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Abstract

Flavor changing neutral currents coming from a new non-universal neutral Gauge Boson and

from the non-unitary quark mixing matrix for the SU(3)c ⊗ SU(3)L ⊗ U(1)X model with right

handed neutrinos are studied. By imposing as experimental constraints the measured values of the

3× 3 quark mixing matrix, the neutral meson mixing, and bounds and measured values for direct

flavor changing neutral current processes, the largest mixing of the known quarks with the exotic

ones can be established, with new sources of flavor changing neutral currents being identified. Our

main result is that for a |Vtb| value smaller than one, large rates of rare top decays such as t → cγ,

t → cZ, and t → cg (where g stands for the gluon field) are obtained; but if |Vtb| ∼ 1 the model

can survive present experimental limits only if the mass of the new neutral Gauge Bosons becomes

larger that 10 TeV.

PACS numbers: 12.15.Ff, 12.15.Mm, 12.60.Cn
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I. INTRODUCTION

The standard model (SM) based on the local gauge group SU(3)c ⊗SU(2)L ⊗U(1)Y [1],

with all its successes, fails to explain several fundamental issues such as: hierarchical charged

fermion masses, fermion mixing, charge quantization, strong CP violation, replication of

families, neutrino masses and oscillations [2], etc.. All this make us think that we must call

for extensions of the model.

The flavor problem encloses two of the most intriguing puzzles in modern particle physics,

which are the number of fermion families in nature and the pattern of fermion masses and

mixing angles, both in the quark and lepton sectors. With each family being anomaly-

free by itself, the SM renders, on theoretical grounds, the number of generations completely

unrestricted, except for the indirect bound imposed by the asymptotic freedom of the strong

interactions theory, based on the local gauge group SU(3)c, also known as quantum cromo

dynamics or QCD.

Many attempts to answer the question of hierarchical quark masses and mixing angles

for three families have been reported in the literature, using the top quark as the only heavy

quark at the weak scale [3]. But further insight into the flavor problem can be gained by

contemplating the existence of additional heavy quarks.

Popular and well motivated extension of the SM which containt extra heavy quarks are

based on the local gauge group [4, 5, 6, 7, 8, 9] SU(3)c ⊗ SU(3)L ⊗ U(1)X (called hereafter

3-3-1 for short). The several possible structures enlarge the SM in its gauge, scalar, and

fermion sectors. Let us mention some outstanding features of 3-3-1 models:

• The simple models are free of gauge anomalies, if and only if the number of families

is a multiple of three [4, 5, 6] (becoming just three by imposing QCD asymptotic

freedom).

• A Peccei-Quinn chiral symmetry can be implemented easily [10, 11].

• One quark family has different quantum numbers than the other two, fact that may

be used to explain the heavy top quark mass [12, 13].

• The scalar sector includes several good candidates for dark matter [14].

• The lepton content is suitable for explaining some neutrino properties [15].
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• The hierarchy in the Yukawa coupling constants can be avoided by implementing

several universal see-saw mechanisms [13, 16, 17].

In the SM with three generations, the quark mixing matrix, called in the literature the

Cabibbo-Kobayashi-Maskawa (CKM) mixing matrix [18], is a 3 × 3 unitary matrix. As a

consequence of this unitary character, and for models with only one SM Higgs doublet, the

flavor changing neutral currents (FCNC) are absent at tree level, with a strong suppression of

the same FCNC at the one-loop level, due to the existence of the Glashow-Iliopoulos-Miani

(GIM) mechanism [19]. For the minimall 3-3-1 model of Pisano-Pleitez and Frampton [4]

the quark mixing matrix is the same CKM mixing matrix of the SM, but FCNC at tree level

appears due to the existence of a new, non-universal neutral Gauge Boson [20].

In this analysis we are going to study the FCNC at tree-level and the quark mass spectrum

and its mixing matrix, for some 3-3-1 models without exotic electric charges. A classification

of all those models has been presented allready in Refs. [7, 8, 9]. As far as the quark content

is concerned, all the three family 3-3-1 models without exotic electric charges fall into four

categories: Category A which includes models with four up-type quarks and five down-type

quarks, Category B which includes models with five up-type quarks and four down-type

quarks, Category C for models with six up-type quarks and three down-type quarks, and

Category D for models with three up-type quarks and six down-type quarks.

For all the models in the four categories above, the number of up-type quarks is not equal

to the number of down-type quarks and thus, the quark mixing matrix looses its unitary

character. One outstanding consequence of a nonunitary mixing matrix is the existence of

new FCNC processes.

Our aim in this analysis is to see, in the context of some 3-3-1 models without exotic

electric charges, how large the mixing between the ordinary and exotic quarks can be,

without violating current experimental measurements, both in the 3 × 3 ordinary quark

mixing matrix and in the values and bounds measured for FCNC processes.

This paper is organized as follows: in Sec. II we classify in four categories all the 3-3-1

models without exotic electric charges, in Sec. III we review the Gauge Boson, the fermion,

and the scalar content of the 3-3-1 model with right handed neutrinos, calculate the effective

tree-level Hamiltonian for FCNC and introduce the most general quark mass matrices for

this model, in Sec. IV we state the experimental constraints to be respected in the numerical
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analysis carried through in Sec. V. In Sec. VI the study of new FCNC processes in the 3-3-1

model with right handed neutrinos is done and in Sec. VII we present our conclusions. An

appendix at the end of the paper justifies the numerical analysis used in the main text.

II. 3-3-1 MODELS WITHOUT EXOTIC ELECTRIC CHARGES

In Refs. [7, 8, 9] the classification of 3-3-1 models without exotic electric charges has

been presented. In this section we will do a short summary of the eight three-family models

obtained from the grouping of the following closed sets of fields (closed in the sense that

each set includes the antiparticles of each charged particle), where the quantum numbers in

parenthesis refer to the [SU(3)c, SU(3)L, U(1)X ] representations.

• S1 = [(ν0
α, α

−, E−
α );α

+;E+
α ]L with quantum numbers (1, 3,−2/3); (1, 1, 1) and (1, 1, 1)

respectively.

• S2 = [(α−, να, N
0
α);α

+]L with quantum numbers (1, 3∗,−1/3) and (1, 1, 1) respectively.

• S3 = [(d, u, U); uc; dc;U c]L with quantum numbers

(3, 3∗, 1/3); (3∗, 1,−2/3); (3∗, 1, 1/3) and (3∗, 1,−2/3) respectively.

• S4 = [(u, d,D); uc; dc;Dc]L with quantum numbers (3, 3, 0); (3∗, 1,−2/3); (3∗, 1, 1/3)

and (3∗, 1, 1/3) respectively.

