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We have studied the null–plane hamiltonian structure of the free Yang–Mills fields. Following the Dirac’s
procedure for constrained systems we have performed a detailed analysis of the constraint structure of the model
and we give the generalized Dirac brackets for the physical variables. Using the correspondence principle in the
Dirac’s brackets we obtain the same commutators present in the literature and new ones.

1. Introduction

To quantize the theory on the null–plane [1],
initial conditions on the hyperplane x+ = cte and
equal x+−commutation relations must be given
and the hamiltonian must describe the time evo-
lution from an initial value surface to other par-
allel surface that intersects the x+−axis at some
later time. Inside the null–plane framework, the
lagrangian which describes a given field theory is
singular, thus, the Dirac’s method [2] allows to
build the null–plane hamiltonian and the canon-
ical commutation relations in terms of the inde-
pendent fields of the theory.

It is interesting to observe that the null–plane
quantization of a non-abelian gauge theory using
the null–plane gauge condition, A− = 0, identi-
fied the transverse components of the gauge field
as the degrees of freedom of the theory and, there-
fore, the ghost fields can be eliminated of the
quantum action [3].

Tomboulis has quantized the massless Yang–
Mills field in the null–plane gauge Aa

− = 0 and
has derived the Feynman rules [4]. However, it
was shown that the null–plane quantization of
this theory leads a set of second–class constraints
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in addition to the usual first–class constraints,
characteristics of the usual instant form quantiza-
tion, which leads to the introduction of additional
ghost fields in the effective lagrangian [5]. More-
over, the theory has been quantized in the frame-
work of the standard perturbation approach and
it was explained that the difficulties appearing
in the null–plane gauge are overcome using the
gauge Aa

+ = 0, such gauge provides a generating
functional for the renormalized Green’s functions
that takes to the Mandelstam–Leibbrandt’s pre-
scription for the free gluon propagator [6].

In this paper we will discuss the null–plane
structure of the pure Yang–Mills fields following
Dirac’s formalism for constrained systems. The
work is organized as follows: In the section 2, we
study the free Yang–Mills field, its constrained
structure being analysed in detail, thus, we clas-
sify the constraints of the theory. In the section 3
the appropriated equations of motion of the dy-
namical variables are determined by using the ex-
tended hamiltonian, and the null–plane gauge is
imposed to transform the set of first class con-
straints into second–class ones. In the section
4 the Dirac’s brackets (DB) among the indepen-
dent fields are obtained by choosing appropriate
boundary conditions on the fields. Finally, we
give our conclusions and remarks.
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2. Free Yang–Mills field

For any semi-simple Lie group with structure
constant fa

bc the Yang-Mill lagrangian density is

L = −1
4
Fμν

a F a
μν , (1)

with F a
μν = ∂μAa

ν − ∂νAa
μ + gfa

bcA
b
μAc

ν , the gauge
index a, b, c runs from 1 to n. Such lagrangian is
invariant under the following infinitesimal gauge
transformations

δAμ
a (x) = fa

bcΛ
b (x)Aμ

c (x) +
1
g
∂μΛa (x) . (2)

with Λa (x) an arbitrary function.
In the present work, we specialize for conve-

nience to the SU(2) gauge group that only has
three generators and fa

bc = εabc, where εabc is
the Levi-Civita totally antisymmetric tensor in
three dimensions, thus, we can define everything
in such way that we can forget about raising and
lowering group indices. From (1) we find the
Euler–Lagrange equations

(Dν)ab
F νμ

b = 0, (3)

where we have defined the covariant derivative
defined as

(Dν)ab ≡ δa
b ∂ν − gεabcA

c
ν .

2.1. Structure Constraints and Classifica-
tion

In the null–plane dynamics, the canonical con-
jugate momenta are

πμ
a ≡ ∂L

∂
(
∂+Aa

μ

) = −F+μ
a , (4)

this equation gives the following set of primary
constraints

φa ≡ π+
a ≈ 0,

(5)

φk
a ≡ πk

a − ∂−Aa
k + ∂kAa

− − gεabcA
b
−Ac

k ≈ 0 .

and the dynamical relation for Aa
−

π−
a = ∂+Aa

− − ∂−Aa
+ − gεabcA

b
+Ac

− , (6)

Immediately, the canonical hamiltonian is
given by

HC =
∫

d3y

{
1
2

(
π−

a

)2 + π−
a (D−)ab

Ab
+

(7)

+ πi
a (Di)

ab
Ab

+ +
1
4

(
F a

ij

)2
}

.

Following the Dirac procedure [2], we define
the primary hamiltonian adding to the canonical
hamiltonian the primary constraints

HP =
∫

d3y

{
1
2

(
π−

a

)2 + π−
a (D−)ab

Ab
+

(8)

+ πi
a (Di)

ab
Ab

+ +
1
4

(
F a

ij

)2 + ubφb + λb
l φ

l
b

}

where ub and λb
l are their respective Lagrange

multipliers.
The fundamental Poisson brackets (PB) among

fields are{
Aa

μ(x), πν
b (y)

}
= δν

μδa
b δ3(x − y). (9)

Requiring that HP is the generator of tempo-
ral evolutions, the consistency condition of the
primary constraints, i.e. {φ,HP } = 0, give us for
φa

φ̇a = (D−)ab
π−

b + (Di)
ab

πi
b ≡ Ga ≈ 0 , (10)

a genuine secondary constraint, which is the
Gauss’s law. Also, for φk

a we obtain

φ̇k
a = (Dk)ab

F b
+− + (Di)

ab
F b

ik
(11)

−2 (D−)ab
λb

k ≈ 0 ,

a differential equation which allows to compute
λb

k after imposition of appropriated boundary
conditions. The consistency condition of the sec-
ondary constraint yields

{Ga (x) ,HP } = gεacbA
c
+ (x)Gb (x) ≈ 0, (12)

thus, the Gauss’s law is automatically conserved.
Then, there are no more constraints and the equa-
tions (5) and (10) give the full set of constraints.

