
JOURNAL OF MATHEMATICAL PHYSICS 55, 042902 (2014)

Topologically massive Yang-Mills: A Hamilton-Jacobi
constraint analysis

M. C. Bertin,1,a) B. M. Pimentel,2,b) C. E. Valcárcel,3,c)
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We analyse the constraint structure of the topologically massive Yang-Mills theory
in instant-form and null-plane dynamics via the Hamilton-Jacobi formalism. The
complete set of hamiltonians that generates the dynamics of the system is obtained
from the Frobenius’ integrability conditions, as well as its characteristic equations.
As generators of canonical transformations, the hamiltonians are naturally linked
to the generator of Lagrangian gauge transformations. C© 2014 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4870641]

I. INTRODUCTION

It is well known that 2 + 1 dimensional non-Abelian gauge theories suffer from infrared diver-
gences. One way to avoid these divergences is by adding a Chern-Simons (CS) term to their actions,
building topologically massive theories.1, 2 As examples of such models we have the Maxwell-Chern-
Simons (MCS) theory, the topologically massive gravity (TMG), and the topologically massive
Yang-Mills (TMYM) theory. As result of adding the CS term it is provided mass for the fields while
retaining their gauge invariance. At the quantum level the topological mass provides an infrared
cut-off, getting rid of the infrared divergences. They are also useful in models of condensed matter,
e.g., the quantum Hall effect,3 superconductivity,4 and four dimensional high temperature gauge
theories.5 It is also important to highlight that there is a correspondence between these theories and
the Self-Dual model.6

As gauge theories, topologically massive models are singular systems, so the study of their
hamiltonian dynamics requires methods of constraint analysis. The study of constrained systems
began with the works of Dirac7 and Bergmann,8 and resulted in the so called Dirac’s method of
constraint analysis,9 which has become a powerful tool to deal with gauge theories. Regarding
topological theories, the TMYM was studied using Dirac’s method in Ref. 10. The MCS theory
has been quantized using the Dirac bracket quantization, and also the Schwinger action principle in
Ref. 11. More recently, the MCS and the TMYM theories have been analysed using the first-order
formalism.12

Alternatives to Dirac’s method have been developed over the years, e.g., the Faddev-Jackiw
approach.13 A more recent one is the Hamilton-Jacobi (HJ) formalism, first developed by Güler14

and based on the Carathéodory’s complete figure of the calculus of variations.15 The main advantage
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of the HJ formalism is the fact that it consists in a complete formalism by itself, rather than
a consistency method. Constrained systems are naturally described by Carathéodory’s complete
figure: the necessary and sufficient conditions for the existence of a stationary configuration of an
action is reduced to a complete set of Hamilton-Jacobi partial differential equations, which defines a
set of hamiltonians responsible for the dynamical evolution of a singular system. The completeness
of this set is assured by the Frobenius’ theorem, which implies that the hamiltonians must obey a
set of integrability conditions. To better understand this formalism, several improvements16–20 and
applications21–26 have been made. One of the desired features of the HJ formalism is the fact that no
analogue of Dirac’s conjecture is needed.

In this work, we intend to analyse the topologically massive Yang-Mills theory in instant-form
and null-plane dynamics. The main objective is to find a complete set of involutive hamiltonians, to
build its characteristic equations, and to find the generator of gauge transformations of the system in
both forms of dynamics. The paper is organized as follows. In the Sec. II, we briefly present the HJ
formalism. In Sec. III, we apply this procedure to the TMYM theory in the instant-form dynamics.
In Sec. IV, we proceed similarly to the case of the null-plane dynamics. Finally, in Sec. V we discuss
the results.

II. THE HAMILTON-JACOBI FORMALISM

Let us consider a system described by a Lagrangian function L = L(xi , ẋ i , t), where i = 1, 2,
...N, which has a singular Hessian matrix of rank P. The singularity of the Hessian matrix separates
the variables xi = (xa, xz), where a = 1, 2, ..., P and z = 1, 2, ..., R with P + R = N. The variables
xa are related to the invertible part of the Hessian, i.e., the definition of the canonical momenta
pi ≡ ∂L/∂ ẋ i allows expressions such as ẋ a = ẋ a (xa, xz, pa, pz, t). The variables xz, which are
renamed to tz for convenience, are related to its singular part, i.e., the definition of the conjugate
momenta allows no expressions of the velocities ẋ z in terms of the other variables.