• S5 = [(e−, νe, N
0
1 ); (E

−, N0
2 , N

0
3 ); (N

0
4 , E

+, e+)]L with quantum numbers

(1, 3∗,−1/3);(1, 3∗,−1/3) and (1, 3∗, 2/3) respectively.

• S6 = [(νe, e
−, E−

1 ); (E
+
2 , N

0
1 , N

0
2 ); (N

0
3 , E

−
2 , E

−
3 ); e

+;E+
1 ;E

+
3 ]L with quantum numbers

(1, 3,−2/3); (1, 3, 1/3); (1, 3,−2/3); (111), (111); and (111) respectively.

The former set of fields is exhaustive in the sense that any other set will include either

particles with exotic electric charges or 3-3-1 vectorlike representations. The several triangle

anomalies for the former six sets are presented in Table I, which in turn allows us to build

anomaly-free 3-3-1 models for one, two or more families.
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TABLE I: Anomalies for Si

Anomalies S1 S2 S3 S4 S5 S6

[SU(3)C ]
2U(1)X 0 0 0 0 0 0

[SU(3)L]
2U(1)X −2/3 −1/3 1 0 0 -1

[Grav]2U(1)X 0 0 0 0 0 0

[U(1)X ]3 10/9 8/9 −12/9 −6/9 6/9 12/9

[SU(3)L]
3 1 −1 −3 3 −3 3

A. Three family models

Since data from LEP-I strongly favored the existence of three families of fermions with

light neutrinos, we are going to concentrate in what follows only in models with just three

families.

From Table (II), only the following eight anomaly free three family models can be con-

structed:

• Models in Category A.

1: 3S2 + S3 + 2S4, known in the literature as the 3-3-1 model with right-handed

neutrinos [5].

2: S1+S2+S3+2S4+S5, a model without universality in its lepton sector, studied

in Ref. [7].

3: 2S4 + 2S5 + S3 + S6.

• Models in Category B.

4: 3S1+2S3+S4, known in the literature as the 3-3-1 model with exotic electrons [6].

5: S1+S2+2S3+S4 +S6, a second model without universality in its lepton sector,

studied also in Ref. [7].

6: S4 + S5 + 2S3 + 2S6.

• Models in Category C.

7: 3S4 + 3S5 a three family model, carbon copy of the one family model studied in

Ref. [21]
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• Models in Category D.

8: 3S3 + 3S6 a three family model, carbon copy of the one family model studied in

Ref. [22]

As far as we know, models 3 and 6 above have not been studied in the literature yet.

Due to the fact that the three models in Category A have the same quark content (four

up type quarks and five down type quarks with the third family of quarks transforming

different than the other two), the following analysis of the FCNC at tree-level and of the

quark mass spectrum, is valid for the three models in that Category, including the popular 3-

3-1 model with right-handed neutrinos [5] (the analysis can be extended in a straightforward

way to the other models).

III. THE 3-3-1 MODEL WITH RIGHT HANDED NEUTRINOS

Let us review briefly the so-called 3-3-1 model with right-handed neutrinos:

A. The Gauge Group

As it was stated, the model we are interested in, is based on the local gauge group

SU(3)c ⊗ SU(3)L ⊗ U(1)X which has 17 gauge bosons: one gauge field Bµ associated with

U(1)X , the 8 gluon fields Gµ associated with SU(3)c which remain massless after spontaneous

breaking of the electroweak symmetry, and another 8 gauge fields associated with SU(3)L

that we write for convenience as [9]

8
∑

α=1

λαAµ
α =

√
2













Dµ
1 W+µ K+µ

W−µ Dµ
2 K0µ

K−µ K̄0µ Dµ
3













, (1)

where Dµ
1 = Aµ

3/
√
2 + Aµ

8/
√
6, Dµ

2 = −Aµ
3/
√
2 + Aµ

8/
√
6, and Dµ

3 = −2Aµ
8/
√
6. λα, α =

1, 2, ..., 8, are the eight Gell-Mann matrices normalized as Tr(λαλβ) = 2δαβ.

The charge operator associated with the unbroken gauge symmetry U(1)Q is given by:

Q =
λ3L

2
+

λ8L

2
√
3
+XI3 (2)

6



where I3 = Diag.(1, 1, 1) is the diagonal 3 × 3 unit matrix, and the X values are related

to the U(1)X hypercharge and are fixed by anomaly cancellation. The sine square of the

electroweak mixing angle is given by

S2
W = 3g21/(3g

2
3 + 4g21) (3)

where g1 and g3 are the coupling constants of U(1)X and SU(3)L respectively, and the

photon field is given by [5, 9]

Aµ
0 = SWAµ

3 + CW

[

TW√
3
Aµ

8 +
√

(1− T 2
W/3)Bµ

]

, (4)

where SW , CW and TW are the sine, cosine and tangent of the electroweak mixing angle θW ,

respectively.

There are two weak neutral currents in the model associated with the two neutral weak

gauge bosons

Zµ
0 = CWAµ

3 − SW

[

TW√
3
Aµ

8 +
√

(1− T 2
W/3)Bµ

]

,

Z ′µ
0 = −

√

(1− T 2
W/3)Aµ

8 +
TW√
3
Bµ, (5)

and another electrically neutral current associated with the gauge boson K0µ. In the former

expressions Zµ
0 coincides with the weak neutral current of the SM [5, 9]. The physical fields

Zµ
1 and Zµ

2 are defined by Zµ
1 = cos θZµ

0 − sin θZ ′µ
0 and Zµ

2 = sin θZµ
0 + cos θZ ′µ

0 , where θ is

a small mixing angle fixed by phenomenology (θ ≤ |0.001|, which in turn implies MZ2
≥ 2.1

TeV, with a larger mass bound associated to a smaller mixing angle [17]).

Using Eqs. (4) and (5) we can read the gauge boson Y µ associated with the U(1)Y

hypercharge of the SM

Y µ =

[

TW√
3
Aµ

8 +
√

(1− T 2
W/3)Bµ

]

. (6)

Equations (1-6) presented here are common to all the 3-3-1 gauge structures without

exotic electric charges [5, 6, 7] as it is analyzed in Refs. [8, 9].

B. The Fermion sectors

The quark content for the three families in this model, which is the same for the 3 models

in Category A, is the following: Qi
L = (ui, di, Di)L ∼ (3, 3, 0), i = 1, 2 for two families,
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where Di
L are two extra quarks of electric charge −1/3; Q3

L = (d3, u3, U)L ∼ (3, 3∗, 1/3),

where UL is an extra quark of electric charge 2/3. The right handed quarks which belong

to SU(3)L singlets are uac
L ∼ (3∗, 1,−2/3), dacL ∼ (3∗, 1, 1/3) with a = 1, 2, 3 a family index,

Dic
L ∼ (3∗, 1, 1/3), i = 1, 2, and U c

L ∼ (3∗, 1,−2/3).

