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By considering the 3-3-1 and the left-right symmetric models as low energy effective theories of the
SU(3)C ⊗ SU(3)L ⊗ SU(3)R (for short [SU(3)]3) gauge group, alternative versions of these models
are found. The new neutral gauge bosons of the universal 3-3-1 model and its flipped versions are
presented; also, the left-right symmetric model and its flipped variants are studied. Our analysis
shows that there are two flipped versions of the universal 3-3-1 model, with the particularity that
both of them have the same weak charges. For the left-right symmetric model we also found two
flipped versions; one of them new in the literature which, unlike those of the 3-3-1, requires a
dedicated study of its electroweak properties. For all the models analyzed, the couplings of the Z′

bosons to the standard model fermions are reported. The explicit form of the null space of the
vector boson mass matrix for an arbitrary Higgs tensor and gauge group is also presented. In the
general framework of the [SU(3)]3 gauge group, and by using the LHC experimental results and EW
precision data, limits on the Z′ mass and the mixing angle between Z and the new gauge bosons Z′

are obtained. The general results call for very small mixing angles in the range 10−3 radians and
MZ′ > 2.5 TeV.

PACS numbers: 12.38.-t 11.10.St 11.15.Tk, 14.40.Lb, 14.40.Df

I. INTRODUCTION

The quantization of the electric charge is an indica-
tion that the Standard Model (SM) of the strong, weak
and electromagnetic interactions based on the local gauge
group SU(3)C ⊗ SU(2)L ⊗ U(1)Y , might be embedded
into a larger gauge structure [1, 2]. This feature can
be explained by grand unified theories (GUT) which, in
general, have a unified coupling constant for all the in-
teractions at an energy given by the GUT scale which is
around 1016GeV for supersymmetric models. One of the
most important results of the GUT is the prediction of
the neutrino masses in the (10−5 − 102)eV range [3, 4],
which is compatible with the present constraints on the
neutrino masses [5].

At the late seventies the unification theories were under
suspicion owing to the prediction of topological defects
which are typical GUT predictions; from these consider-
ations the cosmological inflation scenario was born [6],
which proved to be quite useful to solve other cosmolog-
ical problems, showing in this way that the insight pro-
vided by GUT is in the right direction. In general, the
unification models based on a simple group, in particu-
lar the non-supersymmetric models, lead to a detectable
proton decay [3]. However, when the group is the prod-
uct of two or more simple groups, the structure not nec-
essarily contains gauge bosons that mediate proton de-
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cay [1, 7, 8]. In this context, the trinification group based
on the semisimple group SU(3)C × SU(3)L × SU(3)R

1

[9–12], results quite convenient from a phenomenological
point of view owing to the fact that the baryon number
is conserved by the gauge interactions [7]. The original
SU(3)L × SU(3)R models with a lepton nonet were first
considered by Y. Achiman [10, 11]; however, earlier work
on the [SU(3)]3 group can be traced back up to the sem-
inal works in references [13, 14]. Besides, this model has
been flexible enough to adjust recent LHC anomalies, for
example, the di-photon excess at 750 GeV [15] and the
di-boson excess at 1.9 TeV [16, 17].

The different [SU(3)]3 models have a rich phenomenol-
ogy in the Higgs and neutrino sectors [9, 17, 18]; its rank
is 6 (equal to E6), hence the model predicts, in addition
to those already present in the SM, two additional heavy
vector neutral gauge bosons which constitute one of the
most important sources of constraints for the model. In
this paper we undertake a detailed study of the couplings
of these new gauge bosons to the SM fermions, in order
to put Electroweak (EW) and collider constraints on
[SU(3)]3.

In general, intricate models are not appealing. A
way to look for new models with a moderate content
of fermions is to consider flipped versions of the already
known models in the literature [19–26]. An exhaustive

1 In trinification, the equality of the coupling constants at the
unification scale is assumed, which is equivalent to impose an
additional discrete Z3 symmetry (see [9] and references therein).
In the present work such assumption has not been made.
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account of the phenomenology of these models has not
been done so far. Our work represents a first step in
that direction. The first alternative model was “Flipped
SU(5)” [19, 27], which produces a symmetry breaking
for SO(10) GUT down to SU(5)⊗U(1), where the U(1)
factor contributes to the electric charge, and as such, its
basic predictions for sin2 θW and the proton decay are
known to be different from those of SU(5). In the present
work, we study the flipped versions of the universal 3-3-1
and the left-right symmetric models in [SU(3)]3. That is
equivalent to the study of the the different embeddings
of the SM fermions in the multiplets when the [SU(3)]3

gauge group breaks down to the SM. As a consequence
of the reduction in the effective group symmetry, these
models predict new Z ′ bosons at low energies. For a given
Z ′ mass, these vector boson resonances have well deter-
mined predictions in low energy experiments and collid-
ers. For universal models in the E6 context, a systematic
study of its alternative models and further references can
be found in [25].

The heavy vector bosons Z ′ are a generic prediction
of the physics Beyond the SM (BSM) with an extended
EW sector [28]. The detection of one of these resonances
at the LHC will shed light on the underlying symme-
tries of the BSM physics. For the high luminosity regime
the LHC will have sensitivity for Z ′ masses under 5
TeV [29, 30]; thus, a systematic and exhaustive study
of the EW extensions of the SM with a minimal con-
tent of exotic fields is mandatory. By imposing univer-
sality on the EW extensions of the SM (as it happens
in the SM), the possible EW extensions are basically the
E6 subgroups [31–33]. [SU(3)]3 is one of the four maxi-
mal E6 subgroups; so, an exhaustive study of its neutral
current structure is convenient, something done in the
present work. As we will show, the couplings of addi-
tional gauge bosons to the SM fermions are independent
of the Higgs sector and just depend on the [SU(3)]3 sym-
metries. We also present LHC and EW constraints for
these models.

Finally, let us mention that unification is not implicit
in our assumptions; so, non-universal gauge coupling
strengths are used in this study.

The paper is organized as follows: in Section II we
review the [SU(3)]3 model and its subgroups. In Sec-
tion III we calculate the EW couplings for Z ′ bosons in
the [SU(3)]3 subgroup SU(3)C ⊗SU(3)L×U(1)⊗U(1)′.
In Section IV we calculate the eigenstates of the most
general [SU(3)]3 Higgs potential and, for considering dif-
ferent cases, it is shown that these eigenstates are inde-
pendent of the Higgs sector. It is also shown that the null
space of the [SU(3)]3 Higgs potential corresponds to the

photon. In Section V we calculate the EW couplings for
the left-right model and its alternative models. In Sec-
tion VI we impose EW and collider constraints on the
Z-Z ′ mixing angle and on the mass of the new neutral
Z ′ gauge bosons. Section VII summarizes our conclu-
sions. Four technical appendixes are presented at the
end of the manuscript, in particular, in Appendix C the
null vector of the EW vector boson mass matrix is built
for an arbitrary Higgs tensor and gauge theory.

II. THE [SU(3)]3 GROUP

The [SU(3)]3 group [9, 31, 34] SU(3)C ⊗ SU(3)L ⊗
SU(3)R ≡ [SU(3)]3 is a maximal subgroup of E6 [35]
with the same rank and fundamental representation.
The three factor groups are identified in the follow-
ing way: the first one corresponds to the vector like
QCD color group SU(3)C , the same as in the SM, and
the other two can be identified with the left-right sym-
metric flavor group SU(3)L ⊗ SU(3)R extension of the
SU(2)L ⊗ SU(2)R, where SU(2)L in the SM is such
that SU(2)L ⊂ SU(3)L. Using λi, i = 1, 2, . . . , 8 as
the eight Gell-Mann matrices for SU(3) normalized as
Tr(λiλj) = 2δij , the charge operator for the [SU(3)]3

group may be written as

Q =
λ3L

2
⊕ λ8L

2
√

3
⊕ λ3R

2
⊕ λ8R

2
√

3
. (1)

In this way, each family of fermions is assigned to a 27
as 2

27 = (3, 3, 1)⊕ (1, 3̄, 3)⊕ (3̄, 1, 3̄) ,

where according to (1), the particle content of each term
is:

(3, 3, 1) = (u, d,D)TL ,

(3̄, 1, 3̄) = (uc, dc, Dc)TL ,

(1, 3̄, 3) =

 N0 E− e−

E+ N0c νe
e+ νce M0


L

,

which corresponds to the 27 states in the fundamental
representation of E6.

