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Abstract. We give a snapshot of recent progress in solving the Dyson-Schwinger equation with a beyond rainbow-ladder
ansatz for the dressed quark-gluon vertex which includes ghost contributions. We discuss the motivations for this approach
with regard to heavy-flavored bound states and form factors and briefly describe future steps to be taken.
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1. MOTIVATION

The challenge of understanding bound states in terms of the elementary fields of a given quantum field theory is
persistent and of particular interest in Quantum Chromodynamics (QCD). The question of how precisely the quarks
and gluons form hadrons immediately leads into the domain of relativistic quantum fields whose key properties
can only be understood with nonperturbative methods. Paramount among the challenges is the understanding of
confinement and dynamical chiral symmetry breaking (DCSB), both of which are likely to be intimately related [1].

Whereas certain simple two-body bound states and their resonances can be adequately described by potential
models, this is not the case in QCD. Did light quarks not exist, the picture of string-like potentials arising from a
flux tube between two (infinitely) heavy quarks would be correct. Yet, in the real world, where light current-quarks are
ubiquitous, it is a feature of QCD that light-pair creation and annihilation effects are essentially nonperturbative and
cannot be described by a quantum mechanical potential [1, 2]. Such potentials are a poor guide to understanding the
Goldstone boson of QCD and must be necessarily fine-tuned. In particular, in typical applications to hadronic form
factors with “light" constituent quarks, the quark’s propagation, S(k) = (γ · k−mq)

−1, is scale independent and does
not describe confinement. In applications of relativistic quark models it was noted that this can lead to significant
model dependance at larger momentum transfers [3, 4, 5, 6, 7].

Heavy-light mesons are of additional interest since they exhibit some features of light-quark confinement. The im-
portant asymmetry in quark masses of flavor-nonsinglet Qq̄ mesons leads to a disparate array of energy scales to be
dealt with in solving the meson’s relativistic bound-state equation. Thus, heavy mesons provide an excellent opportu-
nity to study additional aspects of nonperturbative QCD and can be used to test simultaneously all manifestations of
the Standard Model, namely the interplay between electroweak and strong interactions. Some of the major advances
in heavy quark effective theory (HQET) [8] deal with factorization theorems allowing for a disentanglement of short-
distance or hard physics, which includes electroweak interactions and perturbative QCD (pQCD) contributions, from
long-distance or soft physics, dominated by nonperturbative hadronic effects. The systematic reorganization of weak
and QCD interactions in HQET has been treated in various approaches; e.g., with QCD factorization (QCDF) [9],
pQCD [10] and soft-collinear effective theory (SCET) [11].

On the other hand, progress on nonperturbative matrix elements involving heavy-light states with flavor quantum
numbers, C = ±1 and B = ±1, has been slower: while factorization theorems provide the means to systematically
integrate out energy scales in the perturbative domain, valid in the infinitely heavy-quark limit, a reliable evaluation of
the latter is notoriously difficult. Consider, for instance, the weak non-leptonic decay of a B meson: B→M1M2. If M1
is a heavy or light(er) meson and M2 a light meson [9], then the decay amplitude can be schematically written as,

〈M1M2|Oi|B〉 = 〈M1| j1|B〉〈M2| j2|0〉
[

1+∑
n

rnα
n
s +O(ΛQCD/mh)

]
, (1)
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where j1 and j2 are the bilinear currents and mh is the heavy quark mass. The dimension-six effective four-quark
operators, Oi, result from integrating out the weak gauge bosons W± in the operator product expansion. Multiplied
by the appropriate Cabbibo-Kobayashi-Maskawa (CKM) matrix elements and Wilson coefficients, Ci(µ), which
encode perturbative QCD effects above the renormalisation point µ , the sum of these operators forms the heavy-
quark effective hamiltonian. Neglecting power corrections in αs and taking the limit mb→∞, the naive factorization is
recovered. Higher orders in αs break the factorization, yet in the limit mh�ΛQCD, pQCD corrections beyond the naive
factorization can systematically be accounted for. In the case of B decays, the factorization, formally suppressed in
ΛQCD/mb, can be broken by weak annihilation decay amplitudes [12, 13] and final-state interactions between daughter
hadrons [14, 15, 16, 17, 18, 19].