Following the Carathéodory’s variational approach,15 the necessary condition for extremizing
the action A = ∫

Ldt is given by the existence of a function S(xa, xz, t), solution of the equation

p0 + pa ẋa + pz ṫ
z − L = 0, pa ≡ ∂S

∂xa
, pz ≡ ∂S

∂t z
, p0 ≡ ∂S

∂t
. (1)

We may define the canonical hamiltonian function by H0 = pa ẋa + pz ṫ z − L , which is explicitly
independent of ṫ z . In this case, Eq. (1) becomes the well known Hamilton-Jacobi equation p0 + H0

= 0, which is a first-order partial differential equation (PDE). On the other hand the singularity of the
Hessian matrix assures that there are R canonical constraints pz + Hz = 0, where Hz ≡ −∂L/∂ ṫ z .
In the HJ formalism, these constraints form a set of R first-order PDEs. Renaming the variables as
tα ≡ (tz, t = t0), we are allowed to write all the PDEs in a unified way:

H ′
α

(
xa, pa, tα, pα

) ≡ pα + Hα

(
xa, pa, tα

) = 0, α = 0, 1, 2, ..R. (2)

The functions H ′
α form a set of R + 1 hamiltonian functions, and the set H ′

α = 0 are called the
Hamilton-Jacobi partial differential equations (HJPDEs) of the system.

As first-order PDEs, and considering tα as independent variables, the HJ equations (2) have a
set of first-order total differential equations related to them. They are denoted as the characteristic
equations (CEs)

dxa = ∂ H ′
α

∂pa
dtα, dpa = −∂ H ′

α

∂xa
dtα, d S = padxa − Hαdtα. (3)

Solutions of the first pair of equations represent curves that are functions of R + 1 parameters tα on
the reduced phase space defined by the conjugated variables (xa, pa). From (3), and considering tα

as independent parameters, the evolution of any phase space function F = F(xa, tα , pa, pα) is given
by the fundamental differential

d F = {F, H ′
α}dtα, (4)
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where the Poisson brackets (PB) are defined on the extended phase space of the variables
(xa, tα , pa, pα):

{A, B} ≡ ∂ A

∂tα

∂ B

∂pα

− ∂ B

∂tα

∂ A

∂pα

+ ∂ A

∂xa

∂ B

∂pa
− ∂ B

∂xa

∂ A

∂pa
. (5)

Therefore, from the CEs we notice that the H ′
α play the role of generators of the dynamical evolution

of the system. This is why we call them hamiltonians. For a regular system, the first pair of CE (3)
becomes Hamilton’s equations.

The existence of a complete solution of the set of HJPDEs, which also implies on independence
between the parameters tα , is guaranteed by the Frobenius’ theorem:20 a set of hamiltonians H ′

α form
a complete set of HJ equations H ′

α = 0 iff

{H ′
α, H ′

β} = C γ

αβ H ′
γ ⇐⇒ d H ′

α = 0, (6)

i.e., the hamiltonians must close a Lie algebra with the PB. The conditions (6) are called integrability
conditions (ICs), and any set of functions satisfying these conditions are called involutive.

The presence of hamiltonians that does not satisfy the ICs, denoted as non-involutive hamilto-
nians, implies that the system of HJPDEs is not complete, or that the parameters tα are not linearly
independent. In this case the ICs may provide new HJ equations to complete the system, and may
also indicate the dependence between the parameters. Dependent parameters are eliminated with the
method outlined in Ref. 20, by analysing the singularity of the matrix with elements Mxy ≡ {H ′

x , H ′
y}.

If this matrix is singular of rank K ≤ R, there is a regular sub-matrix Māb̄, with ā = 1, 2, ...K , and
we may define the generalized brackets (GB)

{A, B}∗ = {A, B} − {A, H ′
ā}M−1

āb̄ {H ′̄
b, B}. (7)

Then we may rewrite the fundamental differential as

d F = {F, H ′
ᾱ}∗dt ᾱ, ᾱ = 0, K + 1, ..., R. (8)

After the procedure of finding possible new hamiltonians and eliminate the dependence between the
parameters, the hamiltonians H ′

ᾱ become the complete set of involutive hamiltonians of the system,
this time with the PB substituted by the GB.