A. 3-3-1 models from [SU(3)]3

2 Another convention assigns leptons ∼ (1, 3̄, 3), quarks ∼ (3̄, 3, 1)
and antiquarks ∼ (3, 1, 3̄), in this case the assignments of the
SU(3)C representation of the quarks are interchanged with re-

spect to the SM. In the present work we follow the Robinett and
Rosner convention [20, 36].
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U(1)′[25] Q′ Charges

UR 2IR3 (e+, dc, L)+1 + (l, q,D,Dc,M0)0 + (νce , u
c, L)−1

UI 2UR3 (νce , D
c, L)+1 + (L, q, uc, D, e+)0 + (M0, dc, l)−1

UA 2VR3 (M0, uc, l)+1 + (L, q, dc, D, νce)0 + (e+, Dc, L)−1

U33 2
√

3IL8 (l, L, L)−1 + (uc, dc, Dc)0 + (e+, νce ,M
0)+2 + q+1 +D−2

U21R −2
√

3IR8 (e+, νce , L, L)−1 + (q,D)0 + (l,M0)+2 + (uc, dc)+1 +Dc
−2

U21I −2
√

3UR8 (M0, νce , l, L)−1 + (q,D)0 + (L, e+)+2 + (Dc, dc)+1 + uc−2

U21A −2
√

3VR8 (M0, e+, l, L)−1 + (q,D)0 + (L, νce)+2 + (Dc, uc)+1 + dc−2

U(1)31R IBL (L,L,M0)0 + q+1/6 + (uc, dc)−1/6 + (e+, νce)+1/2 + l−1/2 +Dc
+1/3 +D−1/3

U(1)31I UBL (l, L, e+)0 + q+1/6 + (Dc, dc)−1/6 + (M0, νce)+1/2 + L−1/2 + uc+1/3 +D−1/3

U(1)31A VBL (l, L, νce)0 + q+1/6 + (Dc, uc)−1/6 + (M0, e+)+1/2 + L−1/2 + dc+1/3 +D−1/3

TABLE I. Charge assignments for the fundamental representation of the [SU(3)]3 group, the same 27 of the E6 group, under
different U(1) symmetries. For the first family, l is the SM lepton doublet, lT = (ν, e−) and q = (u, d)T is the SM quark
doublet. The charge conjugated of the corresponding right handed weak-isospin singlets are ec, νc, uc and dc. The heavy exotic
particles are vector under the SM group, the heavy down quark, D ( Dc), is an weak-isospin singlet (charge conjugated of
the corresponding right handed chiral projection) of charge −1/3 (+1/3), L = (N0, E−)T and L = (Ec, N0c)T , are additional
weak-isospin doublets where L have the the same quantum numbers of the SM lepton doublet, and M0 is a singlet under the
SM.

Let us now consider the decomposition of the [SU(3)]3

gauge group into a subgroup G which survives at an in-
termediate energy scale between the EW scale (245 GeV)
and the unification scale; that is [SU(3)]3 ⊃ G.

Suppose first that G corresponds to the universal 3-3-1
model [37]

G = SU(3)C ⊗ SU(3)L ⊗ U(1)X

⊂ SU(3)C ⊗ SU(3)L ⊗ U(1)a ⊗ U(1)b . (2)

By using that SU(3) → SU(2)a ⊗ U(1)b the triplet in
each nonet goes to a doublet with charge b and a singlet
with charge −2b, i.e., 3 → 2b + 1−2b. Next by breaking
the remaining spin symmetry, i.e., SU(2)a → U(1)a, the
doublet goes to a couple of singlets, i.e., 2b + 1−2b →
1a,b + 1−a,b + 10,−2b. Thus, when SU(3)R breaks into
U(1)a ⊗ U(1)b the following branching rule applies:

3R −→ (a)(b) + (−a)(b) + (0)(−2b) , (3)

which implies:

(3, 3, 1) −→ (3, 3, 0, 0) ,

(3̄, 1, 3̄) −→ (3̄, 1,−a,−b)⊕ (3̄, 1, a,−b)⊕ (3̄, 1, 0, 2b) ,

(1, 3̄, 3) −→ (1, 3̄, a, b)⊕ (1, 3̄,−a, b)⊕ (1, 3̄, 0,−2b) ;

because the nonet (3, 3, 1) is simultaneously a color and
a SU(3)L triplet, the unique possibility for the fermion
assignment is

(3, 3, 1) −→(3, 3, 0, 0) = (uL, dL, DL)T0 .

For the nonet (3̄, 1, 3̄) there are three different fermion as-
signments in consistency with the three different SU(2)X

spin symmetries3 [36], X = I, U and V , i.e.,

(3̄, 1, 3̄) −→ (3̄, 1,−a,−b)⊕ (3̄, 1, a,−b)⊕ (3̄, 1, 0, 2b)

=


(dcL)−a,−b ⊕ (ucL)a,−b ⊕ (Dc

L)0,2b , X = I ,

(Dc
L)−a,−b ⊕ (dcL)a,−b ⊕ (ucL)0,2b , X = U ,

(ucL)−a,−b ⊕ (Dc
L)a,−b ⊕ (dcL)0,2b , X = V .

We label the three possible fermion assignments with
X = I, U, V , which denote weak-I-spin, weak-U -spin and
weak-V -spin, respectively. As can be seen, the [SU(3)]3

gauge group produces three different low energy 3-3-1
fermion structures; the ordinary one presented in refer-
ence [37], and two more new in the literature as far as we
know.

In a corresponding way, there are three different
fermion assignments for the nonet (1, 3̄, 3), i.e.,

(1, 3̄, 3) −→ (1, 3̄, a, b)⊕ (1, 3̄,−a, b)⊕ (1, 3̄, 0,−2b)

=



(E−L , N
0c
L , ν

c
eL)Ta,b ⊕ (N0

L, E
+
L , e

+
L)T−a,b

⊕(e−L , νeL,M
0
L)T0,−2b , X = I ,

(e−L , νeL,M
0
L)Ta,b ⊕ (E−L , N

0c
L , ν

c
eL)T−a,b

⊕(N0
L, E

+
L , e

+
L)T0,−2b , X = U ,

(N0
L, E

+
L , e

+
L)Ta,b ⊕ (e−L , νeL,M

0
L)T−a,b

⊕(E−L , N
0c
L , ν

c
eL)T0,−2b , X = V .

In correspondence with Eq. (1), the electric charge is now
given by

Q = IL3 +
1√
3
IL8 + cXXR3 +

2dX√
3
XR8 , (4)

3 In Appendix A we briefly review the SU(2) weak-I-spin (or
Isospin), weak-U -spin and weak-V -spin symmetries in SU(3).
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where XR3 and XR8 are the fermion charges under U(1)a
and U(1)b, respectively, as it is shown in Table I, and cX
and dX are

cI = 1 , dI = 1/2 ,

cU = 0 , dU = −1 ,

cV =− 1 , dV = 1/2 ,

where we have taken b = 1/(2
√

3) and a = 1/2 in
order to have the charges properly normalized as in
E6. In Eq. (4) IL3 and IL8 represent the charges of
the fermions in the 27, when these operators act on the
triplets; in the nonets the corresponding tridimensional
representation are λ3L/2 and λ8L/2, respectively [see
Eq. (1)]. In the same vein in Eq. (4) with X = I, the
charges IR3 and IR8 correspond to λ3R/2 and λ8R/2,
respectively. The difference between the weak-U -spin
and the alternative 3-3-1 models (the normal and the
flipped one) is the interchange of fermions between the
multiplets, something which does not affect the low
energy phenomenology for the neutral sector as we will
see in the next Section.

B. Left-right symmetric models from [SU(3)]3

A further step is to take G = SU(3)C ⊗ SU(2)L ⊗
SU(2)X ⊗U(1)f ⊗U(1)g, which is obtained by using the
branching rule for SU(3)L,R −→ SU(2)L,X ⊗ U(1)f,g as

3L −→ (2, f) + (1,−2f) , 3R −→ (2, g) + (1,−2g) ,

which produces three different ways to reach the U(1)Y
in the SM

(3, 3, 1) −→ (3, 2, 1, f, 0)⊕ (3, 1, 1,−2f, 0) ,

(3̄, 1, 3̄) −→ (3̄, 1, 2̄, 0,−g))⊕ (3̄, 1, 1, 0, 2g) ,

(1, 3̄, 3) −→ (1, 2̄, 2,−f, g)⊕ (1, 2̄, 1,−f,−2g)

⊕(1, 1, 2, 2f, g)⊕ (1, 1, 1, 2f,−2g) .

