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Flipped versions of the universal 3-3-1 and the left-right symmetric models in [SU(3)]3:

a comprehensive approach
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By considering the 3-3-1 and the left-right symmetric models as low energy effective theories of the
SU(3)c ® SU(3)r ® SU(3)r (for short [SU(3)]*) gauge group, alternative versions of these models
are found. The new neutral gauge bosons of the universal 3-3-1 model and its flipped versions are
presented; also, the left-right symmetric model and its flipped variants are studied. Our analysis
shows that there are two flipped versions of the universal 3-3-1 model, with the particularity that
both of them have the same weak charges. For the left-right symmetric model we also found two
flipped versions; one of them new in the literature which, unlike those of the 3-3-1, requires a
dedicated study of its electroweak properties. For all the models analyzed, the couplings of the Z’
bosons to the standard model fermions are reported. The explicit form of the null space of the
vector boson mass matrix for an arbitrary Higgs tensor and gauge group is also presented. In the
general framework of the [SU(3)]® gauge group, and by using the LHC experimental results and EW
precision data, limits on the Z’ mass and the mixing angle between Z and the new gauge bosons Z’
are obtained. The general results call for very small mixing angles in the range 10~2 radians and

Mz > 2.5 TeV.

PACS numbers: 12.38.-t 11.10.St 11.15.Tk, 14.40.Lb, 14.40.Df

I. INTRODUCTION

The quantization of the electric charge is an indica-
tion that the Standard Model (SM) of the strong, weak
and electromagnetic interactions based on the local gauge
group SU(3)c ® SU(2)r @ U(1)y, might be embedded
into a larger gauge structure [I [2]. This feature can
be explained by grand unified theories (GUT) which, in
general, have a unified coupling constant for all the in-
teractions at an energy given by the GUT scale which is
around 10'°GeV for supersymmetric models. One of the
most important results of the GUT is the prediction of
the neutrino masses in the (107° — 102?)eV range [3} 4],
which is compatible with the present constraints on the
neutrino masses [5].

At the late seventies the unification theories were under
suspicion owing to the prediction of topological defects
which are typical GUT predictions; from these consider-
ations the cosmological inflation scenario was born [6],
which proved to be quite useful to solve other cosmolog-
ical problems, showing in this way that the insight pro-
vided by GUT is in the right direction. In general, the
unification models based on a simple group, in particu-
lar the non-supersymmetric models, lead to a detectable
proton decay [3]. However, when the group is the prod-
uct of two or more simple groups, the structure not nec-
essarily contains gauge bosons that mediate proton de-
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cay [IL[7L[§]. In this context, the trinification group based
on the semisimple group SU(3)c x SU(3)L % SU(3)RE|
[9H12], results quite convenient from a phenomenological
point of view owing to the fact that the baryon number
is conserved by the gauge interactions [7]. The original
SU(3)r x SU(3) g models with a lepton nonet were first
considered by Y. Achiman [I0} [T1]; however, earlier work
on the [SU(3)]? group can be traced back up to the sem-
inal works in references [13| [14]. Besides, this model has
been flexible enough to adjust recent LHC anomalies, for
example, the di-photon excess at 750 GeV [I5] and the
di-boson excess at 1.9 TeV [I6, [17].

The different [SU(3)]® models have a rich phenomenol-
ogy in the Higgs and neutrino sectors [0, 17, [I8]; its rank
is 6 (equal to F), hence the model predicts, in addition
to those already present in the SM, two additional heavy
vector neutral gauge bosons which constitute one of the
most important sources of constraints for the model. In
this paper we undertake a detailed study of the couplings
of these new gauge bosons to the SM fermions, in order

to put Electroweak (EW) and collider constraints on
[SUB)P.

In general, intricate models are not appealing. A
way to look for new models with a moderate content
of fermions is to consider flipped versions of the already
known models in the literature [I9H26]. An exhaustive

1 In trinification, the equality of the coupling constants at the

unification scale is assumed, which is equivalent to impose an
additional discrete Z3 symmetry (see [9] and references therein).
In the present work such assumption has not been made.
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account of the phenomenology of these models has not
been done so far. Our work represents a first step in
that direction. The first alternative model was “Flipped
SU(5)” [19] 27], which produces a symmetry breaking
for SO(10) GUT down to SU(5) ® U(1), where the U(1)
factor contributes to the electric charge, and as such, its
basic predictions for sin? @y and the proton decay are
known to be different from those of SU(5). In the present
work, we study the flipped versions of the universal 3-3-1
and the left-right symmetric models in [SU(3)]3. That is
equivalent to the study of the the different embeddings
of the SM fermions in the multiplets when the [SU(3)]?
gauge group breaks down to the SM. As a consequence
of the reduction in the effective group symmetry, these
models predict new Z’ bosons at low energies. For a given
7' mass, these vector boson resonances have well deter-
mined predictions in low energy experiments and collid-
ers. For universal models in the Fg context, a systematic
study of its alternative models and further references can
be found in [25].

The heavy vector bosons Z' are a generic prediction
of the physics Beyond the SM (BSM) with an extended
EW sector [28]. The detection of one of these resonances
at the LHC will shed light on the underlying symme-
tries of the BSM physics. For the high luminosity regime
the LHC will have sensitivity for Z’ masses under 5
TeV [29, B0]; thus, a systematic and exhaustive study
of the EW extensions of the SM with a minimal con-
tent of exotic fields is mandatory. By imposing univer-
sality on the EW extensions of the SM (as it happens
in the SM), the possible EW extensions are basically the
Eg subgroups [31H33]. [SU(3)]? is one of the four maxi-
mal Fg subgroups; so, an exhaustive study of its neutral
current structure is convenient, something done in the
present work. As we will show, the couplings of addi-
tional gauge bosons to the SM fermions are independent
of the Higgs sector and just depend on the [SU(3)]? sym-
metries. We also present LHC and EW constraints for
these models.

Finally, let us mention that unification is not implicit
in our assumptions; so, non-universal gauge coupling
strengths are used in this study.

The paper is organized as follows: in Section [T we
review the [SU(3)]?> model and its subgroups. In Sec-
tion we calculate the EW couplings for Z’ bosons in
the [SU(3)]? subgroup SU(3)c @ SU(3), x U(1)@U(1)'.
In Section [[V] we calculate the eigenstates of the most
general [SU(3)]® Higgs potential and, for considering dif-
ferent cases, it is shown that these eigenstates are inde-
pendent of the Higgs sector. It is also shown that the null
space of the [SU(3)]® Higgs potential corresponds to the

2 Another convention assigns leptons ~ (1,3, 3), quarks ~ (3,3,1)
and antiquarks ~ (3,1,3), in this case the assignments of the
SU(3)¢ representation of the quarks are interchanged with re-

photon. In Section [V] we calculate the EW couplings for
the left-right model and its alternative models. In Sec-
tion [VI] we impose EW and collider constraints on the
Z-7' mixing angle and on the mass of the new neutral
7' gauge bosons. Section summarizes our conclu-
sions. Four technical appendixes are presented at the
end of the manuscript, in particular, in Appendix [C] the
null vector of the EW vector boson mass matrix is built
for an arbitrary Higgs tensor and gauge theory.