The lepton content is given by the three SU(3)L triplets LlL = (l−, ν0
l , ν

0c
l )L ∼

(1, 3∗,−1/3), for l = e, µ, τ a lepton family index, and the three singlets l+L ∼ (1, 1, 1),

where ν0
l is the neutrino field associated with the lepton l−, and ν0c

l plays the role of the

right-handed neutrino field associated to the same flavor. For this model universality for the

known leptons in the three families is present at tree level in the weak basis.

C. The scalar sector

The following is the set of scalar fields and Vacuum Expectation Values (VEV) used in

order to break the symmetry and to give a consistent mass spectrum to the fermion fields [5]:

〈φT
1 〉 = 〈(φ+

1 , φ
0
1, φ

′0
1 )〉 = 〈(0, 0, V )〉 ∼ (1, 3, 1/3); (7)

〈φT
2 〉 = 〈(φ+

2 , φ
0
2, φ

′0
2 )〉 = 〈(0, v1, 0)〉 ∼ (1, 3, 1/3);

〈φT
3 〉 = 〈(φ0

3, φ
−
3 , φ

′−
3 )〉 = 〈(v2, 0, 0)〉 ∼ (1, 3,−2/3);

with the hierarchy v1 ∼ v2 ∼ 102 GeV << V ∼ TeV.

The analysis shows that this set of VEV breaks the SU(3)c⊗SU(3)L⊗U(1)X symmetry

in two steps following the scheme

3− 3− 1
V−→ SU(3)c ⊗ SU(2)L ⊗ U(1)Y

vi−→ SU(3)c ⊗ U(1)EM ,

for i = 1, 2 and U(1)EM the Abelian gauge group of the electromagnetism.

D. FCNC at tree level

In the context of most of the 3-3-1 models considered in this paper, the third family of

quarks is treated differently than the other two; so, it has different couplings to the scalars
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as well as to the new neutral current Jµ
Z′ present in the model (the quark couplings to the

SM neutral current Jµ
Z is not only diagonal in flavor but also it is universal). Due to this,

new FCNC at tree level show up, which in principle contribute to FCNC processes which

are severely constrained by experiment, most notably by meson mixing [20].

For the 3-3-1 model with right-handed neutrinos, all the currents were allready calculated

in Ref. [5]. Using for the photon field Aµ the expression in Eq. (4) and for Zµ and Z ′
µ the

definitions in (5), the neutral currents, associated with the Hamiltonian

H0 = eAµJµ(EM) + (g3/CW )ZµJµ(Z) + (g1/
√
3)Z

′µJµ(Z
′), (8)

are

Jµ(EM) =
2

3
(

3
∑

a=1

ūaγµua + ŪγµU

−1

3
(

3
∑

a=1

d̄aγµda +
2
∑

i=1

D̄iγµDi)

−
∑

l=e,µ,τ

l̄−γµl

Jµ(EM) =
∑

f

qf f̄γ
µf, (9)

Jµ(Z) = Jµ
L(Z)− S2

WJµ(EM),

Jµ(Z ′) = TWJµ(EM)− Jµ
L(Z

′),

where e = gSW = g′CW

√

1− T 2
W/3 > 0 is the electric charge, qf is the electric charge of the

fermion f in units of e, Jµ(EM) is the electromagnetic current, and the left-handed currents

are given by

Jµ
L(Z) =

1

2
[

3
∑

a=1

(ūa
Lγ

µua
L − d̄aLγ

µdaL)

+
∑

l

(ν̄lLγ
µνlL − l̄−Lγ

µl−L )]

=
∑

f

f̄LT3fγ
µfL, (10)

and

Jµ
L(Z

′) = S−1
2W (ū1Lγ

µu1L + ū2Lγ
µu2L − d̄3Lγ

µd3L

−
∑

l

l̄−l γ
µl−L )

9



+T−1
2W (d̄1Lγ

µd1L + d̄2Lγ
µd2l − ū3Lγ

µu3L

−
∑

l

ν̄lLγ
µνlL)

+T−1
W (D̄1Lγ

µD1L + D̄2Lγ
µD2L − ŪLγ

µUL

−
∑

l

ν̄oc
lLγ

µνoc
lL) ≡

∑

f

f̄LT
′
3fγ

µfL, (11)

with T3f = diag(1/2,−1/2, 0). T ′
3f = diag(S−1

2W , T−1
2W ,−T−1

W ) is a convenient 3 × 3 diago-

nal matrix (both marices T3f and T ′
3f acting on the representation 3 of SU(3)L, with their

negative values when acting on the representation 3∗). f is a generic symbol for the repre-

sentation 3 (and 3*) of SU(3)L[5], and Jµ
L(Z

′) allthough diagonal in the weak basis is not

universal.

The couplings of the left-handed quarks with the Z ′ Gauge Boson, can then be written

in the form

L(Z ′) =
e

√

3− 4S2
W

Z
′µJµ(Z

′), (12)

with

Jµ(Z ′) =
1

S2W

∑

f

f̄γµ[S2
WY − 2

√
3C2

WT8L]PLf, (13)

where PL = (1 − γ5)/2. Since the value of T8L is different for triplets and antitriplets, the

Z ′ coupling is different for the third family and we have FCNC a tree level. These currents

can be written in the form:

Jµ
Z′(FCNC) = −

√
3

TW

∑

f

f̄γµ[T8L − T ∗
8L]PLf =

1

TW

∑

f

f̄γµPLf, (14)

with the tree level effective Lagrangian for these FCNC calculated to be

L(FCNC) =
g3CW

√

(3− 4S2
W )

(SθZ
µ
1 + CθZ

µ
2 )
∑

f

f̄γµPLf, (15)

where θ is the mixing angle between the two massive neutral Gauge Bosons Z and Z ′ which

defines the physical states Z1 and Z2 respectively (this angle is very small as can be seen

from the last paper in Ref. [5]).

Beacause the third family of quarks is treated differently we have that
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Jµ
Z′ = [ ~̄UγµPLV

u†
L





















S−1
2W

S−1
2W

−T−1
2W

−T−1
W





















V u
L
~U+ ~̄DγµPLV

d†
L



























T−1
2W

T−1
2W

−S−1
2W

T−1
W

T−1
W



























V d
L
~D],

(16)

where ~U and ~D are four column and five column vectors for the up and down quark sectors

respectively, and V u
L and V d

L are the 4× 4 and 5× 5 unitary matrices which diagonalize the

mass matrices of the up and down quark sectors respectively, with Vmix = V u
L V

d†
L the non-

unitary 4× 5 quark mixing matrix in the context of this particular model (see the following

Section). As can be seen, Jµ
Z′ in Eq. (16) induced FCNC a tree level.

