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We study the Schwinger Model on the null-plane using the Dirac method for constrained
systems. The fermion field is analyzed using the natural null-plane projections coming
from the γ-algebra and it is shown that the fermionic sector of the Schwinger Model
has only second class constraints. However, the first class constraints are exclusively of
the bosonic sector. Finally, we establish the graded Lie algebra between the dynamical
variables, via generalized Dirac bracket in the null-plane gauge, which is consistent with
every constraint of the theory.
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1. Introduction

Half the of last century Dirac1 proposed three different forms of relativistic dynam-

ics depending on the types of surfaces where independent modes were initiated.

One of them is the front form, which is a surface of a single light wave, commonly

referred to as null-plane (light-front or light-cone) formalism. A notable feature of a

relativistic theory on the null-plane is that it gives rises to a constrained dynamical

system.2 Srivastava3 studied the light-front quantization of the bosonized version

of the Schwinger model in the continuum formalism, the propose of his work was

to show that the quantization of the massless Schwinger model on the light-front

‡On leave of absence from Departamento de Fisica, Universidad de Nariño, San Juan de Pasto,
Nariño, Colombia.
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leads in a straightforward way to the θ-vacua structure. Eller and Pauli4 applied the

method of discretized light-cone quantization to the case of massive and massless

electrons, obtaining the correct mass for the Schwinger particle and reproducing

correctly many known features of the spectrum.

The aim of the present work is to construct the Hamiltonian formulation of

the Schwinger model in the null-plane description and to obtain a graded algebra

among the fundamental dynamical variables of the theory. The constraint analysis

shows the existence of hidden first class constraints5 and we are going to show that

when we impose the appropriate boundary conditions6 on the fields we eliminate

this hidden first class constraints7; showing that the constraint analysis in Ref. 8 is

wrong. The work is organized as follow. In the Sec. 2 we are going to do the con-

straint analysis, next we classify the constraints and we impose the corresponding

gauge fixing conditions. Finally, we invert the constraints by imposing appropriate

boundary conditions and the Dirac brackets (DB) of the theory are calculated. In

the last section, we summarize the results obtained by us.

2. Massive Schwinger Model

The gauge theory we are considering is defined by the following Lagrangian density

L =
i

2
ϕ̄+γ

+∂+ϕ+ −
i

2
∂+ϕ̄+γ

+ϕ+ +
i

2
ϕ̄−γ

−∂−ϕ− −
i

2
∂−ϕ̄−γ

−ϕ− +

−mϕ̄+ϕ− −mϕ̄−ϕ+ − gA+ϕ̄+γ
+ϕ+ − gA−ϕ̄−γ

−ϕ− −
1

4
FµνF

µν , (1)

the coordinate x+ will be our time variable and ϕ± , ϕ̄± are the fermionic projec-

tions in the light-cone system (For notations see Ref. 8).

From the relations defining the conjugate momenta we obtain the following

primary constraints

C ≡ π+ ≈ 0, Γ+ ≡ p+ +
i

2
γ+ψ+ ≈ 0, Γ− ≡ p− ≈ 0 (2)

Γ̄+ ≡ p̄+ +
i

2
ψ̄+γ

+ ≈ 0, Γ̄− ≡ p̄− ≈ 0 . (3)

Also we get the dynamical relation π− = ∂+A−−∂−A+. Also, π± is the momentum

conjugate to A±, p̄± to ϕ± and p± to ϕ̄±, respectively.

The canonical Hamiltonian density is

Hc =
1

2

(

π−
)2

+ π−∂−A+ −
i

2
ϕ̄−γ

−∂−ϕ− +
i

2
∂−ϕ̄−γ

−ϕ− +

+ gA−ϕ̄−γ
−ϕ− + gA+ϕ̄+γ

+ϕ+ +mϕ̄+ϕ− +mϕ̄ (4)

and, HP = Hc +

∫

dy−
[

uC + Γ̄+v1 + Γ̄−v2 − v̄1Γ+ − v̄2Γ−

]

, is the primary Hamil-

tonian. u is a bosonic Lagrange multiplier and v1, v2, v̄1, v̄2 are fermionic multipliers.
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The consistence condition on the fermionic constraints yields the following set

of secondary constraints

χ = ∆+ψ− ≈ 0, Ω− = γ− (i∂− − gA−)ψ− −mψ+ ≈ 0 (5)

χ̄ = ψ̄−∆− ≈ 0, Ω̄− = (i∂− + gA−) ψ̄−γ
− +mψ̄+ ≈ 0 , (6)

and equations for some components of the fermionic multipliers. The preserva-

tion under time evolution of the secondary fermionic constraints time results in

additional conditions on the fermionic multipliers being they determined com-

pletely. In the similar way the consistence of the bosonic primary constraints yields

Ċ = ∂−π
− − gϕ̄γ+ϕ ≡ G ≈ 0, which is a secondary constraint, named as Gauss’s

law, where its consistence condition shows that it is automatically conserved in

time, then no more constraints in the theory are generated.