III. THE HJ ANALYSIS IN THE INSTANT-FORM

The addition of a Chern-Simons term to a three dimensional Yang-Mills action results in the so
called topologically massive Yang-Mills theory:

S =
∫

d3x

[
−1

4
Fμν

a Fa
μν + μ

4
εμνγ

(
Faμν Aa

γ − g

3
fabc Aa

μ Ab
ν Ac

γ

)]
, (9)

where μ is the mass parameter and the components of the field strength are defined by

Fa
μν = ∂μ Aa

ν − ∂ν Aa
μ + g f a

bc Ab
μ Ac

ν . (10)

Let us define the covariant derivative

Dab
μ ≡ δab∂μ − g f ab

c Ac
μ (11)

and the notation Dab
μ Xb ≡ [

Dμ X
]a

. In this case, the field equations are given by

[
Dν Fμν

]
a − μ

2
εμ

νγ Fνγ
a = 0. (12)

From (10) and (11) we also obtain the Bianchi identities[
Dα Fβμ

]a + [
DμFαβ

]a + [
Dβ Fμα

]a = 0. (13)

In the instant-form dynamics, the evolution of a relativistic field theory is given by the time
evolution of field configurations in Cauchy surfaces defined by constant time surfaces τ ≡ x0. Here,
x0 means the zeroth component of a coordinate system xμ = (x0, x1, x2) in 2 + 1 dimensions. The
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metric used here is the one of signature ( + , − , − ). In this form of dynamics the conjugate
momenta of the action (9) are written by

πα
a = −Fa0α + μ

2
ε0αγ Aa

γ .

The temporal component of the canonical momenta is a canonical constraint, π0
a = 0, just as the

free Yang-Mills field. For the spatial components, a dynamical relation is obtained

π i
a = −ηi j Fa

0 j + μ

2
εi j Aa

j , εi j ≡ ε0i j , (14)

where i = 1, 2. Equation (14) can be inverted to obtain

∂0 Aa
i = −ηi jπ

aj + [Di A0]a + μ

2
ηi jε

jk Aa
k . (15)

Therefore, the variables Aa
i are the ones related to the invertible part of the Hessian matrix of this

system, while Aa
0 are parameters of the theory.

The canonical hamiltonian density has the form

H0 = −1

2
ηi j

[
π i

a − μ

2
εik Aak

] [
πaj − μ

2
ε jl Aa

l

]
+ 1

4
Fa

i j Fi j
a − Aa

0

{[
Diπ

i
]

a + μ

2
εi j∂i Aaj

}
. (16)

Therefore, the TMYM theory is characterised by the following set of HJPDEs:

H′ ≡ π + H0 = 0 → x0, (17a)

H′0
a ≡ π0

a = 0 → Aa
0 ≡ λa . (17b)

Here, we have renamed Aa
0 ≡ λa since these fields now act as independent parameters. Moreover,

we have π ≡ ∂S/∂x0 and π0
a ≡ ∂S/∂ Aa

0. The hamiltonian densities H′ and H′0
a are related to the

parameters x0 and λa, respectively. In order to test the ICs for (17) we define the fundamental Poisson
Brackets

{
Aa

μ(x), πν
b (y)

} = δa
bδν

μδ(x − y). With this structure, we build the fundamental differential

d F (x) =
∫

d3 y
[{

F(x),H′(y)
}

dx0 + {
F(x),H′0

a (y)
}

dλa
]
.

The hamiltonians H′0
a are involutive among themselves, since

{
H′0

a (x),H′0
b (y)

} = 0. Their
integrability depends on the PB with the hamiltonian H′. In this case, we have

dH′0
a (x) =

∫
d3 y

{
H′0

a (x),H′(y)
}

dx0 =
([

Diπ
i
]

a
+ μ

2
εi j∂i Aaj

)
dx0 = 0,

therefore, we define a new hamiltonian

C ′
a ≡ [

Diπ
i
]

a + μ

2
εi j∂i Aaj = 0. (18)

C ′
a are also in involution, since they satisfy the Lie algebra

{
C ′

a(x), C ′
b(y)