The underlying breaking behind these branching rules
are:

(3, 3, 1) −→(3, 2f , 10)⊕ (3, 1−2f , 10) ,

(3̄, 1, 3̄) −→(3̄, 10, 2̄−g)⊕ (3̄, 10, 12g) ,

(1, 3̄, 3) −→(1, 2̄−f , 2g)⊕ (1, 2̄−f , 1−2g)

⊕ (1, 12f , 2g)⊕ (1, 1−2f , 12g) .

Now the definition of U(1)BLX ≡ U(1)f +U(1)g for f =
g = 1/6 conducts to the alternative left-right symmetric
models

SU(3)C ⊗ SU(2)L ⊗ SU(2)X ⊗ U(1)BLX ,

with the following particle content for the quark sector:

(3, 3, 1) =(u, d,D)L −→ (3, 2, 1, 1/6)⊕ (3, 1, 1,−1/3)

=(u, d)L ⊕DL ,

(3̄, 1, 3̄) =(uc, dc, Dc)L −→ (3̄, 1, 2̄,−1/6)⊕ (3̄, 1, 1, 1/3)

=


(uc, dc)L ⊕Dc

L , X = I ,

(Dc, dc)L ⊕ ucL , X = U ,

(uc, Dc)L ⊕ dcL , X = V .

For the lepton sector we have:

(1, 3̄, 3) =

 N0 E− e−

E+ N0c νe
e+ νce M0


L

−→(1, 2̄, 2, 0)⊕ (1, 2̄, 1,−1/2)⊕ (1, 1, 2, 1/2)⊕ (1, 1, 1, 0)

=



(
E+ N0c

N0 E−

)
L

⊕

(
νe

e−

)
L

⊕ (e+, νce)L

⊕ M0
L , X = I ,(

νe N0c

e− E−

)
L

⊕

(
E+

N0

)
L

⊕ (M0
L, ν

c
e)L

⊕ e+ , X = U ,(
E+ νe

N0 e−

)
L

⊕

(
N0c

E−

)
L

⊕ (M0
L, e

+)L

⊕ νce , X = V ,

In the left-right model SU(2)L ⊗ SU(2)R ⊗ U(1)B−L ⊂
SU(3)L ⊗ SU(3)R (in our notation SU(2)L ⊗ SU(2)I ⊗
U(1)BLI ) the weak-isospin subgroup (X = I) has been
used. That is the correct choice for the left-handed sec-
tor, but not the only choice for the right-handed one as
we have shown already. The weak-V -spin symmetric case
is a very well known example where SU(2)V is used in-
stead of SU(2)R; this model is known as the Alternative
left-right4(ALR), which was found in a different way in
Ref. [22]. The case X = U is a new alternative model.

III. 3-3-1 NEUTRAL CURRENTS

For the [SU(3)]3 group the interaction Lagrangian−LI
is

gLJ
I
L3µA

Iµ
L3 + gLJ

I
L8µA

Iµ
L8 + gRJ

X
R3µA

Xµ
R3 + gRJ

X
R8µA

Xµ
R8

=gLJ
I
L3µA

Iµ
L3 + g′JY µB

µ + g2J2µZ
′µ + g3J3µZ

′′µ . (5)

where AIL3µ, A
I
L8µ, A

X
R3µ and AXR8µ are the correspond-

ing vector gauge bosons associated with λIL3, λ
I
L8, λ

X
R3

4 Or alternate left-right Model.
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and λXR8, respectively (for a precise definition see Ap-
pendix B). The neutral currents in (5) are given by

JXR8µ =
∑
i

f̄iγµ[εXR8

L (i)PL + εXR8

R (i)PR]fi , (6)

JXR3µ =
∑
i

f̄iγµ[εXR3

L (i)PL + εXR3

R (i)PR]fi , (7)

where the chiral charges, εL, R, are shown in Table IV
in Appendix D 1. Notice in our notation that the bold
labels L, R refer to the left and right chiral projections
and L and R refer to different SU(n) group structures.
By means of an orthogonal matrix we can rotate from
the [SU(3)]3 basis of the neutral vector bosons, to a basis
where one boson corresponds to the hypercharge, i.e.,

AIL3µ

Bµ
Z ′µ
Z ′′µ

 = OT


AIL3µ

AIL8µ

AXR8µ

AXR3µ

 , (8)

where the orthogonal matrix is

O =


1 0 0 0

0 1 0 0

0 0 cosβ − sinβ

0 0 sinβ cosβ




1 0 0 0

0 cosα − sinα 0

0 sinα cosα 0

0 0 0 1

 .

(9)

It is important to realize that in order to recover the par-
ticular case X = U , corresponding to the 3-3-1 models,
it is necessary to take cosβ = −1. By replacing this
expression in Eq. (5) we obtain

g′BµJ
µ
Y = Bµ

(
gLJ

I
L8µ cosα

+ gRJ
X
R8µ sinα cosβ + gRJ

X
R3µ sinα sinβ

)
; (10)

by equating with

JY µ =
1√
3
JIL8µ + cXJ

X
R3µ +

2dX√
3
JXR8µ , (11)

we get the following three equations:

1√
3
g′ =gL cosα ,

2dX√
3
g′ = gR sinα cosβ , (12)

cXg
′ =gR sinα sinβ . (13)

From these equations we have,

gR =

√
N

F
g′ , cosα =

g′√
3gL

,

cosβ =
2dX√
N

= dX , (14)

where N = (3c2X + 4d2
X) = 4, and F = 3 − (g′/gL)2. It

is worth to notice that in the three cases considered, i.e.,
for any value of X,

gR =
2gLg

′√
3g2
L − g′2

=
2gL sin θW√
4 cos2 θW − 1

, (15)

From the equations (5) and (8) it is possible to get ex-
pressions for the neutral currents associated with the Z ′

and Z ′′ bosons, respectively

g2J2µ =− gLJIL8µ sinα+ gRJ
X
R8µ cosα cosβ

+ gRJ
X
R3µ cosα sinβ ,

g3J3µ =− gRJXR8µ sinβ + gRJ
X
R3µ cosβ . (16)

From these relations and from Table IV we can obtain
the explicit expressions of the vector and axial charges for
the Z ′ and Z ′′ gauge bosons, these charges are shown in
Tables VI and VII, respectively. The collider an EW con-
straints are shown in Table II and Figure 1. A detailed
analysis of these constraints is presented in Section VI.
Finally, we can make use of the defining condition of the
orthogonal matrices, O−1 = OT , and use the matrix (8)
to rotate from the [SU(3)]3 basis for the neutral vector
bosons to the SM basis, i.e.,

Aµ
Zµ
Z ′µ
Z ′′µ

 =W · OT


AIL3µ

AIL8µ

AXR8µ

AXR3µ



=


sin θW cos θW 0 0

cos θW − sin θW 0 0

0 0 1 0

0 0 0 1

OT

AIL3µ

AIL8µ

AXR8µ

AXR3µ

 , (17)

whereW and θW are the Weinberg matrix and the Wein-
berg angle, respectively.