Moreover, since the charm quark is neither a light nor really a heavy quark, HQET may not be the adequate guide to
charm physics and ΛQCD/mc corrections are significant [20, 21]. Whilst effective Lagrangians based on approximate
SU(4) flavor-spin symmetries1 are successful, see for example Refs. [22, 23, 24, 25], care should be taken when this
symmetry is applied to the Lagrangian’s effective couplings. As has been noted, SU(4)F relations underestimate, for
example, the DρD coupling by a factor of four to five [26, 27]. In this context, it is also noteworthy that SU(3)F and
heavy-quark spin symmetry breaking effects are by no means insignificant and are manifest in the decay constant
ratios, fDs/ fD, fBs/ fB as well as fD∗/ fD and fB∗/ fB; see, e.g., Section 4 in Ref. [21] and similar observations in
lattice-QCD computations [28].

With respect to the weak decay constants, our focus in Eq. (1) is on the hadronic matrix elements, 〈M1| j1|B〉 and
〈M2| j2|0〉. The latter represents the weak decay constant of M2, which in the case of a pseudoscalar meson is given by,

fMPµ = 〈0|q̄aγµ γ5qb|M〉 = Z2

∫ d4k
(2π)4 trCD

[
γ5γµ Sa

q(k+ηP)Γa,b
M (k;P)Sb

q(k− η̂P)
]
, (2)

where a,b collect flavor and color indices, Z2 is the wave function renormalization constant, Sq(k) are dressed quark
propagators and Γ(k;P) is the mesons’s Bethe-Salpeter amplitude (BSA). Note that in a Poincaré invariant treatment,
the BSA and the weak decay constant — and any other hadronic matrix element — are independent of the momentum
partitioning parameters η + η̂ = 1. In some cases, for instance for the pseudoscalar mesons, π , K, D, Ds and B, the
values of the weak decay constants are known experimentally [29]. Much effort has also been invested to determine
the heavy-light decay constants with lattice-regularized QCD, recently with unquenched fermions and increasingly
better extrapolations to the continuum limit and physical pion masses [28, 30, 31, 32, 33, 34, 35]. Note that while the
c-quark is treated as a propagating mode, the b-quark is usually implemented as a static fermion in lattice calculations
of fB and fBs .

The first form factor in Eq. (1), 〈M1| j1|B〉, describes the transition of a heavy to a light(er) meson via the weak V−A
current and includes the propagation of the light spectator quark. Their precise evaluation is crucial in determining
branching fractions and associated CP-violating observables of non-leptonic weak D and B decays [14, 16, 17] and
oscillations [18, 19]. In semi-leptonic decays of heavy and light mesons they play a pivotal role in the determination
of the Standard Model parameters, more precisely its weak sector via the CKM matrix elements. For example, the Ke3
decay, K→ πeνe, can be used to extract the matrix element |Vus|; De3 to obtain |Vcs|; and the semi-leptonic decays of
B and Bc mesons, in particular B→ D`ν`, Bc→ D∗s `

+`− and B→ π`ν`, inform the matrix elements Vcb,Vcs and Vub,
respectively [36, 37]. As an example, we consider the case of heavy H(0−+) to light(er) P(0−+) transitions mediated
by the weak HQET operators, q̄lγµ(1− γ5)Q, where the hadronic matrix element is completely described by two
Lorentz vectors,

〈P(p2)|q̄lγµ(1− γ5)Q|H(p1)〉 = F+(q2)Pµ +F−(q2)qµ , (3)

with the total heavy-meson momentum, Pµ = (p1 + p2)µ , P2 =−M2
H , qµ = (p1− p2)µ , Q = c,b and ql = u,d,s.

Applications of light-quark propagators solutions of QCD’s Dyson-Schwinger equations (DSE) in conjunction with
the heavy-quark expansion to the form factors, F+(q2) and F−(q2), are in qualitative and quantitative agreement with
heavy-quark symmetry [38, 39]. Yet, when the form factors in Eq. (3) are calculated both ways [38, 39], namely
with the fully dressed heavy-quark propagator and the propagator in the heavy-quark limit, it is possible to verify the
validity of said limit: corrections are of the order of ' 20− 30% are encountered in b→ c transitions and can be
as large as a factor of 2 in c→ d transitions, as verified in a vast array of light- and heavy-meson observables [39].

1 i.e., models which implement SU(4)F flavor symmetry in their Lagrangian approaches yet break these symmetries with the empirically known
hadron masses.