} = f c
ab C ′

c(x)δ(x − y), (19)

and their other PBs are zero. Therefore, we end up with the following set of involutive hamiltonians

H′ ≡ π + H0 = 0, (20a)

H′0
a ≡ π0

a = 0, (20b)

C ′
a ≡ [

Diπ
i
]

a + μ

2
εi j∂i Aaj . (20c)
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A. The characteristic equations

Since C ′
a results from the integrability condition of H′0

a , it is not canonical and does not have
a correspondent variable in the original phase-space. In this case we may expand the parameter
space with a new set of parameters ωa, which will be related to the functions C ′

a . Let us rename
the hamiltonians Gλ

a ≡ H′0
a and Gω

a ≡ C ′
a . Then the fundamental differential, which involves all the

involutive hamiltonians, has the following form

d F (x) =
∫

d3 y
[{

F(x),H′(y)
}

dx0 + {
F(x),Gλ

a (y)
}

dλa + {
F(x),Gω

a (y)
}

dωa
]
. (21)

From this equation we obtain the following set of CEs

d Aa
μ = δk

μ

[
−η jkπ

aj + [Dk A0]a + μ

2
ηi jε

jk Aa
k

]
dx0 + δ0

μdλa − δk
μ [Dkdω]a , (22a)

dπμ
a = δ

μ

k

([
D j F jk

]
a + g f bc

a π k
b Ac0 − μ

2
ε jk

[
D0 A j

]
a

)
dx0

+δ
μ

0

([
Dkπ

k
]

a + μ

2
εk j∂k Aaj

)
dx0 + δ

μ

k

[
g fabcπ

ck + μ

2
δabε

jk∂ j

]
dωb. (22b)

These equations describe the dynamical evolution of the system depending on the parameters
x0, λa, and ωa. Frobenius’ theorem implies that these parameters are independent, therefore the
evolution in the direction of a given parameter is independent of the evolution along the others. If
we consider the evolution in the temporal direction we obtain

∂0 Aa
0 = 0, (23a)

∂0 Aa
i = −ηi jπ

aj + [Di A0]a + μ

2
ηi jε

jk Aa
k , (23b)

∂0π
0
a = [

Diπ
i
]

a + μ

2
εi j∂i Aaj , (23c)

∂0π
i
a = [

D j F ji
]

a + g fabcπ
bi Ac

0 − μ

2
ε j i

[
D0 A j

]
a . (23d)

Equation (23a) means that Aa
0 are constants, while Eq. (23b) is exactly equal to (15). Since the

canonical momenta π0
a are zero, we have that Eq. (23c) represents the ICs for Gλ

a ≡ H′0
a . We notice

that this equation is equivalent to the μ = 0 component of (12), while (23d) corresponds to the field
equations for μ = i. Thus, we have established the equivalence between the field equations and the
CEs for the TMYM theory.

B. Generator of gauge transformations

The temporal evolution of the characteristic equations is then equivalent to the field equations.
The evolution along the parameters λa and ωa represents canonical transformations, denoted with
δλ and δω, and is given by

δλ Aa
μ = δ0

μδλa, (24a)

δω Aa
μ = −δk

μ [Dkδω]a , (24b)

δωπ i
a =

(
g fabcπ

ci + μ

2
ε j iδab∂ j

)
δωb. (24c)

Since the parameters are time-independent, these variations are global canonical transformations. In
order to study local transformations we must consider that the parameters λa and ωa are no longer
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independent among themselves, and now also depend on the time variable x0. In this case we rewrite
the transformations (24) as

δAa
μ = δ0

μδλa − δk
μ [Dkδω]a , (25a)

δπ i
a = g fabcπ

ciδωb − μ

2
εi j∂ jδωa . (25b)

We have now simply used the symbol δ since the variations δλ and δω are correlated. The set of local
variations (25) is now generated by the linear combination of the involutive hamiltonians.27

Gcan ≡
∫

d3 y
[
Gλ

a δλa + Gω
a δωa

]
. (26)

Gcan is the generator of the canonical transformations (25), since

δAa
μ = {

Aa
μ, Gcan

} = δ0
μδλa − δk

μ [Dkδω]a , (27a)

δπ i
a = {

π i
a, Gcan

} = g fabcπ
ciδωb − μ

2
εi j∂ jδωa . (27b)

It is well known that the TMYM theory has a group of transformations that leaves its action
functional invariant. The generator Gg of these gauge transformations is in fact related to the generator
Gcan. Let us take the set of canonical transformations (27). The action (9) becomes invariant under
these transformations if

δL = (
δ0
αδλa − δ j

α

[
D jδω

]a) ([
Dν Fνα

]
a + μ

2
εαβγ Faβγ

)
− ∂μ

[
δAa

α

(
Fμα

a + μ

2
εμαγ Aaγ

)]
= 0.

