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We report the most general expression for the chiral charges of a Z′ gauge boson coming
from an E6 unification model, as a function of the electroweak parameters and the

charges of the U(1) factors in the chain of subgroups. These charges are valid for an
arbitrary Higgs sector and only depend on the branching rules of the E6 fundamental

representation and the corresponding rules for the fermionic representations of their

subgroups. By assuming E6 unification, the renormalization group equations (RGE)
allow us to calculate the electroweak parameters at low energies for most of the chains of

subgroups in E6. From RGE and unitary conditions, we show that at low energies there

must be a mixing between the gauge boson of the standard model hypercharge and the
Z′. From this, it is possible to delimit the preferred region in the parameter space for

a breaking pattern in E6. In general, without unification, it is not viable to determine

this region; however, for some models and under certain assumptions, it is possible to
limit the corresponding parameter space. By using the most recent upper limits on the

cross-section of extra gauge vector bosons Z′ decaying into dileptons from the ATLAS
data at 13 TeV with accumulated luminosities of 36.1 fb−1 and 13.3 fb−1, we report the
95% C.L. lower limits on the Z′ mass for the typical E6 benchmark models. We also
show the contours in the 95% C.L. of the Z′ mass bounds for the entire parameter space

of E6.
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PACS numbers:

1. Introduction

From a group theory point of view, there are several ways to break the E6 symme-

try down to the standard model (SM) one. Although some of the breaking patterns

have been explored in the literature so far, a systematic study of the phenomenol-

ogy for all the alternative ways has not been done as far as we know. In general,
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intricate models are not appealing. A way to look for new models with a moderate

fermion content is to consider alternative versions of the models already known in

the literature.1–10 Our work represents a first step in this direction. One of the first

alternative models was “flipped SU(5)”,1,11 which produces a symmetry breaking

for SO(10) down to SU(5) ⊗ U(1), where the U(1) factor contributes to the elec-

tric charge, and as such, its basic predictions for sin2 θW and the proton decay are

known to be different from those of SU(5).1 An alternative model for the flipped

SU(5) is SO(10)⊗ U(1)N , where the right-handed neutrino has zero charge under

the U(1)N group allowing a Majorana mass term.5,12 The alternative versions of

the left-right model are also well known in the literature,4,13 as in the latter case,

one of these models allows for a right-handed neutrino component effectively inert.4

The alternative models have been useful in the study of the grand unified theo-

ries (GUTs) phenomenology, for example, for the E6 subgroup SU(2)R⊗SU(6) and

some of its three alternative versions, the gauge mediated proton decay operators

are suppressed at leading order due to the special placement of matter fields in the

unified multiplets.9,14–18

Heavy neutral gauge bosons are a generic prediction of many types of new physics

beyond the SM. In addition, these extra U(1)′ symmetries serve as an important

model-building tool19 (for example, to suppress strongly constrained processes) giv-

ing rise, after spontaneous U(1)′ symmetry breaking, to physical Z ′ vector bosons.

Thus, with the upgrade of the luminosity and the energy of the LHC, there exists

a real possibility for the on-shell production of a Z ′ boson.20,21

All representations of the E6 gauge group22,23 are anomaly-free and the funda-

mental 27-dimensional representation is chiral and can accommodate a full SM

fermion generation. As a consequence, E6-motivated Z ′ bosons arise naturally

in many popular extensions of the SM,2,20,24,25 both in top-down and bottom-

up constructions. Some of the E6 subgroups, such as the original unification

groups SU(5) and SO(10), and the gauge group of the left-right symmetric mod-

els SU(4)C ⊗ SU(2)L ⊗ SU(2)R, play central roles in some of the best motivated

extensions of the SM. Furthermore, the complete E6-motivated Z ′ family of mod-

els appears in a supersymmetric bottom-up approach exploiting a set of widely

accepted theoretical and phenomenological requirements.26 The one-parameter Z ′

families in reference,27 denoted as 10 + x5̄, d− xu and q+ xu, where 10 and 5̄ are

SU(5) representations, can also be discussed within the E6 framework.28

For all these reasons there is an expectation that an E6 Yang-Mills theory,

or a subgroup of E6 containing the SM in a non-trivial way, might be part of a

realistic theory.29 If a heavy vector boson is seen at the LHC or at an even more

energetic collider in the future, aspects of the E6 symmetry group will be central

to the discussion of what this resonance might be telling us about the fundamental

principles of nature.

The discrimination between Z ′ models could be challenging at the LHC due to

the small number of high resolution channels at hadron colliders. Another reason

why the determination of the underlying symmetry structure is not straightforward
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is that the mass eigenstate of the Z ′ is, in general, a linear combination of some of

the underlying Z ′ charges with the ordinary Z boson of the SM. Hence, it is useful

to reduce the theoretical possibilities or at least to have a manageable setup. This

work represents an attempt in this direction and serves to spotlight a few tens of

models in the two-dimensional space of E6-motivated Z ′ models.

All the E6 breaking patterns and branching rules have been tabulated in Ref.29

In references2,7 all the chains of subgroups were tabulated. The aim of the present

work is to set the impact of the latest LHC constraints on the possible embeddings

of the SM in the subgroups of E6.

It is important to remark that many interesting phenomenological models appear

in a natural way in E6 breaking patterns, such as the proton-phobic, Z 6p, neutron-

phobic, Z6n, (vector bosons which at zero momentum transfer do not couple to

protons and neutrons, respectively), leptophobic Z 6L (with zero couplings to leptons)

and vector bosons from supersymmetric models, as for example the ZN model,5,12

etc. We will show a more complete list later.

The study reported here is a continuation of the analysis started in Ref.7 where

the quantum numbers of the abelian gauge groups in alternative chains of subgroups

of E6 were calculated. Several of the subgroups shown there are well known in the

literature; however, as far as we know, the phenomenology of many of these models

have not been studied. Of particular importance for the electroweak constraints

are the Z ′ chiral charges of the SM fermions which depend on the chosen chain of

subgroups. In the present work, we show the general expression for these charges and

determine the preferred region in the parameter space for some breaking patterns.

We also establish that the mixing between the Z ′ charges and the SM hypercharge

is a measure of the deviation of the parameter space at low energies respect to their

unification values. We demonstrate that the presence of this mixing stems from the

gauge coupling splitting at low energies.