II. THE [SU(3)]* GROUP

The [SU(3)]® group [9, BT, 34] SU(3)c @ SU(3). ®
SU(3)r = [SU(3)]? is a maximal subgroup of Fg [35]
with the same rank and fundamental representation.
The three factor groups are identified in the follow-
ing way: the first one corresponds to the vector like
QCD color group SU(3)¢, the same as in the SM, and
the other two can be identified with the left-right sym-
metric flavor group SU(3); ® SU(3)r extension of the
SU(2)r, ® SU(2)g, where SU(2)r in the SM is such
that SU(2)r, € SU(3)y. Using X;, ¢ = 1,2,...,8 as
the eight Gell-Mann matrices for SU(3) normalized as

Tr(A;A;) = 268;;, the charge operator for the [SU(3)]?
group may be written as
Asr, _ AsL A3k Asm
=g Bl g PR g 2R 1
Q=9 5272 935 (1)

In this way, each family of fermions is assigned to a 27
as

27 =(3,3,1) & (1,3,3) & (3,1,3) ,

where according to , the particle content of each term
is:

(3a3’1) = (u,d, D)E s

(37 173) = (uc’ dc’ DC)’E )

N° E- e
(1,3,3) = | BY No 4, | |
et ve M)

which corresponds to the 27 states in the fundamental
representation of Fg.

A. 3-3-1 models from [SU(3)]*

spect to the SM. In the present work we follow the Robinett and
Rosner convention [20] [36].



U(1)'[25] Q' Charges

Ur 2IRs (et,d®,L)+1 + (I,q, D, D¢, M®)o 4 (vS,uc, L) —1

Ur 2Urs3 (v, D, L)1+ (L, q,u®, D,e)o + (MO,dC,Z),]

Ua 2VRs3 (A{O,uc,l)+1 + (L,q,d D, Ve)() + ( , D¢ Z) 1

Uss 2v/31Ls (l,z, L)_1+ (u%,d°,D%o + (e, v, ﬂ[0)+2 +q+1+ D2

Unp | ~2V3Ins (5,0, T, L)1 + (g, D)o + (1, M) + (u,d°) 1 + D2

U217 72\/5URS (AI Vfale) 1+ (q D)O + (Z € )+2 + (DC d()+1 +ul 2

Upz | =2V3Vks (M et 1, ) 1 + (¢, D)o + (L, v8) 42 + (D%, u) 11 +d2y
U(1)s1ir Ipr (L, L, M®)o + qy1/6 + (u,d° )71/6+( ,V§)+1/2+171/2+DC+1/3+D,1/3
U(1)s1s Usr (I, L,e")o + g6 + (D% d%) 16 + (M°,v8) 1172 + Lo12 + uSy s + D_vys
UWsia | Ver  |[(LL,vE)o +apas6 + (Du) 16 + (M° et ) 1o+ Loajo+diys +Dovys

TABLE 1. Charge assignments for the fundamental representation of the [SU(3)]® group, the same 27 of the Es group, under

different U(1) symmetries.

For the first family, ! is the SM lepton doublet, 17
doublet. The charge conjugated of the corresponding right handed weak-isospin singlets are e,

= (v,e7) and ¢ = (u,d)” is the SM quark
v¢, u® and d°. The heavy exotic

particles are vector under the SM group, the heavy down quark, D ( D¢), is an weak-isospin singlet (charge conjugated of

the corresponding right handed chiral projection) of charge —1/3 (+1/3), L =

(N°, E7)T and L = (E°, N°)T, are additional

weak-isospin doublets where L have the the same quantum numbers of the SM lepton doublet, and M? is a singlet under the

SM.

Let us now consider the decomposition of the [SU(3)]?
gauge group into a subgroup G which survives at an in-
termediate energy scale between the EW scale (245 GeV)
and the unification scale; that is [SU(3)]®> D G.

Suppose first that G' corresponds to the universal 3-3-1
model [37]

G = SU(3)c ® SU(3).
C SU(3)c @ SUB3)L

@U(1)x
@UL)a@U)s . (2)
By using that SU(3) — SU(2), ® U(1), the triplet in
each nonet goes to a doublet with charge b and a singlet
with charge —2b, i.e., 3 = 2, + 1_95,. Next by breaking
the remaining spin symmetry, i.e., SU(2), — U(1)4, the
doublet goes to a couple of singlets, i.e., 2, + 1_9, —
lap + 16 + 1o,—25. Thus, when SU(3)r breaks into
U(1), ® U(1), the following branching rule applies:

8r — (@)(b) + (—a)(B) + (0)(-25) ., (3)

which implies:

(3737 ) — (3a35070) )
(3,1,3) — (3,1, —a,—b) ® (3,1,a,—b) & (3,1,0,2b) ,
1,3,3) — (1,3,a,b) ® (1,3, —a, b) & (1,3,0, —2b) ;

because the nonet (3,3, 1) is simultaneously a color and
a SU(3)y, triplet, the unique possibility for the fermion
assignment is

(3,3,1) —(3,3,0,0) = (ur,dr, Dr)§
For the nonet (3,1, 3) there are three different fermion as-

signments in consistency with the three different SU(2) x

spin symmetriesﬂ B6), X =1,U and V, i.e.,

(3,1,3) — (3,1,—a,—b) ® (3,1,a,—b) & (3,1,0, 2b)
(d%)—a,—b ® (uf)a,—b © (DF)o,26 X=1,

=9 Df) -0, ® (d)a,—6 ® (u})o2e , X=U,
( ) a—b@(D )a,—b@( )02b7 X=V.

We label the three possible fermion assignments with
X =1,U,V, which denote weak-I-spin, weak-U-spin and
weak-V-spin, respectively. As can be seen, the [SU(3)]3
gauge group produces three different low energy 3-3-1
fermion structures; the ordinary one presented in refer-
ence [37], and two more new in the literature as far as we
know.

In a corresponding way, there are three different
fermion assignments for the nonet (1,3, 3), i.e.,

(1,3,3) — (1,3,a,b) ® (1,3, —a,b) & (1,3,0, —2b)
(Ep, N ve )by @ (N2, Ef ef) 0,
@(eZ’VELng)a—Qb ) X=1I,
_ (eivyeL’Mg)gb (Eg,NECaVEL)Ta,b
@(NgaEJr eL)oT w, X=U,
(N Ez—’eL)gb@(eLvVebML) a,b
S(EL NP VEL)g oy, X =V

In correspondence with Eq. , the electric charge is now
given by

2dx

XRs
\/§R8

(4)

1
— I +cxXps+

Q:IL3+\/§

3 In Appendix [A] we briefly review the SU(2) weak-I-spin (or
Isospin), weak-U-spin and weak-V-spin symmetries in SU(3).



where X g3 and X g are the fermion charges under U(1),
and U(1), respectively, as it is shown in Table[l} and cx
and dx are

Cr 1, d[:1/2,
cv= 0, dy =-1,
CV:—]., dV:1/2,

where we have taken b = 1/(2v/3) and a = 1/2 in
order to have the charges properly normalized as in
Fg. In Eq. I3 and Ipg represent the charges of
the fermions in the 27, when these operators act on the
triplets; in the nonets the corresponding tridimensional
representation are Asp/2 and Agr/2, respectively [see
Eq. } In the same vein in Eq. with X = I, the
charges Ips and Igrs correspond to Asp/2 and Agg/2,
respectively. The difference between the weak-U-spin
and the alternative 3-3-1 models (the normal and the
flipped one) is the interchange of fermions between the
multiplets, something which does not affect the low
energy phenomenology for the neutral sector as we will
see in the next Section.