2.1. Constraint classification

Now, we are going to classify the constraints. It is clear to shows that π+ is a

first-class constraint. The remaining subset {G,Γ+,Γ−, χ,Ω−, Γ̄+, Γ̄−, χ̄, Ω̄−} has a

singular constraint matrix and therefore it can be shown that it has only one zero

mode whose eigenvector gives a following first class constraint,9

Σ = G− ig
[

ψ̄+Γ+ + Γ̄+ψ+ + ψ̄−Γ− + Γ̄−ψ−

]

. (7)

Then, the subset of first class constraints is π+ and Σ and the subset of fermionic

second-class constraints is
{

Γ+, Γ−, χ, Ω−, Γ̄+, Γ̄−, χ̄, Ω̄−

}

. Our result clarifies

and it corrects the result found in Ref. 8, where the constraint analysis affirms the

existence of proper first class constraints in the fermionic sector, but, as we have

just shown such a statement it is not true when a careful analysis is carried out.

However, it is possible to show that the first class nature in the fermionic sector

is related to the hidden subset of first-class constraints which generate improper

gauge transformations5 associated with the insufficiency of the initial value data.

Now the next step is to impose gauge conditions, one for every first class con-

straint such that the set of gauge fixing conditions and first class constraints turns on

a second class set. The choosing of the appropriate set of gauge conditions is a care-

ful procedure, because they should be compatible with the Euler-Lagrange equa-

tions of motion. Thus, we choose a set of gauge conditions known as the null-plane

gauge and it is defined by the following relations B = A− ≈ 0,K ≡ π−+∂−A+ ≈ 0,

which are standard in the pure gauge theory.10

2.2. Dirac brackets

To obtain the Dirac brackets is necessary the explicit evaluation of the inverse of

the matrix of second class constraints; but this inverse is not unique, it involves an

arbitrary function which is related to the hidden first class constraints mentioned

previously. However, this hidden first class subset can be fixed by considering appro-

priated boundary conditions6 on the fields (ϕ, ϕ̄, Aµ), and then a unique inverse for
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the constraint matrix is obtained. Thus, the DB among the fundamental variables

of the theory are

{ϕa(x), ϕ̄b(y)}D =
im2

8
γ+

ab |x− y| −
m

4
Iab ε (x− y) −

i

2
γ−ab δ (x− y) (8)

{ϕ (x) , A+ (y)}D = i
g

2
ϕ (x) |x− y| − i

g

4

∫

dv ε (x− v) ∆−ϕ (v) ε ( v − y) (9)

{ϕ̄ (x) , A+ (y)}D = −
ig

2
ϕ̄ (x) |x− y| + i

g

4

∫

dv ε (x− v) ϕ̄ (v) ∆+ε (v − y) (10)

3. Remarks and Conclusion

We have performed the constraint analysis of the (1+1) dimensional massive QED

and the careful analysis of the fermionic sector shows that it has only second class

constraints and, the first class constraints are exclusive of the electromagnetic sec-

tor. The fermionic second class constraints allow to show the fermionic fields are

fully described by only one of their two components.

In the Ref. 8, the constraints analysis follows an erroneous procedure and it

gets to show the existence of proper first class constraint in the fermionic sector.

Such affirmations can be easily drop down by considering that the Dirac equation

is a linear equation of first order in time in the front form formalism where the

fermionic sector presents a second class structure. When we pass to the null-plane

formalism the Dirac equation remains of first order in time, therefore, the constraint

classification must be second class, too. As we show, the first class constraints for

the fermionic sector reported in Ref. 8 do not exist in the sense of proper ones,

however, a type of improper first class constraint is related to the ambiguity in

the definition of the inverse of the operator ∂−, or in other words, they are related

to the zero modes of the operator. Such ambiguities are eliminated by fixing the

necessary boundary conditions. Then, our contribution presents a correct use of the

Dirac procedure applied to null-plane field theories.

Finally, choosing the light-cone gauge we fix the bosonic first class constraints

and the graded Lie algebra for the canonical variables is given via generalized Dirac

brackets. The graded algebra for massless Schwinger model can be obtained from

the massive case doing the limit when m→ 0 in Eqs. (8)–(10).

The obtained graded algebra via the correspondence principle reproduce the

canonical (anti)-commutation relations obtained at quantum level in Ref. 6.
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