The paper is organized as follows: In Section 2 we derive general expressions

for the electroweak (EW) charges of a Z ′ in E6 as a function of the mixing angles

and the charges of an arbitrary U(1) in E6. In section 3 we show that even for a

group with orthonormal charges at low energies there is a kinetic mixing due to

the splitting of the gauge coupling constants. In section 4 we revise the existing

literature about models based on E6 subgroups and their embeddings. By assuming

E6 unification the renormalization group equations (RGE) allow us to determine the

parameter space of the Z ′ associated with some of these models. For this purpose,

we take the expressions for the mass scales and couplings of the Robinett and

Rosner (RR) work.2 In this section, we also point out the existence of non-trivial

models which, to the best of our knowledge, have not been studied in the literature.

In section 5 we delimit the parameter space when we put aside the unification

hypothesis as it usually happens for effective models at low energies. In section 6 the

95% C.L. exclusion limits on the neutral boson masses for the entire E6-motivated

Z ′ parameter space are shown.
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2. General expressions

Owing to the fact that the rank of E6 is 6, for chains of subgroups with regular

embeddings (those preserving the rank) the most general form of the group associ-

ated with the low-energy effective model is2,29 SU(3)C ⊗SU(2)L⊗
∏
κ U(1)κ, with

κ = a, b, c; where the U(1) factors come from the chains of subgroups of E6. In order

to reproduce the SU(3)C ⊗ SU(2)L ⊗ U(1)Y symmetry of the SM it is necessary

that the SM hypercharge Y be a linear combination of the U(1)k charges Qκ. If g is

the SU(2)L coupling constant and Aµ3L the gauge boson associated with the third

component of the weak isospin, then the neutral current Lagrangian LNC for the

most general case is

− LNC = gJµ3LA3Lµ + gaJ
µ
aAaµ + gbJ

µ
b Abµ + gcJ

µ
c Acµ , (1)

where gκ and Aµκ represent the gauge coupling constant and the gauge field asso-

ciated with the Uκ(1) symmetry, respectively. The fermion currents Jµκ are given

by

Jµκ =
∑
f

fγµ[εκL(f)PL + εκR(f)PR]f, (2)

where f runs over all fermions in the 27 representation of E6, which is the

fundamental representation. The chirality projectors are defined as usual i.e.,

PL,R = (1 ± γ5)/2 and fL,R = PL,Rf . The chiral charges are εL(f) = Qk(fL)

and εR(f) = −Qk(f cL). The U(1)κ charges satisfy the E6 normalization condition∑
f∈27Q

2
κ(f) = 3 (see Table 3 in appendix Appendix D). As a consequence of this,

the electric charge operator Qem is given by

Qem = T3 + Y = T3 +

√
5

3
QE6

Y ,

where T3 is the third component of weak isospin and QE6

Y is the E6 normalized SM

hypercharge.

By means of an orthogonal transformation O we can pass from the gauge inter-

action basis to the basis in which one of the fields can be identified with the SM

hypercharge Bµ associated with the U(1)Y symmetry. If we define such a rotation

through a


Aµ3L
Aµa
Aµb
Aµc

 = O


Aµ3L
Bµ

Z ′µ

Z ′′µ

 =


1 0 0 0

0 O11 O12 O13

0 O21 O22 O23

0 O31 O32 O33



Aµ3L
Bµ

Z ′µ

Z ′′µ

 , (3)

a The absence of mixing between Aµ3L and the other fields is related to the strong constraints on
the Z and Z′ mixing angle by low energy experiments,30 consequently, the only mixing between
the hypercharge and Aµ3L is parametrized by the Weinberg angle θW .
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then the Lagrangian (1) can be written as

− LNC = gJµ3LA3Lµ + gY J
µ
YBµ + gZ′J

µ
Z′Z

′
µ + gZ′′J

µ
Z′′Z

′′
µ . (4)

In order to keep invariant the Lagrangian, the currents must transform with the

same orthogonal matrix

gY J
µ
Y = gaJ

µ
aO11 + gbJ

µ
b O21 + gcJ

µ
c O31 , (5)

gZ′J
µ
Z′ = gaJ

µ
aO12 + gbJ

µ
b O22 + gcJ

µ
c O32 , (6)

gZ′′J
µ
Z′′ = gaJ

µ
aO13 + gbJ

µ
b O23 + gcJ

µ
c O33 . (7)

The exact expression for the orthogonal matrix is given in appendix Appendix A.

In order to obtain the SM as an effective theory at low energies, the breaking

Ua(1)⊗ Ub(1)⊗ Uc(1) −→ U(1)Y must take place. If so, it is possible to find three

real coefficients ka, kb and kc such that

Y =

√
5

3
QE6

Y =kaQa + kbQb + kcQc . (8)

From Eqs. (2) and (8) we obtain for the currents the relation

JµY = kaJ
µ
a + kbJ

µ
b + kcJ

µ
c . (9)

In Tables 4 to 7 (in appendix Appendix D) we have reported the values of kκ for

the models considered in this work. By comparing Eq. (9) with Eq. (5), we get the

following expressions:

gaO11 = kagY , gbO21 = kbgY , gcO31 = kcgY , (10)

which, along with the orthogonal condition O2
11+O2

21+O2
31 = 1, impose a constraint

on the ga, gb and gc coupling constants, namely:(
ka
ga

)2

+

(
kb
gb

)2

+

(
kc
gc

)2

=

(
1

gY

)2

. (11)

From these expressions and the explicit form of the rotation matrix O (see Appendix

A) we get the Z ′ chiral charges (see Appendix B)

gZ′ε
Z′

L,R = AL,R cos θ +BL,R sin θ , (12)

gZ′′ε
Z′′

L,R =−AL,R sin θ +BL,R cos θ , (13)

where

AL,R =
gc
α̂c

(
kaε

b
L,R

β̂
− β̂kbεaL,R

)
, (14)

BL,R =gY

(
−
kaε

a
L,R + kbε

b
L,R

α̂c
kc + α̂cε

c
L,R

)
, (15)
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and θ is an angle of the rotation matrix O which can take any value between −π

and π. Here α̂c = gc

√
k2a
g2a

+
k2b
g2b

=
√

g2c
g2 cot2 θW − k2

c , and β̂ = ga
gb

. In order to have

the chiral charges properly normalized in E6 we define

gZ′ ≡
1

α̂cβ̂

(
cos2 θg2

c (k2
a + β̂4k2

b )− 2β̂(1− β̂2)gcgY kakbkc cos θ sin θ (16)

+ β̂2g2
Y

(
(k2
a + k2

b )k2
c + α̂4

c

)
sin2 θ

)1/2

, (17)

which reduces to the Georgi-Glashow well known result
√

5
3gY =

√
5
3g tan θW for

gc = ga = gb. These charges reproduce the electroweak charges of trinification and

the left-right symmetric model which are well known in the literature (for additional

references look into our previous work13). Since gZ′ε
Z′

L,R(θ+π/2) = gZ′′ε
Z′′

L,R(θ), the

parameter space associated with the Z ′′ boson is the same as that of the Z ′ boson.