Using the identity Xa[DμY]a = − Ya[DμX]a, apart of a divergence, we have

δL = δλa
([

Di Fi0]
a + μ

2
εi j Fai j

)
− [Diδω]a

([
D0 F0i

]
a + [

D j F ji
]

a − μεi j Fa0 j
)
,

= Fa0i ([Diδλ]a + [D0 Diδω]a) + Faji
[
D j Diδω

]
a
+ μεi j

(
Fa

0 j [Diδω]a + 1

2
δλa Fai j

)
.

We also have Fa0i[D0Diδω]a = Fa0i[DiD0δω]a and Faji[DjDiδω]a = 0. Then,

δL = F0i
a Dab

i ([D0δω]b + δλb) + μεi j

[
−δωa

[
Di F0 j

]
a + 1

2
δλa Fai j

]
.

From the Bianchi identities (13) we obtain

εi j
[
D0 Fi j

]a = −εi j
([

D j F0i
]a + [

Di Fj0
]a) = 2εi j

[
Di F0 j

]a
.

This yields

δL =
(

F0i
a Dab

i + μ

2
εi j Fb

i j

)
([D0δω]b + δλb) .

If the theory is invariant, i.e., δL = 0, we should consider

δλa = − [D0δω]a , (28)

therefore there is a unique independent parameter, say δωa = �a. Under the condition (28), the
transformation on the fields Aa

μ takes the form

δAa
μ = −δ0

μ [D0�]a − δi
μ [Di�]a = − [

Dμ�
]a

, (29)

which is the well known gauge transformation of the theory. The generator of these transformations
is given by

Gg ≡ Gλ
a δλa + Gω

a δωa = − (
Gλ

a Dab
0 + δabGω

a

)
�b, (30)
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which is checked by computing

δAa
μ = {

Aa
μ, Gg

} = − [
Dμ�

]a
. (31)

IV. THE HJ ANALYSIS ON THE NULL-PLANE

It was first pointed out by Dirac28 that the dynamics given by the evolution of Cauchy surfaces of
constant t = x0 is not the only form of hamiltonian dynamics for relativistic theories. A good choice
of hamiltonian dynamics implies the definition of a “time” axis and a family of hyper-surfaces with
two properties: (1) the family must be orthogonal to the time axis in every point of the space-time,
and (2) the path of a point particle cannot cross a member of the family more than once.

In classical mechanics there is only one hamiltonian dynamics. Given the fact that the classical
“galilean time” is the same for all observers, and that particles can travel at any speed, the only family
of hyper-surfaces that obey both conditions stated above is the family of euclidian spaces labelled
by members of the real line. In this case, we may say that the galilean four dimensional space-time
is decomposed in the form R × E3. In special relativity this is not the case. The background is now a
Minkowski space-time Md , where d is the dimension, with a pseudo-euclidian metric. Because the
path of a point-particle is bounded inside the light-cone, the instant-form dynamics, characterised
by the decomposition Md = R × Ed−1, used in Sec. III, is not unique. In fact, there are five forms
of distinct relativistic dynamics.29

We are interested, in this section, in the null-plane dynamics whose evolution is given by the
hyper-surfaces orthogonal to the axis τ = x+ ≡ (x0 + x2)/

