformar un fondo-para el manejo del dinero- donde se administren y gestionen los recursos financieros, económicos, humanos, materiales, etc. que actualmente existen y futuros recursos gestionados a nivel nacional e internacional. El fondo es una alternativa viable y factible para la conservación y protección de las fuentes hídricas en el País, reiterando la participación activa y efectiva de todos los actores involucrados y responsables del adecuado uso y manejo del agua, sean públicos o privados, con lo cual, se logrará fortalecer y articular la institucionalidad en todos los niveles jerárquicos.

Tabla 3. Análisis de Correspondencia Múltiple (ACM). Histograma de frecuencias para las variables categorizadas en calidad, cantidad, servicio, conocimiento del manejo de la cuenca, protección de la fuente de agua, institucionalidad, confianza y participación.

MULTIPLE CORRESPONDENCE ANALYSIS

ELIMINATION OF ACTIVE CATEGORIES WITH SMALL WEIGHTS THRESHOLD (PCMIN): 2.00 % WEIGHT: 7.82 BEFORE CLEANING: 36 ACTIVE QUESTIONS 101 ASSOCIATE CATEGORIES AFTER CLEANING: 33 ACTIVE QUESTIONS 88 ASSOCIATE CATEGORIES TOTAL WEIGHT OF ACTIVE CASES: 391.00 MARGINAL DISTRIBUTIONS OF ACTIVE QUESTIONS								
CATEGORIES IDENT LABEL	BEFORE CLEANING COUNT WEIGHT	AFTER CLEANING COUNT WEIGHT HISTOGRAM OF RELATIVE WEIGHTS,						
		==== DROPPED ===== ==RAND.ASSIGN.== ==RAND.ASSIGN.==						
AB_2 - C3=2	184 184.00	206						
		260						
4 . V4 AD_1 - C5=1 AD_2 - C5=2 AD_3 - C5=3 AD_4 - C5=4	35 35.00 94 94.00 187 187.00 75 75.00	35						
AE_2 - C6=2 AE_3 - C6=3	135 135.00 132 132.00	119						
AF_2 - C7=2	324 324.00	12						

Tabla 3. (Continuación)

Tabla 3	. (Continuación)					
			CLEANING		AFTER CI	
IDENT	LABEL	COUNT	WEIGHT	COUNT	WEIGHT	HISTOGRAM OF RELATIVE WEIGHTS,
7.		+		+		
AG_1 - AG 2 -		271 61	271.00 61.00		271.00 61.00	**************************************
AG_3 -	C8=3	17	17.00	17	17.00	
AG_4 -	C8=4 	42 +	42.00	42 +	42.00	*****
8 . AH 1 -		62	62.00	I 62	62.00	*****
AH_2 -	C9=2	125	125.00	125	125.00	**********
AH_3 -		204 +	204.00	204 +	204.00	******
9 . AI 1 -		52	52.00	I 52	52.00	*****
AI_2 -	C10=2	213	213.00 121.00			**************************************
AI_3 - AI_4 -		121			ASSIGN.==	
10 .	V10	+		+		
AJ_1 - AJ_2 -		40 320	40.00 320.00		40.00	****** ******************************
AJ_3 -	C11=3	31	31.00		31.00	
11 .		+		+		
AK_1 - AK 2 -		24 185	24.00 185.00		24.00 185 00	**** ****************
AK_3 -	C12=3	182	182.00		182.00	
12 .	V12	+		+		
AL_1 - AL 2 -		73 230	73.00 230.00			**************************************
AL_3 - AL_4 -	C13=3	64 24	64.00 24.00		64.00 24.00	******
		+		+		
13 . AM_1 -		86	86.00	86	86.00	*******
AM_2 -	C14=2	305 +	305.00	305 +	305.00	***********
14 .		J 368	360 00	1 260	368.00	***********
AN_1 - AN_2 -	C15=2	23	368.00 23.00		23.00	
15 .		+		+		
AO_1 - AO 2 -		333 58	333.00 58.00			*******
		+		+		
16 . AP 1 -		363	363.00	363	363.00	**********
AP_2 -	C17=2	28 +	28.00	28 +	28.00	****
17 .		1 205	295.00	1 205	205 00	********
AQ_1 - AQ_2 -	C18=2	295 25	25.00	25	25.00	***
AQ_3 - AQ_4 -		26 45	26.00 45.00		26.00 45.00	**** *****
18 .		+		+		
AR_1 -	C19=1	151	151.00		152.00	******
AR_2 - AR 3 -		238	238.00		239.00 ASSIGN.==	******
19 .	V19	+		+		
AS_1 -	C20=1				154.00	**************************************
AS_2 - AS_3 -		1 43	166.00 43.00	43		
AS_4 -	C20=4	28 +	28.00	28 +	28.00	****
20 . AT 1 -		136	136.00	1 136	136 00	*******
AT_2 -	C21=2	255	255.00			******
21 .	V21	+		+		
AU_1 - AU 2 -		125 148	125.00	125	125.00	*****************************
AU_3 -	C22=3	84	84.00	84	84.00	*******
AU_4 -		34 +	34.00	ı 34 +	34.00	
22 . AV 1 -		94	94.00	94	94.00	*******
AV_2 -	C23=2	297	297.00		297.00	**********
23 . V2	3	'				
AW_1 - AW 2 -		349 42	349.00 42.00		349.00 42.00	**************************************
24.		+				==== DROPPED =====
AX_1 -	C25=1	386			ASSIGN.==	
AX_2 -	C25=2 	5 +	5.00	==RAND. +	ASSIGN.==	
25 . AY 1 -		1 49	49 00	1 49	49 00	*****
AY_2 -	C26=2	342	342.00	342	342.00	******* *****************************
26 .	V26	+		+		
AZ_1 - AZ_2 -		65 5		66 ==RAND.	66.00 ASSIGN.==	*****
			3.00			

Tabla 3. (Continuación)

		+		+		
			CLEANING		AFTER CI	
IDENT	LABEL	COUNT +	WEIGHT	COUNT +	WEIGHT	HISTOGRAM OF RELATIVE WEIGHTS,
AZ_3 -		165	165.00			**********
AZ_4 -	C27=4	156	156.00	158	158.00	******
27	. V27	,		,		
BA 1 -	C28=1	42	42.00	43	43.00	
BA 2 -	C28=2	348	348.00	348	348.00	************
BA_3 -	C28=3	1	1.00	==RAND.	ASSIGN.==	
28	. V28	+		+		==== DROPPED =====
BB 1 -		384	384 00	I ==RAND	ASSIGN.==	DROFFED
BB 2 -		7			ASSIGN.==	
		+		+		
	. V29		0.55 0.0		0.55 0.0	
BC_1 -		365	365.00			***********************************
BC_2 -		26 +	26.00	26 +	26.00	
30	. V30					
BD_1 -	C31=1	83	83.00	83	83.00	*******
BD_2 -		308	308.00	308	308.00	**********
21	 . V31	+		+		
BE 1 -		69	69.00	l 69	69 00	******
BE 2 -		1 322	322.00		322.00	**********
		J22 		+		
	. V32					
BF_1 -		356	356.00			**************
BF_2 -	C33=2	35	35.00	35	35.00	*****
33	. V33			+		
BG 1 -		358	358.00	362	362.00	**********
BG 2 -	C34=2	28	28.00	29	29.00	****
BG_3 -	C34=3	5	5.00	==RAND.	ASSIGN.==	
24	172.4	+		+		
34 BH 1 -	. V34	185	185.00	1 185	185.00	*******
BH 2 -		1 43	43.00		43.00	*****
BH 3 -		1 135	135.00		135.00	*******
BH_4 -		28	28.00		28.00	****
<u>-</u>		+		+		
	. V35	1 27	27 00	. 27	27.00	****
BI_1 - BI 2 -		1 364	27.00 364.00		364.00	************
B1_7 _		304 	304.00	304 	304.00	
36	. V36					
BJ_1 -		252	252.00	252	252.00	********
BJ_2 -	C37=2	139	139.00	139	139.00	**********
		+		+		

Fuente: Esta investigación

Análisis de Valores Propios: el análisis del histograma de valores propios (Tabla 4), permitió seleccionar los primeros 5 factores que explican en conjunto un 23.09% de la variabilidad, debido a las variables cualitativas; el primer factor explica el 7.01% de la variabilidad. El segundo, tercero, cuarto y quinto factor explican el 4.86%, 4.28%, 3.53% y 3.41%, respectivamente.

Tabla 4. Histograma de los primeros 55 valores propios, que explican la variabilidad (%) de las encuestas de calidad, cantidad, servicio, conocimiento del manejo de la cuenca, protección de la fuente de agua, institucionalidad, confianza y participación (Variables cualitativas)

NUMBER	EIGENVALUE	PERCENTAGE	CUMULATED	
		l 	PERCENTAGE	1
1	0.1171			*********************************
2	0.0809	4.86	11.88	***************
3	0.0712	4.27		*************
4	0.0587	3.52	19.68	*************
5	0.0569	3.41	23.09	********
6	0.0522	3.13	26.22	***************
7	0.0504	3.02	29.25	*************
8			32.15	************

10	0.0434	2.60		************
	0.0427			************
	0.0388		42.37	***********
	(Continuación)		1	
		PERCENTAGE	CUMULATED	+
			PERCENTAGE	
13	1 0.0378	+ 2.27	+ 44.64	************************************

		2.19	49.01	***********
	0.0360			***********

		2.01		***********
19			57.26	***********
		1.94		***********
		1.86		***********
		1.81		***********
		1.78		**********
		1.73	66.39	**********
25	0.0280	1.68	68.07	*********
			69.69	*********
27	0.0265	1.59	71.28	**********
28	0.0260	1.56	72.83	*********
29	0.0249	1.49		*********
30	0.0242	1.45	75.78	*******
31	0.0240	1.44	77.22	********
32	0.0236	1.42	78.63	*********
33	0.0224	1.34	79.98	*******
34	0.0217	1.30	81.28	********
35	0.0213	1.28		********
36		1.19	83.76	********
37	0.0196	1.18	84.93	********
38	0.0192	1.15		*******
39	0.0182	1.09		********
40	0.0179	1.08		*******
		1.05		*******
42	0.0171	1.03		********

			, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	*******

		0.80		******
		0.76		******
		0.74		******

	0.0105			******
	0.0093))) , ()	*****
	0.0085	0.51		*****
55	1 0.0070	0.42	100.00	****

Fuente : Esta investigación

Del análisis de contribuciones de las variables a la conformación de los ejes (Tabla 5), se puede establecer que las variables que más contribuyeron a la conformación del primer factor fueron: el estrato socioeconómico (V2=12.4), estudios realizados (V5=8.9), calidad de agua que recibe en su hogar/establecimiento (V8=11.5), el color del agua que reciben (V9=8.9), el agua alguna veces ha llegado sucia (V10=6.9), pago mensual (V21=10.2). Como se puede observar estas variables están

relacionadas con características de las condiciones de vida de los encuestados y la calidad del agua que consumen y el costo del servicio.

El 53% pertenecen al estrato medio y el 47% al bajo; el 38% estudiaron primaria, 4% secundaria y 58% tienen otros estudios (cursos, talleres, etc.); el 58% opina que la calidad del agua es mala, 5% que es regular y el 37% dicen que es buena; el 25% afirman que el color del agua es verdosa, el 44% dicen que es café y el 31% que es transparente; el 74% dice que el agua que reciben siempre llega sucia, el 3% que en ocasiones llega sucia y el 25% que nunca llega sucia; el 51% pagan de 0 a 30.000 mil pesos, el 37% entre 60.001 a 90.000 mil pesos y el 12% más de 90.001 mil pesos.

Como se puede observar son familias que pertenecen a estratos bajo y medio, con nivel educativo variable, la percepción de la calidad del agua es predominantemente mala y más de la mitad paga costos bajos por el servicio.

Es posible que ha esta población si se le mejorar el servicio, la propuesta de PSA pueda ser atractiva, lo importante sería mirar las características diferenciadoras por estratos socioeconómicos.

Para el caso del segundo factor, las variables que más aportan a la conformación son: edad del propietario/a (V4=10.7), estudios realizados (V5=8.0), al realizarse trabajos en la red de agua potable, es posible que se limite su distribución, sufriendo corte del servicio por esta causa (V16=8.0), el principal uso que se le da al agua que recibe (V17=5.9), el aspecto en el que el actual servicio de agua potable debería cambiar (V19=4.5), el nombre de quien está el recibo del agua potable (V20=5.7), de donde consume el agua (V22=4.7), cree usted que los únicos responsables de proteger las fuentes de agua, sean las personas que viven alrededor de las fuentes de agua (V25=5.7), los bosques asociados a la cuenca alta del río Pasto, son suficientes para mantener el agua que se está consumiendo (V27=5.0), la propuesta debería ser participativa, con todas las instituciones involucradas en la gestión y manejo del recurso hídrico, sean privadas o públicas (V33=5.0).

El 40% de los propietarios/as están en edades entre 12 a 25 años de edad, 25% entre 26 y 40 años, el 10% entre 41 a 64, y el 25% son mayores de 65 años; el 68% estudio primaria, 26% secundaria y 6% tiene otros estudios (cursos, talleres, etc.); el 8% afirma que ha sufrido cortes del servicio por la realización de trabajos en la red de agua potable y el 92% manifiesta que no; el 79% dice que el principal uso que le da al agua que recibe es para limpiar la calle, lavar automóviles, regar jardines y el 21% que es para cocinar, limpieza de la casa, aseo personal, lavar ropa, limpiar la calle, lavar automóviles y regar jardines; el 4% opina que el servicio debe mejorar en cantidad y calidad, el 26% mejorar la red y el 70% en calidad, cantidad, mejor red, sistemas de tarifas y cobros; el 65% afirma que el recibo llega a nombre del encuestado y el 35% que llega a nombre de otra persona; el 77% conoce el nombre de la fuente de donde consume el agua y el 23% la desconoce; el 88% creen que las personas que viven alrededor de las fuentes de agua deberían ser las únicas responsables en protegerlas y el 12% no; el 90% de los encuestados afirman que los bosques asociados a la cuenca alta del río Pasto son suficientes para mantener el agua que están consumiendo y el 10% afirma que no son suficientes; el 8% estaría de acuerdo en que esta propuesta se llevara a cabo con la participación de entidades públicas y privadas, el 92% no están de acuerdo.

En este grupo se resalta las siguientes características, son propietarios jóvenes, los cuales se encuentran estudiando, no tienen problemas con los cortes del agua, la utilizan para limpiar calles, lavar automóviles, regar jardines, se observa un desperdicio del recurso; y afirman que el servicio debe mejorar en calidad, cantidad, mejor red, el sistema de tarifas y cobros, los recibos llegan a nombre del encuestado, conocen el nombre de la fuente de agua de la cual toman el agua, afirman que los únicos responsables de proteger las fuentes de agua son los dueños del predio, y que los bosques son suficientes para mantener el agua que consumen, no están de acuerdo con que la propuesta de PSA se lleve a cabo con la participación de entidades públicas y privadas.

Con este grupo de personas se podría trabajar procesos de educación ambiental y programas de uso racional del agua.

En el tercer factor, las variables que más aportan son: el estrato socio-económico (V2=5.6), si es propietario/a (V3=8.6), la edad del propietario/a (V4=6.8), la actividad que realizan (V6=14.2), el color de agua que recibe (V9=5.7), el olor y sabor del agua que llega (V11=6.8), el aspecto del servicio en el que debería mejorar (V19=4.6).

El 47% pertenecen al estrato socioeconómico bajo (1 y 2), el 53% al estrato socioeconómico medio (3 y 4); el 34% de los propietarios son mujeres y el 66% son hombres; el 20% tienen una edad entre 12 a 25 años, el 2% entre 26 a 40 años, el 31% 3 entre 41 a 64 y el 47% son mayores de 65 años; el 9% estudia, el 16% trabaja, el 21% no trabaja y el 54% son pensionados; el 28% dice que el color del agua es verdosa, el 44% que es café y el 28% que es transparente; el 3% afirma que el agua que llega a su hogar/establecimiento tiene siempre un olor y sabor diferente, el 43% dice que en ocasiones y el 54% que nunca; el 2% manifiesta que los aspectos en que el actual servicio debe mejorar es en calidad y cantidad, el 30% en los sistemas de tarifa y cobro y el 68% en cantidad, calidad, mantenimiento de la red, sistema de tarifa y cobro.

Las características generales de esta población son que pertenecen en su totalidad a los estratos bajos y medios, los hombres son en número el doble de las mujeres, la mitad son mayores de 65 años y son pensionados, no les gusta cómo llega el color del agua (verde, café), con respecto al olor y sabor no tienen problema, y están de acuerdo que el servicio de agua debe mejorar en cantidad, calidad, mantenimiento de red y sistemas de tarifas y cobros.

Es una población apta para la implementación de un esquema PSA, siempre que las condiciones desfavorables observadas mejores sustancialmente.

Para el cuarto factor las variables que más aportan en la conformación son: el agua que recibe alguna ves a llegado sucia (V10=5.1), estaría dispuesto/a a contribuir para la conservación de los bosques (V29=13.9), estaría dispuesto/a a conformar un fondo, para la administración de estoy recursos (V32=6.7), en que organismo o institución confiaría usted para encargarle el manejo de estos recursos, para la

protección de las fuentes de agua (V34=19.8), les gustaría ser parte activa de la protección de las fuentes de agua (V36=15.8).

El 90% de los encuestados afirman que el agua que reciben en su hogar/establecimiento ha llegado siempre sucia y el 10% que en ocasiones; el 7% estarían dispuestos a contribuir en la conservación de los bosques y el 93% no lo harían; el 9% estaría de acuerdo a conformar un fondo, donde se administre y gestione recursos que actualmente existen y los nuevos recursos aportados por los usuarios y el 91% no están de acuerdo con la conformación del fondo; el 35% le gustaría ser parte activa en la protección de las fuentes de agua y el 65% no lo harían.

Esta población está inconforme con la calidad del agua que reciben, no están de acuerdo en conservar los bosques que existen, tampoco le interesa conformar un fondo para el manejo de los recursos y no les gustaría ser parte activa de la protección de las fuentes de agua.

El quinto factor está conformado por las siguientes variables: edad del propietario/a (V4=10), la actividad que realizan (V6=8.7), el ingreso promedio mensual (V7=6.3), olor y sabor del agua diferente (V11=9.5), la cantidad de agua es adecuada (V14=8.1), recibe la misma cantidad durante todo el año (V15=5.6), quien debería proteger las fuentes de agua (V26=5.3), ha participado en la protección de las fuentes de agua (V30=7.1).

El 84% de los propietarios está entre 12 a 25 años, el 4% entre 41 y 64 años, el 12% son mayores de 65 años; el 76% estudia, el 1% no trabaja y el 23% es pensionado; el 58% tiene ingresos promedio entre 589.501 a 1.179.000 miles de pesos, el 16% entre 1.179.001 a 1.768.500 miles de pesos y el 26% tienen ingresos superiores a 1.768.501; el 67% afirma que siempre el agua que llega a su hogar/establecimiento tiene olores y sabores diferente, el 27% que en algunas ocasiones y el 6% nunca; el 6% afirma que la cantidad de agua que recibe es adecuada y el 94% que no es suficiente; el 15% dice que recibió la misma cantidad de agua durante todos los meses del año y el 85% que no lo hizo; el 3% afirma que las entidades públicas deberían proteger las fuente de agua, el 57% que las entidades privadas y el 40%

que las entidades públicas, privadas, los usuarios; el 79% a participado en proyectos para la protección de las fuentes de agua y el 21% no lo ha hecho.

Es la población más joven, estudian, más de la mitad de la población tiene ingresos promedio de 884.250 mil pesos, no les gusta los olores y el color con la cual llegan el agua a sus viviendas y tienen problemas con la cantidad de agua que reciben, siendo insuficiente en épocas secas, la protección de las fuentes de agua se la dejarían a empresas privadas, con la participación de las empresas públicas y los usuarios del servicio, también participan en proyectos para la protección de las fuentes de agua.

Por sus características esta es la población que mejores perfil tiene para la implementación del esquema PSA.

Tabla 5. Contribución de las variables cualitativas evaluadas en la encuesta de calidad, cantidad, servicio, conocimiento del manejo de la cuenca, protección de la fuente de agua, institucionalidad, confianza y participación, a la contribución de los primeros cinco (5) factores.

LOADINGS, CONTRIBUTIONS AND SQUARED COSINES OF ACTIVE CATEGORIES AXES 1 TO 5

CATEGORIES																
				s							 			OSINE	S	
IDEN - LABEL R	EL. WT.	DISTO	1 2	3	4	5 i	1	2	3	4	5	1	2	3		5
2 . V2			'													
AB_1 - C3=1																
			0.73 0.1													
			+ CUM	ULATED	CONTRIE	BUTION =	12.3	0.5	5.6	0.0	0.4	+				
3 . V3		0.50				0.05										
			-0.02 0.1													
			0.04 -0.2 + CUM													0.01
4 . V4			+ CUM	JLATED	CONTRI	BUTION =	0.0	1.0	0.0	1./	0.3					
	0 27	10 17	-0.30 1.1	2 0 61	0.59	-1 32 I	0.2	4 2	1 4	1 6	8 4	0 01	0 12	0 04	0 03	0 17
			-0.35 0.5													
AD 3 - C5=3			0.14 -0.2													
			0.24 -0.6													
			CUM	ULATED	CONTRIE	BUTION =	1.5	10.7	6.8	3.8	10.0	+				
5 . V5																
			-0.66 -0.6													
AE_2 - C6=2			-0.17 0.4													
AE_3 - C6=3			0.76 0.2													0.02
			+ CUM	ULATED	CONTRIE	BUTION =	8.9	8.0	4.6	0.5	4.2	+				
6 . V6																
			-0.07 1.6													
AF_2 - C7=2 AF_3 - C7=3			-0.06 -0.0 -0.26 0.0													
AF 4 - C7=4			-0.26 0.0 1.11 -0.4													
			+ CUM													
7 . V7				OHITTED	CONTINI	301101	2.2	5.0	14.2	5.2	0.7					
AG 1 - C8=1	2.10	0.44	-0.25 -0.1	0 -0.21	0.02	0.02	1.1	0.3	1.3	0.0	0.0	0.14	0.02	0.10	0.00	0.00
AG 2 - C8=2			0.24 0.2													
AG 3 - C8=3	0.13	22.00	0.51 0.1	8 0.33	0.48	0.67	0.3	0.1	0.2	0.5	1.0	0.01	0.00	0.01	0.01	0.02
	0.33	8.31	1.07 0.2	5 0.65	0.38	0.53	3.2	0.2	1.9	0.8	1.6	0.14	0.01	0.05	0.02	0.03
			+ CUM	ULATED	CONTRIE	BUTION =	4.9	0.9	4.3	3.1	6.3	+				
8 . V8																
			1.27 -0.5													
			0.28 -0.1													
AH_3 - C9=3			-0.56 0.2													
9 . V9			+ CUM	ULATED	CONTRIE	ROLION =	11.5	3.4	3./	2.9	2.6	+				
	0.40	6 52	0.82 -0.0	2 _0 54	0.40	-0 57 1	2 2	0.0	1 6	1 1	2 3	. 0 10	0 00	0 04	0 00	0.05
AI_1 - C10=1 AI 2 - C10=2			0.82 -0.0 -0.53 0.1													
AI 3 - C10=3			0.59 -0.3													
5																
10 . V10			0011					,								
	0.31	8.77	1.39 -0.9	0 -0.60	0.93	-0.44	5.1	3.1	1.6	4.6	1.1	0.22	0.09	0.04	0.10	0.02
AJ 2 - C11=2	2.48	0.22	-0.09 0.0	R O'OI	-0.11	0.09	0.2	0.2	0.0	0.5	0.3	0.03	0.03	0.00	0.05	0.03

+	+ CUMULATED CONTRIBUTION =	6.9 3.6 2.9 5.	1 1.9 ++
11 . V11			
AK 1 - C12=1 0.19 15.29	0.89 -0.44 -0.30 0.49 -1.40	1.3 0.4 0.2 0.	8 6.4 0.05 0.01 0.01 0.02 0.13
AK 2 - C12=2 1.43 1.11	0.28 0.09 -0.38 0.08 0.32	0.9 0.1 2.9 0.	2 2.6 0.07 0.01 0.13 0.01 0.09
AK 3 - C12=3 1.41 1.15	-0.40 -0.03 0.43 -0.15 -0.14	1.9 0.0 3.6 0.	5 0.5 0.14 0.00 0.16 0.02 0.02
	+ CUMULATED CONTRIBUTION =	4.1 0.6 6.8 1.	4 9.5 +
1 12 . V12			
AL 1 - C13=1 0.57 4.36	-0.56	1.5 1.3 0.0 0.	1 0.0 0.07 0.04 0.00 0.00 0.00
	-0.13 -0.14 -0.12 0.05 -0.06		1 0.1 0.03 0.03 0.02 0.00 0.01
AL 3 - C13=3 0.50 5.11	0.80 0.07 0.53 -0.11 0.38	2.7 0.0 1.9 0.	1 1.3 0.13 0.00 0.05 0.00 0.03
	0.85 -0.19 -0.13 -0.50 -0.50	1.2 0.1 0.0 0.	8 0.8 0.05 0.00 0.00 0.02 0.02
	+ CUMULATED CONTRIBUTION =	5.7 1.9 2.4 1.	1 2.2 ++
13 . V13			· 1
AM 1 - C14=1 0.67 3.55	0.53 -0.58 -0.59 -0.23 -0.52	1.6 2.8 3.2 0.	6 3.2 0.08 0.09 0.10 0.01 0.08
AM 2 - C14=2 2.36 0.28	-0.15 0.16 0.17 0.06 0.15	0.4 0.8 0.9 0.	2 0.9 0.08 0.09 0.10 0.01 0.08
	+ CUMULATED CONTRIBUTION =	2.0 3.5 4.1 0.	8 4.0 ++
14 . V14			1
AN 1 - C15=1 2.85 0.06	-0.04 0.03 -0.01 0.03 0.10	0.0 0.0 0.0 0.	1 0.5 0.02 0.01 0.00 0.02 0.15
AN 2 - C15=2 0.18 16.00	0.57 -0.46 0.08 -0.52 -1.56	0.5 0.5 0.0 0.	8 7.6 0.02 0.01 0.00 0.02 0.15
+	+ CUMULATED CONTRIBUTION =	0.5 0.5 0.0 0.	9 8.1 +
15 . V15			1
AO 1 - C16=1 2.58 0.17	0.00 0.09 -0.01 0.05 0.13	0.0 0.3 0.0 0.	1 0.8 0.00 0.05 0.00 0.01 0.10
AO 2 - C16=2 0.45 5.74	-0.01 -0.52 0.06 -0.28 -0.77	0.0 1.5 0.0 0.	6 4.7 0.00 0.05 0.00 0.01 0.10
	+ CUMULATED CONTRIBUTION =	0.0 1.7 0.0 0.	7 5.6 ++

CATEGORIES			 	LOADINGS				1		CONTR	IBUTI	ONS	SQUARED COSINES					
IDEN - LABEL										+						+		5
16 . V16			+					-+-						+				
AP 1 - C17=1	2.81	0.08	0.03	0.13	-0.01	-0.04	0.05	1	0.0	0.6	0.0	0.1	0.1	1 0.02	0.21	0.00	0.02	0.03
AP_2 - C17=2		12.96	-0.44	-1.66	0.11	0.52	-0.65	1	0.4	7.4	0.0	1.0	1.6	0.02				
4.54.5			+	- CUMUI	LATED	CONTRI	BUTION	=	0.4	8.0	0.0	1.1	1.8	+				
17 . V17 AQ 1 - C18=1	2 29	0.33	. 0 07	0 03	0.02	-0.05	0 11	1	0 1	0 0	0 0	0 1	0.5	. 0 01	0 00	0 00	0 01	0 03
18 . V18																		
AR_1 - C19=1 AR_2 - C19=2	1.18	1.57	-0.59	-0.18	0.33	0.15	-0.08	1	3.4	0.5	1.8	0.4	0.1	0.22	0.02	0.07	0.01	0.00
	1.00	0.04	+	- CUMUI	LATED	CONTRI	BUTION	=	5.6	0.8	2.9	0.7	0.2	+				
19 . V19																		
AS_1 - C20=1 AS 2 - C20=2		1.54																
AS 3 - C20=3		8.09																
AS_4 - C20=4		12.96																
			+	CUMUI	LATED	CONTRI	BUTION	=	5.5	4.5	4.6	2.5	3.4	+				
20 . V20 AT 1 - C21=1	1.05	1.88	0.14	-0.54	0.25	0.04	0,30	ī	0.2	3.7	0.9	0.0	1.6	0.01	0.15	0.03	0.00	0.05
AT_2 - C21=2	1.98	0.53	-0.07	0.29	-0.13	-0.02	-0.16	1	0.1	2.0	0.5	0.0	0.9	0.01	0.15	0.03	0.00	0.05
			+	CUMUI	LATED	CONTRI	BUTION	=	0.3	5.7	1.4	0.0	2.5	+				
21 . V21 AU 1 - C22=1	0 97	2 13	1 -0 80	-0 35	-0 29	0 34	-0 19	ī	5 3	1 5	1 2	1 9	0.6	1 0 30	0 06	0 04	0 06	0 02
AU_2 - C22=2	1.15	2.13	0.04	0.17	-0.09	-0.29	0.12	i	0.0	0.4	0.1	1.6	0.3	0.00	0.02	0.00	0.05	0.01
AU_3 - C22=3	0.65	3.65	0.83	0.13	0.46	0.09	0.10		3.8	0.1	1.9	0.1	0.1	0.19	0.00	0.06	0.00	0.00
AU_4 - C22=4	0.26	10.50	0.73 +												0.00	0.01	0.01	0.00
22 . V22			,	COMOI	TATED	CONTRI	SULION	_	10.3	2.2	3.0	3.9	1.0					
AV_1 - C23=1			-0.05															
AV_2 - C23=2	2.30		0.01												0.13	0.00	0.01	0.04
23 . V23			+	- CUMUI	ATED	CONTRI	BUTION	=	0.0	4./	0.1	0.8	2.4	+				
ΔW 1 - C24=1	2.70	0.12	0.03	0.00	-0.10	0.07	0.06	1	0.0	0.0	0.4	0.2	0.2	0.01	0.00	0.09	0.04	0.03
AW_2 - C24=2	0.33	8.31	-0.24	-0.02	0.86	-0.58	-0.52	1	0.2	0.0	3.4	1.9	1.5	0.01	0.00	0.09	0.04	0.03
25 . V25			+	- CUMUI	ATED	CONTRI	BUTION	=	0.2	0.0	3.8	2.1	1./	+				
AY 1 - C26=1	0.38	6.98	-0.42	-1.03	-0.09	0.01	-0.03	1	0.6	5.0	0.0	0.0	0.0	0.03	0.15	0.00	0.00	0.00
AY_2 - C26=2		0.14	0.06	0.15	0.01	0.00	0.00		0.1	0.7	0.0	0.0	0.0	0.03	0.15	0.00		
26 . V26			+	- CUMUI	LATED	CONTRI	BUTION	=	0.7	5.7	0.0	0.0	0.0	+				
AZ 1 - C27=1	0.51	4.92	-0.11	-0.02	0.06	0.10	-0.16		0.1	0.0	0.0	0.1	0.2	0.00	0.00	0.00	0.00	0.01
AZ_3 - C27=3	1.29	1.34	0.13	0.00	-0.16	0.08	0.36	1	0.2	0.0	0.4	0.1	3.0	0.01	0.00	0.02	0.00	0.10
AZ_4 - C27=4		1.47													0.00	0.01	0.01	0.07
27 . V27			+	- COMOI	ATED	CONTRI	BUTION	-	0.3	0.0	0.0	0.5	3.3	+				
BA_1 - C28=1 BA_2 - C28=2	0.33	8.09	-0.62	-1.04	0.63	0.14	-0.12	1	1.1	4.5	1.8	0.1	0.1	0.05	0.13	0.05	0.00	0.00
	2.70																0.00	0.00
29 . V29			+	- CUMUI	ATED	CONTRI	BUTTON	=	1.2	5.0	2.1	0.1	0.1	+				
BC_1 - C30=1	2.83	0.07	0.00	0.03	-0.04	0.14	0.00	1	0.0	0.0	0.1	0.9	0.0	0.00	0.01	0.02	0.27	0.00
BC_2 - C30=2	0.20	14.04													0.01	0.02	0.27	0.00
30 . V30			+	- CUMUI	LATED	CONTRI	BUTION	=	0.0	0.4	0.9	13.9	0.0	+				
BD_1 - C31=1 BD_2 - C31=2	0.64	3.71	0.22	0.10	0.21	0.29	-0.70	1	0.3	0.1	0.4	0.9	5.6	0.01	0.00	0.01	0.02	0.13
BD_2 - C31=2	2.39														0.00	0.01	0.02	0.13
31 . V31			+	- CUMUI	ATED	CONTRI	BUTTON	=	0.3	0.1	0.5	1.1	/.1	+				
BE_1 - C32=1		4.67	0.65	-0.36	0.56	0.26	-0.13	1	1.9	0.9	2.3	0.6	0.2	0.09	0.03	0.07	0.01	0.00
BE_2 - C32=2		0.21	-0.14	0.08	-0.12	-0.06	0.03	1	0.4	0.2	0.5	0.1	0.0	0.09	0.03			
32 . V32			+	CUMUI	LATED	CONTRI	MOJION	=	2.3	1.1	2.8	0.8	0.2	+				
BF_1 - C33=1	2.76	0.10	-0.05	0.02	0.01	0.11	0.03	ī	0.1	0.0	0.0	0.6	0.0	0.03	0.01	0.00	0.13	0.01
BF_2 - C33=2		10.17	0.51	-0.24	-0.11	-1.15	-0.28	1	0.6	0.2	0.1	6.1	0.4	0.03				
33 . V33			+	- CUMUI	LATED	CONTRI	BUTION	=	0.7	0.2	0.1	6.7	0.4	+				
BG 1 - C34=1	2.81	0.08	0.03	0.10	0.01	0.03	0.00	ī	0.0	0.4	0.0	0.0	0.0	0.01	0.13	0.00	0.01	0.00
BG_2 - C34=2	0.22	12.48	-0.39	-1.29	-0.09	-0.32	0.00	1	0.3	4.6	0.0	0.4	0.0	0.01	0.13	0.00		
			+	- CUMUI	LATED	CONTRI	BUTION	=	0.3	5.0	0.0	0.4	0.0	+				
34 . V34 BH 1 - C35=1	1 43	1.11	1 0 00	0.04	-0 14	0 30	0.21		0.0	0 0	0 4	2 2	1 1	1 0 00	0.00	0.02	0.08	0.04
	1.43		, 0.00	0.04	0.17	0.00	0.21	1	0.0	0.0	0.7			, 0.00	0.00	0.02	0.00	0.04

Fuente: Esta investigación

Análisis de clasificación

El análisis de clasificación basado en las características cualitativas para la calidad, cantidad, servicio, conocimiento del manejo de la cuenca, protección de la fuente de agua, institucionalidad, confianza y participación, de la cuenca alta del rio Pasto, permitió la conformación de cinco grupos bien definidos; las características de cada grupo están en cada clase los cuales se observan en la Tabla 6 y en la Figura 5.

El primer grupo, conformado por 124 usuarios que representan el 31.71% del total de los encuestados (Tabla 7); en esta clase, el 71.11% de los usuarios manifiestan que el uso que le dan al agua que reciben es para cocinar, limpieza de la casa, aseo personal, lavar ropa, limpiar la calle, lavar automóviles y regar jardines (V17=4); el 50.49% de los usuarios del servicio pertenecen al estrato socioeconómico bajo (V2=1); el 50.43% de los usuarios han realizado estudios de primaria únicamente (V5=1); el 48.20% no les gustaría ser parte activa de la conservación de las fuentes hídricas (V36=2); el 47.20 pagan entre 0 y 30.000 mil pesos (V21=1); y el 44.80% manifiestan que la cantidad de agua que reciben en su hogar es regular (V8=2) (Tabla 7).

El segundo grupo está conformado por 87 usuarios que representan el 22.25% del total de los usuarios encuestados; el 100% de los encuestados su actividad es estudiar (V6=1); el 88.57% se encuentran en edades que oscilan entre los 12 y 25 años (V4=1); el 64.52% manifiestan que el agua que llega a su hogar o establecimiento nunca llega sucia (V10=3); el 38.41% cree que el sistema de agua potable está bien manejado (V18=1); el 38.24% dicen que la cantidad de agua que llega a sus hogares o establecimientos es buena (V8=3); y el 37.36% afirma que el

agua que llega a su hogar o establecimiento no tiene olores o sabores diferentes (V11=3) (Tabla 7).

El tercer grupo, está conformado por 31 usuarios, los cuales representan el 7.93% del total usuarios encuestados; el 53.57% manifiesta que al realizarse trabajos en la red de agua potable no han sufrido de cortes de agua por esta causa (V16=2); pero el 46.43% manifiesta que el servicio de agua debe mejorar en cantidad y calidad de agua, mantenimiento de la red, el sistema de tarifas y cobros (V19=4); también el 46.43% afirma que para encargarle el manejo de los nuevos recursos obtenidos por el PSA prefiere que sea una entidad nueva y no a empresas públicas o privadas existentes (V34=4); el 42.31% afirman que el principal uso que le dan al agua que reciben es para limpiar calles, lavar automóviles y regar jardines (V17=3) y el 33.33% manifiestan que los bosques que actualmente existen son suficientes para mantener el agua que actualmente estamos consumiendo (V27=1) (Tabla 7).

Cuarto grupo, el cual está conformado por 56 usuarios, representan el 14.32% del total de usuarios encuestados; el 100% afirman ser pensionados (V6=4); el 49.33% su edad supera los 65 años (V4=4); el 42.19% filtra el agua antes de consumirla (V12=3); el 38.46% no estaría dispuesto a contribuir en el cuidado del bosque (V29=2); el 36.67% afirman no trabajar (V6=3); e, 33.33% paga por el servicio entre 60.000 y 90.000 mil pesos (V21=3) y si conocen que organismos o instituciones están manejando proyectos del recurso hídrico en la cuenca alta del río Pasto (V31=1); el 30.95% tienen un ingreso promedio mensual mayor a 1.768.501 mil pesos (V7=4) y el 27.27% a realizado estudios universitarios y de posgrado (V5=3) (Tabla 7).

El quinto grupo, está conformado por 93 usuarios, que representan el 23.79 del total de los usuarios encuestados; 75% afirman que el agua que ha llegado a sus hogares o establecimientos siempre es sucia (V10=1); el 70.97% dice que la cantidad de agua que llega a su hogar o establecimiento es mala (V8=1); el 66.67% afirma que el agua que llega a sus hogares o establecimientos siempre tiene olor y sabor diferente (V11=1); el 59.62% el color del agua que recibe es verdosa (V9=1); el 52.33% afirma

que en los últimos dos años han presentado alguna enfermedades a causa del agua que consumen (V3=1) (Tabla 7).

Tabla 6. Identificación de los usuarios que conforman cada uno de los cinco (5) grupos en que se divide la muestra encuestada, con base en las variables cualitativas.

GRUPO	NÚMERO	PORCENTAJE								USUARI	0						
		%															
1	124	31.71	1	3	6	8	10	11	13	16	17	20	22	23	24	26	28
			33	42	50	53	54	57	58	62	63	66	74	75	77	78	81
			82	83	87	89	91	92	94	96	97	98	100	101	102	103	104
			107	109	110	112	119	120	121	122	123	124	125	126	131	133	145
			149	151	174	177	182	183	185	187	188	190	192	193	194	195	201
			214	215	217	218	220	221	223	226	227	239	241	290	291	308	312
			314	318	319	320	321	322	323	324	325	326	327	330	331	333	334
			335	336	337	338	342	345	349	350	351	352	354	359	360	361	362
			363	364	366	386											
2	87	22.25	2	5	7	9	12	15	21	29	37	41	46	48	52	60	64
			65	71	72	73	76	90	95	99	106	108	113	114	116	117	118
			128	129	130	134	136	137	148	150	153	157	162	168	171	180	186
			189	191	196	199	200	213	216	219	222	224	229	235	237	242	246
			259	263	282	284	287	298	302	303	304	305	307	309	310	328	329
			332	339	343	344	346	348	353	355	356	357	358	365			
3	31	7.93	4	18	19	27	67	69	105	313	368	369	370	371	372	373	374
			375	376	377	378	379	380	381	382	383	384	385	387	388	389	390
			391														
4	56	14.32	25	30	31	38	44	49	51	56	61	68	70	85	115	135	138
			139	142	144	152	154	155	158	161	163	165	170	173	176	178	184
			198	205	207	208	209	210	211	212	225	233	234	236	258	260	273
			276	277	280	281	286	297	300	301	311	316	347				
5	93	23.79	14	32	34	35	36	39	40	43	45	47	55	59	79	80	84
			86	88	93	111	127	132	140	141	143	146	147	156	159	160	164
			166	167	169	172	175	179	181	197	202	203	204	206	228	230	231
			232	238	240	243	244	245	247	248	249	250	251	252	253	254	255
			256	257	261	262	264	265	266	267	268	269	270	271	272	274	275
			278	279	283	285	288	289	292	293	294	295	296	299	306	315	317
			340	341	367												

Fuente: Esta investigación

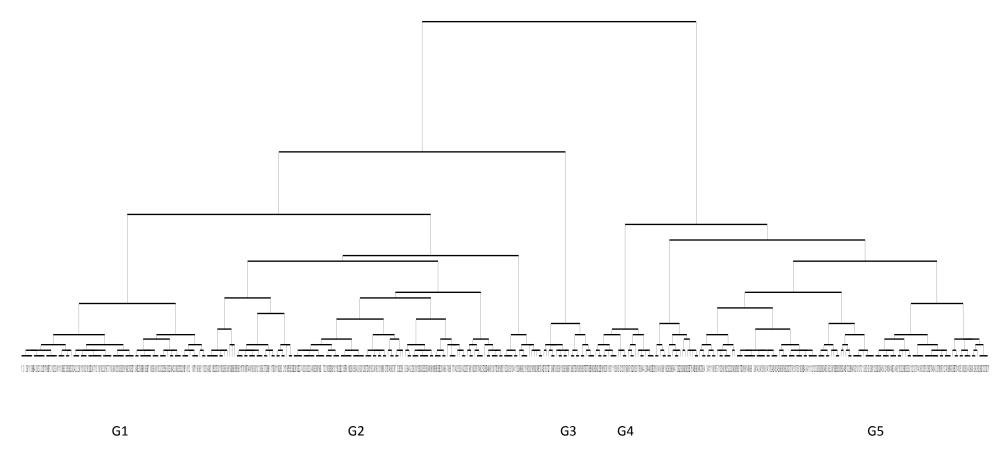


Figura 5. Conformación de grupos de acuerdo a las características cualitativas evaluadas en el estudio de gestión integral del recurso hídrico en la cuenca alta del río Pasto.

Tabla 7. Descripción de los grupos o clases conformadas en el ACM del estudio gestión integral del recurso hídrico en la cuenca alta del río Pasto.

