
82

New methodology for calibration of 
hydrodynamic models in curved open-channel 
flow

ABSTRACT: This paper evaluates a new methodology for calibration of hydrodynamic 
models based on the theory of statistical design of experiments. An Eulerian-Eulerian 
hydrodynamic homogeneous model, integrated by the commercial software CFX Ansys 
Inc., is used to perform the numerical experiments. For the screening step, the fractional 
factorial experimental design 27-2 was used, followed by a Draper-Lin design of second order 
to find the optimum point in the calibration. A new method is introduced to generate the 
level of points to the center and to carry out the test of lack of fit. In this work, we develop a 
validated methodology for the calibration of deterministic hydrodynamic models with several 
factors, suggesting a second-order regression model for forecasting the optimum point of 
the simulations, with acceptable accuracy in predicting the response variable.

RESUMEN: Se propone una nueva metodología para la calibración de modelos hidrodinámicos 
a partir de la aplicación del diseño estadístico de experimentos. Un modelo hidrodinámico 
Euleriano-Euleriano homogéneo se usa para realizar los experimentos numéricos, el cual 
está incorporado en el software comercial CFX de Ansys Inc. En la etapa de calibración se 
utiliza un diseño factorial fraccionado, 27-2, seguido de un diseño Draper-Lin de segundo 
orden, para encontrar el punto óptimo de la calibración. Se introduce un nuevo método para 
generar los niveles de los puntos al centro necesarios para la realización de la prueba de 
falta de ajuste, logrando configurar una metodología validada para la calibración de modelos 
hidrodinámicos determinísticos con varios factores de entrada. Se logra un modelo de 
regresión de segundo orden para la predicción del punto óptimo de las simulaciones, con 
una aceptable precisión en la predicción de la variable de respuesta analizada.
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information provided is not enough to be applied directly to 
hydrodynamic simulation because it does not specify how 
to replicate points with numerical experimentation [3-7].

To overcome this problem, the statistical theory of the 
lack of fit with no replications was used to generate the 
information for the neighbor points, treating them as the 
real points to the center [8, 9]. Additionally, the descending 
scaling methodology was used to identify the points of 
minima outside the initial experimental region [1, 2].

The numerical simulations in this work were performed 
by an Eulerian-Eulerian hydrodynamic model for the 
conservation of mass and momentum laws. It was applied 
to a two-phase flow of water and air, in order to find the 
interface surface between these two fluids, which is useful 

1. Introduction 
Design of experiments (DOE) is a well-known methodology 
([1, 2]) which can be applied to physical experiments 
without any difficulty. However, when the data comes 
from numerical experiments obtained from deterministic 
mathematical models, problems arise due to the 
impossibility to compute the pure error to evaluate the 
lack of fit. Although the literature deals with the issue of 
applying the DOE technique in numerical simulations, the 
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for the study of flow in open channels when the water 
surface is to be determined [10, 11]. Taking into account that 
it is necessary to compare predicted values with reference 
(experimental) ones for the calibration of the hydrodynamic 
model, experimental values reported in the literature for 
water depths in a curved open-channel flow were used 
in this case. Specifically, data reported by Han et al .  [12] 
were used for calibration, and data reported by Blanckaert, 
Rozovskii and Poggi, were used for validation [13-18].

As a result of this work, a methodology for calibration 
and validation of numerical models was developed. This 
methodology is valid to define the optimum configuration of 
the numerical parameters of the model. A new second order 
regression model was developed to predict the optimum 
point of the response variable with a reasonably high level 
of precision for hydraulic engineering applications.

2. Methodology 
The methodology used for the hydrodynamic–numerical 
model calibration and validation is based on that of 
the response surface. It includes the analysis of lack of 
fit through the neighbor nodes and the down-scaling 
technique, which makes it appropriate to apply a numerical 
experimentation with deterministic mathematical models 
[1, 2]. The contribution of this methodology to the classical 
DOE methodology applied to physical experimentation is 
the inclusion of near neighbor points in the lack of fit test, 
instead of using exact points to the center. The developed 
methodology flow chart is shown in Figure 1, where it is 
compared to the classical DOE methodology presented by 
Gutiérrez and Vara [1] and Montgomery [2]. The difference 
is easy to detect if we perform the lack of fit test without 
replication. This methodology is applied to the simulation 
of a curved channel open flow. 

