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Resumen

La electrodinámica de Proca describe una teoŕıa de foto-
nes masivos que no es invariante de gauge. En este trabajo
se mostrara que la libertad de gauge es restaurada si un
campo escalar es apropiadamente incorporado en la teoŕıa.
El método de Dirac es utilizado para realizar un detallado
análisis de la estructura de v́ınculos de la misma. Apro-
piadas condiciones de gauge fueron derivadas con el fin de
eliminar los v́ınculos de primera clase y obtener los corche-
tes de Dirac entre las variables dinámicas independientes.
De manera alternativa, la formulación simplética generali-
zada es utilizada para estudiar la teoŕıa electromagnética
de Proca invariante de gauge. Después de fijar el gauge, los
corchetes generalizados son calculados y la equivalencia con
los corchetes de dirac es mostrada.

Palabras clave: Método de Dirac, Formalismo de Faddeev-Jackiw,

análisis de v́ınculos, corchetes de Dirac, corchetes Generalizados.

Abstract

Proca’s electrodynamics describes a theory of massive pho-
tons which is not gauge invariant. In this paper we show
that the gauge invariance is recovered if a scalar field is pro-
perly incorporated into the theory. We followed the Dirac’s
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technique to perform a detailed analysis of the constraint
structure of the theory. Appropriate gauge conditions we-
re derived to eliminate the first class constraints and obtain
the Dirac’s brackets of the independent dynamical variables.
Alternatively, the generalized symplectic formalism method
is used to study the gauge invariance Proca’s electrodyna-
mics theory. After fixing the gauge, the generalized brackets
are calculated and the equivalence with the Dirac’s brackets
is shown.

Keywords: Dirac’s method, Faddeev-Jackiw’s formalism, constraint

analysis, Dirac brackets, Generalized brackets.

Introduction

Quantum electrodynamics establishes a constraint on the rest
mass of photon which is proposed to be zero. However, in nonzero
photon mass could exist a low level that the present experiments
cannot reach. The uncertainty principle establishes that the pho-
ton mass could be estimate as Mγ ≈ h̄

∆tc2
in the magnitude of

about 10−66 g as the age of the universe is about 1010 years. Alt-
hough such infinitesimal mass is extremely difficult to be detected,
a massive QED is not only simpler theoretically than the standard
theory [1], it also provides a fairly solid framework for analyzing
the far reaching implications of the existence of a massive photon
which would have for physics. Actually, some of these possible ef-
fects, such as variation of the speed of light [2], the deviations of
Coulomb’s law [4] and Ampère’s law [5], the existence of longitudi-
nal electromagnetic waves [6], and the additional Yukawa potential
of magnetic dipole fields [7], were seriously studied.

The massive electrodynamics or Proca’s electrodynamics is the
simplest model in which the photon has a small mass. Proca’s elec-
tromagnetic field theory can be constructed in a unique way by ad-
ding a mass term to the Lagrangian for the electromagnetic field,
namely, the Proca field is described by the following lagrangian
density,

L = −1

4
F µνFµν +

1

2
M2AµA

µ, (1)
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with Fµν ≡ ∂µAν − ∂νAµ. The parameter M can be interpreted
as the photon rest mass. In this spirit, the characteristic scaling
length M−1 becomes the reduced Compton wavelength of the pho-
ton, which is the effective range of the electromagnetic interaction.
Nevertheless, the mass term violates gauge invariance of the theory.

Cornwall [8] showed that in the Jackiw-Johnson model [9] is
not possible to add a symmetry breaking mass without destroying
renormalizability because the term violates the Ward identity. Ho-
wever, the gauge invariance can be recovered if a nonlocal, nonpoly-
nomial terms is added to the Lagrangian which is invariance gauge
in a restricted sense.

In this work we are going to follow the Cornwall procedure and
recover the gauge invariance of the Proca theory. We will study
in a consistent way the canonical constraint structure of the theory
following the Dirac’s procedure [10]. We determine the Hamiltonian
that generates the evolution of the system and considers the full
gauge freedom . Appropriated gauge conditions will be deduced in
order to calculate the Dirac brackets.