T.VALUE		GRP/CAT	CAT/GRP	GLOBAL	CHARACTERISTIC CATEGORIES	OF VARIABLES	IDEN V	WEIGHT
				21 71	CITICEED 1 / E		aa1a	124
8.60	0.000	50.49	83.87	52.69	C3=1 C8=1 C7=2 C18=4 C4=1	V2	AB_1	206
6.41	0.000	41.33	90.32	69.31	C8=1	V7	AG_1	271
5.76	0.000	3/.35 71 11	97.58 25.81	82.86 11 51	C1=2 C18=4	V6 V17	AF_2 AQ 4	324 45
5.53	0.000	40.77	85.48	66.50	C4=1 C11=2 C32=2	V3	AC 1	260
5.27	0.000	37.19	95.97	81.84	C11=2	V10	AJ 2	320
5.13	0.000	36.96	95.97	82.35	C32=2	V31	BE_2	322
5.04	0.000	48.20	54.03	35.55	C37=2 C6=1 C22=1 C9=2	V36	BJ_2	139
4.99	0.000	50.43	47.58	29.92	C6=1	V5	AE_1	117
4.34	0.000	47.20	47.58	31.97	C22=1 C9=2	V21 V8	AU_1 AH 2	125 125
3.03	0.000	37 65	77 42	65 22	C21=2	V20	AT 2	255
3.01	0.001	34.20	95.97	89.00	C28=2	V27	BA 2	348
3.01	0.001	39.46	58.87	47.31	C21=2 C28=2 C12=2	V11	AK_2	185
2.94	0.002	33.61	98.39	92.84	C12=2 C17=1 C36=2 C27=3 C14=2 C35=1 C7=1 C14=1 C7=3	V16	AP_1	363
2.83	0.002	33.52	98.39	93.09	C36=2	V35	BI_2	364
2.67	0.004	39.39	52.42	42.20	C2'/=3	V26	AZ_3	165
2.03	0.004	38 38	57 26	47 31	C14=2 C35=1	V13 V34	AM_2 BH 1	305 185
-2.35	0.009	0.00	0.00	3.07	C7=1	V6	AF 1	12
-2.63	0.004	19.77	13.71	21.99	C14=1	V13	AM 1	12 86
-2.63	0.004	10.00	2.42	7.67	C7=3	V6	AF_3	30
-2.83	0.002	7.41	1.61	6.91	C36=1	V35	BI_1 BA_1	27
-2.92	0.002	11.90	4.03	10.74	C1-3 C36=1 C28=1 C17=2 C13=3 C13=4 C18=3 C21=1 C8=2	V35 V27 V16 V12		
-2.94	0.002	7.14	1.61	7.16	C17=2	V16	AP_2 AL 3	
-3.01	0.001	4 17	0.00	6 14	C13=3	V12 V12	AL_3 AL 4	24
-3.31	0.000	3.85	0.81	6.65	C18=3	V17	AQ 3	26
-3.40	0.000	20.59	22.58	34.78	C21=1	V20	AT 1	
-3.44	0.000	13.11	6.45	15.60	C8=2	V7		61
-3.51	0.000	3.57	0.81	7.16	C20=4	V19		28
-3.79	0.000	7.14	2.42	10.74	C8=4	V7	AG_4	
-3.89	0.000	0.00	0.00	6.39	C /=4	V6 V4	AF_4 AD 1	
-4 18	0.000	0.00	0.01	7 16	C35=4	V34		28
-4.54	0.000	11.90	8.06	21.48	C22=3	V21	AU 3	
-4.62	0.000	2.50	0.81	10.23	C11=1	V10	AJ_1	40
-5.04	0.000	22.62	45.97	64.45	C37=1	V36	BJ_1 BE 1	252
-5.13	0.000	7.25	4 03	17.65	C32=1	V31	BE 1	69
	0 000	10 74	14.50	22 50	0.4 0	***		101
-5.53	0.000	13.74	14.52	33.50	C4=2	V31 V3	AC_2	
-5.53 -5.83 -8.03	0.000	13.74 3.23 6.82	14.52 1.61 7.26	33.50 15.86 33.76	C4=2 C9=1 C6=3	V3 V8 V5	AC_2 AH_1	62
-5.53 -5.83 -8.03 -8.54	0.000 0.000 0.000 0.000	13.74 3.23 6.82 10.87	14.52 1.61 7.26 16.13	33.50 15.86 33.76 47.06	C4=2 C9=1 C6=3 C3=2	V3 V8 V5 V2	AC_2 AH_1 AE_3	
CLUSTER	2 /	5			C9=1 C6=3 C3=2		AC_2 AH_1 AE_3	62 132
CLUSTER	2 /	5			C4=2 C9=1 C6=3 C3=2 CHARACTERISTIC CATEGORIES		AC_2 AH_1 AE_3	62 132 184
CLUSTER	2 / PROB.	5 PEF GRP/CAT	RCENTAGES CAT/GRP	GLOBAL	CHARACTERISTIC CATEGORIES CLUSTER 2 / 5	OF VARIABLES	AC_2 AH_1 AE_3 AB_2	62 132 184
CLUSTER	2 / PROB.	5 PEF GRP/CAT	RCENTAGES CAT/GRP	GLOBAL	CHARACTERISTIC CATEGORIES CLUSTER 2 / 5	OF VARIABLES	AC_2 AH_1 AE_3 AB_2 IDEN V	62 132 184 WEIGHT 87 35
CLUSTER I.VALUE 8.74 8.27	2 / PROB. 0.000 0.000	5 PEF GRP/CAT 88.57 38.24	RCENTAGES CAT/GRP 35.63 89.66	GLOBAL 22.25 8.95 52.17	CHARACTERISTIC CATEGORIES CLUSTER 2 / 5 C5=1 C9=3	OF VARIABLES V4 V8	AC_2 AH_1 AE_3 AB_2 IDEN V	62 132 184 WEIGHT 87 35
CLUSTER T.VALUE 8.74 8.27	2 / PROB. 0.000 0.000	5 PEF GRP/CAT 88.57 38.24	RCENTAGES CAT/GRP 35.63 89.66	GLOBAL 22.25 8.95 52.17	CHARACTERISTIC CATEGORIES CLUSTER 2 / 5 C5=1 C9=3	OF VARIABLES V4 V8	AC_2 AH_1 AE_3 AB_2 IDEN V aa2a AD_1 AH_3 AI_2	62 132 184 WEIGHT 87 35 204 213
8.74 8.27 6.94 6.69	2 / PROB. 0.000 0.000 0.000 0.000	5 PEF GRP/CAT 88.57 38.24 35.21 37.36	35.63 89.66 86.21 78.16	GLOBAL 22.25 8.95 52.17 54.48 46.55	CHARACTERISTIC CATEGORIES CLUSTER 2 / 5 C5=1 C9=3 C10=2 C12=3	OF VARIABLES V4 V8 V9 V11	AC_2 AH_1 AE_3 AB_2 IDEN W aa2a AD_1 AH_3 AI_2 AK_3	62 132 184 WEIGHT 87 35 204 213
8.74 8.27 6.94 6.69 5.91	2 / PROB. 0.000 0.000 0.000 0.000 0.000	5 PEF GRP/CAT 88.57 38.24 35.21 37.36 38.41	35.63 89.66 86.21 78.16 66.67	GLOBAL 22.25 8.95 52.17 54.48 46.55 38.62	CHARACTERISTIC CATEGORIES CLUSTER 2 / 5 C5=1 C9=3 C10=2 C12=3 C19=1	OF VARIABLES V4 V8 V9 V11 V18	AC_2 AH_1 AE_3 AB_2 IDEN V aa2a AD_1 AH_3 AI_2 AK_3 AR_1	62 132 184 WEIGHT 87 35 204 213 182
8.74 8.27 6.69 5.65	2 / PROB. 0.000 0.000 0.000 0.000 0.000	5 PEF GRP/CAT 88.57 38.24 35.21 37.36 38.41 100.00	35.63 89.66 86.21 78.16 66.67	22.25 8.95 52.17 54.48 46.55 38.62 3.07	CHARACTERISTIC CATEGORIES CLUSTER 2 / 5 C5=1 C9=3 C10=2 C12=3 C19=1 C7=1	OF VARIABLES V4 V8 V9 V11	AC_2 AH_1 AE_3 AB_2 IDEN V aa2a AD_1 AH_3 AI_2 AK_3 AR_1 AF_1	62 132 184 WEIGHT 87 35 204 213 182 151
8.74 8.27 6.94 6.69 5.91 5.65 5.13 4.31	2 / PROB. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	5 PEF GRP/CAT 88.57 38.24 35.21 37.36 38.41 100.00 64.52 33.13	35.63 89.66 86.21 78.16 66.67 13.79 22.99 63.22	GLOBAL 22.25 8.95 52.17 54.48 46.55 38.62 3.07 7.93 42.46	CHARACTERISTIC CATEGORIES CLUSTER 2 / 5 C5=1 C9=3 C10=2 C12=3 C19=1 C7=1 C11=3 C20=2	OF VARIABLES V4 V8 V9 V11 V18 V6 V10 V19	AC_2 AH_1 AE_3 AB_2 IDEN V aa2a AD_1 AH_3 AI_2 AK_3 AR_1 AF_1 AF_1 AJ_3 AS_2	62 132 184 WEIGHT 87 35 204 213 182 151 31 166
8.74 8.27 6.94 6.69 5.91 5.65 5.13 4.31 3.89	2 / PROB. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	5 PEF GRP/CAT 88.57 38.24 35.21 37.36 38.41 100.00 64.52 33.13 32.69	35.63 89.66 86.21 78.16 66.67 13.79 22.99 63.22 58.62	22.25 8.95 52.17 54.48 46.55 38.62 3.07 7.93 42.46 39.90	CHARACTERISTIC CATEGORIES CLUSTER 2 / 5 CS=1 C9=3 C10=2 C12=3 C19=1 C7=1 C11=3 C20=2 C27=4	OF VARIABLES V4 V8 V9 V11 V18 V6 V10 V19 V26	AC_2 AH_1 AE_3 AB_2 IDEN V aa2a AD_1 AH_3 AI_2 AK_3 AR_1 AF_1 AJ_3 AS_2 AZ_4	62 132 184
8.74 8.27 6.94 6.69 5.91 5.65 5.13 4.31 3.89 3.89	2 / PROB. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	5 PEF GRP/CAT 	35.63 89.66 86.21 78.16 66.67 13.79 22.99 63.22 58.62 52.87	22.25 8.95 52.17 54.48 46.55 38.62 3.07 7.93 42.46 39.90 34.53	CHARACTERISTIC CATEGORIES CLUSTER 2 / 5 C5=1 C9=3 C10=2 C12=3 C19=1 C7=1 C11=3 C20=2 C27=4 C6=2	V4 V8 V9 V11 V18 V6 V10 V19 V26 V5	AC_2 AH_1 AE_3 AB_2 IDEN V aa2a AD_1 AH_3 AI_2 AK_3 AR_1 AP_1 AJ_3 AS_2 AZ_4 AE_2	62 132 184
R.74 8.74 8.27 6.94 6.69 5.91 5.65 5.13 4.31 3.89 3.09	2 / PROB. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	5 PEF GRP/CAT 88.57 38.24 35.21 100.00 64.52 33.13 32.69 34.07 27.06	35.63 89.66 86.21 78.16 66.67 13.79 22.99 63.22 58.62 52.87 79.31	3 GLOBAL 22.25 8.95 52.17 54.48 46.55 38.62 3.07 7.93 42.46 39.90 34.53 65.22	CHARACTERISTIC CATEGORIES CLUSTER 2 / 5 C5=1 C9=3 C10=2 C12=3 C19=1 C7=1 C11=3 C20=2 C27=4 C6=2 C21=2	V4 V8 V9 V11 V18 V6 V10 V19 V26 V5 V20	AC_2 AH_1 AE_3 AB_2 IDEN V aa2a AD_1 AH_3 AI_2 AK_3 AR_1 AF_1 AJ_3 AS_2 AZ_4 AZ_4 AE_2 AT_2	62 132 184
8.74 8.74 8.27 6.94 6.69 5.91 5.65 5.13 4.31 3.89 3.89 3.09	2 / PROB. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	5 PER GRP/CAT 38.24 35.21 37.36 38.41 100.00 64.52 33.13 32.69 34.07 27.06	35.63 89.66 86.21 78.16 66.67 13.79 22.99 63.22 58.62 52.87 79.31	22.25 8.95 52.17 54.48 46.55 3.07 7.93 42.46 39.90 34.53 65.22	CHARACTERISTIC CATEGORIES CLUSTER 2 / 5 C5=1 C9=3 C10=2 C12=3 C19=1 C7=1 C11=3 C20=2 C27=4 C6=2 C21=2 C13=1	V4 V8 V9 V11 V18 V6 V10 V19 V26 V5 V20 V12	AC_2 AH_1 AE_3 AB_2 IDEN V aa2a AD_1 AH_3 AI_2 AK_3 AR_1 AF_1 AF_1 AJ_3 AS_2 AZ_4 AE_2 AZ_4 AE_2 AZ_4	62 132 184 WEIGHT 87 35 204 213 182 151 166 156 135 255 73
8.74 8.74 8.27 6.94 6.69 5.91 5.65 5.13 4.31 3.89 3.89 3.09	2 / PROB. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	5 PER GRP/CAT 38.24 35.21 37.36 38.41 100.00 64.52 33.13 32.69 34.07 27.06	35.63 89.66 86.21 78.16 66.67 13.79 22.99 63.22 58.62 52.87 79.31	22.25 8.95 52.17 54.48 46.55 3.07 7.93 42.46 39.90 34.53 65.22	CHARACTERISTIC CATEGORIES CLUSTER 2 / 5 C5=1 C9=3 C10=2 C12=3 C19=1 C7=1 C11=3 C20=2 C27=4 C6=2 C21=2 C13=1	V4 V8 V9 V11 V18 V6 V10 V19 V26 V5 V20 V12	AC_2 AH_1 AE_3 AB_2 IDEN V aa2a AD_1 AH_3 AI_2 AK_3 AR_1 AF_1 AJ_3 AS_2 AZ_4 AE_2 AZ_4 AE_2 AT_2 AL_1 AM_2	62 132 184
8.74 8.74 8.27 6.69 5.91 5.65 5.13 4.31 3.89 3.89 3.09	2 / PROB. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	5 PER GRP/CAT 38.24 35.21 37.36 38.41 100.00 64.52 33.13 32.69 34.07 27.06	35.63 89.66 86.21 78.16 66.67 13.79 22.99 63.22 58.62 52.87 79.31	22.25 8.95 52.17 54.48 46.55 3.07 7.93 42.46 39.90 34.53 65.22	CHARACTERISTIC CATEGORIES CLUSTER 2 / 5 C5=1 C9=3 C10=2 C12=3 C19=1 C7=1 C11=3 C20=2 C27=4 C6=2 C21=2 C13=1	V4 V8 V9 V11 V18 V6 V10 V19 V26 V5 V20 V12	AC_2 AH_1 AE_3 AB_2 IDEN V aa2a AD_1 AH_3 AI_2 AK_3 AR_1 AF_1 AF_1 AF_1 AF_2 AZ_4 AE_2 AT_2 AT_2 AT_2 AT_2 AT_2 AT_2 AT_2 AT	62 132 184
8.74 8.74 8.27 6.69 5.91 5.65 5.13 4.31 3.89 3.89 3.09	2 / PROB. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	5 PER GRP/CAT 38.24 35.21 37.36 38.41 100.00 64.52 33.13 32.69 34.07 27.06	35.63 89.66 86.21 78.16 66.67 13.79 22.99 63.22 58.62 52.87 79.31	22.25 8.95 52.17 54.48 46.55 3.07 7.93 42.46 39.90 34.53 65.22	CHARACTERISTIC CATEGORIES CLUSTER 2 / 5 C5=1 C9=3 C10=2 C12=3 C19=1 C7=1 C11=3 C20=2 C27=4 C6=2 C21=2 C13=1	V4 V8 V9 V11 V18 V6 V10 V19 V26 V5 V20 V12	AC_2 AH_1 AE_3 AB_2 IDEN V aa2a AD_1 AH_3 AI_2 AK_3 AR_1 AF_1 AJ_3 AS_2 AZ_4 AE_2 AZ_4 AE_2 AT_2 AL_1 AM_2	62 132 132 184
8.74 8.74 8.27 6.94 6.69 5.91 5.65 5.13 4.31 3.89 3.89 3.09	2 / PROB. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	5 PER GRP/CAT 38.24 35.21 37.36 38.41 100.00 64.52 33.13 32.69 34.07 27.06	35.63 89.66 86.21 78.16 66.67 13.79 22.99 63.22 58.62 52.87 79.31	22.25 8.95 52.17 54.48 46.55 3.07 7.93 42.46 39.90 34.53 65.22	CHARACTERISTIC CATEGORIES CLUSTER 2 / 5 C5=1 C9=3 C10=2 C12=3 C19=1 C7=1 C11=3 C20=2 C27=4 C6=2 C21=2 C13=1	V4 V8 V9 V11 V18 V6 V10 V19 V26 V5 V20 V12	AC_2 AH_1 AE_3 AB_2 IDEN V aa2a AD_1 AH_3 AI_2 AK_3 AR_1 AF_1 AF_1 AF_1 AF_2 AZ_4 AE_2 AT_2 AL_1 AE_2 AL_1 AM_2 AM_2 AM_2 AM_2 AM_2 AM_2 AM_2 AM_2	622 1331 1844 1845 1841 1851 1811 1811 1811 181
8.74 8.74 8.27 6.94 6.69 5.91 5.65 5.13 4.31 3.89 3.89 3.09	2 / PROB. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	5 PER GRP/CAT 38.24 35.21 37.36 38.41 100.00 64.52 33.13 32.69 34.07 27.06	35.63 89.66 86.21 78.16 66.67 13.79 22.99 63.22 58.62 52.87 79.31	22.25 8.95 52.17 54.48 46.55 3.07 7.93 42.46 39.90 34.53 65.22	CHARACTERISTIC CATEGORIES CLUSTER 2 / 5 C5=1 C9=3 C10=2 C12=3 C19=1 C7=1 C11=3 C20=2 C27=4 C6=2 C21=2 C13=1	V4 V8 V9 V11 V18 V6 V10 V19 V26 V5 V20 V12	AC_2 AH_1 AE_3 AB_2 IDEN V aa2a AD_1 AH_3 AI_2 AK_3 AR_1 AF_1 AJ_3 AS_2 AZ_4 AE_2 AT_2 AT_2 AT_2 AT_2 AT_2 AT_3 AT_2 AT_3 AT_3 AS_2 AT_3 AT_3 AT_3 AT_3 AT_3 AT_3 AT_3 AT_3	6613361846184861848618486184861848618486
8.74 8.74 8.27 6.94 6.69 5.91 5.65 5.13 4.31 3.89 3.89 3.09	2 / PROB. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	5 PER GRP/CAT 38.24 35.21 37.36 38.41 100.00 64.52 33.13 32.69 34.07 27.06	35.63 89.66 86.21 78.16 66.67 13.79 22.99 63.22 58.62 52.87 79.31	22.25 8.95 52.17 54.48 46.55 3.07 7.93 42.46 39.90 34.53 65.22	CHARACTERISTIC CATEGORIES CLUSTER 2 / 5 C5=1 C9=3 C10=2 C12=3 C19=1 C7=1 C11=3 C20=2 C27=4 C6=2 C21=2 C13=1	V4 V8 V9 V11 V18 V6 V10 V19 V26 V5 V20 V12	AC_2 AH_1 AE_3 AB_2 IDEN V aa2a AD_1 AH_3 AI_2 AK_3 AR_1 AF_1 AJ_3 AS_2 AZ_4 AE_2 AZ_4 AE_2 AT_2 AL_1 AM_2 AV_2 BJ_1 AD_2 AS_3 AS_3 AS_2 BJ_1 AD_2 AS_3 AS_2 BJ_1 AD_2 AS_3 AS_2 BJ_1 AD_2 AS_3 AS_2 BJ_1 AD_2 AS_3 AS_2 BJ_1 AS_3 AS_2 BJ_1 AD_3 AS_3 AS_2 BJ_1 AD_3 AS_3 AS_2 BJ_1 AS_3 AS_3 AS_3 AS_3 AS_3 AS_3 AS_3 AS_3	631334 1844 1846 1847 1847 1847 1847 1847 1847 1847 1847
8.74 8.74 8.27 6.69 5.91 5.65 5.13 4.31 3.89 3.89 3.09	2 / PROB. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	5 PER GRP/CAT 38.24 35.21 37.36 38.41 100.00 64.52 33.13 32.69 34.07 27.06	35.63 89.66 86.21 78.16 66.67 13.79 22.99 63.22 58.62 52.87 79.31	22.25 8.95 52.17 54.48 46.55 3.07 7.93 42.46 39.90 34.53 65.22	CHARACTERISTIC CATEGORIES CLUSTER 2 / 5 C5=1 C9=3 C10=2 C12=3 C19=1 C7=1 C11=3 C20=2 C27=4 C6=2 C21=2 C13=1	V4 V8 V9 V11 V18 V6 V10 V19 V26 V5 V20 V12	AC_2 AH_1 AE_3 AB_2 IDEN V aa2a AD_1 AH_3 AI_2 AK_3 AR_1 AJ_3 AS_2 AZ_4 AZ_4 AE_2 AZ_4 AZ_2 AZ_4 AZ_2 AZ_4 AZ_2 AZ_4 AZ_2 AZ_2 AZ_3 AZ_2 AZ_4 AZ_2 AZ_2 AZ_2 AZ_2 AZ_2 AZ_2 AZ_2 AZ_2	661323141414141414141414141414141414141414
8.74 8.74 8.27 6.94 6.69 5.91 5.65 5.13 4.31 3.89 3.89 3.09	2 / PROB. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	5 PER GRP/CAT 38.24 35.21 37.36 38.41 100.00 64.52 33.13 32.69 34.07 27.06	35.63 89.66 86.21 78.16 66.67 13.79 22.99 63.22 58.62 52.87 79.31	22.25 8.95 52.17 54.48 46.55 3.07 7.93 42.46 39.90 34.53 65.22	CHARACTERISTIC CATEGORIES CLUSTER 2 / 5 C5=1 C9=3 C10=2 C12=3 C19=1 C7=1 C11=3 C20=2 C27=4 C6=2 C21=2 C13=1	V4 V8 V9 V11 V18 V6 V10 V19 V26 V5 V20 V12	AC_2 AH_1 AE_3 AB_2 IDEN V aa2a AD_1 AH_3 AR_1 AF_1 AF_1 AJ_3 AS_2 AZ_4 AE_2 AT_2 AT_2 AT_2 AT_2 AT_2 AT_2 AT_2 AT	661333166615629999443233394
8.74 8.74 8.27 6.94 6.69 5.91 5.65 5.13 4.31 3.89 3.89 3.09	2 / PROB. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	5 PER GRP/CAT 38.24 35.21 37.36 38.41 100.00 64.52 33.13 32.69 34.07 27.06	35.63 89.66 86.21 78.16 66.67 13.79 22.99 63.22 58.62 52.87 79.31	22.25 8.95 52.17 54.48 46.55 3.07 7.93 42.46 39.90 34.53 65.22	CHARACTERISTIC CATEGORIES CLUSTER 2 / 5 C5=1 C9=3 C10=2 C12=3 C19=1 C7=1 C11=3 C20=2 C27=4 C6=2 C21=2 C13=1	V4 V8 V9 V11 V18 V6 V10 V19 V26 V5 V20 V12	AC_2 AH_1 AE_3 AB_2 IDEN V AB_2 AB_2 AL_1 AF_1 AJ_3 AR_1 AF_1 AJ_3 AS_2 AZ_4 AE_2 AZ_4 AZ_4 AE_2 AZ_4 AZ_4 AE_2 AZ_4 AZ_4 AZ_4 AZ_2 AZ_4 AZ_2 AZ_4 AZ_4 AZ_2 AZ_4 AZ_2 AZ_4 AZ_2 AZ_4 AZ_2 AZ_4 AZ_2 AZ_4 AZ_2 AZ_4 AZ_2 AZ_2 AZ_2 AZ_4 AZ_2 AZ_2 AZ_2 AZ_2 AZ_2 AZ_2 AZ_2 AZ_2	661323118818181818181818181818181818181818
8.74 8.74 8.27 6.69 5.91 5.65 5.13 4.31 3.89 3.89 3.09	2 / PROB. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	5 PER GRP/CAT 38.24 35.21 37.36 38.41 100.00 64.52 33.13 32.69 34.07 27.06	35.63 89.66 86.21 78.16 66.67 13.79 22.99 63.22 58.62 52.87 79.31	22.25 8.95 52.17 54.48 46.55 3.07 7.93 42.46 39.90 34.53 65.22	CHARACTERISTIC CATEGORIES CLUSTER 2 / 5 C5=1 C9=3 C10=2 C12=3 C19=1 C7=1 C11=3 C20=2 C27=4 C6=2 C21=2 C13=1	V4 V8 V9 V11 V18 V6 V10 V19 V26 V5 V20 V12	AC_2 AH_1 AE_3 AB_2 IDEN V 	661323111111111111111111111111111111111
8.74 8.74 8.27 6.69 5.91 5.65 5.13 4.31 3.89 3.89 3.09	2 / PROB. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	5 PER GRP/CAT 38.24 35.21 37.36 38.41 100.00 64.52 33.13 32.69 34.07 27.06	35.63 89.66 86.21 78.16 66.67 13.79 22.99 63.22 58.62 52.87 79.31	22.25 8.95 52.17 54.48 46.55 3.07 7.93 42.46 39.90 34.53 65.22	CHARACTERISTIC CATEGORIES CLUSTER 2 / 5 C5=1 C9=3 C10=2 C12=3 C19=1 C7=1 C11=3 C20=2 C27=4 C6=2 C21=2 C13=1	V4 V8 V9 V11 V18 V6 V10 V19 V26 V5 V20 V12	AC_2 AH_1 AE_3 AB_2 IDEN V 	661333161316131616131616131616161616161
8.74 8.74 8.27 6.94 6.69 5.91 5.65 5.13 4.31 3.89 3.89 3.09	2 / PROB. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	5 PER GRP/CAT 38.24 35.21 37.36 38.41 100.00 64.52 33.13 32.69 34.07 27.06	35.63 89.66 86.21 78.16 66.67 13.79 22.99 63.22 58.62 52.87 79.31	22.25 8.95 52.17 54.48 46.55 3.07 7.93 42.46 39.90 34.53 65.22	CHARACTERISTIC CATEGORIES CLUSTER 2 / 5 C5=1 C9=3 C10=2 C12=3 C19=1 C7=1 C11=3 C20=2 C27=4 C6=2 C21=2 C13=1	V4 V8 V9 V11 V18 V6 V10 V19 V26 V5 V20 V12	AC_2 AH_1 AE_3 AB_2 IDEN V AB_2 AAB_2 AAB_1 AH_3 AAI_2 AK_3 AR_1 AF_1 AJ_3 AS_2 AZ_4 AE_2 AZ_4 AE_2 AZ_4 AE_2 AT_2 AL_1 AM_2 AV_2 BJ_1 AD_2 AS_3 AF_2 BJ_2 AS_3 AF_2 AS_1 AF_4 AB_1 AF_4 AB_1 AAF_1 A	66.666
8.74 8.74 8.27 6.94 6.69 5.91 5.65 5.13 4.31 3.89 3.89 3.09	2 / PROB. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	5 PER GRP/CAT 38.24 35.21 37.36 38.41 100.00 64.52 33.13 32.69 34.07 27.06	35.63 89.66 86.21 78.16 66.67 13.79 22.99 63.22 58.62 52.87 79.31	22.25 8.95 52.17 54.48 46.55 3.07 7.93 42.46 39.90 34.53 65.22	CHARACTERISTIC CATEGORIES CLUSTER 2 / 5 C5=1 C9=3 C10=2 C12=3 C19=1 C7=1 C11=3 C20=2 C27=4 C6=2 C21=2 C13=1	V4 V8 V9 V11 V18 V6 V10 V19 V26 V5 V20 V12	AC_2 AH_1 AE_3 AB_2 	662 1332 88 2002 211 122 33 36 155 133 255 252 92 92 133 92 122 133 136 146 156 136 156 137 147 147 147 147 147 147 147 147 147 14
8.74 8.27 6.94 6.69 5.91 5.65 5.13 4.31 3.89 3.89 3.09	2 / PROB. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	5 PER GRP/CAT 38.24 35.21 37.36 38.41 100.00 64.52 33.13 32.69 34.07 27.06	35.63 89.66 86.21 78.16 66.67 13.79 22.99 63.22 58.62 52.87 79.31	22.25 8.95 52.17 54.48 46.55 3.07 7.93 42.46 39.90 34.53 65.22	CHARACTERISTIC CATEGORIES CLUSTER 2 / 5 C5=1 C9=3 C10=2 C12=3 C19=1 C7=1 C11=3 C20=2 C27=4 C6=2 C21=2 C13=1	V4 V8 V9 V11 V18 V6 V10 V19 V26 V5 V20 V12	AC_2 AH_1 AE_3 AB_2	6611323164666666666666666666666666666666
8.74 8.27 6.94 6.69 5.91 5.65 5.13 4.31 3.89 3.89 3.09	2 / PROB. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	5 PER GRP/CAT 38.24 35.21 37.36 38.41 100.00 64.52 33.13 32.69 34.07 27.06	35.63 89.66 86.21 78.16 66.67 13.79 22.99 63.22 58.62 52.87 79.31	22.25 8.95 52.17 54.48 46.55 3.07 7.93 42.46 39.90 34.53 65.22	CHARACTERISTIC CATEGORIES CLUSTER 2 / 5 C5=1 C9=3 C10=2 C12=3 C19=1 C7=1 C11=3 C20=2 C27=4 C6=2 C21=2 C13=1	V4 V8 V9 V11 V18 V6 V10 V19 V26 V5 V20 V12	AC_2 AH_1 AE_3 AB_2 IDEN V aa2a AD_1 AH_3 AH_3 AR_1 AF_1 AJ_3 AS_2 AZ_4 AE_2 AZ_4 AE_2 AZ_4 AE_2 AT_2 AJ_1 AM_2 BJ_1 AD_2 AS_3 AF_2 BJ_1 AD_2 AS_3 AF_2 AJ_1 AD_2 AS_3 AF_2 AJ_1 AJ_1 AJ_1 AJ_1 AJ_1 AJ_1 AJ_1 AJ_1	625 1323 200 211 122 133 31 155 125 255 29 225 29 225 28 86 62 62 117 44 46 168 168 168 168 168 168 168 168 168 16
8.74 8.74 8.27 6.94 6.69 5.91 5.65 5.13 4.31 3.89 3.89 3.09	2 / PROB. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	5 PER GRP/CAT 38.24 35.21 37.36 38.41 100.00 64.52 33.13 32.69 34.07 27.06	35.63 89.66 86.21 78.16 66.67 13.79 22.99 63.22 58.62 52.87 79.31	22.25 8.95 52.17 54.48 46.55 3.07 7.93 42.46 39.90 34.53 65.22	CHARACTERISTIC CATEGORIES CLUSTER 2 / 5 C5=1 C9=3 C10=2 C12=3 C19=1 C7=1 C11=3 C20=2 C27=4 C6=2 C21=2 C13=1	V4 V8 V9 V11 V18 V6 V10 V19 V26 V5 V20 V12	AC_2 AH_1 AE_3 AB_2 	662 1323 184 200 221 121 122 133 136 155 133 255 257 292 292 292 292 292 293 294 44 46 66 66 66 67 186 67 47 46 46 46 46 46 46 46 46 46 46 46 46 46
8.74 8.74 8.27 6.69 5.91 5.65 5.13 4.31 3.89 3.89 3.09	2 / PROB. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	5 PER GRP/CAT 38.24 35.21 37.36 38.41 100.00 64.52 33.13 32.69 34.07 27.06	35.63 89.66 86.21 78.16 66.67 13.79 22.99 63.22 58.62 52.87 79.31	22.25 8.95 52.17 54.48 46.55 3.07 7.93 42.46 39.90 34.53 65.22	CHARACTERISTIC CATEGORIES CLUSTER 2 / 5 C5=1 C9=3 C10=2 C12=3 C19=1 C7=1 C11=3 C20=2 C27=4 C6=2 C21=2 C13=1	V4 V8 V9 V11 V18 V6 V10 V19 V26 V5 V20 V12	AC_2 AH_1 AE_3 AB_2 IDEN V AB_2 AAB_2 AAB_2 AAB_3 AAB_1 AAB_3 AR_1 AF_1 AJ_3 AS_2 AZ_4 AE_2 AZ_4 AE_2 AZ_4 AB_2 AV_2 AV_2 AV_1 AB_1 AB_1 AB_1 AB_1 AB_1 AB_1 AB_1 AB	6213223184818481848184818481848184818481848184
8.74 8.27 6.94 6.69 5.91 5.65 5.13 4.31 3.89 3.09	2 / PROB. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	5 PER GRP/CAT 38.24 35.21 37.36 38.41 100.00 64.52 33.13 32.69 34.07 27.06	35.63 89.66 86.21 78.16 66.67 13.79 22.99 63.22 58.62 52.87 79.31	22.25 8.95 52.17 54.48 46.55 3.07 7.93 42.46 39.90 34.53 65.22	CHARACTERISTIC CATEGORIES CLUSTER 2 / 5 CS=1 C9=3 C10=2 C12=3 C19=1 C7=1 C11=3 C20=2 C27=4 C6=2 C21=2 C13=1	V4 V8 V9 V11 V18 V6 V10 V19 V26 V5 V20 V12	AC_2 AH_1 AE_3 AB_2 IDEN V AB_2 AAB_2 AAB_2 AAB_3 AAB_1 AAB_3 AR_1 AF_1 AJ_3 AS_2 AZ_4 AE_2 AZ_4 AE_2 AZ_4 AB_2 AV_2 AV_2 AV_1 AB_1 AB_1 AB_1 AB_1 AB_1 AB_1 AB_1 AB	622 132 132 142 155 155 155 155 155 155 155 155 155 15

CLUSTER 3 / 5

	PROB.	PEF GRP/CAT	CENTAGES CAT/GRP	GLOBAL	CHARACTERISTIC CATEGORIES	OF VARIABLES	IDEN	WEIGHT
				7.93	CLUSTER 3 / 5		aa3a	31
7.63	0.000	24.79	93.55	29.92	C6=1	V5	AE_1	117
6.90	0.000	22.40	90.32	31.97	C22=1	V21		125
6.62	0.000	53.57	48.39	7.16	CLUSTER 3 / 5 C6=1 C22=1 C17=2 C20=4 C35=4 C3=1 C18=3 C26=1 C28=1 C13=2 C4=2 C21=1 C7=2 C34=2 C12=3 C16=2 C16=1 C18=1 C8=2 C13=3 C34=1 C21=2 C20=2 C34=1 C21=2 C20=2 C35=3 C29=1 C4=1 C22=3 C22=2 C23=2 C66=2 C66=2 C66=2 C66=2 C66=3	V16	AP_2	28
5.71	0.000	46.43	41.94	7.16	C2U=4 C35=4	A134	AS_4 BH 4	28 28
5 45	0.000	14 56	96 77	52 69	C3=1	V34 V2	AB_1	
5.05	0.000	33.33	45.16	10.74	C28=1	V27	BA 1	42
4.88	0.000	42.31	35.48	6.65	C18=3	V17	AQ 3	26
4.60	0.000	28.57	45.16	12.53	C26=1	V25	AY_1	49
4.36	0.000	11.44	100.00	69.31	C8=1	٧7		271
4.07	0.000	19.15	58.06	24.04	C23=1	V22	AV_1	94
4.00	0.000	15.23	74.19	38.62	C19=1	V18	AR_1	151
3.79	0.000	14.17	61 20	33 50	C13-2	V12 V3	AL_2 AC 2	230 131
2.96	0.001	13.97	61.29	34.78	C21=1	V20	AT 1	136
2.84	0.002	9.57	100.00	82.86	C7=2	V6	AF 2	324
2.69	0.004	25.00	22.58	7.16	C34=2	V33	BG_2	28
2.67	0.004	12.09	70.97	46.55	C12=3	V11	AK_3	182
2.39	0.008	17.24	32.26	14.83	C16=2	V15	AO_2	58
-2.39	0.008	6.31	67.74	85.17	C16=1	V15 V17	AO_1	333
-2.44	0.007	5./6	54.84	15.45	C18=1	V1 / V7	AQ_1	295
-2.04	0.004	0.00	0.00	16 37	C13=3		AG_2 AL 3	61 64
-2.86	0.003	6.42	74.19	91.56	C34=1	V33	BG 1	358
-2.96	0.002	4.71	38.71	65.22	C21=2	V20	AT 2	255
-3.03	0.001	3.01	16.13	42.46	C20=2	V19	AS_2	166
-3.06	0.001	2.22	9.68	34.53	C35=3	V34	BH_3	135
-3.10	0.001	7.03	87.10	98.21	C29=1	V28	BB_1	384
-3.12	0.001	4.62	38.71	66.50	C4=1	V3	AC_1	260
-3.36	0.000	1 35	6.00	21.48	C22=3 C22=2	V21 V21	AU_3 AU_2	84 148
-4.07	0.000	4.38	41.94	75.96	C23=2	V22	AV 2	297
-4.11	0.000	0.74	3.23	34.53	C6=2	77E	AE 2	135
4 60	0.000	4.97	54.84	87.47	C26=2	V25	AY_2	342
-4.60								132
-4.60 -4.67	0.000	0.00	0.00	33.76	C6=3	V5	AE_3	102
-4.67 -4.73	0.000	0.00 2.52	0.00 19.35	33.76 60.87	C6=3 C19=2	V5 V18	AR_2	238
-4.60 -4.67 -4.73 -4.98	0.000	0.00 2.52 4.89	0.00 19.35 54.84	33.76 60.87 89.00	C6=3 C19=2 C28=2	V5 V18 V27	AR_2 BA_2	238 348
-4.60 -4.67 -4.73 -4.98 -5.42	0.000 0.000 0.000 0.000	0.00 2.52 4.89 0.54 4.41	0.00 19.35 54.84 3.23 51.61	33.76 60.87 89.00 47.06 92.84	C6=3 C19=2 C28=2 C3=2 C17=1	V5 V18 V27 V2 V16	AR_2 BA_2 AB_2	238 348 184
-4.73 -4.98 -5.42 -6.62	0.000 0.000 0.000 0.000	2.52 4.89 0.54 4.41	19.35 54.84 3.23 51.61	60.87 89.00 47.06 92.84	C19=2 C28=2 C3=2 C17=1	V5 V18 V27 V2 V16	AR_2 BA_2	238 348
-4.73 -4.98 -5.42 -6.62 	0.000 0.000 0.000 0.000	2.52 4.89 0.54 4.41	19.35 54.84 3.23 51.61	60.87 89.00 47.06 92.84	C19=2 C28=2 C3=2 C17=1		AR_2 BA_2 AB_2 AP_1	238 348 184 363
-4.73 -4.98 -5.42 -6.62 	0.000 0.000 0.000 0.000	2.52 4.89 0.54 4.41	19.35 54.84 3.23 51.61	60.87 89.00 47.06 92.84	C19=2 C28=2 C3=2 C17=1 CHARACTERISTIC CATEGORIES		AR_2 BA_2 AB_2	238 348 184 363
-4.73 -4.98 -5.42 -6.62 	0.000 0.000 0.000 0.000 4 /	2.52 4.89 0.54 4.41 5	19.35 54.84 3.23 51.61	60.87 89.00 47.06 92.84	C19=2 C28=2 C3=2 C17=1 CHARACTERISTIC CATEGORIES	OF VARIABLES	AR 2 BA 2 AB 2 AP 1	238 348 184 363
-4.73 -4.98 -5.42 -6.62 	0.000 0.000 0.000 0.000 4 /	2.52 4.89 0.54 4.41 5	19.35 54.84 3.23 51.61	60.87 89.00 47.06 92.84	C19=2 C28=2 C3=2 C17=1 CHARACTERISTIC CATEGORIES	OF VARIABLES	AR_2 BA_2 AB_2 AP_1 IDEN	238 348 184 363 WEIGHT
-4.73 -4.98 -5.42 -6.62 	0.000 0.000 0.000 0.000 4 / PROB.	2.52 4.89 0.54 4.41 5 PEF GRP/CAT	19.35 54.84 3.23 51.61 	60.87 89.00 47.06 92.84 	C19=2 C28=2 C3=2 C17=1 CHARACTERISTIC CATEGORIES CLUSTER 4 / 5 C7=4 C5=4	OF VARIABLES	AR_2 BA_2 AB_2 AP_1 IDEN 1	238 348 184 363 WEIGHT 56 25 75
-4.73 -4.98 -5.42 -6.62 	0.000 0.000 0.000 0.000 4 / PROB.	2.52 4.89 0.54 4.41 5 PEF GRP/CAT	19.35 54.84 3.23 51.61 RCENTAGES CAT/GRP 44.64 66.07 87.50	60.87 89.00 47.06 92.84 	C19=2 C28=2 C3=2 C17=1 CHARACTERISTIC CATEGORIES CLUSTER 4 / 5 C7=4 C5=4 C3=2	OF VARIABLES V6 V4 V2	AR_2 BA_2 AB_2 AP_1 IDEN I	238 348 184 363 WEIGHT 566 25 75
-4.73 -4.98 -5.42 -6.62 CLUSTER T.VALUE 10.09 8.42 6.66 6.04	0.000 0.000 0.000 0.000 4 / PROB. 0.000 0.000 0.000	2.52 4.89 0.54 4.41 5 PEF GRP/CAT 100.00 49.33 26.63 42.19	19.35 54.84 3.23 51.61 CCENTAGES CAT/GRP 44.64 66.07 87.50 48.21	60.87 89.00 47.06 92.84 	C19=2 C28=2 C3=2 C17=1 CHARACTERISTIC CATEGORIES CLUSTER 4 / 5 C7=4 C5=4 C3=2 C13=3	OF VARIABLES V6 V4 V2 V12	AR_2 BA_2 AB_2 AP_1 IDEN IDEN AAF_4 AAF_4 AB_2 AL_3	238 348 184 363 WEIGHT 56 25 75 184 64
-4.73 -4.98 -5.42 -6.62 	0.000 0.000 0.000 0.000 4 / PROB.	2.52 4.89 0.54 4.41 5 PEF GRP/CAT 100.00 49.33 26.63 42.19	19.35 54.84 3.23 51.61 	60.87 89.00 47.06 92.84 	C19=2 C28=2 C3=2 C17=1 CHARACTERISTIC CATEGORIES CLUSTER 4 / 5 C7=4 C5=4 C3=2 C13=3	V6 V4 V2 V12 V21	AR_2 BA_2 AB_2 AP_1 IDEN I	238 348 184 363 WEIGHT 56 25 75 184 64 84
-4.73 -4.98 -5.42 -6.62 	0.000 0.000 0.000 0.000 4 / PROB.	2.52 4.89 0.54 4.41 5 PEF GRP/CAT 100.00 49.33 26.63 42.19	19.35 54.84 3.23 51.61 	60.87 89.00 47.06 92.84 	C19=2 C28=2 C3=2 C17=1 CHARACTERISTIC CATEGORIES CLUSTER 4 / 5 C7=4 C5=4 C3=2 C13=3	OF VARIABLES V6 V4 V2 V12 V21 V5	AR_2 BA_2 AB_2 AP_1 IDEN I	238 348 184 363
-4.73 -4.98 -5.42 -6.62 	0.000 0.000 0.000 0.000 4 / PROB.	2.52 4.89 0.54 4.41 5 PEF GRP/CAT 100.00 49.33 26.63 42.19	19.35 54.84 3.23 51.61 	60.87 89.00 47.06 92.84 	C19=2 C28=2 C3=2 C17=1 CHARACTERISTIC CATEGORIES CLUSTER 4 / 5 C7=4 C5=4 C3=2 C13=3	V6 V4 V2 V12 V21 V21 V5	AR_2 BA_2 AB_2 AP_1 IDEN 1	238 348 184 363
10.09 8.42 6.66 10.09 8.42 6.66 6.04 4.92 4.74 4.39	0.000 0.000 0.000 4 / PROB. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	2.52 4.89 0.54 4.41 5 PEF GRP/CAT 100.00 49.33 26.63 42.19	19.35 54.84 3.23 51.61 CCENTAGES CAT/GRP 44.64 66.07 87.50 48.21 50.00 64.29 64.29 41.07	GLOBAL 14, 32 6.39 19.18 47.06 19.18 47.06 16.37 21.48 33.76 34.78 17.65	C19=2 C28=2 C3=2 C17=1 CHARACTERISTIC CATEGORIES CLUSTER 4 / 5 C7=4 C5=4 C3=2 C13=3 C22=3 C6=3 C21=1 C32=1	OF VARIABLES V6 V4 V2 V12 V21 V5	AR_2 BA_2 AB_2 AP_1 IDEN 1 IDEN 1 AB_4 AD_4 AB_2 AL_3 AU_3 AE_3 AU_3 BE_1 BE_1	238 348 184 363
10.09 8.42 6.66 10.09 8.42 6.66 6.04 4.92 4.74 4.39 4.09	0.000 0.000 0.000 0.000 4 / PROB. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	2.52 4.89 0.54 4.41 5 PEE GRP/CAT 100.00 49.33 26.63 42.19 33.33 27.27 26.47 33.33 25.19 36.67	19.35 54.84 3.23 51.61 	GLOBAL	C19=2 C28=2 C3=2 C17=1 CHARACTERISTIC CATEGORIES CLUSTER 4 / 5 C7=4 C3=2 C13=3 C22=3 C6=3 C21=1 C32=1 C4=2 C7=3	OF VARIABLES V6 V4 V2 V12 V21 V5 V20 V31	AR_2 BA_2 AB_2 AP_1 IDEN 1 aa4a AF_4 AD_4 AB_2 AL_3 AU_3 AU_3 AU_3 AU_3 AU_3 AU_3 AU_3 AU	238 348 184 363
10.09 8.42 6.66 10.09 8.42 6.66 6.04 4.92 4.74 4.39 4.09 3.02 2.99	0.000 0.000 0.000 4 / PROB. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	2.52 4.89 0.54 4.41 5 PEF GRP/CAT 100.00 49.33 26.63 42.19 33.33 27.27 26.47 33.33 25.19 36.67	19.35 54.84 3.23 51.61 	60.87 89.00 47.06 92.84 	C19=2 C28=2 C3=2 C17=1 CHARACTERISTIC CATEGORIES CLUSTER 4 / 5 C7=4 C5=4 C3=2 C13=3 C22=3 C6=3 C21=1 C32=1 C4=2 C7=3 C30=2	V6 V4 V2 V12 V21 V5 V20 V31 V3 V6 V29	AR_2 BA_2 AB_2 AP_1 IDEN 1 IDEN 1 AB_4 AD_4 AB_2 AL_3 AC_3 AT_1 BE_1 AC_2 AF_3 BC_2	238 348 184 363
10.09 8.42 6.66 10.09 8.42 6.66 6.04 5.04 4.74 4.39 4.09 3.02 2.99 2.79	0.000 0.000 0.000 0.000 4 / PROB. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	2.52 4.89 0.54 4.41 5 PEF GRP/CAT 100.00 49.33 26.63 42.19 33.33 27.27 26.47 33.33 25.19 36.67 38.46 30.95	19.35 54.84 3.23 51.61 	60.87 89.00 47.06 92.84 	C19=2 C28=2 C3=2 C17=1 CHARACTERISTIC CATEGORIES CLUSTER 4 / 5 C5=4 C3=2 C13=3 C22=3 C6=3 C21=1 C32=1 C4=2 C7=3 C30=2 C8=4	OF VARIABLES V6 V4 V2 V12 V21 V5 V20 V31 V3 V6 V29 V7	AR 2 BA_2 AB_2 AP_1 IDEN 1 aa4a AF_4 AD_4 AD_4 AL_3 AU_3 AU_3 AE_3 AE_1 BE_1 AC_2 AF_3 BC_2 AF_3	238 348 184 363 WEIGHT 56 25 75 184 64 132 136 69 131 30 26 42
10.09 8.42 6.62 10.09 8.42 6.66 6.04 5.04 4.92 4.74 4.39 4.09 2.99 2.79 2.55	0.000 0.000 0.000 4 / PROB. 0.000 0.	2.52 4.89 0.54 4.41 5 PEF GRP/CAT 100.00 49.33 26.63 42.19 33.33 27.27 26.47 33.33 25.19 36.67 38.46 30.95 18.095	19.35 54.84 3.23 51.61 	GLOBAL	C19=2 C28=2 C3=2 C17=1 	V6 V4 V2 V12 V21 V5 V20 V31 V3 V6 V29 V7 V18	AR_2 BA_2 AB_2 AP_1 IDEN I IDEN I AB_2 AL_3 AU_3 AE_3 AU_3 AE_1 BE 1 AC_2 AC_2 AC_4 AR_2	238 348 184 363
10.09 8.42 6.66 10.09 8.42 6.66 6.04 4.92 4.74 4.39 4.09 3.02 2.99 2.79 2.58	0.000 0.000 0.000 0.000 4 / 	2.52 4.89 0.54 4.41 5 PEF GRP/CAT 100.00 49.33 26.63 42.19 33.33 27.27 26.47 33.33 25.19 36.63 40.19 36.63 40.19 37.72 38.46 30.95 18.07	19.35 54.84 3.23 51.61 	60.87 89.00 47.06 92.84 	C19=2 C28=2 C3=2 C17=1 CHARACTERISTIC CATEGORIES CLUSTER 4 / 5 C7=4 C5=4 C3=2 C13=3 C22=3 C6=3 C21=1 C32=1 C4=2 C7=3 C30=2 C8=4 C19=2 C6=1	V6 V4 V2 V12 V21 V5 V20 V31 V3 V6 V29 V7 V18	AR_2 BA_2 AB_2 AP_1 IDEN I IDEN I AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	238 348 184 363 NEIGHT 56 25 75 184 64 132 136 69 131 30 26 42 2388 117
10.09 8.42 6.66 10.09 8.42 6.66 6.04 4.92 4.74 4.39 4.09 3.02 2.99 2.79 2.55 -2.38 -2.45	0.000 0.000 0.000 0.000 4 / PROB. 0.000 0.	2.52 4.89 0.54 4.41 5 PEF GRP/CAT 100.00 49.33 26.63 42.19 33.33 27.27 26.47 33.33 25.19 36.67 38.46 67 38.95 18.07 7.76 8.15	19.35 54.84 3.23 51.61 	60.87 89.00 47.06 92.84 92.84 14.32 6.39 19.18 47.06 16.37 21.48 33.76 34.78 17.65 533.50 7.67 6.65 10.74 60.87 29.92 34.53	C19=2 C28=2 C3=2 C17=1 CHARACTERISTIC CATEGORIES CLUSTER 4 / 5 C5=4 C3=2 C13=3 C22=3 C6=3 C21=1 C32=1 C4=2 C7=3 C30=2 C8=4 C19=2 C6=1 C6=2	OF VARIABLES V6 V4 V2 V12 V21 V5 V20 V31 V3 V6 V29 V7 V18 V5 V5 V5	AR 2 BA_2 AB_2 AP_1 IDEN 1 aa4a AF_4 AD_4 AB_2 AL_3 AU_3 AE_3 AT_1 BE_1 AC_2 AF_3 BC_2 AF_3 BC_2 AF_3 BC_2 AF_3	238 348 363 NEIGHT 56 255 75 184 64 132 136 69 131 30 26 42 238 117 135
10.09 8.42 6.64 10.09 8.42 6.66 10.09 8.42 6.66 6.04 4.92 4.74 4.39 4.09 2.99 2.75 2.38 2.47	0.000 0.000 0.000 0.000 4 / 	2.52 4.89 0.54 4.41 5 PEF GRP/CAT 100.00 49.33 26.63 42.19 33.33 27.27 26.47 33.33 25.19 36.67 38.46 30.95 18.07 7.69 8.15	19.35 54.84 3.23 51.61 	60.87 89.00 47.06 92.84 	C19=2 C28=2 C3=2 C17=1 CHARACTERISTIC CATEGORIES CLUSTER 4 / 5 C7=4 C5=4 C3=2 C13=3 C22=3 C6=3 C21=1 C32=1 C4=2 C7=4 C5=4 C3=2 C1=1 C32=1 C4=2 C7=2 C3=2 C8=4 C19=2 C8=4 C19=2 C6=1 C6=2 C19=1	OF VARIABLES V6 V4 V2 V21 V21 V5 V20 V31 V3 V6 V29 V7 V18 V5 V5 V5	AR_2 BA_2 AB_2 AP_1 IDEN I IDEN I AB_2 AL_3 AU_3 AE_3 AU_3 AE_1 AC_2 AC_2 AC_2 AC_2 AC_2 AC_2 AC_2 AC_2	238 348 363 WEIGHT 56 25 75 184 64 132 136 69 131 30 26 42 238 117 135
10.09 8.42 6.66 10.09 8.42 6.66 6.04 4.92 4.74 4.39 4.09 3.02 2.99 2.79 2.53 2.45 2.47 7-2.52	0.000 0.000 0.000 0.000 4 / 	2.52 4.89 0.54 4.41 5 PEF GRP/CAT 100.00 49.33 26.63 42.19 33.33 27.27 26.47 33.33 25.19 36.67 38.46 67 38.95 18.07 7.76 8.15	19.35 54.84 3.23 51.61 	60.87 89.00 47.06 92.84 92.84 14.32 6.39 19.18 47.06 16.37 21.48 33.76 34.78 17.65 533.50 7.67 6.65 10.74 60.87 29.92 34.53	C19=2 C28=2 C3=2 C17=1 CHARACTERISTIC CATEGORIES CLUSTER 4 / 5 C7=4 C5=4 C3=2 C13=3 C22=3 C6=3 C21=1 C32=1 C4=2 C7=3 C30=2 C8=4 C19=2 C8=4 C19=2 C19=1 C6=2 C19=1 C18=4	OF VARIABLES V6 V4 V2 V12 V21 V5 V20 V31 V3 V6 V29 V7 V18 V5 V5 V5	AR 2 BA_2 AB_2 AP_1 IDEN 1 aa4a AF_4 AD_4 AB_2 AL_3 AU_3 AE_3 AT_1 BE_1 AC_2 AF_3 BC_2 AF_3 BC_2 AF_3 BC_2 AF_3	238 348 363 NEIGHT 56 255 75 184 64 132 136 69 131 30 26 42 238 117 135
10.09 8.42 6.64 10.09 8.42 6.66 10.09 8.42 6.66 6.04 4.92 4.74 4.39 4.09 2.99 2.75 2.38 2.47	0.000 0.000 0.000 0.000 4 / PROB. 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.	2.52 4.89 0.54 4.41 5 PEF GRP/CAT 100.00 49.33 26.63 42.19 33.33 27.27 26.47 33.33 25.19 36.67 38.46 30.95 18.06 8.15 8.15 8.15	19.35 54.84 3.23 51.61 	60.87 89.00 47.06 92.84 	C19=2 C28=2 C3=2 C17=1 CHARACTERISTIC CATEGORIES CLUSTER 4 / 5 C7=4 C3=2 C13=3 C22=3 C6=3 C21=1 C32=1 C4=2 C7=3 C30=2 C8=4 C19=2 C6=1 C6=2 C19=1 C18=4 C5=1	V6 V4 V2 V12 V21 V5 V20 V31 V3 V6 V29 V7 V18 V5 V5 V18	AR_2 BA_2 AB_2 AP_1 IDEN I IDEN I IDEN I AB_2 AL_3 AE_3 AU_3 AE_1 AC_2 AF_1 AC_2 AF_1 AC_2 AF_1 AC_2 AF_1 AC_2 AF_1 AC_2 AF_1 AC_2 AF_1 AC_2 AF_1 AC_2 AF_1 AC_2 AF_1 AC_2 AF_1 AC_2 AF_1 AC_2 AF_1 AC_2 AF_1 AC_2 AF_1 AC_2 AF_1 AC_2 AF_1 AC_2 AC_2 AC_2 AC_2 AC_2 AC_2 AC_2 AC_2	238 348 363 WEIGHT 566 255 75 184 64 132 136 69 131 30 26 42 238 117 135 151
10.09 8.42 6.66 10.09 8.42 6.66 6.04 4.92 4.74 4.39 4.09 3.02 2.99 2.79 2.53 2.45 2.245 2.271 2.75	0.000 0.000 0.000 0.000 4 / 	2.52 4.89 0.54 4.41 5 PEF GRP/CAT 100.00 49.33 26.63 42.19 33.33 27.27 26.47 33.33 25.19 36.67 38.46 30.95 18.07 7.69 8.15 8.61 12.22 0.00 9.00 9.00	19.35 54.84 3.23 51.61 	60.87 89.00 47.06 92.84 	C19=2 C28=2 C3=2 C17=1	V6 V4 V2 V12 V21 V5 V20 V31 V3 V6 V29 V7 V18 V5 V5 V5 V5 V5 V18 V17 V4 V4 V4	AR_2 BA_2 AB_2 AP_1 IDEN I IDEN I IDEN I AB_2 AL_3 AL_3 AE_1 AC_2 AF_1 AC_2 AC_2 AC_2 AC_2 AC_2 AC_2 AC_2 AC_2	238 348 363 363 363 363 363 363 364 364 364 369 311 300 266 42 238 317 135 151 45 35 187 230
10.09 8.42 6.66 10.09 8.42 6.66 6.04 10.47 4.73 4.79 4.79 2.55 2.38 2.45 2.47 2.52 2.71 2.71 2.71 2.75 2.83	0.000 0.000 0.000 0.000 4 / PROB. 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000	2.52 4.89 0.54 4.41 55 PEE GRP/CAT 100.00 49.33 26.63 42.19 33.33 27.27 26.47 33.33 25.19 36.67 38.46 30.95 18.07 7.69 8.15 8.61 2.22 0.00 9.09 10.000 4.11	19.35 54.84 3.23 51.61 	60.87 89.00 47.06 92.84 	C19=2 C28=2 C3=2 C17=1 CHARACTERISTIC CATEGORIES CLUSTER 4 / 5 C7=4 C3=2 C13=3 C22=3 C6=3 C21=1 C32=1 C4=2 C7=3 C30=2 C8=4 C19=2 C6=1 C6=2 C19=1 C6=2 C19=1 C5=3 C13=2 C13=1 C5=3 C13=2 C13=1	OF VARIABLES V6 V4 V2 V12 V5 V20 V31 V3 V6 V29 V7 V18 V5 V5 V5 V18 V17 V4 V4 V4 V4 V12 V12	AR 2 BA 2 AB 2 AP 1 IDEN 1 AB 2 AL 3 AU 3 AU 3 AT 1 BE 1 AC 2 AF 3 BC 2 AF 3 BC 2 AF 3 BC 2 AF 1 AB 2 AF 3 AU 3 AU 3 AU 1 AU 1 AU 1 AU 1 AU 1 AU 1 AU 1 AU 1	238 348 363 363 363 363 363 363 363 363 364 364
10.09 8.42 6.62 10.09 8.42 6.66 10.04 10.09 8.42 10.09	0.000 0.000 0.000 0.000 0.000 4 / 	2.52 4.89 0.54 4.41 5 	19.35 54.84 3.23 51.61 	60.87 89.00 47.06 92.84 	C19=2 C28=2 C3=2 C17=1	V6 V4 V2 V12 V21 V5 V20 V31 V3 V6 V29 V7 V18 V5 V5 V5 V18 V17 V4 V12 V12 V12 V12 V12 V12 V12 V12 V17	AR_2 BA_2 AB_2 AP_1 IDEN I IDEN I IDEN I AB_2 AL_3 AU_3 AE_3 AU_3 AE_1 AC_2 AC_2 AC_2 AC_1 AC_2 AC_2 AC_1 AC_2 AC_2 AC_1 AC_2 AC_3 AC_2 AC_3 AC_2 AC_3 AC_2 AC_3 AC_2 AC_3 AC_2 AC_3 AC_3 AC_3 AC_3 AC_3 AC_3 AC_3 AC_3	238 348 363 363 363 363 363 365 365 365 366 369 311 30 266 422 238 117 135 45 355 187 230 733 271
10.09 8.42 6.66 10.09 8.42 6.66 6.04 4.92 4.74 4.39 4.09 3.02 2.99 2.75 2.38 -2.45 -2.47 -2.52 -2.71 -2.75 -2.83 -2.83 -2.89	0.000 0.000 0.000 0.000 4 / 	2.52 4.89 0.54 4.41 5 PEF GRP/CAT 100.00 49.33 26.63 42.19 33.33 27.27 26.47 33.33 25.19 36.67 38.46 30.95 18.07 7.69 8.15 8.61 12.22 0.00 9.09 9.00 9.00 4.11 10.70 10.7	19.35 54.84 3.23 51.61 	60.87 89.00 47.06 92.84 	C19=2 C28=2 C3=2 C17=1	V6 V4 V2 V12 V21 V5 V20 V31 V3 V6 V29 V7 V18 V5 V5 V5 V5 V18 V17 V4 V4 V4 V4 V12 V12 V7 V29 V7 V29	AR_2 BA_2 AB_2 AP_1 IDEN I IDEN I IDEN I AB_2 AL_3 AL_3 AE_3 AE_1 AC_2 AF_1 AC_2 AC_1 AC_2 AC_1 AC_2 AC_1 AC_2 AC_1 AC_2 AC_1 AC_2 AC_1 AC_2 AC_2 AC_1 AC_2 AC_2 AC_2 AC_2 AC_2 AC_2 AC_2 AC_2	238 348 363 363 363 363 365 365 365 366 366 367 367 366
10.09 8.42 6.62 10.09 8.42 6.60 4.74 4.39 4.09 2.79 2.55 2.38 2.47 2.52 2.71 2.71 2.71 2.72 2.83 2.84 2.99 4.09	0.000 0.000 0.000 0.000 4 / PROB. 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000 0.000 0.000 0.000	2.52 4.89 0.54 4.41 	19.35 54.84 3.23 51.61 	GLOBAL	C19=2 C28=2 C3=2 C17=1 CHARACTERISTIC CATEGORIES CLUSTER 4 / 5 C7=4 C5=4 C3=2 C13=3 C21=1 C32=1 C4=2 C7=3 C30=2 C8=4 C19=2 C6=1 C6=2 C19=1 C18=4 C5=1 C5=3 C13=2 C13=1 C8=1 C30=1 C8=1 C30=1 C4=1 C30=1 C4=1	OF VARIABLES V6 V4 V2 V12 V21 V5 V20 V31 V3 V6 V29 V7 V18 V5 V18 V5 V18 V17 V4 V4 V4 V12 V12 V7 V29 V3	AR 2 BA 2 AB 2 AP 1 IDEN 1 IDEN 1 AB 2 AL 3 AU 3 AU 3 AT 1 BE 1 AC 2 AF 3 BC 2 AF 3 BC 2 AF 1 AB 2 AF 3 AU 3 AU 3 AU 3 AU 3 AU 1 AU 1 AU 1 AU 1 AU 1 AU 1 AU 1 AU 1	238 348 363 363 363 363 363 363 363 363 364 364
10.09 8.42 6.62 10.09 8.42 6.66 10.09 8.42 6.66 6.04 4.92 4.74 4.39 4.09 2.79 2.55 -2.38 -2.47 -2.52 -2.71 -2.75 -2.84 -2.99 -4.02	0.000 0.000 0.000 0.000 0.000 4 / 	2.52 4.89 0.54 4.41 5 	19.35 54.84 3.23 51.61 	60.87 89.00 47.06 92.84 	C19=2 C28=2 C3=2 C17=1	OF VARIABLES V6 V4 V2 V12 V21 V5 V20 V31 V3 V6 V29 V7 V18 V5 V5 V5 V5 V18 V17 V4 V12	AR_2 BA_2 AB_2 AP_1 IDEN I IDEN I IDEN I AB_2 AL_3 AU_3 AE_3 AU_3 AE_1 AC_2 AC_2 AC_2 AC_1 AC_2 AC_2 AC_1 AC_2 AC_1 AC_2 AC_1 AC_2 AC_3 AC_2 AC_3 AC_1 AC_2 AC_1 AC_2 AC_3 AC_1 AC_2 AC_1 AC_2 AC_3 AC_1 AC_2 AC_1 AC_2 AC_1 AC_2 AC_1 AC_1 AC_2 AC_1 AC_1 AC_2 AC_1 AC_1 AC_1 AC_1 AC_1 AC_1 AC_1 AC_1	238 348 363 363 363 365 365 365 366 369 310 366 422 388 1177 1355 45 357 230 733 365 260 94
10.09 8.42 6.62 10.09 8.42 6.60 4.74 4.39 4.09 2.79 2.55 2.38 2.47 2.52 2.71 2.71 2.71 2.72 2.83 2.84 2.99 4.09	0.000 0.000 0.000 0.000 0.000 4 / 	2.52 4.89 0.54 4.41 	19.35 54.84 3.23 51.61 	GLOBAL	C19=2 C28=2 C3=2 C17=1	OF VARIABLES V6 V4 V2 V12 V21 V5 V20 V31 V3 V6 V29 V7 V18 V5 V18 V5 V18 V17 V4 V4 V4 V12 V12 V7 V29 V3	AR 2 BA 2 AB 2 AP 1 IDEN 1 IDEN 1 AB 2 AL 3 AU 3 AU 3 AT 1 BE 1 AC 2 AF 3 BC 2 AF 3 BC 2 AF 1 AB 2 AF 3 AU 3 AU 3 AU 3 AU 3 AU 1 AU 1 AU 1 AU 1 AU 1 AU 1 AU 1 AU 1	238 348 363 363 363 363 363 363 363 363 364 364
10.09 8.42 6.62 10.09 8.42 6.66 10.09 8.42 6.66 6.04 4.92 4.74 4.39 4.09 2.79 2.55 -2.38 -2.45 -2.71 -2.75 -2.83 -2.84 -2.99 -4.02 -4.39 -4.22 -4.39 -4.22 -4.39 -4.74	0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	2.52 4.89 0.54 4.41 5 PEF GRP/CAT 100.00 49.33 26.63 42.19 33.33 27.27 26.47 33.33 27.27 26.47 33.46 30.95 18.07 7.69 8.15 8.61 12.22 0.00 9.09 9.00 9.00 9.00 4.11 10.70 10.00 4.11 10.70 10.00	19.35 54.84 3.23 51.61 	60.87 89.00 47.06 92.84 	C19=2 C28=2 C3=2 C17=1	V6 V4 V2 V12 V21 V5 V20 V31 V3 V6 V29 V7 V18 V5 V5 V5 V18 V17 V4 V4 V12 V12 V12 V17 V4 V4 V12 V12 V17 V29 V3 V4	AR_2 BA_2 AB_2 AP_1 IDEN I IDEN I IDEN I AB_2 AL_3 AL_3 AE_1 AC_2 AF_1 AC_2 AC_1 AC_1 AC_2 AC_1 AC_1 AC_1 AC_1 AC_2 AC_1 AC_1 AC_1 AC_1 AC_1 AC_1 AC_1 AC_1	238 348 363 363 363 365 365 75 184 64 132 136 69 131 30 26 42 238 117 135 45 357 187 230 73 365 260 94 322 255 125
10.09 8.42 6.62 10.09 8.42 6.60 4.74 4.39 4.09 2.79 2.55 2.38 2.47 2.52 2.71 2.71 2.71 2.72 2.73 2.84 2.99 4.09 4.22 4.39 4.09 4.22 4.39	0.000 0.000 0.000 0.000 0.000 4 / PROB. 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	2.52 4.89 0.54 4.41 	19.35 54.84 3.23 51.61 	GLOBAL	C19=2 C28=2 C3=2 C17=1	OF VARIABLES V6 V4 V2 V12 V21 V5 V20 V31 V3 V6 V29 V7 V18 V5 V18 V5 V18 V17 V4 V4 V4 V12 V12 V12 V7 V29 V3 V3 V4	AR 2 BA 2 AB 2 AP 1 IDEN 1 IDEN 1 AB 2 AL 3 AU 3 AE 3 AC 1 AF 3 BC 1 AF 3 BC 2 AF 3 AC 2 AF 3 AC 2 AF 1 AC 1 AC 2 AF 1 AC 1 AC 1 AC 1 AC 1 AC 1 AC 1 AC 1 AC	238 348 363 363 363 363 363 363 363 363 364 364