Figure 1 Flow chart for the proposed methodology for calibration and validation of hydrodynamic models
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2.1. Experimental data for curved 
channels

Water depths in a curved channel measured by Han et 
al. [12] were used for the calibration of the numerical 
parameters of the model (see channel geometry in 
Figure 2(a)); and water depths measured by Blanckaert, 
Rozovskii and Poggi [13-18] (see Figures 2(b), 2(c) and 
2(d) for channels geometry) were used for validation. The 
flow characteristics and channel dimensions for each test 
case are presented in Table 1, (where B: channel width; he: 
water depth at the channel entrance; hs: water depth at the 
channel exit; Rm: mean radius of the channel; Q: discharge; 
θ: development angle of the channel curve; So: longitudinal 
slope; Le: straight zone of the channel upstream the 
entrance; Ls: straight zone downstream the exit). 

(a)

(b)

(c)

(d)
Figure 2  General geometry of the channels used 

for calibration and validation: (a) Han’s channel, 
(b) Blanckaert’s channel, (c) Rozovskii’s  channel, 

(d) Poggi’s  channel

Table 1  Flow parameters and channel dimensions 
for Calibration and Validation, 

Symbol Unit
Channels

Han Blanckaert Poggi* Rozovskii
B [m] 0.610 1.300 0.250 0.800
he [m] 0.0897 0.150 0.0993-0.0468 0.058
hs [m] 0.0878 0.149 0.0993-0.0468 0.058
Rm [m] 0.450 1.70 3.00 0.80
Q [m3/s] 0.013 0.089 0.0745-0.0371 0.0123
θ [°] 90 193 45 180
So [%] 0.00 0.00 5.00-10.00 0.00
Le [m] 0.610 9.000 0.500 6.000
Ls [m] 2.253 5.000 1.000 3.000

(*) The first data corresponds to So=5.0% and the second one to 
So=10.0%.

Data from Han´s horizontal curved channel include water 
levels for the internal and external Plexiglas walls, taken 
from a figure [12]. Data from Blanckaert´s horizontal channel 
include water levels at the center of the channel with a 
reported roughness coefficient of 5x10-6 m for the lateral 
walls and 0.003 m for the bottom [14]. Data from Rozovskii´s 
horizontal channel include water levels for the internal and 
external smooth walls and a roughness coefficient of 0.0004 m  
for the bottom [16, 17]. Finally, data from Poggi’s channel 
include water levels for the internal and external walls with 
longitudinal slopes of 5% and 10% [18].

2.2. The hydrodynamic model

The set of governing partial differential equations for the 
Eulerian-Eulerian model used in this work includes three 
conservation of momentum scalar equations and one 
conservation of volume equation [10, 11]. The complete set 
of equations for an incompressible permanent flow model is:

Conservation of mass for α and β phases in Eq. (1) and Eq. 
(2):

  (1)

  (2)

Conservation of momentum equation, in vector form, Eq. 
(3):

  (3)

Conservation of volume equation in Eq. (4):

  (4)



85

H. J. Gómez-Zambrano et al.; Revista Facultad de Ingeniería, No. 83, pp. 82-91, 2017

where in Eq. (1) to Eq. (4), u is a 3-D velocity vector in x, 
y, z directions; rα is the volume fraction for the α phase; rβ 
is the volume fraction for the β phase; µ and ρ are density 
and the dynamic viscosity of the weighted mixture, given 
in terms of the volume fraction as: ρ  = ραrα+ρβrβ and µ = 
µαrα+µβrβ, where ρα is the density of the α phase, ρβ is the 
density of the β phase, µα is the dynamic viscosity of the 
α phase, and µβ is the dynamic viscosity of the β phase; p 
is the pressure; ⊗ represents the tensor product; δ is 
Kronecker’s operator; SM represents the source term in the 
conservation of momentum equation due to internal forces 
(buoyancy forces per unit volume computed as SM = (ρ-ρref)g, 
where ρref is the reference density corresponding to the fluid 
of smallest density and g is the acceleration due to gravity).  