However, the mail goal of Dirac’s method is to obtain the Di-
rac brackets, which are the bridge to the commutators in quantum
theory. With the categorization of the constraints as first or se-
cond class, primary or secondary, this formalism has become one of
the standards for the analysis of constrained theories. Nevertheless,
Faddeev and Jackiw [12] proposed a geometric method for the sym-
plectic quantization of constrained systems. This method is based
on Darboux’s theorem [13] in which we do not need to introduce
primary constraints as in the Dirac formalism. Also, the classifica-
tion of the constraints is not necessary in this method, since all the
constraints are held to the same standard [14].

The essential point of the symplectic quantization method is to
make the system into a first order Lagrangian with some auxiliary
fields, but the method does not depend on how the auxiliary fields
are introduced to make the first order Lagrangian [12, 13]. The first
order Lagrangian, which consists of some symplectic variables and
their generalized canonical momenta, gives the geometric structure
of the manifold through the symplectic two form matrix. The clas-
sification of the system as constrained or unconstrained in the first
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order Faddeev-Jackiw formalism depends on the singular behavior
of the symplectic two form matrix.

In this work we are going to study the symplectic quantization
Proca’s electrodynamics deriving the generalized symplectic brac-
kets and showing that they are equivalents to the Dirac brackets.

Structure of Constraints

The Proca field which is described by (1) is no gauge invariance,
however, it is possible to add certain nonlocal, nonpolynomial term
to (1) which guarantees gauge invariance. If the transformation

Aµ (x)→ Aµ (x) + ∂µΛ (x) ,

is performed on the mass term, we obtain

1

2
M2AµA

µ → 1

2
M2 (Aµ + ∂µΛ ) (Aµ + ∂µΛ) .

Now, we are going to replace the gauge parameter in the following
way,

Λ→ θ ≡ −1

e

1

∂2
∂µA

µ.

Thus, we define the mass term

1

2
M2

[
Aµ +

1

e
∂µθ

]2

, (2)

which is invariant under the following gauge transformations:

Aµ (x)→ Aµ (x) + ∂µΛ (x) , θ (x)→ θ (x)− eΛ (x) , (3)

as long as ∂2θ 6= 0. Here, θ (x) is an auxiliar escalar field and e is a
coupling constant. Thus, we come to the following effective gauge
invariance Lagrangian density:

L = −1

4
F µνFµν +

1

2
M2

[
Aµ +

1

e
∂µθ

]2

. (4)
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From (4), we find the Euler-Lagrange equations

∂νF
νµ +M2Aµ = −1

e
M2∂µθ , ∂ν

[
Aν +

1

e
∂νθ

]
= 0, (5)

and the canonical momenta associated to the fields Aν and θ are:

πµ =
∂L

∂ (∂0Aµ)
= −F 0µ , pθ =

∂L
∂ (∂0θ)

=
M2

e

[
A0 +

1

e
∂0θ

]
.

(6)
respectively. Then, from (6) we get the set of dynamics relation
dynamical relation,

∂0Ak = πk + ∂kA0 , ∂0θ =
e2

M2
pθ − eA0, (7)

and one primary constraints [10],

Ω1 ≡ π0 ≈ 0. (8)

The canonical Hamiltonian is given by

HC =

∫
d3y HC =

∫
d3y

[
πµ∂0Aµ + pθ∂0θ − L

]
(9)

=

∫
d3y

{
1

2

(
πk
)2

+
1

2

e2

M2
p2
θ + πk∂kA0 − eA0pθ

+
1

4
FklFkl +

1

2
M2

[
Ak +

1

e
∂kθ

]2
}
.

Following the Dirac’s procedure [10], we define the primary Ha-
miltonian HP adding to the canonical Hamiltonian the primary
constraints with their respective Lagrange multipliers

HP ≡ HC +

∫
d3y u1 (y) Ω1 (y) , (10)

where u1 is the multipliers related to the electromagnetic cons-
traints. The fundamental Poisson brackets (PB) between the va-
riables of the phase space (Aµ, θ, π

ν , pθ) are,{
Aµ (x) , πν (y)

}
= δ ν

µ δ
3 (x− y) ,

{
θ (x) , pθ (y)

}
= δ3 (x− y) .