3. Kinetic mixing from gauge coupling splitting

Because all the generators Qaij associated with the neutral currents can be diago-

nalized simultaneously the corresponding fields can be written as Aµ = AµaT aij =

AµaQa(i)δij , where Qa(i) stands for the charge of the i-fermion in the fundamental

representation. For these fields the most general lagrangian is given by

Tr[FµνF
µν ] =Tr[F aµνT

aFµνbT b]

F aµνF
µνb
∑
i,j

Qa(i)δijQ
b(j)δji =F aµνF

µνb
∑
i

Qa(i)Qb(i). (18)

When i runs over the fermions in a multiplet of a simple group (or a semisim-

ple group that comes from the breaking of a simple Lie group) the charges are

orthonormal ∑
i

Qa(i)Qb(i) =
∑
i

εa(i)εb(i) = δab . (19)

It is not possible to generate a kinetic mixing term to tree level because Fµνa trans-

forms with an orthogonal matrix; however, at low energies it is possible to generate

a kinetic mixing by one-loop corrections.20,31–33 As we will show, a source of kinetic

mixing at low energies is the splitting of the values of the coupling strengths. By

unitarity the currents should transform in the same way as the fields; if we trans-

form from the group basis to a basis where one of the fields corresponds to the

vector field associated with the SM hypercharge Bµ, the corresponding expression

for the currents is
gJµ3L
gY J

µ
Y

gZ′J
′µ

gZ′′J
′′µ

 = OT


gJµ3L
gaJ

µ
a

gbJ
µ
b

gcJ
µ
c

 =


1 0 0 0

0 O11 O12 O13

0 O21 O22 O23

0 O31 O32 O33


T 

gJµ3L
gaJ

µ
a

gbJ
µ
b

gcJ
µ
c

 . (20)
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From the definitions gY J
µ
Y (f) =

∑
κO1κgκJ

µ
κ (f) , gZ′J

µ
Z′ =

∑
λO2λgλJλ(f)µ, and

the Eq. 2 we obtain the expressions

gY Y =
∑
κ

O1κgκε
κ(f) , (21)

gZ′εZ′ =
∑
λ

O2λgλε
λ(f) . (22)

By taking the dot product of the SM hypercharge gY and the Z ′ charges gZ′εZ′ we

obtain

gY Y · gZ′εZ′ ≡
∑
f∈27

gY Y (f)gZ′εZ′(f)

=
∑
κ,λ

∑
f∈27

O1κgκε
κ(f)O2λgλε

λ(f) (23)

=3
∑
κ

O1κOTκ2g
2
κ , (24)

where O is the rotation matrix (3). Here we made use of the E6 orthonormality

relation
∑
f∈27 ε

κ(f)ελ(f) = 3δκλ between the U(1)κ charges that come from a

chain of subgroups. By assuming that the three couplings are identical ga = gb = gc
we obtain gY Y · gZ′εZ′ = 3g2

a

∑
κO1κOTκ2 = 3g2

aδ12 = 0, otherwise

Y · εZ′ =
∑
f∈27

Y (f)εZ′(f) 6= 0 . (25)

Fig. 1. Z′µ-Bµ kinetic mixing.

This result shows that the orthonormality of the SM hypercharge and the Z ′

charges is only guaranteed when all the three couplings are equal as it happens in

unification; for the remaining cases a kinetic mixing is generated by the one-loop

diagram in figure 1 (even for complete fermion representations).

In general, at low energies the gauge couplings gκ are different each other due

to the RGE; thus, as will be shown below, the Z ′ charges associated with a chain of

subgroups in E6 are no longer orthonormal to the SM hypercharge. It is important to

notice that the 2-loop corrections are important for the RGE since they modify in a

considerable way the mass unification scales; however, for several models, unification

does not impose relations between the SM electroweak couplings in such a way that

the consistency of the model does not depend on high order corrections and the

SM values for the αi = g2
i /(4π) can be considered as input parameters. Under

these conditions, the 1-loop coupling strengths2 gκ associated to the extra U(1)

abelian symmetries differs in just a few percent respect to the 2-loop result at the
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electroweak scale, since the bondary condition on the SM parameters is imposed at

the same energy scale.34

The phenomenological consequences of the Bµ−Z ′µ kinetic mixing is a modifica-

tion of the Z charges.20,32,33 In turn, this contribution represents a non-zero value

for the Z-Z ′ mixing angle, which is strongly constrained by Z-pole observables and

low energy constraints.30

It is important to notice that something similar happens in the standard model

where the chiral charges of the photon Q = T3 +Y and are not orthogonal to those

of the Z boson T3 − sin2 θWQ, hence, one effective kinetic mixing arise by one-loop

corrections.35

4. Benchmark models in E6

The maximal subgroups of E6 which can include SU(3) ⊗ U(1) as an unbroken

symmetry are29 Sp8, SU(2)⊗SU(6), SO(10)⊗U(1), F4, and [SU(3)]3. By imposing

the SM gauge group as an intermediate step in the breaking chain E6 → SM →
SU(3) ⊗ U(1)EM, the subgroups Sp8 and F4 can be eliminated. So, from now on

we are going to focus only on the breaking chains in figure (2) which, by the way,

sets part of our convention in the sense that we refer to A as the chain belonging

to SO(10)⊗ U(1), B to the chain SU(2)⊗ SU(6),· · · , etc.

4.1. SO(10) ⊗ U(1)

In what follows, the models will also be denoted according to the generalized RR

notation.7 The list of models and their respective RR notations are shown in table 1.