The closed mathematical model includes six dependent 
variables: pressure, three Cartesian velocity components, 
and the volume fractions for α and β phases. Additionally, the 
RNG κ-ε turbulence model is coupled to the homogenous 
model. This turbulence model was chosen due to its 
simplicity in terms of its empirical parameters and due to 
its wide use in engineering applications [19].

2.3. Computational grid 
configuration

The numerical solution for the model described above 
requires the computational domain to be divided into a 
discrete domain of elements forming a grid of cubes as 
shown in Figure 2(a). Here the size of each element (Te) 
and the height of the domain (Hd), a height different from 
the water depth, are considered the numerical factors 
that define the geometry of the computational domain. An 
adaptive grid is also required by the numerical model during 
the intermedia time iterations so that the computational 
domain changes during this iterative solution process [10]. 
The new node distribution follows Eq. (5),

  (5)

where Sη is the number of additional nodes for every 
iteration step; MNP is the maximum number of iteration 
steps; M is the number of new nodes to be distributed in 
the domain and is computed as M =NDi*NF, where NDi is 
the initial number of nodes which depends on the domain 
size defined by Hd and Te (see Figure 2(a)), and  NF is the 
node factor that  allows the user to define the total number 
of nodes to be added; NAP is a parameter related to how the 
nodes are added to the computational domain (if positive, 
nodes are added at the beginning of the simulation; if 
negative, nodes are added at the end of the simulation; and 
if it is zero, nodes are added evenly distributed during every 
grid adaptation step); and η represents each one of the 
adaptation steps and varies between 1 and MNP. In addition 
to the previous geometric factors, the numerical model 

includes two numerical factors related to the iteration 
process: a) the MIPS factor that indicates the maximum 
number of iterations per computational step of the adaptive 
grid, and b) the NI factor that represents the maximum 
number of steps (iterations) for convergence. In Figure 3, 
a graphic representation of the MIPS, MNP, η and NI factors 
when the RMS error is plotted as a function of the number 
of iterations is shown (Figure 3 was obtained for MNP = 
5 and MIPS = 20). Once the rα and rβ fractions are known, 
the grid adaptation procedure is used for a region near the 
water-air interface, adding more nodes where the answer 
variable shows steeper gradients.

Figure 3  RMS error vs. Number of iterations. MNP 
= 5 and MIPS = 20

With all the geometric and numerical parameters defined 
above, a relationship between them and the response 
variable (VR) is established in Eq. (6):

  (6)

The purpose of Eq. (6) is to determine the effect of each 
factor on VR in terms of their corresponding levels that 
make VR a minimum. 

2.4. Statistical methodology for 
calibration and validation

Statistic Indexes

In the literature, several statistical indexes have been used 
to evaluate the predictions obtained by numerical models 
[20-24], the root mean square error (RMSE) being one of the 
most widely used for calibration and validation [25-29]. For 
the case of water depths in curved channels, the literature 
reports RMSE values in the range of 0.0009 to 0.055 m [30].  
The RMSE error is computed with Eq. (7) as: 

  (7)

where N is the number of data, Oi is the observed 
(measured) values of the response variable and Pi is the 
predicted (simulated) value of the answer variable. Both 
Oi and Pi occupy the same spatial position (simulated 
values may need to be interpolated to the same location of 
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the measured point). The RMSE error is interpreted as a 
deviation of the simulated results from the measurements 
[29]. As the RMSE error is a dimensional variable, it is 
convenient to scale it to a reference value which, in most 
cases, is the mean value of the measurements.