CLUSTER 5 / 5

					CHARACTERISTIC			WEIGHT
		GRP/CAT	CAT/GRP	GLOBAL	CATEGORIES	OF VARIABLES		
					CLUSTER 5 / 5		aa5a	93
8.65	0.000							62
8.53	0.000	42.93	84.95	47.06	C9=1 C3=2	V2		184
	0.000	75.00			C11=1		AJ 1	40
	0.000	52.33			C14=1		AM 1	
6.17	0.000	43.18			C6=3	V5	AE 3	132
5.88	0.000	59.62	33.33	13.30	C10=1	V5 V9	AI 1	52
5.75	0.000	79.17	20.43	6.14	C13=4	V12	AL 4	24
5.43	0.000	42.15	54.84	30.95	C10=3	V9	AI 3	121
5.04	0.000	32.35	82.80	60.87	C19=2	V18	AR 2	238
4.43	0.000	66.67	17.20	6.14	C12=1	V11 V4	AK_1	
4.07	0.000	33.16	66.67	47.83	C5=3	V4	AD_3	
3.98	0.000	27.47	95.70	82.86	C7=2	V6	AF_2	324
3.70	0.000	32.43			C12=2		AK_2	185
3.58	0.000	33.77	55.91	39.39	C20=1	V19	AS_1	154
	0.000	47.62	21.51	10.74	CO-1	7.77	AG_4	
	0.004	35.71			C22=3	V21	AU_3	
	0.004	41.86			C20=3		AS_3	
	0.008	27.78			C37=1		BJ_1	
-2.36		17.31	29.03	39.90	C27=4	V26	AZ_4	
-2.41		16.55			C37=2	V36	BJ_2	
-2.51		12.33			C13=1	V12	AL_1	
-2.67		3.57			C20=4	V19		28
-2.92		3.23	1.08	7.93	C11=3	V10	AJ_3	
-2.98			8.60	19.18	C5=4	V4 V6	AD_4	
-3.13		0.00	0.00	6.39	C'/=4	V6	AF_4	
-4.01		19.38			C11=2		AJ_2	
-4.18		13.25			C20=2		AS_2	
-4.76		16.61	48.39	69.31	C8=1	V7	AG_1	
-4.93		10.60	17.20	38.62	C19=1 C6=1	V18	AR_1	
-5.10		7.69	9.68	29.92	C6=1	V5	AE_1	
-6.35					C12=3		AK_3	
-6.54		15.74			C14=2		AM_2	
-6.84			5.38	31.97	C22=1	V21	AU_1	
-7.83	0.000	7.84	17.20	52.17	C9=3	V8	AH_3	
-8.47	0.000	6.80	15.05	52.69	C3=1	V2	AB_1	
-9.69	0.000	5.16	11.83	54.48	C10=2	V9	AI_2	

Fuente: Esta investigación

4.3 MODELO HIDROLÓGICA CON SWAT

Como aspecto relevante de esta investigación se presenta los resultados del modelo hidrológico SWAT, el cual es aceptado por el Ministerio de Ambiente y Desarrollo Sostenible de Colombia, como herramienta para determinación de servicios ambientales, permitiendo predecir los impactos positivos o negativos (externalidades) que genera el manejo del suelo y la vegetación sobre la producción de agua, sedimentos e incluso químicos agrícolas especialmente e cuencas grandes (complejas) caracterizadas por tener distintas clases de suelos, usos del suelo múltiples, y además, prácticas de manejo convencionales que se realizan en forma repetitiva durante largos periodos temporales (Arnold *et. al.*, 1987).

Líneas de escorrentía

SWAT tiene la posibilidad de generar las líneas que definen los cauces, opción que se utilizó en el presente proyecto; Para esto, el área que se tomó para definir los cauces fue la menor posible, según las opciones arrojadas por el programa

correspondiente a 10 Ha y a 12 celdas por análisis. A continuación se muestra las redes de drenaje, para la cuenca en estudio.

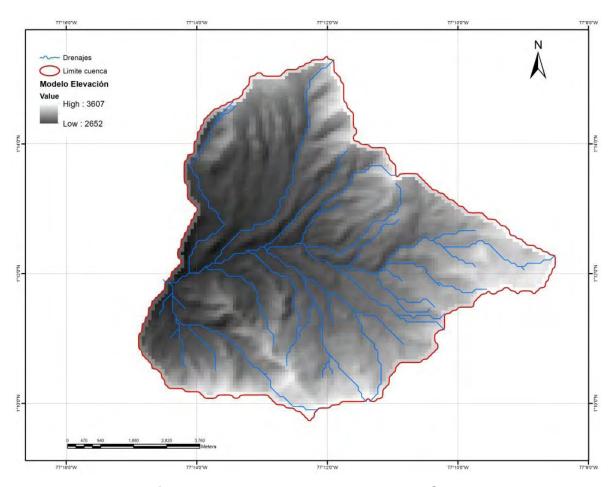


Figura 6. Red de drenaje simulado por SWAT.

La red de drenaje de la cuenca alta del río Pasto, presenta un gran volumen de escurrimiento y la mayor velocidad de desplazamiento de las agua, estas características son más relevantes en la parte de la microcuenca las Tiendas y el Barbero donde hay mayor precipitación y pendientes fuerte.

La densidad de drenaje, se observar una importante red hídrica, lo que manifiesta una abundancia de escurrimiento, con una respuesta rápida al flujo de la precipitación, lo cual señala a su vez la susceptibilidad del suelo a sufrir procesos erosivos y arrastre de sedimentos, en las zonas donde se realiza preparación del suelo para la siembra de cultivo limpios, la mayor velocidad de desplazamiento del agua (tiempos de concentración bajos) y menor infiltración, son también aspectos

relevantes para la disponibilidad del recurso hídrico; se resalta estos aspectos en la gestión y el manejo de las microcuenca, y en la propuesta del esquema PSAH.

• Definición de puntos de entradas y salidas

Las entradas se establecen, en la eventualidad de que haya una porción de la cuenca que no va a ser modelada y se conozca el caudal que entrega dicha porción, este caso no se presenta en el estudio, por lo que no fue necesario definir alguna entrada. La definición de la salida marca el punto final de la red de drenaje a estudiar, es decir la cuenca de interés. Con el fin de poder ver el ajuste del modelo se hace coincidir este punto de salida con la ubicación de una estación de caudales conocida, para este caso la estación limnigráfica de bocatoma Centenario.

Definición de Reservorios.

SWAT permite crear reservorios en el área de estudio; si bien la cuenca escogida cuenta con un reservorio (acueducto), no fue introducida al modelo puesto que se carece de la información mínima necesaria para alimentar las entradas solicitadas por el programa. Una vez concluidos los pasos descritos de la implementación del modelo se obtuvo la definición de las cuencas de drenaje, con el fin de continuar con el modelamiento; a continuación se presenta el esquema de las cuencas generadas para el área de estudio, la cual comprende una extensión de 6.686,3 ha.

Tabla 8. Áreas de las cuencas generadas.

Subcuenca	Area	Elevación	ElevMin	ElevMax
1	178.6	2910	2751	3261
2	376.1	3076	2785	3458
3	159.0	3024	2792	3429
4	1220.5	3045	2717	3505
5	806.8	3295	2949	3607
6	253.0	3185	2960	3479
7	66.7	3006	2870	3171
8	490.6	2865	2696	3337
9	262.4	2881	2707	3209
10	180.3	2959	2737	3342
11	613.7	3087	2747	3549
12	517.9	2817	2652	3041
13	964.1	2999	2663	3576
14	103.4	3069	2937	3245
15	377.8	3126	2870	3518
16	115.4	3136	2867	3345
Total	6686.3			

Fuente: Esta investigación.

Está tabla muestra la distribución en área de las diferentes microcuencas delimitadas y analizadas por el modelo SWAT, en donde se resalta que los valores no presenta variaciones amplias, lo cual es no deseable. Para el caso de la microcuenca priorizada para el esquema PSAH (las Tiendas), presenta un área de 806.8 ha, una elevación promedio de 3295 m.s.n.m, con una altura máxima de 3607 m.s.n.m y una mínima de 2949 m.s.n.m.

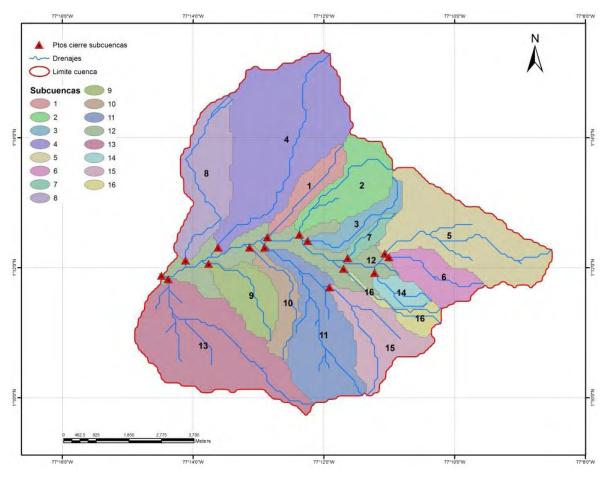
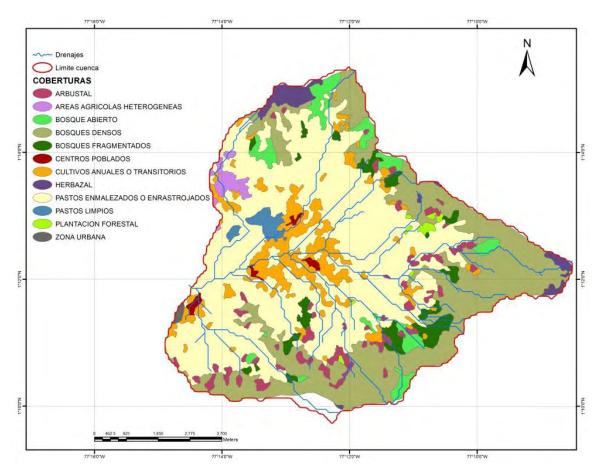



Figura 7. Definición de microcuencas y puntos de cierres.

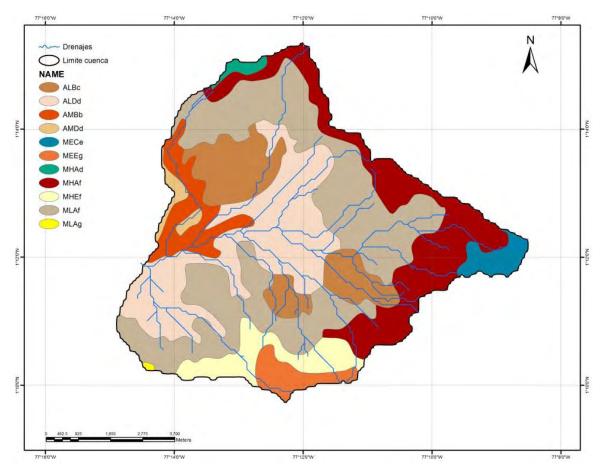
En la figura se observa la distribución espacial de las microcuencas y los puntos de cierre que I programa utilizó para determinar los resultados obtenidos en la investigación. En el caso de la mcrocuenca las Tiendas corresponde al número cinco (5) en el polígono café claro, en el cual se observa que antes del punto de cierre del modelo hay tres (3) fuentes de agua a diferencia de muchas otras microcuencas que solo tiene un tributario hasta el punto de cierre.

• Definición de los tipos de cobertura vegetal

La distribución para la zona de interés se presenta en la siguiente figura 8.

Figura 8. Clasificación de cobertura de la cuenca alta del río Pasto. Fuente: PORH, 2011, modificada por el autor.

Teniendo como base la figura anterior se procedió a determinar los tipos de cobertura vegetal más representativos para la zona de estudio; de este análisis se obtuvieron las coberturas que se encuentran en la zona priorizada para el esquema PSAH, en la microcuenca las Tiendas como son: bosque denso, bosque abierto, arbustales, herbazales, pastos enmalezados o enrastrojados y cultivos anuales o transitorios.


Tabla 9. Coberturas con el código de SWAT.

COBERTURA	Codigo de SWAT	Area (Ha)
HERBAZAL	FESC	131.2
BOSQUE ABIERTO	OAK	287.4
BOSQUES FRAGMENTADOS	APPL	285.2
PLANTACION FORESTAL	PINE	32.9
AREAS AGRICOLAS HETEROGENEAS DE CLIMA FRIO	POTA	226.6
CULTIVOS ANUALES O TRANSITORIOS DE CLIMA FRIO	POTH	677.0
PASTOS ENMALEZADOS O ENRASTROJADOS	RYEE	3751.6
PASTOS LIMPIOS	RYEL	110.6
CENTROS POBLADOS	URML	54.3
ZONA URBANA	URHD	308.8
BOSQUES DENSOS	FRST	2045.7
ARBUSTAL	MESQ	317.3

Fuente: Esta investigación.

Para lograr estructurar el modelo, se realizó la relación de coberturas existentes en la cuenca alta del río Pasto, con los códigos existentes en el modelo SWAT y así lograr llevar a cabo el ajuste de los procesos hidrológicos, climáticos, suelos, vegetación, etc. Para lograr ajustar el modelo y así realizar las simulaciones propuesta o los escenarios deseados en el esquema PSAH, en la zona priorizada en esta investigación (microcuenca las Tiendas).

Definición de los tipos de suelo

Figura 9. Clasificación taxonómica de los suelos de la cuenca alta del río Pasto. Fuente: IGAC, 2004.

Para efectos del modelo, se tomaron las 11 clases de suelo y se obtuvieron todos los parámetros requeridos por SWAT, dando especial interés a aquellos involucrados en el proceso lluvia escorrentías y concentrándose un poco menos en los parámetros relacionados con la calidad del agua y los fenómenos químicos al no ser el objeto de esta investigación. Los tipos de suelo de mayor importancia de área en la cuenca fueron: MLAf, ALDd y MHAf. En la siguiente tabla se relacionan los valores de los parámetros para cada tipo de suelo tomados inicialmente. (IGAC, 2004)

Tabla 10. Parámetros de Suelos Iniciales.

Suelo	Perfil	Profundidad (mm)	Densidad aparente (g/cm3)	Agua disponible en el suelo (mm/mm)	Conductividad hidraulica (mm/hr)	Carbono (%)	Arcilla (%)	Limos (%)	Arena (%)	Graba	Textura
		0-140	0.85	0.18	80.67	15.19	12	42	46		F
		140-310	0.98	0.18	80.67	15.53	12	42	46		F
		310-430	0.72	0.20	93.20	5.94	10	50	40		F
MLAf	NA-02	430-580	0.72	0,19	93.02	4.78	10	46	44		F
		650-1120	0.76	0.13	104.94	4.47	8	26	66		FA
		1120-1320	0.64	0.08	98.76	2.53	6	16	78		FA
		1320-1850	1.21	0.10	103.50	3.26	6	22	72		FA
		0-550	0.82	0.12	91.49	5.06	10	18	72		FA
MHAd	N-03	550-670	1.57	0.04	92.07	0.05	6	6	88		A-AF
IVITIAU	14-03	670-950	1.50	0.05	91.90	0.83	6	8	86		AF
		950-1420	1.34	0.04	125.31	0.03	4	4	92		Α
		0-350	1.00	0.17	80.02	17.20	12	38	50		F
		350-710	0.92	0.20	93.20	11.18	10	48	42		F
MHAf	NA-03	710-910	1.05	0.16	58.39	7.98	16	34	50		F
		910-1100	1.23	0.09	120.28	2.93	4	20	76		FA
		1100-1500	1.53	0.07	75.93	0.62	6	18	76		FA
		0-120	1.32	0.11	5.83	2.52	32	34	34	17	FAr
		120-300	1.45	0.12	4.21	1.24	32	28	40	8	FAr
AMBb	NA-07	300-740	1.58	0.10	14.46	0.48	18	28	54	7	FA
		740-1500	1.48	0.10	15.61	1.24	16	34	50	23	F
		1500-2000	1.57	0.11	8.10	0.34	22	32	46	8	F
ALBc	NA-06	0-350	1.32	0.13	14.91	2.82	26	28	46		F
		0-500	0.53	0.14	116.40	11.50	7	31	62		FA
		500-950	0.88	0.13	147.62	5.90	4	28	68		FA
MECe	N-16	950-1460	0.97	0.15	124.95	13.20	6	34	60		FA
		1460-1600	1.40	0.11	70.09	1.67	6	32	62		FA
		1620-2000	1.60	0.11	9.56	0.10	22	26	52		FArA
		0-320	1.33	0.12	56.37	2.38	10	32	58		FA
	NC 20	320-520	1.33	0.13	62.68	2.27	8	36	56		FA
ALDd	NS-38	520-800	1.39	0.12	60.10	1.86	8	32	60		FA
		800-1200	1.58	0.06	53.37	0.40	10	12	78		FA
AMDd	Ps-143	0-250	1.44	0.13	6.94	1.61	30	28	42		FAr
		0-250	0.93	0.18	106.49	28.50	8	46	46		F
		250-380	1.04	0.16	59.05	15.80	16	36	48		F.
MHEf	NA-69										F
		380-680	1.05	0.14	78.38	17.78	12	28	60		
		680-850	1.01	0.13	126.86	7.11	6	26	68		FA
NAL A =	ND oc	0-0,5	1.01	0.13	126.86	5.22	6	26	68		FA
MLAg	NR-38	0,5-250	1.29	0.12	70.97	2.61	8	32	60		FA
NACE -	ND 00	250-900	1.41	0.13	42.25	1.70	10	40	50		F
MEEg	NR-06	0-500	1.03	0.15	92.21	10.76	10	30	60		FA

Fuente: Esta investigación.

Parte fundamental de los escenarios propuestos y simulados son el producto del ajuste del modelo inicial, el cual se logró calibrar y validad con la información aquí suministrada.

• Generación de las Unidades de Respuesta Hidrológica (HRU)

Con los tipos de suelo definido, coberturas, cuencas (microcuencas) y el modelo de elevación; se procedió a realizar el traslapo de estas capas para así generar las HRU; unidades caracterizadas por tener una respuesta hidrológica única de acuerdo a las características de los cruces de las capas que la conforman y de las cuales se obtuvo el balance hidrológico final.

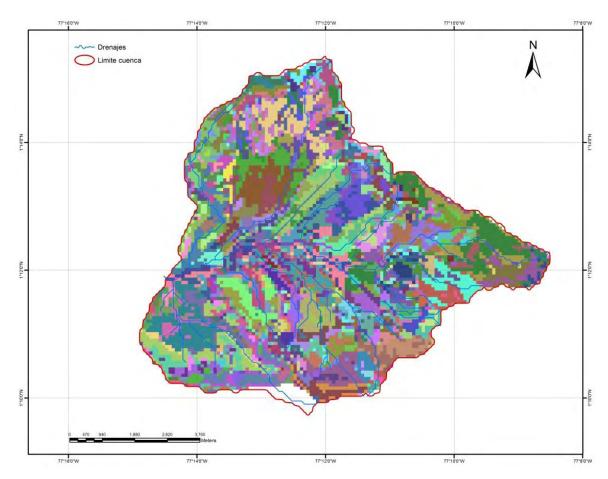


Figura 10. Distribución de HRUs en la cuenca

La zona priorizada para la implementación del esquema PSAH (Q. Las Tiendas), presenta variabilidad en las HRU, lo cual permite ver los cambios realizados en los escenarios propuestos y los posibles beneficios obtenidos por esto cambios. Estas unidades presentan homogeneidad entre si y diferencia entre ellas, lo cual se puede identificar por la gama de colores.

RESULTADOS DEL MODELO

Calibración y validación del Modelo

De los archivos relacionados a los procesos de simulación del modelo, el único que se modificó fue el relacionado con los acuíferos (Ground Water Data), esto con el fin de simular el comportamiento real de las descargas de agua al caudal. En la siguiente gráfica se presenta la respuesta generada en el caudal ante la variación de los parámetros de acuíferos cambiados, para el periodo de calibración comprendido entre 2006 al 2008 con respecto a los datos medidos en la estación empleada ubicada en la salida de la cuenca.

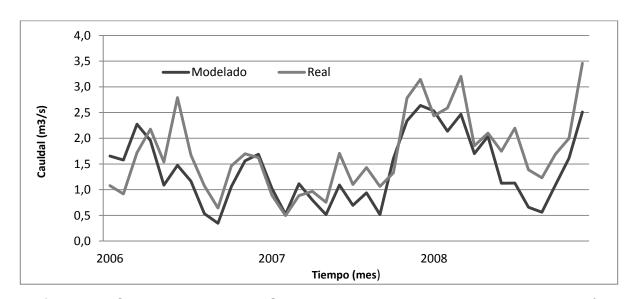


Figura 11. Caudal simulado con SWAT contra caudal real periodo de calibración.

Es de aclarar que si bien SWAT entrega al usuario como datos de salida, información referente a transporte de sedimentos y contaminantes, no fue posible realizar una calibración con esta información debido a la carencia de muestreos que permitan conocer el comportamiento de la cuenca en cuanto a flujo de sedimentos y pesticidas se refiere, solamente se realizó sedimentos.

Para llevar a cabo la verificación del modelo, se utilizaron como parámetros de entrada aquella combinación que arrojó un mejor ajuste en la etapa de calibración. El periodo de validación comprende los años 2009 al 2012 que permite corroborar el ajuste que presentaba el modelo, al simular el comportamiento de la cuenca para

otros años diferentes a los utilizados para ser calibrado. A continuación se presentan la gráfica de caudal simulado versus el aforado en la estación.

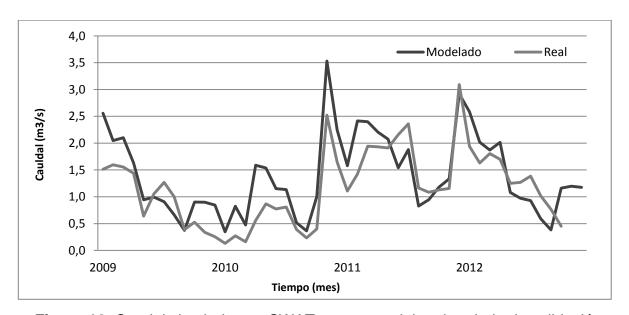


Figura 12. Caudal simulado con SWAT contra caudal real periodo de validación.

Tal como se aprecia en la figura anterior el modelo predice adecuadamente los caudales de salida, aún para años diferentes a los utilizados en la calibración, presentando una sobreestimación en algunos meses comprendidos entre el 2009 al 2010. En la siguiente tabla se presentan los coeficientes de correlación y el coeficiente de Nash para cada uno de los periodos de calibración y validación, así como el acumulado de todo el periodo.

Tabla 11. Coeficiente de Correlación y Nash, para la Verificación del Modelo.

Estadisticos\Peridodo	Calibracion	Validacion	Todo
Coeficiente de Nash	0.55	0.54	0.54
Correlción (R)	0.81	0.82	0.76

Fuente: Esta investigación.

A continuación se presenta una tabla con los volúmenes totales mensuales, expresados en metros cúbicos por segundo (m3/s) tanto para los valores obtenidos de la simulación con SWAT y los registrados en la estación de aforo.

Tabla 12. Caudales (m3/s) mensuales simulados y observados en las estaciones

	2006		2007		2008		2009		2010		2011		2012	
Mes ▼	Simulado	Aforado												
1	1.65	1.08	1.03	0.89	2.53	2.43	2.56	1.51	0.35	0.13	1.58	1.11	2.59	1.94
2	1.58	0.92	0.52	0.50	2.14	2.59	2.05	1.60	0.82	0.27	2.42	1.42	2.02	1.63
3	2.28	1.72	1.12	0.89	2.47	3.21	2.10	1.56	0.47	0.16	2.40	1.94	1.87	1.81
4	1.96	2.18	0.80	0.97	1.70	1.85	1.63	1.44	1.59	0.56	2.21	1.93	2.02	1.70
5	1.09	1.54	0.51	0.76	2.04	2.10	0.94	0.64	1.54	0.87	2.07	1.91	1.08	1.25
6	1.47	2.79	1.09	1.71	1.13	1.75	0.99	1.05	1.15	0.77	1.54	2.16	0.97	1.27
7	1.17	1.67	0.70	1.10	1.13	2.20	0.91	1.27	1.13	0.81	1.88	2.36	0.93	1.38
8	0.53	1.08	0.94	1.43	0.66	1.39	0.66	1.00	0.52	0.39	0.83	1.16	0.59	1.02
9	0.35	0.64	0.52	1.06	0.56	1.23	0.37	0.39	0.37	0.23	0.95	1.08	0.38	0.77
10	1.06	1.47	1.61	1.33	1.09	1.69	0.90	0.53	1.00	0.40	1.18	1.13	1.16	0.45
11	1.56	1.70	2.34	2.78	1.61	2.00	0.90	0.34	3.53	2.52	1.33	1.16	1.20	
12	1.69	1.62	2.64	3.15	2.51	3.46	0.85	0.26	2.25	1.65	2.92	3.09	1.18	
Gran Total	16.38	18.40	13.80	16.55	19.56	25.89	14.87	11.58	14.72	8.76	21.30	20.45	15.98	13.22

Fuente: Esta investigación.

Análisis de Resultados del modelo Implementado.

Una vez implementado y calibrado el modelo, se puede concluir que los datos generados por éste, representan de una manera adecuada los fenómenos físicos presentados en la subcuenca, esto se corroboró gracias a los buenos ajustes presentados para los años de calibración y de verificación utilizados en esta investigación.

Al comparar las series de caudales observadas y modeladas, se observa que el modelo implementado, es capaz de predecir de buena manera los tiempos de primer arribo de las crecientes y la duración de las mismas; pero en algunos casos no logra predecir el pico máximo de las series; esto puede estar relacionado con el almacenamiento temporal de agua, realizado por el conjunto suelo vegetación, definido en el alcance del proyecto, para cada una de las HRU's obtenidas por el programa.

En ciertos periodos de tiempo, los datos modelados tienden a ser un poco superiores a los observados para algunos meses; si se supone que para un período extenso, el almacenamiento de la cuenca no cambia, y teniendo en cuenta que las entradas son conocidas al provenir de datos de lluvias medidos, se puede concluir que el modelo tiende a subvalorar los procesos asociados con los sumideros de agua (evapotranspiración, generación de biomasa, recarga de acuíferos profundos,

etc); aclarando que la disponibilidad y ubicación de las tres estaciones de precipitación empleadas, no cubre y no representa de la mejor forma el clima de la subcuenca, siendo necesario para obtener un mejor ajuste contar con más registros de estaciones ubicadas en otras áreas de la cuenca donde se presente mayor variabilidad.

No se contempló el manejo de agua asociada a captaciones o reservorios y tampoco las prácticas agrícolas de la zona. Adicional a esto el modelo de elevación es de 90 metros de resolución y para el área de la cuenca se recomienda tener mejor precisión para obtener un mapa de pendientes más detallado.

Representación espacial de los resultados.

A continuación se presenta de forma gráfica la producción de agua en milímetros año en cada una de las HRUs de la subcuenca, determinando cuales son las de mayor aporte de agua al caudal. De igual forma se sobrepuso el mapa de coberturas asociadas a cultivos anuales y transitorios y los pastos enmalezados; con la finalidad de identificar sobre estas coberturas cuales son las áreas dentro de la cuenca que podrían ser definidas como prioritarias para realizar un cambio de unos de coberturas con enfoque en la conservación de la subcuenca y de mantener o mejorar el caudal como servicio ecosistémico.

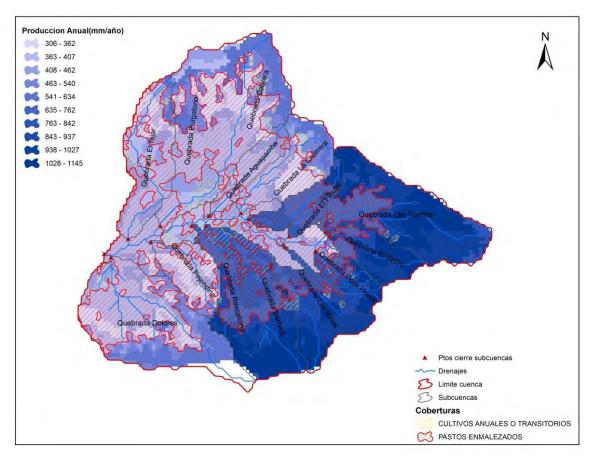
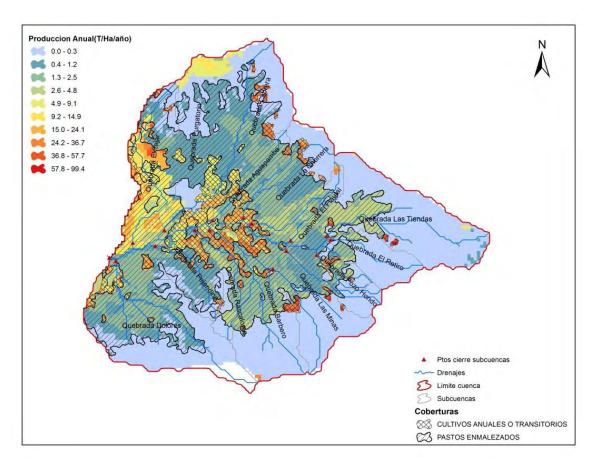



Figura 13. Producción de agua por cada HRUs de la cuenca.

De igual forma se realizó el mapa de producción de sedimentos en Toneladas/hectáreas/año para cada uno de los HRUs de la cuenca y de esta forma identificar las áreas con el mayor aporte por pérdida de suelos.

Figura 14. Producción de sedimentos por cada HRUs de la cuenca.

4.4 PRIORIZACIÓN DE MICROCUENCA LAS TIENDAS

De acuerdo a lo propuesto por el IDEAM en la resolución 104 de 2003 "Por la que se establecen los criterios y parámetros para la Clasificación y Priorización de cuencas hidrográficas" y desarrollada por la Corporación Autónoma de Nariño-CORPONARIÑO en el 2008 en el documento "Clasificación y Priorización de Cuencas Hidrográficas en el Departamento de Nariño" se realizó la priorización a nivel regional por subzonas hidrográficas (17 en Nariño), encontrándose que para el caso de la subzona del Río Juanambu, la cuenca de mayor prioridad (orden de prioridad 1) es la del Río Pasto, con un valor de 266.89 (muy alta prioridad).

Según el Índice de escasez propuesto por el Minambiente, 2004 mediante resolución 0865 "Por la cual se adopta la metodología para el cálculo del índice de escasez para aguas superficiales a que se refiere el Decreto 155 de 2004 y se adoptan otras

disposiciones" y que fue desarrollado por CORPONARIÑO, mediante resolución 989 del 19 de diciembre del 2008 "por medio del cual se establece los índices de escasez de agua superficial calculados en los sectores hídricos de la cuenca del río Pasto, con jurisdicción de la corporación autónoma de Nariño-CORPONARIÑO" encontrándose que la subcuenca alta del río Pasto, la subzona (Río Pasto Alto), el sector (Río Pasto Alto-Alto), microcuenca quebrada las Tiendas el índice de escasez de agua por sector es de 88.18%; categorizándose en un índice de escasez alto.

De acuerdo al artículo segundo de la anterior resolución el índice fijado, será tenido en cuenta para el cálculo de la tarifa por la utilización del agua (TUA), y empleado como soporte en la aplicación de los procesos de ordenamiento y reglamentación del recurso hídrico.

Los sectores hídricos con índice de escasez alto, es decir en donde el porcentaje de oferta hídrica utilizada es mayor al 40%, con base en la interpretación del IDEAM presentan una fuerte presión sobre el recurso hídrico manifiesta una urgencia máxima para el ordenamiento de la oferta y la demanda. En estos casos la baja disponibilidad de agua es un factor limitador del desarrollo económico, requiriendo fuertes inversiones económicas para mejorar la eficiencia en la utilización del agua en los sectores productivos y en los sistemas de abastecimientos de agua potable (POMCA, 2008).

Tabla 13. Factores considerados mediante la metodología de cogestión adaptativa de cuencas, para la priorización del área en la subcuenca alta del río Pasto.

Factor	Hipótesis para el	Implicaciones en la	Territorio a priorizar para
	factor	cuenca	el factor
Agua para	El caudal se ha	Grado de amenaza a la	Microcuenca las Tiendas
consumo	reducido, la	disponibilidad de agua	(uso actual del suelo
humano	estacionalidad es más	potable actual o potencial	ganadería en su mayoría y
	acentuada y la calidad	en suficiente cantidad y	pocos cultivo de pancoger,
	del agua está en	calidad. Posibilidad de	pendiente pronunciadas,
	riesgo por pesticidas,	abrir una brecha mayor	suelos francos arenosos,
	bacterias, coliformes	entre la oferta y la	predios propios, la mayoría
	o sedimentos. El	demanda en el futuro.	de ellos viven en la parte

	origen de la amenaza	Existen factores externos	baja, algunos son
	está en la zona de	no controlables, como el	carboneros).
	recarga hídrica.	cambio climático.	
Inundaciones	Áreas de inundación	Grado de amenazas de	Zonas de cabrera hasta la
	han aumentado, y con	inundaciones puede	bocatoma de Centenario,
	ellas, los riesgos	aumentar la pérdida de	culturalmente esta zona
	humanos y	tierras productivas,	cultivada, económica brinda
	económicos	viviendas, calidad de agua	el sostenimiento familiar de
	asociados.	para consumo humano,	los propietarios y zonas con
		etc. Existen factores	posible potencial de recarga
		externos no controlables,	hídrica la microcuenca Las
		como el cambio climático.	Tiendas (uso actual del
			suelo es para ganadería
			extensiva y cultivos limpios
			como la papa y la cebolla,
			alta pendientes del terreno,
			mayor escorrentía baja
			retención de humedad en el
			suelo y poca infiltración por
			compactación del suelo y
			cuerpos de agua con
			vegetación raparía por
			tramos y cerca de la
			corriente)
Deslizamiento	Áreas de derrumbes y	Riesgo humano en	Por su relieve y la sobre
de tierra	deslizamiento han	función de las variables de	explotación la microcuenca
	aumentado, y con	la propiedad en las zonas	Las Tiendas es una zona
	ellas los riesgos	de riesgo, altas	de alto riesgo de
	humanos y	pendientes, cortes	deslizamiento en las
	económicos	geológicos naturales y	pendientes pronunciadas
	asociados.	artificiales.	(uso actual del suelo es
			para ganadería extensiva y
			cultivos limpios como la
			papa y la cebolla, alta
			pendientes del terreno,
			mayor riesgo de
			deslizamiento, relieve
			quebrado y ondulado)
Sedimentación	Los sedimentos en	Carga total de sedimentos	Las Tiendas es una zona
en los cuerpos	cuerpos de agua han	en los cuerpos de agua en	con alto grado de erosión

de agua aumei	ntado y, con	la salida de una	del suelo debido a su
ello, s	e ven afectadas	subcuenca o en otro	textura, relieve y cobertura
las fur	nciones	cuerpo de agua (lago).	presente, en todo la
ecológ	gicas,	Cantidad de sedimentos	microcuenca, zonas de
econó	micas y	en los cuerpos de agua	recarga desprotegidas y
social	es de estos	con incidencia en sus	zonas ribereñas
recurs	sos.	funciones ecológicas o	intervenidas (uso actual de
		económicas. Existen	suelo es la ganadería
		factores externos no	extensiva tipo de suelos
		controlables, como	franco arenosos, y fuertes
		eventos climáticos	pendientes)
		externos.	

Fuente: Focuencas II, 2009, modificado por el autor.

La contaminación que presenta actualmente, se debe a la intervención antrópico. Así en los primeros 7,5 km de longitud del río, la contaminación se presenta por actividades productivas principalmente por agroquímicos y de origen orgánico; aguas abajo de la Bocatoma Centenario, se presenta descargas de vertimientos directos al río, originados por actividades domésticas, industriales y comerciales, en la desembocadura, el río no recepciona cargas contaminantes considerables, permitiendo una autodepuración por la dinámica del mismo (Corponariño, 2008).

Situación que refleja la necesidad de plantear alternativas diferentes a las restrecitvas que hasta el momento no han dado resultados en la cuenca ni en el país.

De acuerdo a lo planteado en el PORH, 2011. Los riesgos asociados a la disponibilidad de agua son:

- Riesgo por desabastecimiento de agua (Cantidad insuficiente de agua para satisfacción de las necesidades de todos los beneficiarios o usuarios existentes del recurso hídrico o potenciales.)
- Riesgo por disminución del caudal natural de la corriente superficial (Acciones antrópicas que generen una disminución gradual del caudal principal de la

- Quebrada en el transcurso del tiempo y Acciones Climáticas que generen disminución del caudal de manera temporal en ciertas épocas del año.)
- Riesgo por contaminación de la corriente superficial (Alteración de la calidad fisicoquímica y bacteriológica natural del agua del Rio volviéndolo no apta para la satisfacción de los usos estipulados.)
- Riesgo por inundaciones o desbordamientos (Crecimientos de caudal de la Corriente superficial que afecten a poblaciones ubicadas en áreas no apropiadas) A lo largo de la corriente del río, se han identificado zonas que se encuentran en amenaza por inundación. La primera zona susceptible se localiza en el tramo comprendido entre el corregimiento de cabrera y la bocatoma Centenario, este tramo es conocido como el río Negro, de acuerdo a entrevistas con la comunidad asentada en la ribera, en épocas de invierno se presentan crecientes súbitas del río que han provocado pérdidas en la producción agropecuaria y la afectación de la población que se encuentra a poca distancia del límite máximo de crecidas, sobre el cauce principal (CREPAD, 2008).

Aguas abajo, desde el sector del barrio Popular, pasando por los barrios Pucalpa, Pinos del Norte, SENA, entrada al barrio la Carolina, año tras año, se ha venido presentando fenómenos de inundación, provocando incomodidad a la comunidad que se encuentra a escasos 10 mt del límite máximo de caudal (CREPAD, 2008).

De acuerdo a lo manifestado por algunos de los habitantes se debe dar solución de inmediato y definitiva a este problema.