In E6 there are only three chains of subgroups for which the SM hypercharge

U(1)Y (U32I in RR notation) appears in a natural way. Two of them, A1RI and

A1AI (see figure (3) and table 4), go trough SO(10) ⊗ U(1) and that is one of

the reasons why this group have been widely studied in GUTs. The A1RI chain of

subgroups corresponds to the embedding of the Georgi-Glashow unification model36

SU(5) in E6 through the breaking29 E6 → SO(10)⊗U(1)42R → SU(5)⊗U(1)χRI⊗
U(1)42R → SU(3)⊗SU(2)⊗U(1)32I ⊗U(1)χRI ⊗U(1)42R. The charges of U(1)χRI
and U(1)42R corresponds to those of1 Zχ and Zψ (see table 3), respectively; these

models are well known in E6 (see table 1). After we rotate to the mass eigenstate

basis two vector bosons Z ′ and Z ′′ appear in addition to the SM fields. When the

mixing between the SM Z and the extra neutral vector bosons is zero30,37–39 the

Z ′ and Z ′′ fields are a linear combination of 24 Zχ and Zψ

Z ′ = cosβZχ + sinβZψ . (26)

By varying β from 0 to π/2 the parameter space in figure (6) corresponds

to the vertical line which goes through Zψ (U(1)42R) and Zχ (U(1)χRI). That

is the parameter space of the models orthogonal to the SM hypercharge, i.e.,∑
f∈27QZ′(f)Y (f) = 0, where QZ′(f) is the Z ′ charge of the fermion f and Y (f)

the SM hypercharge. As was shown in section 3, this vertical line also corresponds
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Table 1. E6-motivated Z′ benchmark models and their generalized RR notations.7 The ZI ,

Z6d, and Z6L bosons are blind, respectively, to up-type quarks, down-type quarks, and SM

leptons. Similarly, the Z6n and the Z6p are gauge bosons which do not couple (at vanishing
momentum transfer and at the tree level) to neutrons and protons, respectively. The ZB−L
couples purely vector-like while the Zψ has only axial-vector couplings to the ordinary fermions.

For convenience the models with the same multiplet structure as the Zχ are referred to as
UχXY . The ZS model does not have RR notation

Z′ ZR
2 Z6d

28 −ZI2 −ZL1
2 −ZR1

2 Z6p
28

RR UR UA UI U33 U21R U21A

Z′ −Z6n28,40 −ZB−L41 ZALR
4 −Z6L32 Zψ

2 Zχ2

RR U21I U31R U31A U31I U42R UχRI

Z′ ZN
5,12 Zχ∗ [flipped-SU(5)]1 Zη3 ZY

42,43 ZS
44,45 Z331G

13,40,46

RR UχAI UχRA U51I U32I U21Ī , U33

to the parameter space for any E6-motivated Z ′ at the unification limit; however,

owing to the RGE, at low energies the values of the gκ couplings will depend on

the specific details of the breaking pattern. Because at low energies the couplings

are no longer identical, the Z ′ parameter space acquires a component in the SM

hypercharge axis in figure (6), which is equivalent to a kinetic mixing of the form28

Z ′ = cosα cosβZχ + sinα cosβY + sinβZψ . (27)

Due to this mixing the Z ′ parameter space will be out of the unification vertical

line as is shown for some models in figure (6).

U(1)42X A

C

D

SO(10) 

SU(2)X SU(6)

SU(2)L

SU(3)C SU(3)L SU(3)R

E6 SU(6)

B

Fig. 2. E6 maximal subgroups

The other chain of subgroups in which the SM hypercharge appears naturally

is A1AI . The SU(5) is the Georgi-Glashow one, but the factor U(1)χAI is an alter-

native version of Uχ (U(1)χRI), which is known in the literature as UN . Figure 3

shows the embedding of SU(5)⊗U(1)N (i.e., SU(5)⊗U(1)χAI ) in E6. This is the

symmetry group of the Exceptional Supersymmetric Standard Model (ESSM),12

which is obtained from the E6 charges by requiring vanishing U(1)N charges for

right-handed neutrinos.

Table 4 shows the six possible ways to embed SU(5) into SO(10)⊗ U(1) ⊂ E6

(all the chains of subgroups of the form A1XY can be seen in figure (3)); from these,

the A1RA chain corresponds to the flipped SU(5).1
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U(1)χXY U(1)42X A1xy

U(1)x U(1)31X U(1)42X

A2x

A3x

U(1)32Y

U(1)42X

SU(5) SU(3)C

U(1)χXY 

SU(2)L

SU(4) SU(2)X SU(2)L SU(3)C SU(2)L

U(1)42X

SO(9)C U(1)42X U(1)42XSU(2)LSU(3)C

SO(7)C SU(2)L U(1)42X SU(3)C SU(2)L U(1)42X A4x

U(1)31X 

U(1)31X 

A

Fig. 3. E6 → SO(10)⊗ U(1)42X chains of subgroups, where X,Y = R, I,A and X 6= Y .

Taking as inputs the values of the fine-structure constant and the corresponding

quantities for the strong and weak interactions, we find the strength couplings at

low energies by using the one-loop RGE equations;2 however, we always find that for

the A1XY chains of subgroups it is not possible to get the right order between the

unification scales. That problem is related to the wrong prediction of the Weinberg

angle in SU(5). Although it is not possible to have a consistent picture for the

embeddings SU(5) ⊗ U(1) ⊂ SO(10) ⊗ U(1) ⊂ E6, there are solutions in most of

the remaining E6 breaking patterns.

4.1.1. SU(4)⊗ SU(2)L ⊗ SU(2)⊗ U(1) ⊂ SO(10)⊗ U(1) ⊂ E6

From the three chains of subgroups A2X in figure (3) we can get low-energy E6

models (LEE6Ms) i.e., models where at least one of the neutral currents in Eq. (9)

does not contribute to the hypercharge, therefore, the corresponding vector boson

is not necessary to have a consistent model. Usually, the fermion content of these

models is smaller than the fundamental representation of E6.

The A2R/U(1)42R chain b is the Pati-Salam model41,47 (see figure (3)). The

EW charges of this model are the same as those of B2R/U42R (see figure (4)) and

C3R/U42R (see figure (5)) and are the same as the Left-Right (LR) symmetric

model. The A2A/U42A chain of subgroups corresponds to the alternative left-right

model ZALR.4 The EW charges for this model were reported in13 and are identical to

those of B2A/U42A and C3A/U42A. A2I is a new model in the literature even though

is closely related to the second alternative model obtained from trinification;13 the

difference lies in the Abelian factor U42I (in13 Y is a linear combination of U31I and

U(1)I , while in the SO(10) embedding U42I is in place of UI). Identical EW charges

are obtained from B2I and C3I . Note that the coefficients of the hypercharge in

A3I and A4I are identical to those of A2I ; however, due to the absence of the

U(1)I factor in the chain of subgroups, in Eq. (12) there is no mixing with the

corresponding vector boson ZI . In E6 the parameter space for every Z ′ of the A2X
chain coincides with those of C3X in figure 6.

bA2R/U(1)42R denote the chain of subgroups A2R without the U(1)42R factor.
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Fig. 4. E6 → SU(2)X ⊗ SU(6) chains of subgroups, where X = R, I,A.