Lack of fit testing

The lack of fit test, in our case, is used to verify the order 
of the suggested regression model, using the water depth 
as the response variable stated by a linear form of Eq. 
(6). The hypothesis to be verified by this test includes: a) 
Zero hypothesis Ho: when the regression model properly 
fits the RMSE values and b) the alternative hypothesis HA: 
when the regression model does not properly fit the RMSE 
values. When performing physical modelling, this test 
can be applied without any problems due to its repetitive 
characteristics. But this is not possible when the numerical 
modelling is performed because if the same level for 
the model factors is maintained, the model will provide 
the same results for the response variable, leading to a 
misinterpretation of the experimental error. Mathematically, 
this problem is stated as: Let Y11, Y12, …Y1n(1) be the series of 
repetitive observations for X1; let Y21, Y22, … Y2n(1) be the series 
of repetitive observations for X2; and so on until Ym1, Ym2, … 
Ymn(m) is the repetitive observations for  Xm. Then an estimate 
of the variance “pure” error (SSPE) for these experiments is 
SSPE=  (yij–(y i̅ )2, where y i̅ is the mean value for the 
group i. The number of different levels for X is m, and the 
total number of experimental arrangements is n, formed by 
m groups n(1), n(2),.. n(m), satisfying the relationship (n(i)). 
For hydrodynamic simulations, all yij values are identical 
(considering the computing machine intrinsic rounding 
error) so that all y i̅ are identical to every yij value, making  
SSPE = 0, which implies a test failure.

To solve this problem, a set of “points to the center” is 
generated using the concept of the lack of fit test when 
no replicas are available [8, 9]. To apply this method, it is 
necessary to generate levels for the factors near (located 
at a Dii´

2 distance) to the “point to the center” so a different 
value for the answer variable is obtained for each group. 
The Dii´

2 distance is computed with Eq. (8) as: 

  (8)

where Bj represents the regression coefficients obtained 
with the real levels of the factors, k is the number of 
parameters of the regression model, MSE is the mean 
square error, Xij are the real levels of the “point to the 
center”, and Xij are the real levels of the neighbor points. All 
pairs of points located at the Dii´

2 distance are the neighbor 
points which are used to calculate the pure error. Given 
that values of βj, Xij and MSE are known, the levels of the 
neighbor points Xij are determined such that Dii´

2 < 1. 

The lack of fit test was performed according to Daniel and 
Wood’s method [8, 9].  This method compares the standard 
deviation of the population σ̂ with the root mean square of 

the total error (MSE); if  = σ̂, there is no appreciable 
lack of fit. For samples of size two, there is a relationship 
between the range of a sample from a normal population 
and the population standard deviation, given as σ̂ = ,  
where E is the sum of the values of Eu, E=∑u

m’ Eu , and  
Eu=|ei - ei ’

 |, where ei, and ei’, respectively, are the residuals at 
points i and i’, for the uth pair; with m’=4*Nv-10 and Nv, the 
number of near neighbor points. 

In this research, we confirm that the near neighbor points 
can also be used to perform the lack of fit with the standard 
DOE procedure according to Gutiérrez and Vara [1] and 
Montgomery [2], using the near neighbor points as exact 
replica points.

3. Results and discussion

3.1. Experimental design and 
numerical simulations

Given that 6 factors were selected for the analysis (see Eq. 
(6)), a 27-2 fractioned factorial design was chosen, leading 
to 32 simulations (model runs) that allow the analysis of 
the main factors and their interactions with the secondary 
ones, and including three double hidden interactions. 
The corresponding factor levels were selected following 
recommendations from the specialized literature [10]. 

Once the runs were completed according to the experimental 
design, the RMSE error was scaled to the water depth at 
entrance (he), expressed in percentage. The analysis was 
performed with factors being scaled according to the 
formula χ = (Xn-Xo)/ ∆X, where χ is the scaled factor, Xn is the 
real factor level, X0 is the level of the “point to the center”, 
and ∆X is the level increment of the real factor related to 
the level of the point to the center. A negative value for the 
scaled factor indicates that the factor has a smaller level 
than the “point to the center”.

3.2. Statistical analysis of the 27-2 

fractioned factorial 

In order to obtain the best ANOVA, a confidence interval of 5% 
was defined, including in the error some double interactions 
of smaller significance [1, 2]. For practical purposes, Eq. (6) 
was rewritten in the form RMSEP = f(A, B, C, D, E, F, G), where 
there is a correspondence between the factor in Eq. (6) and 
its rewritten form.  The linear regression model obtained 
for the best ANOVA is: RMSEP = 2.92831 + 1.27684*A + 
0.0741274*B - 0.32016*C - 0.52464*D + 0.247451*E - 
0.104724*F + 0.160621*G + 0.227865*A*C - 0.322946*A*D 
+ 0.291371*A*F - 0.228789*B*C - 0.657372*B*D 
+ 0.233018*B*E - 0.458708*B*G - 0.205209*C*E - 
0.209814*C*F - 0.427151*D*E + 0.228444*D*G, where the 
factors are in encoded values.