B. Left-right symmetric models from [SU(3)]?

A further step is to take G = SU(3)¢ ® SU(2)r, ®
SU2)x @U(1)y ®U(1)4, which is obtained by using the
branching rule for SU(3)r r — SU2)r,x @ U(1)y,4 as

3L—>(27f)+(17_2f) ) 3R—>(2’g)+(17_29) )

which produces three different ways to reach the U(1)y
in the SM

(3,3,1) — (3,2,1, £,0) @ (3,1,1,~2f,0) ,

3,1,3) — (3,1,2,0,—9)) & (3,1,1,0,29) ,

(1,3, )—)(1,2 3 —f9) @ (1,2,1,— f, —2g)
®(1,1,2,2f,9) ® (1,1,1,2f,~2g) .

The underlying breaking behind these branching rules
are:

A

1) —6, 2fa10)
) —>(3 Lo, )@(37107129) )
,3) —(1,2-5,24) & (1,27, 1_2)

@ (1, 12fa ) (171—2f7129) :

(37 1—2f7 10) 5

A/.\

Now the definition of U(1)prx =U(1); +U(1), for f =

g = 1/6 conducts to the alternative left-right symmetric

models
SUB)c

®@SU(2),®@SU2)x @ U(1)BLx ,

with the following particle content for the quark sector:

(3,3,1) =(u,d, D), — (3,2,1,1/6) ®

(u,d) @ Dy,

=(u®,d* D) — (3,1,2
(u®,d°)r © D¢,

=< (D% d%) @ u§ ,
(u®, D% & ds ,

(3,1,1,-1/3)

(3,1,3) ~1/6) @ (3,1,1,1/3)

)

I
v,
v

SRR
Il

For the lepton sector we have:

N° E— e~
Et+ NO°
+ c 0
e ve M° )
—(1,2,2,0) ® (1,2,1,-1/2) & (1,1,2,1/2) ®

Et+ NOe o Ve
NO E- . e~

@Mg, X=1I,

ve NO E*
€ .7\{0 c
= <e E)L@<NO> nve)

@et, X=U,

Et v, NOe
( NO e ) @ ( Ei ) @ (Mg’ e+)L
L L

o v, X=V,

(1,3,3) =

(1,1,1,0)

In the left-right model SU(2);, ® SU(2)r
SU(3)r, ® SU(3)g (in our notation SU(2);, ® SU(2); ®
U(1)prs ) the weak-isospin subgroup (X = I) has been
used. That is the correct choice for the left-handed sec-
tor, but not the only choice for the right-handed one as
we have shown already. The weak-V-spin symmetric case
is a very well known example where SU(2)y is used in-
stead of SU(2)g; this model is known as the Alternative
left—rightﬂ(ALR), which was found in a different way in
Ref. [22]. The case X = U is a new alternative model.

®U(1)37L C

III. 3-3-1 NEUTRAL CURRENTS

For the [SU(3)]? group the interaction Lagrangian — £
is

I I X X
gLJlIB,uALé + gLJileAL% + QRJJiz(suAR?fL + gRJI)%(&LARéL
=913, ALy + 9 Ty B" + g2 Jop, 2" + g3 J3, 2" . (5)

I X
where Aly,, Alg,, Afs, and Agg, are the correspond-
ing vector gauge bosons associated with AL, AL o A%,

4 Or alternate left-right Model.



and A3g, respectively (for a precise definition see Ap-
pendix. The neutral currents in are given by

s =2 Fowlel™ (VP + @™ O Prlfi s (6)

T =D Jowlet™ (P + ™ () Prlfi,  (7)

where the chiral charges, e, r, are shown in Table

in Appendix [D1] Notice in our notation that the bold
labels L, R refer to the left and right chiral projections
and L and R refer to different SU(n) group structures.
By means of an orthogonal matrix we can rotate from
the [SU(3)]? basis of the neutral vector bosons, to a basis
where one boson corresponds to the hypercharge, i.e.,

Ail}/t Ain,
B,u _ OT AiSM (8)
z, A |
z, A%s,
where the orthogonal matrix is
10 0 0 1 0 0 0
o= 01 O 0 0 cosa —sina 0
0 0 cosp —sinp 0 sina cosa O
0 0 sinf8 cosp 0 O 0 1

(9)

It is important to realize that in order to recover the par-
ticular case X = U, corresponding to the 3-3-1 models,
it is necessary to take cos 3 = —1. By replacing this
expression in Eq. we obtain

g'B,JY = B* (ngisu cos «v

+9RJ1§8M sinozcosﬁ—i—gRJ])ggu sinasin,b’) ; (10)

by equating with

1 2dx
JYIL = 7J£8;L + CXJI)§3,LL + 7‘]1)2(8# ) (11)

V3 V3

we get the following three equations:

1 , 2d x , .
—¢g =grcosa , ——¢g = gprsinacosf 12
39 TIr 7 IR B (12)
cxg =grsinasinf . (13)

From these equations we have,

[N, g
9r =\ =9 > cosa = )
F V3gz

2dx
cosf=—= =dx , (14)
VN

where N = (3c% +4d%) =4, and F =3 — (¢'/g1)?. Tt
is worth to notice that in the three cases considered, i.e.,
for any value of X,

2914 _ 2gpsinfy
In V3g2 —g?  VAcos? Oy — 1 ’

From the equations and () it is possible to get ex-
pressions for the neutral currents associated with the Z’
and Z" bosons, respectively

(15)

I X
g2J2u = — grJd1s, sina + grJgg, cos acos B
+ gRJf{M cosasinf ,

93J3u = — grJ Rz, 510 B+ gR s, c08 B (16)

From these relations and from Table [V] we can obtain
the explicit expressions of the vector and axial charges for
the Z’ and Z” gauge bosons, these charges are shown in
Tables [VI and [VII] respectively. The collider an EW con-
straints are shown in Table [[T| and Figure [} A detailed
analysis of these constraints is presented in Section [VI
Finally, we can make use of the defining condition of the
orthogonal matrices, O~! = O, and use the matrix
to rotate from the [SU(3)]® basis for the neutral vector
bosons to the SM basis, i.e.,

AH Aib‘u
Zfb =w.oT A)L(Su
Zﬂ ARSM
Z;/L/ Aﬁw
sinfy cosfy 0 0 A£3u
. I
_ COS@W 7Sln9W O 0 OT Ag(gu , (17)
0 0 10 ARSH
0 0 01 Aﬁgﬂ

where W and 6y are the Weinberg matrix and the Wein-
berg angle, respectively.