The set of first class constraints is {π+
a , Ga}

and the set of second class constraints is
{
φk

a

}
whose PB’s are{
φk

a(x), φl
b(y)

}
= −2δl

k (D−)ab
δ3(x − y), (13)
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we observe that of here and from now the derived
operator acts on the x-coordinate.

3. Equation of motion

Now we check the equations of motion. The
time evolution of the fields is determined by com-
puting their PB’s with the so called extended
hamiltonian HE , which is obtained by adding to
the primary hamiltonian all the first class con-
straints of the theory:

HE = HC +
∫

d3y
{
λb

l φ
l
b + ubφb + vbGb

}
(14)

thus, we have the time evolution of the dynamical
variables, i.e, φ̇ = {φ,HE}, gives

Ȧa
+ = ua (15)

Ȧa
− = π−

a + (D−)ac
Ac

+ − (D−)ab vb (16)

Ȧa
k = (Dk)ac

Ac
+ + λa

k − (Dk)ab vb (17)

π̇+
a = Ga (18)

π̇−
a = −gεabcπ

−
b Ac

+ + (Dl)
ab

λb
l − gεbcavbπ−

c

(19)

π̇k
a = −gεbcaπk

b Ac
+ + (Dj)

ab
F b

kj

(20)

− (D−)ab
λb

k − gεabcπ
k
c vb .

If we demand consistency with the Euler–
Lagrange equations of motion (3) we must choose
vb = 0, however, the multiplier ua remains inde-
terminate.

Dirac’s algorithm requires as many gauge con-
ditions as there are first–class constraints, nev-
ertheless these conditions should be compatible
with the Euler–Lagrange equations and together
with the first class set they should form a second
class set, in such way that the Lagrange multipli-
ers, corresponding to the first class set, are deter-
mined. Under such considerations, we choose as
the first gauge condition

Aa
− ≈ 0, (21)

whose consistency condition Ȧa
− =

{
Aa

−,HE

} ≈
0 must be compatible with the dynamical equa-
tion (6) thus we see that if we choose vb = 0 in

(16) then the Eq.(21) will hold for all times only
if

π−
a + ∂x

−Aa
+ ≈ 0 . (22)

Therefore, equations (21) and (22) constitute our
gauge conditions on the null–plane and they are
known as the null–plane gauge.

4. Dirac Brackets

The prescription for determining the Dirac
brackets implies calculating the inverse of the
second–class matrix. We rename the second–class
constraints as follows

Θ1 ≡ π+
a , Θ2 ≡ (D−)ab

π−
b + (Di)

ab
πi

b

Θ3 ≡ Aa
− , Θ4 ≡ π−

a + ∂−Aa
+ (23)

Θ5 ≡ πk
a − ∂−Aa

k + ∂kAa
− − gεabcA

b
−Ac

k,

and we define the elements of the second class ma-
trix as Fab (x, y) ≡ {Θa (x) , Θb (y)}. The Dirac’s
brackets between two dynamical variables of the
theory is determined if the inverse of the second
class constraint matrix is calculated explicitly.
Now, the evaluation of F−1 involves the deter-
mination of an arbitrary function of the variables
x+ and x⊥ [7] which can be fixed by considering
appropriate boundary conditions [8] on the fields
Aa

μ Thus, we obtain the DB among the indepen-
dent variables of the theory
{
Aa

k(x), Ab
l (y)

}
D

= −1
4
δa
b δl

kε(x − y)δ2
(
x⊥− y⊥)

(24){
Aa

k(x), Ab
+(y)

}
D

=
1
4
|x − y| (Dk)ab

δ2
(
x⊥− y⊥)

.

Immediately, via the correspondence principle
we obtain the commutators among the fields
[
Aa

k(x), Ab
l (y)

]
=− i

4
δa
b δl

kε(x − y) δ2
(
x⊥− y⊥)

,

(25)

[
Aa

k(x), Ab
+(y)

]
=

i

4
|x − y| (Dk)ab

δ2
(
x⊥− y⊥)

.

(26)

The first relationship is exactly that obtained by
Tomboulis [4], but Eq. (26) is a new commutation
relation.

R. Casana et al. / Nuclear Physics B (Proc. Suppl.) 199 (2010) 219–222 221



5. Remarks and conclusions

In this work we have studied the null–plane
Hamiltonian structure of the free Yang–Mills
field. Performing a careful analysis of the con-
straint structure of Yang–Mills field, we have de-
termined in addition to the usual set of first–class
constraints, a second–class one, which is a char-
acteristic of the null–plane dynamics [7]. The
imposition of appropriated boundary conditions
on the fields fixes the hidden subset of first class
constraints [9] and eliminates the ambiguity on
the operator ∂−, that allows to get a unique in-
verse for the second class constraint matrix [7].
The Dirac brackets of the theory are quantized
via correspondence principle same as derived by
Tomboulis [4].
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