(11)
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The Dirac’s procedure [10] tell us that the primary constraints
must be preserved in time (consistence condition) under time evolu-
tion generated by the primary Hamiltonian by requiring that they
have a weakly vanishing PB with HP . Thus, such requirement on
the constraints (8) yields

Ω̇1 (x) =
{
π0 (x) , HP

}
= ∂xkπ

k + epθ ≡ Ω2 (x) ≈ 0, (12)

i.e., the consistence condition of Ω1 gives a secondary constraint Ω2

which is associated with the Gauss’s law of the theory. It is easy
to verify that there are not further constraints generated from the
consistence condition of the Gauss’s law because it is automatically
conserved,

Ω̇2 (x) =
{

Ω2 (x) , HP

}
= 0. (13)

Then, there are not more constraints and (8) and (12) constitute
the full set of constraints of the theory.

Constraint classification and gauge condition

The constraints Ω1 and Ω2 have vanishing PB among them,
therefore, they are first class constraint [10]. Here we are in position
to write the total Hamiltonian

HE ≡ HC +

∫
d3y

[
u1 (y) Ω1 (y) + u2 (y) Ω2 (y)

]
, (14)

where u2 is de Lagrange multiplier associated to the secondary first
class constraint Ω2. Now, we are able to calculate the canonical
equations of the system for the variables (Aµ, θ, π

ν , pθ). For Aµ we
have the equations

Ȧµ = δ k
µ

[
πk + ∂kA0

]
− δ k

µ ∂ku
2, (15)

which just means that the canonical variable Aµ is defined as a
linear combination of the still arbitrary Lagrange multipliers. The
Hamiltonian equations for the momenta πµ are given by,

π̇ν = δ ν
0

[
∂kπ

k + epθ
]

+ δ ν
k

{
∂lFlk −M2

[
Ak +

1

e
∂kθ

]}
. (16)
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The time evolution of the dynamical variables of the scalar field
are:

θ̇ =
e2

M2
pθ − eA0 + eu2, (17)

ṗθ =
M2

e
∂k

[
Ak +

1

e
∂kθ

]
From (15), (16) and (17) it is easy to obtain

∂µF
µν +M2

[
Aν +

1

e
∂νθ

]
≈ 0, (18)

∂µ

[
Aµ +

1

e
∂µθ

]
≈ ∂0u

2.

These equations are compatible with the Lagrangian field equations
(5) only if suitable gauge conditions are chosen in order to eliminate
the Lagrange multiplier u2.

At this stage we consider the set of first-class constraints Ω1 and
Ω2, that must be considered as generators of gauge transformations.
Our objective is to use the gauge freedom in our system to fix
two components of Aν so that the first class constraints become
second class. The problem of choosing proper gauge conditions has
to be solved to fully eliminate the redundant variables of the theory
at the classical level and, therefore, to proceed with a consistent
quantization of the theory. Since π0 ≈ 0, one logical choice is to
set:

∆1 ≡ A0 ≈ 0. (19)

The second gauge gauge fixing condition can be determined by
closely inspect the Euler Lagrange equations of the system [11].
Thus, if we look for the ν = 0 component of the (18) equation, it
produces

∂µF
µ0 +M2

[
A0 +

1

e
∂0θ

]
≈ ∂0

[
∂kAk +

M2

e
θ

]
≈ 0. (20)

Then, the equation (20) will hold for all time only if:

∆2 ≡ ∂kAk +
M2

e
θ ≈ 0. (21)
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Thus, (12) is similar to a secondary constraint following from the
gauge constraint, therefore, it can be considered like the second
gauge condition.

Dirac Brackets

The next step is to calculate Dirac Brackets for the set of ten
constraints of the theory. The set of the first class constraints and
their gauge fixing conditions, defines as:

Ψ1 ≡ π0 ≈ 0,

Ψ2 ≡ ∂kπ
k + epθ ≈ 0,

Ψ3 ≡ A0 ≈ 0, (22)

Ψ4 ≡ ∂kAk +
M2

e
θ ≈ 0,

constitute a set of second class constraints. With (22), we can cons-
truct the matrix of PB with elements:

Cij (x, y) ≡
{

Ψi (x) ,Ψj (y)
}
, (23)

and with the following matricial representation:

C (x, y) =


0 0 −1 0
0 0 0 Dx

1 0 0 0
0 −Dx 0 0

 δ3 (x− y) , (24)

where Dx ≡ ∇2
x−M2. The inverse of the matrix is calculated from

the following relationship,∫
d3z Cik (x, z)C−1

kj (z, y) = δijδ
3 (x− y) . (25)

Imposing the boundary condition that the fields vanish at infinity,
we can find that the in inverse of (23) exists and takes the form

C−1
ij (x, y) =


0 0 1 0
0 0 0 − 1

Dx

−1 0 0 0
0 1

Dx
0 0

 δ3 (x− y) . (26)
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With this inverse we are able to define the first Dirac Brackets for
two observables A (x) and B (x) [10],{

A (x) ,B (y)
}

D
=

{
A (x) ,B (y)

}
−
∫
d3ud3v

{
A (x) ,Ψi (u)

}
C−1
ij (u, v)

{
Ψj (v) ,B (y)

}
(27)

This definition implies the elimination of the second-class constrains
and the definition of an extended Hamiltonian where Ωi are strongly
zero. Under the definition of Dirac brackets, the constraints (22) are
strongly zero, i.e.,

π0 = 0 , A0 = 0

pθ = −1

e
∂kπ

k , θ = − e

M2
∂kAk. (28)

The relation (28) determines that Ak and πk could be considered as
independent variables of the theory, therefore, the Dirac brackets
associated to them may be computed from (27) to be{

Ak (x) , πl (y)
}

D
=

(
δ l
k −

∂xk∂
x
l

Dx

)
δ3 (x− y) (29)

Now, using the relations (28) we can deduce the other set of DB,
i.e.: {

θ (x) , pθ (y)
}

D
=

(
1 +

M2

Dx

)
δ3 (x− y) ,{

Ak (x) , pθ (y)
}

D
= −M

2

e

∂xk
Dx

δ3 (x− y) , (30){
πl (x) , θ (y)

}
D

= −e ∂
x
l

Dx

δ3 (x− y) .

Under the definition of the Dirac brackets, the Hamiltonian which
determines the evolution of the system in the reduced phase space
is

H =

∫
d3y

[
1

2

(
πk
)2

+
1

2M2
∂kπ

k∂lπ
l +

1

4
FklFkl (31)

+
1

2
M2

(
Ak −

1

M2
∂k∂lAl

)2
]
.
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Symplectic analysis for the Proca’s electrodynamics

The initial set of symplectic variables defining the extended spa-
ce is given by the set ξ

(0)
k =

(
Ak, π

k, θ, pθ, A0

)
, and so the starting

Lagrangian density is written in first order as follow [12, 13] 1:

L(0) =
1

2

(
πk
)2

+
1

2

e2

M2
p2
θ −

1

4
FklFkl −

1

2
M2

[
Ak +

1

e
∂kθ

]2

L(0) = Ȧkπ
k + θ̇pθ −H(0), (32)

where the zero iterated symplectic potential has the following form:

H(0) ≡ 1

2

(
πk
)2

+
1

2

e2

M2
p2
θ + πk∂kA0 − eA0pθ +

1

4
FklFkl

+
1

2
M2

[
Ak +

1

e
∂kθ

]2

. (33)

Using the initial set of symplectic variables ξ
(0)
k , we have from (32)

the canonical momenta

a
(0)
Ak

= πk , a
(0)

πk
= 0 , a

(0)
θ = pθ,

a(0)
pθ

= 0 , a
(0)
A0

= 0. (34)

Then, we obtain the zero iterated symplectic two-form matrix de-
fined by

f
(0)
AB (x,y) =

δa
(0)
B (y)

δξ(0)A (x)
− δa

(0)
A (x)

δξ(0)B (y)
, (35)

with the components

f
(0)
AB (x,y) =


0 1 0 0 0
−1 0 0 0 0
0 0 0 1 0
0 0 −1 0 0
0 0 0 0 0

 δ3 (x− y) . (36)

The symplectic matrix is singular and it has a zero mode

ṽA(0) =
(

0 0 0 0 vA0 (x)
)
, (37)

1See Appendix A
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where vA0 (x) is an arbitrary function. From this nontrivial zero-
mode, we have the following constraint