A MSE value of 0.1854 was obtained from this analysis 
with an adjusted determination coefficient R2

adj of 90.33% 
for the regression model. Not all factors that prove to 
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be non-significant must be eliminated; only the least 
significant effects are eliminated. This causes the R2

adj 
statistic to increase in value. If by eliminating an effect the 
R2

adj decreases by 3.0% or more, it means that possibly this 
effect should not be eliminated. Therefore, there could be 
non-significant factors that form the RLM model [1]. The 
criterion for the factor sensitivity analysis is obtained from 
the absolute value of the magnitude of the regression 
coefficients, indicating the relative importance of each 
factor in the RMSEP. A graphical representation of these 
results is presented in the Pareto Diagram (Figure 4(a)) 

and Daniels Plot (Figure 4(b)); additionally it was confirmed 
with the ANOVA analysis “p-value”. From the highest to the 
lowest significance, the factors are organized as: A, D, C, E, 
G, F and B.  It was possible to establish that the size of the 
grid elements (factor A in the list) has the highest influence 
on the RMSEP .This means that the grid configuration is 
the most sensitive factor in the analysis. This conclusion is 
ratified by Figure 4(c) and Figure 4(d) where it is clear that 
the size of the element must be as smallest as possible.  It 
is also ratified when the double interactions AC, AD, and AF 
are analyzed.

(a) (b)

(c) (d)
Figure 4  Result plots for the 27-2 fractioned factorial experiment design. (a) Standardized Pareto 

diagram; (b) Half-normal probability plot; (c) Double interaction plot; (d) Main effects plot
The sign of the regression coefficients indicates that 
the corresponding level factor needs to be increased or 
decreased in order to reach the optimal value of the answer 
variable. In our case, the optimal point is reached for a 
minimum value for RMSEP, so the regression coefficients 
must change as  indicated by the plus sign (increase) or 
minus sign (decrease): A(-), B(-), C(+), D(+), E(-), F(+) y G(-).

With the obtained regression coefficients, the MSE and the 
defined “point to the center”, Eq. (8) was used to check 
the near neighbor points in addition to four “points to the 
center” to guarantee an ANOVA test with at least eight 
degrees of freedom for the error. The result produced 17 
degrees of freedom for the best ANOVA by using 36 data 
points and 18 regression coefficients. The near neighbor 
points were checked with the regression coefficients in 
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real levels of the factors. With the center points, the lack 
of fit test was performed and as result a “p-value” of 
0.7441 was obtained, meaning that a non-significant lack 
of fit was achieved. This result is in agreement with Daniel 
and Wood’s method, for which we obtained that  
= σ̂, with values of  = 0.5635 and σ̂  = 0.5604, with a 
difference of  0.56% with respect to σ̂ , indicating that there 
is no appreciable lack of fit. This result implies that the 
Ho hypothesis is accepted. As a conclusion, it is possible 
to state that the numerical experiments are governed by 
the regression model, which generates a non-curvature 
plane to explain the response variable (compared with a 3D 
topography where the response variable is the height and 
the factors are the east-west coordinates, forming a valley). 
This means that the region of experimentation is located on 
the slopes of the mountain, so it is necessary to continue 
the methodology to reach the lowest point of the valley. 

In order to guarantee the successful application of the 
methodology, an error surface with a certain degree of 
curvature is required. In our case, to achieve this behavior, an 
adaptation to the descendent scaling method was developed 
according to Gutiérrez and Vara [1] and Montgomery [2]. 
Factors A (Te, element size), E (Hd, total domain depth at 
entrance) and G (MNP, maximum number of iteration steps) 
were disregarded from the analysis due to their limitation 
for their corresponding minimum possible levels, and 
their central levels were defined, instead. Factor A was 
disregarded due to computational limitations because very 
small values imply big computational efforts; so a mean 
value of 0.030 m was defined. Factor E has its limit value 
at the water surface and the water depth of 0.225 m was 
assigned. Finally, the G factor cannot take levels smaller 
than 2 so a level of 4 was defined. These restrictions led 
to a new scaling design for the factor with the highest 
significance out of the 4 factors left, from which factor D 
(the node factor that allows the user to define the total 
number of nodes to be added during the grid adaptation 
process) was selected as a base point, given its previously 
obtained high regression coefficient (β = 0.52464). Five 
values were taken for the descendent scaling with a discrete 
step of two (2) for the D factor, initiating from zero up to the 
central value, and the corresponding runs were performed. 
The RMSE values were plotted vs. the number of steps and 
it was observed that this error did not diminish after the 
fourth step of the scaling, and a new “point to the center” 
was obtained for the experimental region. Two extra 
simulations were performed and this result was validated.