4.2. SU(2) ⊗ SU(6) ⊂ E6

The third chain of subgroups in which the SM hypercharge U(1)Y appears in a

natural way is the B1I in figure (4). This model occurs in Calabi-Yau compactifica-

tions in string theory3 and is commonly denoted as Zη. The charges of this model

correspond to those of U(1)51I (see Table 3). In this chain of subgroups the SU(5)

is the same as that of Georgi-Glashow; however, the U(1)51 factor is different from

the corresponding factor in the embedding through SO(10). The other two chains

in SU(2)X ⊗ SU(6) are B2X and B3X . For these chains, the Z ′ charges of the

LEE6Ms correspond to those of the Pati-Salam and trinification models, and their

corresponding alternative versions, which have been studied in the previous sec-

tion and in reference.13 New models appear in the chains of subgroups containing

SU(2)L ⊗ SU(6); of particular interest are C2X , which contain a SU(5) different

from the Georgi-Glashow one. This new SU(5) allows a solution for the mass scales

in E6 from the one-loop RGE2 (we saw above that such a solution is not possible

either in the Georgi-Glashow model or its alternative versions). The same is true for

the C1xy chains of subgroups. The chains C3X/U(1)42X and C4X have the same Z ′

charges as the Pati-Salam and trinification models, respectively. The low-energy Z ′

charges for C1X , C2X and C3X as a function of the θ mixing angle (see Eq. (12))

are shown in the Sanson-Flamsteed projection in figure (6).

C

U(1)51X

C1xy

U(1)x

U(1)31X U(1)42X

C4x

C3x

U(1)42X

SU(5)

SU(4) SU(2)X
SU(3)C SU(2)L

U(1)33

SU(2)LSU(3)C

U(1)21X 

SU(2)L

SU(2)L SU(4)

U(1)41XY 
U(1)51X

SU(3)CSU(2)L
U(1)51X U(1)31YU(1)41XY 

SU(2)L
SU(3)C SU(2)L

U(1)31X U(1)42X

SU(2)L

SU(2)X

SU(3)

SU(3)C SU(2)X

U(1)33

SU(2)L SU(3)C U(1)x

U(1)33 U(1)21X 

C2x
SU(2)XSU(3)C

U(1)51X 
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U(1)32X

U(1)XSU(3)C

U(1)51X 

SU(2)L

U(1)32X

Fig. 5. E6 → SU(2)L ⊗ SU(6) chains of subgroups, where X,Y = R, I,A and X 6= Y .
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4.3. SU(3) ⊗ SU(3) ⊗ SU(3)

The SU(3) ⊗ SU(3) ⊗ SU(3) is the gauge group of trinification.23,48–51 In table 7

are shown the three possible chains of breakings for this group. As was shown in

reference,13 the charges of the three chains reduce to those of the universal 331

vector boson Z331G (see table 2 for the LHC constraints). A detailed study of these

models and their EW constraints was presented in reference.13

5. Low-energy models without unification.

The most general charges of any E6-motivated Z ′ model is generated by the linear

combination of three independent sets of charges associated with the U(1)κ sym-

metries, where κ = a, b, c. In appendix Appendix C, we showed that for unification

models the values of α and β corresponds to the vertical line which passes through

Zψ and Zχ. At low energies the parameter space of these models keeps close to this

line, as can be seen in figure (6).

Without the unification hypothesis it is not possible to determine the preferred

region in the parameter space. There are several models based on E6 subgroups, and

in some of them unification is not necessary to get a predictable model. In most of

the well-known cases, the subgroup rank is less than the E6 rank and at least one of

the vector currents does not contribute to the electric charge. In order to ignore this

current we set θ = 0 in Eq. (12), in such a way that for a fixed value of the couplings

the Z ′ charges reduce to a single point in the Sanson-Flamsteed projection. Since

the values of the couplings is arbitrary, by varying them we generate the parameter

space for these models.

For these models the hypercharge is the combination of the charges of two U(1)′s.

If we put kc = 0 and sin θ = 0, the charges in Eq. (12) reduce to

gZ′ε
Z′

L,R =gY

(
ka
εbL,R

β̂
− β̂kbεaL,R

)
. (28)

Owing to the fact that Qc does not contribute to the electric charge, in these models

is possible to have a low-energy theory without the corresponding Z ′′ associated

with U(1)c. In section 4 we denoted them as LEE6Ms. In E6 there are three chains

of subgroups where one of the Qk corresponds to the SM hypercharge, in these

cases, the SM is the LEE6M and, in principle, it does not require from other vector

bosons to be a consistent theory. In Eq. (28) the Ua and Ub charges appear in a

symmetric way, except by a global sign which, in general, can not be determined

from the symmetry group.

In panel (6) the bottom-right figure shows the parameter space of some models

based on E6 subgroups. The horizontal dotted magenta line corresponds to the

parameter space of the well-known LR models, which are LEE6Ms in the chains of

subgroups A2R, B2R and the C3R. As expected, in this line appears the charges

of the ZB−L (U31R) and ZR (UR). This line also represents the set of possible Z ′

models for flipped SU(5) which are a linear combination of the UχRA and U32A. The
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Fig. 6. Sanson-Flamsteed projection of the α-β parameter space in E6. The vertical line cosβ = 0

represent the models with charges orthogonal to the SM hypercharge, thus, deviations of this line

show that at low energies there is a mixing between the Z′ and the field associated with the SM
hypercharge. To obtain the values of α and β in the top figures and in the bottom-left one we used

the RGE2 in order to get the ga, gb and gc coupling strengths at the EW scale (from their initial

values at the grand unification scale), then, we solved Eq. (C.1) varying θ between −π and π. For
the bottom-right figure, we put aside the unification hypothesis and, by ignoring the mixing with

the fields associated with the charges that do not contribute to the electric charge, we explored

the possible values for the coupling strengths; see section 5 for additional details.

dashed cyan line contains the Z ′ parameter space of the alternative left-right model

ZALR. These models are the linear combination of U31A and UA (the downphobic

model Z 6d). This line also corresponds to the possible Z ′ of the LEE6M of the

chain of subgroups A1AR which has not been reported in the literature, as far

as we know. The dot-dashed gray line is the set of the possible Z ′ models of the

LEE6M associated with the chain of subgroups C4I which contains the universal

331 model.13,40,46 We obtain these models from the linear combination of the U(1)33

and the U21Ī , which have the quantum numbers of λ8L and U(1)′ in the 331 models,

respectively. This line is also generated from the third alternative left right model13

and results from the linear combination of U31I (the leptophobic model Z 6L) and

U42I . This line also corresponds to the possible Z ′ for the LEE6M of C2I , which,

to the best of our knowledge, has not been reported in the literature. This set of

points contains the Zη (U51I) model.
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6. LHC constraints

Finally, we also report the most recent constraints from colliders and low-energy ex-

periments on the neutral current parameters for some Z ′-motivated E6 models and

the sequential standard model (SSM). For the time being, the strongest constraints

come from the proton-proton collisions data collected by the ATLAS experiment

at the LHC with an integrated luminosities of 36.1 fb−1 and 13.3 fb−1 at a center

of mass energy of 13 TeV.52,53 In particular, we used the upper limits at 95% C.L.

on the total cross-section of the Z ′ decaying into dileptons (i.e., e+e− and µ+µ−).