Los fenómenos de inestabilidad más comunes en la cuenca del río Pasto son los flujos, escurrimientos de laderas, deslizamientos y los procesos erosivos severos como cárcavas, los cuales tienen como factores detonantes las altas precipitaciones, intervención antrópicas al modificar las propiedades de los suelos, creando un conflicto en el uso del mismo, sismos y susceptibilidad geomorfológicas (pendientes, morfología, etc). (POMCH, 2009)

De acuerdo la integración de las metodologías tenidas en cuenta y los resultados obtenidos de prioriza la microcuenca las Tiendas del corregimiento la Laguna del municipio de Pasto, para proponer el esquema de PSAH.

4.5 IDENTIFICACIÓN DE SISTEMAS PRODUCTIVOS

La zona de estudio cuenta con sistemas productivos (papa-pasto-bovinos; papa-hortalizas-papa; pastos-bovino) pequeños productores con altos uso de insumos, los cuales impactan en la cantidad y calidad del agua en la cuenca. Estos resultados permitirán priorizar todas las acciones necesarias para la recuperación de la calidad del recurso hídrico a través de programas, proyectos y actividades, como se propone en el PORH, 2011. Los programas deberán apuntan a desarrollar soluciones integrales en infraestructura, ronda hídrica, sistemas productivos sostenibles y saneamiento básico rural, que mejoren las condiciones reales, dentro de esta investigación se plantea las mejores herramientas de priorización y de planificación para lograr este objetivo.

4.6 ANÁLISIS ESTADÍSTICO DE SISTEMAS PRODUCTIVOS

El análisis descriptivo de las variables cualitativas evaluadas para la gestión integral del recurso hídrico en la cuenca alta del río Pasto, en los sistemas productivos; se observa en la Tabla 14, se tiene en cuenta las variables sobresalientes, donde se puede observar que el servicio de electricidad es bueno (V49=3) (21 propietarios), el de acueducto es bueno (V50=3) (16 personas), no tienen alcantarillado (V51=2) y cocinan con gas y leña (V52=4) (14 propietarios).

Con respecto a la identificación de sistemas productivos; la tenencia de la tierra es propia (V53=) (24 personas), la capacidad productiva del suelo es media (V55=2) (19 personas), el relieve es ondulado (V56=2) (20 personas), el uso del suelo es para agricultura (V57=1) (21 personas).

Con respecto al sector agrícola específicamente el área a sembrar es menos de media hectárea (V58=1) (22 personas), el número de productos sembrados en sus predios esta entre 1 y 2 (V59=1) (13 personas), el precio de estos productos es bajo

(V61=1) (20 personas), el destino de la producción agrícola es para la venta y el autoconsumo (V62=3) (15 personas), la mano de obra es familiar y contratada (V63=3) (14 personas), los costos de producción agrícola son medio (V64=2) (12 personas), el ciclo de los cultivos es semestral (V65=1) (21 personas), las prácticas de manejo que realizan son tradicionales (V68=2) (21 personas), los fertilizantes empleados son químicos y orgánicos (V69=3) (19 personas), el control de plagas y enfermedades es químico (V70=1) (21), no poseen sistema de riego (V72=2) (20 personas), se realiza rotación de cultivos (V73=1) (21 personas).

El área ocupada por las especies pecuarias también es menor a media hectárea (V74=1) (14 personas), las especie más abundantes son las menores (p.e cuy, gallinas, cerdos, etc.) (V75=2) (14 personas) la cantidad que poseen es de más de 13 animales (V76=4) (18 personas), el destino de la producción es para la venta y el autoconsumo (V78=3) (16 personas), el manejo de la producción pecuaria es tradicional (V80=2) (22 personas).

El área de producción forestal es mayor a dos hectáreas (V81=4) (12 personas), el destino de la producción forestal es para el autoconsumo (V85=2) (24 personas), manifiestan haber talado el bosque en su propiedad (V86=1) (14 personas), el bosque que conserva en su finca es nativo (V87=2) (24 personas).

Con respecto a los sistemas agroforestales, los que predominan en las fincas son silvopastoriles (p.e árboles dispersos) (V89=2) (24 personas), al indagar por que se estableció estas prácticas, ellos afirmas que es por iniciativa propia (V90=4) (24 personas), con respecto al tipo de pastura utilizadas en los arreglos, manifiestan que son naturales (V91=1) (18 personas).

Con respecto al impacto de las prácticas de cultivo en la calidad del agua, como el lugar donde depositan los residuos inorgánicos (p.e plásticos, vidrios, metales, etc.), manifiestan que se entierran o se queman (V94=4) (24 personas), y los residuos orgánicos son transformados en abonos orgánicos (V95=3) (22 personas), la distancia que existe de las fuentes de agua y los cultivos, especies menores y ganadería es lejana (V96=3) (24 personas).

Tabla 14. Análisis de Correspondencia Múltiple (ACM) para la tipificación de Sistemas productivos. Histograma de frecuencia para las variables categorizadas.

MULTIPLE CORRESPONDENCE ANALYSIS
ELIMINATION OF ACTIVE CATEGORIES WITH SMALL WEIGHTS
THRESHOLD (PCMIN): 2.00 % WEIGHT: 0.48
BEFORE CLEANING: 42 ACTIVE QUESTIONS 143 ASSOCIATE CATEGORIES
AFTER CLEANING: 35 ACTIVE QUESTIONS 106 ASSOCIATE CATEGORIES
TOTAL WEIGHT OF ACTIVE CASES: 24.00

MARCIANL DESIRABLY DESCRIPTIONS

MARGINA	CAMPCODIEC	+	CT EANITIC	+	APPED C	I DANING
IDENT	CATEGORIES LABEL	COUNT	CLEANING WEIGHT		AFTER C WEIGHT	HISTOGRAM OF RELATIVE WEIGHTS,
1 .	V49	+		+		
AA_1 - AA 2 -		0 3	0.00 3.00		3 00	******
AA_3 -		21	21.00			**********
2.	v50	+		+		
AB_1 -		1 2	2.00			****
AB_2 - AB_3 -		6 16	6.00 16.00			**************************************
				+		
AC_1 -	V51 C4=1	7	7.00	1 7	7.00	*******
AC_2 -		17	17.00	17	17.00	**********
4 .	V52			,		
AD_1 - AD 2 -		4	4.00			************ ********
AD 3 -		1 2	2.00			****
AD_4 -	C5=4	14	14.00	14 +	14.00	******
	V54					
AF_1 -		2 9	2.00 9.00			*****
AF_3 -		i 7	7.00		7.00	*********
AF_4 -	C7=4	6	6.00	6 +	6.00	*******
	V55					
AG_1 -		1 19	1.00 19.00		1.00	*** ********************************
AG_3 -		4	4.00		4.00	*******
8 .	V56	+		+		
AH_1 -		1 2	2.00		2.00	***** *******************
AH_3 -		20 2	20.00		2.00	****
9.	v57	+		+		
AI_1 -	C10=1	21	21.00			***********
AI_2 - AI 3 -		2 1	2.00 1.00		1.00	***** ***
10 .		+		+		
AJ_1 -	C11=1	22	22.00		22.00	*************
AJ_2 - AJ 3 -		0	0.00 1.00		1.00	***
AJ_4 -		1	1.00		1.00	
11 .	v59	+		+		
AK_1 -	C12=1	13	13.00			*******
AK_2 - AK 3 -		2 6	2.00 6.00		2.00	***** *********
AK_4 -	C12=4	1 3	3.00			******
12.		+		+		
AL_1 -	C13=1	1 9	9.00	9		*******
AL_2 -		8 5	8.00 5.00		8.00 5.00	**************************************
AL_3 - AL_4 -		1 2	2.00		2.00	****
13 .	V61	+		+		
AM_1 -	C14=1	20	20.00	20	20.00	***************************************
AM_2 - AM_3 -		1 0	1.00		1.00	***
AM_4 -		3			3.00	******
1 <u>4</u>	V62	+		+		
17.		0	0.00		6 00	******
AN_1 -			0.00	6 15		********************************
AN_1 -	C15=2	6 15	15.00			
AN_1 - AN_2 -	C15=2 C15=3	1 15	15.00	3		
AN_1 - AN_2 - AN_3 - AN_4 - AN	C15=2 C15=3 C15=4 V63	15 3 +	15.00 3.00	3 +	3.00	
AN_1 - AN_2 - AN_3 - AN_4 - AN	C15=2 C15=3 C15=4 V63 C16=1	15 3 +	15.00 3.00 	3 + 14	3.00	******
AN_1 - AN_2 - AN_3 - AN_4 - AN	C15=2 C15=3 C15=4 	15 3 +	15.00 3.00 	3 + 14 1 6	3.00 	**************************************
AN_1 - AN_2 - AN_3 - AN_4 - AN	C15=2 C15=3 C15=4 	15 3 +	15.00 3.00 	3 + 14 1	3.00 	***************************************
AN_1 - AN_2 - AN_3 - AN_4 - AN_4 - AN_5 - AN_4 - AN_4 - AN_5 - AN_5 - AN_6 - AN	C15=2 C15=3 C15=4 V63 C16=1 C16=2 C16=3 C16=4 V64	15 3 14 1 6 3	15.00 3.00 	3 +	14.00 1.00 6.00 3.00	**************************************
AN_1 - AN_2 - AN_3 - AN_4 - AN	C15=2 C15=3 C15=4	15 3 	15.00 3.00 	3 +	3.00 14.00 1.00 6.00 3.00	**************************************
AN_1 - AN_2 - AN_3 - AN_4 - AN_4 - AN_5 - AN_4 - AN_4 - AN_5 - AN	C15=2 C15=3 C15=4 V63 C16=1 C16=2 C16=3 C16=4 V64 C17=1 C17=2 C17=2 C17=3	15 3 14 1 6 3	15.00 3.00 14.00 1.00 6.00 3.00 	3 +	3.00 14.00 1.00 6.00 3.00 8.00 12.00 1.00	**************************************

Tabla 14. (Continuación)

CATEGORIES IDENT LABEL	BEFORE C				LEANING HISTOGRAM OF RELATIVE WEIGHTS,
17 . V65	+		+		
AQ_1 - C18=1 AQ_2 - C18=2	21	21.00 0.00		21.00	****************
AQ_3 - C18=3 AQ_4 - C18=4	0 3	0.00 3.00		3.00	*****
18 . V66 AR_1 - C19=1	12	12.00	1 12	12.00	*****
AR_2 - C19=2	9	9.00	9		*********
AR_3 - C19=3 AR_4 - C19=4	0 3 +	0.00 3.00		3.00	*****
19 . V67 AS 1 - C20=1	1 12	12.00	12	12.00	******
AS_2 - C20=2	9 0	9.00	9	9.00	**********
AS_3 - C20=3 AS_4 - C20=4	0	3.00		3.00	******
20 . V68	+	0.00			
AT_1 - C21=1 AT_2 - C21=2	0 21	0.00 21.00		21.00	*************
AT_3 - C21=3 AT_4 - C21=4	I 0 I 3	0.00 3.00		3.00	*****
21 . V69	+		+		
AU_1 - C22=1 AU_2 - C22=2	2 0	2.00		2.00	****
AU_3 - C22=3 AU_4 - C22=4	19	19.00	19		**************************************
	+		3 		
22 . V70 AV_1 - C23=1	21	21.00		21.00	**********
AV_2 - C23=2 AV_3 - C23=3	I 0 I 0	0.00			
AV_4 - C23=4	3 +	3.00	3 +	3.00	******
23 . V71 AW_1 - C24=1	1 9	9.00	1 9	9.00	********
AW_2 - C24=2 AW_3 - C24=3	3 12	3.00 12.00	3	3.00	******* ********
	+		+		
24 . V72 AX_1 - C25=1	4	4.00			******
AX_2 - C25=2	20 +	20.00	20 +	20.00	************
25 . V73 AY_1 - C26=1	21	21.00	21	21.00	****************
AY_2 - C26=2	3	3.00	3 +	3.00	******
26 . V74 AZ 1 - C27=1	14	14.00	14	14.00	******
AZ_2 - C27=2	6	6.00 4.00	6	6.00	**************************************
AZ_3 - C27=3	+		+	4.00	
27 . V75 BA_1 - C28=1	2	2.00			****
BA_2 - C28=2 BA 3 - C28=3	14 6	14.00 6.00		14.00	**************************************
BA_4 - C28=4	j 2	2.00			*****
28 . V76 BB 1 - C29=1	3	3 00	1 3	3 00	*****
BB_2 - C29=2 BB_3 - C29=3	3		3		******
BB_4 - C29=4	0			18.00	**********
29 . V77		4 00	. 4	4 00	*******
BC_1 - C30=1 BC_2 - C30=2	4 10	4.00 10.00	4 10	10.00	********** **************************
BC_3 - C30=3 BC_4 - C30=4	8 2	0.00		8.00 2.00	
30 . V78	+		+		
BD_1 - C31=1	1		1 1	1.00	
BD_2 - C31=2 BD_3 - C31=3	5 16	16.00	5 16	16.00	***********************************
BD_4 - C31=4	2 +	2.00	2	2.00	*****
31 . V79 BE 1 - C32=1	2	2.00	2	2.00	****
BE_2 - C32=2 BE_3 - C32=3		11.00	11 9	11.00	**************************************
BE_4 - C32=4	2	2.00	2	2.00	
32 . V80		0.00			·
BF_1 - C33=1 BF_2 - C33=2			22	22.00	*************
BF_3 - C33=3 BF_4 - C33=4	0 2		2	2.00	*****
33 . V81	+				
BG_1 - C34=1 BG 2 - C34=2	4		4 6		**************************************
	2		2		*****
BG_3 - C34=3 BG_4 - C34=4		12.00	1 1 0		***********

Tabla 14. (Continuación)		
CATEGORIES	BEFORE CLEANING	AFTER CLEANING
IDENT LABEL		COUNT WEIGHT HISTOGRAM OF RELATIVE WEIGHTS,
35 . V83	+	==== DROPPED =====
BI_1 - C36=1	0.00	
BI_2 - C36=2	24 24.00	==RAND.ASSIGN.==
37 . V85	·	==== DROPPED =====
BK_1 - C38=1	0.00	
BK_2 - C38=2	24 24.00	==RAND.ASSIGN.==
38 . V86		
BL_1 - C39=1		14 14.00 ***********************************
BL_2 - C39=2	10 10.00	10
39 . V87		==== DROPPED =====
BM_1 - C40=1	0.00	
BM_2 - C40=2		==RAND.ASSIGN.==
41 . V89		==== DROPPED =====
BO_1 - C42=1	0.00	
BO_2 - C42=2	24 24.00	==RAND.ASSIGN.==
42 . V90	,	==== DROPPED =====
BP_1 - C43=1	0.00	
BP_2 - C43=2	0.00	
BP_3 - C43=3 BP 4 - C43=4	0.00	==RAND.ASSIGN.==
	+	+
43 . V91	. 10 10 00	10 00 1000
BQ_1 - C44=1 BO 2 - C44=2		18
BQ 3 - C44=3	1 0 0.00	
BQ_4 - C44=4	5 5.00	
46 . V94	+	-+
BT 1 - C47=1	0.00	
BT 2 - C47=2	0 0.00	
BT_3 - C47=3	0.00	
BT_4 - C47=4	24 24.00	==RAND.ASSIGN.==
47 . V95	+	-+
BU_1 - C48=1	0.00	
BU_2 - C48=2		2 2.00 *****
BU_3 - C48=3	22 22.00	22 22.00 *******************************
48 . V96	,	==== DROPPED =====
BV_1 - C49=1	0.00	
BV_2 - C49=2	0.00	
BV_3 - C49=3	24 24.00	==RAND.ASSIGN.==

Fuente: Esta investigación.

Análisis de Valores Propios: el análisis del histograma de valores propios (Tabla 15), permitió seleccionar los primeros 5 factores que explican en conjunto un 58.96% de la variabilidad debido a las variables cualitativas; el primer factor explica el 28.17%, el segundo explica un 10.99%, el tercero un 8.21%, el cuarto un 5,84% y el quinto un 5.75% de la variabilidad.

Tabla 15. Histograma de los primeros 23 valores propios, que explican la variabilidad (%) de las encuestas los sistemas productivos (Variables cualitativas)

NUMBER EIGENVALUE PERCENTAGE CUMULATED PERCENTAGE 1	HISTOGRAM	OF THE FIRST	23 EIGENVALU	ES +	.
2	NUMBER	EIGENVALUE	PERCENTAGE		
3	1				
4	2				
1	3	0.1665	8.21	47.37	***********
6 0.1090 5.37 64.33 **********************************	4	0.1184	5.84	53.20	*********
1	5	0.1167	5.75	58.96	*********
8	6	0.1090	5.37	64.33	*********
9 0.0769 3.79 77.88 **********************************	7	0.1009	4.97	69.30	*********
10 0.0700 3.45 81.33 **********************************	8	0.0970	4.78	74.09	*******
11	9	0.0769	3.79	77.88	******
12 0.0633 3.12 87.65 ***********************************	10	0.0700	3.45	81.33	******
13 0.0493 2.43 90.08 ******* 14 0.0416 2.05 92.13 ****** 15 0.0305 1.50 93.63 ***** 16 0.0286 1.41 95.04 ***** 17 0.0227 1.12 96.16 **** 18 0.0197 0.97 97.13 *** Tabla 15. (Continuación) 19 0.0171 0.84 97.98 *** 20 0.0136 0.67 98.64 ** 21 0.0128 0.63 99.28 ** 22 0.0084 0.41 99.69 **	11	0.0650	3.20	84.53	*******
14	12	0.0633	3.12	87.65	******
15	13	0.0493	2.43	90.08	*****
16	14	0.0416	2.05	92.13	*****
10 0.0227 1.12 96.16 **** 18 0.0197 0.97 97.13 *** Tabla 15. (Continuación) 19 0.0171 0.84 97.98 *** 20 0.0136 0.67 98.64 ** 21 0.0128 0.63 99.28 ** 22 0.0084 0.41 99.69 **	15	0.0305	1.50	93.63	****
18	16	0.0286	1.41	95.04	****
Tabla 15. (Continuación) 19 0.0171 0.84 97.98 *** 20 0.0136 0.67 98.64 ** 21 0.0128 0.63 99.28 ** 22 0.0084 0.41 99.69 **	17	0.0227	1.12	96.16	****
19	18	0.0197	0.97	97.13	***
20	Tabla 15.	(Continuació	n)		
21	19	0.0171	0.84	97.98	***
22 0.0084 0.41 99.69 **	20	0.0136	0.67	98.64	**
	21	0.0128	0.63	99.28	**
23 0.0062 0.31 100.00 *	22	0.0084	0.41	99.69	**
	23	0.0062	0.31	100.00	*

Fuente: Esta investigación.

Del análisis de contribuciones de las variables a la conformación de los ejes (Tabla 16), se puede establecer que las variables que más contribuyeron a la conformación del primer factor fueron: el uso del suelo es para la actividad pecuaria (V57=3.7), no siembran productos agrícolas (V59=4.2), desconocen los precios de los productos agrícolas (V61=4.2), no conocen el destino de la producción (V62=4.2), no hay destinación de la mano de obra para la actividad agrícola (V63=4.2), no conocen los costos de la producción (V64=4.2), no conocen el ciclo de los cultivos (V65=4.2), no utilizan insumos para el manejo de plagas (V66=4.2), tampoco para el manejo de enfermedades (V67=4.2), no realizan prácticas de manejo (V68=4), ninguna aplicación de fertilizantes (V69=4.2), ningún control de plagas y enfermedades (V70=4.2), no rotan cultivos, porque no los siembran (V73=4.2). Tampoco tienen especies pecuarias (V74=3.7), por lo tanto no tienen producción (V77=3.7), por ende no hay destino de los productos (V78=3.7), no incurren en costos (V79=3.7), no hay ningún manejo (V80=3.7).

Tiene un lugar destinado específicamente para depositar los residuos orgánicos generados en sus casa (V95=3.7).

Como se puede observar este factor está conformado por propietarios que poseen sus fincas sin ninguna actividad productiva.

Para el caso del segundo factor, las variables que más aportan a la conformación son: el área sembrada en productos agrícolas es mayor a dos (2) hectáreas (V58=5.6), donde el precio de los productos es bueno (V61=5.6), el destino de la producción es para la venta (V62=4.9), los costos de producción son altos (V64=2.0), la utilización de insumos para el control de plagas está entre alto y medio(V66=2.6) y (V66=3.8) respectivamente, al igual que el control de enfermedades (V67=2.6) y (V67=3.8), el fertilizante empleado es químico (V69=4.5), utilizan sistema de riego (V72=2.6).

El área ocupada para las especies pecuarias en mayor a dos (2) hectáreas (V74=1.0), donde tienen ganado (V75=4.5), y algunos poseen especies menores (V75=1.4), la cantidad de animales que tienen en promedio está entre uno (1) y ocho (8) (V76=2.1), la producción es baja (V77=6.0), el destino de la producción es para la venta, muy poca dejan para autoconsumo (V78=5.6), los costos de la producción son bajos (V79=1.5).

El área de producción foresta esta entre 0.5 y 1 hectárea (V81=1.2), hay una población que realiza tala del bosque en el predio (V86=1.6), y otros no la realizan (V86=2.2).

En el tercer factor, las variables que más aportan son: el relieve en los predios es plano (V56=2.1), el área sembrada en cultivos es mayor a dos (2) hectáreas (V58=6.2), el número de productos establecido por predio es mayor a cuatro (4) (V59=2.8), la cantidad en kilogramos producidos, supera las 4 toneladas (V60=3.0), el precio de los productos es bueno (V61=6.2), la mano de obra utilizada es familiar y contratada (V63=2.9), la fertilización empleada es química (V69=4.2).

El área ocupada por las especies pecuarias está entre una (1) y dos (2) hectáreas (V74=3.6), con ganado (V75=4.2), y especies menores (V75=1.9), con menos de

tres (3) animales (V76=2.6), el destino de la producción es para la venta (V78=6.2), tan solo una pequeña porción se deja para autoconsumo (V78=2.7).

El área de producción forestal es menos de media hectárea (V81=2.1).

En los sistemas agroforestales, el tipo de pastura es natural, naturalizada y mejorada (V91=5.6).

Para el cuarto factor las variables que más aportan en la conformación son: el servicio de electricidad el cual es malo (V49=6.1), el servicio de acueducto es regular (V50=6.0), cocinan con leña (V52=8.8), el tamaño de la unidad productiva está entre dos (2) y cinco (5) hectáreas (V54=3.5), la capacidad productiva del suelo es alta (V55=4.8), el relieve es escarpado (V56=4.3), la producción agrícola es mayor a cuatro (4) toneladas (V60=2.1), la mano de obra utilizada para estas labores es familiar y contratada (V63=2.3), los costos de producción son bajos (V64=5.2), el manejo de las arvenses se hace manual (V71=5.4), algunos lo realizan de forma química (V71=4.0).

La producción pecuaria es alta (V72=1.8), los costos de producción son medianos (V79=4.9), a altos (V79=2.9).

El área de producción forestal está entre media y una (1) hectárea (V81=5.4), y también entre una (1) y dos (2) hectáreas.

El quinto factor está conformado por las siguientes variables: el sistema de acueducto es malo (V50=2.7), cocinan con carbón y gas (V52=3.6), el tamaño de la unidad productiva está entre dos (2) y cinco (5) hectáreas (V54=4.9), el relieve es plano (V56=3.1), y escarpado (V56=2.8), el número de productos sembrados en el predio están entre tres (3) y cuatro (4) (V59=4.7), la cantidad producida es mayor a cuatro (4) toneladas(V60=4.3), la mano de obra es contratada (V63=2.4).

El área ocupada para las actividades pecuarias está entre una (1) y dos (2) hectáreas (V74=2.8), la producción está entre media (V77=3.5) y alta (V77=4.6), el destino de la producción es para autoconsumo (V78=3.0) y para la venta (V78=1.9).

El área de producción forestal es mayor a dos (2) hectáreas (V81=2.0) y entre media (0.5) y una (1) hectárea (V81=1.9).

En los arreglos agroforestales y agrícolas las pastura utilizadas son naturalizadas (V91=3.5).

Tabla 16. Contribución de las variables cualitativas evaluadas en la encuesta de identificación de sistemas productivos, a la contribución de los primeros cinco (5) factores.

LOADINGS, CONTRIBUTIONS AND SQUARED COSINES OF ACTIVE CATEGORIES

	CATEGORIE	s İ	LOADING	s	<u>i</u>		CONTR	IBUTI(ONS			SQUAF	RED CO	SINES	3
IDEN - LABEL	REL. WT. DI	STO 1	2 3	4 5	5 +-	1	2	3	4	5	1	2	3	4	5
1 . V49 AA_2 - C2=2 AA_3 - C2=3	2.50 0	.14 -0.0	1 -0.55 0.68 6 0.08 -0.10 CUMULATED	0.20 -0.	.02	0.0	0.1	0.1	0.9	0.0	0.02	0.04	0.07	0.29	0.00
2 . V50 AB_1 - C3=1 AB_2 - C3=2 AB_3 - C3=3	0.71 3 1.90 0	.00 0.3	3 -0.75 0.86 8 0.36 -0.13 0 -0.04 -0.06 CUMULATED	1.00 0. -0.26 -0.	.50 .33	0.2	0.4	0.1	6.0 1.1	1.6	0.05	0.04			
3 . V51 AC_1 - C4=1 AC_2 - C4=2	0.83 2 2.02 0	.43 0.0	8 0.47 -0.41 3 -0.19 0.17 CUMULATED	0.40 0. -0.16 -0.	.47 .19	0.0	0.8	0.8	1.1	1.6	0.00	0.09			
4 . V52 AD_1 - C5=1 AD_2 - C5=2 AD_3 - C5=3 AD_4 - C5=4	0.48 5 0.24 11 1.67 0	.00 -0.4 .00 0.3 .71 -0.0	1 -0.81 -0.68 9 0.47 -0.35 5 -0.51 -0.23 3 0.17 0.33 CUMULATED	0.56 -0. -0.21 1. 0.29 -0.	.08 .33 .12	0.2 0.1 0.0	0.5 0.3 0.2	0.3 0.1 1.1	1.2 0.1 1.2	0.0 3.6 0.2	0.05	0.05 0.02 0.04	0.02 0.00 0.15	0.06	0.00
6 . V54 AF_1 - C7=1 AF_2 - C7=2 AF_3 - C7=3 AF_4 - C7=4	1.07 1 0.83 2 0.71 3	.67 0.1 .43 0.3 .00 -0.8	3 -0.30 1.18 5 0.61 -0.09 7 -0.57 -0.21 0 -0.15 -0.01 CUMULATED	-0.46 -0. 0.70 0. 0.07 -0.	.51 .83 .09	0.0 0.2 0.8	1.8 1.2 0.1	0.1 0.2 0.0	1.9 3.5 0.0	2.4 4.9 0.0	0.01	0.22 0.14 0.01	0.01 0.02 0.00	0.13	0.16
7 . V55 AG_1 - C8=1 AG_2 - C8=2 AG_3 - C8=3	2.26 0 0.48 5	.26 0.0	2 -0.67 0.91 9 0.00 -0.01 9 0.17 -0.19 CUMULATED	0.17 -0. -1.10 0.	.20 .65	0.0	0.0	0.0	0.5	0.8	0.03	0.00	0.00	0.11	0.16
8 . V56 AH_1 - C9=1 AH_2 - C9=2 AH_3 - C9=3	2.38 0	.20 -0.0	4 -1.73 -1.20 8 0.13 0.17 8 0.39 -0.52 CUMULATED	0.10 0. -1.46 1.	.01	0.0	0.2	0.4	0.2	0.0	0.03	0.09	0.15	0.05	0.00
9 . V57 AI_1 - C10=1 AI_2 - C10=2 AI_3 - C10=3	0.24 11 0.12 23	.00 -3.0	7 -0.02 -0.01 0 -0.10 -0.17 6 0.58 0.45 CUMULATED	-0.20 0. 0.46 -0.	.33 .93	3.7	0.0	0.0	0.1	0.2	0.82	0.00	0.00	0.00	0.01
10 . V58 AJ_1 - C11=1 AJ_3 - C11=3 AJ_4 - C11=4	0.12 23 0.12 23	.00 0.3	3 0.12 0.16 5 0.54 -0.47 2 -3.24 -2.95 CUMULATED	0.39 -0. 0.29 -1.	.19 .35	0.0	0.2 5.6	0.2 6.2	0.2	0.0	0.01	0.01	0.01	0.01	0.00
11 . V59 AK_1 - C12=1 AK_2 - C12=2 AK_3 - C12=3 AK_4 - C12=4	0.24 11 0.71 3 0.36 7	.00 0.3 .00 0.3 .00 -2.5	7 -0.17 -0.35 5 0.98 -0.21 6 -0.03 0.81 8 0.13 0.04 CUMULATED	0.53 -1. 0.29 -0. 0.02 -0.	.52 .68 .09	0.1 0.2 4.2	1.0 0.0 0.0	0.1 2.8 0.0	0.6 0.5 0.0	4.7 2.9 0.0	0.01	0.09 0.00 0.00	0.00	0.03	0.21
12 . V60 AL_1 - C13=1 AL_2 - C13=2 AL_3 - C13=3 AL_4 - C13=4	0.95 2 0.60 3	.00 0.3 .80 0.4 .00 0.4	4 -0.51 0.53 6 -0.11 -0.34 1 0.56 0.16 3 1.32 -1.46 CUMULATED	-0.11 -0. -0.36 -0. 1.02 1.	.19 .92 .17	0.2 0.2 0.1	0.1 0.9 1.9	0.7 0.1 3.0	0.1 0.6 2.1	0.3 4.3 2.8	0.06	0.01 0.08 0.16	0.06	0.01	0.02
	0.12 23 0.36 7	.20 0.3 .00 0.3	7 0.14 0.14 2 -3.24 -2.95	-0.02 0. 0.29 -1. 0.02 -0.	.08 .35 .09	0.6 0.0 4.2	0.2 5.6 0.0	0.3 6.2 0.0	0.0 0.1 0.0	0.1 1.9 0.0	0.69	0.10 0.46 0.00	0.38	0.00	0.08
	0.71 3 1.79 0 0.36 7	.00 0.3 .60 0.3 .00 -2.5	5 -1.23 0.42 8 0.47 -0.18 8 0.13 0.04 CUMULATED	0.35 0. -0.15 -0. 0.02 -0. CONTRIBUTI	.17 .05 .09	0.1 0.4 4.2 4.8	4.9 1.8 0.0 6.7	0.8 0.3 0.0 1.1	0.8 0.3 0.0 1.1	0.2 0.0 0.0 0.2	0.04	0.51 0.37 0.00	0.06 0.05 0.00	0.04 0.04 0.00	0.01 0.00 0.00
15 . V63 AO_1 - C16=1 AO_2 - C16=2	1.67 0 0.12 23	.71 0.3	6 -0.17 0.53 9 0.91 -0.21	0.21 0. 0.71 -1.	.03	0.4	0.2	2.9	0.6	0.0	0.19	0.04	0.40	0.06	0.00

_	0.36	7.00	-2.58	0.13 (0.04	0.02		4.2	0.0	0.0	0.0	0.0	0.05 0.01 0.51 0.13 0.02
16 . V64 AP_1 - C17=1 AP_2 - C17=2 AP_3 - C17=3 AP_4 - C17=4	0.95 1.43	2.00 1.00 23.00 7.00	0.40 0.35 0.35 -2.58	0.68 -0 -0.52 0 0.38 -0 0.13 0	0.43 0.31 0.37 -	0.07 0.14 2.27 0.02	0.39 -0.24 0.08 -0.09	0.3 0.3 0.0 4.2	2.0 1.7 0.1 0.0	1.1 0.8 0.1 0.0	0.0 0.2 5.2 0.0	1.2 0.7 0.0 0.0	0.08 0.23 0.09 0.00 0.08 0.12 0.27 0.10 0.02 0.06 0.01 0.01 0.01 0.22 0.00 0.95 0.00 0.00 0.00 0.00
	0.36	0.14 7.00	0.37	-0.02 -0 0.13 0	0.01	0.00	0.01	0.6	0.0	0.0	0.0	0.0	0.95 0.00 0.00 0.00 0.00 0.95 0.00 0.00 0.00 0.00 0.95 0.00 0.00 0.00
18 . V66 AR_1 - C19=1 AR_2 - C19=2 AR_4 - C19=4	1.43 1.07 0.36	7.00	-2.58	0.13 (0.04	0.02	-0.23 0.33 -0.09 BUTION =	4.2	0.0	0.0	0.0	0.0	0.14 0.40 0.10 0.04 0.05 0.08 0.47 0.10 0.04 0.07 0.95 0.00 0.00 0.00 0.00
Tabla 16. (Cont	inuación)		+				+-	4.0	0.4			1.7	++
CATEGORIE	S		 +	LOAI	DINGS		 +-		CONTR	IBUTI	ONS		SQUARED COSINES
IDEN - LABEL	REL. WT.	DISTO	1	2	3	4	5	1	2	3	4	5	1 2 3 4 5
AS_2 - C20=2 AS_4 - C20=4 +	1.43 1.07 0.36	1.00 1.67 7.00	0.38 0.36 -2.58	0.63 -0 -0.89 0 0.13 0	0.31 - 0.40 0.04 FED CO	0.20 0.26 0.02 NTRIE	-0.23 0.33 -0.09 BUTION =	0.4 0.2 4.2 4.8	2.6 3.8 0.0 6.4	0.8 1.0 0.0 1.9	0.5 0.6 0.0 1.1	0.6 1.0 0.0 1.7	0.14 0.40 0.10 0.04 0.05 0.08 0.47 0.10 0.04 0.07 0.95 0.00 0.00 0.00 0.00
		7.00	-2.58	0.13 (0.04	0.02	-0.09	4.2	0.0	0.0	0.0	0.0	0.95 0.00 0.00 0.00 0.00 0.95 0.00 0.00 0.00 0.00
+	2.26 0.36	0.26 7.00	0.38	0.20 (0.18 - 0.04	0.02	0.05 -0.09	0.6	0.4	0.4	0.0	0.1	0.01 0.38 0.27 0.00 0.01 0.54 0.15 0.12 0.00 0.01 0.95 0.00 0.00 0.00 0.00
AV_4 - C23=4	0.36	7.00	-2.58	0.13 (0.04	0.02	-0.09	4.2	0.0	0.0	0.0	0.0	0.95 0.00 0.00 0.00 0.00 0.95 0.00 0.00 0.00 0.00
AW 2 - C24=2	0.36	7.00 1.00	-2.58 0.38	0.13 (0.16 -(0.04	0.02	-0.09	4.2 0.4	0.0	0.0	0.0	0.0	0.08 0.04 0.09 0.36 0.04 0.95 0.00 0.00 0.00 0.00 0.14 0.02 0.09 0.33 0.03
24 . V72 AX_1 - C25=1 AX_2 - C25=2		0.20	-0.08	-0.22	0.15	0.04		0.0	0.5	0.3	0.0	0.3	0.03 0.25 0.12 0.01 0.06 0.03 0.25 0.12 0.01 0.06
25 . V73 AY_1 - C26=1 AY_2 - C26=2	2.50 0.36	0.14 7.00	0.37	-0.02 -0 0.13 0	0.01	0.00	0.01	0.6	0.0	0.0	0.0	0.0	0.95 0.00 0.00 0.00 0.00 0.95 0.00 0.00 0.00 0.00
26 . V74 AZ_1 - C27=1 AZ_2 - C27=2	0.71	0.71 3.00 5.00	-0.29 0.39 0.42	-0.18 -0 -0.03 0 0.69 -1	0.04 0.85 1.12 -	0.02 0.03 0.11	-0.13 -0.26	0.2 0.2 0.1	0.3 0.0 1.0	0.0 3.1 3.6	0.0 0.0 0.0	0.2 0.4 2.8	0.12 0.05 0.00 0.00 0.02 0.05 0.00 0.24 0.00 0.02 0.04 0.09 0.25 0.00 0.14
	1.67 0.71 0.24	0.71 3.00 11.00	0.21 0.42 -3.00	0.02 (0.66 -0 -0.10 -0	0.43 - 0.38 0.17 -	0.03 0.08 0.20	-0.12 0.28 0.33	0.1 0.2 3.7	0.0 1.4 0.0	1.9 0.6 0.0	0.0 0.0 0.1	0.2 0.5 0.2	0.01 0.38 0.27 0.00 0.01 0.06 0.00 0.26 0.00 0.02 0.06 0.14 0.05 0.00 0.03 0.82 0.00 0.00 0.00 0.01
28 . V76 BB_1 - C29=1 BB_2 - C29=2 BB 4 - C29=4	0.36 0.36 2.14	7.00 7.00 0.33	-1.89 0.33 0.26	-1.15 -1 -1.15 (1.09 - 0.87 - 0.04	0.03 0.59 0.10	-0.23 0.27 -0.01	2.2 0.1 0.3	2.1 2.1 1.4	2.6 1.6 0.0	0.0 1.0 0.2	0.2 0.2 0.0	0.51 0.19 0.17 0.00 0.01 0.02 0.19 0.11 0.05 0.01 0.20 0.44 0.00 0.03 0.00
BC_1 - C30=1 BC_2 - C30=2 BC_3 - C30=3 BC_4 - C30=4	0.48 1.19 0.95 0.24	5.00 1.40 2.00 11.00	0.33 0.38 0.11 -3.00	-1.67 -0 0.15 0 0.67 0 -0.10 -0	0.08 - 0.03 - 0.05	0.37 0.19 0.47 0.20	-0.13 0.59 -0.75 0.33	0.1 0.3 0.0 3.7	6.0 0.1 1.9 0.0	0.0 0.0 0.0	0.5 0.4 1.8 0.1	0.1 3.5 4.6 0.2	0.02 0.56 0.00 0.03 0.00 0.10 0.02 0.00 0.03 0.25 0.01 0.23 0.00 0.11 0.28 0.82 0.00 0.00 0.00 0.01
30 . V78 BD_1 - C31=1 BD_2 - C31=2 BD_3 - C31=3 BD_4 - C31=4	0.12 0.60 1.90 0.24	23.00 3.80 0.50 11.00	0.32 0.34 0.25 -3.00	-3.24 -2 -0.32 (0.32 -0 -0.10 -0	2.95 0.87 - 0.07 0.17 -	0.29 0.19 0.07 0.20	-1.35 -0.77 0.28 0.33	0.0 0.1 0.2 3.7	5.6 0.3 0.9	6.2 2.7 0.1 0.0	0.1 0.2 0.1 0.1	1.9 3.0 1.3 0.2	0.00 0.46 0.38 0.00 0.08 0.03 0.03 0.20 0.01 0.16 0.12 0.20 0.01 0.01 0.16 0.82 0.00 0.00 0.00 0.01
31 . V79 BE_1 - C32=1 BE 2 - C32=2	0.24	11.00	0.44	0.40 -0	0.29 - 0.01	1.20	0.72	0.1	0.2	0.1	2.9	1.0	0.02 0.01 0.01 0.13 0.05 0.03 0.14 0.00 0.38 0.04 0.07 0.19 0.01 0.15 0.00 0.82 0.00 0.00 0.00 0.01
													0.82 0.00 0.00 0.00 0.01 0.82 0.00 0.00 0.00 0.01
BG_1 - C34=1 BG_2 - C34=2 BG_3 - C34=3 BG_4 - C34=4	0.48 0.71 0.24 1.43	3.00 11.00 1.00	0.40 0.04 -1.32 0.07	0.61 -0 0.79 -0 -0.41 -0	0.86 - 0.07 - 0.93 0.10	0.07 0.95 0.13 0.48	-0.56 -0.56 0.48 0.40	0.1 0.0 0.7 0.0	0.0 1.2 0.7 1.1	0.0 1.2 0.1	0.0 5.4 0.0 2.7	1.5 1.9 0.5 2.0	0.03 0.00 0.15 0.00 0.07 0.00 0.12 0.00 0.30 0.10 0.16 0.06 0.08 0.00 0.02 0.00 0.17 0.01 0.23 0.16
38 . V86													0.03 0.30 0.03 0.06 0.00

Fuente: Esta investigación.

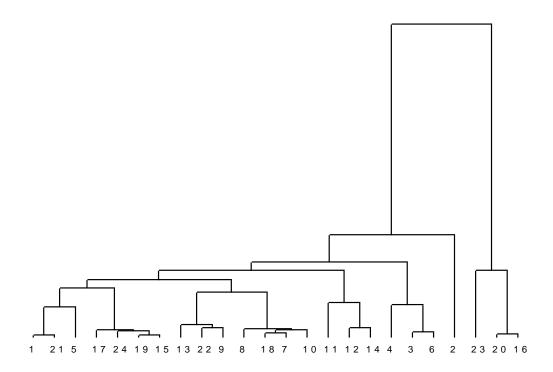
Análisis de clasificación

El análisis de clasificación basado en las características cualitativas para las en cuestas de los sistemas de producción, permitió la conformación de cinco grupos bien definidos; las características de cada grupo están en cada clase los cuales se observan en la Tabla 17 y en la Figura 15.

El primer grupo, conformado por 124 usuarios que representan el 31.71% del total de los encuestados (Tabla 18); en esta clase, el 71.11% de los usuarios manifiestan que el uso que le dan al agua que reciben es para cocinar, limpieza de la casa, aseo personal, lavar ropa, limpiar la calle, lavar automóviles y regar jardines (V17=4); el 50.49% de los usuarios del servicio pertenecen al estrato socioeconómico bajo (V2=1); el 50.43% de los usuarios han realizado estudios de primaria únicamente (V5=1); el 48.20% no les gustaría ser parte activa de la conservación de las fuentes hídricas (V36=2); el 47.20 pagan entre 0 y 30.000 mil pesos (V21=1); y el 44.80% manifiestan que la cantidad de agua que reciben en su hogar es regular (V8=2) (Tabla 18)

El segundo grupo está conformado por 87 usuarios que representan el 22.25% del total de los usuarios encuestados; el 100% de los encuestados su actividad es estudiar (V6=1); el 88.57% se encuentran en edades que oscilan entre los 12 y 25 años (V4=1); el 64.52% manifiestan que el agua que llega a su hogar o establecimiento nunca llega sucia (V10=3); el 38.41% cree que el sistema de agua potable está bien manejado (V18=1); el 38.24% dicen que la cantidad de agua que llega a sus hogares o establecimientos es buena (V8=3); y el 37.36% afirma que el agua que llega a su hogar o establecimiento no tiene olores o sabores diferentes (V11=3) (Tabla 18).

El tercer grupo, está conformado por 31 usuarios, los cuales representan el 7.93% del total usuarios encuestados; el 53.57% manifiesta que al realizarse trabajos en la red de agua potable no han sufrido de cortes de agua por esta causa (V16=2); pero el 46.43% manifiesta que el servicio de agua debe cambiar en cantidad y calidad de agua, mantenimiento de la red, el sistema de tarifas y cobros (V19=4); también el 46.43% afirma que para encargarle el manejo de los nuevos recursos obtenidos por el PSA prefiere que sea una entidad nueva y no a empresas públicas o privadas existentes (V34=4); el 42.31% afirman que el principal uso que le dan al agua que reciben es para limpiar calles, lavar automóviles y regar jardines (V17=3) y el 33.33% manifiestan que los bosques que actualmente existen son suficientes para mantener el agua que actualmente estamos consumiendo (V27=1) (Tabla 19).


Cuarto grupo, el cual está conformado por 56 usuarios, representan el 14.32% del total de usuarios encuestados; el 100% afirman ser pensionados (V6=4); el 49.33% su edad supera los 65 años (V4=4); el 42.19% filtra el agua antes de consumirla (V12=3); el 38.46% no estaría dispuesto a contribuir en el cuidado del bosque (V29=2); el 36.67% afirman no trabajar (V6=3); e, 33.33% paga por el servicio entre 60.000 y 90.000 mil pesos (V21=3) y si conocen que organismos o instituciones están manejando proyectos del recurso hídrico en la cuenca alta del río Pasto (V31=1); el 30.95% tienen un ingreso promedio mensual mayor a 1.768.501 mil pesos (V7=4) y el 27.27% a realizado estudios universitarios y de posgrado (V5=3) (Tabla 18).

El quinto grupo, está conformado por 93 usuarios, que representan el 23.79 del total de los usuarios encuestados; 75% afirman que el agua que ha llegado a sus hogares o establecimientos siempre es sucia (V10=1); el 70.97% dice que la cantidad de agua que llega a su hogar o establecimiento es mala (V8=1); el 66.67% afirma que el agua que llega a sus hogares o establecimientos siempre tiene olor y sabor diferente (V11=1); el 59.62% el color del agua que recibe es verdosa (V9=1); el 52.33% afirma que en los últimos dos años han presentado alguna enfermedades a causa del agua que consumen (V3=1) (Tabla 19).

Tabla 17. Identificación de los usuarios que conforman cada uno de los cuatro (4) en que se divide la muestra encuestada, con base en las variables cualitativas.

GRUPO	NÚMERO	PORCENTAJE %		USUARIO													
1	124	31.71	1 22	5 24	7	8	9	10	11	12	13	14	15	17	18	19	21
2	87	22.25	3	4	6												
3	31	7.93	2														
4	56	14.32	16	20	23												

Herarchical Cluster Analysis

Figura 15. Conformación de grupos de acuerdo a las características cualitativas evaluadas en el estudio de gestión integral del recurso hídrico en la cuenca alta del río Pasto para los Sistemas Productivos.

Tabla 18. Descripción de los grupos o clases conformadas en el ACM del estudio gestión integral del recurso hídrico en la cuenca alta del río Pasto, para la demanda.