3.3. 24 Complete factorial design 
and analysis

With the remaining four factors, a 24 complete factorial 
design was performed for this new numerical experiment, 
with eight center points as near neighbor points. The 
new experimental region was defined taking as a base 
point the “point to the center” obtained from the 4th step 
of the above-mentioned descending scaling process. With 
this information the best ANOVA, the new regression 
coefficients and a new MSE were obtained for the real level 

of factors. The corresponding model runs were executed for 
the “points to the center”. The ANOVA analysis and the lack 
of fit test were performed producing a result of a significant 
test for “p-value” equal to zero, leading to reject the H0 
hypothesis. This means that the experimental region has a 
curvature and a second order regression model is needed. 
The lack of fit test was also performed using Daniel and 
Wood’ method, with eight points of near neighbors points, 
for a total of pairs of points of m = 4*8-10=22. This resulted 
in  ≠ σ̂, with values of  = 0.431 and σ̂ =0.012, 
indicating that there is appreciable lack of fit, coinciding 
with the standard procedure proposed by Gutiérrez and 
Vara [1] and Montgomery [2].

3.4. Draper-Lin model: Design and 
analysis 

In search for the optimal model, the Draper-Lin model, built 
out of the 24 factorial design, was chosen for the experiment 
design. In this case, the same “points to the center” used for 
the lack of fit test were added and the “star-points” were also 
added to guarantee an orthogonal and rotatable design. After 
the best ANOVA analysis, the new regression model, now 
a second order model, was obtained as: RMSEP = 1.15325 - 
0.205049*D + 0.00933529*B - 0.0449354*C - 0.0446673*F + 
0.365531*D^2 + 0.17816*D*F + 0.216632*B^2 - 0.161874*B*F + 
0.0402612*C^2 + 0.199838*F^2, where the RMSEP is expressed 
in percentage and the level of factors are scaled as mentioned 
earlier.  In this new equation, it is clear that the second order 
terms have high relevance, indicated by the relative high values 
of the regression coefficients. These results are validated by 
the Pareto diagram (Figure 5(a)), the Daniels plot (Figure 5(b)) 
and the “p-value” of the regression coefficients.  

From the estimate response surface plot (Figure 5(c)), it is 
clear that the factor interaction DB shows a well-defined 
local minimum; and that the factor interaction DC (Figure 
5(d)) shows a tendency to decrease as the C factor increases. 
Note that the upper limit for factor C (NI, number of 
iterations for convergence) will be the limit that guarantees 
the physical meaning of the experiment represented by the 
imbalances, the stability of the physical parameters and the 
precision at convergence quantified by RMS. 

Factor levels at the optimum point were obtained by 
minimizing the second order regression model (taking the 
first derivative of RMSEP with respect to each factor and 
equating it to zero). Those dimension-dependent factors 
kept constant in the Draper-Lin design and were normalized 
by the hydraulic radius (RH) in m of the section at entrance 
with the purpose of future use for the validation channels, 
assuming a direct proportional behavior. The regression 
coefficients obtained for the optimal point are: A (Te) = 
0.432948RH, B (NAP) = -1.80, C (NI) = 1311, D (NF) = 17.4, E (Hd) 
= 3.2468RH, F (MIPS) = 108 and G (MNP) = 4.  The advantage 
of writing RMSEP as a function of the defined factors through 
a regression model is that a hydrodynamic model can be 
configured for a pre-defined RMSEP value, different from that 
of the optimal point, to meet the specific requirements of a 
given project that may not need the minimum value of RMSEP.
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To validate these results, Han´s channel data were used 
for a model run with the following configuration: A (Te) = 
0.432948RH, B = -1.82, C (NI) = 1696, D (NF) = 15.67, E (Hd) 
= 3.2468RH, F (MIPS) = 106 and G (MNP) = 4, for RH = 0.0693 
m. The simulated RMSEP was 1.05%, a close value to the 
one predicted by the estimated response surface of 1.15%. 
These results confirm the validity of the second order 
regression model used to predict the RMSEP, at least inside 
our experimental region. 