√
2, in 2 + 1 dimensions. The axis itself

belongs to the light-cone, so the orthogonal hyper-surfaces are characteristic planes, called null-
planes. A remarkable feature is that regular theories become constrained on the null-plane dynamics
which, in general, leads to a reduction in the number of independent field operators in the respective
phase space due to the presence of extra non-involutive constraints.30, 31 The HJ formalism in the
null-plane dynamics has been studied in the case of complex scalar and electromagnetic fields,24

and also in linearised gravity.25

The coordinates of the light-cone are the most convenient for the analysis of field theories on
the null-plane. In 2 + 1 dimensions these coordinates are defined by

x+ ≡ 1√
2

(
x0 + x2

)
, x− ≡ 1√

2

(
x0 − x2

)
, x1 = x1. (32)

The time evolution is considered along the τ ≡ x+ coordinate, so a field configuration evolves
from a characteristic 2-surface �τ0 to a later surface �τ1 , where �τ is a null-plane defined by τ =
constant. Moreover, the initial value problem that defines the hamiltonian dynamics on null-planes
is not a Cauchy problem, but a characteristic value problem instead. This means simply that a unique
evolution is not assured by the knowledge of a configuration of the fields and their velocities in a
single initial time surface, but now by the values of the fields over two characteristic surfaces �x+=x+

0

and �x−=x−
0

. This problem, however, does not affect our considerations.
The conjugated momenta are now given by

πμ
a ≡ ∂L

∂∂+ Aa
μ

= −Fa+μ + μ

2
ε+μν Aa

ν . (33)

The Levi-Civita symbol has now the value of ε + − 1 = 1. Therefore, we have the following expres-
sions:

π+
a = 0, (34a)

π−
a = Fa+− + μ

2
Aa1, (34b)

π1
a = Fa−1 − μ

2
Aa−. (34c)

We notice that (34a) and (34c) are canonical constraints, which is the first difference compared
with the instant-form dynamics, where we had a single set of constraints given by π0

a = 0.
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Equation (34b) is a dynamical relation, resulting in the expression

∂+ Aa
− = πa− + ∂− Aa

+ − g f a
bc Ab

+ Ac
− − μ

2
Aa

−. (35)

The canonical hamiltonian density is given by

Hc = 1

2

[
π−

a − μ

2
Aa1

]2
− Aa

+
[[

D−π−]
a + [

D1π
1
]

a − μ

2
(∂1 Aa− − ∂− Aa1)

]
. (36)

This way, we have the set of HJPDEs

H′ ≡ p+ + Hc = 0 → τ = x+, (37a)

H′+
a ≡ π+

a = 0 → λa
+ ≡ Aa

+, (37b)

H′1
a ≡ π1

a − Fa
−1 + μ

2
Aa

− = 0 → λa
1 ≡ Aa

1. (37c)

The variables x+ , λa
+, and λa

1 are the parameters of the theory, and each one is related
to a hamiltonian density. On the other hand, the Poisson bracket structure remains the same:{

Aa
μ(x), πν

b (y)
} = δa

bδν
μδ(x − y). The IC is studied with the fundamental differential

d F =
∫

d3 y
[{

F,H′(y)
}∗

dx+ + {
F,H′+

a (y)
}∗

dλa (y) + {
F,H′1

a (y)
}∗

dωa (y)
]
.

We see that H′+
a is in involution with H′1

a , but not with H′. When imposing dH′+
a = 0, the IC leads

us to define a new hamiltonian density

C ′
a ≡ [

D−π−]
a + [

D1π
1
]

a − μ

2
(∂1 Aa− − ∂− Aa1) = 0. (38)

On the other hand, we have that H′1
a is a non-involutive set, since{

H′1
a (x) ,H′1

b (y)
} = −2

[
Dx

−
]

ab δ (x − y) , (39)

where
[
Dx

−
]

ab ≡ δab∂
x
− − g fabc Ac

− (x). We also have
{
H′1

a (x) ,H′ (y)
} 
= 0.