CLUSTER 1 / 4

T.VALUE PROB. ---- PERCENTAGES ---- CHARACTERISTIC GRP/CAT CAT/GRP GLOBAL CATEGORIES OF VARIABLES

					CATEGORIES			
				70.83	CLUSTER 1 / 4 C47=4 C43=4 C36=2 C38=2 C40=2 C49=3 C42=2 C16=1 C14=1 C28=2 C22=2 C33=1 C19=3 C11=2 C14=3 C15=1 C18=2 C42=1 C36=1 C40=1 C40=1 C23=3 C33=3 C29=3 C49=2 C49=1		aa1a	17
99.99	0.000	70.83	100.00	100.00	C47=4	V94	BT_4	
99.99	0.000	70.83	100.00	100.00	C43=4	V90	BP 4	24
99.99	0.000	70.83	100.00	100.00	C36=2	V83	BI_2	24
99.99	0.000	70.83	100.00	100.00	C38=2	V85	BK_2	24
99.99	0.000	70.83	100.00	100.00	C40=2	V87	BM_2	24
99.99	0.000	70.83	100.00	100.00	C49=3	V96	BV_3	24
99.99	0.000	70.83	100.00	100.00	C42=2	V89	BO_2	24
3.39	0.000	100.00	82.35	58.33	C16=1	V63	AO_1	14
2.72	0.003	02.00	76 47	53.33	C14=1	V 0 I	AM_1	20 14
2.3/	0.009	92.86	76.47	0.00	C28=2	V/5	BA_2 AU 2	0
-99.99	0.000	0.00	0.00	0.00	C32=1 C19=3 C11=2 C14=3 C15=1 C18=2 C42=1	V80	BF 1	0
-99 99	0.000	0.00	0.00	0.00	C19=3	V66	AR 3	0
-99 99	0.000	0.00	0.00	0.00	C11=2	V58	AJ 2	
-99.99	0.000	0.00	0.00	0.00	C14=3	V61	AM 3	
-99.99	0.000	0.00	0.00	0.00	C15=1	V62	AN 1	Ö
-99.99	0.000	0.00	0.00	0.00	C18=2	V65	AQ 2	0
-99.99	0.000	0.00	0.00	0.00	C42=1	V89	BO 1	0
-99.99	0.000	0.00	0.00	0.00	C42=1 C36=1 C40=1 C43=2 C38=1 C20=3 C33=3 C29=3 C49=2	V83	BI_1	0
-99.99	0.000	0.00	0.00	0.00	C40=1	V87	BM_1	0
-99.99	0.000	0.00	0.00	0.00	C43=2	V90	BP_2	0
-99.99	0.000	0.00	0.00	0.00	C38=1	V85	BK_1	0
-99.99	0.000	0.00	0.00	0.00	C20=3	V67	AS_3	0
-99.99	0.000	0.00	0.00	0.00	C33=3	V80	BF_3	0
-99.99	0.000	0.00	0.00	0.00	C29=3	V76	BB_3	0
-99.99	0.000	0.00	0.00	0.00	C49=2	V96	BV_2	0
-99.99	0.000	0.00	0.00	0.00	C49=1	V 9 b	BV_1	0
-33.99	0.000	0.00	0.00	0.00	C23=3	V / U 1770	AV_3	0
_99.99 _99.99	0.000	0.00	0.00	0.00	C49=1 C23=3 C23=2 C48=1	V / U	AV_2 BU 1	0
_00 00	0.000	0.00	0.00	0.00	C48=1 C18=3 C47=3 C47=2	V96 V70 V70 V95 V65 V94	BU_1 AQ 3	0
_00 00	0.000	0.00	0.00	0.00	C10-3	1/0/	BT 3	0
-99 99	0.000	0.00	0.00	0.00	C47=2	794	BT 2	0
_99 99	0 000	0 00	0 00	0 00		V94	BT 1	0
-99.99	0.000	0.00	0.00	0.00	C21=3	V94 V68 V91	AT_3	0
-99.99	0.000	0.00	0.00	0.00	C21=3 C44=3	V91	BQ 3	0
Tabla 18	3. (Cor	ntinuació	ón)				_	
-99.99	0.000	0.00	0.00	0.00	C43=3	V90	BP 3	0
-99 99	0.000	0.00	0.00	0.00	C43=3 C21=1 C43=1	V68	BP_3 AT_1	0
	0 000	0.00	0.00	0.00	C43=1	V90	BP_1	
-99.99	0.000							0
-99.99	0.000	0.00	0.00	0.00	C2=1	V49	AA_1	
-99.99 	0.000	0.00	0.00	0.00	C2=1	V49	AA_1	
-99.99 CLUSTER	2 /	0.00	0.00				AA_I	
-99.99 CLUSTER 	0.000 2 / PROB.	0.00 4	0.00	 	CHARACTERISTIC		AA_1 IDEN WE	
-99.99 CLUSTER 	0.000 2 / PROB.	0.00 4	0.00	 	CHARACTERISTIC		IDEN WE	IGHT
-99.99 CLUSTER 	0.000 2 / PROB.	0.00 4	0.00	 	CHARACTERISTIC		IDEN WE	IGHT
-99.99 CLUSTER 	0.000 2 / PROB.	0.00 4	0.00	 	CHARACTERISTIC		IDEN WE	IGHT
-99.99 CLUSTER 	0.000 2 / PROB.	0.00 4	0.00	 	CHARACTERISTIC		IDEN WE aa2a BT_4 BO_2	 IGHT 3 24 24
-99.99 	0.000 2 / PROB. 0.000 0.000 0.000	0.00 4 PER GRP/CAT 12.50 12.50 12.50	0.00 RCENTAGES CAT/GRP 100.00 100.00 100.00	S GLOBAL 12.50 100.00 100.00	CHARACTERISTIC CATEGORIES CLUSTER 2 / 4 C47=4 C42=2 C43=4		IDEN WE aa2a BT_4 BO_2 BP_4	IGHT 3 24 24 24
-99.99 	0.000 2 / PROB. 0.000 0.000 0.000	0.00 4 PER GRP/CAT 12.50 12.50 12.50	0.00 RCENTAGES CAT/GRP 100.00 100.00 100.00	S GLOBAL 12.50 100.00 100.00	CHARACTERISTIC CATEGORIES CLUSTER 2 / 4 C47=4 C42=2 C43=4		aa2a BT_4 BO_2 BP_4 BI_2	IGHT 3 24 24 24 24
-99.99 	0.000 2 / PROB. 0.000 0.000 0.000	0.00 4 PER GRP/CAT 12.50 12.50 12.50	0.00 RCENTAGES CAT/GRP 100.00 100.00 100.00	S GLOBAL 12.50 100.00 100.00	CHARACTERISTIC CATEGORIES CLUSTER 2 / 4 C47=4 C42=2 C43=4		IDEN WE aa2a BT 4 BO 2 BP 4 BI 2 BK 2	IGHT 3 24 24 24 24 24
-99.99 	0.000 2 / PROB. 0.000 0.000 0.000	0.00 4 PER GRP/CAT 12.50 12.50 12.50	0.00 RCENTAGES CAT/GRP 100.00 100.00 100.00	S GLOBAL 12.50 100.00 100.00	CHARACTERISTIC CATEGORIES CLUSTER 2 / 4 C47=4 C42=2 C43=4		IDEN WE aa2a BT_4 BO_2 BP_4 BI_2 BK_2 BM_2	 IGHT 3 24 24 24 24 24 24 24
-99.99 	0.000 2 / PROB. 0.000 0.000 0.000	0.00 4 PER GRP/CAT 12.50 12.50 12.50	0.00 RCENTAGES CAT/GRP 100.00 100.00 100.00	S GLOBAL 12.50 100.00 100.00	CHARACTERISTIC CATEGORIES CLUSTER 2 / 4 C47=4 C42=2 C43=4		aa2a BT_4 BO_2 BP_4 BI_2 BK_2 BK_2 BW_3	3 24 24 24 24 24 24 24 24
-99.99 	0.000 2 / PROB. 0.000 0.000 0.000	0.00 4 PER GRP/CAT 12.50 12.50 12.50	0.00 RCENTAGES CAT/GRP 100.00 100.00 100.00	S GLOBAL 12.50 100.00 100.00	CHARACTERISTIC CATEGORIES CLUSTER 2 / 4 C47=4 C42=2 C43=4		aa2a BT_4 BO_2 BP_4 BI_2 BK_2 BM_2 BM_2 BV_3 AZ_3	IGHT 3 24 24 24 24 24 24 24 24 4
-99.99 	0.000 2 / PROB. 0.000 0.000 0.000	0.00 4 PER GRP/CAT 12.50 12.50 12.50	0.00 RCENTAGES CAT/GRP 100.00 100.00 100.00	S GLOBAL 12.50 100.00 100.00	CHARACTERISTIC CATEGORIES CLUSTER 2 / 4 C47=4 C42=2 C43=4		IDEN WE aa2a BT_4 BO_2 BP_4 BI_2 BK_2 BM_2 BW_3 AZ_3 BA_3	3 24 24 24 24 24 24 24 24 6
-99.99 	0.000 2 / PROB. 0.000 0.000 0.000	0.00 4 PER GRP/CAT 12.50 12.50 12.50	0.00 RCENTAGES CAT/GRP 100.00 100.00 100.00	S GLOBAL 12.50 100.00 100.00	CHARACTERISTIC CATEGORIES CLUSTER 2 / 4 C47=4 C42=2 C43=4	OF VARIABLES V94 V89 V90 V83 V85 V87 V96 V74 V75 V63	aa2a BT_4 BO_2 BP_4 BI_2 BK_2 BM_2 BM_2 BV_3 AZ_3	3 24 24 24 24 24 24 24 6 6
-99.99 	0.000 2 / PROB. 0.000 0.000 0.000	0.00 4 PER GRP/CAT 12.50 12.50 12.50	0.00 RCENTAGES CAT/GRP 100.00 100.00 100.00	S GLOBAL 12.50 100.00 100.00	CHARACTERISTIC CATEGORIES CLUSTER 2 / 4 C47=4 C42=2 C43=4	OF VARIABLES V94 V89 V90 V83 V85 V87 V96 V74 V75 V63	aa2a BT 4 BO 2 BP 4 BI 2 BK 2 BK 2 BW 3 AZ 3 BA 3 AO 3	3 24 24 24 24 24 24 24 66 6
-99.99 	0.000 2 / PROB. 0.000 0.000 0.000	0.00 4 PER GRP/CAT 12.50 12.50 12.50	0.00 RCENTAGES CAT/GRP 100.00 100.00 100.00	S GLOBAL 12.50 100.00 100.00	CHARACTERISTIC CATEGORIES CLUSTER 2 / 4 C47=4 C42=2 C43=4		aa2a BT_4 BO_2 BP_4 BI_2 BK_2 BM_2 BW_3 AZ_3 BA_3 AO_3 BQ_1	IGHT 3 24 24 24 24 24 24 24 36 66 18
-99.99	0.000 2 / PROB. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.010 0.010 0.010 0.000 0.000	0.00 4 PER GRP/CAT 12.50 12.50 12.50	0.00 RCENTAGES CAT/GRP 100.00 100.00 100.00	S GLOBAL 12.50 100.00 100.00	CHARACTERISTIC CATEGORIES CLUSTER 2 / 4 C47=4 C42=2 C43=4	V94 V89 V90 V83 V85 V87 V96 V74 V75 V63 V91	aa2a aa2a BT_4 BO_2 BP_4 BI_2 BM_2 BM_2 BV_3 BA_3 AO_3 BA_3 AO_3 BA_3 AO_3 BA_3 AO_2 BF_1 AU_2 BF_1 AU_2 BF_1 AU_2 BF_1 AU_3 BF_1	IGHT 3 24 24 24 24 24 24 24 6 6 18
-99.99	0.000 2 / PROB. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.010 0.010 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00000 0.00000 0.00000 0.0000 0.0000 0.00000 0.00000 0.00000 0.0000 0.0000 0.000	0.00 4	0.00	12.50 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 106.67 25.00 25.00 75.00 0.00 0.00	CHARACTERISTIC CATEGORIES CLUSTER 2 / 4 C47=4 C42=2 C43=4 C36=2 C38=2 C40=2 C49=3 C27=3 C28=3 C16=3 C44=1 C22=2 C33=1 C19=3 C11=2	OF VARIABLES V94 V89 V90 V83 V85 V87 V96 V74 V75 V63 V91 V69 V80 V66 V58	aa2a BT_4 BO_2 BP_4 BI_2 BK_2 BW_3 AZ_3 BA_3 AO_3 BA_3 AO_3 BQ_1 AU_2 BF_1 AU_2 AF_1 AF_3 AJ_2	 IGHT 3 24 24 24 24 24 24 24 66 66 18 0 0
-99.99	0.000 2 / PROB. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.010 0.010 0.010 0.000 0.000 0.000	0.00 4	0.00	12.50 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 16.67 25.00 25.00 0.00 0.00 0.00	CHARACTERISTIC CATEGORIES CLUSTER 2 / 4 C47=4 C42=2 C43=4 C36=2 C38=2 C40=2 C49=3 C27=3 C27=3 C28=3 C16=3 C44=1 C22=2 C33=1 C19=3 C11=2 C11=2 C14=3	OF VARIABLES V94 V89 V90 V83 V85 V87 V96 V74 V75 V63 V91 V69 V80 V66 V58 V58	IDEN WE aa2a BT 4 BO 2 BF 4 BI 2 BK 2 BW 3 AZ 3 BA 3 AO 3 BO 1 AU 2 BF 1 AR 3 AJ 3 AJ 3 AJ 3	IGHT 3 24 24 24 24 24 24 24 26 66 18 0 0 0 0 0 0 0 0
-99.99 CLUSTER T.VALUE 99.99 99.99 99.99 99.99 2.88 2.33 2.33 -2.33 -2.33 -99.99 -99.99	0.000 2 / PROB. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.010 0.010 0.000 0.000 0.000 0.000 0.000	0.00 -4	0.00	12.50 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 25.00 25.00 0.00 0.00 0.00	CHARACTERISTIC CATEGORIES CLUSTER 2 / 4 C47=4 C42=2 C43=4 C36=2 C38=2 C40=2 C49=3 C27=3 C28=3 C16=3 C44=1 C22=2 C33=1 C19=3 C11=2 C14=3 C15=1	OF VARIABLES V94 V89 V90 V83 V85 V87 V96 V74 V75 V63 V91 V69 V80 V86 V58 V61 V62	aa2a BT 4 BO_2 BP 4 BI_2 BK_2 BM_2 BV_3 BA_3 AO_3 BA_3 AO_1 AU_2 BF_1 AU_2 AU_3 AU_3 AU_3 AU_3 AU_3 AU_3 AU_3 AU_3	JGHT 3 24 24 24 24 24 24 66 18 0 0 0 0 0
-99.99	0.000 2 / PROB. 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.010 0.010 0.000 0.000 0.000 0.000 0.000	0.00 4	0.00	12.50 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 10.00 25.00 75.00 0.00 0.00 0.00 0.00	CHARACTERISTIC CATEGORIES CLUSTER 2 / 4 C47=4 C42=2 C43=4 C36=2 C38=2 C40=2 C49=3 C27=3 C28=3 C16=3 C44=1 C22=2 C33=1 C19=3 C11=2 C14=3 C15=1 C18=2	OF VARIABLES V94 V89 V90 V83 V85 V87 V96 V74 V75 V63 V91 V69 V80 V66 V58 V61 V62 V65	aa2a aa2a BT_4 BO_2 BP_4 BI_2 BW_2 BW_2 BW_3 AZ_3 BA_3 AO_3 BQ_1 AU_2 BF_1 AR_3 AJ_2 AM_3 AJ_2 AM_3 AN_1 AQ_2	IGHT 3 24 24 24 24 24 24 24 36 6 18 0 0 0 0 0 0 0
-99.99	0.000 2 / PROB. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.010 0.010 0.010 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0	0.00 4	0.00	12.50 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 16.67 25.00 25.00 0.00 0.00 0.00 0.00 0.00	CHARACTERISTIC CATEGORIES CLUSTER 2 / 4 C47-4 C42-2 C43-4 C36-2 C38-2 C40-2 C49-3 C27-3 C28-3 C16-3 C44-1 C22-2 C33-1 C19-3 C11-2 C14-3 C15-1 C18-2 C42-1	OF VARIABLES V94 V89 V90 V83 V85 V87 V96 V74 V75 V63 V91 V69 V80 V66 V58 V61 V62 V65 V89	IDEN WE aa2a BT 4 BO 2 BF 4 BI 2 BK 2 BM 2 BV 3 AZ 3 BA 3 BA 3 BQ 1 AU 2 AR 3 AJ 3 AJ 1 AQ 2 AM 3 AN 1 AQ 2 BO 1	JGHT 3 24 24 24 24 24 24 36 66 18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
-99.99 T.VALUE 99.99 99.99 99.99 99.99 2.88 2.33 2.33 -2.33 -99.99 -99.99 -99.99	0.000 2 / PROB. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.010 0.010 0.010 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.	0.00	0.00	12.50 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00	CHARACTERISTIC CATEGORIES CLUSTER 2 / 4 C47=4 C42=2 C43=4 C36=2 C38=2 C40=2 C49=3 C27=3 C28=3 C16=3 C44=1 C22=2 C33=1 C11=2 C11=2 C14=3 C11=2 C14=3 C15=1 C18=2 C42=1 C36=1	OF VARIABLES V94 V89 V90 V83 V85 V87 V96 V74 V75 V63 V91 V69 V80 V86 V58 V61 V62 V62 V65 V89 V83	aa2a aa2a BT_4 BO_2 BP_4 BI_2 BM_2 BM_2 BV_3 BA_3 AO_3 BA_3 AO_3 BA_3 AO_3 BA_3 AO_3 BA_3 AO_3 BA_3 BO_1 AU_2 BF_1 AU_2 BF_1	JIGHT 3 24 24 24 24 24 24 66 68 18 0 0 0 0 0 0 0 0
-99.99	0.000 2 / PROB. 0.000 0.000 0.000 0.000 0.000 0.000 0.010 0.010 0.010 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.	0.00 4	0.00	12.50 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 10.00 25.00 75.00 0.00 0.00 0.00 0.00 0.00 0.00	CHARACTERISTIC CATEGORIES CLUSTER 2 / 4 C47=4 C42=2 C43=4 C36=2 C38=2 C40=2 C49=3 C27=3 C28=3 C16=3 C44=1 C22=2 C33=1 C19=3 C11=2 C14=3 C15=1 C18=2 C42=1 C36=1 C40=1	V94 V89 V90 V83 V85 V87 V96 V74 V75 V63 V91 V69 V80 V66 V58 V61 V62 V65 V89 V83 V87	aa2a BT_4 BO_2 BP_4 BI_2 BW_2 BW_2 BW_3 AZ_3 BA_3 AO_3 BQ_1 AU_2 BF_1 AU_2 BF_3 AJ_2 BF_1 BQ_1 BR_3 AJ_2 BQ_1 BR_3 BQ_1 BR_3 BQ_1 BR_3 BQ_1 BR_3 BQ_1 BR_3 BQ_1 BR_3 BQ_1 BR_3 BQ_1 BR_3 BQ_1 BR_3 BQ_1 BR_3 BQ_1 BR_3 BR_3 BQ_1 BR_3 BR_3 BR_3 BR_3 BR_3 BR_3 BR_3 BR_3	JIGHT 3 3 24 4 24 24 24 24 24 66 66 18 00 00 00 00 00 00 00 00 00 00 00 00 00
-99.99	0.000 2 / PROB. 0.000	0.00 4	0.00	S GLOBAL 12.50 100.00 100.00 100.00 100.00 100.00 100.00 100.00 75.00 0.00 0.00 0.00 0.00 0.00 0.0	CHARACTERISTIC CATEGORIES CLUSTER 2 / 4 C47-4 C42-2 C43-4 C36-2 C38-2 C40-2 C49-3 C27-3 C28-3 C16-3 C44-1 C22-2 C33-1 C19-3 C11-2 C14-3 C15-1 C18-2 C42-1 C36-1 C40-1 C43-2	OF VARIABLES V94 V89 V90 V83 V85 V87 V96 V74 V75 V63 V91 V69 V80 V66 V58 V61 V62 V65 V89 V83 V87 V90	IDEN WE aa2a BT_4 BO_2 BP_4 BI_2 BK_2 BW_3 BQ_1 AQ_3 BQ_1 AQ_3 BQ_1 AQ_3 AG_3 AG_3 AG_3 AG_1 AU_2 BF_1 AR_3 AJ_2 BF_1 BR_1 BR_1 BR_1 BR_1 BR_1 BR_1 BR_1 BR	3 24 24 24 24 24 24 66 6 18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
-99.99	0.000 2 / PROB. 0.000	0.00	0.00	S GLOBAL 12.50 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 0.00	CHARACTERISTIC CATEGORIES CLUSTER 2 / 4 C47=4 C42=2 C43=4 C36=2 C38=2 C40=2 C49=3 C27=3 C28=3 C16=3 C44=1 C22=2 C33=1 C11=2 C11=2 C14=3 C11=2 C14=3 C15=1 C18=2 C42=1 C36=1 C40=1 C40=1 C43=2 C38=1	OF VARIABLES V94 V89 V90 V83 V85 V87 V96 V74 V75 V63 V91 V69 V80 V66 V58 V61 V62 V65 V89 V83 V87 V90 V87	aa2a BT_4 BO_2 BP_4 BI_2 BM_2 BM_2 BM_3 A0_3 BA_3 A0_1 AU_2 BF_1 AU_2 BF_1 AU_2 BF_1 BF_1 BF_1 BF_1 BF_1 BF_1 BF_1 BF_1	IGHT 3 3 244 244 244 24 4 6 6 6 18 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
-99.99	0.000 2 / PROB. 0.000	0.00 4	0.00	12.50 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 25.00 75.00 0.00 0.00 0.00 0.00 0.00 0.00	CHARACTERISTIC CATEGORIES CLUSTER 2 / 4 C47=4 C42=2 C43=4 C36=2 C38=2 C40=2 C49=3 C27=3 C28=3 C16=3 C44=1 C22=2 C33=1 C19=3 C11=2 C14=3 C15=1 C18=2 C42=1 C36=1 C40=1 C43=2 C38=1 C20=3	V94 V89 V90 V83 V85 V87 V96 V74 V75 V63 V91 V69 V80 V66 V58 V61 V62 V65 V89 V83 V87 V90 V83 V87 V90 V80 V60	aa2a BT_4 BO_2 BP_4 BI_2 BW_2 BW_2 BW_3 AZ_3 BA_3 AO_3 BQ_1 AU_2 BF_1 AU_2 BF_1 AU_2 BF_1 BQ_1 BQ_1 BQ_1 BQ_1 BQ_1 BQ_1 BQ_2 BQ_1 BQ_2 BQ_1 BQ_1 BQ_1 BQ_1 BQ_1 BQ_1 BQ_1 BQ_1	
-99.99	0.000 2 / PROB. 0.000	0.00 4	0.00	3 GLOBAL 12.50 100.00 100.00 100.00 100.00 100.00 100.00 100.00 0.00	CHARACTERISTIC CATEGORIES CLUSTER 2 / 4 C47-4 C42-2 C43-4 C36-2 C38-2 C40-2 C49-3 C27-3 C28-3 C16-3 C44-1 C22-2 C33-1 C19-3 C11-2 C14-3 C15-1 C18-2 C42-1 C36-1 C40-1 C43-2 C38-1 C20-3 C33-3	OF VARIABLES V94 V89 V90 V83 V85 V87 V96 V74 V75 V63 V91 V69 V80 V66 V58 V61 V62 V65 V89 V83 V87 V90 V85 V87 V90 V87	IDEN WE aa2a BT_4 BO_2 BP_4 BI_2 BK_2 BW_2 BV_3 BA_3 AO_3 AO_1 AU_2 BF_1 AR_3 AJ_3 AJ_1 AQ_2 BF_1 BF_1 BF_1 BF_2 BK_1 AS_3 BR_1 BR_1 BR_2 BF_1 BF_2 BK_1 AS_3 BF_3 BF_3	IGHT 3 24 24 24 24 24 24 24 66 6 18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
-99.99 T.VALUE 99.99 99.99 99.99 99.99 2.88 2.33 -2.33 -2.33 -99.99 -99.99 -99.99 -99.99 -99.99 -99.99 -99.99	0.000 2 / PROB. 0.000	0.00	0.00	S GLOBAL 12.50 100.00 100.00 100.00 100.00 100.00 100.00 25.00 25.00 75.00 0.00 0.00 0.00 0.00 0.00 0.00	CHARACTERISTIC CATEGORIES CLUSTER 2 / 4 C47=4 C42=2 C43=4 C36=2 C38=2 C40=2 C49=3 C27=3 C28=3 C16=3 C44=1 C22=2 C33=1 C11=2 C14=3 C11=2 C14=3 C15=1 C18=2 C40=1 C40=1 C40=1 C40=1 C40=1 C40=1 C40=2 C33=1 C20=3 C33=3 C33=3 C29=3	OF VARIABLES V94 V89 V90 V83 V85 V87 V96 V74 V75 V63 V91 V69 V80 V66 V58 V61 V62 V65 V89 V83 V87 V90 V80 V87 V90 V80 V80	BT 4 BC 2 BF 4 BI 2 BM 3 A0 3 BA 3 A0 3 BA 3 A0 1 AU 2 BF 1 AU 2 BF 1	IGHT
-99.99	0.000 2 / PROB. 0.000	0.00 4	0.00	12.50 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 25.00 75.00 0.00 0.00 0.00 0.00 0.00 0.00	CHARACTERISTIC CATEGORIES CLUSTER 2 / 4 C47=4 C42=2 C43=4 C36=2 C38=2 C40=2 C49=3 C27=3 C28=3 C16=3 C44=1 C22=2 C33=1 C19=3 C11=2 C14=3 C15=1 C18=2 C42=1 C36=1 C40=1 C43=2 C38=1 C20=3 C33=3 C33=3 C29=3 C49=2	V94 V89 V90 V83 V85 V87 V96 V74 V75 V63 V91 V69 V80 V66 V58 V61 V62 V65 V89 V83 V87 V90 V83 V87 V90 V80 V60 V60 V60 V60 V60 V60 V60 V60 V60 V6	BP 4 BI 2 BP 4 BI 2 BM 2 BM 2 BM 2 BM 2 BM 3 AZ 3 BA 3 AO 3 BA 3 AO 1 AU 2 BF 1 BF 1 AR 1 AU 2 BF 1 BF 1 BF 1 BM 1 BF 2 BM 1 BF	IGHT 3 244 244 244 244 244 666 188 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
-99.99	0.000 2 / PROB. 0.000	0.00 4	0.00	3 GLOBAL 12.50 100.00 100.00 100.00 100.00 100.00 100.00 0.00	CHARACTERISTIC CATEGORIES CLUSTER 2 / 4 C47-4 C42-2 C43-4 C36-2 C38-2 C40-2 C49-3 C27-3 C28-3 C16-3 C44-1 C22-2 C33-1 C19-3 C11-2 C14-3 C15-1 C18-2 C42-1 C36-1 C40-1 C43-2 C38-1 C20-3 C33-3 C29-3 C49-2 C39-3 C49-2 C49-1	OF VARIABLES V94 V89 V90 V83 V85 V87 V96 V74 V75 V63 V91 V69 V80 V66 V58 V61 V62 V65 V89 V83 V87 V90 V85 V67 V80 V76 V96 V96 V96	IDEN WE aa2a BT_4 BO_2 BP_4 BI_2 BK_2 BW_3 BQ_1 AU_2 BF_1 AR_3 AJ_2 AM_3 AJ_2 AM_1 AQ_2 BF_1 BF_1 BF_1 BF_1 BF_2 BK_1 AS_3 BA_3 BA_3 BQ_1 BF_1 BF_1 BF_2 BF_1 BF_2 BK_1 BF_3 BF_3 BF_3 BF_3 BB_3 BV_1	IGHT
-99.99	0.000 2 / PROB. 0.000	0.00 4	0.00	12.50 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 0	CHARACTERISTIC CATEGORIES CLUSTER 2 / 4 C47=4 C42=2 C43=4 C36=2 C38=2 C40=2 C49=3 C27=3 C28=3 C16=3 C44=1 C22=2 C33=1 C19=3 C11=2 C14=3 C15=1 C18=2 C42=1 C36=1 C40=1 C43=2 C38=1 C20=3 C33=3 C33=3 C29=3 C49=2	V94 V89 V90 V83 V85 V87 V96 V74 V75 V63 V91 V69 V80 V66 V58 V61 V62 V65 V89 V83 V87 V90 V83 V87 V90 V80 V60 V60 V60 V60 V60 V60 V60 V60 V60 V6	BP 4 BI 2 BP 4 BI 2 BM 2 BM 2 BM 2 BM 2 BM 3 AZ 3 BA 3 AO 3 BA 3 AO 1 AU 2 BF 1 BF 1 AR 1 AU 2 BF 1 BF 1 BF 1 BM 1 BF 2 BM 1 BF	IGHT 3 24 24 24 24 24 24 24 24 24 26 66 61 88 00 00 00 00 00 00 00 00 00 00 00 00
-99.99	0.000 2 / PROB. 0.000	0.00	0.00	12.50 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 0.0	CHARACTERISTIC CATEGORIES CLUSTER 2 / 4 C47=4 C42=2 C43=4 C36=2 C38=2 C40=2 C49=3 C27=3 C28=3 C16=3 C44=1 C22=2 C33=1 C11=2 C14=3 C11=2 C14=3 C15=1 C18=2 C42=1 C36=1 C40=1 C40=1 C40=1 C40=1 C40=1 C40=1 C40=1 C40=1 C23=3 C49=2 C49=1 C23=3	OF VARIABLES V94 V89 V90 V83 V85 V87 V96 V74 V75 V63 V91 V69 V80 V66 V58 V61 V62 V65 V89 V83 V87 V90 V87 V90 V80 V80 V60 V80 V60 V80 V60 V80 V60 V80 V60 V80 V80 V80 V80 V80 V80 V80 V80 V80 V8	BT 4 BC 2 BF 4 BI 2 BK 2 BK 2 BW 2 BW 2 BW 3 BA 3 AO 3 BA 3 AO 3 BA 3 AO 1 AU 2 BF 1 AU 2 BF 1 BF 1 BF 1 BF 1 BF 1 BF 1 BF 1 BF 1	IGHT 3 3 244 244 244 244 244 6 6 68 18 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
-99.99	0.000 2 / PROB. 0.000	0.00 4	0.00	12.50 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 0	CHARACTERISTIC CATEGORIES CLUSTER 2 / 4 C47=4 C42=2 C43=4 C36=2 C38=2 C40=2 C49=3 C27=3 C28=3 C16=3 C44=1 C22=2 C33=1 C19=3 C11=2 C14=3 C15=1 C18=2 C42=1 C36=1 C40=1 C43=2 C38=1 C20=3 C38=1 C20=3 C38=3 C49=2 C49=1 C23=3 C29=3 C49=2 C49=1 C23=2 C33=1	V94 V89 V90 V83 V85 V87 V96 V74 V75 V63 V91 V69 V80 V66 V58 V61 V62 V65 V89 V83 V87 V90 V80 V60 V60 V70 V70 V70 V70 V70 V70 V70 V70 V70 V7	BP 4 BI 2 BM 3 AZ 3 BA 3 AO 3 BA 3 AO 1 AU 2 BF 1	IGHT 3 244 244 244 244 244 666 188 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
-99.99	0.000 2 / PROB. 0.000	0.00 -4	0.00	12.50 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 0	CHARACTERISTIC CATEGORIES CLUSTER 2 / 4 C47-4 C42-2 C43-4 C36-2 C38-2 C40-2 C49-3 C27-3 C28-3 C16-3 C44-1 C22-2 C33-1 C19-3 C11-2 C14-3 C15-1 C18-2 C42-1 C36-1 C40-1 C43-2 C38-1 C20-3 C33-3 C29-3 C49-2 C49-1 C23-3 C49-2 C49-1 C23-3 C49-2 C49-1 C23-3 C49-2 C48-1	OF VARIABLES V94 V89 V90 V83 V85 V87 V96 V74 V75 V63 V91 V69 V80 V66 V58 V61 V62 V65 V89 V83 V87 V90 V85 V87 V90 V85 V67 V80 V76 V96 V96 V70 V70 V70 V70	BE A B B B B B B B B B B B B B B B B B B	
-99.99	0.000	0.00 4	0.00	12.50 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 75.000 0.0000 0.0000	CHARACTERISTIC CATEGORIES CLUSTER 2 / 4 C47=4 C42=2 C43=4 C36=2 C38=2 C40=2 C49=3 C27=3 C28=3 C16=3 C44=1 C22=2 C33=1 C11=2 C14=3 C15=1 C18=2 C42=1 C36=1 C40=1 C	OF VARIABLES V94 V89 V90 V83 V85 V87 V96 V74 V75 V63 V91 V69 V80 V66 V58 V61 V62 V65 V89 V83 V87 V90 V80 V67 V80 V80 V80 V80 V60 V80 V60 V80 V60 V80 V80 V60 V80 V80 V80 V80 V80 V80 V80 V80 V80 V8	BT 4 BO 2 BF 4 BI 2 BW 2 BW 2 BW 3 AO 3 AO 2 AM 1 AO 2 BF 1 BW 1 BB 1 BW 1 BB 1 BW 1 BB 2 BC 2 BV 1 AC 2 BC 1 AC 3 BC 2 BC 1 AC 3 BC 3 BC 3 BC 2 BC 1 AC 3 AC 3 AC 2 BC 1 AC 3 AC 2 BC 1 AC 3 A	
-99.99	0.000 2 / PROB. 0.000	0.00 4	0.00	12.50 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 0	CHARACTERISTIC CATEGORIES CLUSTER 2 / 4 C47=4 C42=2 C43=4 C36=2 C38=2 C40=2 C49=3 C27=3 C28=3 C16=3 C44=1 C22=2 C33=1 C19=3 C11=2 C14=3 C15=1 C18=2 C42=1 C36=1 C40=1 C40=1 C43=2 C38=1 C20=3 C33=3 C33=3 C29=3 C49=2 C49=1 C23=3 C23=3 C23=3 C23=3 C23=3 C23=3 C23=3 C24=1 C36=1 C40=1 C47=1 C36=1 C40=1 C47=3 C47=1	V94 V89 V90 V83 V85 V87 V96 V74 V75 V63 V91 V69 V80 V66 V58 V61 V62 V65 V89 V83 V87 V90 V80 V60 V60 V80 V60 V80 V60 V60 V80 V60 V80 V60 V80 V60 V80 V80 V60 V80 V80 V80 V80 V80 V80 V80 V80 V80 V8	IDEN WE aa2a BT_4 BO_2 BF_4 BI_2 BK_2 BW_3 AZ_3 BA_3 AO_1 AU_2 BF_1 AR_3 AJ_2 BG_1 AR_3 AJ_2 BG_1 BF_1 AR_3 AJ_2 BG_1 AR_3 AJ_2 BG_1 BF_1 AR_3 AJ_2 BG_1 AG_2 BG_1 BI_1 BF_2 BK_1 AG_2 BK	IGHT 3 3 244 244 244 244 244 66 68 188 00 00 00 00 00 00 00 00 00 00 00 00 00
-99.99	0.000	0.00	0.00	12.50 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 75.00 0.00 0.00 0.00 0.00 0.00 0.0	CHARACTERISTIC CATEGORIES CLUSTER 2 / 4 C47=4 C42=2 C43=4 C36=2 C38=2 C40=2 C49=3 C27=3 C28=3 C16=3 C44=1 C22=2 C33=1 C19=3 C11=2 C14=3 C15=1 C18=2 C42=1 C36=1 C40=1 C43=2 C47=1 C21=3	V94 V89 V90 V83 V85 V87 V96 V74 V75 V63 V91 V69 V80 V66 V58 V61 V62 V65 V89 V83 V87 V90 V80 V60 V60 V70 V70 V70 V70 V70 V70 V70 V75 V63 V94 V94 V94 V94 V94	IDEN WE aa2a BT_4 BO_2 BF_4 BI_2 BK_2 BW_3 AZ_3 BA_3 AO_1 AU_2 BF_1 AR_3 AJ_2 AM_3 AJ_2 BM_1 BM_1 BM_1 BM_1 BM_1 BM_1 BM_2 BK_1 BM_1 BM_1 BM_1 BM_1 BM_1 BM_1 BM_1 BM	IGHT 3 24 24 24 24 24 24 24 26 66 18 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
-99.99 T.VALUE 99.99 99.99 99.99 99.99 99.99 2.88 2.33 -2.33 -2.33 -2.99.99 -99.99 -99.99 -99.99 -99.99 -99.99 -99.99 -99.99 -99.99 -99.99 -99.99 -99.99 -99.99 -99.99 -99.99	0.000 2 / PROB. 0.000	0.00 -4	0.00	12.50 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 0	CHARACTERISTIC CATEGORIES CLUSTER 2 / 4 C47-4 C42-2 C43-4 C36-2 C38-2 C40-2 C49-3 C27-3 C28-3 C16-3 C44-1 C22-2 C33-1 C19-3 C11-2 C14-3 C15-1 C18-2 C42-1 C36-1 C40-1 C40-1 C43-2 C38-1 C20-3 C33-3 C29-3 C49-1 C20-3 C33-3 C29-3 C49-1 C21-3 C49-1 C23-3 C49-1 C23-3 C49-1 C23-3 C49-1 C23-3 C49-1 C23-3 C49-2 C48-1 C18-3 C47-2 C47-1 C21-3 C44-3 C44-3	OF VARIABLES V94 V89 V90 V83 V85 V87 V96 V74 V75 V63 V91 V69 V80 V66 V58 V61 V62 V65 V89 V83 V87 V90 V85 V87 V90 V85 V87 V90 V85 V67 V90 V85 V67 V90 V96	IDEN WE aa2a BT_4 B0_2 BF_4 B1_2 BK_2 BW_3 AZ_3 BA_3 AO_3 AO_1 AU_2 BF_1 AR_3 AJ_2 AM_1 AQ_1 BI_1 BM_1 BH_1 BH_1 BF_2 BK_1 AS_3 BF_3 BF_3 BF_3 BF_3 BF_3 BF_3 BF_3 BF	IGHT 3 4 2 4 2 4 2 4 2 4 2 4 4 6 6 6 18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
-99.99	0.000 2 / PROB. 0.000	0.00 4	0.00	12.50 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 0	CHARACTERISTIC CATEGORIES CLUSTER 2 / 4 C47=4 C42=2 C43=4 C36=2 C38=2 C40=2 C49=3 C27=3 C28=3 C16=3 C44=1 C22=2 C33=1 C19=3 C11=2 C14=3 C15=1 C18=2 C42=1 C36=1 C40=1 C40=1 C43=2 C38=1 C20=3 C33=3 C33=3 C29=3 C49=1 C20=3 C33=3 C29=3 C49=1 C23=3 C23=2 C49=1 C23=3 C23=2 C49=1 C23=3 C23=2 C49=1 C23=3 C23=2 C49=1 C21=3 C47=3 C47=3 C47=2 C47=1 C21=3 C44=3 C43=3	V94 V89 V90 V83 V85 V87 V96 V74 V75 V63 V91 V69 V80 V66 V58 V61 V62 V65 V89 V83 V87 V90 V80 V65 V89 V80 V80 V66 V89 V80 V65 V89 V81 V80	BT 4 BO 2 BP 4 BI 2 BW 2 BW 2 BW 3 AO 3 A	IGHT 3 24 24 24 24 24 24 26 6 18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
-99.99	0.000	0.00 -4	0.00	12.50 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 75.000 0.0000 0.00	CHARACTERISTIC CATEGORIES CLUSTER 2 / 4 C47-4 C42-2 C43-4 C36-2 C38-2 C40-2 C49-3 C27-3 C28-3 C16-3 C44-1 C22-2 C33-1 C19-3 C11-2 C14-3 C15-1 C36-1 C40-1 C43-2 C38-1 C20-3 C33-3 C29-3 C49-1 C36-1 C40-1 C43-2 C38-1 C20-3 C33-3 C29-3 C49-1 C20-3 C33-3 C29-3 C49-1 C21-3 C44-1 C22-2 C49-1 C23-3 C23-2 C48-1 C18-3 C47-2 C47-1 C21-3 C47-2 C47-1 C21-3 C44-3 C47-1 C21-3 C44-3 C44-3 C44-3 C44-3 C43-3 C21-1	OF VARIABLES V94 V89 V90 V83 V85 V87 V96 V74 V75 V63 V91 V69 V80 V66 V58 V61 V62 V65 V89 V83 V87 V90 V85 V87 V90 V85 V87 V90 V85 V67 V90 V85 V67 V80 V70 V96 V96 V96 V96 V96 V96 V96 V96 V96 V970 V95 V65 V94 V94 V94 V94 V94 V94 V990 V68	IDEN WE aa2a BT_4 BO_2 BF_4 BI_2 BK_2 BW_3 BA_3 AA_3 BA_3 AA_1 AR_3 AAJ_2 AR_3 AN_1 AR_3 AR_1 AR_1 AR_3 AR_1 AR_1 AR_1 BR_1 AR_1 BR_1 AR_1 BR_1 AR_1 BR_1 AR_1 BR_1 AR_1 AR_1 AR_1 AR_1 AR_1 AR_1 AR_1 A	IGHT 3 24 24 24 24 24 24 24 66 18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
-99.99	0.000	0.00 4	0.00	12.50 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 0	CHARACTERISTIC CATEGORIES CLUSTER 2 / 4 C47-4 C42-2 C43-4 C36-2 C38-2 C40-2 C49-3 C27-3 C28-3 C16-3 C44-1 C22-2 C33-1 C19-3 C11-2 C14-3 C15-1 C18-2 C40-1 C	V94 V89 V90 V83 V85 V87 V96 V74 V75 V63 V91 V69 V80 V66 V58 V61 V62 V65 V89 V83 V87 V90 V80 V65 V89 V80 V80 V66 V89 V80 V65 V89 V81 V80	BT 4 BO 2 BP 4 BI 2 BW 2 BW 2 BW 3 AO 3 A	IGHT 3 24 24 24 24 24 24 26 6 18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

T.VALUE	PROB.	PER GRP/CAT	CENTAGES CAT/GRP	GLOBAL	CHARACTERISTIC CATEGORIES	OF VARIABLES	IDEN V	WEIGHT
				4.1/	CLUSTER 3 / 4		aa3a	1
99.99	0.000	4.17				V83	BI 2	24
99.99	0.000	4.17	100.00	100.00	C40=2 C43=4	V87	BM 2	24
99.99	0.000	4.17	100.00	100.00	C43=4	V90	BP 4	24
99.99	0.000	4.17	100.00	100.00	C38=2	V85	BK 2	24
99.99	0.000	4.17	100.00	100.00		V89	во 2	24
99.99	0.000	4.17	100.00	100.00	C49=3 C47=4	V96	BV 3	24
99.99	0.000	4.17	100.00	100.00	C47=4	V94	BT 4	24
-99.99	0.000	0.00	0.00	0.00	C22=2	V69	AU 2	0
-99.99	0.000	0.00	0.00	0.00	C33=1	V80	BF 1	0
-99.99	0.000	0.00	0.00	0.00			AR 3	0
-99.99	0.000	0.00	0.00	0.00	C19=3 C11=2	V58	AJ 2	0
-99.99	0.000	0.00	0.00	0.00	C14=3	V61	AM 3	0
-99.99	0.000	0.00	0.00	0.00	C15=1	V62	AN 1	0
-99.99	0.000	0.00	0.00	0.00	C18=2	V65	AQ 2	0
-99.99	0.000	0.00	0.00	0.00	C18=2 C42=1	V89	во 1	0
-99.99	0.000	0.00	0.00	0.00	C36=1	V83	BI 1	0
-99.99	0.000	0.00	0.00	0.00	C40=1 C43=2	V87	BM 1	0
-99.99	0.000	0.00	0.00	0.00	C43=2	V90	BP 2	0
-99.99	0.000	0.00	0.00	0.00	C38=1	V85	BK 1	0
-99.99	0.000	0.00	0.00	0.00	C20=3	V67	AS 3	0
-99.99	0.000	0.00	0.00	0.00	C33=3	V80	BF 3	0
-99.99	0.000	0.00	0.00	0.00			BB 3	0
-99.99	0.000	0.00	0.00	0.00	C49=2	V96	BV 2	0
-99.99	0.000	0.00	0.00	0.00	C49=1	V96	BV 1	0
-99.99	0.000	0.00	0.00	0.00	C23=3 C23=2	V70	AV 3	0
-99.99	0.000	0.00	0.00	0.00	C23=2	V70	AV 2	0
-99.99	0.000	0.00	0.00	0.00	C48=1	V95	BU 1	0
-99.99	0.000	0.00	0.00	0.00	C18=3	V65	AQ 3	0
-99.99	0.000	0.00	0.00	0.00	C47=3 C47=2	V94	BT 3	0
-99.99	0.000	0.00	0.00	0.00	C47=2	V94	BT 2	0
-99.99	0.000	0.00	0.00	0.00	C47=1	V94	BT 1	0
-99.99	0.000	0.00	0.00	0.00	C21=3	V68	AT 3	0
-99.99	0.000	0.00	0.00	0.00	C11-3	17Q1	BQ_3	0
-99.99	0.000	0.00	0.00	0.00	C43=3	V90	BP_3	0
-99.99	0.000	0.00	0.00	0.00	C21=1	V68	AT 1	0
-99.99	0.000	0.00	0.00	0.00	C43=1	V90	BP 1	0
-99.99	0.000	0.00	0.00	0.00	C43=1 C2=1	V49	AA 1	0

Tabla 18. (Continuación)

CLUSTER 4 / 4

r.VALUE	PROB.	PEF	RCENTAGES		CHARACTERISTIC CATEGORIES CLUSTER 4 / 4 C38=2 C47=4 C42=2 C36=2 C49=3 C19=4 C18=4 C24=2 C26=2 C17=4 C21=4 C22=4 C20=4 C16=4 C11=4 C12=4 C14=4 C15=4 C12=4 C14=4 C15=4 C23=4 C22=3 C14=1 C23=1 C23=1 C26=1 C10=1 C21=2 C22=2 C33=1 C19=3 C11=2 C14=3 C15=1 C36=1 C40=1 C40=1 C40=2 C40=3 C30=3 C30=3 C30=3 C30=3 C30=3 C30=3 C30=3 C30=2 C40=2 C40=1 C30=3 C30=3 C30=3 C30=2 C40=2 C40=1 C30=3 C30=3 C30=3 C30=3 C30=3 C30=3 C30=3 C30=3 C40=2 C40=1 C30=3 C30=3 C30=3 C30=3 C30=3 C30=3 C30=3 C30=3 C30=3 C40=2 C40=1 C30=3 C30=3 C30=3 C30=3 C30=3 C30=3 C30=3 C30=3 C40=2 C40=1 C30=3 C30=3 C30=3 C30=3 C30=3 C30=3 C30=3 C40=2 C40=1 C30=3 C40=2 C40=1 C30=3 C30=3 C30=3 C30=3 C30=3 C30=3 C30=3 C30=3 C30=3 C40=2 C40=1 C30=3 C	OF 172 DIEG	IDEN WEIGH aa4a BK_2 BT_4 BO_2 BI_2 BP_4 BM_2 BW_3 AR_4 AQ_4 AW_2 AY_2 AY_2 AY_2 AY_4 AT_4 AU_4 AS_4 AO_4 AK_4 AM_4 AN_4 AN_4 AN_1 AV_4 AN_1 AV_1 AY_1 AY_1 AY_1 AY_1 AY_1 AY_1 AY_1 AY
		GRP/CAT	CAT/GRP	GLOBAL	CATEGORIES	OF VARIABLES	
				12.50	CLUSTER 4 / 4		aa4a
99.99	0.000	12.50	100.00	100.00	C38=2	V85	BK_2
99.99	0.000	12.50	100.00	100.00	C47=4	V94	BT_4
99.99	0.000	12.50	100.00	100.00	C42=2	V89	BO_2
99.99	0.000	12.50	100.00	100.00	C36=2	V83	BI_2
99.99	0.000	12.50	100.00	100.00	C43=4	V90	BP_4
99.99	0.000	12.50	100.00	100.00	C40=2	V87	BM_2
99.99	0.000	12.50	100.00	100.00	C49=3	V96	BV_3
3.29	0.000	100.00	100.00	12.50	C19=4	V66	AR_4
3.29	0.000	100.00	100.00	12.50	C18=4	V65	AQ_4
3.29	0.000	100.00	100.00	12.50	C24=2	V71	AW_2
3.29	0.000	100.00	100.00	12.50	C26=2	V73	AY_2
3.29	0.000	100.00	100.00	12.50	C17=4	V64	AP_4
3.29	0.000	100.00	100.00	12.50	C21=4	V68	AT_4
3.29	0.000	100.00	100.00	12.50	C22=4	V69	AU_4
3.29	0.000	100.00	100.00	12.50	C20=4	V67	AS_4
3.29	0.000	100.00	100.00	12.50	C16=4	V63	AO_4
3.29	0.000	100.00	100.00	12.50	C12=4	V59	AK_4
3.29	0.000	100.00	100.00	12.50	C14=4	V61	AM_4
3.29	0.000	100.00	100.00	12.50	C15=4	V62	AN_4
3.29	0.000	100.00	100.00	12.50	C23=4	V70	AV_4
-2.58	0.005	0.00	0.00	79.17	C22=3	V69	AU_3
-2.88	0.002	0.00	0.00	83.33	C14=1	V61	AM_1
-3.29	0.000	0.00	0.00	87.50	C18=1	V65	AQ_1
-3.29	0.000	0.00	0.00	87.50	C23=1	V70	AV_1
-3.29	0.000	0.00	0.00	87.50	C26=1	V73	AY_1
-3.29	0.000	0.00	0.00	87.50	C10=1	V57	AI_1 :
-3.29	0.000	0.00	0.00	87.50	C21=2	V68	AT_2
-99.99	0.000	0.00	0.00	0.00	C22=2	V69	AU_2
99.99	0.000	0.00	0.00	0.00	C33=1	V80	BF_1
99.99	0.000	0.00	0.00	0.00	C19=3	∨66	AR_3
99.99	0.000	0.00	0.00	0.00	C11=2	V58	AJ_2
99.99	0.000	0.00	0.00	0.00	C14=3	V61	AM_3
99.99	0.000	0.00	0.00	0.00	C15=1	V62	AN_1
99.99	0.000	0.00	0.00	0.00	C18=2	V65	AQ_2
99.99	0.000	0.00	0.00	0.00	C42=1	V89	BO_1
99.99	0.000	0.00	0.00	0.00	C36=1	V83	BI_1
99.99	0.000	0.00	0.00	0.00	C40=1	V87	BM_1
99.99	0.000	0.00	0.00	0.00	C43=2	V90	BP_2
99.99	0.000	0.00	0.00	0.00	C38=1	V85	BK_1
99.99	0.000	0.00	0.00	0.00	C20=3	V67	AS_3
99.99	0.000	0.00	0.00	0.00	C33=3	V80	BF_3
99.99	0.000	0.00	0.00	0.00	C29=3	V76	BB_3
99.99	0.000	0.00	0.00	0.00	C49=2	V96	BV_2
99.99	0.000	0.00	0.00	0.00	C49=1	V96	BV_1
99.99	0.000	0.00	0.00	0.00	C23=3	∨70	AV_3
99.99	0.000	0.00	0.00	0.00	C23=2	∨70	AV_2
99.99	0.000	0.00	0.00	0.00	C48=1	V95	BU_1
99.99	0.000	0.00	0.00	0.00	C18=3	V65	AQ_3

-99.99	0.000	0.00	0.00	0.00	C47=3	V94	BT	3	0
-99.99	0.000	0.00	0.00	0.00	C47=2	V94	BT	_2	0
-99.99	0.000	0.00	0.00	0.00	C47=1	V94	BT	_1	0
-99.99	0.000	0.00	0.00	0.00	C21=3	V68	AT	-3	0
-99.99	0.000	0.00	0.00	0.00	C44=3	V91	BÇ	_3	0
-99.99	0.000	0.00	0.00	0.00	C43=3	V90	BF	3	0
-99.99	0.000	0.00	0.00	0.00	C21=1	V68	AT	_1	0
-99.99	0.000	0.00	0.00	0.00	C43=1	V90	BF	-1	0
-99.99	0.000	0.00	0.00	0.00	C2=1	V49	AA	_1	0
								_	

Fuente: Esta investigación.

En el área a llevar acabo la propuesta de PSAH, se encuentran diferentes sistemas de producción, son los siguientes: agrícola, pecuario, forestal y agroforestales. La identificación de estos sistemas de producción se realizó mediante un reconocimiento preliminar de la zona mediante recorridos de campo, consulta con los productos y encuestas. De esta manera se identificaron y analizaron los sistemas de producción existentes.

SISTEMA AGRÍCOLA

En el recorrido se observó que se realizan modos de producción basados en los cultivos anuales y transitorios de autoconsumo y venta, los cuales utilizan la mano de obra familiar y del área de influencia. Los sistemas de producción que se presentan son explotaciones intensivas de papa, cebolla junca y en menos escala a modo de parcelas cebolla junca, fresas, hortalizas y verduras. El área que presentan estas actividades corresponde a 725 hectáreas y están distribuidas como se indica en el Cuadro 1. Estos sistemas de producción presentan tecnología escasa para producir y solo se observa cultivos tecnificados en extensiones grandes de papa.

Hernández y Navia (1.999) lo definen como el conjunto de actividades agrícolas orientados al uso intensivo de los recursos físicos (suelo, agua, radiación solar), bióticos (cultivos), y socio-económicos (mano de obra, capital e insumos), con el fin de optimizar la explotación agrícola, que en la microcuencas es deficiente y se maneja inadecuadamente, principalmente los cultivos de papa, pastos y cebolla, los productores afirman que el cultivo no produce ni para los insumos utilizados; esto estimula la utilización de productos baratos sin importar los aspectos técnicos del cultivo y los insumos. Los incentivos económicos pueden ser una alternativa al desestimulo de utilización indiscriminada de insumos o una fuente de ingresos para hacerlo con mayor intensidad.

El PSAH propuesto resalta esta parte de la utilización de insumos agrícola porqué su finalidad es disminuir su uso e incluso evitarlos.