Ω(0) =

∫
d3xvA0 (x)

δ

δξA0 (x)

∫
d3yH(0)

(
ξ

(0)
k

)
= −

∫
d3xvA0 (x)

[
∂xkπ

k (x) + epθ (x)
]

= 0. (38)

With vA0 (x) arbitrary, the constraint is evaluated form (38) to be

Ω(0) ≡ ∂kπ
k + epθ = 0. (39)

According to the symplectic algorithm, the constraint (39) is intro-
duced in the Lagrangian density by using Lagrangian multipliers,
thus, the first iterated Lagrangian density is written as

L(1) = πkȦk + pθθ̇ + Ω(0)λ̇−H(1), (40)

where the first iterated symplectic potential is

H(1) ≡ H(0)

Ω(0)=0
=

1

2

(
πk
)2

+
1

2

e2

M2
p2
θ +

1

4
FklFkl

+
1

2
M2

[
Ak +

1

e
∂kθ

]2

(41)

Now, we enlarged the space with the first iterated set of symplectic
variables defined by ξ

(1)
k =

(
Ak, π

k, θ, pθ, λ
)
. The new canonical one-

form is

a
(1)
Ak
→ πk , a

(1)

πk
→ 0 , a

(1)
θ → pθ,

a(1)
pθ
→ 0 , a

(1)
λ → ∂kπ

k + epθ (42)

and the first iterated symplectic matrix is written as

f
(1)
AB (x,y) =

δa
(1)
B (y)

δξA(1) (x)
− δa

(1)
A (x)

δξB(1) (y)
(43)

=


0 −δkl 0 0 0
δlk 0 0 0 −∂xk
0 0 0 −1 0
0 0 1 0 e
0 −∂xl 0 −e 0

 δ3 (x− y)



12 G. E. R. Zambrano y B. M. Pimentel

The modified symplectic matrix after the first iteration is again
singular. As it can be seen, there is one new zero-mode associated
to this matrix and it is written as:

ṽA(1) (x) =
(
∂xkα (x) 0 −eα (x) 0 α (x)

)
, (44)

where α (x) is a new arbitrary quantity. A new constraint can be
result from (44), then, we have that

Ω(1) =

∫
d3xṽA(1) (x)

δ

δξ
(1)
A (x)

∫
d3yH(1) (y)

=

∫
d3xα (x)

{
∂xi ∂

x
kFki (x)−M2∂xi

[
Ai (x) +

1

e
∂xi θ (x)

]
+M2∂xk

[
Ak (x) +

1

e
∂xkθ (x)

]}
= 0 (45)

Thus, Ω(1) is identically zero, then, the relation (45) indicates that
there are no more constraints associated in the theory and as a
result the symplectic matrix remains singular what characterizes
the theory as a gauge theory.

In order to obtain a regular symplectic matrix a gauge fixing
term must be added to the symplectic potential. We choose the
gauge Θ = ∂kAk + M2

e
θ = 02. Using the consistency condition

by Lagrange multiplier η (x), which will increase the size of the
configuration space, we obtain the second iterative Lagrangian, i.e.:

L(2) = Ȧkπ
k + θ̇pθ + Ω(0)λ̇+ Θη̇ −H(2) (46)

where

H(2) = H(1)
Θ=0 =

1

2

(
πk
)2

+
1

2

e2

M2
p2
θ +

1

4
FklFkl

+
1

2
M2

[
Ak +

1

e
∂kθ

]2

. (47)

2See equation (21).
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As before, we set the symplectic variable ξ
(2)
k =

(
Ak, π

k, θ, pθ, λ, η
)

and from (47) we determine the canonical momenta

a
(2)
Ak
→ πk , a

(2)

πk
→ 0 , a

(2)
θ → pθ,

a(2)
pθ
→ 0 , a

(2)
λ → ∂kπ

k + epθ,

a(2)
η → ∂kAk +

M2

e
θ. (48)

Now, from (48) we obtain the second-iterated symplectic two-form
matrix

f
(2)
AB (x,y) =

δf
(2)
B (y)

δξA(2) (x)
− δf

(2)
A (x)

δξB(2) (y)
(49)