IV. EIGENSTATES OF THE VECTOR BOSON
MASS MATRIX IN [SU(3))?

In the last section we saw that it is possible to obtain
the SM fields A, and Z, and the extra neutral vector
bosons Z;, and Z;] by rotating the [SU(3)]* basis for the
vector fields. By making use of some viable cases for
the Higgs potential in the present section, we will show
that, independent of the Higgs sector, the null space of
the vector boson mass matrix corresponds to the photon,
i.e., by rotating the photon component (4,,0,0,0)7 in
the SM basis to the [SU(3)]? basis, we obtain the null
space of the vector boson mass matrix. This is a particu-
lar example of a more general theorem which is shown in
Appendix [C] In that sense, the present section is useful
to provide a context for this demonstration. The same
is not true for the eigenvalues of the vector mass matrix



which strongly depend on the Higgs sector. In the funda-
mental representation of the [SU(3)]® group the neutral
components are in the leptonic sector (1,3,3); if we put
the Higgs field ® in the same representation the corre-
sponding transformation properties are

Ur,r = exp (—i0*(2)\; r/2) . (18)

Requiring gauge invariance, the covariant derivative is

= ULdU},

D,® =09,0 — % (gLA" AL ® — gr®@A“ AL L) L (19)

which transforms in the same way as the Higgs fields,
i.e.,

(D,®) =U.D,3U} , (20)
as it is required to build the gauge invariant kinetic term.
The Higgs sector of the [SU(3)]? model contains two com-
plex scalar field nonets, ®; and ®;. The most general
vacuum expectation value (VEV) for these fields are [I§]

U1 0 0 (%) 0 0
(@1)=10 b 0 |, (P)=]0 b b3 |, (21)
0 0 M[ 0 MR M3

where @, is diagonal in view of the fact that it is always
possible to bring one Higgs VEV into its diagonal form
by using the SU(3);, x SU(3)r symmetry. The vector
boson masses came from

L=+ Tr[D.&(D') o=@y . (22)
1=1,2

which is invariant under the already mentioned gauge
transformations [Egs. and (20)]. We can get rid of
the kinetic mixing term Tr [D,®1(D"®;)'] by redefining
the scalar fields in order to cast the Lagrangian into the
canonical form. By a rotation in the adjoint representa-
tion we obtain the simplified expression

Licl(@2), (@) = ;(

+ (gLALSM + gRAR8u) b
2
+ (9rARs, + 90 ALs,)” M7
2
+ (QLALsu gRARSu) (b7 + b3)
2
+ (gLA£8u RA{%S}L) (M32 + M?)
2
+ (QLAgsu QRA%su) (v1 ‘Hf%)) ) (23)
where AYL,R)su = (AIL R)Su \fA(L Ry3.)/2 and
AgijR)S# = —(AgL’R + \fA L R)S#)/Z By writing the

kinetic part in terms of ARSM and ARS;u the Higgs co-
variant derivative can be written as

=%AT~M-A, (24)

where A = (Al3,Alg, Afg,ARs,)", and M is the gauge
boson mass matrix whose elements are given by

2
My, zig%(b% + b3 4 b2 407 4+ 03)

-2 5.0 2 2
——g7. (b7 + 05+ b5 —
4\/§9L(1 2 3

2
— b3 4+ b2 — 2032 —
4\/§ng1%( 1 2 3

-2
My :TQLQR(bg + b% + U% + U%) )

2
4\/5
M.

34 = 4\f

My = 12gL(b2 + b3 + b3 + AM3 + AM?

+4MR+U1 +v2),

2 2
M12 = ’Ul —’U2) 5

2 2
M13: 1}1 —112) ,

Msy =

grgr(b + b3 —2M3 —vi —v3) ,

gR(b2 + b3+ Mg — v} —v3) ,

M33 1229,%(172 + b3 + 4b3 + AMZ + AMF
+ M3 +vi +03),

Mo :TingR(b1 + b3 — 2b3 + 4M3 + AM}
—2Mp + v} +03)

2
My, :igz(bi + b5+ M3 + 07 +03) .
The null space of the mass matrix M is

A

1 1 1
ﬁun:N(gT7 V39’ V3gr’ gR)A#( ) (25)

where A*(x) is an arbitrary vector field which, as we will
see later, corresponds to the photon, and A is an arbi-
trary normalization. We can obtain a similar expression
for the null eigenvector by inverting Eq.

A, 9z
R 8 =g, sin Oy ‘/‘;’1“ A,
V3gr
0 1
9r
cot? 9
0 QLW
2 _
R ZO“ =g ;W Vo | 7, (26)
cosow ng
0
«JR

where R = (W . (’)T)T In order to get this result it
was necessary to impose ¢’ = gr, tan6y,, which is also
satisfied in the SM. This shows that the null vector cor-
responds to the photon as we previously said. By pro-



ceeding in a similar way for Z;, and Z}] we find

0 04
0 _
R| | =5 tenbw | 0 | 2
H V3gr,
0 1
gL
0 0
0 0 "
R = z" . 27
0 —V3/2 1" @7)
z] 1/2

These eigenvectors are the same for any Higgs sector;
we verify this for some particular cases which are easy
to tackle analytically. By taking vy = w9, by = bs,
by = 0, My = Mg and M3 = 0, there are two limits
My — oo or b3 — 0o, which do not correspond to a re-
alistic potential; however, they serve us to check that
in both cases we obtain the eigenvectors in Eq.
and Eq. . It is possible to build Higgs tensors in
the 37 x 31 and 3r X 3g representations, these terms
give masses to AV, = —(AL, — /3A4L,)/2 and AY, =
— (AL, — /3AL) /2, respectively; however, their contri-
bution to the vector boson mass matrix do not change
the present results.

V. ALTERNATIVE LEFT-RIGHT MODELS

As we already saw in Section [[I} by choosing other
SU(2) spin symmetries, it is possible to find alterna-
tive models to the left-right Symmetric model which have
been studied extensively [Il, B8H41]. The gauge group of
the low energy effective theory is G = SU(3)c®SU(2)L®
SU(2)x ® U(1)prx. In the literature the spin symme-
try SU(2); corresponds to SU(Q)RE and U(1)prs cor-
responds to U(1)g_r. The resulting model by choosing
X =V is known as the alternative left-right model [22]
as we already mentioned in Section [[ The case X = U
is a new model where U(1)pry corresponds to the Eg
lephophobic model (modulo a normalization which is im-
portant for the phenomenology). In this section we study
these models as low energy effective field theories for
[SU(3)]® [18, 42]. The neutral current Lagrangians for
these models are

—Lnc :gLJisﬂAﬁi, + gRJﬁspAﬁé“‘ + gl)i’(LJg’{LuAgg
=91 I} 5, ALy + g Ty B + g2J2, 2", X = 1,V
(28)
—Lnc ZQLJ£3MAQ§, + gRJgsuAgg + ggLJgLuAgli
=91} s, ALy + g Ty B + 922, 2", X =U .
(29)

5 We do not use the label R for this symmetry because the alter-
native spin symmetries also are subgroups of SU(3)Rg.

For X = U, the weak-U-spin operator Urs does not con-
tribute to the charge operator @; so, it is not mandatory
to take into account the corresponding current in the La-
grangian; however, Ugg is necessary in order to reproduce
the electromagnetic charges of the 27. For X = I and
X =V, from the [SU(3)]? charges we obtain

Q=Ir3+cxXp3+ Xpr ,
2 1
Q=Irs+ ﬁ(dU - i)XRS +XpL, X=U, (31)