Tabla 19. Cobertura en sistemas productivos presentes en el área de estudio.

Cobertura	Área (Ha)	Sistema Productivo
		Repollo
		Haba
		Arveja
		Fresa
Mosaico de Cultivos, Pastos y Espacios	144,21576	Maíz
Naturales		Brócoli
		Zanahoria
		Рара
		Pastos
		Espacios naturales
		Cebolla junca
Cultivos Anuales o Transitorios	580,78925	Papa

Fuente: Esta investigación

Se encontraron varias actividades productivas con la predominancia de la ganadería extensiva de venta regional.

Actividad Agrícola

La producción de papa es una de las actividades alternativas agrícolas de la zona, además de cultivos pequeños de hortalizas, para el autoconsumo.

Actividad Pecuaria

Se encontró varias líneas productivas sin la predominancia de ninguna, no hay sistemas de producción tecnificados que destinen parte o la totalidad de su producción a la venta. Se caracteriza por tener volúmenes de producción bajos

necesarios únicamente para el consumo familiar y muy esporádicamente para la venta.

Plantaciones Forestales

La superficie cubierta con reforestación y plantaciones de aliso es de considerable importancia. Teniendo en cuenta que se han realizado campañas de reforestación por parte de la corporación autónoma de Nariño CORPONARIÑO, como fue en su tiempo la campaña "ríe río Pasto" que dio muy buenos resultados en esta zona tributaria importante del río pasto.

Sistemas Agroforestales

Existen prácticas agroforestales como arboles dispersos y cercas vivas sin conocer los aspectos técnicos para el establecimiento y el manejo. La universidad de Nariño, por medio de la facultad de ciencias agrícolas y el programa de Ingeniería Agroforestal han realizado establecimiento de tecnologías agroforestales en la zona de estudio.

Mosaico de cultivos, castos y espacios naturales

Estos sistemas se realizan en áreas pequeñas y su manejo corresponde a labores culturales y fertilización mineral orgánica. Estos productos se utilizan para el consumo familiar y los excedentes para el comercio local y regional (POMCH, 2010). (Figura 16)

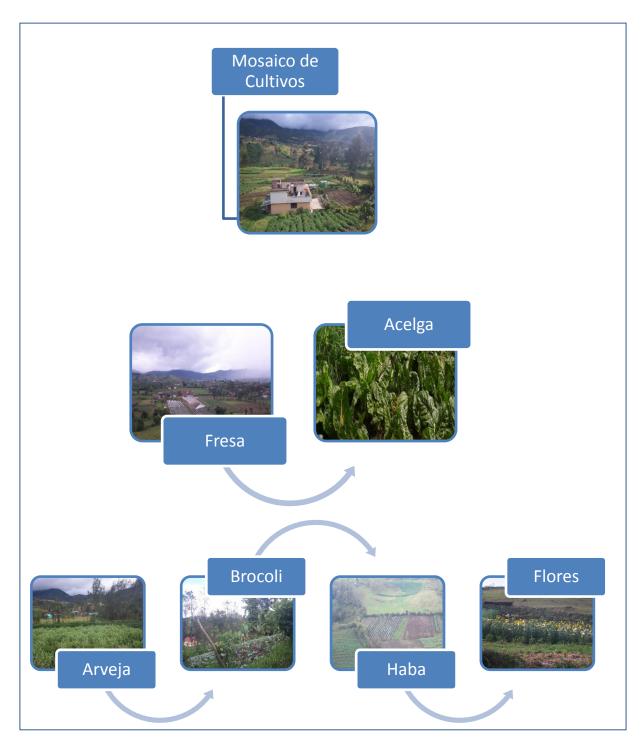
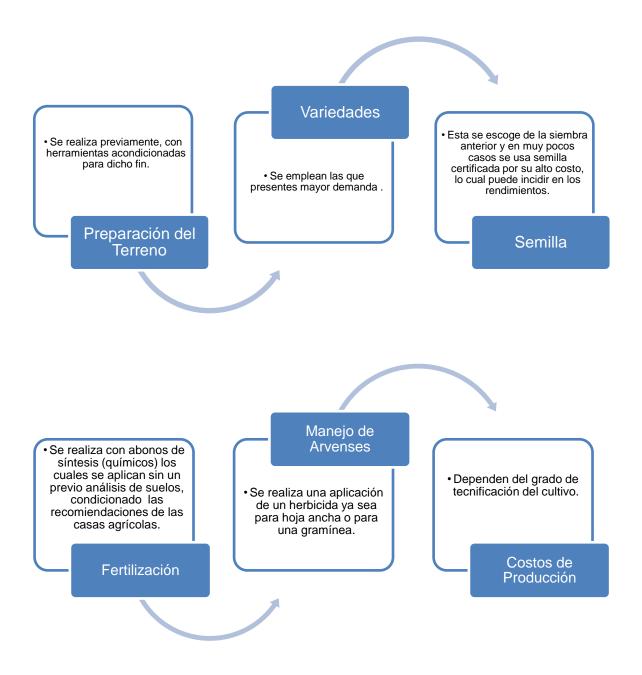



Figura 16. Mosaico de cultivos cuenca alta del río Pasto.

Los cultivos que se pueden apreciar son los de papa y cebolla junca (Figura 17). Lo cual coincide con lo descrito en el (POMCH, 2010) El manejo de estos sistemas agrícolas está determinado por las siguientes actividades:

Fuente: Esta Investigación, 2013

Para la comercialización el productor realiza la venta directa en los mercados locales y regionales. Desafortunadamente la venta de este producto está condicionada a la fluctuación del precio en el mercado regional y nacional.

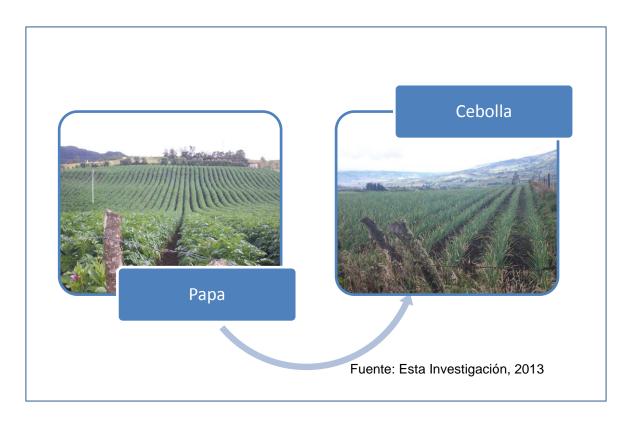


Figura 17. Cultivos de papa y cebolla junca, en la cuenca alta de río Pasto.

SISTEMA PECUARIO

Hernández y Navia (1.999) lo definen como un conjunto de actividades pecuarias orientadas al uso intensivo de los recursos físicos (suelo, agua y radiación solar), bióticos (pasturas y animales) y socio-económicos (mano de obra, capital e insumos), con el fin de optimizar la explotación pecuaria.

La actividad ganadera juega un papel muy importante y relevante en la microcuenca Las Tiendas, desde el punto de vista económico, social y cultural es la base de la construcción social a nivel productivo. La ganadería representa el principal ingreso a nivel económico de muchas de las familias asentadas en el área. En aspecto social, esta actividad se encuentra en la gran mayoría de las fincas medianas y pequeñas, provee de proteínas de alta calidad para la población y en lo cultural, los hábitos alimenticios de la población generalmente incluyen la carne, la leche y sus derivados (POMCA, 2.008).

Producción bovina

Estos sistemas se encuentran ubicados en áreas que están por encima de los 2.000 msnm, en relieves quebrados y escarpados lo que implica un gran impacto para el componente suelo, debido a que se presentan riesgos de erosión y degradación, por las practicas inadecuadas de manejo para estas áreas (POMCA, 2.008). Impactando directamente en los bienes y servicios ecosistemicos de esta área de la cuenca.

En la Figura 18, se puede evidenciar el nivel de degradación del suelo en la microcuenca, debido a que las laderas han sido sometidas a procesos acelerados de deforestación y posteriormente son áreas dedicadas a cultivos y pastos naturales con sobrepastoreo lo que induce a que los efectos negativos en el suelo sean más evidentes. Al respecto Arias (2001) menciona que la ganadería provoca formas de degradación como: compactación del suelo, caminos del ganado erosionado y presencia de terracetas, erosión y contaminación del agua por heces y por otros residuos delos establos, las cuales son evidentes en la zona de trabajo. Resalta que la principal causa para que se acelere la degradación del recurso suelo es el sobrepastoreo, lo que indica que el alimento disponible (pasto) por área es insuficiente para el número de animales presentes.

Figura 18. Microcuenca Las Tiendas. Degradación del suelo.

La ganadería es manejada a nivel familiar en donde la responsabilidad recae sobre el ama de casa y los niños encargadas de realizar las diferentes labores de manejo de los animales.

El sistema de pastoreo es extensivo, no se hacen drenajes a los potreros, pocas veces se realizan prácticas de riego y fertilización y menos se hacen prácticas para renovación o mejoramiento de praderas. El manejo se limita al control de malezas y reparación de cercas como también lo expresan (POMCA, 2.008). Por lo tanto es relevante plantear cual es la estrategia para lograr evitar estas prácticas culturales o mejorarlas sustancialmente, con el objetivo de implementar el PSAH en la microcuenca.

Producción Cuyícola

De las actividades pecuarias que se desarrollan en el sector rural, la producción de cuyes es una de las más promisorias y rentable, debido a factores favorables como: La adaptación de los animales a las condiciones climatológicas, disponibilidad permanente de pastos para la alimentación, buen crecimiento y prolificidad de los animales. La crianza del cuy en la zona de la Cuenca es una actividad ligada al productor minifundista y de economía campesina, su desarrollo emplea mano de obra familiar, con bajos costos de oportunidad (POMCA,2.008).

Un factor importante a tener en cuenta y también de vital importancia en la producción bovina y cuyicola es la alimentación. Al respecto, la parte alta de la cuenca del río Pasto presenta 3265.7891 hectáreas con cobertura de pasto, la cual el 2% corresponde a pastos limpios (Tabla x)

Tabla 20. Cobertura de pastos en la cuenca alta del río Pasto.

Cobertura	Área (Ha)	Sistema Productivo
	3195,66843	Pastos Enmalezados
Pastos	70,12067	Pastos Limpios

Fuente: POMCA; 2008.

Pastos Enmalezados

Son las coberturas representadas por tierras con pastos y malezas conformando asociaciones de rastrojos, debido principalmente a la realización de escasas prácticas de manejo o la ocurrencia de procesos de abandono (Figura 19)

Como lo afirma el POMCA, 2.008 en su parte del diagnóstico. Por lo tanto este puede ser un factor relevante en futuros procesos de restauración ecológica también planteados en esta investigación.

Fuente: Esta Investigación, 2013

Figura 19. Pastos enmalezados en la cuenca alta del río Pasto.

Pastos Limpios

Esta cobertura comprende las tierras ocupadas por pastos limpios con un porcentaje de cubrimiento mayor al 70%; la realización de prácticas de manejo (limpieza, encalamiento y/o fertilización, etc.) y el nivel tecnológico utilizados impiden la presencia o el desarrollo de otras coberturas (Figura 20)(POMCA, 2.008).

Fuente: Esta Investigación, 2013

Figura 20. Pastos limpios en la cuenca alta del río Pasto.

SISTEMA FORESTAL

Hernández y Navia (1.999) lo definen como un conjunto de actividades forestales que se realizan en un terreno de una o más hectáreas, cultivado de una o más especies forestales cuyo objetivo principal, pero no único, será la producción de madera. Basados en esta premisa se identificó las plantaciones de aliso y acacia japonesa y amarillo.

Los más importantes para los bienes y servicios ecosistémicos de la microcuenca, son los bosques naturales o semi-naturales, constituidas principalmente por elementos arbóreos de especies nativas. Estos tipos de bosques son caracterizados por su heterogeneidad estructural y florística particular, dando origen de esta manera a un variado número de estratos que ocupan desde el dosel hasta el suelo (Figura 6). Como lo describe el POMCA, 2008 en estas áreas se encuentra una gran variedad de especies Pumamaque (Shefflera marginata), Mano de oso (Oreopanax discolor), Encino liso (Weinmania pubecens), Encino rugoso (Weinmania rollotti), Helecho Arboreo (Polypodium sp). Los tipos de cobertura se presentan en el Tabla 3

Tabla 21. Tipos de cobertura forestal.

Cobertura	Área(Ha)
Vegetación de páramo y	124,04657
subpáramo	
Bosque Abierto	271,10161
Bosque Natural Fragmentado	236,67536
Bosque Plantado	28,55991
Bosque Natural Denso	1844,57949
Arbustos y Matorrales	244,34159

Fuente: POMCA, 2.008

De estos tipos de cobertura los bosques abiertos y el bosque natural denso son los que han sufrido mayores efectos debido a que han sido sometidos a la continua acción antrópica con fines de extracción de madera, carbón, postes y para la ampliación de la frontera agrícola principalmente pastos naturales. Estas actividades

han conducida a una disminución en área con coberturas naturales, con la perdida de diversidad florística, y la disminución progresiva y continua de los bienes y servicios ambientales.

Figura 21. Composición florística de la microcuenca Las Tiendas.

La vegetación de tipo arbórea y/o arbustiva está propensa a disminuir su cobertura significativamente, ya que se ven expuestos a procesos antrópicos como la ampliación de la frontera agropecuaria y a la colonización de sus tierras.

4.7 IDENTIFICACIÓN DE ESCENARIOS FAVORABLES

SIMULACION OTROS ESCENARIOS

• Descripción de escenarios

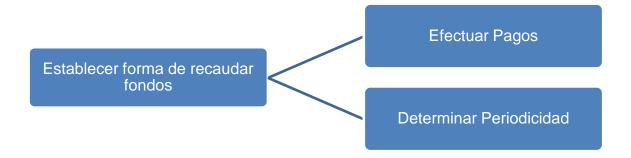
Después de modelar la subcuenca alta del río Pasto y una vez evidenciada la capacidad que tiene el modelo para representar los fenómenos físicos presentes en la cuenca de interés, se utilizó el modelo ya implementado para predecir el comportamiento de la cuenca ante las intervenciones antrópicas de interés en el estudio.

Se definieron dos escenarios en la microcuenca Las Tiendas, zona donde se propone llevar acabo un esquema de Pagos por Servicios Ambientales (PSA); para lo cual los cambios de cobertura se determinaron de la siguiente forma:

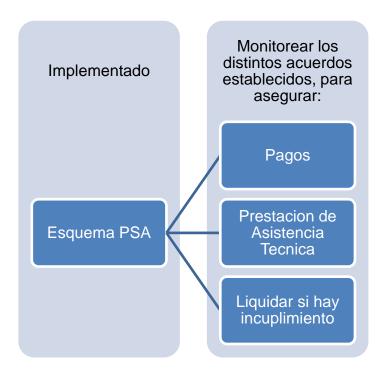
- Escenario 1. de restauración ecológica. Cobertura de bosque de 5 metros a las márgenes de los cauces, al igual que en las zonas de alta pendiente (¿Cuánto?) con producción de sedimentos alta.
- **Escenario 2**. de pastos a sistemas silvopastoriles, para el modelo no es posible elaborar un escenario de sistemas silvopastoriles, pero si puede cambiar la cobertura de pastos a rastrojos o pastos arbolados.

Para cada uno de los escenarios se cambió el uso del suelo en la microcuenca de interés y se procede a realizar la simulación de nuevo con estos cambios. Como variables de salida fueron analizadas, la cantidad de agua producida por toda la cuenca y los sedimentos con respecto al escenario.

Resultados de la Simulación de otros escenarios.


Con los datos de entrada ya cargados, se procedió a correr el modelo nuevamente para el período comprendido entre enero de 2006 al 2010; esta operación se repitió para cada uno de los dos escenarios a analizar, con el fin de poder comparar las respuestas entre el escenario original y cada uno de los escenarios definidos. A continuación se presentan las gráficas que representan las series de caudales de salida para cada caso.

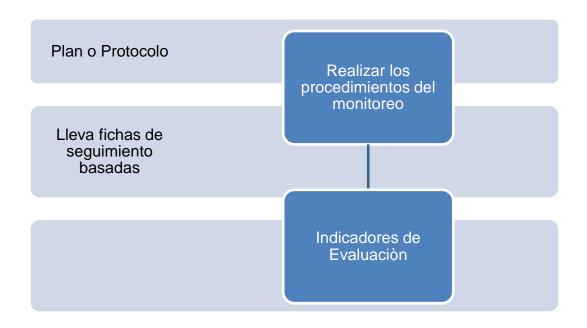
Una vez superadas las fases de construcción de línea base, estructuración del esquema de PSA y negociación del mismo (donde se llegó a acuerdos y suscribió contratos), es posible comenzar con la implementación del pago y sus mecanismos asociados (monitoreo, certificación y evaluación). En esta etapa se deben operativizar todas las actividades establecidas en los contratos, situando en sus obligaciones a los responsables de la provisión del servicio ambiental según el plan


de manejo que se halla propuesto para el predio y las áreas colindantes. Además, es necesario determinar la siguiente estrategia de comunicación:

También se debe comenzar a operar el mecanismo de manejo de recursos que fue acordado:

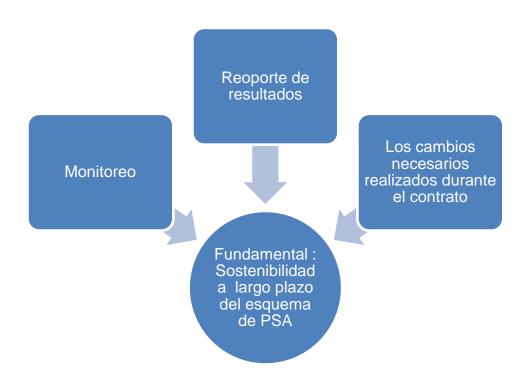
En esta fase, la constitución del fondo y su administración, así como la ejecución de todas aquellas actividades necesarias para el garantizar el éxito del esquema, ya deben funcionar correctamente.

4.8 SISTEMA DE MONITOREO Y SEGUIMIENTO

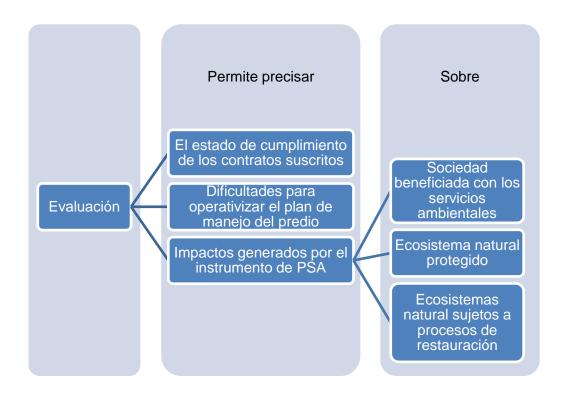


De esta manera, se asegura a los beneficiarios del servicio ambiental que sus aportes económicos están efectivamente incentivando la conservación, o

provocando cambios de uso del suelo en zonas deforestadas y degradadas que son estratégicas para mantener e inclusive generar los servicios ecosistémicos.


Las herramientas de monitoreo, certificación y evaluación tienen gran importancia, pues suministran información sobre el nivel de cumplimiento de las obligaciones pactadas. Para su ejecución, se debe esperar que el esquema de PSA ya esté operando para poder determinar la efectividad del impacto generado (adicionalidad). El plan o protocolo de monitoreo debe especificar la institución que lo debe realizar, la frecuencia de su aplicación, la metodología y sus costos (los que deben estar integrados al costo de implementación del esquema de PSA).

Las actividades de monitoreo, se deben desarrollar entre periodos de tiempo prudentes para poder dar solución a cualquier observación de cumplimiento realizada en momentos anteriores, y permitir así contar con la respectiva certificación que avale el cumplimiento de los acuerdos establecidos, requisito indispensable para poder efectuar el pago del reconocimiento y prestar asistencia técnica de ser necesario, o en caso contrario liquidar los correspondientes contratos por incumplimiento. El plan o protocolo de monitoreo debe permitir detectar, en forma temprana, fallas en la provisión del servicio ambiental objeto del esquema de PSA, para permitir con esta información realizar rápidas y oportunas medidas correctivas. Esto es muy importante para mantener la credibilidad de las partes participantes del esquema de pago por servicios ambientales instaurado.


Los indicadores de evaluación se construyen a partir de la información levantada en la primera fase del diseño del esquema de PSA, o construcción de línea base (ej: a escala predial, número de hectáreas en conservación).

CERTIFICACIÓN Y EVALUACIÓN

La verificación y certificación que efectúe periódicamente el operador siempre dará mayor confianza y seguridad al esquema. La certificación, en este sentido, realizada y renovada con regularidad permitirá que en la percepción de los beneficiarios del incentivo se infunda la confianza suficiente para alentarlos a que finalicen con éxito la vigencia contractual pactada (duración total del contrato).

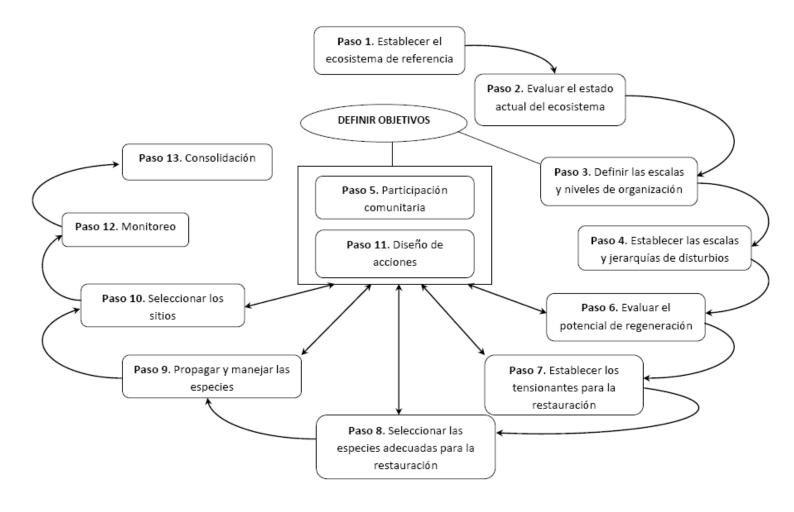
La evaluación, por su parte contribuirá a perfeccionar el diseño del esquema de PSA, lo cual no solo va a mejorar su eficacia en términos de conservación dentro del área de trabajo, sino que además permite contar con un instrumento robusto para ser replicado posteriormente en otros sitios.

4.9 PROPUESTA DE RESTAURACIÓN

La problemática de la microcuenca y de la subcuenca en estudio, es la sobreexplotación y el manejo inadecuado de los recursos naturales allí existentes, en parte por el desconocimiento prácticamente total de los procesos ecológicos y técnicas de cultivo y ganaderas sustentables, que logren un consenso entre la producción y la conservación.

Hoy día existen ecosistemas, que se encuentran totalmente alterados en su composición, estructura y funcionamiento. Ante tal crisis en el ámbito mundial, surge la necesidad de tomar medidas efectivas que eviten la desaparición de los ecosistemas, que promuevan su conservación, su recuperación parcial o total y su posible uso sostenido (Restauración Ecológica y Biodiversidad, Martínez, XXXX).

La aplicación de técnicas y estrategias de restauración tendientes al restablecimiento parcial o total de la estructura y función de los ecosistemas disturbados de bosque alto andino en la microcuenca Las Tiendas, son la mejor alternativa para lograr restablecer y conservar los bienes y servicio ambientales que


estos ecosistemas generan, con estas herramientas se pretende lograr evitar y revertir los procesos de degradación generados.

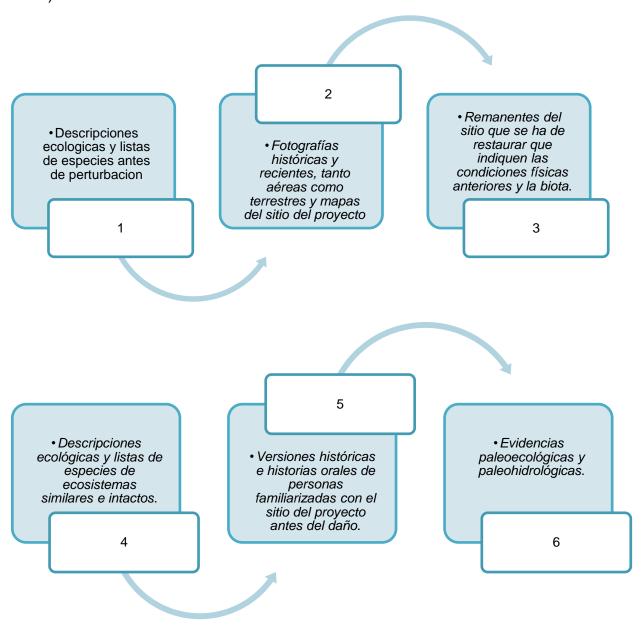
La restauración logra mejorar sustancialmente la cantidad y calidad del agua. Sin tener en cuenta los casos en que predomina una intervención mediante obras civiles, que son necesarias y se deben hacer en la cuenca; existen 2 tendencias principales para enfrentar el problema al que se refiere la definición anterior; de un lado, un enfoque productivo u orientado hacia lo "agroforestal" y de otro, un enfoque "ecológico" que no espera rendimientos de tipo económico (Bradshaw 1993, CairnsJr 1993, Clewell 1993, Woodwell1994 en Barrera y Ríos 2002 *citado por* Garibello, 2003).

Para lograr el establecimiento de la comunidad vegetal se establecer el procedimiento de núcleos de restauración, con proceso dirigido hacia la mejora de la calidad integral de ecosistemas de paramo alto andino y de su expresión como paisajes, como lo plantea Balaguer, 2004 (Restauración ecológica: mito o ciencia).

El área destinada para iniciar el proceso de restauración ecológica será las zonas riparias del cauce principal de la microcuenca Las Tiendas y zonas dentro de los predios donde aflore agua, parches de bosque, corredores biológicos, etc. La priorización de esta área se planteó argumentos técnicos, basada en las necesidades de la comunidad y articulados a criterios de estrategias regionales de conservación, y de las políticas de gestión de las autoridades ambientales (Corponariño, Parques Naturales Nacionales), públicas (Alcaldía, Gobernación) y organización ejecutora (EMPOPASTO S.A E.S.P).

De acuerdo a Garibello, 2003 la etapa de la planificación es relevante mirar el uso de suelo; se recomienda conocer los intereses y objetivos apropiados por los ejecutores, la comunidad y los planificadores para enriquecerán la priorización. Su aplicación puede variar según la escala espacial sobre la que se esté trabajando (Salamanca, B. & G, Camargo. 1996. Protocolo Nacional de Restauración de Ecosistemas Colombianos. Instituto de Hidrología, meteorología y estudios ambientales IDEAM).

Figura 22. Se presenta la secuencia que se tuvo en cuenta para el desarrollo de la propuesta en la restauración ecológica.


Fuente: Vargas, 2007

La participación comunitaria fue muy importante en todo el proceso de restauración y el diseño de acciones que se van retroalimentando con los conocimientos derivados de los pasos 6 a 10.

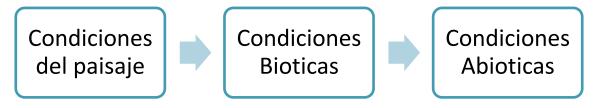
Ecosistema de referencia

Existen bosques alto andinos en buen estado de conservación en la microcuenca Las Tienda, los cuales servieron de modelos para planear la propuesta de restauración, sirviendo hacia futuro de referencia para la evaluación de la propuesta.

También se tuvo en cuenta las recomendaciones para establecer el ecosistema de referencia (SER 2004, Vargas 2007 *citado por* Grupo de Restauración Ecológica, 2010):

Fuente: Vargas, 2007

Evaluación del estado actual del ecosistema


En el estudio de la biodiversidad realizado por CORPONARIÑO y La Universidad de Nariño en el 2008, se realizó un inventario forestal en la microcuenca las Tiendas donde se presenta como resultado que existe vegetación natural continua, pero

también hay una gran parte intervenida por los propietarios de los predios como se pudo corroborar en esta investigación.

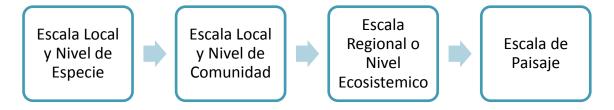
Los bosques alto andinos están siendo intervenidos, debido al uso de la vegetación para extraer carbón, postes para las cercas y ampliación de la frontera agropecuaria.

En este estudio se encontró que las especies que reportaron un mayor número de individuos fueron el Chilco (*Joseanthus crassilanatus*) y Amarrillo (*Miconia sp.*) con un total de 63 especies cada una; seguido por la especie de Encino liso (*Weinmannia rollote*) y en menor proporción se dieron las especies de cordoncillo (*Piper sp.*), Rayo (*Axinaea macrophylla*), Charmolan (*Geissanthus serrulatus*), Palo rosa (*Gaiadendrom punctatum*) y Mate (*Clusia multiflora*), con un individuo por cada especie (POMCA, 2008). Especies de bajo valor comercial, pero de gran importancia ecológica para la generación de bienes y servicios ambientales que deben ser cuantificados y valorados al detalle..

Recomendaciones tenidas en cuenta para evaluar los atributos del estado actual del ecosistema:

Fuente: Vargas, 2007

Los objetivos de esta propuesta de restauración son mejorar la cantidad y calidad del recurso hídrico, restablecer la funcionalidad, estructura y composición de los ecosistemas de bosque alto andino, con la finalidad de aumentar la generación de bienes y servicios ecosistémicos.


Para lograr lo que plantea la guia metodológica para el diseño e implementación del incentivo económico de pago por servicios ambientales-PSA del 2012 en Colombia, mediante los PSA los cuales son una clase de incentivos económicos cuyo mecanismo gira en torno a un típico mercado (oferta vs demanda) en el cual los

propietarios y poseedores regulares de predios, donde se encuentran ubicados los ecosistemas naturales que suministran este tipo de servicios, reciben voluntariamente y en forma periódica un reconocimiento (dinero, especie, mixto) por parte de algunos usuarios finales en razón al beneficio individual o colectivo que les causa contar con su permanente provisión.

Escala y niveles de organización

Esta propuesta pretende restablecer poblaciones, comunidades y la conección de ecosistemas estratégicos como lo plantean (Erenfeld 2000, Lake 2001 citado por Grupo de Restauración Ecológica, 2010).

Proceso tenido en cuenta para definir los objetivos de la propuesta de restauración

Fuente: Vargas, 2007

Definición de objetivos

Mejorar la provisión de bienes y servicios ecosistémicos de la microcuenca las Tiendas, en el Municipio de Pasto, Nariño.

Aumentar la cantidad y calidad del agua producida en la microcuenca Las Tiendas, mediante el establecimiento y protección de los bosques riparios del cauce principal.

Escalas y jerarquías de disturbio

Los ecosistemas de la microcuenca Las Tiendas, están sujeta a tala (carbón, postes), ganadería, agricultura, sequia, incendios forestales, heladas, fenómenos de la nina y el niño, especies invasoras (pastos), y descargas orgánicas e inorgánicas sobre las fuentes de agua y sobre el suelo; generando una fragmentación del paisaje durante los últimos 20 años como lo reportan los propietarios de los predios dentro y fuera de la microcenca. Como lo plantea (Pickett & White 1985, Collins 1987 citado por Grupo de Restauración Ecológica, 2010).

Participación comunitaria

Para los dueños de los predios en la microcuenca Las Tiendas, manifiestan que los bosques asociados presentes en la zona, son suficientes para mantener el agua que estamos consumiendo, porque los arboles presentes son nativos y se observa lo bonito de la naturaleza; cuando en lo alto de la montaña nacimientos se unen y salen a la quebrada. Afirman que son suficientes, porque al pasar el tiempo los jóvenes ya no va a las montañas y los arboles ahora no se cortan, se han conservado y no hay desabastecimiento. Además Dios es el que provee el recurso a todos.

Esta es una percepción positivista de algunos habitantes de la cuenca es poco objetiva, debido a que los estudios realizados muestran una degradación progresiva de los recursos naturales de esta área.

Los propietarios poseen conocimientos sobre el comportamiento del cauce principal, el clima, las especies, su historia de uso, la ubicación de las especies y la propagación.

Un componente importante a tener en cuenta es la educación ambiental que se pretende desarrollar mediante la metodología Aprender-Haciendo, desarrollando teoría y prácticas. Como la restauración ecológica es una proceso de largo plazo, para garantizar la sostenibilidad se plantea que quienes deben garantizar la continuidad de los proyectos son las familias propietarias de los predios, con apoyo de organizaciones locales, municipales, departamentales y nacionales; soportados en la propuesta PSAH.

Cano y Zamudio, 2006, proponen algunas claves para emprender un proyecto de restauración ecológica con participación comunitaria y las cuales fueron consideradas en la propuesta.

La comunidad fue consultada e indagada. Fue necesario promover la participación de adultos (mujeres y hombres), jóvenes, niños y niñas lográndose de manera parcial y también se generó procesos de trabajo entre:

- 1. Comunidad campesina: Trabajadores de diferentes edades y géneros.
- 2. Comunidades Indígenas de los Pastos.
- 3. Comunidad escolar: profesores, padres de familia y alumnos.
- 4. Entidades locales: Asociaciones comunitarias, ONG's. Corponariño, alcaldía de Pasto y gobernación de Nariño.

Enfoques conceptuales que favorecen la restauración mediante un esquema PSAH:

- Investigación Acción Participativa: Mediante este enfoque se planteó a las comunidades como grupo investigador y transformador de su propia realidad.
- Conservación Comunitaria: Se refiere al manejo de recursos naturales a través de la participación de las comunidades.
- Manejo Local de Recursos: Corresponde a la recuperación, conservación y protección de la flora y fauna en su hábitat natural, teniendo en cuenta la característica de los ecosistemas y el valor cultural que le otorgan las comunidades humanas.

Potencial de regeneración

La evaluación del potencial de regeneración, se consultó la disponibilidad de especies en la región, su ubicación, abundancia, su etapa sucesión. En esta fase se tiene una aproximación a las especies pioneras y a las especies de sucesión tardía, a las especies dominantes, codominantes y raras y sobre todo a las especies que potencialmente pueden ser utilizadas en experimentos y programas de restauración.

Tensionantes para restauración

Las barreras o tensionantes para la restauración ecológica en la microcuenca Las Tiendas son las condiciones de compactación de los suelos causados por la ganadería y los periodos secos, en el caso de aspectos socioeconómicos se resalta, factores políticos (administración municipal y departamental poco comprometida), económicos (no hay incentivos financieros, poca producción de los cultivos y el

ganado) y sociales (desconocimiento de métodos de restauración) lo cual no permite que se inicie los procesos de regeneración natural, principalmente los tipos de uso de la tierra agropecuario.

Según Vargas, 2007 Estos factores que impiden, limitan o desvían la sucesión natural en áreas alteradas por disturbios naturales y antrópicos, son los principales tensionantes. La forma de lograr superar esta situación puede ser los PSAH, que con recursos adicionales permitan intervenir zonas dentro de los predios de la microcuenca, que tengan la disponibilidad y compromiso de llevarlo a cabo.

Especies para la restauración

La selección de especies para la restauración será con material nativo, de fácil propagación, brinzales, plantones, etc. En esta fase fue y será necesario combinar el conocimiento de la gente y el conocimiento de expertos locales y científicos para lograr los objetivos propuestos.

Propagar y manejar las especies

Una de las alternativas propuesta por la comunidad es el establecimiento de un vivero comunitario, con la infraestructura y personal cualificado para llevar a cabo este proceso, también se plantea la posibilidad en la medida de lo posible el rescate de brinzales y plantones, opciones que pueden ser complementarias y no excluyentes.

Selección de sitios

La selección de los sitios a restaurar, fue consultado y concertado con la comunidad, la propuesta que mayor acogida tuvo fue la restauración de los bosques ripaios, algunos propietarios manifiestan voluntad de seder áreas dentro de los predios siempre y cuando les retribuyan económicamente por esta labor, ya que no tiene suficiente tierra para hacerlo de forma voluntaria.

El conjunto de recomendaciones para la selección de los sitios hace referencia principalmente a una combinación de factores abióticos, bióticos y las poblaciones humanas locales (Vargas 2007).

- 1. Ubicacion en Sitios Accesibles
- •Se deben tener en cuenta los siguientes aspectos:
- •Vías o caminos de acceso
- Fácil acceso para personas mayores y niños, con el fin de emprender acciones de participación y educación.
- Facilidades para realizar la fase de monitoreo.

- 2. Áreas de interés comunitario.
- •La comunidad participe en la selección de los sitios, por algún interés especial relacionado conservicios ambientales, como agua, detener la erosión, recursos de amplia utilización por las comunidades.
- 3. Definir disturbios y tensionantes y su frecuencia.
- •Tener en cuenta las recomendaciones de las comunidades locales en cuanto afenómenos estacionales como inundaciones, fuegos, heladas.
- 4. Explicar a las comunidades locales
- •El papel de los disturbios y perturbaciones en los procesosecológicos

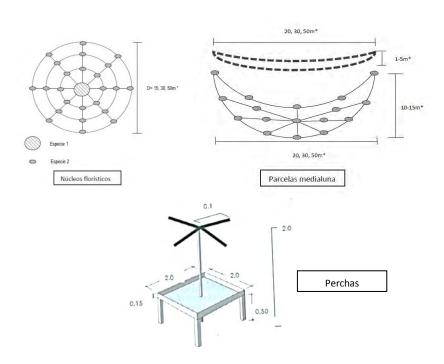
- 5. Evaluar con las Comunidades Locales
- Las actividades humanas, buscando mayor compatibilidad posible con el proyecto.
- 6. Evaluar los gradientes visibles
 - Topográficos naturales y patrones de drenaje.
- 7.Restablecer el régimen
- •Flujo hidrobiológico natural.
- 8. Definir disturbios y tensionantes y su frecuencia
- •Evaluar estado del suelo

Fuente: Vargas, 2007

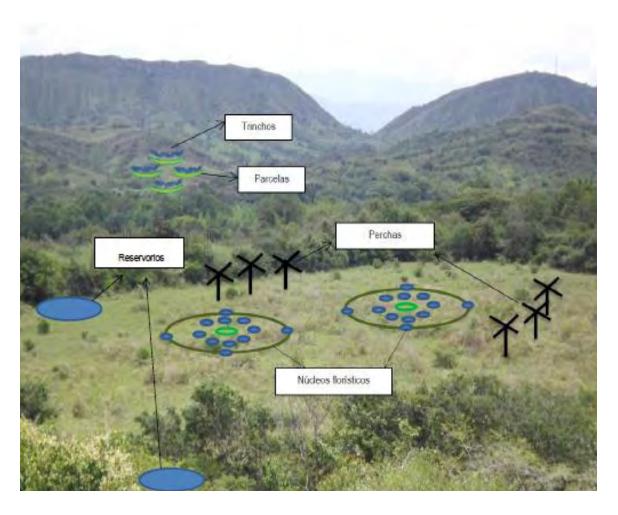
Diseño de acciones para restauración

Bajo la propuesta de cinco grupos de acciones propuestas por (Brown & Lugo 1994, Vargas 2007), se relacionaron con tipo de disturbio y sus tensionantes

- 1. Basadas en la remoción y control de los tensionantes leves (frecuencia de quemas, sobrepastoreo, tasa de cosecha, erosión moderada a leve)
- 2. Basadas en la adición de especies (plantas, animales o microorganismos) o materiales (fertilizantes, materia orgánica, agua)
- 3. Basadas en la regulación de la tasa de procesos ecosistémicos, es decir, los flujos entre los compartimientos (ej: regular la composición y estructura del suelo para sincronizar liberación de nutrientes y captación vegetal de estos).
- 4. Basadas en la remoción de los tensionantes severos.
- 5. Basadas en la regulación de las fuentes de entradas de energía.


Se plantea el diseño de zonas con los núcleos de restauración ecológica

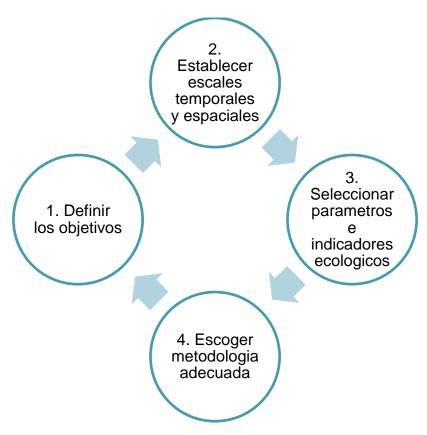
Se definirá una ventana de 30 has, la cual será representativa de las coberturas y tipos de suelo según la zonificación adelantada; en cada una de estas ventanas se trazaran cuatro transeptos y sobre cada uno de ellos se establecerán tres unidades de restauración, para un total de 12 parcelas por ventana. En estas áreas se establecerán parcelas y/o núcleos con dimensiones y características que dependerán de: pendiente, tipo de cobertura, ecosistema de referencia y uso de suelo. Para terrenos con cualquier pendiente se establecerán parcelas tipo medialuna (Figura 6) siguiendo el gradiente altitudinal, que irán acompañadas de trinchos en su parte frontal, con el fin de devolver estructura al suelo evitando escorrentía superficial.


En cuanto a los terrenos llanos se establecerán núcleos florísticos, formando círculos concéntricos de hasta 3 niveles, ubicando en su parte central una especie leñosa de la zona que tenga alta exigencia nutricional, mientras que en los círculos siguientes se ubicarán especies generalistas, también de la zona. Adicionalmente se montaran perchas a una distancia de entre 1-5 m de los núcleos con el fin de brindar refugio a la ornitofauna, favoreciendo la dispersión de semillas, y de igual forma se establecerán cuatro reservorios de agua (pocetas) de 30m de diámetro x 1,50 m de profundidad entre cada uno de los transeptos, que posibilite la utilización de dicho recurso en las épocas secas. La ubicación de estos núcleos tiene como objetivo

crear conexión entre relictos de bosque (Figura 23), por tanto la distancia entre uno y otro núcleo es un factor a considerar sobre la base de las coberturas.

Las metas son: se llevarán pastizales a matorrales y estos últimos a bosque secundario, a los relictos de bosque bien conservados se les realizará restauración natural (eliminación de agentes tensionantes). La ubicación de los núcleos se establecerá mediante el trazado de tres transeptos, en cada una de las ventanas de cada zona.

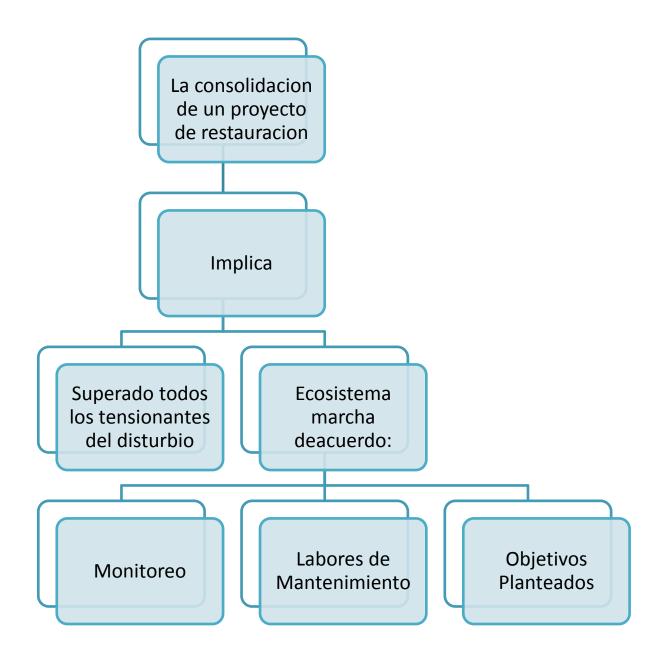
Figura 23. Parcelas, núcleos y perchas para la restauración ecológica. Fuente: Barrera, 2013.

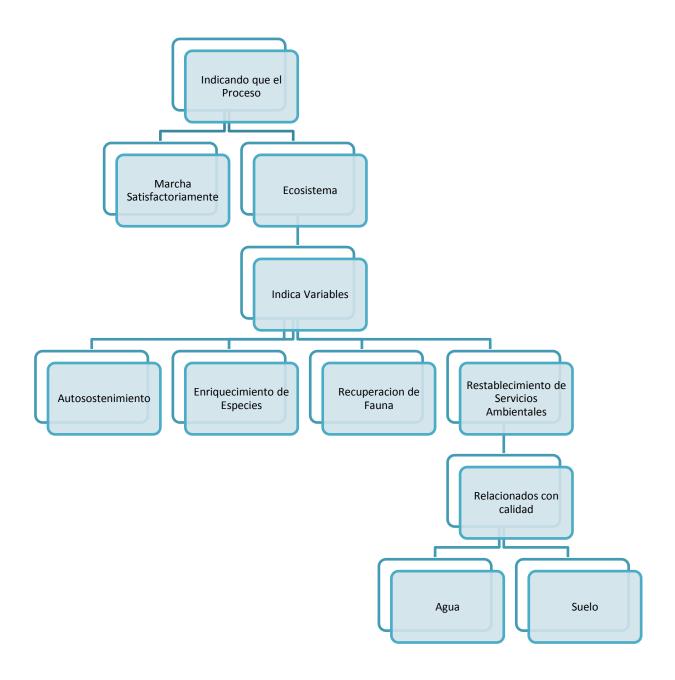

Figura 24. Recreación de estrategias de restauración en el área Fuente. Barrera, 2013

Monitorear el proceso de restauración

Dentro de un proceso de restauración ecológica, el monitoreo consiste en el seguimiento y evaluación continuos de los cambios que experimenta el ecosistema, bajo los diferentes tratamientos de restauración aplicados. Tiene como objetivo final asegurar el éxito en la restauración ecológica, brindando información necesaria para evaluar y ajustar las prácticas de restauración, de modo que puedan ser modificadas en cualquier momento; de esta manera, si los resultados obtenidos en los tratamientos aplicados son negativos o indeseables, dichos tratamientos se modifican o detienen; por el contrario, si se obtienen resultados positivos, estos tratamientos se continúan, multiplican, y si es posible, se mejoran (Block et al. 2001, Brunner &Clark 1997, Díaz 2007 citado por Grupo de Restauración Ecológica, 2010).

La comunidad muestra su voluntad de participar, lo cual es bueno, pero por sus múltiples ocupaciones no sacan tiempo exclusivo para realizar el monitoreo, por lo tanto se corre el riesgo de no obtener datos. Como alternativa factible se plantea un monitoreo especializado y uno participativo para consolidar la adopción del diseño y el impacto esperado.


En el diseño de un programa de monitoreo, es importante tener en cuenta los siguientes aspectos (Díaz 2007 citado por Grupo de Restauración Ecológica, 2010):



Fuente: Díaz, 2007

Consolidar el proceso de restauración

Para lograr la consolidación de la restauración ecológica se plantea el siguiente esquema:

4.10 IDENTIFICACIÓN DE ACTORES

Análisis de Actores sociales

De acuerdo a la percepción de la comunidad, argumentan que las instituciones que se han presentado en el territorio ha sido itinerante debido a que los proyectos que se han ejecutado son a corto plazo y no tiene continuidad. Reconocen que es importante pero que se debe mejorarse esta situación y esperan que este proyecto se lleve a fase de ejecución.

Manifiestan que una de las debilidades existentes dentro de los grupos de la comunidad se debe a la poca gestión, lo cual se refleja en que no existan proyectos de impacto y por ende que se mejoren las problemáticas existentes de una forma sustancial. También reconocen que parte de la problemática es la poca participación de la comunidad en identificación y formulación de los mismos, lo cual podría incluir la situación anteriormente expuesta para lograr que el proyecto cumpla con los objetivos y metas trazadas.

Algo que es de interés resaltar es la apreciación favorable hacia el recurso hídrico como fuente de todas sus actividades y como posible generación de recursos no solo de tipo ambiental sino económico.

La comunidad reconoce varias instituciones que se presentan en el territorio las cuales han realizado un acompañamiento y apoyo. En el momento se identifican instituciones de poder, de interés y neutrales. La comunidad de la cuenca alta de rio pasto está organizada, desea la ejecución de procesos, pero necesita el respaldo de entes institucionales, gubernamentales y no gubernamentales; los cuales permitan ordenar y gestionar mejor el territorio deacuerdo a los interés de los diferentes actores y planes de ordenamiento de cuencas y territoriales existentes.

Otro aspecto de los más relevantes es buscar mecanismo para lograr una comunicación fluida y permanente y lograr que las instituciones vayan a la

comunidad ofrezcan todos sus servicios y la comunidad participe y gestione activamente en los procesos; que sean de interés para las dos partes implicadas.

Y por último, destacamos el interés y voluntad de participar activamente en la toma de datos dentro de su comunidad. Situación que será posible no con todos ellos pero si con un numero determinando que se encuentra en las capacidades de hacerlo. También un aspecto favorable fue el haber delegado en ellos la responsabilidad de ofrecernos un servicio de alimentación (refrigerio) en los días de realización de talleres.

Resultados de la Actividad Realizada

Durante la socialización de la propuesta se enfatizó como a futuro lograr la venta de servicios ambientales. Dejando claro lo que es un bien y un servicio. Dando relevancia al recurso hídrico y como este recurso puedan mantenerse y aumentarse.

Fuente: Esta investigación

Fuente: Esta investigación

Las personas del grupo asistente son muy receptivas y realizan aportes claves, por problemáticas presentes y alternativas que se han presentado pero no han conducido a nada. Y argumentan lo siguiente:

La intervención al monte es muy poca pero que las personas que utilizan el bosque lo hacen porque no cuentan con los recursos para la compra de gas. Y la restricción para que no accedan al bosque no se puede realizar porque no se puede contratar a nadie para que esté pendiente de quien entra y sale.

Además las alternativas que se han dado como la compra de predios no es la adecuada porque las personas que venden y a precios muy bajos no les permite sufragar los costos para compra de oros predios-. Estas alternativas generan desplazamiento haciendo que la persona que vendió al poco tiempo haga uso de un predio que no es suyo por la necesidad de extraer leña.