Figure (7) shows the contours of the lower limits on the MZ′ at 95% C.L. We ob-

tain these limits from the intersection of σNLO(pp → Z ′ → l−l+) with the ATLAS

95% C.L. upper limits on the cross-section (for additional details see reference21).

As a cross-check we calculated these limits for some models as shown in table 2

for various E6-motivated Z ′ models and the SSM model. In order to compare, we

also show in this figure the constraints for all the models reported by ATLAS. For

the 36.1 fb−1 data we multiply the theoretical cross-section by a global K factor

to reproduce the ATLAS constraints for the Zχ model. This procedure was not

necessary for the 13.3 fb−1 dataset.

Table 2. 95% C.L. lower mass limits (in TeV) for E6-motivated Z′ models and the sequential

standard model Zssm. These constraints come from the 36.1 fb−1 and 13.3 fb−1 datasets for pro-

ton-proton collision at a center of mass energy of
√
s = 13 TeV.52,53

Z′ model luminosity Zχ Zψ Zη ZLR ZR ZN ZS ZI ZB−L Z6d Z331G ZSSM
MZ′ (

†fitted) (36.1fb−1) 4.1† 3.81 3.91 4.28 4.41 3.84 4.02 3.94 4.44 4.66 4.608 4.58

ATLAS (36.1fb−1) 4.1 3.8 3.9 — — 3.8 4.0 4.0 — — — 4.5

MZ′ (13.3fb−1) 3.62 3.35 3.43 3.77 3.92 3.38 3.54 3.47 3.95 4.15 4.10 4.05

ATLAS (13.3fb−1) 3.66 3.36 3.43 — — 3.41 3.62 3.55 — — — 4.05
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7. Conclusions

In the present work we have reported the most general expression for the chiral

charges of a neutral gauge boson Z ′ coming from an E6 unification model, in terms

of the EW parameters and the charges of the U(1) factors in the chain of subgroups.

We also showed for any breaking pattern that, the charges of SM hyper-

charge are orthogonal to the corresponding charges of the Z ′ gauge boson i.e.,∑
f∈27 Y (f)QZ′(f) = 0 (see section 3), if the values of the gκ coupling strengths

associated with the U(1)κ factors of the chains of breakings are equal to each other.

Due to the RGE the couplings are no longer identical at low energies, therefore there

must be a mixing between the field associated with Y and the Z ′. This mixing can

modify several observables as it has been shown in reference.20,31,33

Pure neutral gauge bosons coming from E6 are Zψ and Zχ as introduced in

section 4.1 but the physical neutral states Z ′ and Z ′′ are a mixing of those states

according to Eqs. (26) and (27), which define the α and β angles in our analysis.

By using the RGE2 and assuming E6 unification, we showed that for most of the

chains of breaking in E6 it is possible to solve the equations for the mass scales in a

consistent way (one important exception are the chains of subgroups that contain

the Georgi-Glashow SU(5) model and their alternative versions). This procedure

allowed us to calculate the low-energy coupling strengths for several chains of sub-

groups and the Z ′ parameter space in the Sanson-Flamsteed projection. It is worth

noting that in E6 unification at low energies the parameter space of these models

keeps close to the mentioned vertical line as can be seen in figure (6). To the best of

our knowledge, several of the analyzed chains of subgroups presented here are new

in the literature.

The most general charges of any E6-motivated Z ′ model is generated by the

linear combination of three independent set of charges associated with the different

U(1) symmetries. By putting aside the unification hypothesis it is not possible

to determine the preferred region in the parameter space; however, by ignoring the

mixing with the associated charges that do not contribute to the electric charge, the

corresponding parameter space reduces to a single line in the α-β Sanson-Flamsteed

projection as shown for some models in the bottom right figure in (6).

By using the most recent upper limits on the cross-section for extra gauge vector

bosons Z ′ decaying into dileptons form ATLAS data at 13 TeV with accumulated

luminosities of 36.1fb−152 and 13.3fb−153 for the Drell-Yang processes pp→ Z(γ)→
l+l−, we set 95% C.L. lower limits on the Z ′ mass for the typical E6 benchmark

models. We also reported the contours in the 95% C.L. Z ′ mass limits for the entire

Z ′ parameter space in E6. Our results are in agreement with the lower mass limits

reported by ATLAS for the E6-motivated Z ′ models and the sequential standard

model ZSSM.

Finally it is important to stress that the recent LHCb anomalies could also be

explained by E6 subgroups.54–59 A natural continuation of our work would be to

find which of these models are able to explain the anomalies. That is an interesting
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question since the E6 models, in general, have been considered as phenomenologi-

cally safe.
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Appendix A. Rotation matrix

Let us now consider an explicit representation for the orthogonal matrix O in terms

of three angles ω, φ and θ, which are allowed to take values in the [−π, π) interval.

For convenience we choose

O =


1 0 0 0

0 cosω − sinω 0

0 sinω cosω 0

0 0 0 1




1 0 0 0

0 cosφ 0 − sinφ

0 0 1 0

0 sinφ 0 cosφ




1 0 0 0

0 1 0 0

0 0 cos θ − sin θ

0 0 sin θ cos θ

 .