Using the tree-level current in Eq. (16), the following effective Hamiltonian can be ob-

tained

|Heff |2 =
4
√
2GFC

4
WC2

θ

(3− 4S2
W )

|V ∗
JjαVLjβ|2(

M2
Z1

M2
Z2

+ T 2
θ )(αLγ

µβ)2, (17)

which can be used to calculate the tree-level diagrams for K0 − K̄0, D0 − D̄0, B0
d − B̄0

d and

B0
s − B̄0

s mixing just by replacing (α, β) by (d, s), (u, c), (d, b) and (s, b) respectively. An

equation similar to (17) but for the minimall model [4] has been derived in Ref. [23].

E. Mass matrices

In this subsection we are going to present the most general quark mass matrices for all

the 3-3-1 three family models without exotic electric charges belonging to Category A, and

to set our notation.

The Higgs scalars introduced above are used to write the Yukawa terms for the quarks.

In the case of the up quark sector, the most general invariant Yukawa Lagrangian is given

by

Lu
Y =

∑

α=1,2

Q3
LφαC(hU

αU
c
L +

3
∑

a=1

hu
aαu

ac
L ) (18)

+
2
∑

i=1

Qi
Lφ

∗
3C(

3
∑

a=1

hu′
iau

ac
L + hU ′

i U c
L) + h.c.,

11



where C is the charge conjugation operator. In the weak basis ~U = (u1, u2, u3, U) the former

Lagrangian produces the following 4× 4 quark mass matrix for the up quark sector

MU =





















v2h
u′
11 v2h

u′
12 v2h

u′
13 v2h

U ′
1

v2h
u′
21 v2h

u′
22 v2h

u′
23 v2h

U ′
2

v1h
u
12 v1h

u
22 v1h

u
32 v1h

U
2

V hu
11 V hu

21 V hu
31 V hU

1





















. (19)

For the down quark sector, the most general Yukawa Lagrangian is now

Ld
Y =

∑

α=1,2

∑

i

Qi
Lφ

∗
αC(

∑

a

hd
iaαd

ac
L +

∑

j

hD
ijαD

jc
L )

+Q3
Lφ3C(

∑

i

hD
i D

ic
L +

∑

a

hd
ad

ac
L ) + h.c.. (20)

which in the weak basis ~D = (d1, d2, d3, D1, D2) produces the following 5 × 5 quark mass

matrix for the down quark sector

MD =



























v1h
d
112 v1h

d
122 v1h

d
132 v1h

D
112 v1h

D
122

v1h
d
212 v1h

d
222 v1h

d
232 v1h

D
212 v1h

D
222

v2h
d
1 v2h

d
2 v2h

d
3 v2h

D
1 v2h

D
2

V hd
111 V hd

121 V hd
131 V hD

111 V hD
121

V hd
211 V hd

221 V hd
231 V hD

211 V hD
221



























. (21)

MU and MD in (19) and (21) must be diagonalized in order to get the mass eigenstates

which exist in nature, defining in this way a non-unitary 4 × 5 quark mixing matrix of the

form

Vmix ≡ V u
LPV d†

L =





















Vud Vus Vub Vub′ Vub′′

Vcd Vcs Vcb Vcb′ Vcb′′

Vtd Vts Vtb Vtb′ Vtb′′

Vt′d Vt′s Vt′b Vt′b′ Vt′b′′





















, (22)

where V u
L and V d

L are 4×4 and 5×5 unitary matrices which diagonalize MUM
†
U and MDM

†
D

respectively, and P is the projection matrix over the ordinary quark sector (in the weak

basis, the exotic quarks transform as singlets under SU(2)L transformations, thus they do
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not couple with the W± Gauge Bosons). This matrix is given by

P =





















1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 0 0





















. (23)

Vmix in (22) defines the couplings of the physical quark states. (u, c, t, t′) and (d, s, b, b′, b′′)

with the charged current associated with the weak gauge boson W+.

IV. EXPERIMENTAL CONSTRAINTS.

In the quark sector, several parameters have been measured with high accuracy, with

values which constitute some of the strongest experimental constraints for model builders.

The following three sets of numbers are going to be considered in what follows:

A. The 3× 3 quark mixing matrix

The masses and mixing of quarks in the SM come from Yukawa interaction terms with

the Higgs condensate, which produces two 3 × 3 quark mass matrices for the up and down

quark sectors; matrices that must be diagonalized in order to identify the mass eigenstates.

The unitary CKM quark mixing matrix (VCKM ≡ V u
3LV

d†
3L) couples the six physical quarks

to the charged weak gauge boson W+, where V u
3L and V d

3L are now the diagonalizing unitary

3× 3 matrices of the SM up and down quark sectors respectively.

The unitary matrix VCKM has been parametrized in the literature in several different

ways, but the most important fact related with this matrix is that most of its entries have

been measured with high accuracy, with the following experimental limits [24]:

Vexp =













0.970 ≤ |Vud| ≤ 0.976 0.223 ≤ |Vus| ≤ 0.228 0.003 ≤ |Vub| ≤ 0.005

0.219 ≤ |Vcd| ≤ 0.241 0.90 ≤ |Vcs| ≤ 1.0 0.039 ≤ |Vcb| ≤ 0.045

0.006 ≤ |Vtd| ≤ 0.008 0.036 ≤ |Vts| ≤ 0.044 |Vtb| ≥ 0.78













. (24)

The numbers quoted in matrix (24), which are measured at the Fermi scale (µ ≈ MZ) [25],

are generous in the sense that they are related to the direct experimental measured values,
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some of them at 90% coffidence level, with the largest uncertainties taken into account,

without bounding the numbers to the orthonormal constrains on the rows and columns of

a 3 × 3 unitary matrix. In this way we leave the largest room available for possible new

physics, respecting the well measured values in Vexp.

The most conservative alternative of using numerical entries which take into account

unitary constraints in Vexp is going to be considered also at the end of our study.

B. Direct FCNC searches

The unitary character of the SM mixing matrix VCKM implies flavor diagonal couplings

of all the neutral bosons of the SM (such as Z boson, Higgs boson, gluons and photon) to a

pair of quarks, giving as a consequence that no FCNC are present at tree level. At one-loop

level, the charged currents generate FCNC transitions via penguin and box diagrams [1],

but they are highly suppressed by the GIM mechanism [19]. For example, FCNC processes

in the charm sector (c → uγ) were calculated in the context of the SM in Ref. [26], giving

a branching ratio suppressed by 15 orders of magnitude, leaving in this way a large window

of opportunities for new physics in charm decays.