Las alternativas que plantean que de acuerdo a las circunstancias serian viables son:

- La creación de un subsidio agrario para incentivar la agricultura y brindar recursos para la compra de gas.
- Reducir el costo de gas para las personas de las zonas.
- A los dueños de la zonas de recarga de agua no se les compren sus predios sino que se brinde ayudas económicas para mitigar la intervención al bosque y no generar desplazamiento.

La investigación nos permitirá determinar cuáles son las zonas de alta importancia para la recarga hídrica y aquellas áreas que afectan la calidad de este recurso. Con el objetivo de que mediante el ingreso por el pago de servicios ambientales se pueda cambiar la vocación del suelo. Mediante el incentivo se quiere reponer la cantidad que el agricultor deja de recibir por realizar una labor poco amigable con el medio ambiente y en este caso que afecte el recurso hídrico.

Con esta intervención se dio lugar al refrigerio.

Fuente: Esta investigación.

Posteriormente, se continuó con la ejecución del ejerció con la elaboración de las carteleras por los dos grupos y su socialización para la identificación de actores:

> GRUPO A

Fuente: Esta investigación.

La comunidad está conformada por tres corregimientos:

- La laguna
- Cabrera
- San Fernando

Fuente: Esta investigación.

Socialización de Grupo A

El grupo constituido por personas de los tres corregimientos, alrededor de los corregimientos las organizaciones o entidades que han participado o han hecho presencia, son las siguientes:

- La principal es EMPOPASTO se ha estado de la mano porque siempre les ha brindado capacitaciones, algunas regalías mediante proyectos.
- CORPONARIÑO hace tres o cuatro años estuvo presente.
- ASOHOFRUCOL en meses pasados estuvieron en capacitación, es una entidad hortofrutícola. Todos no participaron pero si se realizó a nivel de comunidad y de asociación.
- Por parte de la Alcaldía se han presentado la UMATA, el SENA.
- La gobernación no se ha tenido contacto porque la comunidad argumenta no ir a realizar ningún tipo de diligencia.
- La Universidad de Nariño es una institución que juega un papel importante porque a los jóvenes se los han capacitado. Y la zona alta ha sido objeto de estudio de algunos tesistas.

Tienen claro que las oportunidades vienen de afuera pero no se las aprovecha de forma correcta.

- CRELAC es una empresa de leche que todos los días recoge la leche pero no ofrece buenos precios. Y ofrecen a la comunidad la venta de insumos agropecuarios.
- Fundación Obra Social El Carmen maneja programas que brinda la posibilidad a los jóvenes de culminar sus estudios y graduarse de bachillerato sin incurrir en costo alguno.
- Fundación Social brinco a la comunidad seminarios y giras pero los directivos no ejecutaron ninguna obra porque la inversión se a cabo en las capacitaciones y giras de las cuales solo se beneficiaron un número pequeño de personas.
- FEDEPAPA ayudo a la comunidad con insumos y materia prima como lo fue las semillas y la construcción de casa.

> GRUPO B

Fuente: Esta investigación.

Se encuentran los tres corregimientos con los que se ha trabajado:

- La laguna
- Cabrera
- San Fernando

Fuente: Esta investigación

Fuente: Esta investigación.

Socialización Grupo B

Las entidades que han trabajado o han hecho presencia en la comunidad son las siguientes:

- La entidad más cercana a la comunidad es EMPOSPASTO se ha trabajado en convenios y en proyectos para la comunidad
- La Asociación Ecológica Guardianes de la Rivera que trabaja en conjunto con EMPOPASTO para beneficio de la comunidad en la construcción de galpones y en la protección de la parte alta.
- La cooperativa CREALAC que recibe la leche de la comunidad, por parte de esta viene el SENA a dar charlas de manipulación de alimentos y manejo de la leche y como se debe de hacer.
- La iglesia.
- La Institución Educativa Agustín Agualongo, Cabrera y San Fernando.
- Los Centros de Salud.

- En cada corregimiento las Juntas de Acción Comunal, las Juntas Administradoras de Acueducto.
- CORPONARIÑO entidad de la cual se encuentran distanciados.
- La Alcaldía ha hecho presencia en la vereda de Aguapamba realizando el mejoramiento del acueducto. Reciben charlas y capacitaciones para el mejoramiento de la comunidad.
- La Secretaria de Medio Ambiente han ido a visitar y no se ha obtenido nada.
- De la UMATA recibieron semillas y cursos para la preparación de dulces de mora y tomate.
- La Gobernación es una entidad lejana no tiene contacto con ella.
- La Fundación Social ha venido trabajando hace algunos años pero se ha ido deteriorando.
- ASOHOFRUCOL es la asociación Hortofruticola de Colombia y han desarrollado talleres de campo de las buenas prácticas agrícolas en las cual terminaron un curso y dos personas de la sesión fueron a representarlos a un Seminario en Palmira y también han recibido asistencia técnica.

Después de realizar la intervención la comunidad en la socialización de actores que directa o indirectamente han participado hace algún tiempo o en el momento. El Ingeniero Luis Fernando Moreno Delgado saca unas conclusiones respecto al ejerció, y obtiene lo siguiente:

Fuente: Esta investigación.

Conclusiones de la actividad

El trabajar por grupos por afinidad que se conformaron se obtiene diferentes perspectivas:

El Grupo A mira que las entidades que los apoyan, pero también que les ofrecen cosas, la comunidad también han aportado hacia ellas. Pero el Grupo B representa las iglesias, las instituciones educativas como entes institucionales que son importantes dentro de los diferentes ámbitos.

Las percepciones que tenemos son disímiles como ocurre en las personas que hay diferentes tipos de personalidades.

En este ejercicio se comienza a visualizar que todas las relaciones son importantes, esto nos da un enfoque de lo que tenemos. La idea de este ejercicio es que a medida se vaya construyendo propuesta y se logre hacer un esquema en donde todas las instituciones estén presentes. Logrando establecer a ustedes como comunidad el actor de gran importancia, fundamental y de poder. Y las instituciones dependiendo de su importancia se coloquen a un mismo nivel de cercanía lo cual depende de ustedes y de la voluntad de las instituciones. La comunicación sea en doble vía. Que estén rodeados de esa institucionalidad.

Como ejemplo el café es un producto y ejemplo mundial de uno de los sectores agrícolas que ha tenido un desarrollo por su institucionalidad que se ha creado. Ese

grupo agrícola tiene un amor por ese producto. En algún tiempo al productor se tomaba lo malo de su producción la pasilla como ocurre en esta región que el agricultor consume el muro y la de mejor calidad la vende. En ese sentido se ha ido mejorando en la región cafetalera.

Tenemos una serie de instituciones que deben de estar cercanas a nosotros y estén en doble vía no estén itinerantes, que estén constantemente ofreciendo lo que ellos tienen y la comunidad haciendo las solicitudes.

Esta actividad permite saber que instituciones se han presentado para invitarlas para ver cómo se logra un acompañamiento y apoyo y no den las razones por que no se encuentran en ejecución procesos liderados por ellas. Si argumentan como ocurrió que se terminó el presupuesto entonces sugerir que se realice un mejor manejo de la parte monetaria.

La comunidad de la cuenca alta de rio pasto está organizada, desea la ejecución de procesos pero necesita el respaldo de entes institucionales.

El análisis de actores es saber que instituciones son importantes y en esta actividad es interesante tener en cuenta que la iglesia juega un papel primordial porque las tres autoridades más importantes son las fuerzas militares, la política y la iglesia.

El objetivo es lograr que desde la comunidad se puedan poner a un mismo nivel las instituciones, es decir, que las instituciones vayan a la comunidad ofrezcan todos sus servicios y la comunidad gestiones. Pero generalmente ocurre que en la comunidad tenemos un solo líder y hace todas las gestiones. Entonces se debe de analizar como grupo y ver que potencialidades hay que permitan delegar funciones. La organización de los grupos es importante porque al representante legal en ocasiones le queda muy complicado hacer todas las diligencias pertinentes. Se deben de analizar como organización, como grupo de trabajo determinando cualidades. Lo que permite hacer mejor gestión y lograr los objetivos que se propongan.

Esta información es muy valiosa lo que nos ayuda a hacer contacto con la mayoría de ellas hablaremos respecto a la propuesta de PSA y también a su intervención en la comunidad. Estamos rodeados de muchas instituciones que tienen obligaciones y deberes. Tienen una misión, una visión. Ejemplo, el SENA su función es formar, ante esto la comunidad necesita capacitación en determinado tema y hacer gestión para lograr esa capacitación.

Nuestro objetivo es lograr con esta propuesta que las instituciones se comprometen con lo que ustedes quieren como comunidad no solo como grupo porque estamos hablando de toda la cuenca alta del rio pasto. De acuerdo a sus necesidades, a su realidad; ustedes y estas instituciones determinaran como se puede lograr el objetivo. EMPOPASTO estar liderando todo el proceso.

El mapa de actores es parte fundamental de la gobernanza desde acá se puedan establecer políticas que nos rijan.

El proceso tiene una duración de 90 días, ahora viene la fase de la toma de dato mediante encuestas que contiene preguntas puntuales porque van a permitir definir las fincas tipo con las cuales se hace la propuesta de cómo se interviene cada finca a nivel productivo y de conservación. Se busca las fincas que más representen el área. Nuestro compromiso es que la información recolectada llegue a ustedes y se pueda consolidar una propuesta. El trabajo se va realizar a nivel de Microcuenca que nos permita conocer la percepción de otras personas porque si se realiza solo con el grupo se presentaría un sesgo como definiendo que solo lo que ustedes perciben es lo que todo el mundo percibe.

Concluyendo la actividad se determinó los días claves para la aplicación de las encuestas (jueves, sábado y domingo) y también surgió de la comunidad que si alguien del grupo tenía la capacidad y disponibilidad para realizar la aplicación de la encuesta. En este proceso de recolección de datos participara la comunidad.

Taller Participativo de Capacitación a Encuestadores

Los sistemas productivos son un factor determinante en el desarrollo sustentable y gestión integral de los recursos naturales. Se necesita caracterizarlos y realizar propuestas de manejo y mejoras, que logren un impacto sustancial en el recurso hídrico, del cual dependerá su productividad.

Fue necesario identificar los sistemas productivos actuales y a nivel de microcuenca, para definir los impactos en la cantidad y calidad del agua en la cuenca; y en base a esto plantear alternativas favorables para la conservación y manejo adecuado del recurso hídrico; mediante incentivos para los cambios tecnológicos, bajo el esquema de PSA, para que los habitantes de estas áreas, vean la oportunidad de incrementar su economía familiar y mejorar su nivel de vida.

Para la identificación delos sistemas productivos presentes fue necesario realizar recorridos de campo y aplicar un formato de encuesta a los habitantes que tienen sus predios en la microcuenca priorizada.

La aplicación de las encuestas jugó un papel muy importante debido a que el éxito de la investigación dependía de la habilidad y la responsabilidad que en todo momento debe demostrar el encuestador.

Fuente: Esta investigación.

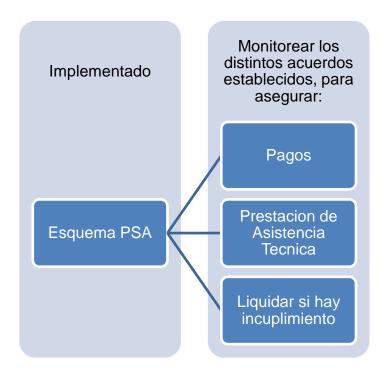
- Rol de los encuestadores

- Organización de los equipos

 Recorrido de Campo para identificar la microcuenca en donde se aplicaran los formatos de encuesta para determinar los sistemas productivos presente y la disponibilidad a aceptar.

MECANISMOS DE MONITOREO Y EVALUACIÓN DE PSAH.

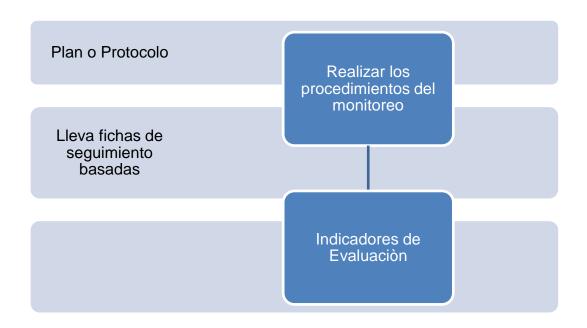
Una vez superadas las fases de construcción de línea base, estructuración del esquema de PSA y negociación del mismo (donde se llegó a acuerdos y suscribió contratos), es posible comenzar con la implementación del pago y sus mecanismos asociados (monitoreo, certificación y evaluación). En esta etapa se deberán operativizar todas las actividades establecidas en los contratos, situando en sus obligaciones a los responsables de la provisión del servicio ambiental, según el plan de manejo propuesto para el predio y las áreas colindantes. Además, es necesario determinar la siguiente estrategia de comunicación:



También se debe comenzar a operar el mecanismo de manejo de recursos que fue acordado:

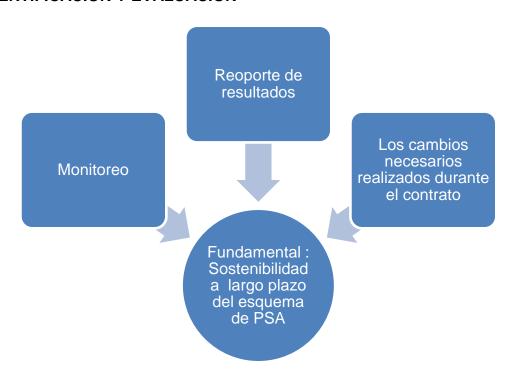
En esta fase, la constitución del fondo y su administración, así como la ejecución de todas aquellas actividades necesarias para el garantizar el éxito del esquema, ya deben funcionar correctamente.

SISTEMA DE MONITOREO Y SEGUIMIENTO

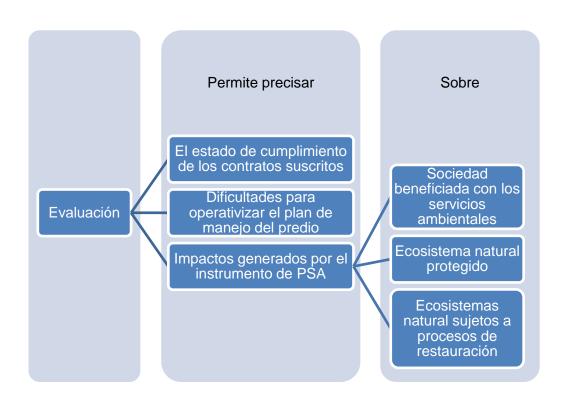

De esta manera, se asegura a los beneficiarios del servicio ambiental que sus aportes económicos están efectivamente incentivando la conservación, o provocando cambios de uso del suelo en zonas deforestadas y degradadas que son estratégicas para mantener e inclusive generar los servicios ecosistémicos.

Las herramientas de monitoreo, certificación y evaluación tienen gran importancia, pues suministran información sobre el nivel de cumplimiento de las obligaciones

pactadas. Para su ejecución, se debe esperar que el esquema de PSA ya esté operando para poder determinar la efectividad del impacto generado (adicionalidad). El plan o protocolo de monitoreo debe especificar la institución que lo debe realizar, la frecuencia de su aplicación, la metodología y sus costos (los que deben estar integrados al costo de implementación del esquema de PSA).


Las actividades de monitoreo, se deben desarrollar entre periodos de tiempo prudentes para poder dar solución a cualquier observación de cumplimiento realizada en momentos anteriores, y permitir así contar con la respectiva certificación que avale el cumplimiento de los acuerdos establecidos, requisito indispensable para poder efectuar el pago del reconocimiento y prestar asistencia técnica de ser necesario, o en caso contrario liquidar los correspondientes contratos por incumplimiento.

El plan o protocolo de monitoreo debe permitir detectar, en forma temprana, fallas en la provisión del servicio ambiental objeto del esquema de PSA, para permitir con esta información realizar rápidas y oportunas medidas correctivas. Esto es muy importante para mantener la credibilidad de las partes participantes del esquema de pago por servicios ambientales instaurado.


Los indicadores de evaluación se construyen a partir de la información levantada en la primera fase del diseño del esquema de PSA, o construcción de línea base (ej: a escala predial, número de hectáreas en conservación).

CERTIFICACIÓN Y EVALUACIÓN

La verificación y certificación que efectúe periódicamente el operador siempre dará mayor confianza y seguridad al esquema. La certificación, en este sentido, realizada y renovada con regularidad permitirá que en la percepción de los beneficiarios del incentivo se infunda la confianza suficiente para alentarlos a que finalicen con éxito la vigencia contractual pactada (duración total del contrato).

La evaluación, por su parte contribuirá a perfeccionar el diseño del esquema de PSA, lo cual no solo va a mejorar su eficacia en términos de conservación dentro del área de trabajo, sino que además permite contar con un instrumento robusto para ser replicado posteriormente en otros sitios.

4.11 ESQUEMA DE PAGO POR SERVICIOS AMBIENTALES

4.11.1 Fase de diseño. En las últimas décadas los bosques tropicales han sufrido una tala masiva y una fuerte degradación, alrededor de 20 millones de hectáreas de los mismos son talados o dañados cada año; si la destrucción continua a ese ritmo en unos 40 años desaparecerían todos los bosques tropicales (Ceit, 2002).

Los bosques han sido fragmentados, intervenidos y degradados, desconociendo la multiplicidad de bienes y servicios ambientales que se generan de dicho ecosistema tales como madera, agua, belleza escénica.

El abastecimiento de agua es uno de los problemas más graves. Las fuentes de provisión de agua dependen en gran medida de la conservación y buen manejo de las áreas forestales que regulan el servicio ambiental hidrológico.

Las cuencas hidrográficas juegan un papel muy importante en la provisión del recurso hídrico y el esquema de pago por servicios ambientales es una herramienta muy útil para su conservación.

El pago por servicio ambientales tiene como objetivo identificar cuáles serían los esquemas de compensación que puedan estimular la inversión rural y de esa manera contribuir al desarrollo de las poblaciones de los andes y a la conservación de los servicios ambientales (Quintero y Estrada, 2006).

El pago por servicios ambientales es un mecanismo que busca incentivar que se mantenga o aumente la provisión de un servicio ambiental mediante una retribución de los usuarios o consumidores (Burstein, *et al*, 2002).

Para establecer un pago por servicios ambientales la base importante para hacerlo es la valoración económica que facilitara los mecanismos económicos y legales para la protección y conservación de los recursos en este caso el hídrico.

Según, Llerena (2003) indica que la valoración económica de los recursos naturales permite expresar en valores monetarios el capital natural, incorporando los costos de agotamiento o degradación, los servicios ambientales y los costos relacionados a la protección y conservación. Y para esto, Brey (2009) señala que para definir los bienes y servicios y cuantificar monetariamente su impacto para los cuales no existe un mercado, es necesario buscar medios alternativos que ayuden a revelar las preferencias de los individuos, un método para definirlo es empleando la metodología de Valoración Contingente.

El método de la valoración contingente es una de las técnicas que permite estimar el valor de bienes (productos o servicios) para los que no existe mercado. Es extraordinariamente simple en su comprensión intuitiva: se trata de simular un mercado mediante encuesta a los consumidores potenciales. Se les pregunta por la máxima cantidad de dinero que pagarían por el bien si tuvieran que compararlo, como hacen con los demás bienes.

En el método de la valoración contingente, los cuestionarios juegan el papel de un mercado hipotético, donde la oferta viene representada por la persona entrevistadora y la demanda por la entrevistada.

El método busca básicamente determinar los beneficios sociales generados por el proceso a un bien ambiental. En el caso de su aplicación de la economía ambiental y de los recursos naturales, se trata de dimensionar económicamente los beneficios sociales generados por la provisión de bienes que, como los ambientales, son principalmente de naturaleza no mercadeable (Uribe, 2003).

Loma *et al* (2005) establece unas fases en el método de valoración contingente, son las siguientes:

- 1. Definir con precisión lo que se desea valorar
- 2. Definir la población relevante
- 3. Seleccionar la muestra
- 4. Elaboración del formato de encuesta

- 5. Realización de encuestas
- 6. Explotar estadísticamente las respuestas
- 7. Presentar e interpretar los resultados

La Cuenca Alta del Rio Pasto está constituida por 15 microcuencas (Figura. 1 y 2), corresponde al área montañosa asociada a los ecosistemas de páramo y de bosque alto andino, lo que permite la captación de las precipitaciones y la regulación dentro del proceso de ciclo hidrológico de las microcuencas localizadas al oriente de la ciudad de Pasto; las cuales abastecen al 70% de la población localizada en esta ciudad; por ello, se está desarrollando un estudio relacionado con el manejo y la conservación del recurso hídrico.

Para la protección y conservación de las principales fuentes de agua que abastecen al sistema de agua potable de la ciudad.

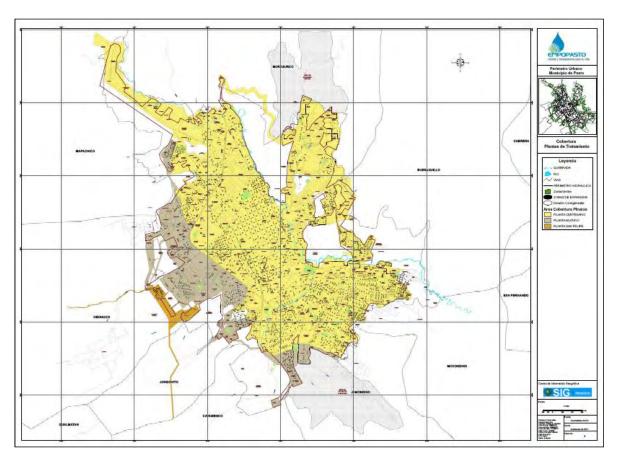


Figura 25. Microcuenca Q. Las Tiendas.

DEFINIR LA POBLACIÓN RELEVANTE

2.

La Planta de Centenario abastece del recurso hídrico al 70% de población de la ciudad de Pasto y en el Mapa (figura 1) se puede apreciar que corresponde al área de color amarillo.

Figura 26. Mapa de cobertura de la plantas de tratamiento Centenario. Fuente: EMPOPASTO, 2008.

Para determinar el tamaño de la muestra se utilizó la metodología conocida como "Muestreo Aleatorio de Proporciones" (Cochran, 1996). La fórmula condensada para definir el tamaño de la muestra fue la siguiente:

$$n = \frac{Z^2 \propto /2 \times (P.Q)}{E^2}$$

Dónde:

n = tamaño de la muestra.

 \propto = nivel de significancia estadístico.

E = error permisible máximo. Se asumirá el 10% debido al presupuesto disponible para el trabajo.

$$N'= n/(1+(n-1/N))$$

 $N'=92/(1+(92-1/Total estrato))$

El tamaño de muestreo definido se encuentra en la tabla 1:

Tabla 22. Tamaño de la muestra aplicada en esta investigación.

ESTRATO	SUSCRIPTORES 2012	MUESTRA
I	9.274	91
II	24.075	92
III	19.994	92
IV	7.709	91
V	2.376	89
VI	2	2
TOTAL	65.428	457

Fuente: Esta investigación

En esta fase se diseñaron dos formatos de encuesta: el primero que permita determinar la disponibilidad a pagar (DAP) de las personas como una aproximación de la variación compensatoria (VC) para medir los beneficios económicos de mejoras ambientales y el segundo que permitió determinar la disposición a aceptar (DAA) como una aproximación de la variación equivalente para medir el valor económico del daño producido por degradación del medio ambiente. (Anexos 17 y 18)

Los parámetros que se tuvieron en cuenta para la estructuración de los formatos de encuesta fueron los siguientes:

- Datos generales
- Calidad del recurso hídrico
- Cantidad del recurso hídrico
- Servicio
- Protección de la fuente de agua
- Institucional
- Confianza y participación
- Disposición a pagar por el servicio ecosistemico hídrico
- Disponibilidad a aceptar el pago por la generación de servicios ecosistemicos hídricos
- Interés en el tema propuesto
- Servicios básicos
- Identificación de sistemas productivos
- Agricultura
- Pecuario
- Forestal

- Sistemas agroforestales
- Impacto de las prácticas de cultivos en la calidad de agua

El método de valoración contingente persigue los siguientes objetivos:

- Evaluar los beneficios de proyectos o políticas relacionadas con la provisión de bienes y/o servicios que no tienen un mercado.
- Estimar la disponibilidad a pagar (DAP) de las personas como una aproximación de la variación compensatoria (VC) para medir los beneficios económicos de mejoras ambientales.
- Estimar la disposición a aceptar (DAA) como una aproximación de la variación equivalente para medir el valor económico del daño producido por degradación del medio ambiente.

Mediante el método de valoración contingente se utiliza para estimar:

La disponibilidad de pago (DAP) de los usuarios del recurso hídrico para la conservación del bosque con el fin de mejorar la calidad y cantidad de agua que consumen. Con este método directo de valoración utilizamos una encuesta para estimar la voluntad de pago de los personas por el bien ambiental. En última instancia, el método pretende crear un mercado hipotético donde es posible "comprar" una mejora por el bien en cuestión.

Se realizó la aplicación de los formatos de encuesta en los diferentes estratos que se abastecen de la planta de centenario. El ejercicio de aplicación de la encuesta se llevó a cabo en el casco urbano (Tabla x).

Tabla 23. Formatos de encuestas aplicadas para la investigación.

ESTRATO	SUSCRIPTORES 2012	MUESTRA	ENCUESTAS APLICADAS
I	9.274	91	91
II	24.075	92	92
III	19.994	92	92
IV	7.709	91	91
V	2.376	89	1
VI	2	2	0
TOTAL	63.43	456	377

Fuente: Esta investigación

La encuestas se realizaron satisfactoriamente, cumpliendo con el tamaño correspondiente de muestreo en estrato 1, estrato 2, estrato 3 y estrato 4 (Figura 26). La receptividad y la disposición a suministrar la información necesaria para el diligenciamiento de la encuesta fue cordial y agradable; los usuarios presentaron interés por el estudio, con gran expectativa si se pudiera llevar a cabo la propuesta del PSAH que permitan mejorar la cantidad y calidad del servicio de agua.

Fuente: Esta investigación

El tamaño de muestreo correspondiente a estrato 5 y estrato 6 fue imposible el diligenciamiento del formato de encuesta, presentándose diferentes situaciones para que en las zonas correspondientes a estos estratos no se aplicaran las encuestas, al inicio se las visito de manera permanente, pero las personas no se encontraban en su hogar por sus ocupaciones diarias y laborales, ante esta dificultad de decidió visitar en distintas horas en la mañana, tarde y noche, pero fue imposible encontrarlos o si se encontraban en casa al notar que el formato era extenso daban por terminada y otros argumentaban que no tenían tiempo para perder en trabajos insignificantes y de poca envergadura.

Otra alternativa por la que se optó, fue dejar el formato de encuesta con la empleada doméstica pero tampoco se logró el objetivo, en el momento de recoger el formato no se encontraba nadie en el domicilio. Algo importante a resaltar es que las personas de estos estratos sociales son muy antipáticas, reservadas y poco colaboradoras con trabajos de investigación que pueden tener un impacto o relevancia regional y nacional, como fue el caso de esta investigación.

En otras oportunidades a parte de tener una actitud altiva, tomaron el formato de encuesta y lo fragmentaron argumentando que sabían mucho del tema y no podían perder el tiempo y facilitar datos que pueden ser utilizados para extorsionarlos. Situación que es poco cortes y desagradable, por lo cual se hace un llamado de atención enérgico a esta población para que sean seres humanos cultos y respetuosos con las demás personas y el medio ambiente.

4.11.2 LA DISPONIBILIDAD A ACEPTAR (DAA). como una aproximación de la variación equivalente para medir el valor económico del daño producido por degradación del medio ambiente.

Análisis Estadístico de la Oferta

Análisis descriptivo de las variables cualitativas evaluadas para la gestión integral del recurso hídrico en la cuenca alta del río Pasto, en el análisis de la oferta; se observa en la tabla 24. que se tiene en cuenta las variables sobresalientes, donde se puede observar la disponibilidad a realizar cambios en sus sistemas productivos,

manejo del bosque, manejo de residuos y uso del agua, para remplazarlas por prácticas de conservación adecuadas que mejoren la cantidad y calidad del recurso hídrico (V40=1) (23 personas); con respecto a lo que estarían dispuestos a aceptar por los cambios realizados (V41=3) (17 personas) estarían dispuestas a recibir entre 300.000 y 700.000 mil pesos, y la frecuencia con que les gustaría recibirlos es de mensualmente (V42=2) (21 personas).

De acuerdo a los resultados del análisis estadístico la tendencia es optar por el pago mensual con valores que oscilan entre los 300.000 y 700.000 mil pesos.

Tabla 24. Análisis de Correspondencia Múltiple (ACM). Histograma de frecuencias para las variables categorizadas para la oferta.

MULTIPLE CORRESPONDENCE ANALYSIS ELIMINATION OF ACTIVE CATEGORIES WITH SMALL WEIGHTS THRESHOLD (PCMIN)
BEFORE CLEANING 2.00 % WEIGHT 3 ACTIVE QUESTIONS 10 ASSOCIATE CATEGORIES AFTER CLEANING 3 ACTIVE OUESTIONS 8 ASSOCIATE CATEGORIES TOTAL WEIGHT OF ACTIVE CASES : MARGINAL DISTRIBUTIONS OF ACTIVE QUESTIONS CATEGORIES BEFORE CLEANING AFTER CLEANING IDENT COUNT WEIGHT HISTOGRAM OF RELATIVE WEIGHTS, 1 . V40 AA_1 - C2=1 AA_2 - C2=2 1.00 1.00 2 . V41 AB_1 - C3=1 AB_2 - C3=2 AB_3 - C3=3 1.00 1 1.00 *** 0.00 17.00 ****************** 17 17.00 AB_4 - C3=4 ****** 1.00 1.00 *********** 21.00

21.00 2.00 *****

21

Fuente: Esta investigación

21

Análisis de Valores Propios: el análisis del histograma de valores propios (Tabla 25), permitió seleccionar los primeros 3 factores que explican en conjunto un 100% de la variabilidad debido a las variables cualitativas; el primer factor explica el 60.00% de la variabilidad. El segundo y tercer factor explican el 23.67% y 16.33% respectivamente.

Tabla 25. Histograma de los primeros 5 valores propios, que explican la variabilidad (%) de oferta del servicio (Variables cualitativas).

	OF THE FIRST	5 EIGENVAL					
NUMBER	EIGENVALUE	PERCENTAGE	-+- 	CUMULATED PERCENTAGE	i		+
1	1.0000	60.00	-+-	60.00		*************	1
2	0.3944	23.67	- 1	83.67		********	1
3	0.2722	16.33	- 1	100.00	1	*********	1
4	0.0000	0.00	- 1	100.00	-1	*	1
5	0.0000	0.00	- 1	100.00		*	

Fuente: Esta investigación

Del análisis de contribuciones de las variables a la conformación de los ejes (Tabla 26), se puede establecer que las variables que más contribuyeron a la conformación del primer factor fueron: la no disponibilidad de realizar cambios en los sistemas productivos, manejo del bosque, manejo de residuos, y uso del agua (V41=31.9); la cantidad dispuesto a aceptar entre 0 y 100.000 pesos (V41=31.9), y con una frecuencia semanal estarían dispuestos a recibirlos (V42=31.9). Como puede observar las tres variables analizadas aportan a la conformación de este factor.

Para el caso del segundo factor, las variables que más aportan a la conformación son: la frecuencia anual para recibir los recursos (V42=45.7) y la cantidad disponible a aceptar mayor a 700.000 mil pesos (V41=37).

El tercer factor, presenta las mismas características del segundo factor: la frecuencia anual para recibir los recursos (V42=45.7) y la cantidad disponible a aceptar mayor a 700.000 mil pesos (V41=37).

Tabla 26. Contribución de las variables cualitativas evaluadas en la encuesta de la oferta, a la contribución de los primeros tres (3) factores.

													+				
IDEN - LABEL R			1										1	_	-	-	5
1 . V40 AA_1 - C2=1	31.94	0.04	-0.21	0.00	0.00	0.00	0.00	1.4	0.0	0.0	0.0	0.0	1.00	0.00	0.00	0.00	
		23.00	4.80	0.00 - CUMUL	0.00 ATED (0.00 CONTRIB	0.00 UTION =	31.9 = 33.3			0.0		1.00				
AB_1 - C3=1 AB_3 - C3=3 AB_4 - C3=4	1.39 23.61 8.33	0.41	-0.21	-0.47 1.32	-0.39 1.10	0.00	0.00 0.00 0.00	1.0	13.0 37.0	13.0 37.0	0.0	0.0	0.11	0.53 0.58	0.37	0.00	0.00
+	1.39 29.17 2.78	23.00	+ 4.80 -0.21 -0.21	0.00	0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	31.9	0.0	0.0	0.0	0.0	1.00	0.00 0.41 0.59	0.00 0.28 0.41	0.00	0.00 0.00 0.00

Fuente: Esta investigación

Análisis de clasificación

El análisis de clasificación basado en las características cualitativas para las en cuestas de oferta en la cuenca alta del rio Pasto, permitió la conformación de tres grupos bien definidos; las características de cada grupo están en cada clase los cuales se observan en la Tabla 27 y en la Figura 28.

El primer grupo, conformado por 17 usuarios que representan el 70.83% del total de los encuestados (Tabla 28); en esta clase, el 100% de los usuarios manifiestan estar dispuestos a recibir entre 300.000 y 700.000 mil pesos (V41=3) por la compensación dentro del esquema del PSA hídrico. (Tabla 28).

El segundo grupo está conformado por 6 usuarios que representan el 25.00% del total de los usuarios encuestados; el 100% de los usuarios manifiestan estar dispuestos a recibir un valor mayor a 700.000 pesos (V41=4) por la compensación dentro del esquema del PSA hídrico. (Tabla 28).

El tercer grupo conformado por un (1) usuario representa el 4.17% del total de los encuestados (Tabla 28); en esta clase, el cual no presenta un valor representativo dentro del análisis.

Tabla 27. Identificación de los usuarios que conforman cada uno de los tres (3) en que se divide la muestra encuestada, con base en las variables cualitativas para la oferta.

GRUPO	NÚMERO	PORCENTAJE	USUARIO
		%	
1	17	70.83	21 13 10 11 20 8 22 5 3 4 15 16 17 18 19 9 2
2	6	25.00	7 6 14 24 23 12
3	1	4.17	1

Figura 27. Conformación de grupos de acuerdo a las características cualitativas evaluadas en el estudio de gestión integral del recurso hídrico en la cuenca alta del río Pasto para la oferta.

Tabla 28. Descripción de los grupos o clases conformadas en el ACM del estudio gestión integral del recurso hídrico en la cuenca alta del río Pasto, para la demanda.

CLUSTER	1 /	3						
T.VALUE	PROB.				CHARACTERISTIC CATEGORIES	OF VARIABLES	IDEN	WEIGHT
-3.88 -99.99	0.000		0.00	70.83 25.00 0.00	C3=4 C4=3	V41 V41 V42 V41	aa1a AB_3 AB_4 AC_3 AB_2	17 6
CLUSTER	2 /	3						
T.VALUE	PROB.	GRP/CAT	CAT/GRP	GLOBAL	CHARACTERISTIC CATEGORIES	OF VARIABLES	IDEN	WEIGHT
-3.88 -99.99 -99.99	0.000 0.000 0.000	100.00 0.00 0.00 0.00	100.00 0.00 0.00 0.00	25.00 25.00 70.83 0.00 0.00	CLUSTER 2 / 3 C3=4 C3=3 C4=3	V41 V41 V42 V41	aa2a AB_4 AB_3 AC_3 AB_2	6 17 0
		PEI			CHARACTERISTIC CATEGORIES	OF VARIABLES	IDEN	WEIGHT
-99.99 -99.99		0.00		4.17 0.00 0.00		V42 V41	aa3a AC_3 AB_2	

Fuente: Esta investigación

Se determinó la disponibilidad de los habitantes de la microcuenca Las Tiendas, a aceptar el pago por los servicios ambientales que se puedan ofrecer en esta área de la Cuenca Alta del Río Pasto.

4.11.3 La disponibilidad a pagar (DAP). Estimar la disponibilidad a pagar de las personas como una aproximación de la variación compensatoria (VC) para medir los beneficios económicos de mejoras ambientales.

Se determinó la disponibilidad de los habitantes de la ciudad de San Juan de Pasto, la disponibilidad a pagar por los servicios ambientales que se demandan de la microcuenca las Tiendas, en la subcuenca Alta del Río Pasto.

Análisis Estadístico de la Demanda

Análisis descriptivo de las variables cualitativas evaluadas para la gestión integral del recurso hídrico en la cuenca alta del río Pasto, en el análisis de la demanda; se observa en la Tabla 29, que se tiene en cuenta las variables sobresalientes, donde se puede observar que los fondos recaudados podrían ser manejados en una fiducia exclusiva para tal fin (V39=1) (346 personas); con respecto a si estarían a favor de la conservación y protección de las fuentes de agua, si esto les costara a su familia y a otras personas un valor adicional, las opiniones están divididas, por el no (V38=2) (213 personas) y por el sí (V38=1) (154 personas); lo mismo sucede cuando se indaga sobre la disponibilidad a colaborar para que se lleve a cabo las alternativas de conservación mediante el pago de una tarifa, por el no (V37=2) (207 personas) y por el sí (V37=1) (160 personas).

De acuerdo a los resultados del análisis estadístico la tendencia es a no pagar, pero existe un 41% que si estarían dispuestos a pagar, siendo relevante e importante para la implementación de esta propuesta.

Tabla 29. Análisis de Correspondencia Múltiple (ACM). Histograma de frecuencias para las variables categorizadas.

MULTIPLE CORRESPONDENCE ANALYSIS ELIMINATION OF ACTIVE CATEGORIES WITH SMALL WEIGHTS THRESHOLD (PCMIN) BEFORE CLEANING 2.00 % WEIGHT: 3 ACTIVE QUESTIONS 6 ASSOCIATE CATEGORIES AFTER CLEANING : 3 ACT
TOTAL WEIGHT OF ACTIVE CASES : 3 ACTIVE QUESTIONS SES: 367.00 6 ASSOCIATE CATEGORIES MARGINAL DISTRIBUTIONS OF ACTIVE QUESTIONS CATEGORIES | BEFORE CLEANING | AFTER CLEANING LABEL WEIGHT HISTOGRAM OF RELATIVE WEIGHTS, 1 . V37
AA_1 - C2=1
AA_2 - C2=2 160.00 ************** 160 160.00 207.00 **************** 207 207.00 207 2 . V38
AB_1 - C3=1
AB_2 - C3=2 213 213.00 3 . V39 346.00 21.00

Análisis de Valores Propios: el análisis del histograma de valores propios (Tabla 30), permitió seleccionar los primeros 2 factores que explican en conjunto un 98.91% de la variabilidad debido a las variables cualitativas; el primer factor explica el 70.44% de la variabilidad. El segundo y tercer factor explican el 28.47% y 1.09% respectivamente.

Tabla 30. Histograma de los primeros 55 valores propios, que explican la variabilidad (%) de las encuestas de demanda (Variables cualitativas).

			F THE FIRST					
	NUMBER		EIGENVALUE	PERCENTAGE		CUMULATED PERCENTAGE		
1	1		0.7044	70.44		70.44	*************	
- 1	2	1	0.2847	28.47		98.91	*************	1
- 1	3		0.0109	1.09	1	100.00	**	1

Fuente: Esta investigación

Del análisis de contribuciones de las variables a la conformación de los ejes (Tabla 31), se puede establecer que las variables que más contribuyeron a la conformación del primer factor fueron: la disponibilidad a conservar y proteger las fuentes de agua (V38=25.7), la disponibilidad a pagar (V37=24.9), y el manejo de los fondos en una fiducia (V39=10.9). Como se puede observar las tres variables analizadas aportan a la conformación de este factor.

Para el caso del segundo factor, las variables que más aportan a la conformación es: el manejo de los fondos en una fiducia (V39=83.3), siendo la variable de mayor peso en este factor.

En el tercer factor, las variables que más aportan son: la disponibilidad a conservar y proteger las fuentes de agua (V38=29.1),y la disponibilidad a pagar (V37=28.1).

Tabla 31. Contribución de las variables cualitativas evaluadas en la encuesta de demanda, a la contribución de los primeros tres (3) factores.

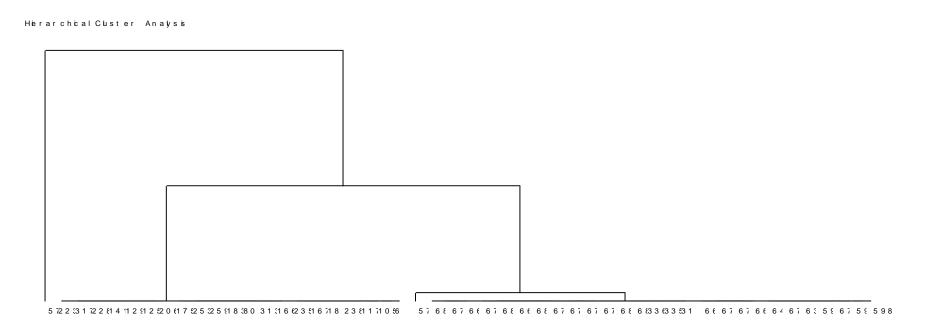
															- 2			
IDEN - LABEL	REL.	WT.	DISTO	1	2	3	0	0	1	2	3	0	0	1	2	3	0	0
1 . V37				+					r					+				
AA 1 - C2=1	14.	53	1.29	1.10	0.26	-0.15	0.00	0.00	24.9	3.4	28.1	0.0	0.0	0.93	0.05	0.02	0.00	0.00
AA 2 - C2=2	18.	80	0.77	-0.85	-0.20	0.11	0.00	0.00	19.2	2.6	21.7	0.0	0.0	0.93	0.05	0.02	0.00	0.00
				+	- CUMU	LATED	CONTRIE	UTION :	= 44.1	6.1	49.8	0.0	0.0	+				
2 . V38																		
AB 1 - C3=1	13.	99	1.38	1.14	0.26	0.15	0.00	0.00	25.7	3.2	29.1	0.0	0.0	0.94	0.05	0.02	0.00	0.00
AB 2 - C3=2	19.	35	0.72	-0.82	-0.18	-0.11	0.00	0.00	18.6	2.3	21.0	0.0	0.0	0.94	0.05	0.02	0.00	0.00
				+	- CUMU	LATED	CONTRIE	UTION :	= 44.3	5.5	50.2	0.0	0.0	+				
3 . V39																		
AC 1 - C4=1	31.	43	0.06	-0.12	0.21	0.00	0.00	0.00	0.7	5.1	0.0	0.0	0.0	0.24	0.76	0.00	0.00	0.00
AC 2 - C4=2	1.	91	16.48	2.01	-3.53	-0.01	0.00	0.00	10.9	83.3	0.0	0.0	0.0	0.24	0.76	0.00	0.00	0.00
				+	- CHMH	LATED	COMPRIE	HTTON :	= 11 6	88 4	0 0	0 0	0.0	+				

Fuente: Esta investigación

Análisis de clasificación

El análisis de clasificación basado en las características cualitativas para las en cuestas de demanda en la cuenca alta del rio Pasto, permitió la conformación de dos grupos bien definidos; las características de cada grupo están en cada clase los cuales se observan en la Tabla 32 y en la Figura 29.

El primer grupo, conformado por 213 usuarios que representan el 58.04% del total de los encuestados (Tabla 9); en esta clase, el 100% de los usuarios manifiestan no estar de acuerdo con la conservación y protección de las fuentes de agua (V38=2) y si estarían de acuerdo con la conformación de un fondo para manejar los recursos en un a fiducia exclusiva para tal fin (V39=1), esto daría una mayor seguridad de la destinación de los recursos para el PSA; el 97.18% de los usuarios del servicio no estarían dispuestos a pagar una tarifa para que se lleve a cabo esta alternativa (V37=2); (Tabla 33).


El segundo grupo está conformado por 154 usuarios que representan el 41.96% del total de los usuarios encuestados; el 100% de los usuarios manifiestan estar de acuerdo con la conservación y protección de las fuentes de agua (V38=1) y no estarían de acuerdo con la conservación de un fondo para manejar los recurso en

una fiducia exclusiva para tal fin (V39=2); y el 96.25% si estarían dispuestos a pagar una tarifa para que se lleve a cabo esta alternativa (V37=1) (Tabla 33).

Tabla 32. Identificación de los usuarios que conforman cada uno de los cinco (5) en que se divide la muestra encuestada, con base en las variables cualitativas.

GRUPO	NÚMERO	PORCENTAJE								USUARI	0						
		%															
1	213	58.04	1	4	5	9	10	11	14	16	17	19	20	21	22	23	24
			25	26	27	29	30	32	33	34	35	37	40	42	44	45	51
			52	53	55	57	58	59	63	64	65	66	68	69	70	72	73
			75	77	86	88	89	90	91	92	93	94	100	101	102	107	110
			112	113	114	119	121	122	124	126	127	131	132	133	134	138	139
			142	144	145	146	147	149	151	153	155	156	158	159	160	161	162
			163	164	168	169	170	172	173	174	176	177	178	179	180	182	184
			185	189	190	191	192	194	195	197	198	199	200	201	202	203	204
			207	209	210	212	213	214	216	217	218	219	220	221	222	225	227
			229	231	236	237	239	240	241	243	244	248	251	252	255	262	265
			267	268	269	270	271	273	274	279	280	282	283	284	285	286	288
			289	290	291	292	293	294	295	296	299	300	302	303	304	305	306
			307	308	311	314	316	320	321	323	324	327	329	330	332	333	334
			338	343	344	345	346	349	350	351	353	354	356	358	359	360	361
			362	365	367												
2	154	41.96	2	3	6	7	8	12	13	15	18	28	31	36	38	39	41
			43	46	47	48	49	50	54	56	60	61	62	67	71	74	76
			78	79	80	81	82	83	84	85	87	95	96	97	98	99	103
			104	105	106	108	109	111	115	116	117	118	120	123	125	128	129
			130	135	136	137	140	141	143	148	150	152	154	157	165	166	167
			171	175	181	183	186	187	188	193	196	205	206	208	211	215	223
			224	226	228	230	232	233	234	235	238	242	245	246	247	249	250
			253	254	256	257	258	259	260	261	263	264	266	272	275	276	277
			278	281	287	297	298	301	309	310	312	313	315	317	318	319	322
			325	326	328	331	335	336	337	339	340	341	342	347	348	352	355
1		1	357	363	364	366											

Fuente: Esta investigación

Figura 28. Conformación de grupos de acuerdo a las características cualitativas evaluadas en el estudio de gestión integral del recurso hídrico en la cuenca alta del río Pasto para la demanda.

Tabla 33. Descripción de los grupos o clases conformadas en el ACM del estudio gestión integral del recurso hídrico en la cuenca alta del río Pasto, para la demanda.

CLUSTER	1 /	2						
T.VALUE				GLOBAL	CHARACTERISTIC CATEGORIES	OF VARIABLES	IDEN W	EIGHT
20.92 5.73 -5.73 -20.92	0.000 0.000 0.000 0.000	100.00 61.56 0.00 3.75	2.82	58.04 58.04 56.40 94.28 5.72 43.60	CLUSTER 1 / 2 C3=2 C2=2 C4=1 C4=2 C2=1	V38 V37 V39 V39 V37	aa1a AB_2 AA_2 AC_1 AC_2 AA_1 AB_1	213 207 346 21 160
CLUSTER T.VALUE	PROB.	PER			CHARACTERISTIC CATEGORIES	OF VARIABLES	IDEN W	 EIGHT
22.02 20.92 5.73 -5.73 -20.92 -22.02	0.000 0.000 0.000 0.000	100.00 96.25 100.00 38.44 0.00 0.00	100.00 100.00 13.64 86.36 0.00		C2=1 C4=2 C4=1 C2=2	V38 V37 V39 V39 V37 V37	aa2a AB_1 AA_1 AC_2 AC_1 AA_2 AB_2	154 154 160 21 346 207 213

Fuente: Esta investigación

Para la priorización de las microcuencas Las Tiendas se realizó mediante la metodología descrita en esta investigación, mediante las resoluciones de IDEAM y el software SWAT y con los siguientes parámetros (Topografía de la cuenca, Suelos, Uso del suelo, Precipitación, Clima (Temperatura, viento, radiación solar, Lagunas o reservorios) requeridos por el programa se obtuvo las siguientes unidades de respuesta hidrológica (Mapa 2) y la cogestión adaptativa de cuencas.

El formato de encuesta a aplicar para estimar la disponibilidad a aceptar, aspectos socioeconómicos y de sistemas productivos se encuentra en el anexo 19..

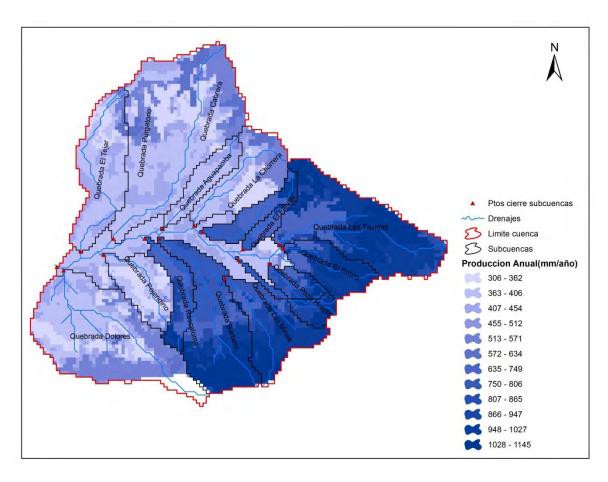
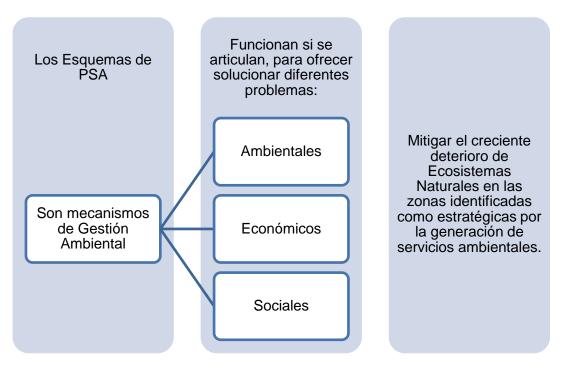



Figura 13. Mapa de producción de agua en la cuenca alta de río Pasto.