=



0 −δkl 0 0 0 −∂xk
δlk 0 0 0 −∂xk 0

0 0 0 −1 0 M2

e

0 0 1 0 e 0
0 −∂xl 0 −e 0 0

−∂xl 0 −M2

e
0 0 0

 δ3 (x− y)

This matrix is still antisymmetric because f
(2)
AB (x,y) = −f (2)

BA (y,x).
Since this matrix is not singular, we finally have the inverse matrix
after a laborious calculation as follows:

[
fAB(2)

]−1
(x,y)=



0 ∆kl 0 −M2

e

∂xk
Dx

0 − ∂xk
Dx

−∆kl 0 e
∂xk
Dx

0 − ∂xk
Dx

0

0 e
∂xl
Dx

0 ∆ 0 e
Dx

−M2

e

∂xl
Dx

0 −∆ 0 M2

e
1
Dx

0

0 − ∂xl
Dx

0 −M2

e
1
Dx

0 − 1
Dx

− ∂xl
Dx

0 − e
Dx

0 1
Dx

0


δ3 (x− y) ,

(50)
where

∆kl ≡ δkl −
∂xk∂

x
l

Dx

, ∆ ≡ 1 +
M2

Dx

. (51)

On these relations and Eq. (58), we immediately identify the ge-
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neralized brackets as follow:{
Ai (x) , πj (y)

}
=

(
δij −

∂xi ∂
x
j

Dx

)
δ3 (x− y) ,{

θ (x) , pθ (y)
}

=

(
1 +

M2

Dx

)
δ3 (x− y) , (52){

Ai (x) , pθ (y)
}

= −M
2

e

∂xi
Dx

δ3 (x− y) ,{
πk (x) , θ (y)

}
= −e ∂

x
k

Dx

δ3 (x− y) .

which are equivalents with (29) and (30).

Remarks and conclusions

In this paper we have analyzed the canonical structure of the
gauge invariance Proca’s electrodynamics. We have recover the gau-
ge invariance adding a mass term with the help of an auxiliary field
which has an appropriated gauge transformation.

We constructed a consistent Hamiltonian formulation for the
theory that includes the constraints and their algebra. The Hamil-
tonian that generates the evolution of the system and considers the
full gauge freedom is determined. We studied the problem of gauge
fixing for the theory, determining the appropriated gauge condition
which result of the motion equations.

The fundamental Dirac brackets for the dynamical variables ha-
ve been constructed and are compatible with the constraints.

In this paper we have studied Proca electrodynamics gauge in-
variance with the symplectic quantization method. We have shown
that the symplectic approach is more intuitive in the sense that the
constraints are related to the generalized canonical momenta and
the Lagrange multipliers to the symplectic variables in the enlar-
ged symplectic structure of the constrained manifold. For the Proca
electrodynamics we have shown that the number of the constraints
is fewer and the structure of these constraints is very simple because
we do not need to distinguish first or second class constraints, pri-
mary or secondary constraints, etc. We have easily obtained the Di-

rac brackets by reading directly from the inverse matrix
[
fAB(2)

]−1
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of the symplectic two form matrix. Finally, we can observe that
the potential symplectic obtained at the final stage of iterations is
exactly the Hamiltonian which is obtained through several steps
with the usual Dirac formulation of the constrained systems.
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A. Faddeev Jackiw formalism

We start by reviewing very briefly the Faddeev-Jackiw (FJ)
quantization method [12, 13] in field theories A general first or-
der Lagrangian in time derivative is described by the symplectic
variables ξA is given by

L(0) = a
(0)
A (ξ) ξ(0)A −H(0) (ξ) , (53)

where ξi = ξi (x) = ξi (x, t) are the field variables. Based on the ca-
nonical one-form aA (ξ) the symplectic matrix fAB (x, y) is defined
by

f
(0)
AB (x, y) =

δa
(0)
B (y)

δξ(0)A (x)
− δa

(0)
A (x)

δξ(0)B (y)
, (54)

which is called the symplectic two-form. Generally, the geometric
structure of the theory is fully described by the canonical genera-
lized canonical momenta a

(0)
A (ξ), and the symplectic matrix f

(0)
AB

gives the geometric structure of the phase space. Using variational
principle, we obtain the dynamical equations of motion:

f
(0)
AB (ξ) ξ̇(0)B =

δH(0) (ξ)

