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Abstract

In the present work we shall study the renormalizability of Generalized Quantum Electrodynamics (GQEDy). The
on-shell renormalization scheme is reviewed and applied to the theory and we calculate the explicit expressions for

all the counter-terms of the GOQEDj.
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1. Introduction

The Generalized Electrodynamics [1] was originally
conceived in order to get rid of some pathologies inher-
ent in the Maxwell theory, however, as pointed out by
Pimentel and Galvao [2], only the generalized Lorenz
condition, Q[A] = (1 + m;282) o0tA,, completely fixed
the gauge freedom and also intrinsically related with de-
termining the correct true degrees of freedom for the
theory. A study of the finite-temperature free Podolskys
theory has showed a correction to the Stefan-Boltzmann
law and by using cosmic microwave background data
it was possible to set a thermodynamical limit to the
Podolskys parameter mp [3].

A previous study of Generalized Electrodynamics
showed that the free gauge field Green’s function is
given by [4]:

, 1 Kk,
iDy, (k) = 2 [mw—(l -9 2 ]— (H

ky ke,
My + (1 =) >+

2_ 2 2 _
k* —my, k* —my,

1
(1-28)

mkﬂkv + mkﬂkv.

P
At first glance, the above expression could leads to a
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naive interpretation of the photon propagator as a sum of
two distinct sectors: a massless and a massive; indeed,
this statement holds in the free theory. However, we can
not read the mass-dependent terms in Eq.(1) as true de-
grees of freedom of the theory, though, if we will require
that the photon propagator behaves as a truly Maxwell
photon, this will suggest a reasonable and appropriated
interpretation of the Podolsky term as a regulator term;
which plays the role of a Pauli-Villars-Raisky term [5]
(since the m?, — oo limit exists in the theory, and do the
mapping to the Maxwell theory).

Although the idea of higher-derivative (HD) be suc-
cessful in the case of the attempt to quantize gravity,
many inherent issues are present in the classical analy-
sis of HD theories. In particular, such theories have a
Hamiltonian which is not bounded from below and the
addition of HD terms leads to the existence of instabil-
ities (ghosts states) jeopardizing the unitarity. Never-
theless, recently in Ref. [6] a procedure was suggested
for including interactions in free HD systems without
breaking their stability. Remarkably, they shown that
the dynamics of the GQED is stable at both classical
and quantum level.

This work is addressed to the issue of renormalizabil-
ity of the Generalized Quantum Electrodynamics, and
is organized as follows. We review and apply to the
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GQED, the on-shell renormalization program.

2. Renormalization Schedule

In this section, we recall the so-called on-shell renor-
malization scheme [7] and employ it in the GQEDy;
which is the most suitable for calculation in field the-
ories which have a natural scale. The first part of the
current analysis is based on determine, formally, the
constants Z; under suitable renormalization conditions
and the physical constants, e and m. Now, we define the
renormalized Lagrangian with the generalized Lorenz
condition gauge-fixing term Q[A] = (1 + m;,zaz) A,
[2], and also introduce the counter-terms with the fol-
lowing prescription:
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where, we have introduced the following definition:
0z, = Z; — 1. The relations between the bare and renor-
malized quantities are as follows:
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Here, the Podolsky’s parameter mp has not a constant
associated with its renormalization, in the same sense
as the & parameter (gauge Ward-Fradkin-Takahashi
identity (WFT) [4] ); the above changing is only for
matter of notation.

Before starting with a proper discussion, we need to
pay attention to the following bare WFT identity [4]:
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An interesting consequence of the renormalized theory
fulfilling the WFT identity is that the ratio Z;/Z, must

I'We could also introduce: my = Zum, with Z,, = %; Z,, is the

real mass renormalization constant, an £-independent quantity.

be finite if the theory is renormalizable. Thus, the finite-
ness of the ratio Z;/Z, implies that order-by-order in
perturbation theory the equality Z; = Z, is identically
satisfied. Such identity is also responsible by preserv-
ing the gauge invariance after the renormalization pro-
cedure has been applied. Thereby, the coupling constant
e is determined only by Z3: ey = Z; 2.