X =1V, (30)

where
1 1

Its + —Xns ,
\/gLS \/g R8

The Xprx charges are not Fg normalized and as it can
be verified in Table[l] for X = I these charges correspond
to the (B — L)/2 ones, i.e., Ig;, = (B — L)/2. By means
of an orthogonal matrix we can rotate from the left-right
basis of the NC vector bosons to the (B, Z’) basis i.e.,

<Bp,> o (OLV)T <Ag;/;;>
- BL v ’
Z;L ALB,u

U
B)-or() o

where the orthogonal matrices are

A% cosy  sinvy U cosd  sind
Opr =1 .. , Opr=1 . .
sinvy —cos~y sind —cosd

By replacing this expression in Eq. we obtain

XBL X=LUYV. (32

9'BuJy =B* (grJRs, cosy + g B, siny) , (34)
g'B,JY =B* (gRJﬁgﬂ cosd + ggLJgL# sind) ,  (35)

For X =1,V and X = U respectively. By equating the
hypercharge current with

X X
Iy :CXJR:m + JBL,L )
2

Jyu 7

we get the equations

X=IV, (36)

1
(dU - 5)‘]1)%(8;1, + Jng , X=U, (37)

grcosy =¢'cx , gapsiny=g¢, X=I1V,

2
grcosd =¢'—=(dy —

V3

From these equations we get

) gprsind=g, X=U.

/ 1 1 2
COS'y:cXg—, —5 = 2—|—c—§,X:I,V.
dr g (ggL) 9dr
/ 1 1 3
6085:7\/39—, ?: 2+T’X:U
9r 97 (g5,)" Yk



Because ¢cx = 1 for X = I,V the right gauge cou-
pling must satisfy the inequality gr > ¢ = 0.357,
which is met in [SU(3)]3. For X = U the last equa-
tion implies gr > V3¢’ = 0.619, which automatically
excludes the [SU(3)]? value of the right gauge coupling,
i.e., gr = 0.435; however, the typical left-right gauge cou-
pling g1, = gr = 0.652 is still possible. From equations
and it is possible to get expressions for the
neutral current associated with the Z’

g2J2, = — gféLJé(Lu cosy + gRJI)%(Sp, siny
exJX
:thanW <aXJ1)§3M —_ XBLM) N X = I,V 5
ax
goJo, = — gg‘ngLu cosd + gRJggu sin §
V3JE,
=gy, tany <O¢UJ§8“ + S Blp , X=U,
ay
(38)
where
p 2
ax = <R> cot? Oy — & [SU(3))?
gL EE—
1

—_—, X=LV,
V4acos? Oy — 1

2
ay :\/<9R> cot? Oy — 3, X=U. (39)
gL

From these expressions we can obtain the explicit expres-
sions for the vector and axial charges. For X = I and
gr = gr, these charges correspond to those of the left-
right model reported in reference [28]. In the present
work gp is determined by the [SU(3)]® symmetry, thus,
by replacing gr from Eq. in the expression above we
obtain (for X = I,V) the r.h.s expression of Eq. (39).
For sin® Ay = 3/8 we recover the unification matching
condition gy, = ggr for any X. However, in the present
work we make use of the MS value for the weak mixing
angle, sinfy, = 0.231, as we will explain below. From
these relations and from Table [V] we can obtain the ex-
plicit expressions for the vector and axial charges for the
Z' gauge boson, corresponding to the go.J,, current. For
X = I,V,U these charges are shown in the Tables [VIII]
[X]and [X] respectively. The collider and EW constraints
are shown in Table [[] and Figures 2] and [3] A detailed
analysis of these constraints will be presented in the next
Section.

VI. ELECTROWEAK AND COLLIDER
CONSTRAINTS

We analyze the previously considered neutral gauge
bosons and impose limits on the Z-Z’' mixing angle,
07_z, and on the masses of the neutral Z’ bosons, M.
In order to obtain the EW Precision Data (EWPD)

A My [GeV] sin 6,z

LHC| EW| sinfyz |sin 0352, |sin 055
Z3316:(2,925| 958|—0.00007|—0.0012| 0.0009
Z™ 12,492(1,134| 0.0003 |—0.0006| 0.0013
Z;  |2,525/1,204| 0.0003 [—0.0005| 0.0012
Z12,693(1,182| —0.0004 [—0.0015| 0.0006
Zrr 2,682 998| —0.0004 [—0.0013| 0.0006
Zrru |2.588| 935]—0.00001|—0.0011| 0.0008
Z3 212,532 447| —0.0004 [—0.0014| 0.0007

TABLE II. 95% C.L. lower mass limits on extra Z’ bosons for
various models from EW precision data and constraints on
sinzz:. For comparison, we show in the second column the
95% LHC constraints [43] which have been calculated accord-
ing to Ref. [29]. In the following columns we give, respectively,
the central value and the 95% C.L. lower and upper limits for
sinfy 4.

constraints, we make use of the special purpose FOR-
TRAN package, GAPP (Global Analysis of Particle
Properties) [44]. Details of the analysis can be found in
Ref. [45—48]‘3]

In the third column of Table [[Il the EW constraints
are shown. The quantum numbers of the model Z3314
correspond to those of U(1),;7 in Table [l We do not
put the superscript Tri on the 3-3-1 model because the
charges and the coupling strength of this model are the
same as the very well known universal 3-3-1 model [33]
37, [49], or the so called G model in references [29] [50].
The vector and axial charges for this model are shown in
Table [V1l

The quantum numbers of Z7™ correspond to those of
Uy in Table [l This model is known as the inert model
which does not couple to up-type quarks [20], and corre-
sponds to the second neutral vector boson or Z” in the
[SU(3)]® group. From Eq. for X = U we can see
that the coupling strength of Z7™ is go = gr = 0.435.
To get this number in Eq. we use for the weak mix-
ing angle the value sin 8y, = 0.231, which corresponds to
the MS renormalization scheme at the Z-pole scale. This
value is different of the traditional Fg coupling strength,

g2 =
ing the Fjg coupling strength correspond to those of Zj
in Table [l The inequality of the couplings is reflected
in the EW and LHC constraints. The axial and vector
couplings of this model are shown in Table [VII}

In Table [ we also distinguish between Zp g, which
assume the equality between the left and right gauge
couplings, i.e., gr = gr = 0.652, and ZFLFE for which
the right coupling strength is dictated by [SU(3)]3, i.e.,
gr = 0.435. This inequality between the left and right

\/ggL tanfy = 0.4615. The constraints by us-

6 An update of Ref. [45] will be presented soon.



couplings makes the chiral charges different which is the
reason of the disparity in the constraints in Table [[I}

We observe that for the alternative left-right
model (ALR) the EW constraints are weak compared to
other typical Es models in the literature (except the Zy,
which only has axial couplings to the SM particles and
the leptophobic model Zy), which is a well known feature
of this model [51].

As we already saw in Section [V} there is another al-
ternative model for Igy, = (B — L)/2, the Ugy, which, to
the best of our knowledge, has not been studied before.
This model is U-spin symmetric [i.e., SU(2)y |, and it
has as the main feature that it is leptophobic in the limit
gr — 0.6197. In the aforementioned limit ay — 0 and
the lepton couplings are proportional to agy; however,
because in this limit the quarks couplings go as ~ 1/ay,
in many observables these effects compensate each other
in such a way that the EW constraints are not trivial for
this model.