Following the procedure outlined in Ref. 20, we define a matrix

Mab (x, y) ≡ {
H′1

a (x) ,H′1
b (y)

}
,

and calculate its inverse, Gab (x, y) ≡ M−1
ab (x, y), which satisfies∫

d3zMac (x, z) Gcb (z, y) = δb
aδ (x − y) ,

or explicitly, by using (39),

[
Dx

−
]

ac
Gcb (x, y) = −1

2
δb

aδ (x − y) . (40)

Notice that this equation does not depend on the topological mass μ, then it is also valid for the free
Yang-Mills field. Given the inverse Gab(x, y) we build the GB

{F (x) , G (y)}∗ ≡ {F (x) , G (y)}

−
∫

dzdw
{

F (x) ,H′1
a (y)

}
Gab (z, w)

{
H′1

b (x) , G (y)
}
. (41)

Using this expression and (40) we obtain the following fundamental GBs{
Aa

μ (x) , Ab
ν (y)

}∗ = δ1
μδ1

ν Gab (x, y) , (42a)
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{
Aa

μ (x) , πν
b (y)

}∗ = δa
bδν

μδ (x − y)

−δ1
μ

{
δν

1

[
Dy

−
]ac − δν

−
[
Dy

1

]ac + μ

2
δacδν

−
}

Gcb (x, y) , (42b)

{
πμ

a (x) , πν
b (y)

}∗ =
{
δν

1

[
Dy

−
]

ac
− δν

−
[
Dy

1

]
ac

+ μ

2
δacδ

ν
−
}

×

×
{
δ

μ

1

[
Dx

−
]cd − δ

μ
−

[
Dx

1

]cd + μ

2
δcdδ

μ
−
}

Gdb (x, y) . (42c)

The GB between H′1
a and any other function of the phase-space is identically zero, therefore

the parameters λa
1 are eliminated by the redefinition of the dynamics with (42). It can be shown that

H′+
a are involutive hamiltonians, since (42b) implies that the H′+

a has non zero GB only with Aa
+.

For C ′
a we have {

C ′
a (x) , C ′

b (y)
}∗ = g f c

ab C ′
c (x) δ (x − y) ,

therefore all hamiltonians are in involution with the GBs.

A. Characteristic equations

We have obtained the complete set of hamiltonians H′, Gλ
a ≡ H′+

a , and Gω
a ≡ C ′

a , and each one
is related to the parameters x+ , λa ≡ λa

+, and ωa. This late set is introduced by expanding the
phase-space such that the fundamental differential is now given by

d F =
∫

d3 y
[{

F,H′(y)
}∗

dx+ + {
F,Gλ

a (y)
}∗

dλa (y) + {
F,Gω

a (y)
}∗

dωa (y)
]
. (43)

By replacing F = Aa
μ (x) we obtain the first set of characteristic equations

d Aa
+ = dλa, (44a)

d Aa
− =

[
πa− + [D− A+]a − μ

2
Aa

1

]
dx+ − [D−dω]a , (44b)

d Aa
1 = dx+

∫
d3 y

{[
Dy

1

]ab − δab μ

4

}
Gbc (x, y) Fc

+− (y) + [D1 A+]a dx+ − [D1dω]a . (44c)

Considering the time evolution by itself, we see that Eq. (44a) indicates that Aa
+ still remains as a

parameter of the theory. Equation (44b) is equivalent to the dynamical relation (35), which results
from the definition of the canonical momenta π−

a . To obtain the remaining field equations, for the
Aa

1 variables, we simply apply Dx
− in (44c). Therefore, full equivalence between the characteristic

equations and the field equations is assured.

B. Generator of the canonical and gauge transformations

The evolution of the variables Aa
μ along the parameters λa and ωa is given by

δAa
μ = δ+

μ δλa − δ−
μ [D−δω]a − δ1

μ [D1δω]a . (45)

From this expression, we identify the generator of canonical transformations

Gcan ≡
∫

dy
(
Gλ

a δλa + Gω
a δωa

)
(46)

and (45) is recovered by the expression

δAa
μ = {

Aa
μ, Gcan

}∗
. (47)
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As we have done in Sec. III B, we may obtain the generator of the gauge transformation by considering
the set of variations (45) as symmetries of the TMYM Lagrangian density. In the null-plane dynamics,
the fixed point variation is written as

δL = (
δ+
α δλa

+ − δ−
α [D−δω]a − δ1

α [D1δω]a
) ([

Dν Fνα
]

a + μ

2
εαβγ Faβγ

)

−∂μ

[
δAa

α

(
Fμα

a + μ

2
εμαγ Aaγ

)]
.