To date, the following direct FCNC branching ratios and bounds have been measured in

several experiments:

• Br[b → sγ] = (3.52± 0.24)× 10−4 [27]

• Br[B → K∗l+l−] = (1.68± 0.86)× 10−6 [28],

• Br[s → dγ(dl+l−)] < 10−8 [29]

• Br[c → ul+l−] < 4× 10−6 [30]

• Br[b → sl+l−, dl+l−] < 5× 10−7 [31],

with l = e, µ. In our study, these ratios and bounds are also going to be respected. Important

to mention here that the SM next to next to leading order calculation for Br[b → sγ] is

(3.60± 0.30)× 10−4 [32], allready in agreement with the measured value, which constitutes

a very sensitive prove of new physics.
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C. Indirect FCNC searches

In general, flavor physics processes and in particular meson mixing, are known to con-

straint FCNC of the type produced by a non-universal Z ′ Gauge Boson. At present the

most severe constraints arise from K0, D0, B0
d and B0

s neutral meson mixing. To date, the

following experimental measurements have been obtained [24]:

• ∆mK0 = 0.5290± 0.0016× 1010h̄s−1

• ∆mD0 = 7× 1010h̄s−1

• ∆mB0

d

= 0.507± 0.005× ps−1 [33].

• ∆mB0
s
= 17.77± 0.17 ps−1 [33],

numbers which severely constraint models with FCNC occurring at the tree-level.

V. NUMERICAL ANALYSIS.

As it is expected from Eq. (17), FCNC at tree-level are depleted when the ordinary

quarks mix with the exotic ones, the largest the mixing, the smaller the FCNC effects.

In this section we are going to see, in the context of the 3-3-1 model with right-handed

neutrinos, how large the quark mixing can be, without violating the experimental measured

values quoted in the previous section.

In the analysis we assume that v1 = v2 ≡ v = 123 GeV, value supported by the result

M2
W = g23(v

2
1 + v22)/2 [5] with g3 the gauge coupling constant of SU(3)L (that is equal to g2,

the gauge coupling constant of SU(2)L in the SM), and also we use V = 1 TeV, the 3-3-1

mass scale which fixes the mass values for all the new fermions of the different models.

A. The 4× 5 mixing matrix

In this section we are going to study the non-unitary 4 × 5 quark mixing matrix Vmix

in Eq. (22) for the three models in category A (models with four up-type quarks and five

down-type quarks) including the 3-3-1 model with right handed neutrinos. What we pretend

to do is to look for the maximall mixing of the ordinary quarks with the exotic ones, without

violating the experimental constraints quoted in the previous section.
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Let us start first with what we have called the down-up approach, which consists of

looking for quark mass matrices which fit the experimental constraints of Vexp in (24), with

a value Vtb ∼ 0.8, the smallest possible. The numerical analysis suggest to start with the

following orthogonal quark mass matrices

Mu
4 =





















0.00047 0.02812 0 0

0.02812 0.580 0 0

0 0 171.7 0

0 0 0 mt′





















(25)

Md
5 =



























0.018 −0.4288 −2.63 −3.41 0

−0.4288 9.316 57.608 75.98 0

−2.63 57.608 361.8 472.4 0

−3.41 75.98 472.4 624.5 0

0 0 0 0 mb′′



























, (26)

which for mt′ = mb′′ = 1500 GeV, reproduce the following set of eigenvalues (in units of

GeV)

mt = 171.7, mc = 0.582, mu = 1.4× 10−3

mb = 2.83, ms = 0.069, md = 3.4× 10−3;

mt′ = 1500, mb′′ = 1500, mb′ = 993,

numbers to be compared with the values quoted in the appendix (taken from the second

paper in Ref. [25]).

The rotation matrices which diagonalize Mu
4 and Md

5 are

V u
4 =





















0.9984 −0.0563 0 0

0.0563 0.9984 0 0

0 0 1 0

0 0 0 1





















ru

, (27)

and

V d
5 =



























0.9850 0.172 0.006 −0.02 0

0.1724 −0.9798 0.031 0.097 0

0.011 0.0366 −0.798 0.602 0

−0.0044 0.0965 0.602 0.7925 0

0 0 0 0 1



























rd

. (28)
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Matrices which combine to produce the folowing non-unitary 4×5 mixing matrix V 4×5
mix =

|V u
4 PV d†

5 |

V 4×5
mix =





















0.974 0.227 0.008 0.0098 0

0.227 0.9685 0.0371 0.096 0

0.0060 0.031 0.798 0.602 0

0 0 0 0 0





















, (29)

numbers to be compared with the experimental limits in (24) and with the numbers quoted

in the appendix for V ud
mix in (A11) for the up-down approach.

VI. NEW FCNC PROCESSES

Next, we are going to evaluate the new contributions to the FCNC processes coming from

the nonunitary character of V 4×5
mix in Eq. (29), and from the rotation matrices V 4

u and V d
5 .

A. Penguin processes for the SM quarks

The following are the penguin contributions to the FCNC coming from V 4×5
mix :

1. The bottom sector

Let us evaluate first the electromagnetic penguin contribution to Brt(b → sγ) coming

from the t quark, calculated with the expectator model, scaled to the semileptonic decay

b → qilνl, qi = c, u, and without including QCD corrections (which are small for the b

sector [1]). This value is calculated to be [26]

Brt(b → sγ) ≈ 3α

2π

|V ∗
tbVtsF

Q(xt)|2
[f(xc)|Vcb|2 + f(xu)|Vub|2]

BB→Xlνl, (30)

where α is the fine structure constant, BB→Xlνl ≈ 0.1 is the branching ratio for semileptonic

b meson decays taken from Ref. [24], xt = (mt/MW )2, xc = mc/mb and xu = mu/mb. F
Q(x)

is the contribution of the internal heavy quark line to the electromagnetic penguin given by

FQ(x) = Q

[

x3 − 5x2 − 2x

4(x− 1)3
+

3x2 lnx

2(x− 1)4

]
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+
2x3 + 5x2 − x

4(x− 1)3
− 3x3 ln x

2(x− 1)4
,

where Q = 2/3 for t in the quark propagator [Q = −1/3 and x = xb′ = (mb′/MW )2 when b′

propagates, with the appropriate changes when b′′ propagates] and f(xi) is the usual phase

space factor in semileptonic meson decay, given by [1]

f(x) = 1− 8x2 + 8x6 − x8 − 24x4 ln x.

For the numerical evaluations of Brt(b → sγ), let us use the values α(1GeV ) = 1/135,

mt = 171.7 GeV, mc = 0.6 GeV, mb = 2.8 GeV and mu = 1.4 MeV [25] (which are not

the pole values). Using these numbers we obtain: F 2/3(xt) ≈ 0.387, f(xc) ≈ 0.72 and

f(xu) ≈ 1. Plug in the numbers in Eq. (30) and using the values for V 4×5
mix in equation (29)

for the couplings of the physical quark states, we get

Brt(b → sγ) ≈ 3× 10−5,

close to the SM calculation as it should be, since this process does not receive a contribution

from the exotic quarks.