In Figures [1] and [2 the 90% exclusion contours for the
universal 3-3-1 model Z331¢, its corresponding Z = Z ™
in the [SU(3)]? model, in the left-right symmetric model
ZF4, and in its alternative version the Z3% , are shown.
The plots for Z[%} and the inert model Z;™ are com-
parable with Zpp and Z; in reference [45]. Because
gr > 0.619 as we already saw in Section[V] it is not possi-
ble to have the Zp gy coming from a low energy [SU(3)]?
effective model; however, by choosing gr = g, = 0.652
this model is feasible. The corresponding EW and LHC
constraints are shown in Table [[T| and Figure [3]

In Ref [43] the ATLAS detector data on dilepton pro-
duction was used to search for high-mass resonances de-
caying to dielectron or dimuon final states. The experi-
ment analyze proton-proton collisions at a center of mass
energy of 8 TeV and an integrated luminosity of 20.3 fb~!
in the dielectron channel, and 20.5 fb~! in the dimuon
channel. From this data they report 95% CL upper limits
on the total cross-section of Z° decaying to dilepton final
states. From these results, and following our earlier anal-
ysis [29], we obtain the 95% C.L. lower mass limits for
all the models mentioned above. These limits are shown
in the second column in Table [ and they correspond to
the red dashed line in Figures [I] and

VII. CONCLUSIONS

In this work we analyzed all the possible embeddings
of the 3-3-1 and 3-2-2-1 models present in the [SU(3)]3
gauge group. By considering the weak-U-spin and weak-
V-spin symmetries in SU(3)g besides the usual weak-
I-spin symmetry [best known as SU(2)g] we found two
flipped versions of the 3-3-1 model, with the particularity
that the Z’ axial and vector charges are identical for the
three spin symmetries; hence, they are not a new source
of phenomenological results. In Appendix [B] we showed
that the reason behind these results is that, just for these
models, the corresponding neutral current Lagrangians

are related each other by unitary transformations. For
the left-right symmetric model we also found two flipped
versions one of them not reported in the literature as
far as we know. This new model is denoted as Zrry
and it corresponds to a second alternative model of the
left-right model Zp g (the first alternative model is Zapr
which is well known in the literature [22]). In several re-
spects the Z; gy model is different of Z; g and Z 41 r; for
example, it is not viable as a low energy effective theory,
unless we make it left-right symmetric, which is a typical
assumption of the Zypr and Z45r models. This model
has as the main feature that it is leptophobic in the limit
gr — 0.6197. In the aforementioned limit ayy — 0 and
the lepton couplings are proportional to ay; however, be-
cause in this limit the quarks couplings go as ~ 1/ay, in
many observables these effects compensate each other in
such a way that the EW constraints are not trivial.

We also calculated the eigenstates of the [SU(3)]3
Higgs potential and, by considering different cases, it
was shown that these eigenstates are independent of the
Higgs sector. It was also shown that the null space of
the [SU(3)]® vector boson mass matrix corresponds to
the photon. As a generalization of these results, we gave
the explicit form of the null vector of the EW vector bo-
son mass matrix for an arbitrary Higgs tensor and an
arbitrary gauge group.

By using the LHC experimental results and EW
precision data, new limits on the Z’ mass Mz and the
mixing angle 6z _z: are imposed. From this analysis we
found lower limits on My of the order of 2.5 TeV, while
the mixing angle was found to be constrained to values
of the order of 1072 radians.

The scope of the present work is not limited to the
[SU(3)]® group. In reference [25] the full set of alter-
natives breakings in Eg was shown, the next step is to
extend our analysis to Fg, which has as subgroups the
most promising and best-known electroweak extensions
of the standard model.
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Appendix A: The weak-I, weak-U and weak-V spin
symmetries

The SU(3) algebra is invariant under any unitary
transformation. i.e.,

Na/2,20/2]) = ifabere/2 = [AL)2, 0 /2] = ifabeAL/2
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FIG. 1. The continuous blue line represents the 90% C.L. exclusion contour in Mz/ vs. sinfz/ for the universal 3-3-1 model
which has charges and coupling strength according to Eq. with X = I. The axial and vector charges for this model are
shown in Table The inert model ZF™ has the same charges as the Fg motivated Z;, but with the coupling strength dictated
by [SU(3)]® according to Eq. for X = U, i.e., g3 = gr = 435.The axial and vector charges for this model are shown in
Table The corresponding plot for the Es motivated Z; is shown in Ref. [45]. The red dashed line is the 95% C.L. lower
mass limit obtained from ATLAS data [43].
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FIG. 2. The continuous blue line represents the 90% C.L. exclusion contour in My vs. sinfzz: for the left-right symmetric
model Z1% and the Alternative left-right Model Z3%  with the right coupling strength dictated by [SU(3)]?, i.e., gr = 0.435 for
sin Oy = 0.231 (see Eq. (38) for X = I and X =V, respectively). The axial and vector charges for the left-right and the ALR
model are shown in Table [VII]] and Table [[X] The corresponding plot for the left-right symmetric model with gr = gz, = 0.652
is shown in Ref. [45]. The red dashed line is the 95% C.L. lower mass limit obtained from ATLAS data [43].
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FIG. 3.

The continuous blue line represents the 90% C.L. exclusion contour in My vs. sinfyz for the LRU model ZF%,,

with gr = g = 0.652 for sinfw = 0.231 (See Eq. for X = U ). The axial and vector charges for the left-right and the
LRU model are shown in Table|VIII| and Table The red dashed line is the 95% C.L. lower mass limit obtained from ATLAS

data [43].

UMNUT =2V VAV =AY
AU AT AY AV AT AT AV AV AV AV A\

A6 A7 A1 =2 A1 —As5[ A —As e —A7 AL A2

TABLE III. The SU(3) algebra is invariant under a unitary
transformation. By requiring that A3 and As be mapped to
diagonal matrices there are two possible choices, U and V =
U't. Additionally, these matrices satisfy U? = U, and V? =
VT, from these relations and unitarity we obtain U® = V?* =
1. The latter identity allows us to verify the Table entries.

where N, = UM\, U'. By requiring that A3 and \g be
mapped to diagonal matrices a form of the unitary ma-
trices is (there are several ways to choose U and V)

001 010
U=(100], V=1]001
010 100

Additionally, these matrices satisfy U? = U, and V? =
V1. from these relations and unitarity we obtain U3 =
V3 = 1. The operators corresponding to A3 and \g Gell-
Mann generators for the weak-I-spin (or Isospin), weak-

U-spin and weak-V-spin are

100
MN=Xs=|0-10],
00 0
) 00 0
N =UnUT = =2 (A= vBx) =01 0 | .
00 -1
) 100
N =VaaVT =2 (e +vBxs) = | 0 00,
001



and
1 10 0
M =g 01 0 |,
V3lo o —o
1 1 -200
Agzmgmz—g(xﬁﬁ&):—s 010},
0 01
1( ) L (oo
A =VAsVT=—— (A —VBXs)=—= 10 =2 0
2
Vilo 0 1

Upon the unitary transformations U and V, the SU(3)
Gell-Mann matrices A\; are mapped to )\lU and )\Y as it is
shown in Table [[TIl These alternative representations for
the SU(3) algebra are relevant only for SU(3)g in the
[SU(3)]? group. The representation of the Gell-Mann
matrices in SU(3) is fixed by the phenomenology of
the SM.