From the Lagrangian (2), we obtain new Schwinger-
Dyson-Fradkin equations for the theory; the renormal-
ized self-energies (added the counter-terms 6z,) will be
denoted by the suffix ®. First, we will analyze the pho-
ton sector, which has now the renormalized self-energy
function:

P (k) = T (k) + 6z,. (6)

where I1 (k) is the polarization scalar written in terms of
the renormalized quantities.

Now, we impose the first renormalization condition
as follow: we require that the photon propagator (1),
in the gauge ¢ = 1 (without lost of generality), must
behave itself as a truly on-shell Maxwell photon:
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which leads to the renormalization condition:
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We obtain, then, the general expression for the counter-
term 6z,
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Here, hence, from Eq.(7) we can state an appropriated
interpretation of the true behavior of the Podolsky’s
terms, in Eq.(1), amounting to Pauli-Villar-Raisky reg-
ulator terms [5]. Going now to the fermionic sector, we
have that the renormalized self-energy function is writ-
ten as:

iZ® (p,m) = iZ (p, m) — imbz, + iz, p; (10)
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where the function X (p) is the radiative correction of
the fermionic 1P/ function: I'(p) = p —m — T® (p,m);
where: I (x,y) = —W. Due to the spinorial struc-
ture, we can even write down the electron self-energy
function in the following general way: X(p,m) =
) (p?) p+ 22 (P?)1.

In order to fix the fermionic counter-terms, we must im-
pose two renormalization conditions. To the first one,
we require that?:

ar (p)

=1 11
9 ; (1)

p—mp

2mp is defined as the zero of the electron 1PI function.
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which results into:
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From the condition (12) we obtain the following relation
to the counter-term dz,:
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Whereas, for the second fermionic renormalization con-
dition, we require that:

I'(p)=p—mp, when p— mp; (14)
which implies directly into:
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The counter-term 6y, is thus written as:
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We can state that the renormalization condition (11) de-
termines the counter-term 6z, and that the condition
(15), the counter-term 6z, .

Now, let us come towards to the fourth renormaliza-
tion condition to determine the counter-term 6z, . Using
the so-called Gordon decomposition, we can write the
vertex part A in terms of the Dirac and Pauli form fac-
tors:

N (p.p) =VFi(q°) + ﬁoﬁquFz (),
o = 217, a7

where g = p’ — p, is the transferred momentum. There-
fore, the on-shell condition for the vertex part is given
in a way that for on-shell external electron lines p’> =

p? =m?, and ¢*> — 0, we have:

Fy (6]2)

=0, (18)
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which results in determining the counter-term oz, .

3. Remarks and conclusions

Was studied here the process, and subsequent con-
sequences, of the renormalization for the Generalized
Quantum Electrodynamics. Structurally speaking, the
GQED, has the same form of QFED,, then our for-
mal discussion of the general on-shell renormalization
scheme followed the guidelines of the well-known pro-
gram. One of the most important features of this dis-
cussion was the choice of the renormalization condi-
tions; more specific, the renormalization condition for
the photon propagator; where we required that it, in
the & — 0 limit, should behave as a truly Maxwell
photon, i.e., a massless particle. Allowing us, thus,
gain an importantly, and natural, physical meaning for
the theory’s behavior, the interpretation of the Podol-
sky term as a natural regulator term, such as a Pauli-
Villars-Raisky term [5]. However, hitherto there is not
any proof regarding the relation between higher-order
derivative terms with Pauli-Villars-Raisky regulariza-
tion procedure [8].

We showed, through the explicit expressions of the
radiative functions [4], in a general gauge &, the calcu-
lation of all four counter-terms for the theory (up to a-
order), although the fermionic and vertex counter-terms:
0z,, 0z,, 0z,, were all ultraviolet finite, leading us thus
to a naive conclusion that the theory is entirely finite (in
the fermionic and vertex sector).
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