Relations in Eq.(10) imply then that

cosφ cosω =
kagY
ga

, cosφ sinω =
kbgY
gb

, sinφ =
kcgY
gc

, (A.1)

which allows us to write the φ and ω angles in terms of the ga and gb coupling

constants and of the ka, kb and kc coefficients. The θ angle, however, cannot be

fixed and must be considered to be another free-parameter. It is easy to show that

cosφ = α̂c
gY
gc
, (A.2)

cosω =
kagc
α̂cga

, (A.3)

sinω =
kbgc
α̂cgb

, (A.4)

where

α̂c = gc

√
k2
a

g2
a

+
k2
b

g2
b

=

√
g2
c

g2
cot2 θW − k2

c . (A.5)

Appendix B. Z′ charges

From the Lagrangian

−LNC =gJµ3LA3Lµ + gaJaµA
µ
a + gbJbµA

µ
b + gcJcµA

µ
c

=gκJκµA
µ
κ = gκ′′Jκ′′µOκ′′κ′OTκ′κAµκ

≡gκ′Jκ′µZµκ′ , (B.1)
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where κ runs over 3L, a, b, c and k′ and k′′ runs over 3L, Y, Z ′, Z ′′, from this equation

we obtain

Jκ′µ = JκµOκκ′ = OTκ′κJκµ . (B.2)

From this equation the current associated with the Z ′ is given byc

gZ′JZ′ =gY

(
−
kaJ

µ
a + kbJ

µ
b

α̂c
kc + α̂cJ

µ
c

)
sin θ +

gc
α̂c

(
kaJ

µ
b

β̂
− β̂kbJµa

)
cos θ ,

(B.3)

gZ′′JZ′′ =gY

(
−
kaJ

µ
a + kbJ

µ
b

α̂c
kc + α̂cJ

µ
c

)
cos θ − gc

α̂c

(
kaJ

µ
b

β̂
− β̂kbJµa

)
sin θ ,

(B.4)

where β̂ = ga
gb

. For the LEE6Ms (c = 0 and sin θ = 0) we obtain

gZ′J
µ
gZ′

=gY

(
ka
Jµb
β̂
− β̂kbJµa

)
= gY

(
kb
Jµb
α̂a
ka − α̂aJµa

)
sign(kb) , (B.5)

=gY

(
α̂bJ

µ
b − ka

Jµa
α̂b
kb

)
sign(ka) , (B.6)

where

α̂a,b =

√
g2
a,b

g2
cot2 θW − k2

a,b . (B.7)

Appendix C. Sanson-Flamsteed Projection

As we mentioned in section 4 in general any Z ′ in E6 can be written as a linear

combination of three linear independent models. One usual basis is given by

gZ′ε
Z′

L,R =gZ′
(

cosα cosβε
Zχ
L,R + sinα cosβYL,R + sinβε

Zψ
L,R

)
η ,

=AL,R sin θ +BL,R cos θ , with η = ±1 , (C.1)

where the ε
Zχ
L,R and ε

Zψ
L,R are the chiral charges of the Zχ and Zψ models, respectively.

In this equation gZ′ is given by the Eq. 16. In the last line we equate the chiral

charges for the Z ′ associated to a given chain of subgroups Eq. (12) to the general

expression of the E6 motivated Z ′ charges in the α-β parameter space Eq. 27. We

can obtain the partial unification mass scales for every breaking pattern according

to the reference2d. By evolving ga, gb and gc down to low energies for every θ there is

a pair (α, β) according with the equation (C.1). θ parametrizes the mixing between

the Z ′ and Z ′′ the charges (C.1) and the corresponding parameter space to low

energies is shown in figure (6). It is important to notice that at low energies the

charges keep close to the vertical line which corresponds to the unification parameter

space.

cWe have omitted a global sign which cannot be determined from the symmetry group.
dFor some breakings there is some ambiguity, in these cases, we chose the lowest mass scale at its
minimum value
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Appendix D. tables

Table 3. E6 normalized chiral charges of ordinary fermions and
right-handed neutrinos. Here lL = (νL, eL)T and qL = (uL, dL)T

denote the left-handed lepton and quark doublets.

Model εL(l) εR(ν) εR(e) εL(q) εR(u) ε(d)