Appendix B: U and V in the adjoint representation

The eight gauge bosons associated with the SU(3)gr
are written by convenience as

1 1, —
SALM =5 4] T U,eAl

apa bu

-1 (ULAL) (USN) = %AU A

2 apta

where the bar in U stands for complex conjugation. Be-

cause U is real U’ = Uab. In the adjoint representation
U is a 8 x 8 matrix; however, it is reducible to a cou-
ple of 3 x 3 matrices and one 2 x 2 matrix. The three-
dimensional matrices mix the generators associated with
the charged bosons while the two-dimensional one mix
the diagonal generators associated with the neutral ones

A AV Ao

Ml S =],
As AU M

Ao AY Ar
| DA =[x
Ar AV s

The diagonal generators are mapped to

)\3 i} )\3U _ _1 )\3 — \/§>\8
g Y 2 \Xs+V3x3)

We want to make use of this symmetry to rewrite the
neutral current

JLAM = LT U Al = JLVT e Al

cp

(B1)
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by defining
AR =y Al

U — 71 770 _ 77641
Ja,u :Jb,uU a_Ua Jb,uv

A
A _ g1 7T byl
Ja,u = Jb,uv a = Va be )
where we take into account that U is a real matrix. By
replacing these results in (B1]) we obtain

I pgIu _ qU AUp _ JV 4V
Jap Ad = T At = T ALt (B2)

With these expressions it is possible to build the La-
grangian term —L; = gRJgguAgé‘. It is important to
stress that for the 3-3-1-1 models in [SU(3)]? the neutral
current Lagrangians of the alternative models are related
each other by a unitary transformation; however, in gen-
eral, that is not true for alternative models.

Appendix C: The null space of the vector Boson
mass matrix for an arbitrary Higgs representation
and gauge group.

In this section we will show that for any Higgs potential
there is a null vector for the mass matrix M of the
neutral auge vector bosons. The explicit form of the

vector ig'| Af, = < A(x) ., where the ¢* are the coefficients

of the group gengerators in the charge operator, i.e., Q =
T, the g® is the coupling strength associated with the
A, vector field and A(x), must be identified with the
photon field. For a simple group all the g are identical;

however, they may be different for semisimple groups.

1. Rank 1 tensors

For a rank 1 tensor we can obtain the vector mass
matrix from the Higgs covariant derivative

. , 1
Lk =Tr (Du¢")' D¢ |gizyi= §AZM“bAb“ , (C1)

where v’ are the components of the vacuum expectation
value vector. This vector satisfies Q.o = 0 since the
charge operator must annihilate the vacuum. By taking
the components of the vector boson as Af, = ;—:A(x)u,
the covariant derivative becomes zero

D#gbi‘d)’i:vi: 7Z'gaAZTa¢i|¢z‘:vi
=—1 (ga;aT“A(x)u>

where A(z), is an arbitrary vector function of =, which
can be identified with the photon field. From Eq. (CI))
we get

v = —Az),Qjv" =0,

Ji

ACM AP =0, (C2)

showing that A% = ¢*A(x), is a null space vector of M.

7 Modulo a normalization.



2. Rank 2 tensors

For a rank 2 tensor the analysis is quite similar. The
gauge transformation of a rank two tensor under the
gauge group is

-/ ) -/ -/ ..
L — K J )
¢ =U; U; @Y,

where the gauge group transformation U? (6(x)) is a func-
tion of the local coordinate x. This allows us to define
the covariant derivative as

D, 9 = 9,87 —ig" (T°A%)" &% —ig® (T*A%)’ @i,

For the SU(3) gauge group, T* %, g¢ =g, U0 =
exp(—i0°T*) and the gauge transformation of the vector
field is

Al =ToA® = U(O)T* AU (6)' + éU(O)auUT(O) .

We do not lose generality by assuming that the VEV
of the Higgs rank 2 tensor is the product of two Higgs
scalars in the fundamental representatiorf] i.e., 7 =
x*¢7. In similar way as we did for the rank 1 tensors
we also build the null vector as A, = ;%A(x)u, thus the
covariant derivative is

D@ g gy = — ig” (T*AL) x“€ —ig® (T°AL)’ x'¢*,
= —iA(x), (QLxE + QLX"€"),
= —iA2), (¢'X'¢ + ¢ X'E)
=—iA(2), (¢ + ) X',

where in the last step we take into account that the
charge operator is diagonal, ie., Q' x* = ¢'x' and
Q&> = ¢7¢9. In these expressions the g; are the charges
of the components of a vector in the fundamental rep-
resentation. If the component (®%¥) correspond to the
VEV of a Higgs field then ¢’ + ¢/ = 0 and the kinetic
Lagrangian becomes zero,

1

£ =T (D)1 D, 7)o~ 5

ACM®AM =0
This shows that, as we already demonstrated for the rank
1 tensor, A}, = 2 A(z), is a null vector of the mass

F
matrix M. The procedure is similar for an arbitrary
tensor.

Appendix D: Z' couplings

For the SM extended by a U(1)" extra factor, the neu-
tral current interactions of the fermions are described by

8 Any component of a matrix can always be written as the tenso-
rial product of two vectors.
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the Hamiltonian

2
Hye =32 0:20, 3t () (NP + e (F)Pa) 1
f

i=1

(D1)

where Z7, and Z3, are the weak basis states such that
Z?“ is identified with the neutral gauge boson of the SM,
Z, and Zg# with the Z’; the index f runs over all the
SM fermions in the low energy Neutral Current (NC)
effective Hamiltonian Hyc, and P, = (1 — 75)/2 and
Pr = (14 v5)/2. It is convenient to write Eq. in
terms of the vector and axial charges

2
Hye =5 3 0203 (G900~ 69 (s ) f
=1 f

(D2)

where the chiral couplings e(If) (f) and eg) (f) are lin-
ear combinations of the vector G%,Z)( f) and axial GE:)( f)
charges given by eg)(f) = [Gg)(f) + GE;)(f)]/2 and
e%)(f) = [Gg})(f) - Gx)(f)]/Z. The mass eigenstates
Z1, and Zy,, are given by

Ly = Z?H cosf + ZSM sinf

Zoy = —Z?# sin @ + ZQO# cos @ .
For the numerical calculations we use the expressions for
the vector and axial charges shown in the Appendices[D 1]
and where most of the values in the Tables are being

presented for the first time in the literature. We have also
used sin® Ay = 0.231 and g, = g/ cos Oy = 0.743.

1. The 3-3-1 charges and coupling strength

Chiral Charges
l er ¢q ur dr Il er q ur dr
e U T B Kkl e i R Ul s
g 000 0 4yl 20 o2
e ley 0 5 0|l o 0 g
oy o b g g 0 0
e K T e 1] I S S

TABLE IV. The chiral charges for the SM particles under the
additional U(1) symmetries embedded in the [SU(3)]® group.
I stands for the left handed doublet (v, er)” and g for the
quarks left handed doublet (ur,dr)”. For low energy con-
straints only the Z’ charges of the SM fermions are involved
in the calculation.