IV. EIGENSTATES OF THE VECTOR BOSON
MASS MATRIX IN [SU(3)]3

In the last section we saw that it is possible to obtain
the SM fields Aµ and Zµ and the extra neutral vector
bosons Z ′µ and Z ′′µ by rotating the [SU(3)]3 basis for the
vector fields. By making use of some viable cases for
the Higgs potential in the present section, we will show
that, independent of the Higgs sector, the null space of
the vector boson mass matrix corresponds to the photon,
i.e., by rotating the photon component (Aµ, 0, 0, 0)T in
the SM basis to the [SU(3)]3 basis, we obtain the null
space of the vector boson mass matrix. This is a particu-
lar example of a more general theorem which is shown in
Appendix C. In that sense, the present section is useful
to provide a context for this demonstration. The same
is not true for the eigenvalues of the vector mass matrix
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which strongly depend on the Higgs sector. In the funda-
mental representation of the [SU(3)]3 group the neutral
components are in the leptonic sector (1, 3, 3); if we put
the Higgs field Φ in the same representation the corre-
sponding transformation properties are

Φ′ = ULΦU†R, UL,R = exp
(
−iθa(x)λaL,R/2

)
. (18)

Requiring gauge invariance, the covariant derivative is

DµΦ = ∂µΦ− i

2

(
gLλ

aAaµLΦ− gRΦλaAaµR
)
, (19)

which transforms in the same way as the Higgs fields,
i.e.,

(DµΦ)′ = ULDµΦU†R , (20)

as it is required to build the gauge invariant kinetic term.
The Higgs sector of the [SU(3)]3 model contains two com-
plex scalar field nonets, Φ1 and Φ2. The most general
vacuum expectation value (VEV) for these fields are [18]

〈Φ1〉 =

v1 0 0

0 b1 0

0 0 MI

 , 〈Φ2〉 =

v2 0 0

0 b2 b3
0 MR M3

 , (21)

where Φ1 is diagonal in view of the fact that it is always
possible to bring one Higgs VEV into its diagonal form
by using the SU(3)L × SU(3)R symmetry. The vector
boson masses came from

LK = +
∑
i=1,2

Tr
[
DµΦi(D

µΦi)
†] |Φi=〈Φi〉 , (22)

which is invariant under the already mentioned gauge
transformations [Eqs. (18) and (20)]. We can get rid of
the kinetic mixing term Tr

[
DµΦ1(DµΦ2)†

]
by redefining

the scalar fields in order to cast the Lagrangian into the
canonical form. By a rotation in the adjoint representa-
tion we obtain the simplified expression

LK(〈Φ1〉, 〈Φ2〉) =
1

3

(
+
(
gLA

V
L8µ + gRA

I
R8µ

)2
b23

+
(
gRA

V
R8µ + gLA

I
L8µ

)2
M2
R

+
(
gLA

V
L8µ − gRAVR8µ

)2
(b21 + b22)

+
(
gLA

I
L8µ − gRAIR8µ

)2
(M2

3 +M2
I )

+
(
gLA

U
L8µ − gRAUR8µ

)2
(v2

1 + v2
2)

)
, (23)

where AV(L,R)8µ = −(AI(L,R)8µ −
√

3AI(L,R)3µ)/2 and

AU(L,R)8µ = −(AI(L,R)8µ +
√

3AI(L,R)3µ)/2. By writing the

kinetic part in terms of AIR8µ and AIR3µ, the Higgs co-
variant derivative can be written as

LK =
1

2
AT · M · A , (24)

where A = (AIL3µA
I
L8µA

I
R8µA

I
R3µ)T , andM is the gauge

boson mass matrix whose elements are given by

M11 =
2

4
g2
L(b21 + b22 + b23 + v2

1 + v2
2) ,

M12 =
−2

4
√

3
g2
L(b21 + b22 + b23 − v2

1 − v2
2) ,

M13 =
2

4
√

3
gLgR(b21 + b22 − 2b23 − v2

1 − v2
2) ,

M14 =
−2

4
gLgR(b21 + b22 + v2

1 + v2
2) ,

M24 =
2

4
√

3
gLgR(b21 + b22 − 2M2

R − v2
1 − v2

2) ,

M34 =
−2

4
√

3
g2
R(b21 + b22 +M2

R − v2
1 − v2

2) ,

M22 =
2

12
g2
L(b21 + b22 + b23 + 4M2

3 + 4M2
I

+ 4M2
R + v2

1 + v2
2) ,

M33 =
2

12
g2
R(b21 + b22 + 4b23 + 4M2

3 + 4M2
I

+M2
R + v2

1 + v2
2) ,

M23 =
−2

12
gLgR(b21 + b22 − 2b23 + 4M2

3 + 4M2
I

− 2M2
R + v2

1 + v2
2) ,

M44 =
2

4
g2
R(b21 + b22 +M2

R + v2
1 + v2

2) .

The null space of the mass matrix M is

Aµnull = N
(

1
gL
, 1√

3gL
, 1√

3gR
, 1
gR

)
Aµ(x) , (25)

where Aµ(x) is an arbitrary vector field which, as we will
see later, corresponds to the photon, and N is an arbi-
trary normalization. We can obtain a similar expression
for the null eigenvector by inverting Eq. (17)

R


Aµ
0

0

0

 =gL sin θW


1
gL
1√
3gL
1√
3gR
1
gR

Aµ ,

R


0

Zµ
0

0

 =gL
sin2 θW
cos θW


cot2 θW
gL

− 1√
3gL

− 1√
3gR

− 1
gR

Zµ , (26)

where R =
(
W · OT

)T
. In order to get this result it

was necessary to impose g′ = gL tan θW , which is also
satisfied in the SM. This shows that the null vector cor-
responds to the photon as we previously said. By pro-
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ceeding in a similar way for Z ′µ and Z ′′µ we find

R


0

0

Z ′µ
0

 =
gL
2

tan θW


0

− 4√
3gR

1√
3gL
1
gL

Z ′µ ,

R


0

0

0

Z ′′µ

 =


0

0

−
√

3/2

1/2

Z ′′µ . (27)

These eigenvectors are the same for any Higgs sector;
we verify this for some particular cases which are easy
to tackle analytically. By taking v1 = v2, b1 = b3,
b2 = 0, MI = MR and M3 = 0, there are two limits
MI → ∞ or b3 → ∞, which do not correspond to a re-
alistic potential; however, they serve us to check that
in both cases we obtain the eigenvectors in Eq. (26)
and Eq. (27). It is possible to build Higgs tensors in
the 3̄L × 3L and 3̄R × 3R representations, these terms
give masses to AUL3 = −(AIL3 −

√
3AIL8)/2 and AUR3 =

−(AIR3 −
√

3AIR8)/2, respectively; however, their contri-
bution to the vector boson mass matrix do not change
the present results.

V. ALTERNATIVE LEFT-RIGHT MODELS

As we already saw in Section II, by choosing other
SU(2) spin symmetries, it is possible to find alterna-
tive models to the left-right Symmetric model which have
been studied extensively [1, 38–41]. The gauge group of
the low energy effective theory isG = SU(3)C⊗SU(2)L⊗
SU(2)X ⊗ U(1)BLX . In the literature the spin symme-
try SU(2)I corresponds to SU(2)R

5 and U(1)BLI cor-
responds to U(1)B−L. The resulting model by choosing
X = V is known as the alternative left-right model [22]
as we already mentioned in Section II. The case X = U
is a new model where U(1)BLU corresponds to the E6

lephophobic model (modulo a normalization which is im-
portant for the phenomenology). In this section we study
these models as low energy effective field theories for
[SU(3)]3 [18, 42]. The neutral current Lagrangians for
these models are

−LNC =gLJ
I
L3µA

Iµ
L3 + gRJ

X
R3µA

Xµ
R3 + gXBLJ

X
BLµA

Xµ
BL

=gLJ
I
L3µA

Iµ
L3 + g′JY µB

µ + g2J2µZ
′µ, X = I, V ,

(28)

−LNC =gLJ
I
L3µA

Iµ
L3 + gRJ

U
R8µA

Uµ
R8 + gUBLJ

U
BLµA

Uµ
BL

=gLJ
I
L3µA

Iµ
L3 + g′JY µB

µ + g2J2µZ
′µ , X = U .

(29)

5 We do not use the label R for this symmetry because the alter-
native spin symmetries also are subgroups of SU(3)R.

For X = U , the weak-U -spin operator UR3 does not con-
tribute to the charge operator Q; so, it is not mandatory
to take into account the corresponding current in the La-
grangian; however, UR8 is necessary in order to reproduce
the electromagnetic charges of the 27. For X = I and
X = V , from the [SU(3)]3 charges we obtain

Q =IL3 + cXXR3 +XBL , X = I, V , (30)

Q =IL3 +
2√
3

(dU −
1

2
)XR8 +XBL , X = U , (31)

where

XBL =
1√
3
IL8 +

1√
3
XR8 , X = I, U, V . (32)

The XBLX charges are not E6 normalized and as it can
be verified in Table I, for X = I these charges correspond
to the (B − L)/2 ones, i.e., IBL = (B − L)/2. By means
of an orthogonal matrix we can rotate from the left-right
basis of the NC vector bosons to the (B,Z ′) basis i.e.,(

Bµ
Z ′µ

)
=
(
OI,VBL

)T (AI,VR3µ

AI,VLBµ

)
,(

Bµ
Z ′µ

)
=
(
OUBL

)T (AUR8µ

AULBµ

)
, (33)

where the orthogonal matrices are

OI,VBL =

(
cos γ sin γ

sin γ − cos γ

)
, OUBL =

(
cos δ sin δ

sin δ − cos δ

)
.