UY − 1
2

√
3
5 0 −

√
3
5

1
2
√

15
2√
15

− 1√
15

UR 0 1
2 − 1

2 0 1
2 − 1

2

UI
1
2

1
2 0 0 0 − 1

2

UA
1
2 0 1

2 0 − 1
2 0

U33
1

2
√

3
1√
3

1√
3

− 1
2
√

3
0 0

U21R
1√
3

1
2
√

3
1

2
√

3
0 − 1

2
√

3
− 1

2
√

3

U21I − 1
2
√

3
1

2
√

3
− 1√

3
0 1√

3
− 1

2
√

3

U21A
1

2
√

3
1√
3

− 1
2
√

3
0 1

2
√

3
− 1√

3

U31R
1
2

√
3
2

1
2

√
3
2

1
2

√
3
2 − 1

2
√

6
− 1

2
√

6
− 1

2
√

6

U31I 0 1
2

√
3
2 0 − 1

2
√

6
1√
6

− 1
2
√

6

U31A 0 0 − 1
2

√
3
2

1
2
√

6
1

2
√

6
− 1√

6

U42R
1

2
√

6
− 1

2
√

6
− 1

2
√

6
1

2
√

6
− 1

2
√

6
− 1

2
√

6

U42I
1√
6

1
2
√

6

√
2
3 − 1

2
√

6
− 1√

6
1

2
√

6

U42A
1√
6

√
2
3

1
2
√

6
− 1

2
√

6
1

2
√

6
− 1√

6

U32R
1
2

√
3
5 0 0 1

2
√

15
− 1√

15
− 1√

15

U32I − 1
2

√
3
5 0 −

√
3
5

1
2
√

15
2√
15

− 1√
15

U32A
1
2

√
3
5

√
3
5 0 − 1

2
√

15
1√
15

− 2√
15

U32R 0 1
2

√
3
5

1
2

√
3
5 − 1√

15
1

2
√

15
1

2
√

15

U32I
1
2

√
3
5

1
2

√
3
5

√
3
5 − 1√

15
− 1√

15
1

2
√

15

U32A
1
2

√
3
5

√
3
5

1
2

√
3
5 − 1√

15
1

2
√

15
− 1√

15

U51R
2√
15

1
2

√
5
3

1
2

√
5
3 − 1√

15
− 1

2
√

15
− 1

2
√

15

U51I
1

2
√

15
1
2

√
5
3

1√
15

− 1√
15

1√
15

− 1
2
√

15

U51A
1

2
√

15
1√
15

1
2

√
5
3 − 1√

15
− 1

2
√

15
1√
15

U51R
1
2

√
5
3

2√
15

2√
15

− 1
2
√

15
− 1√

15
− 1√

15

U51I − 1
2
√

15
2√
15

− 1√
15

− 1
2
√

15
2√
15

− 1√
15

U51A
1

2
√

15
1√
15

− 2√
15

1
2
√

15
1√
15

− 2√
15

U41IA

√
2
5

√
2
5

3
2
√

10
− 1

2
√

10
− 1

2
√

10
− 1√

10

U41AR − 1
2
√

10
3

2
√

10
− 1

2
√

10
− 1

2
√

10
3

2
√

10
− 1

2
√

10

U41RI 0 1
2
√

10
−
√

2
5

1
2
√

10
1√
10

− 3
2
√

10

U41AI

√
2
5

3
2
√

10

√
2
5 − 1

2
√

10
− 1√

10
− 1

2
√

10

U41RA 0
√

2
5 − 1

2
√

10
− 1

2
√

10
3

2
√

10
− 1√

10

U41IR
1

2
√

10
1

2
√

10
− 3

2
√

10
1

2
√

10
1

2
√

10
− 3

2
√

10

UχRI
3

2
√

10
1
2

√
5
2

1
2
√

10
− 1

2
√

10
1

2
√

10
− 3

2
√

10

UχAR − 1√
10

0 − 1
2

√
5
2

1
2
√

10
3

2
√

10
− 1√

10

UχIA
1√
10

− 1
2
√

10
0 1

2
√

10
− 1√

10
− 1

2
√

10

UχIR
1√
10

1
2

√
5
2 0 − 1

2
√

10
1√
10

− 3
2
√

10

UχRA
3

2
√

10
1

2
√

10
1
2

√
5
2 − 1

2
√

10
− 3

2
√

10
1

2
√

10

UχAI
1√
10

0 − 1
2
√

10
1

2
√

10
− 1

2
√

10
− 1√

10
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Table 4. Models arising from the

E6 −→ SO(10) ⊗ U(1)42X −→ SU(3)C ⊗ SU(2)L ⊗ G −→ GSM chains of
subgroups, where GSM ≡ SU(3)C ⊗ SU(2)L ⊗ U(1)Y .

Model G factor

A1XY U(1)32Y ⊗ U(1)χXY ⊗ U(1)42X ka kb kc

A1IR: U(1)32R ⊗ U(1)χIR ⊗ U(1)42I − 1√
15

1√
10

−
√

3
2

A1AR: U(1)32R ⊗ U(1)χAR ⊗ U(1)42A − 1√
15

2
√

2
5

0

A1RI : U(1)32I ⊗ U(1)χRI ⊗ U(1)42R

√
5
3

0 0 1,24,36

A1AI : U(1)32I ⊗ U(1)χAI ⊗ U(1)42A

√
5
3

0 0 12

A1RA: U(1)32A ⊗ U(1)χRA ⊗ U(1)42R
1√
15

−2
√

2
5

0 1

A1IA: U(1)32A ⊗ U(1)χIA ⊗ U(1)42I
1√
15

− 1√
10

−
√

3
2

A2X U(1)X ⊗ U(1)31X ⊗ U(1)42X ka kb kc

A2R: U(1)R ⊗ U(1)31R ⊗ U(1)42R 1 −
√

2
3

0 41,47

A2I : U(1)I ⊗ U(1)31I ⊗ U(1)42I 0 1√
6

−
√

3
2

13

A2A: U(1)A ⊗ U(1)31A ⊗ U(1)42A −1
√

2
3

0 4

A3X U(1)31X ⊗ U(1)42X ka kb

A3R: U(1)31R ⊗ U(1)42R −− −−

A3I : U(1)31I ⊗ U(1)42I
1√
6

−
√

3/2

A3A: U(1)31A ⊗ U(1)42A −− −−

Table 5. Models arising from the

E6 −→ SU(2)X ⊗ SU(6) −→ SU(3)C ⊗ SU(2)L ⊗ G −→ GSM chains of
subgroups, where GSM ≡ SU(3)C ⊗ SU(2)L ⊗ U(1)Y .

Model G factor

B1X U(1)32X ⊗ U(1)51X ⊗ U(1)X ka kb kc

B1R: U(1)32R ⊗ U(1)51R ⊗ U(1)R − 1√
15

−
√

3
5

1

B1I : U(1)32I ⊗ U(1)51I ⊗ U(1)I

√
5
3

0 0 3

B1A: U(1)32A ⊗ U(1)51A ⊗ U(1)A
1√
15

−
√

3
5
−1

B2X U(1)31X ⊗ U(1)42X ⊗ U(1)X same as A2X

B3X U(1)33 ⊗ U(1)21X ⊗ U(1)X same as DX
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Table 6. Models arising from

the E6 −→ SU(2)L ⊗ SU(6) −→ SU(3)C ⊗ SU(2)L ⊗ G −→ GSM chains
of subgroups, where GSM ≡ SU(3)C ⊗ SU(2)L ⊗ U(1)Y .

Model G factor

C1XY U(1)31Y ⊗ U(1)41XY ⊗ U(1)51X ka kb kc

C1IR: U(1)31R ⊗ U(1)41IR ⊗ U(1)51I −
√

2
3

√
2
5

√
3
5

C1AR: U(1)31R ⊗ U(1)41AR ⊗ U(1)51A −
√

2
3

√
2
5

√
3
5

C1RI : U(1)31I ⊗ U(1)41RI ⊗ U(1)51R
1√
6

3√
10

−
√

3
5

C1AI : U(1)31I ⊗ U(1)41AI ⊗ U(1)51A
1√
6

− 3√
10

√
3
5

C1RA: U(1)31A ⊗ U(1)41RA ⊗ U(1)51R

√
2
3

√
2
5

−
√

3
5

C1IA: U(1)31A ⊗ U(1)41IA ⊗ U(1)51I

√
2
3

−
√

2
5

√
3
5

C2X U(1)X ⊗ U(1)32X ⊗ U(1)51X ka kb kc

C2R: U(1)R ⊗ U(1)32R ⊗ U(1)51R 1 − 1√
15

−
√

3
5

C2I : U(1)I ⊗ U(1)32I ⊗ U(1)51I 0 − 4√
15

√
3
5

C2A: U(1)A ⊗ U(1)32A ⊗ U(1)51A −1 − 1√
15

√
3
5

C3X U(1)X ⊗ U(1)31X ⊗ U(1)42X same as A2X

C4X U(1)X ⊗ U(1)21X ⊗ U(1)33 same as DX

Table 7. Models arising from

the E6 −→ SU(3) ⊗ SU(3) ⊗ SU(3) −→ SU(3)C ⊗ SU(2)L ⊗ G −→ GSM
chains of subgroups, where GSM ≡ SU(3)C ⊗ SU(2)L ⊗ U(1)Y .

Model G factor

DX U(1)X ⊗ U(1)21X ⊗ U(1)33 ka kb kc

DR: U(1)R ⊗ U(1)21R ⊗ U(1)33 1 − 1√
3
− 1√

3

DI : U(1)I ⊗ U(1)21I ⊗ U(1)33 0 2√
3

− 1√
3

13,23,48–50

DA: U(1)A ⊗ U(1)21A ⊗ U(1)33 −1 1√
3

− 1√
3
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