For X =U, cos8 =dy = —1 and Eq. reduces to

g2y = — gLJisﬂ sin o — gRJggu cosa , (D3)



Vector and Axial Charges

w d v e uw d v e
Irs | 1 _1 o _1|,Irs|_1 1 -2 =3
9v 2 32 2|9V |2v3 2v3 23 2v3
Ips |_1 1 ¢ 1 Ips | =1 -1 -2 -1
9a 3 32 2 |94 |33 23 2v3 23
Ugrs 0 1 _1 _1|,Urs| =2 3
v p) 2 72|\9v  |2v8 23 23 23
Urs 0 —1 _1_1 Urs | _2 —1 —1
9a 2 72 72|94 |23 2v3 B 23

Vra |_1 1 Ves | _1 -2 1
9gv 3 0 3 Vo |lsm s s O
VrRa | L 1 VrRg | =1L _2 1 2
ga 3 0 3 0]gx 2V3 23 23 23
Ipp | 1L 1 1 _q| s | 1 1 -1 -3
v 3 3 2 W 2B 23 23 23
Ipr _1 Ipg | _1 1 -1 1
9a 00 3 094 2V3 23 2V3 23
UBL 1 1 VBr| 1 1 1
gt =5 +3 0 0 |v""| 3 —5 3
UBL 1 1%:37 1 1
ga%"|+3 0 0 0 |gy 0 3 3

TABLE V. The vector and axial charges for the SM par-
ticles under the additional U(1) symmetries embedded in
the [SU(3)]® group. For low energy constraints only the Z’
charges of the SM fermions are involved in the calculation.

where

Thsu =Y Jovuler™ () Pr + e (i) Prlf;

[

i =D faleL™ () Pr + g™ (i) Prlfi

In this way
922 :% Z fivu < — grsinalg* (i) — g (i)7°]
~ gmeosalgt (i) ~ g1 )

where

Ge k) = P ) e )

VA (D4)

Reordering we have

PGS fon (G819 - 6510 ) 1

gQJMQ =

where the vector and axial charges are

g3s16 GYIC (i) = —grsina g4 (i) — gr cos a g% (i) .

In the differential cross-section always appears the prod-
uct gz G724, where the GF?4C are the vector and ax-
ial charges in Eq. and gs31¢ is the corresponding
coupling strength. For this reason, it is not necessary to
know them separately. Now, given that

2gy, sin Oy,

IR = VAdcosZOy —1°

tan Oy

g =gr tan by ,

Cosx =

g _ 1
\/ggL \/§

14

93316 GV (f)  ganic GXO(S)
(3 —sin®Ow)nsar (5 — sin® 0w )nss
3(% — sin® Ow )naz1 (sin? Oy — %)7]331
(% sin? Oy — %)77331
(% sin? Oy — %)77331 (sin2 Ow — %)77331

1
— 357331

QU & o R |

TABLE VI. Couplings for Zzsic — ff. Here nzz =
g331c¢/vV4cos? 0w — 1 and gssig = g1 = g1/ cos Ow

floinGF (f) ginGREY (f)min
v| —gmiN — MmN
el —3mn —3NIN
U 0 0
d 1 1
SNIN 3N

TABLE VII. Vector and axial couplings Z;™ — ff (X =U
case). Here niy = grg.

we take the positive sign of sina in agreement with
Eq. (12) . The expressions for the vector and axial cou-
plings can be cast as

—9L

G331G () —
9316 Gv.a” (1) V3 cosOw/4Acos? Oy — 1
X ((4 sin” Oy — 3)g{#4 (i) + 2sin’ 9W93§,§(z')> . (D5)

From Table [[] we obtain the chiral charges in Table [[V]
and their corresponding axial and vector expressions in
Table By replacing these expressions in Eq. we
obtain the axial and vector charges as they are shown in
Table By defining g331¢ = g/ cosfyw, as usual for
3-3-1 models, we recover the vector and axial couplings
to the Z’ boson in the G model [29]. From Eq. (16), for
X =U and X = V we obtain exactly the same expression
for the axial and vector couplings as the one for the I case
in Table[VIl The reason behind of this coincidence is that
the EW Langrangians —£X = gRJi—ngAg; —l—gRJgSHAgg
(see Eq. , are related each other by unitary transforma-
tions for the different values of X = I, U, V, as it is shown
in Appendix[B] The same is not true for the left-right sym-
metric model and its alternative models as we will see in
the next Section. The vector and axial charges of the
Z" current, go.J3, are obtained directly from Eq. (L6),

w205 F (G0 - G0 ) £ - (06)

Here we use IN instead of I to denote the inert model
ZF | in spite of the latter is a more frequent label for
this model Pl

9 That is in order to avoid confusion with the label I for the weak-
I-spin symmetry.



f 9LrGV (/) gLrGE"(f)

v %(174c0s Ow)nLr 77(174005 Ow)nLr
e| (4cos®Ow — 3)nLr inLr

u %(g — 4cos? Ow)nLr —%nLR
d|—2(3 +4cos® Ow)nir 3ILR

TABLE VIII. Vector and axial couplings for Z7 % ff (The
X =1 case). Here nLr = gr tan 0w /+/4 cos? 9W

2. Couplings for the left-right symmetric model
and its alternative versions.

From Eq. (38) the neutral current coupled to the Z’
boson is given by

X ijgL“
g2Joy =grtanbw | axJpy, ——— |, X =LV,

ax
V3J§
92J2, =gr, tan O (anggu + % , X=U
(D7)

which encompasses the three different X values. From
Eq. we get for X = I,V,U the vector and axial
charges for the left-right, ALR and inert models, respec-
tively,

9(A)LR(U)
2

S Fow (GW”U) (i) - GS‘”LR(”@)%’) fi

g2Jo =

15

where the index (A)LR(U) stands for the three models,
i.e., LR, ALR and LRU.

(A)LR 9\)/(33( ) X
Q(A)LRGV,A (i)=¢ Tax cxoxgy A" (@) ],
95’28 (1)
gLroGVY (1) = ¢ +V3a QUBL( )
(D8)
where, grtanfy and o = ay _=

(4 cos? OW_— 1). From Table [V| and equations

we get the vector and axial-vector couplings to the Z’
boson, which are shown in Tables [[X] and [X]

fl 9aLrGPR(Sf) gaLrGA""(f)

v inLr inLr

e (% 2 cos? Ow)nLr %(4 cos? Oy — Dnrr
u %(ZLCOS2 0W — g)nLR %’r]LR

d —%(4COS2 Ow — Dnrr %(40052 0w — )nLr

TABLE IX. Vector and axial couplings for Zi%,; — fFf (
X =V case). Here nLr = gr tan Ow /v/4cos? Ow — 1.

f | 9rro G (F) grruGEY(F)
Va inau inau
o Snav —3nay

o | —nav + 5o-) nlav + o)
doo|—gnlav + %) —gnav

TABLE X. Vector and axial couplings for Zpry — ff(
X = U case) Couplings Z' — ff for X = U. Here n =
qr tan&w/\/g and ay = \/(gR/gL)2 cot? Oy — 3.
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