By replacing this expression in Eq. (28) we obtain

g′BµJ
µ
Y =Bµ

(
gRJ

X
R3µ cos γ + gXBLJ

X
BLµ sin γ

)
, (34)

g′BµJ
µ
Y =Bµ

(
gRJ

X
R8µ cos δ + gXBLJ

X
BLµ sin δ

)
, (35)

For X = I, V and X = U respectively. By equating the
hypercharge current with

JY µ =cXJ
X
R3µ + JXBLµ , X = I, V , (36)

JY µ =
2√
3

(dU −
1

2
)JXR8µ + JXBLµ , X = U , (37)

we get the equations

gR cos γ =g′cX , gXBL sin γ = g′, X = I, V ,

gR cos δ =g′
2√
3

(dU −
1

2
) , gXBL sin δ = g′, X = U .

From these equations we get

cos γ =cX
g′

gR
,

1

g′ 2
=

1(
gXBL

)2 +
c2X
g2
R

, X = I, V .

cos δ =−
√

3
g′

gR
,

1

g′ 2
=

1(
gXBL

)2 +
3

g2
R

, X = U .
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Because cX = 1 for X = I, V the right gauge cou-
pling must satisfy the inequality gR > g′ = 0.357,
which is met in [SU(3)]3. For X = U the last equa-

tion implies gR >
√

3g′ = 0.619, which automatically
excludes the [SU(3)]3 value of the right gauge coupling,
i.e., gR = 0.435; however, the typical left-right gauge cou-
pling gL = gR = 0.652 is still possible. From equations
(28) and (33) it is possible to get expressions for the
neutral current associated with the Z ′

g2J2µ =− gXBLJXBLµ cos γ + gRJ
X
R3µ sin γ

=gL tanW

(
αXJ

X
R3µ −

cXJ
X
BLµ

αX

)
, X = I, V ,

g2J2µ =− gXBLJXBLµ cos δ + gRJ
X
R8µ sin δ

=gL tanW

(
αUJ

X
R8µ +

√
3JXBLµ
αU

)
, X = U ,

(38)

where

αX =

√(
gR
gL

)2

cot2 θW − c2X [SU(3)]3
−−−−−→

1√
4 cos2 θW − 1

, X = I, V ,

αU =

√(
gR
gL

)2

cot2 θW − 3 , X = U . (39)

From these expressions we can obtain the explicit expres-
sions for the vector and axial charges. For X = I and
gR = gL these charges correspond to those of the left-
right model reported in reference [28]. In the present
work gR is determined by the [SU(3)]3 symmetry, thus,
by replacing gR from Eq. (15) in the expression above we
obtain (for X = I, V ) the r.h.s expression of Eq. (39).
For sin2 θW = 3/8 we recover the unification matching
condition gL = gR for any X. However, in the present
work we make use of the MS value for the weak mixing
angle, sin θW = 0.231, as we will explain below. From
these relations and from Table IV we can obtain the ex-
plicit expressions for the vector and axial charges for the
Z ′ gauge boson, corresponding to the g2J2µ current. For
X = I, V, U these charges are shown in the Tables VIII,
IX and X, respectively. The collider and EW constraints
are shown in Table II and Figures 2 and 3. A detailed
analysis of these constraints will be presented in the next
Section.

VI. ELECTROWEAK AND COLLIDER
CONSTRAINTS

We analyze the previously considered neutral gauge
bosons and impose limits on the Z-Z ′ mixing angle,
θZ−Z′ , and on the masses of the neutral Z ′ bosons, MZ′ .
In order to obtain the EW Precision Data (EWPD)

Z′ MZ′ [GeV] sin θZZ′

LHC EW sin θZZ′ sin θmin
ZZ′ sin θmax

ZZ′

Z331G 2,925 958 −0.00007 −0.0012 0.0009

ZTri
I 2,492 1,134 0.0003 −0.0006 0.0013

ZI 2,525 1,204 0.0003 −0.0005 0.0012

ZTri
LR 2,693 1,182 −0.0004 −0.0015 0.0006

ZLR 2,682 998 −0.0004 −0.0013 0.0006

ZLRU 2.588 935 −0.00001 −0.0011 0.0008

ZTri
ALR 2,532 447 −0.0004 −0.0014 0.0007

TABLE II. 95% C.L. lower mass limits on extra Z′ bosons for
various models from EW precision data and constraints on
sin θZZ′ . For comparison, we show in the second column the
95% LHC constraints [43] which have been calculated accord-
ing to Ref. [29]. In the following columns we give, respectively,
the central value and the 95% C.L. lower and upper limits for
sin θZZ′ .

constraints, we make use of the special purpose FOR-
TRAN package, GAPP (Global Analysis of Particle
Properties) [44]. Details of the analysis can be found in
Ref. [45–48] 6.

In the third column of Table II the EW constraints
are shown. The quantum numbers of the model Z331G

correspond to those of U(1)21I in Table I. We do not
put the superscript Tri on the 3-3-1 model because the
charges and the coupling strength of this model are the
same as the very well known universal 3-3-1 model [33,
37, 49], or the so called G model in references [29, 50].
The vector and axial charges for this model are shown in
Table VI.

The quantum numbers of ZTri
I correspond to those of

UI in Table I. This model is known as the inert model
which does not couple to up-type quarks [20], and corre-
sponds to the second neutral vector boson or Z ′′ in the
[SU(3)]3 group. From Eq. (16) for X = U we can see
that the coupling strength of ZTri

I is g2 = gR = 0.435.
To get this number in Eq. (15) we use for the weak mix-
ing angle the value sin θW = 0.231, which corresponds to
the MS renormalization scheme at the Z-pole scale. This
value is different of the traditional E6 coupling strength,

g2 =
√

5
3gL tan θW = 0.4615. The constraints by us-

ing the E6 coupling strength correspond to those of ZI
in Table II. The inequality of the couplings is reflected
in the EW and LHC constraints. The axial and vector
couplings of this model are shown in Table VII.

In Table II we also distinguish between ZLR, which
assume the equality between the left and right gauge
couplings, i.e., gR = gL = 0.652, and ZTri

LR for which
the right coupling strength is dictated by [SU(3)]3, i.e.,
gR = 0.435. This inequality between the left and right

6 An update of Ref. [45] will be presented soon.
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couplings makes the chiral charges different which is the
reason of the disparity in the constraints in Table II.

We observe that for the alternative left-right
model (ALR) the EW constraints are weak compared to
other typical E6 models in the literature (except the Zψ
which only has axial couplings to the SM particles and
the leptophobic model Z 6L), which is a well known feature
of this model [51].

As we already saw in Section V, there is another al-
ternative model for IBL = (B−L)/2, the UBL which, to
the best of our knowledge, has not been studied before.
This model is U -spin symmetric [i.e., SU(2)U ], and it
has as the main feature that it is leptophobic in the limit
gR → 0.619+. In the aforementioned limit αU → 0 and
the lepton couplings are proportional to αU ; however,
because in this limit the quarks couplings go as ∼ 1/αU ,
in many observables these effects compensate each other
in such a way that the EW constraints are not trivial for
this model.

In Figures 1 and 2 the 90% exclusion contours for the
universal 3-3-1 model Z331G, its corresponding Z ′′ = ZTri

I
in the [SU(3)]3 model, in the left-right symmetric model
ZTri
LR, and in its alternative version the ZTri

ALR are shown.
The plots for ZTri

LR and the inert model ZTri
I are com-

parable with ZLR and ZI in reference [45]. Because
gR > 0.619 as we already saw in Section V, it is not possi-
ble to have the ZLRU coming from a low energy [SU(3)]3

effective model; however, by choosing gR = gL = 0.652
this model is feasible. The corresponding EW and LHC
constraints are shown in Table II and Figure 3.

In Ref [43] the ATLAS detector data on dilepton pro-
duction was used to search for high-mass resonances de-
caying to dielectron or dimuon final states. The experi-
ment analyze proton-proton collisions at a center of mass
energy of 8 TeV and an integrated luminosity of 20.3 fb−1

in the dielectron channel, and 20.5 fb−1 in the dimuon
channel. From this data they report 95% CL upper limits
on the total cross-section of Z0 decaying to dilepton final
states. From these results, and following our earlier anal-
ysis [29], we obtain the 95% C.L. lower mass limits for
all the models mentioned above. These limits are shown
in the second column in Table II and they correspond to
the red dashed line in Figures 1 and 2.

