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ABSTRACT
With the aid of a Green function formalism, it is discussed the spectra of collective
excitations in a system with a dielectric function which varies spatially due to the
harmonic one-dimensional modulation of the carrier concentration. The band features
are considered in the long wavelength region for arbitrary amplitudes of the modulated
dielectric permittivity.

1. Problem: The new phenomena involved with the reduction of the dimensionality of
semiconductor systems and the potential applications of such phenomena in
optoelectronics have increased the interest on the study of optical properties of low
dimensional systems. In this communication we consider the propagation along the X
axis of TE electromagnetic modes with frequency @ and wave vector X in a system

with one-dimensional harmonic modulation of period ? (along the superlattice axis X )
of the dielectric permittivity. In a previous work [1] it was shown that the electric field
amplitude Y satisfies the differential equation:

7
L, y(x) = —da™ (1+ cos(x)) y(x), (1)
2
d CO'\’ k 2
where L,t:—z——az,a2=b2+a2(d-l),a: “8, b=-% =— .
dx K K A

Here € y u are, respectively, the unmodulated dielectric permittivity and the magnetic

permeability of the medium and d is the modulation amplitude. In [1] the approximate

solutions, corresponding to small values of the parameter d were obtained with the aid
of the Floquet’s theorem. In the present work we obtain the corresponding solutions of

(1) for arbitrary values of d by means of a formalism which uses the Green function
method applied to superlattice systems [2]. In order to achieve this goal, we choose a

function G(x,x”) such that:
L G(x,x')= 8(x—x") with G(x,x") =0 , when |4 =

llm(G(xx)lx =x"+h G(xx)lxx h) 0,

G
llm B‘G(x_x_l a (%) =1l (2)
x=x"+h ox x=x"—h

where x,x"€ ( _Let us remark that the function G(x,x”) is the Green function

of the equation L, y(x) = f(x). The solution of (2) and 0> >0 can be easily found
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1 —|a|lx—x']

and it is given by G(x,x")=———¢

a, - If we multiply (1) by G(x,x")and

integrate by part, then we obtain:
da® = ﬂa”x—x'] y !
y(x) = ol le (1+cos(x”))y(x")dx” . 3)
We see that equation (1) has been transformed into an integral equation with the kerne]
- dazG(x, x")(1 +cos(x")) . In order to transform the integration interval into a finite
interval, let us write:

IS cos(Ec =il 2 s et 4)

1+ cos(lx’— 2n7r|), if'x'— 2n7r| <z
where F, (x) = ;
0 if|’ = 207 > n
After replacing (4) into (3) and performing the variable change # = x”— 2n7 we obtain:
da® +T oo —1a|lx—u—2n7[]
e

yx)=——F |

(1 < cos(u ))y(u -+ 2rz7z)du. (&)
2]a| —t n=—co

According to Floquet’s theorem, the solutions Y () of Mathieu’s equation (1) are
such, that:

yg+2nm) =Py . ©)

where 8 is a parameter, which can be real or complex. When we take into account this
property, (5) is transformed into:

2
da” T +oo ofx—u—2 ;
YB (x)=fal_.£’:n:§me | Ix u nﬂl(l-kcos(u))elzmﬁyﬁ (u)du. (7)

This is the final form of the integral cquation with respect to Yg (x), which is

equivalent to Mathieu’s equation (1), with solutions satisfying Floquet’s theorem (6). In
the following we will apply the approximate methods for solving this equation.

2. Solution of the integral equation. The approximate solution of the integral equation
(7) can be constructed in the following form [3]: the integral interval is divided in &

25
equal parts such that Au = Ax = — and the functions depending on x y u which enter
k

b4 /4
(7) are evaluated at the points x =—7x +;(2p—l) and u = —n’+z(2q— 1), where

p.q =1,2,..., k . By this means (7) can be discretized and we obtain:
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2
k nda T
Spg———Lpa 17y =0:Vp, =Vs| =+—QRg-1) | (8
qél P4 Ho| Py " Bq Pa n( k( q )) (8)
—2r|a|—p+q+nm||
< i2mn k

; 2q—1
= e ﬁe | +coq — 1+ L /
n=—oo k

where Lpg= X
The system (8) of A algebraic equations with respect to unknowns y By’ q=12,... .k

approximates the solution of the integral equation (7), this solution being exact when
k — oo . In order to have non trivial solutions it is required that the system determinant
be equal to zero:

Il'da2

Spg _WLM =10 (9)

This is a determinant of infinite order. In our numerical analysis we have truncated it to
an order of k =16 .

3. Results. Equation (9) establishes a relationship between parameters @, d and b of
the Mathieu’s equation (1) and the parameter8 of the Floquet’s theorem (6). We will

limit our analysis to solution y B (x) with real 8 . In this case each solution of (9) is a

periodic function of 8 with unit period. For this reason it is enough to consider the
interval —0.5< 8 <5.0. If we fix d andb in the expression (9), we can obtain @ as
a function of . It is of interest to consider the real part of this function, which is an
even function of 3. In Table 1 the obtained data are shown for ¢ = land H=0.
These data are distributed in bands, which are illustrated graphically in Fig 1. The bands
are separated by stop bands (gaps), which are intervals of forbidden values of a. For
these values the solutions of (1), in the form established by the Floquet's theorem,
correspond to complex values of B . The gap of a is generated by the threshold value

B =0.5. This behaviour of a vs b is illustrated in Table 2 and in Figs. 2 y3 ford =1,
B =0 and d=1,B =0.5. The splitting of the dispersion curve shown in Fig.1 is

represented in Fig. 3. For a given value of b , the separation between curves gives the
width of the forbidden region of a .

TABLE 1 T

[3 a a ﬁ a a ﬁ a a

band 1 band 2 band | band?2 band | band?2
0 0.0013 0.9485 0.125 0.1255 0.867 0.325 0.3185 0.709
0.005 0.0017 0.9485 0.15 0.1505 0.839 0.35 0.3385 0.701
0.01 0.0043 0.9475 0.175 0.1765 0.811 0.375 0.3555 0.695
0.015 0.011 0.9465 0.2 0.2015 0.785 0.4 0.3705 0.691
0.02 0.015 0.9455 0.225 0.2265 0.763 0.425 0.3825 0.688
0.05 0.0514 0.9335 0.25 0.2515 (.745 045 0.3905 0.686
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Figura3 Curve of avsh for f=05
TABLE 2
d=1B=0
h \ 0 0.1 02 lo03 04 [o05 06 [07 [o8 Joo9 1
'u] 0.01 0.1 0.2 0.3 039 |047 056 |063 |07t [078 |o085
d=1B =05
h 1o 0.1 02 |03 04 |05 06 [07 TJos 0.9 [
a |04 041 043 047 051 [056 062 |066 [074 |08 0.87
a 1069 107 1073 (078 [084 |091 098 |105 |112 |119 |125

4. Conclusion. We have discussed the features of the spectra of collective excitations in
a system with a harmonic one -dimensional modulation of the dielectric permittivity. For
arbitrary amplitude of modulation there appear allowed and stop bands which strongly
change the spectra of the free electromagnetic wave. This problem can be extended to
more complex systems with broken translational symmetry along the superlattice axis
and with temporal dispersion of the dielectric permittivity.
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