3.5. Model validation

During validation, the model configuration obtained during 
calibration is used to test it for different geometries and flow 
conditions looking for a low value for RMSEP, the response 
variable. In our case, Blanckaert´s, Rozovskii´s and 
Poggi´s channels (see Table 1 for channels characteristics) 
were tested with the model factors obtained with Han´s 
channel data.

After running the model for those geometries and flow 
conditions, we found a RMSEP = 0.30% for Blanckaert´s 
channel, values of RMSEP = 4.96% for Rozovskii´s channel 
and values of RMSEP = 5.13% and 24.04 % for Poggi´s 
channels with longitudinal slopes of 5% and 10%, 
respectively. These results indicate that the calibration 
factors were properly validated for horizontal channels 
(Blanckaert´s and Rozovskii´s channels) but they are not 
the proper ones for high slope channels for which high 
values of RMSEP, away from the optimal one (RMSEP = 
1.15%), were obtained. This indicates that the longitudinal 
slope plays an important role in the factor configuration 
of the hydrodynamic model. Similar behavior has been 
reported by Montazeri et al. [18], who obtained a RMSEP =  
18.59% for Poggi´s channel of 10% longitudinal slope. 
This factor, the longitudinal slope, should be added to 
the list of factors to be considered during the calibration 
process. Figure 6 shows the simulated water free surface 
for the Poggi´s channel of 10% longitudinal slope. The flow 
complexity is evident in this figure. 

(a) (b)

(c) (d)
Figure 5  Plots of statistical analysis of the 24 fractioned factorial design. (a) Standardized Pareto 
Diagram; (b) Half normal probability; (c) Response surface of D-B factors; (d) Response surface of 

D-C factors
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Figure 6  Water free surface for the Poggi´s 
channel of 10% longitudinal slope

In the literature, other works related to water flow in curved 
channels are reported, which present data similar to those 
analyzed in this article corresponding to water levels. 
They can be used to analyze in detail the validation of the 
calibration in future works. Gholami et al. [31, 32] presents 
transverse water surface profiles on several sections of a 
curved open channel, with flat bottom and 90 ° of curvature, 
including sections on the straight portion of the channel 
before and after the curve.

The purpose of including an inclined bottom channel was 
to validate the calibration with a factor not included in the 
calibration, as is the case of the longitudinal slope. As major 
errors were obtained with its inclusion, the calibration cannot 
be extrapolated directly, and it would be necessary to perform 
a new calibration for sloped bottom curved open channels.

4. Conclusions
The results obtained in this work show that the developed 
methodology can be applied for calibration and validation 
of numerical hydrodynamic models which, in our case, was 
applied, for illustration purposes, to numerical simulation 
of the free surface flow in curved channels. In our 
particular case, the results showed that the longitudinal 
channel slope should be included in the list of factors to be 
considered for calibration. Without this factor, the obtained 
factor configuration in the regression model was not the 
optimal one. 

We found that the method for generating points to the 
center using the theory of near neighbor and down-scaling 
technique can be applied to data obtained from numerical 
experimentation to perform the lack of fit test and to find 
the optimal value of the simulation. We confirm that Daniel 
and Wood’s method, used to perform the lack of fit test, 
leads to the same conclusions as the standard procedure 
of the lack of fit test given by Gutiérrez and Vara [1] and 
Montgomery [2]. In the latter, the near neighbor points are 
the true points to the center.

The application of the DOE to numerical experiments 
showed that an acceptable calibration of the hydrodynamic 
model was obtained. This is a low value for the answer 
variable, the RMSEP in our case, performing a relative low 
number of model runs despite the high number of factors 
considered in the experimental design; especially if the 
classical 2n experimental design is used when no exact 
repetitions can be used given the nature of the experiment: 
a numerical experiment.
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