VII. CONCLUSIONS

In this work we analyzed all the possible embeddings
of the 3-3-1 and 3-2-2-1 models present in the [SU(3)]3

gauge group. By considering the weak-U -spin and weak-
V -spin symmetries in SU(3)R besides the usual weak-
I-spin symmetry [best known as SU(2)R] we found two
flipped versions of the 3-3-1 model, with the particularity
that the Z ′ axial and vector charges are identical for the
three spin symmetries; hence, they are not a new source
of phenomenological results. In Appendix B, we showed
that the reason behind these results is that, just for these
models, the corresponding neutral current Lagrangians

are related each other by unitary transformations. For
the left-right symmetric model we also found two flipped
versions one of them not reported in the literature as
far as we know. This new model is denoted as ZRLU
and it corresponds to a second alternative model of the
left-right model ZLR (the first alternative model is ZALR
which is well known in the literature [22]). In several re-
spects the ZLRU model is different of ZLR and ZALR; for
example, it is not viable as a low energy effective theory,
unless we make it left-right symmetric, which is a typical
assumption of the ZLR and ZALR models. This model
has as the main feature that it is leptophobic in the limit
gR → 0.619+. In the aforementioned limit αU → 0 and
the lepton couplings are proportional to αU ; however, be-
cause in this limit the quarks couplings go as ∼ 1/αU , in
many observables these effects compensate each other in
such a way that the EW constraints are not trivial.

We also calculated the eigenstates of the [SU(3)]3

Higgs potential and, by considering different cases, it
was shown that these eigenstates are independent of the
Higgs sector. It was also shown that the null space of
the [SU(3)]3 vector boson mass matrix corresponds to
the photon. As a generalization of these results, we gave
the explicit form of the null vector of the EW vector bo-
son mass matrix for an arbitrary Higgs tensor and an
arbitrary gauge group.

By using the LHC experimental results and EW
precision data, new limits on the Z ′ mass MZ′ and the
mixing angle θZ−Z′ are imposed. From this analysis we
found lower limits on MZ′ of the order of 2.5 TeV, while
the mixing angle was found to be constrained to values
of the order of 10−3 radians.

The scope of the present work is not limited to the
[SU(3)]3 group. In reference [25] the full set of alter-
natives breakings in E6 was shown, the next step is to
extend our analysis to E6, which has as subgroups the
most promising and best-known electroweak extensions
of the standard model.
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Appendix A: The weak-I, weak-U and weak-V spin
symmetries

The SU(3) algebra is invariant under any unitary
transformation. i.e.,

[λa/2, λb/2] = ifabcλc/2→ [λ′a/2, λ
′
b/2] = ifabcλ

′
c/2 ,
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FIG. 1. The continuous blue line represents the 90% C.L. exclusion contour in MZ′ vs. sin θZZ′ for the universal 3-3-1 model
which has charges and coupling strength according to Eq. (16) with X = I. The axial and vector charges for this model are
shown in Table VI. The inert model ZTri

I has the same charges as the E6 motivated ZI , but with the coupling strength dictated
by [SU(3)]3 according to Eq. (16) for X = U , i.e., g3 = gR = 435.The axial and vector charges for this model are shown in
Table VII. The corresponding plot for the E6 motivated ZI is shown in Ref. [45]. The red dashed line is the 95% C.L. lower
mass limit obtained from ATLAS data [43].
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FIG. 2. The continuous blue line represents the 90% C.L. exclusion contour in MZ′ vs. sin θZZ′ for the left-right symmetric
model ZTr

LR and the Alternative left-right Model ZTr
ALR with the right coupling strength dictated by [SU(3)]3, i.e., gR = 0.435 for

sin θW = 0.231 (see Eq. (38) for X = I and X = V , respectively). The axial and vector charges for the left-right and the ALR
model are shown in Table VIII and Table IX. The corresponding plot for the left-right symmetric model with gR = gL = 0.652
is shown in Ref. [45]. The red dashed line is the 95% C.L. lower mass limit obtained from ATLAS data [43].
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ZLRU

FIG. 3. The continuous blue line represents the 90% C.L. exclusion contour in MZ′ vs. sin θZZ′ for the LRU model ZTr
LRU

with gR = gL = 0.652 for sin θW = 0.231 (See Eq. (38) for X = U ). The axial and vector charges for the left-right and the
LRU model are shown in Table VIII and Table IX. The red dashed line is the 95% C.L. lower mass limit obtained from ATLAS
data [43].

UλiU
† = λUi V λiV

† = λVi

λU1 λU2 λU4 λU5 λU6 λU7 λV1 λV2 λV4 λV5 λV6 λV7

λ6 λ7 λ1 −λ2 λ4 −λ5 λ4 −λ5 λ6 −λ7 λ1 λ2

TABLE III. The SU(3) algebra is invariant under a unitary
transformation. By requiring that λ3 and λ8 be mapped to
diagonal matrices there are two possible choices, U and V =
U†. Additionally, these matrices satisfy U2 = U†, and V 2 =
V †; from these relations and unitarity we obtain U3 = V 3 =
1. The latter identity allows us to verify the Table entries.

where λ′a = UλaU
†. By requiring that λ3 and λ8 be

mapped to diagonal matrices a form of the unitary ma-
trices is (there are several ways to choose U and V)

U =

0 0 1

1 0 0

0 1 0

 , V =

0 1 0

0 0 1

1 0 0

 .

Additionally, these matrices satisfy U2 = U†, and V 2 =
V †; from these relations and unitarity we obtain U3 =
V 3 = 1. The operators corresponding to λ3 and λ8 Gell-
Mann generators for the weak-I-spin (or Isospin), weak-

U -spin and weak-V -spin are

λI3 =λ3 =

1 0 0

0 −1 0

0 0 0

 ,

λU3 =Uλ3U
† = −1

2

(
λ3 −

√
3λ8

)
=

0 0 0

0 1 0

0 0 −1

 ,

λV3 =V λ3V
† = −1

2

(
λ3 +

√
3λ8

)
=

−1 0 0

0 0 0

0 0 1

 ,
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and

λI8 =λ8 =
1√
3

1 0 0

0 1 0

0 0 −2

 ,

λU8 =Uλ8U
† = −1

2

(
λ8 +

√
3λ3

)
=

1√
3

−2 0 0

0 1 0

0 0 1

 ,

λV8 =V λ8V
† = −1

2

(
λ8 −

√
3λ3

)
=

1√
3

1 0 0

0 −2 0

0 0 1

 .

Upon the unitary transformations U and V , the SU(3)
Gell-Mann matrices λi are mapped to λUi and λVi as it is
shown in Table III. These alternative representations for
the SU(3) algebra are relevant only for SU(3)R in the
[SU(3)]3 group. The representation of the Gell-Mann
matrices in SU(3)L is fixed by the phenomenology of
the SM.

Appendix B: U and V in the adjoint representation

The eight gauge bosons associated with the SU(3)R
are written by convenience as

1

2
AIaµλ

I
a =

1

2
AIbµU

Tb

aU
c
a λ

I
c

=
1

2

(
U b
a A

I
bµ

) (
U c
a λ

I
c

)
≡ 1

2
AUaµλ

U
a ,

where the bar in Ū stands for complex conjugation. Be-

cause U is real U b
a = U

b

a . In the adjoint representation
U is a 8 × 8 matrix; however, it is reducible to a cou-
ple of 3 × 3 matrices and one 2 × 2 matrix. The three-
dimensional matrices mix the generators associated with
the charged bosons while the two-dimensional one mix
the diagonal generators associated with the neutral onesλ1

λ4

λ6

 U−→

λU1λU4
λU6

 =

λ6

λ1

λ4

 ,

λ2

λ5

λ7

 U−→

λU2λU5
λU7

 =

 λ7

−λ2

−λ5

 .

The diagonal generators are mapped to(
λ3

λ8

)
U−→

(
λU3
λU8

)
= −1

2

(
λ3 −

√
3λ8

λ8 +
√

3λ3

)
.