The former analysis can be used also to estimate the branching ratios for the rare gluon

penguin decay b −→ sg, where g stands for the gluon field. The results is

Brt(b → sg) =
αs(1GeV )

α(1GeV )
Brt(b → sγ)

≈ 13Brt(b → sγ) ≈ 3.9× 10−4,

a process difficult to meassure due to the hadronization of the gluon field g. (This last process

is of the same order of magnitude of the virtual weak penguin bottom process b −→ sZ).

A similar analysis shows that

Brt(b → dγ) =
|Vtd|2
|Vts|2

Brt(b → sγ) ≈ 1.16× 10−6,

which is safe and in agreement with the bounds quoted in Section (IVB).

2. The strange sector

In a similar way we can evaluate Brt(s → dγ) scaled to the semileptonic decay s → ulνl,

which is given now by

Brt(s → dγ) ≈ 3α

2π

|V ∗
tsVtdF

2/3(xt)|2
f(x′

u)|Vus|2
BK→πlνl. (31)
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With x′
u = mu/ms, ms(1GeV)=69 MeV, and BK→πlνl ≈ 5 × 10−2 taken from Ref. [24],

we get

Brt(s → dγ) ≈ 1.75× 10−11,

in agreement with the experimental bound quoted in Section (IVB).

3. The charm sector

Now let us evaluate Brb′(c → uγ) scaled to the semileptonic decay c → qjlνl, where

qj = s, d. The branching ratio is

Brb′(c → uγ)

BD→Xslνl

≈ 3α

2π

|(V ∗
cb′Vub′)F

−1/3(xb′)|2
[f(xs)|Vcs|2 + f(xd)|Vcd|2]

, (32)

where xs = ms/mc, xd = md/mc. With BD→Xslνl ≈ 0.2 taken from Ref. [24], F−1/3(xb′) ≈
0.3849, f(xs) ≈ 0.895 for ms = 150 MeV and f(xd) ≈ 1, for md = 3.4 MeV, we get

Brb′(c → uγ) ≈ 1.× 10−10,

five orders of magnitude larger than the SM prediction [26], but still unobservable small.

Of course, the quantum QCD corrections for this decay could be quite large (see the second

paper in Ref. [26]).

4. The top sector

We proceed this analysis with the study of the FCNC for the top quark in the context of

the three 3-3-1 models in category A. As we are about to see, some of the predictions are

ready to be tested at the Large Hadron Collider (LHC).

In the SM, the one-loop induced FCNC for the top quark have a strong GIM suppression,

resulting in negligible branching ratios for top FCNC decays. The SM values predicted

are [39]: BrSM(t → cγ) ≈ 4.6× 10−14, and BrSM(t → cg) ≈ 4.6× 10−12.

The new FCNC Brb′(t → cγ) and Brb′(t → uγ) predicted for the top quark in the

context of the 3-3-1 model with right-handed neutrinos, scaled to the semileptonic decay

t → qklνl, qk = b, s, d; are given by

Brb′(t → cγ)

BT→Xlνl

≈ 3α

2π

|(V ∗
tb′Vcb′)F

−1/3(xb′)|2
[f(xb)|Vtb|2 + f(xs)|Vts|2]

(33)
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which we evaluate at the mt = 171.7 GeV, the pole mass scale for the top quark, which gives

Brb′(t → cγ) ≈ 2.75× 10−6BT→Xlνl,

which is large as far as the semileptonic branching ratio BT→Xlνl measured for the top quark

gets comparatively large, and much larger than 10−14, the SM prediction.

From the former analysis we can get

Brb′(t → cZ) =
4π

sin(2θ)
Brb′(t → cγ) ≈ 40Brb′(t → cγ),

two orders of magnitude larger than Brb′(t → cγ), a value not far from the LHC capability,

with a similar conclusion for the branching Brb′(t → cg), where g stands for the gluon field.

Finally we find

Brb′(t → uγ) ≈ |Vub′|2
|Vcb′|2

Brb′(t → cγ)

≈ 2.85× 10−8BT→Xlνl.

B. Penguin processes for new quarks

As can be seen from the former calculations, the GIM cancellation does not proceed

for 3-3-1 models in general, mainly because the nonunitary character of V 4×5
mix , with the

branching ratios proportional now to FQ(x)2, which is a function of x = m2
q′/M

2
W ≫ 1, for

q′ = t′, b′, b′′.

To make predictions for the new quarks, a hierarchy between the heavy states must be

assumed; for example, for mt′ > mb′ ∼ mb′′ > mt, and scaling the branching ratio to the

semileptonic decay b′ → Ulνl for U = t, c, u, we get

Brt(b′ → bγ)

BB′→XU lνl

≈ 3α

2π

|V ∗
tb′VtbF

2/3(x)|2
[f(xt)|Vtb′ |2]

, (34)

which for mt = 151 GeV [25] produces the result

Brt(b′ → bγ) ≈ 2.4× 10−4BB′→XU lνl.

a value large enough to be detected at the LHC, even if the branching ratio BT ′→XB lνl is

small.
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C. Meson mixing at tree-level

The strongest constraint for the model under consideration here, comes from the new

tree-level FCNC produced by the non-universal Z ′ neutral Gauge Boson. Ignoring CP-

violating effects and using the results in Eq. (17) , the K0 − K̄0 mass difference produced

by the physical Zµ
2 Gauge Boson, turns out to be

(∆mK)Z2
=

4
√
2GFC

4
WC2

θ

(3− 4S2
W )

|(V d
5 )

∗
32(V

d
5 )31|2ηK

(

M2
Z1

M2
Z2

+ T 2
θ

)

BKf
2
KmK , (35)

where the leading order QCD corrections have been included through the parameter ηk ≈
0.57 [41], BK and fK are the bag parameter and the decay constant for the kaon system

respectively, and Cθ and Tθ are the cosine and tangent of the small mixing angle θ needed

to define the physical fields Zµ
1 and Zµ

2 .

As can be seen, for a small mixing angle θ, ∆mk is an inverse function of M2
Z2
, the

physical mass of the new neutral Gauge Boson. Our approach here is to use the experimental

measured value ∆mk to set a lower bound for MZ2
.

Using the numerical values GF = 1.166 × 10−5 Gev−2, θW = 31.93, MZ1
= 91.2 Gev.,

∆mk = 3.48 × 10−12 MeV.,
√
BKfK = 135 MeV, mk = 497.65 MeV; neglecting the small

mixing angle θ and using (V d
5 )

∗
32(V

d
5 )31 from the rotation matrix in (28), the final value turns

out to be MZ2
≥ 0.2 TeV, one order of magnitude smaller than previous values calculated

for this model [17].