If we eliminate boundary terms and rearrange this equation, we obtain

δL = Fa+− [D−]ab

(
δλb

+ + [D+δω]b
) + Fa+1 [D1]ab

(
δλb

+ + [D+δω]b
)

+μ
[
δλa

+Fa−1 + δωa
(
[D−F1+]a + δωa [D1 F+−]a

)]
. (48)

In the three dimensional null-plane coordinates, the Bianchi identities become

[D+F−1]a + [D1 F+−]a + [D−F1+]a = 0,

then we may write (48) as

δL = [
Fa+− [D−]ab + Fa+1 [D1]ab + μδab Fa

−1

] (
δλb

+ + [D+δω]b
)
.

Invariance of the theory under the transformations (45) yields δL = 0. In this case, we have
δλa

+ = − [D+δω]a . Under this condition, and choosing δωa = �a, (45) now turns to be

δAa
μ = −δ+

μ [D+δω]a − δ−
μ [D−δω]a − δ1

μ [D1δω]a = − [
Dμ�

]a
, (49)

which are the correct gauge transformations. Furthermore, the generator is written as

Gg ≡
∫

dy
(−Gλ

a [D+]ab + δabGω
a

)
�b, (50)

since we have

δAa
μ = {

Aa
μ, Gg

} = − [
Dμ�

]a
. (51)

V. FINAL REMARKS

We have analysed the constraint structure of the TMYM theory in the instant-form and null-
plane dynamics using the HJ formalism. We found the complete set of hamiltonians that generate
the dynamical evolution, established the characteristic equations and the equivalence between these
and the field equations, and studied the set of canonical transformations that are symmetries of the
system, which gives us the generator of gauge transformations.

In instant-form this analysis is straightforward, since all constraints are involutive ones. The
hamiltonian densitiesH′0

a , which come from the definition of the canonical momenta, are in involution
among themselves. But they are not in involution with H′, which is the constraint that involves the
canonical hamiltonian density (16). The Poisson brackets between H′ and H′0

a give rise to another
set of hamiltonians C ′

a = 0, Eq. (18). With the complete set of involutive hamiltonians of the system
the dynamics in instant-form is given by the fundamental differential (21), and the characteristic
equations of the system, (22), follow. The temporal part of the dynamics is shown to be equivalent to
the field equation, while the dynamics along the parameters λa and ωa are considered as canonical
transformations whose generator is given by (26). Building the generator of gauge transformations
only requires to find the conditions in which the action is invariant, resulting in the generator given
by (30).

In the null-plane dynamics, on the other hand, we have a larger number of HJ equations that
come from the definition of the canonical momenta. They define the hamiltonians H′ and H′+

a ,
Eqs. (37a) and (37b), which resemble the ones found in instant-form, but the constraint structure
has also the presence of the hamiltonians H′1

a = 0, (37c). Integrability of the hamiltonians H′+
a again

results in the definition of C ′
a = 0, (38). However, H′1

a are not in involution either with H′ or with
themselves. Their integrability conditions imply that their respective parameters λ1

a are dependent of
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the others. The procedure used to get rid of this dependence was developed in Ref. 20, and requires
the analysis of the matrix Mab defined in (39). In this case we have that the generalized brackets (41)
must now replace the PB of the theory.

With the GB, the fundamental differential is written in the form (43), giving rise to the char-
acteristic equations (44) of the system. Again, time evolution alone is shown to be equivalent to
the field equations. On the other hand, the dynamics in the direction of the parameters λa and ωa,
(45), which are canonical transformations in the fields, can be related to gauge transformations
imposing invariance to the Lagrangian density. In this case, it results that the generator of gauge
transformations of the theory is given by (50).

Finally, let us remark that the Hamilton-Jacobi constraint analysis does not need any pre-defined
gauge condition. This is in contrast with the Dirac’s hamiltonian formalism presented in Ref. 10,
where a gauge is fixed at the classical level, specifically the null axial gauge Aa

− = 0, for the
TMYM theory in the null-plane dynamics. Imposing a gauge in the HJ formalism would spoil the
construction of the generator (50). A detailed analysis of the construction of gauge generators using
the HJ formalism will be shown in Ref. 27.
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14 Y. Güler, “Hamilton-Jacobi theory of continuous systems,” Il Nuovo Cimento B 100, 251 (1987); “Hamilton-Jacobi theory
of discrete, regular constrained systems,” ibid. 100, 267 (1987).
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