δξ(0)A
. (55)

Theories are classified as unconstrained and constrained depending
on whether f

(0)
AB has an inverse or not, respectively. In the uncons-

trained case, when f
(0)
AB has an inverse, we can obtain the equations

of motion such as

ξ̇(0)A (x) =

∫
d3y

[
f (0)AB (x,y)

]−1 δH(0) (ξ)

δξ(0)B (y)
, (56)
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In this case, we can obtain the generalized symplectic brackets as

ξ̇(0)A (x) =
{
ξ(0)A (x) ,H(0) (ξ)

}
=
{
ξ(0)A (x) , ξ(0)B (y)

} ∂H(0) (ξ)

∂ξ(0)B (y)

=
[
f (0)AB (x,y)

]−1 ∂H(0) (ξ)

∂ξ(0)B (y)
. (57)

Compared (55) with (57) we have the relations between the sym-
plectic two-form matrix and the generalized symplectic bracket{

ξ(0)A (x) , ξ(0)B (y)
}

=
[
f (0)AB (x,y)

]−1
, (58)

which correspond to the Dirac brackets [15].
When the symplectic matrix is singular leads us to constraints

[14], which can be expressed as

Ωα ≡
∫
d3x vAα (x)

δ

δξ(0)A (x)

∫
d3yH(0) (ξ) = 0, α = 1, 2, .....,m

(59)

where vAα (x) are the zero-modes associated to the matrix f
(0)
AB and

α denotes the the number of constraints. The quantities Ω(α) are
the constraints in the FJ symplectic formalism, and are introduced
in the Lagrangian by using Lagrange multipliers:

L(1)
(
ξ, ξ̇
)

= a
(0)
A (ξ) ξ(0)A − λαΩα −H (ξ) . (60)

In this point one can run the symplectic algorithm once again. En-
larging the configuration space by considering the set of variables
ξA(1) =

(
ξ, λ(α)

)
, by redefining the λ(α) variables, relating to ζ̇ we

can set
Λα → −ζ̇α,

therefore, the first iterated lagrangian is written as

L(1) = a
(0)
A (ξ) ξ̇(0)A+Ωαζ̇

α−H(1) (ξ) = a
(1)
A (ξ) ξ̇A(1)−H(1) (ξ) , (61)

where
H(1) (ξ) = H (ξ)

∣∣∣
Ω(α)=0

. (62)
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In terms of the new set of dynamical variables ξA(1) one can now
introduce a new symplectic matrix as,

f
(1)
AB (x, y) =

δa
(1)
B (y)

δξA(1) (x)
− δa

(1)
A (x)

δξB(1) (y)
. (63)

If the matrix f
(1)
AB is regular, then we have succeeded in eliminating

the constraints. If not, one should repeat the procedure above as
many times as necessary. If we get the nonsingular fAB after a finite
number of iterations, we stop the iterations and obtain the genera-
lized symplectic brackets from the inverse of fAB, the brackets are
exactly those the Dirac brackets. On the other hand, in some cases
the iterations are repeated infinitely. In such a case, the zero mode
plays an important role, generating a gauge symmetry. Then, we
need some gauge fixing conditions Φσ with σ = 1, 2, ... number of
gauge conditions. Now, the basic spirit of the method is maintained
exactly the same because the gauge fixing conditions are nothing
but a kind of constraints. We may write the gauge fixed Lagrangian
as follows:

L(k) = a
(k)
A (ξ) ξ̇A(k) + Φσχ̇

σ −H(k) (ξ) , (64)

where the subscript (k) denotes the iterations numbers the generate
the modified symplectic matrix and the potential symplectic at the
(k) iteration

H(k) (ξ) = H(k−1) (ξ)
∣∣∣
Ω

(k−1)
α =0

. (65)

The relation (64) is most general form of the first order Lagran-
gian. Note that the constraints and the gauge fixing conditions are
considered as the generalized canonical momenta, while the Lagran-
gian multipliers are as their conjugated variables in the symplectic
formalism. After following the procedure as above, we obtain the
generalized symplectic brackets, which are the bridge to the quan-
tum commutators.
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