We want to make use of this symmetry to rewrite the
neutral current

JIaµA
Iµ
a = JIbµU

Tb

aU
c
a A

Iµ
c = JIbµV

Tb

aV
c

a AIcµ , (B1)

by defining

AUµa ≡U c
a A

Iµ
c , AV µa ≡ V c

a AIµc ,

JUaµ ≡JIbµU
Tb

a = U b
a J

I
bµ , JAaµ ≡ JIbµV

Tb

a = V b
a JIbµ ,

where we take into account that U is a real matrix. By
replacing these results in (B1) we obtain

JIaµA
Iµ
a = JUaµA

Uµ
a = JVaµA

V µ
a . (B2)

With these expressions it is possible to build the La-

grangian term −LI = gRJ
X
R8µA

Xµ
R8 . It is important to

stress that for the 3-3-1-1 models in [SU(3)]3 the neutral
current Lagrangians of the alternative models are related
each other by a unitary transformation; however, in gen-
eral, that is not true for alternative models.

Appendix C: The null space of the vector Boson
mass matrix for an arbitrary Higgs representation

and gauge group.

In this section we will show that for any Higgs potential
there is a null vector for the mass matrix Mab of the
neutral gauge vector bosons. The explicit form of the
vector is7 Aaµ = ca

gaA(x)µ, where the ca are the coefficients

of the group generators in the charge operator, i.e., Q =
caT a, the ga is the coupling strength associated with the
Aaµ vector field and A(x)µ must be identified with the
photon field. For a simple group all the ga are identical;
however, they may be different for semisimple groups.

1. Rank 1 tensors

For a rank 1 tensor we can obtain the vector mass
matrix from the Higgs covariant derivative

LK = Tr
(
(Dµφ

i)†Dµφ
i
)
|φi=vi=

1

2
AaµM

abAbµ , (C1)

where vi are the components of the vacuum expectation
value vector. This vector satisfies Q.v = 0 since the
charge operator must annihilate the vacuum. By taking
the components of the vector boson as Aaµ = ca

gaA(x)µ,

the covariant derivative becomes zero

Dµφ
i|φi=vi= −igaAaµT aφi|φi=vi

= −i
(
ga
ca

ga
T aA(x)µ

)
ji

vi = −A(x)µQjiv
i = 0 ,

where A(x)µ is an arbitrary vector function of x, which
can be identified with the photon field. From Eq. (C1)
we get

AaµM
abAbµ = 0 , (C2)

showing that Aaµ = caA(x)µ is a null space vector of Mab.

7 Modulo a normalization.
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2. Rank 2 tensors

For a rank 2 tensor the analysis is quite similar. The
gauge transformation of a rank two tensor under the
gauge group is

Φi
′j′ = U i

′

i U
j′

j Φij ,

where the gauge group transformation U i
′

i (θ(x)) is a func-
tion of the local coordinate x. This allows us to define
the covariant derivative as

DµΦij = ∂µΦij − iga
(
T aAaµ

)i
α

Φαj − iga
(
T aAaµ

)j
α

Φiα.

For the SU(3) gauge group, T a = λa

2 , ga = g, U(θ) =
exp(−iθaT a) and the gauge transformation of the vector
field is

A′µ = T aA′aµ = U(θ)T aAaµU(θ)† +
i

g
U(θ)∂µU

†(θ) .

We do not lose generality by assuming that the VEV
of the Higgs rank 2 tensor is the product of two Higgs
scalars in the fundamental representation8, i.e., Φij =
χiξj . In similar way as we did for the rank 1 tensors
we also build the null vector as Aaµ = ca

gaA(x)µ, thus the

covariant derivative is

DµΦij |Φ=〈Φ〉=− iga
(
T aAaµ

)i
α
χαξj − iga

(
T aAaµ

)j
α
χiξα,

=− iA(x)µ
(
Qiαχ

αξj +Qjαχ
iξα
)
,

=− iA(x)µ
(
qiχiξj + qjχiξj

)
=− iA(x)µ

(
qi + qj

)
χiξj ,

where in the last step we take into account that the
charge operator is diagonal, i.e., Qiαχ

α = qiχi and
Qjαξ

α = qjξj . In these expressions the qi are the charges
of the components of a vector in the fundamental rep-
resentation. If the component 〈Φij〉 correspond to the
VEV of a Higgs field then qi + qj = 0 and the kinetic
Lagrangian becomes zero,

L = Tr
(
(DµΦij)†DµΦij

)
|Φ=〈Φ〉=

1

2
AaµM

abAbµ = 0 .

This shows that, as we already demonstrated for the rank
1 tensor, Aaµ = ca

gaA(x)µ is a null vector of the mass

matrix Mab. The procedure is similar for an arbitrary
tensor.

Appendix D: Z′ couplings

For the SM extended by a U(1)′ extra factor, the neu-
tral current interactions of the fermions are described by

8 Any component of a matrix can always be written as the tenso-
rial product of two vectors.

the Hamiltonian

HNC =

2∑
i=1

giZ
0
iµ

∑
f

f̄γµ
(
ε
(i)
L (f)PL + ε

(i)
R (f)PR

)
f ,

(D1)

where Z0
1µ and Z0

2µ are the weak basis states such that

Z0
1µ is identified with the neutral gauge boson of the SM,

Z, and Z0
2µ with the Z ′; the index f runs over all the

SM fermions in the low energy Neutral Current (NC)
effective Hamiltonian HNC , and PL = (1 − γ5)/2 and
PR = (1 + γ5)/2. It is convenient to write Eq. (D1) in
terms of the vector and axial charges

HNC =
1

2

2∑
i=1

giZ
0
iµ

∑
f

f̄γµ
(
G

(i)
V (f)−G(i)

A (f)γ5

)
f ,

(D2)

where the chiral couplings ε
(i)
L (f) and ε

(i)
R (f) are lin-

ear combinations of the vector G
(i)
V (f) and axial G

(i)
A (f)

charges given by ε
(i)
L (f) = [G

(i)
V (f) + G

(i)
A (f)]/2 and

ε
(i)
R (f) = [G

(i)
V (f) − G

(i)
A (f)]/2. The mass eigenstates

Z1µ and Z1µ are given by

Z1µ = Z0
1µ cos θ + Z0

2µ sin θ ,

Z2µ = −Z0
1µ sin θ + Z0

2µ cos θ .

For the numerical calculations we use the expressions for
the vector and axial charges shown in the Appendices D 1
and D 2, where most of the values in the Tables are being
presented for the first time in the literature. We have also
used sin2 θW = 0.231 and g1 ≡ g/ cos θW = 0.743.

1. The 3-3-1 charges and coupling strength

Chiral Charges

l eR q uR dR l eR q uR dR

εIR3 0 - 1
2

0 + 1
2

- 1
2

εIR8 −2

2
√
3

−1

2
√

3
0 +1

2
√

3

+1

2
√
3

εUR3 - 1
2

0 0 0 + 1
2
εUR8 1

2
√
3

2

2
√

3
0 −2

2
√

3

1

2
√
3

εVR3 + 1
2

+ 1
2

0 - 1
2

0 εVR8 1

2
√
3

−1

2
√

3
0 1

2
√

3

−2

2
√
3

εIBL - 1
2

- 1
2

+ 1
6

+ 1
6

+ 1
6
εIL8 - 1

2
√
3

- 1√
3

1

2
√
3

0 0

εUBL 0 0 + 1
6

- 1
3

+ 1
6
εVBL 0 - 1

2
1
6

1
6

- 1
3

TABLE IV. The chiral charges for the SM particles under the
additional U(1) symmetries embedded in the [SU(3)]3 group.
l stands for the left handed doublet (νL, e

−
L )T and q for the

quarks left handed doublet (uL, dL)T . For low energy con-
straints only the Z′ charges of the SM fermions are involved
in the calculation.