Now, for this down-up approach, there is no prediction coming from the D0− D̄0 mixing

(for which ∆mD = 4.607 × 10−11 MeV.,
√
BDfD = 187 MeV [41], mD = 1864.5 MeV, and

ηD ≈ 0.57) due to the zeroes in V u
4 .

For the bottom sector we have for the B0
d − B̄0

d mixing, with ∆mB0

d

= 3.37 × 10−10

MeV.,
√
BBfB = 208 MeV [41], mB = 5279.4 MeV, and ηB ≈ 0.55, that MZ2

≥ 2.1 TeV.

For the B0
s − B̄0

s mixing with ∆mB0
s
= 1.17 × 10−8 MeV., we obtain a limit MZ2

≥ 1.18

TeV; both mass limits in agreement with the calculated value for this model, using precision

measurements of the SM parameters [17].

The conclusion here is that in general, for the down-up approach, the new neutral meson

mixing, coming from the tree-level FCNC, do not violate current experimental measurements

as far as

MZ2
≥ 2.1TeV, (36)

21



×

W

γ

b t′ mt′ t′ sV ∗

t′b Vt′s

FIG. 1: One-loop diagram contributing to the FCNC b −→ sγ

mass value which justifies the assumption of neglecting the small mixing angle effects in

Eq. (35)due to the fact that T 2
θ ≤ 2.43× 10−6 << (MZ1

/MZ2
)2.

But when the mixing angle is taken different from zero, there are new contributions to

the meson mixing at tree-level, coming from the physical Zµ
1 Gauge Boson, given now by:

(∆mK)Z1
= (∆mK)Z2

T 2
θ

[

M2
Z2
/M2

Z1
+ (Cθ/Sθ)

2

M2
Z1
/M2

Z2
+ T 2

θ

]

≤ 0.3(∆mK)Z2
, (37)

where Sθ stands for the sine of the mixing angle θ, and the numerical evaluation has been

done for MZ2
≈ 2.1 TeV, and θ2 = 10−6.

D. The up-down approach

Next, let us quote the theoretical predictions for the up-down approach for which the

rotation and mixing matrices in the appendix are used. In this approach, the mixing of the

ordinary quarks with the exotic ones exists, but it is small due to the fact that Vtb ∼ 1.

Also, new penguin diagrams like the one depicted in Fig. (1) exist, due to the fact that for

this approach Vt′q 6= 0. The following is the list of our results:

Brt′(b → sγ) ≈ 3α

2π

|V ∗
t′bVt′sF

Q(xt′)|2
[f(xc)|Vcb|2 + f(xu)|Vub|2]

BB→Xlνl

≈ 3.4× 10−9.

Brt′(b → dγ) =
|Vt′d|2
|Vt′s|2

Brt′(b → sγ) ≈ 3.6× 10−10,

Brt′(s → dγ) ≈ 3α

2π

|V ∗
t′sVt′dF

2/3(xt′)|2
f(x′

u)|Vus|2
BK→πlνl

≈ 1.0× 10−14
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Brb′(b′′)(c → uγ)

BD→Xslνl

≈ 3α

2π

|(V ∗
cb′Vub′ + V ∗

cb′′Vub′′)F
−1/3(xb′)|2

[f(xs)|Vcs|2 + f(xd)|Vcd|2]
≈ ×10−18

Brb′(b′′)(t → cγ)

BT→Xlνl

≈ 3α

2π

|(V ∗
tb′Vcb′ + V ∗

tb′′Vcb′′)F
−1/3(xb′)|2

[f(xb)|Vtb|2 + f(xs)|Vts|2]
≈ 1.5× 10−14

and finally
Brb′(b′′)(t → uγ)

BT → Xlνl
≈ 2.3× 10−15.

All of them much smaller than the numbers calculated in the down-up approach, due to the

now small mixing of the exotic quarks with the ordinary ones.

Recalculating the meson mixing processes for this up-down approach, the MZ2
mass

value becomes now larger than 10 TeV in order to respect the experimental measurements

(becomes larger than 12 TeV when the mixing is totally neglected, as it happens for example

in the minimal 3-3-1 model of Pisano, Pleitez and Frampton [4]).

VII. CONCLUSIONS

The basic motivation of the present work was to study FCNC effects in the context of

the 3-3-1 models with right-handed neutrinos. For this model there are four up-type quarks

and five down-type quarks and its quark mixing matrix fails to be unitary. Besides, a new

non-universal neutral current, able to produce FCNC effects at the tree level is present for

this model.

For this analysis we searched for the largest mixing between ordinary and exotic quarks

without violating current experimental constrains in the quark mixing matrix and in the

values and bounds measured for FCNC processes.

Even though our analysis is “ansatz” dependent, two main approaches, with different

consequences, can be distinguish: the first one characterized by a value of Vtb ∼ 0.8 and the

second one for a value Vtb ∼ 1. For the first approach the mixing of the ordinary quarks

with the exotic ones is large, the penguin contributions to the FCNC are relevant and the

tree-level meson mixing are perfectly under control for a mass MZ2
at the TeV scale. For

the second approach the mixing of the ordinary quarks with the exotic ones is small, the
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penguin contribution to the FCNC are negligible, but the tree-level meson mixing became

large, unless MZ2
gets a mass larger than 10 TeV.

The former conclusion is of relevance for the forthcoming Tevatron and LHC results,

which should meassure with high accuracy the value of Vtb. In particular, a value of Vtb ∼ 1

associated with a new non-universal neutral Gauge Boson below the TeV scale are almost

incompatible, and in particular will rule out not only the 3-3-1 model with right-handed

neutrinos, but also most of the 3-3-1 extensions of the SM. On the contrary, a value of Vtb

in the range 0.8 ≤ Vtb ≤ 0.9 can coexist with a new non-universal neutral Gauge Boson at

the TeV scale, with strong predictions of rare top decays such as t → cZ, with a branching

ratio of the order of 10−5, perfectly reachable at the LHC [42].

FCNC produced by Higgs scalar Fields are not relevant for the 3-3-1 model with right-

handed neutrinos. For the third family they do not exist at tree-level because the Higgs

field φ2 which couples to the third family, does not couple to the other two families. For the

first two families the processes may exist, but they are negligible small and proportional to

(msmd/m
2
h)

2 or to (mcmu/m
2
h)

2, where mh stands for the Higgs scalar mass.

Finally, let us mention that in the context of the 3-3-1 model with right-handed neutrinos,

no FCNC effects at tree-level are present in the lepton sector, due to the universality for

leptons present in the weak basis.