Una vez defina el área a aplicar las encuestas, se determinó la realización de un taller con dos sesiones, que permitieron capacitar a las personas de la zona que ayudaron en el diligenciamiento del formato de encuesta, actividad dirigida mediante la siguiente guía de taller:

Posterior mente se realizaron los talleres para la identificación de actores y gobernanza.

Figura 29. Articulación de instrumentos de planificación y otros instrumentos económicos.

El Pago de Servicios Ambientales es un incentivo voluntario que puede constituirse en una alternativa muy promisoria para contribuir a la mitigación, conservación y restauración de los recursos naturales. Además, permitirá mejorar problemática ambientales existentes, por otro lado puede ir acompañado o soportado por una serie de herramientas existentes como:

- Instrumentos económicos
- Instrumentos reglamentarios
- Instrumentos institucionales
- Instrumentos de planificación

Estos instrumentos pueden conformar el incentivo económico de PSA, con el objetivo de enfrentar las causas más comunes del deterior ambiental. No todos los instrumentos pueden formar el mismo portafolio de gestión ambiental a ser implementado. La construcción del portafolio se realiza a las necesidades del área objeto de estudio, es decir, teniendo claro ¿para qué se quiere? (ej: no se debe usar la tasa retributiva como instrumento complementario del PSA cuando se pretende abordar el problema de deforestación, y la pérdida del servicio ambiental de regulación hídrica).

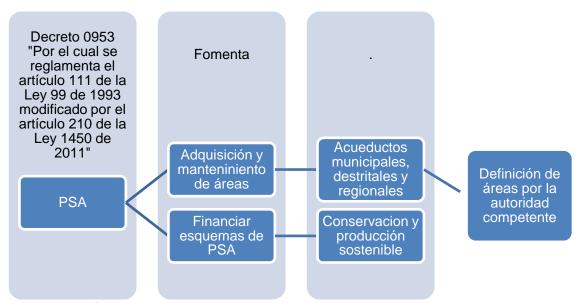


Figura 30. Esquema del decreto 0953 del 17 de mayo del 2013.

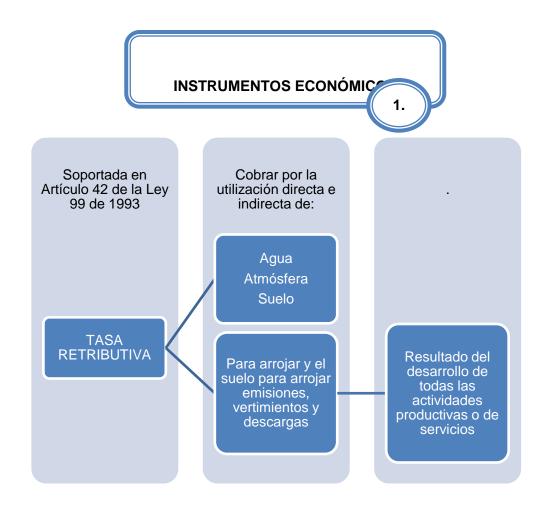


Figura 31. La tasa retributiva

Operativamente, la pagan municipios, industrias, agroindustrias y todo generador de vertimientos puntuales.

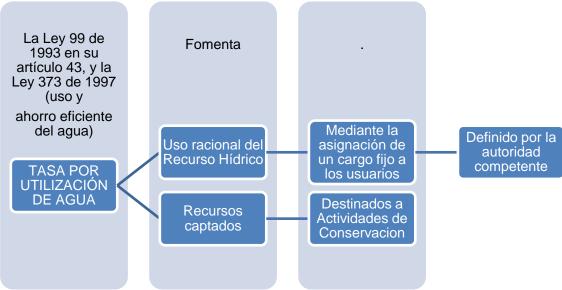
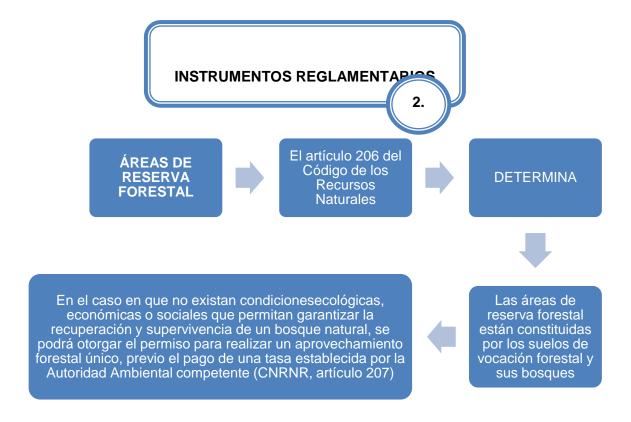



Figura 32. La tasa por utilización del agua.

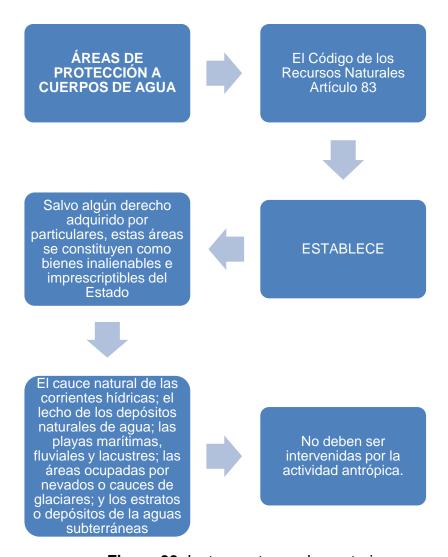


Figura 33. Instrumentos reglamentarios.

Figura 34. Instrumentos institucionales.

En su contexto no formal (dirigida hacia el campesinado), busca trasmitir valores que conduzcan a adoptar actitudes positivas con el medio natural circundante a fin de mejorar, entre otras cosas, el bienestar y el nivel de vida actual.

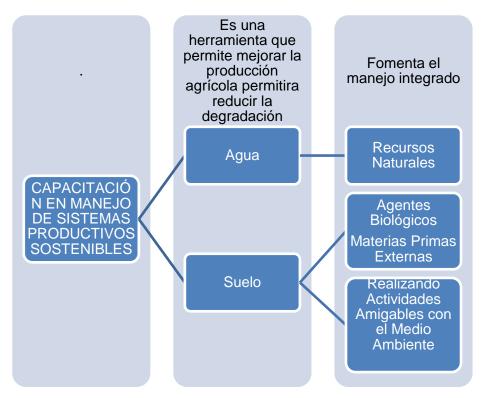


Figura 35. Manejo de sistemas productivos sostenibles.

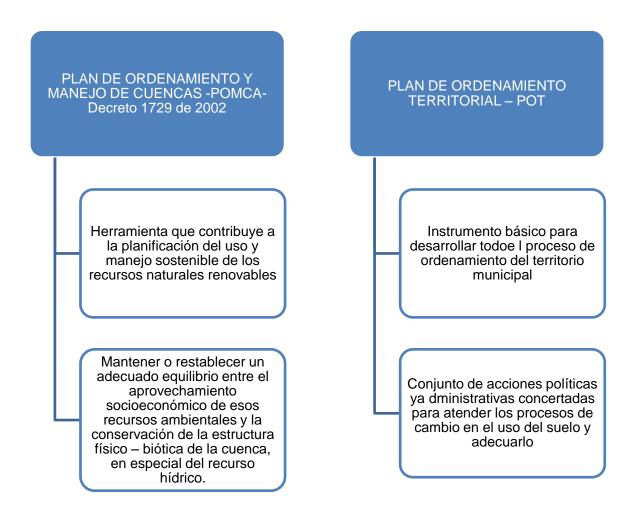


Figura 36. Instrumentos de planificación.

Análisis económicos

En esta etapa juega un papel importante las metodologías de valoración económica ambiental, en la medida que posibiliten establecer y cuantificar los beneficios que

generan los servicios ofrecidos por los ecosistemas, así como los costos que debe asumir la sociedad por su provisión a través de la restauración, recuperación, protección y conservación de los ecosistemas donde estos se originan. Los diferentes procedimientos técnicos que se deben seguir para efectuar los análisis y estimaciones económicas que posibilitan establecer la viabilidad económica de un esquema de PSA, son los siguientes:

Estimación de la Disponibilidad a Aceptar - DAA

En una cuenca, los propietarios o poseedores regulares ubicados en las áreas estratégicas pueden desarrollar en sus predios distintas actividades económicas (ej: agrícolas, pecuarias, extractivas o agroindustriales). La caracterización de estos sistemas productivos resulta ser determinante para establecer, con precisión, los correspondientes costos de oportunidad que asume el productor por su decisión de conservar y/o recuperar los recursos naturales, frente a otros usos alternativos del suelo que contemplan beneficios económicos.

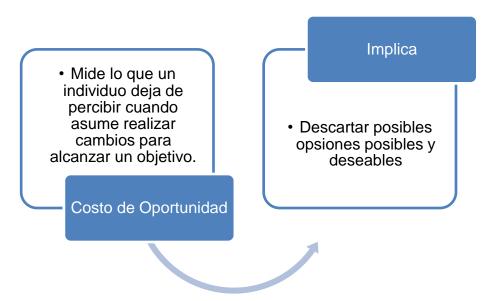


Figura 37. Costo oportunidad.

El operador del esquema de PSA, debe de realizar anticipadamente las estimaciones de los costos de oportunidad de las actividades productivas más importantes que se desarrollan dentro del área priorizada como zona de de vital importancia en la prestación del servicio ambiental.

Métodos recomendados para estimar el costo de oportunidad

Pueden ser usados dos métodos básicos para cuantificar el costo de oportunidad de la conservación:

Estimación del beneficio neto (utilidad) de las actividades productivas más representativas del área de trabajo.

Nos permite la estimación del beneficio neto (utilidad) generado por las actividades productivas más representativas y más rentables que se desarrollen dentro del área de trabajo al momento de aplicación del incentivo.

Para estimar el beneficio neto es apropiado buscar la información necesaria sobre los siguientes aspectos:

- Cantidades y precios de los insumos
- Volumen total producido
- Precio del producto final comercializado

Esto nos permitirá construir la estructura de costos e ingresos correspondientes a cada tipo de explotación agrícola, pecuaria y forestal.

Es importante tener en cuenta que la estimación debe ser fluctuante debido a la variación en los precios que sufren los parámetros anteriormente mencionados, razón por la cual se deben realizar cálculos (diferencia entre ingresos y costos) utilizando los correspondientes datos promedio obtenidos con información de al menos los últimos

diez (10) años. Además, es conveniente actualizar los valores periódicamente para que indicador económico este ajustado.

En términos prácticos, para calcular correctamente el beneficio neto se deben desarrollar las tres actividades que se indican a continuación:

Caracterización de los sistemas productivos más representativos en elárea de trabajo

•Esta actividad está dirigidaa identificar, clasificar, espacializar y describir los sistemas productivos predominantes en las áreas estratégicas donde se implementará el esquema de PSA. definir claramnete aspectos biofisicos, socioeconomicos y culturales.

Elaboración de la estructura de costos e ingresos de las actividades productivas

- Contabilizar todos los costos resultantes de las actividades realizadas en los sitemas productivos. se debe especificar:
- Cantidades utilizadas
 Valores unitarios
- Valores totales
 Volumenes
 producidos en cada periodo
- Precio del producto final

Estimación del Valor Presente Neto (VPN)

- Permitira calcular y proyectar a futuro la rentabilidad de los sistemas productivos, como una aproximación al costo de oportunidad. Para su estimación se requiere definir:
- El periodo temporal de análisis
- Las tasas con las cuales se actualizaran los costos de producción, los ingresos y los precios.

Figura 38. Pasos importantes para calcular los beneficios netos.

Respecto a las tasas, se acostumbra a utilizar el promedio anual del índice de precios al productor (IPP) para actualizar los costos de producción; para actualizar los ingresos es posible usar la meta proyectada de inflación del Banco de la República, y el promedio del precio de venta al mayorista de los últimos 10 años se podría emplear para actualizar el precio de los distintos productos agrícolas o pecuarios (esta información de precios es reportada por el Sistema de Información de Precios del Sector Agropecuario, SIPSA). Igualmente, se debe determinar la tasa de descuento a ser manejada para el cálculo del indicador del valor presente neto (VPN). Normalmente en este tipo de análisis se utiliza una tasa de descuento que varían entre el 10% y el 12%.

Para el caso del incentivo de PSA, se ha estimado como periodo mínimo de análisis cinco (5) años, sin embargo, esta decisión la debe tomar en cada caso particular el Comité de administración del esquema o el operador del mismo, y debe estar en concordancia con el periodo de vigencia fijado en los contratos que se suscriban con cada productor beneficiario del instrumento.

El valor de la renta de la tierra expresada en el precio de arrendamiento

Hace referencia al cálculo del valor correspondiente a la renta de la tierra, el cual se determina a partir del precio de arrendamiento del predio o parcela.

Esta alternativa vía arrendamiento, permite establecer cómo se comportan factores determinantes del costo de oportunidad que no pueden ser evaluados a partir del cálculo de los beneficios netos, como lo son las características biofísicas y agroclimáticas del predio, así como su cercanía a los puntos de mercado, determinada por la cercanía del predio a los centros poblados, a las carreteras o a los ríos, como un indicador de los costos de transporte.

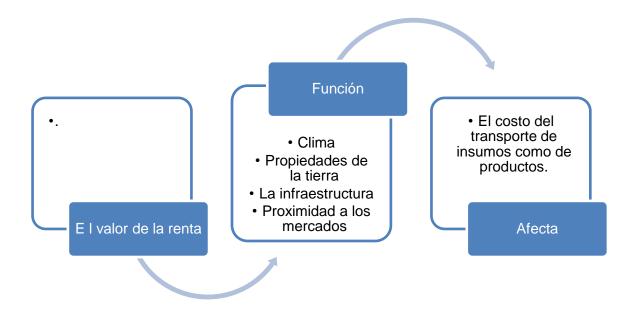


Figura 39. Valor de renta de la tierra.

Definición del monto a pagar

Para determinar el monto a reconocer (dinero, especie), se tomará como referente el menor costo de oportunidad que asume el propietario o poseedor regular del predio por su decisión de conservar y/o restaurar los recursos naturales, frente a otros usos alternativos del suelo que le proporcionan beneficios económicos (ingresos).

Estos costos también pueden complementarse con otros elementos, como:

- El estado de los servicios ambientales suministrados
- El uso del suelo al iniciarse el contrato
- Los compromisos acordados con respecto a los nuevos usos del suelo
- El costo o arrendamiento del predio y los recursos disponibles

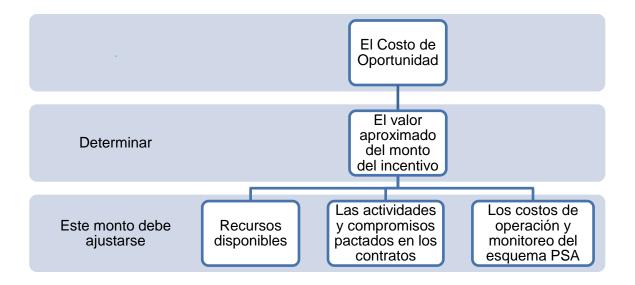


Figura 40. Definición del monto a pagar.

Con relación a la forma de pago, esta puede ser, de dos tipos:

- Monetaria: El beneficiario reciba dinero como un reconocimiento directo por la conservación o el desarrollo de actividades y usos que posibilitan la producción del servicio ambiental.
- En especie, a través de bienes o servicios que mejoren su bienestar individual, como por ejemplo: facilidades para adquirir insumos, asistencia técnica para el desarrollo de actividades sostenibles, créditos "blandos" a las inversiones en infraestructura productiva, apoyo institucional al mercadeo de productos certificados (ejemplo: sellos ecológicos), capacitación y educación ambiental.

Estimación de los costos de implementación, operación y monitoreo a cargo del operador del esquema

Para la implementación del esquema de PSA, el operador deberá estimar siguiendo las directrices del Comité administrador los distintos costos que son inherentes a este incentivo económico, entre los cuales se pueden señalar los siguientes:

Costos de las intervenciones para el manejo del paisaje

El esquema debe considerar las intervenciones que se deban realizar en el paisaje para generar los cambios deseados en materia de aumento de la cobertura de bosques, conectividad y conservación del recurso hídrico y la biodiversidad. Las diferentes clases de herramientas de manejo del paisaje (HMP) generan costos adicionales que deben ser tenidos en cuenta como costos de implementación del esquema y debe definirse quien asume esos costos, ya sea el operador del PSA o el propietario del predio.

Algunas de las intervenciones que posibilitan la restauración y conservación del ecosistema que provee el servicio de regulación hídrica:

Corredores Biológicos

- Son áreas de bosques nativos de longitud y ancho muy variable.
- Se consideran dentro de esta categoría las actividades desarrolladas para incrementar las áreas de fragmentos de bosque nativo ya existentes.

Enriquecimientos

Consiste en sembrar especies nativas de estadios más avanzados de la sucesión vegetal en áreas que proporcionen conectividada escala de paisaje y que se han venido recuperando naturalmente producto de aislamientos o abandono.

Cercas Vivas

•Son franjas de vegetación con pocos metros de ancho y longitud variable, multiestrato, de composición mixta entre especies forestales que aumenten la diversidad del paisaje.

Sistemas Agroforestales

•Son la combinación en tiempo y espacio de especies arbóreas con cultivos agrícolas o ganadería, a fin de integrar armónicamente la actividad agropecuaria con la forestal para garantizar la sostenibilidad del sistema productivo.

Aislamientos de fragmentos de bosque nativo

•Es el encerramiento con alambre que se hace a los fragmentos de bosque nativo ya existentes en el paisaje, para protegerlos de la entrada de ganado y la entresaca para poder permitir así la regeneración natural.

Reforestaciones protectoras – productoras

•Es la siembra exclusiva para proteger o recuperar algún recurso natural renovable y de la cual se pueda tener aprovechamiento indirecto (Decreto 2811 de 1974), sujeto al plan de establecimiento y manejo.

Figura 41. Intervenciones que posibilitan la restauración y rehabilitación de áreas.

Costos de transacción

Los costos de transacción están asociados inicialmente a los costos de identificación de usuarios y proveedores de los SA; a los costos de la información y la investigación para establecer la línea base y el diseño del esquema; a los costos de los procesos de negociación y resolución de conflictos que incluye talleres informativos y de toma de decisiones con los diferentes actores institucionales, públicos y privados, a los costos de resolver problemas de títulos y tenencia de tierras, las inversiones en trabajo con la

comunidad para generar confianza y fortalecimiento de las redes sociales, todos estos costos inicialmente son altos pero una vez superadas las fases iníciales de diseño e implementación se remiten a los costos de monitoreo, control y cumplimiento que también forman parte de este grupo.

Los costos administrativos

Incluye los costos de operación como elaboración de contratos, facturación, recaudación de fondos, búsqueda de recursos financieros y el desarrollo de actividades en el área donde se va aplicar el PSA. De entrada para que el esquema sea viable es necesario el diseño de mecanismos eficientes de operación, en donde se minimicen los costos de funcionamiento del sistema.

6.2 Análisis de fuentes y mecanismo financiero

Constituir un fondo en el contexto de cualquier esquema de PSA es una actividad indispensable para su efectiva implementación. Este mecanismo financiero formaliza y legaliza el flujo de recursos que serán destinados a mejorar la oferta de servicios ambiental eso a mantener la cantidad y calidad de aquellos generados por los ecosistemas naturales conservados. El fondo para el pago por servicios ambientales debe ser manejado sobre la base de unas reglas formales establecidas entre todos los a portantes a fin poder garantizar un adecuado recaudo y desembolso de recursos. Para administrar este mecanismo, es necesario que las diferentes fuentes de financiación definan entre ellas mismas (por consenso) cuál institución será la encargada de realizar dicha labor, en donde están inmersas las siguientes actividades básicas:

- Elaborar y suscribir contratos
- Realizar los pagos convenidos a los beneficiarios del incentivo económico.
- Gestionar y recibir los aportes acordados con los beneficiarios del servicio ambiental.

- Garantizar el correcto cumplimiento de los acuerdos establecidos en los contratos de provisión de servicios ambientales.
- Sancionar el incumplimiento de los acuerdos establecidos con las partes participantes.

Los aportes potenciales del fondo El administrador Para garantizar la sostenibilidad del fondo debe gestionar financiera constantemente **Usuarios** Entidades Públicas Sector Privado Los suscriptores de contratos Esquema de de PSA por sanciones aplicadas Recursos PSA Organizaciones no gubernamentales Gobiernos Extranjeros Organismos de Cooperación Internacional

Figura 42. Esquema de PSA.

5. CONCLUSIONES

El modelo SWAT da unos elementos necesarios para el momento de toma de decisiones de restauración ecológica articulado a un PSAH.

Para la generación de un modelo de priorización de áreas es necesario la articulación y ajuste de diferentes metodologías asociadas al modelo SWAT. Donde la participación de los diferentes actores juega un papel importante para la toma de la mejor decisión.

Los caudales y sedimentos se ven afectados en el modelo SWAT principalmente en áreas donde se presenta la ganadería, principalmente hay disminución de caudales en donde la ganadería esta en clases agrologicas VI, por ello para no incrementar los conflictos socio/ambientales los sistemas silvopastoriles se convierten en una alternativa para manejo y aprovechamiento de estas áreas donde el componente forestal puede estar articulado con el PSAH.

En los núcleos de restauración ecológica la dinámica en relación con coberturas uso y manejo de los suelos en la microcuenca la Tiendas (área priorizada) con llevan a plantear una propuesta de establecimiento de núcleos florísticos, parcelas en media luna, perchas, trinchos, parcelas, reservorios, etc.

Se evidencio que los niveles de participación son bajos, considerando que los agricultores no se encuentran asociados en organizaciones sólidas, baja participación a talleres y a procesos tradicionales y expresiones locales e históricas como la "Minga". Lo que puede convertirse en un obstáculo para la adopción de un esquema PSAH.

Las políticas actuales favorecen al desarrollo de PSA propuesto en esta investigación.

El modelo calibrado a priori tiende a subvalorar los procesos asociados con los sumideros de agua, lo que generó unas series de caudales con valores ligeramente superiores a los observados en la realidad; lo cual radica en la calidad y resolución de la información empleada como insumos de entrada del modelo.

Después de realizar simulaciones para posibles escenarios de cambios antrópicos se observó que un cambio radical en el uso del suelo.

Finalmente se comprobó que el modelo es útil a la hora de emplearse como una herramienta de toma de decisiones, al utilizar datos generados por el modelo implementado, como alimento de un análisis económico que entrega como resultado un esquema de intervención óptimo, con el fin de disminuir los costos asociados al tratamiento y conservación del agua.

De acuerdo a la información estadística analizada, la demanda del agua se concentra en los centros urbanos, la administración del agua debe tener mejoras y se evidencia el deficiente manejo social del agua y la disminución en la capacidad de regulación de caudales de las corrientes debido a los cambios en el uso del suelo y a la desprotección de nacimientos y partes altas de las cuencas alta de río Pasto, lo que amerita medidas de protección oportunas y adecuadas.

El sistema productivo más representativo y de mayor impacto en la calidad y cantidad de agua es la ganadería manejada de forma tradicional, en pasturas naturalizadas, al producción es para la venta y muy poca para autoconsumo, con mediana utilización de insumos y manejada con mano de obra familiar.

El escenario de mayor impacto en el aumento de la calidad y cantidad de agua es la restauración de zonas rivereñas y sitios de nacimientos de agua dentro de las fincas. La alternativa de sistemas silvopastoriles también mejora la calidad y cantidad del agua en la microcuenca Las Tiendas, el reto es el cambio cultural de la población que no introduce el árbol dentro de las pasturas.

El esquema de PSAH, propuesto se encuentra enmarcado dentro de los lineamientos legales, biofísicos, socioeconómicos y culturales de la cuenca alta del río Pasto, por lo tanto es posible llevarse a cabo una iniciativa económica de este tipo en la región, con los beneficios para la sociedad y el medio ambiente.

Cabe resaltar el aporte de la investigación a la consolidación de la política ambiental nacional, mediante la promulgación del 17 de mayo de este año del decreto 0953 ""Por el cual se reglamenta el artículo 111 de la Ley 99 de 1993 modificado por el artículo 210 de la Ley 1450 de 2011" el cual considera que el artículo 111 de la Ley 99 de 1993, modificado por el artículo 210 de la Ley 1450 de 2011, dispuso que los departamentos y municipios dedicarán un porcentaje no inferior al 1% de sus ingresos corrientes para la adquisición y mantenimiento de las áreas de importancia estratégica para la conservación de recursos hídricos que surten de agua a los acueductos municipales, distritales y regionales, o para financiar esquemas de pago por servicios ambientales en dichas áreas

6. RECOMENDACIONES

Por la carencia de la información requerida para el SWAT en suelos y vegetación es necesario realizar proyectos de investigación que conlleven a fortalecer esta información, en tanto contribuya en la generación de un modelo más ajustado. De igual forma se debe mejorar las redes de toma de datos hidrológicos, esto con el fin de generar bases robustas.

Con el propósito de optimizar un modelo más preciso y adaptado a las condiciones reales de la unidad de estudio es necesario consolidar e implementar una metodología de calibración detallada y objetiva que genere juegos de parámetros de entrada, que representen un valor en el coeficiente de ajuste, y de esta forma adoptar como parámetros definitivos, aquella combinación que represente un mejor ajuste, de esta forma se asegura tener un modelo más preciso y que se adopta de una mejor manera a las condiciones reales.

Para la coordinación del esquema PSAH, de acuerdo con las indagaciones de los actores consultados, manifiestan que sea una nueva organización.

La restauración ecológica es una alternativa que generará mejoras en la calidad y cantidad de agua en la microcuenca las Tiendas, por lo tanto la propuesta de establecer núcleos de restauración debe hacerse teniendo en cuenta, los aspectos técnicos planteado y la participación activa de la comunidad.

BIBLIOGRAFÍA

Aaron, .W; Annika K.; Alexander C.; Geoffrey D. 2005. La Situación del Mundo: Redefiniendo la seguridad mundial. Informe Anual del Worldwatch Insttute sobre el progreso hacia una sociedad Sostenible. Publicado en: RENNER, Michael; FRENCH, Hilary. Barcelona: Icaria; Centro de Investigación para la Paz, 2005, pp. 155-178.

ARIAS, A. 2001. Suelos Tropicales. San José, Costa Rica: EUNED. Pág. 186.

ARNOLD, J. G., and J. R. WILLIAMS. 1987. Validation of SWRRB: Simulator for water resources in rural basins. J. Water Resour. Plan. Manager. ASCE 113(2): 243 - 256.

ARNOLD, J. G., AND J. R. WILLIAMS. 1987. Validation of SWRRB: Simulator for water resources in rural basins. J. WaterResour. Plan. Manage. ASCE 113(2): 243 - 256.

ARNOLD, J.R. SRINIVASAN, R. S. MUTTIAH Y J.R. WILLIAMS. 1998. Large areas hydrologic modeling and assessment. Part I: Model development J. Am. Water Resour: Assoc., 34(1), 73-89.

Asociación Mundial para el Agua (GWP), 2008. Principios de gestión integrada de los recursos hídricos. América. 20 p.

AZUERO, A. 2005. Gestión Integrada de Recursos Naturales a escala de paisaje: Convergencia hacia un enfoque ecosistémicos. Turrialba – Costa Rica: CATIE. Pág. 55.

BALAGUER, L. 2004. Restauración ecológica: Mito o ciencia. Schironia. 3:43.

Banegas, L., León, J. 2009. Criterios para priorizar áreas de intervención en cuencas hidrográficas. La experiencia del programa FOCUENCAS II. Serie técnica. Informe técnico no. 378. CATIE (Centro Agronómico Tropical de Investigación y Enseñanza) Costa Rica, 32p.

BARRERA, M. 1997. Levantamiento integrado de cuencas hidrográficas del municipio de Medellín. Medellín: Instituto MIRIO. Pág. 328.

BARRIGA, M; CAMPOS, JJ; CORRALES, OM; PRINS, C. 2007. Gobernanza ambiental, adaptativa y colaborativa en bosques modelo, cuencas hidrográficas y corredores biológicos: diez experiencias en cinco países latinoamericanos. Serie técnica (Informe técnico no. 358). CATIE, Turrialba, CR: 94 p.

BORRINI, G; TAGUI,M; SOLIS,V y GOVAN, H. 2001. Manejo Conjunto de los Recursos Naturales: Organizarse, Negociar y Aprender en la Acción. Alemania, Unión Mundial para la Naturaleza (UICN). Pág. 99.

BREY, R. 2009. Valoración económica de externalidades asociadas a proyectos de transporte: fundamentos y procedimientos. Ministerio de medio ambiente y medio rural y marino. España. Cedex. 23 Pág.

BREY, R. 2009. Valoración económica de externalidades asociadas a proyectos de transporte: fundamentos y procedimientos. Ministerio de medio ambiente y medio rural y marino. España. Cedex. 23 Pág.

BURSTEIN, J., CHAPELA, G., AGUILAR, J. Y DE LEÓN, E. 2002. Pago por servicios ambientales y comunidades rurales: contexto, experiencias y lecciones de México. PRISA. HTTP://www.prisma.org.sv/pubs/pubs.htm

CASTELLANOS, P. *et al.* 2007. Uso Eficiente y Sostenible de los Recursos Naturales. Primera edición. Salamanca - España, Universidad de Salamanca. Pág. 449.

CEIT, 2002. Bosques Tropicales Ecosistemas Peligrosos.[Documento en línea]: Disponible http://www.ceit.es/asignatura/ecologia/12ecospel/120.diverbiol.htm.

CENTER FOR INTERNATIONAL FORESTRY RESEARCH-CIFOR. Pago por Servicios Ambientales (PSA) [en línea]. http://www.cifor.org/pes/_ref/sp/sobre/ecosystem_services.htm[Citado el 20 de Julio del 2013]

CISNEROS, J; ALPIZAR, F y MADRIGAL, R. 2006. Valoración económica de los beneficios de protección del recurso hídrico bajo un esquema de pago de servicios ecosistémicos en Copan, Honduras. Turrialba – Costa Rica: CATIE. Pág. 40.

COCHRAN, W. 1996. Técnicas de Muestreo, Compañía Editorial Continental S.A. México. 513 p.

COLOMBIA, EL MINISTRO DE AGRICULTURA Y DESARROLLO RURAL. Ley 1152 (25, Julio, 2007) Por la cual se dicta el Estatuto de Desarrollo Rural, se reforma el Instituto Colombiano de Desarrollo Rural, INCODER, y se dictan otras disposiciones. Bogotá D.C.: El Ministerio, 2007. 119p.

COLOMBIA, INSTITUTO COLOMBIANO DE DESARROLLO RURAL-INCODER. Acuerdo 140 (7, Mayo, 2008) Por el cual se fija el tamaño máximo de las Unidades Agrícolas Familiares promedio por región, determinadas en los proyectos productivos. Bogotá D.C.: INCODER, 2008. 4p.

COLOMBIA, MINISTERIO DEL MEDIO AMBIENTE Y DESARROLLO SOSTENIBLE. Decreto 1729 (6, Agosto, 2002). "Por el cual se reglamenta la Parte XIII, Título 2, Capítulo III del Decreto-ley 2811 de 1974 sobre cuencas hidrográficas, parcialmente el numeral 12 del Artículo 5° de la Ley 99 de 1993 y se dictan otras disposiciones". Bogotá D.C.: El Ministerio, 2002. 9 p.

COMISIÓN DE REGULACIÓN Y AGUA POTABLE Y SANEAMIENTO BÁSICO (Colombia). Ministerio de Ambiente, Vivienda y Desarrollo Territorial. "por la cual se

adoptan medidas para promover el uso eficiente y ahorro del agua potable y desincentivar su consumo excesivo". 2010.

CORPONARIÑO (Corporación Autónoma de Nariño). Clasificación y priorización de cuencas hidrográficas en el departamento de Nariño. Documento en proceso de aprobación. Colombia, San Juan de Pasto, 2008. 90 p.

DAZA, M y NORIEGA, A. 2009. Valoración económica de los servicios hídricos y de biodiversidad del Cerro La Judía. Corporación Autónoma Regional de la Meseta de Bucaramanga-Instituto de Investigación Alexander von Humboldt.

DE LA TORRE, C; SUYO, I; CHAÑI, W. 2001. Promoviendo instituciones campesinas para enfrentar el conflicto social e intercultural en el manejo del agua de riego, en la sierra del Perú. Conversatorio taller: análisis de conflictos sociales e interculturales en el manejo de agua de riego en comunidades campesinas andinas. Lima, Perú, 18 octubre 2001.

DEL CASTILLO, C.L. 2008. Propuesta de un plan de acción para el manejo de la oferta del servicio ecosistémico de regulación y provisión del recurso hídrico para consume humano, en la Subcuenca Alta Superior del Río Pasto, Colombia. Tesis M.Sc. Turrialba, Costa Rica, CATIE. 110p.

EL INSTITUT INTERNACIONAL DE COVERNABILITAT, 2004. Panorama global del agua hasta el año 2025. Cómo impedir una crisis inminente. USA. 36 p.

ESTRADA, A.; ARAGÓN, L.; PÉREZ G.; BEJAR J. 2011. Diagnóstico rápido de la cuenca ata del río Apurímac. Espinar, Perú.106p.

ESTRADA, A; ALEGRÍA, J. 2010. Estudio de la gestión del agua y los conflictos y su interrelación con el cambio climático en la región Cusco. 125 p.

FAO Organizacion de las Naciones Unidas para la Agricultura y la Alimentacion. 2007. La nueva generacion de programas y proyectos de gestion de cuencas hidrograficas. Roma. 89 Pág.

FAUSTINO J.; JIMÉNEZ, F.; VELÁSQUEZ, S.; ALPÍZAR, F., y PRINS, C. 2006. Curso de Gestión integral de cuencas hidrográficas. Cali, Colombia, 17 al 20 de Octubre del 2006. Turrialba, Costa Rica. 400 p.

FAUSTINO, J *et al.* 2006. Gestión Integral de Cuencas hidrográficas. Turrialba Costa Rica: CATIE, Pág. 400.

FORO REGONAL, 9 – 12 de junio de 2003, Arequipa, Perú. Organizado por la oficina regional de la FAO para América Latina y el Caribe Santiago de chile. Sistemas de pago por servicios ambientales en cuencas hidrográficas. 74 Pág.

GALAFASSI, G.: "La relación medio ambiente-sociedad: algunos elementos para la comprensión de su complejidad". Revista Paraguaya de Sociología, año 30, Nº 86, 1993.

GARCÍA, P. Aspectos Básicos del Comportamiento de Suelos en Siembra Directa: Propiedades Físicas

GARIBELLO, J. 2003. Restauración de Ecosistemas a partir del Manejo de la Vegetación: Guía Metodológica: Bogotá: Ministerio de Ambiente, Vivienda y Desarrollo Territorial. Pág. 98.

GEILFUS, F. 2002. 80 herramientas para el desarrollo participativo.CR:217 p.

GERBRANDY, G, HOOGENDAM, P. Aguas y acequias. Los derechos al agua y la gestión campesina de riego en los Andes bolivianos. La Paz, Centro de Información para el Desarrollo (CID). Plural Editores (1998); [febrero, 2012].

URL:http://books.google.com.co/books?id=8JHG4QOv_KYC&printsec=frontcover&hl=es &source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false

GLIESSMAN, S. 2002. Agroecología: Procesos ecológicos en agricultura sostenible. Turrialba, Costa Rica: CATIE. Pág. 359.

GRADEX, S.A 2005. "Modelación Hidrológica de la Cuenca del Río la Vieja" Bogotá, Colombia.

GUERRERO, E; KEIZER, D y CÓRDOBA, R. 2006. La aplicación del enfoque ecosistémicos en la gestión de los recursos hídricos: Un análisis de estudios de casos en América Latina. Quito – Ecuador: UICN. Pág. 78.

GUHL, E. 2008. Hacia una gestión integrada del agua en la Región Andina. AECID. Pág. 168.

HARDIN, G. The tragedy of the commons, en: Science, No. 162, 1968 p.1243-48. [Febrero, 2012]. URL: http://www.sciencemag.org/content/162/3859/1243.full

HERNÁNDEZ, A y NAVIA, F. 1999. Aspectos metodológicos del proceso de caracterización. En: Informe técnico No. 3. Pasto: CORPOICA. Pág. 30.

HUONG. L. 2012. Gobernanza Ambiental. Programa de las Naciones Unidas para el Medio Ambiente (PNUMA).

IDEAM (Instituto de Hidrología, Meteorología y Estudios Ambientales de Colombia). Resolución N° 104 del 7 de Julio del 2003. "Criterios y parámetros para la clasificación y priorización de cuencas hidrográficas" en Colombia. Bogotá, 2003. 6 p.

IDEAM (Instituto de Hidrología, Meteorología y Estudios Ambientales de Colombia). Resolución 865 de 2004, Metodología para el cálculo del índice de escasez para aguas superficiales, Ministerio de Ambiente, Vivienda y Desarrollo Territorial.

IDEAM. 2008. Guia Técnico Científica para la Ordenación de las Cuencas Hidrográficas en Colombia. 2 versión.

IGAC. Estudio General de Suelos y Zonificación de Tierras (Departamento de Nariño). 2004 Instituto Geográfico Agustín Codazzi. Subdirección e Agrología. Bogotá.

INFANTE, H y ORTIZ, L. Ajuste metodológico al índice de escasez de agua propuesto por el IDEAM, en el plan de ordenación y manejo de la cuenca del río Pamplonita, Norte de Santander, Colombia: Enmarcado dentro del trabajo de investigación "Determinación de algunas variables consideradas dentro de la etapa diagnóstico del Plan de Ordenación y Manejo de la Cuenca del Río Pamplonita" Universidad Distrital Francisco José de Caldas, 2006. Revista Colombia Forestal Vol. 11: 165-173 / Diciembre 2008.

INSTITUTO DE HIDROLOGÍA, METEOROLOGÍA Y ESTUDIOS AMBIENTALES. 2008. Guía Técnica para la Ordenación de las Cuencas Hidrográficas en Colombia. Bogotá: IDEAM. Pág. 92.

IPROGA 1996. Metodología para la elaboración de planes maestros de cuencas. Instituto de Promoción para la Gestión del Agua. Lima, Perú: 78 p.

GARCIA, J. y LOPEZ, L. (1970). Fórmula para el cálculo de la evapotranspiración potencial adaptada al trópico. VIII Reunión Latinoamericana de Fitotecnia. Revista Agronomía Tropical 20(5):335-345.1970.Bogotá-Colombia.

JARAMILLO, J., LOAIZA, A., QUIROZ, J.1996. Tipificación del sistema de producción papa-pasto-leche en el oriente Antioqueño. Instituto Colombiano Agropecuario-ICA, CORPOICA y PRONATA. Boletín de investigación N° 4. Medellín, Colombia. 40p

JIMÉNEZ, F. 2010. Introducción al manejo y gestión de cuencas hidrográficas. Manejo y Gestión Integral de Cuencas Hidrográficas I (curso de maestría). CATIE. Turrialba, CR: 35 p.

J

JIMÉNEZ, F. 2010. Reconocimiento inicial de la cuenca e identificación y caracterización de actores claves. CATIE. Turrialba, CR: 13 p.

LATERRA, P; JOBBAGY, E y PARVELO, J. 2010. Valoración de Servicios Ecosistémicos: Conceptos, Herramientas y Aplicación para el ordenamiento territorial. Argentina: INTA. Pág. 718.

LAZARTE, J. 2006. Apuntes para el análisis de los conflictos. Lazos no 1. La Paz, Bolivia, Fundación UNIR: 30-33.

LLERENA, C. 2003. Servicios ambientales de las cuencas y producción de agua: conceptos valoración y experiencias y sus posibilidades de aplicación en Perú. Pág. 9 – 12. En: Foro Regional Pago por Servicios Ambientales en Cuencas Hidrográficas, Arequipa, Perú.

LOMA, P., MARTIN, B., MONTOYA, D. y MONTES, C. 2005. Guía práctica para la valoración de los bienes y servicios ambientales de los ecosistemas. Departamento interuniversitario de ecología, universidad autónoma de Madrid. Madrid - España. 73 Pág.

LUCIANO, WR. 2010. Gobernanza ambiental en la cuenca alta de la presa de Sabana Yegua, República Dominicana. Tesis Mag. Sc. Centro Agronómico Tropical de Investigación y Enseñanza. Turrialba, CR: CATIE. Pág. 164.

MADRIGAL, R y ALPIZAR, F. 2008. El pago por servicios ecosistémicos y la acción colectiva en el contexto de cuencas hidrográficas. Turrialba – Costa Rica: CATIE. Pág. 32.

MARTÍNEZ, E. 1996. La restauración ecológica. Revista Ciencias. 43:12

MAvDT. Ministerio de Ambiente, Vivienda y Desarrollo Territorial. 2007. Estrategia

Nacional de Pago por Servicios Ambientales. Grupo de Análisis Económico

MAYRAND, K y PAQUIN, M. 2004. Pago por servicios ambientales: Estudio y evaluación de esquemas vigentes. Montreal: CCA. Pág. 65.

MERRIAM, R. (1973). "Fog Drip from Artificial Leaves in a Fog Wind Tunnel". Water Resources Research, Vol.9, No. 6.

Metodología para valorar la oferta de servicios ecosistémicos asociados al agua de consumo humano, Copán Ruinas, Honduras. RETAMAL, R. et al. CATIE Turrialba Costa ICA 2008 53 Pág.

MINISTERIO DE AMBIENTE Y DESARROLLO SOSTENIBLE OFICINA DE NEGOCIOS VERDES Y SOSTENIBLES. 2012. Guía metodológica para el Diseño e Implementación del Incentivo Económico de Pago por Servicios Ambientales – PSA. Oficina de Negocios Verdes y Sostenibles. Documento para Discusión. 36p

MINISTERIO DE AMBIENTE, VIVIENDA Y DESARROLLO TERRITORIAL. 2010. Política Nacional para la Gestión Integral del Recurso Hídrico. Bogotá, DC: MAVDT, Pág. 124.

MITCHELL Y CARLSON. 1989. Using surveys to value public goods: the contingent valuation method. Washington DC. RRF.

MORENO, A y RENNER, I. 2007. Gestión integral de cuencas: La experiencia del Proyecto Regional Cuencas Andinas. Lima – Perú: CIP. Pág. 236.

NACIONES UNIDAS. 1995. Metropolitan Governance: Patterns and Leadership (en línea). Documento presentado por Itoko Suzuki a United Nations High-Level

Interregional Meeting on Metropolitan Governance: Patterns and Leadership, Quito, 13 Pág.

Disponible

en

http://unpan1.un.org/intradoc/groups/public/documents/EROPA/UNPAN001434.pdf

NEITSCH, S. L., ARNOLD, J. G., KINIRY, J. R., and WILLIAMS, J. R.: Soil and Water Assessment Tool – Theoretical Documentation, Version 2005. Texas, USA, 2005.

ORGANIZACIÓN DE LAS NACIONES UNIDAS PARA LA AGRICULTURA Y LA ALIMENTACIÓN (FAO). 2007. La nueva generación de programas y proyectos de gestión de cuencas hidrográficas. Roma: FAO. Pág. 89.

Plan de Ordenamiento y Manejo de la Cuenca del Rio Pasto POMCA "Renace Rio Pasto". CORPONARIÑO. 2008

PRINS, C; KAMMERBAUER, H. 2009. Análisis y abordaje de conflictos en cogestión de cuencas y recursos hídricos. 1 ed. Turrialba, CR: Asdi; CATIE. 59 p.

PROFOGAN. 1993. Proceso de Análisis y mejoramiento de Sistemas de Producción Agropecuario. Quito, Ecuador: PROFOGAN. Pág. 319.

Programa para la Agricultura Sostenible en Laderas de América Central (PASOLAC). 2006. Elementos metodológicos para la implementación de pagos por servicios ambientales hídricos al nivel municipal en Centroamérica. Tegucicalpa: PASOLAC. Pág. 36.

QUINTERO, M. y ESTRADA, R. 2006. Pago por servicios ambientales en Latinoamérica y sus perspectivas en los Andes. Centro Internacional de la papa (CIP). LIMA – PERU, 43 Pág.

RAMAKRISHNA B. 1997. Estrategia de extensión para el manejo integrado de cuencas hidrográficas: conceptos y experiencias. IICA, BMZ/GTZ. San José Costa Rica. 338 p.

RAMÍREZ, J, OSORIO, H y PARRA, R. 2007. Estudios y Perspectivas: Escalafón de la competitividad de los departamentos en Colombia. Bogotá, CEPAL Naciones Unidas. Pág. 109.

RETAMAL, R; MADRIGAL, R; ALPÍZAR, F; JIMÉNEZ, F. 2008. Metodología para valorar la oferta de servicios ecosistémicos asociados al agua de consumo humano, Copán Ruinas, Honduras. Turrialba – Costa Rica: CATIE. Pág. 53.

REVESZ, B. 2006. Gobernanza, procesos participativos y desarrollo territorial local. Congreso Internacional "Gobernabilidad y Gobernanza de los Territorios en América Latina – Cochabamba. 19-21 septiembre 2006. Pág. 20.

RIVAS, R; PAZ, T.; GÓMEZ, L. y RAVNBORG. 2010. Cooperación y conflicto en torno a la gestión local del agua en el municipio de Condega, Nicaragua. DIIS Working Paper 2010:13. Dinamarca. 50 p.

ROBERTSON, N., and S. WUNDER. 2005. "Fresh traces in the forest: Assessing incipient payments for environmental services initiatives in Bolivia". Bolivia. La Paz. Pag. 235.

ROJAS, J. 2007 Líneas de gestión sobre sistemas productivos sostenibles en un contexto de paisaje, que apoyen la conservación de biodiversidad y áreas protegidas, articulados a proceso de ordenamiento territorial. Bogotá D.C 106-7.

SALGADO, M. 2012. Análisis de la gobernanza de la cuenca Alta del río Apurímac, Perú. Tesis M Sc. Turrialba, CR. CATIE. 90 p.

SÁNCHEZ, A. 2006. Agua: Un Recurso Escaso. Sevilla – España, Arcibel editores. Pág. 222.

SANCHEZ, M.I. (1992). Métodos para el estudio de la evaporación y evapotranspiración.

SANS, F. 2007. La Diversidad de los agroecosistemas. Asociación Española de Ecología Terrestre. En: Ecosistemas 16 (1). 44-49p.

SAXTON, K. E.; RAWLS, W. J.; ROMBERGER, J. S. y PAPENDICK, R. I. 1986. Estimating generalized soil-water characteristics from texture. Soil Sci. Soc. Am. J. 50(4): 1031

SCHUOL, J., ABBASPOUR, K.C., SRINIVASAN, R., YANG, H., 2008. Estimation of freshwater availability in the West African sub-continent using the SWAT hydrologic model. Journal of Hydrology 352 (1–2), 30–49.

SEGURA, D. 2011. Análisis de algunos componentes de la gestión del recurso hídrico en la subcuenca del río Gatuncillo, cuenca del Canal de Panamá. Tesis Mag. Sc. Turrialba, CR, Centro Agronómico Tropical de Investigación y Enseñanza (CATIE). 235 p.

SOROOSHIAN, S., YAPO, P. O., y GUPTA, H. V. (1998). Multi-objective Global Optimization for Hydrologic Models. 204 p.

SWAT. Soil Water Assessment Tool 2009 [febrero, 2012] URL: http://swatmodel.tamu.edu/software/arcswat/

TUCCI, C. E. M. Modelos Hidrológicos. 2.ed.rev. e aum. Porto Alegre: UFRGS, 2005. 678p.

UNION INTERNACIONAL PARA LA CONSERVACION DE LA NATURALEZA (UICN). 2000. Visión del Agua y la Naturaleza: Estrategia Mundial para la Conservación y Manejo Sostenible de Recursos Hídricos en el Siglo XXI. CANADA, UICN. 52 Pág.

URIBE, E. 2003 Introducción a la valoración ambiental y estudios de caso. Bogotá: Universidad de los Andes. 81 Pág.

URIBE, N. 2009. Impacto del Uso de la Tierra en la Generación de Caudales y Sedimentos. Caso cuenca del río Frio Santander. Patrimonio Natural-Ministerio de Ambiente, Vivienda y Desarrollo Territorial.

VARGAS, O. & Grupo de Restauración Ecológica Universidad Nacional de Colombia. (Eds.) 2007b. Estrategias para la restauración ecológica del bosque alto andino: El caso de la Reserva Forestal Municipal de Cogua, Cundinamarca, Colciencias y Universidad Nacional de Colombia, Bogotá.

VISSCHER, JT. 2008. Conflict mediation in the water and sanitation sector: and how to reach solutions. IRC International Water and Sanitation Centre. Thematic Overview Paper 22: 43 p.

WHITE WATER TO BLUE WATER (WW2BW). 2004. Dominican Republic-Environmental Cleaning of the Low Haina River Basin and its Coast en linea. En: http://www.ww2bw.org/Members/dhhernandez/Project.2004-010.7777112224/view

WUNDER, S. "Payments for environmental services: Some nuts and bolts" CIFOR ocasional paper No 42, 2005, Yakarta, Indonesia. Pag. 394.