For X = U , cosβ = dU = −1 and Eq. (16) reduces to

g2Jµ2 =− gLJIL8µ sinα− gRJUR8µ cosα , (D3)
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Vector and Axial Charges

u d ν e u d ν e

gIR3
V

1
2
− 1

2
0 − 1

2
gIR8
V

1

2
√
3

1

2
√

3

−2

2
√
3

−3

2
√

3

gIR3
A − 1

2
1
2

0 1
2

gIR8
A

−1

2
√
3

−1

2
√

3

−2

2
√
3

−1

2
√

3

gUR3
V 0 1

2
− 1

2
− 1

2
gUR8
V

−2

2
√
3

1

2
√

3

1

2
√
3

3

2
√

3

gUR3
A 0 − 1

2
− 1

2
− 1

2
gUR8
A

2

2
√
3

−1

2
√

3

1

2
√
3

−1

2
√

3

gVR3
V − 1

2
0 1

2
1 gVR8

V
1

2
√
3

−2

2
√

3

1

2
√
3

0

gVR3
A

1
2

0 1
2

0 gVR8
A

−1

2
√
3

2

2
√

3

1

2
√
3

2

2
√

3

gIBL
V

1
3

1
3
− 1

2
−1 gIL8

V
1

2
√
3

1

2
√

3

−1

2
√
3

−3

2
√

3

gIBL
A 0 0 − 1

2
0 gIL8

A
1

2
√
3

1

2
√

3

−1

2
√
3

1

2
√

3

gUBL
V − 1

6
+ 1

3
0 0 gVBL

V
1
3
− 1

6
0 − 1

2

gUBL
A + 1

2
0 0 0 gVBL

A 0 1
2

0 1
2

TABLE V. The vector and axial charges for the SM par-
ticles under the additional U(1) symmetries embedded in
the [SU(3)]3 group. For low energy constraints only the Z′

charges of the SM fermions are involved in the calculation.

where

JIL8µ =
∑
i

f̄iγµ[εIL8

L (i)PL + εIL8

R (i)PR]fi ,

JUR8µ =
∑
i

f̄iγµ[εUR8

L (i)PL + εUR8

R (i)PR]fi ,

In this way

g2Jµ2 =
1

2

∑
i

f̄iγµ

(
− gL sinα[gIL8

V (i)− gIL8

A (i)γ5]

− gR cosα[gUR8

V (i)− gUR8

A (i)γ5]

)
fi ,

where

g
X(L,R)8

V,A (i) =ε
X(L,R)8

L (i)± εX(L,R)8

R (i) . (D4)

Reordering we have

g2Jµ2 =
g331G

2

∑
i

f̄iγµ

(
G331G
V (i)−G331G

A (i)γ5

)
fi,

where the vector and axial charges are

g331GG
331G
V,A (i) = −gL sinα gIL8

V,A(i)− gR cosα gUR8

V,A (i) .

In the differential cross-section always appears the prod-
uct g331GG

331G
V,A , where the G331G

V,A are the vector and ax-

ial charges in Eq. (D2) and g331G is the corresponding
coupling strength. For this reason, it is not necessary to
know them separately. Now, given that

g′ =gL tan θW , gR =
2gL sin θW√
4 cos2 θW − 1

,

cosα =
g′√
3gL

=
1√
3

tan θW ,

f g331GG
331G
V (f) g331GG

331G
A (f)

ν ( 1
2
− sin2 θW )η331 ( 1

2
− sin2 θW )η331

e 3( 1
2
− sin2 θW )η331 (sin2 θW − 1

2
)η331

u ( 4
3

sin2 θW − 1
2
)η331 − 1

2
η331

d ( 1
3

sin2 θW − 1
2
)η331 (sin2 θW − 1

2
)η331

TABLE VI. Couplings for Z331G → ff . Here η331 =
g331G/

√
4 cos2 θW − 1 and g331G = g1 = gL/ cos θW

f gING
IN
V (f) gING

IN
A (f)ηIN

ν − 1
2
ηIN − 1

2
ηIN

e − 1
2
ηIN − 1

2
ηIN

u 0 0

d 1
2
ηIN − 1

2
ηIN

TABLE VII. Vector and axial couplings ZTri
I → ff ( X = U

case). Here ηIN = gR.

we take the positive sign of sinα in agreement with
Eq. (12) . The expressions for the vector and axial cou-
plings can be cast as

g331GG
331G
V,A (i) =

−gL√
3 cos θW

√
4 cos2 θW − 1

×
(

(4 sin2 θW − 3)gIL8

V,A(i) + 2 sin2 θW g
UR8

V,A (i)

)
. (D5)

From Table I we obtain the chiral charges in Table IV
and their corresponding axial and vector expressions in
Table VI. By replacing these expressions in Eq. (D5) we
obtain the axial and vector charges as they are shown in
Table VI. By defining g331G = gL/ cos θW , as usual for
3-3-1 models, we recover the vector and axial couplings
to the Z ′ boson in the G model [29]. From Eq. (16), for
X = U andX = V we obtain exactly the same expression
for the axial and vector couplings as the one for the I case
in Table VI. The reason behind of this coincidence is that
the EW Langrangians −LX = gRJ

X
R3µA

Xµ
R3 +gRJ

X
R8µA

Xµ
R8

(see Eq. 5), are related each other by unitary transforma-
tions for the different values of X = I, U, V , as it is shown
in Appendix B.The same is not true for the left-right sym-
metric model and its alternative models as we will see in
the next Section. The vector and axial charges of the
Z ′′ current, g2J3, are obtained directly from Eq. (16),

g2J2 =
gIN

2

∑
i

f̄iγµ

(
GINV (i)−GINA (i)γ5

)
fi . (D6)

Here we use IN instead of I to denote the inert model
ZTri
I , in spite of the latter is a more frequent label for

this model 9.

9 That is in order to avoid confusion with the label I for the weak-
I-spin symmetry.
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f gLRG
LR
V (f) gLRG

LR
A (f)

ν − 1
2
(1− 4 cos2 θW )ηLR − 1

2
(1− 4 cos2 θW )ηLR

e (4 cos2 θW − 3
2
)ηLR

1
2
ηLR

u 1
3
( 5
2
− 4 cos2 θW )ηLR − 1

2
ηLR

d − 1
3
( 1
2

+ 4 cos2 θW )ηLR
1
2
ηLR

TABLE VIII. Vector and axial couplings for ZTri
LR → ff (The

X = I case). Here ηLR = gL tan θW /
√

4 cos2 θW − 1.

2. Couplings for the left-right symmetric model
and its alternative versions.

From Eq. (38) the neutral current coupled to the Z ′

boson is given by

g2J2µ =gL tan θW

(
αXJ

X
R3µ −

cXJ
X
BLµ

αX

)
, X = I, V ,

g2J2µ =gL tan θW

(
αUJ

U
R8µ +

√
3JUBLµ
αU

)
, X = U

(D7)

which encompasses the three different X values. From
Eq. (D7) we get for X = I, V, U the vector and axial
charges for the left-right, ALR and inert models, respec-
tively,

g2J2 =
g(A)LR(U)

2∑
i

f̄iγµ

(
G

(A)LR(U)
V (i)−G(A)LR(U)

A (i)γ5

)
fi ,

where the index (A)LR(U) stands for the three models,
i.e., LR, ALR and LRU .

g(A)LRG
(A)LR
V,A (i) = g′

(
gXR3

V,A (i)

αX
− cXαXgXBL

V,A (i)

)
,

gLRUG
LRU
V,A (i) = g′

(
gUR8

V,A (i)

αU
+
√

3αUg
UBL

V,A (i)

)
,

(D8)

where, g′ = gL tan θW and αI = αV =
1/
√

(4 cos2 θW − 1). From Table V and equations (D8)
we get the vector and axial-vector couplings to the Z ′

boson, which are shown in Tables IX and X.

f gALRG
ALR
V (f) gALRG

ALR
A (f)

ν 1
2
ηLR

1
2
ηLR

e ( 3
2
− 2 cos2 θW )ηLR

1
2
(4 cos2 θW − 1)ηLR

u 1
3
(4 cos2 θW − 5

2
)ηLR

1
2
ηLR

d − 1
6
(4 cos2 θW − 1)ηLR

1
2
(4 cos2 θW − 1)ηLR

TABLE IX. Vector and axial couplings for ZTri
ALR → ff (

X = V case). Here ηLR = gL tan θW /
√

4 cos2 θW − 1.

f gLRUG
LRU
V (f) gLRUG

LRU
A (f)

να
1
2
ηαU

1
2
ηαU

eα
3
2
ηαU − 1

2
ηαU

uα −η(αU + 1
2αU

) η(αU + 3
2αU

)

dα − 1
2
η(αU + 2

αU
) − 1

2
ηαU

TABLE X. Vector and axial couplings for ZLRU → ff (
X = U case) Couplings Z′ → ff for X = U . Here η =

gL tan θW /
√

3 and αU =
√

(gR/gL)2 cot2 θW − 3.
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