APPENDIX A: SM TEXTURES

In order to explain the known hierarchy of the quark masses and mixing angles, several

“ansatz” for up and down quark mass matrices have been suggested in the literature [3],

some of them including the so-called texture zeros [34]. In particular, symmetric mass

matrices with four and five texture zeros were studied in detail in Refs. [35, 36], respectively.

Unfortunately, precision measurements of several entries in the mixing matrix, rule out most

of the suggested simple structures.

In this appendix we are going to introduce what we have called the up-down approach

which consists in fitting the data (six quark masses and three mixing angles) to a unitary

3× 3 mixing matrix, and then allow this matrix to loose its unitary character by letting the

ordinary quarks to mix with the exotic ones . Contrary to the approach used in the main
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text, this approach is characterized by the fact that Vtb ∼ 1. Our numerical study suggest

to start with the following hermitian, parallel, four texture zeros ansatz for the SM quark

mass matrices

Mu
3 = hv













0 0 11.4λ4

0 2.8λ7 5.1λ3

11.4λ4 5.1λ3 1













= hvM0u
3 , (A1)

Md
3 = hv













0 0 1.45λ5 + 2iλ7

0 −1.4λ6 3λ5 + iλ7

1.45λ5 − 2iλ7 3λ5 − iλ7 1.6λ3













= hvM0d
3 , (A2)

where h is a Yukawa coupling constants fixed by the top quark mass. The former ansatz

for up and down quark mass matrices has the extra ingredient of being compatible with

a new kind of flavor symmetry and its perturbative breaking as proposed by Froggatt and

Nielsen [38], including a third order effect at the level of the bottom quark mass, implied by

the entry (M0d
3 )33 = 1.6λ3.

To check the validity of our ansatz let us use a value of λ ≈ 0.22 and hv = 170 GeV in

matrices (A1) and (A2) which produce the following quark mass values in units of MeV:

mt = 171500, mc = 614.4, mu = 2.3

mb = 2940, ms = 53.4, md = 2.8;

numbers to be compared with the following values quoted from the second paper in Ref. [25]

(where they were calculates at the Fermi scale µ = MZ , using the MS scheme):

mt = 171700± 3000, mc = 619± 84, mu = 1.27+0.50
−0.42

mb = 2890± 90, ms = 55+16
−15, md = 2.90+1.24

−1.19; (A3)

The rotation matrices which diagonalize the Hermitian mass matrices Mu
3 and Md

3 in

(A1) and (A2) are given by

V u
3 =













0.89397 −0.44813 0.00046

−0.44735 −0.89233 0.06019

0.02656 0.05401 0.99819













rotu

, (A4)
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and

V d
3 =













0.97361 0.23347e−2.9i 0.02145e−3.8i

0.23043e2.9i 0.96825 0.09624e−0.92i

0.04322e3.8i 0.08860e0.92i 0.99512













rotd

. (A5)

The consistency of our analysis shows up when we calculate the absolute values of VCKM =
√

|V u
3 V

d†
3 |2 which gives the following values

V
(0)
mix =













0.973 0.229 −0.0033

0.229 −0.973 0.039

0.0085 0.0377 0.999













, (A6)

which is an (allmost) unitary matrix, in agreement with the experimental constrains quoted

in matrix (24).

Extending the previous analysis to the 3-3-1 model with right-handed neutrinos which

includes four up type quarks and five down type quarks, we find that the maximall mixing

allow of the ordinary quarks with the new ones, which does not violates the experimental

values quoted in Vexp in matrix (24), neither the quark mass values quoted above, preserving

the allmost unitary character of (A6), is given by

Mu′
4 = htv





















1.8λ3

M0u
3x3 5λ3

1

1.8λ3 5λ3 1 10





















, (A7)

Md′
5 = htv



























λ6 λ4

M0d
3x3 λ5 λ4

0.6λ2 2.5λ2 − iλ4

λ6 λ5 0.6λ2 10 1− iλ

λ4 λ4 2.5λ2 + iλ4 1 + iλ 10



























. (A8)

The 4× 4 rotation matrix which diagonalize the Hermitian mass matrices Mu
4 in (A7) is

now given by

V u′
4 =





















−0.8936 0.4488 0.0002 −0.0007

−0.4480 −0.8919 0.0606 −0.0005

−0.0273 −0.0538 −0.9922 0.1093

0.0022 0.0058 0.1092 0.9940





















rotu

, (A9)
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and the 5× 5 rotation matrix which diagonalize the Hermitian mass matrices Md
5 in (A8) is

now given by

V d′
5 =



























0.9713 0.2368e−3i 0.0220e−4i 5.520× 10−5e−4.7i 8.6× 10−4e−1.7i

0.2334e3i 0.9669 0.103e−0.96i 1.53× 10−4e−8.3i 9.51× 10−4e−2.5i

0.0456e4i 0.095e0.96i 0.9944 1.72× 10−3e−8.4i 0.012e−0.82i

1.75× 10−4e−13.2i 1.46× 10−4e−16i 7.34e−14.8i 0.707 0.71e−12.4i

1.6× 10−4e−0.57i 1.8× 10−4e−2.3i 9.6× 10−3e3.3i 0.706e12.4i 0.707



























rotd

.

(A10)

Matrices that we combine as V 4×5′
mix =

√

|V u′
4 PV d′†

5 |2, producing the following values

V 4×5′
mix =





















−0.9741 0.2260 0.0031 0.0001 0.0001

0.2260 0.9731 0.0449 0.0002 0.0003

0.0082 0.0439 0.9929 0.0073 0.0096

0.0017 0.0051 0.1092 0.0008 0.0011





















rotu

. (A11)

To finish, let us mention that from our 3× 3 mass matrices (A1) and (A2) we can obtain

at the end a VCKM mixing matrix depending only of a single phase. As a matter of fact,

we have chosen allready three arbitrary phases in the up quark sector such that the mass

matrixMu becomes real. Then, two more phases can be eliminated from V d
3 by a redefinition

of the left-handed down quark fields, ending up with a single phase which propagates to

VCKM = V u
3 V

d†
3 . This single phase which shows up in a nonstandard parametrization of

VCKM is the source of CP violation in the context of our ansatz.
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343 291 (1995); M. Özer, Phys. Rev. D 54, 4561 (1996).

[5] J.C. Montero, F.Pisano and V. Pleitez, Phys. Rev. D 47, 2918 (1993); R. Foot, H.N. Long and

T.A. Tran, Phys. Rev. D 50, R34 (1994); H.N. Long, Phys. Rev. D 53, 437 (1996); ibid 54, 4691

(1996); V. Pleitez, Phys. Rev. D 53, 514 (1996). D.A.Gutiérrez, W.A.Ponce and L.A.Sánchez,

Eur. Phys. J. C46, 497 (2006).
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