Moreover, the following ratios of transition form factors serve as a measure of SU(3)F breaking:

FB→K
+ (0)

FB→π
+ (0)

= 1.23 ,
AB→K∗

0 (0)

AB→ρ

0 (0)
= 1.25 . (4)

In Eq. (4), A0(q2) are the appropriate form factors in H(0−+) to V (1−−) transitions [39]. The flavor breaking is of
similar order as for the decay constant ratios, fDs/ fD and fBs/ fB, discussed in detail in Ref. [21].

For a summary of heavy-to-light transition form factor data from lattice-regularized QCD, see the review in
Ref. [40]; we merely stress that contemporary lattice results are obtained for large squared-momentum transfer, i.e.,
q2 & 16 GeV2 in the case of B→ π transitions and q2 & 7 GeV2 or q2

max in B→ D transitions [41, 42, 43]. Values at
low q2 must necessarily be extrapolated by means of appropriate parametrizations [44]. The rather strong quantitative
differences between several predictions for the B→ π form factor are emphasized in table 1 of Ref. [45] from which
it is plain that model dependence is still the major obstacle to a precision calculation of even the simplest transition
form factors.

In order to significantly improve on these form factor predictions in nonperturbative continuum QCD approaches,
much progress has to be made in the hadronic description of heavy-light bound states. Within the framework of the
DSEs and Bethe-Salpeter equations (BSE), recent efforts come to the conclusion that the so-called rainbow-ladder
truncation fails to adequately reproduce basic static observables, such as the weak decay constant via Eq. (2) [46].
Other nonperturbative quantities are light-front distribution amplitudes which play an important role in QCDF analyses
of hard exclusive processes. In particular, light-front projections of the pseudoscalar’s BSA, namely the pseudoscalar
and pseudotensor projections, are identified as twist-three two-particle distribution amplitudes for which estimations
with QCD sum rules exist [47, 48, 49]. The pseudoscalar projection has recently been derived [50] and the same
method may be applied to the pseudotensor projection. These projections can then be extended to D and B mesons
provided a reliable BSA exists which allows for a faithful reproduction of experimental data on the respective weak
decay constants. It is the aim of this contribution to sketch the path to a successful computation of the heavy-light
meson’s BSA.

2. TWO, THREE, FOUR ... HOW MANY POINTS IN A MESON?

In the continuum formulation, QCD’s two-point Green functions are described by DSE, which provide the adequate
nonperturbative approach. Likewise, mesons are quark-antiquark bound states which appear as poles in the 2-quark,
2-antiquark Green’s function, G(4) = 〈0|q1q2q̄1q̄2|0〉 These poles are found from studies of the inhomogeneous
pseudoscalar and axialvector BSE [1, 51, 52, 53], as will be discussed shortly.

The Dyson or gap equation determines how quark propagation is influenced by interaction with the gauge fields.
For a given quark flavor, the solutions of the quark DSE,

S−1(p) = Z2(iγ · p+mbm) + Z1 g2
∫

Λ

k
∆

µν(q)
λ a

2
γµ S(k)Γ

a
ν(−p,k,q) , (5)

where
∫

Λ

k ≡
∫

Λ d4k/(2π)4 represents a Poincaré invariant regularization of the integral with the regularization mass
scale, Λ, and Z1,2(µ,Λ) are the vertex and quark wave-function renormalization constants. The (infinitely many)
nonperturbative interactions alter the current-quark bare mass, mbm(Λ), which receives corrections from the self-
energy given by the second term in Eq. (5), where the integral is over the dressed gluon propagator, ∆µν(q), the dressed
quark-gluon vertex, Γa

ν(−p,k,q), and λ a are the usual SU(3) color matrices of the fundamental representation. The
gluon propagator is purely transversal in Landau gauge, which offers advantages in phenomenological interaction
ansätze [1, 54]:

∆
ab
µν(q) = δ

ab
(

gµν −
qµ qν

q2

)
∆(q2) . (6)

The quark-gluon vertex is given by Γa
µ(p1, p2, p3) = g λ a

2 Γµ(p1, p2, p3) with the convention: p1 + p2 + p3 = 0.

The solutions to the gap equation (5) are of the general form S(p) =
[
iγ · p A(p2)+B(p2)

]−1 with the renor-
malization condition, Z(p2) = 1/A(p2)|p2=µ2 = 1 at large spacelike µ2 � Λ2

QCD. The mass function, M(p2) =

B(p2,µ2)/A(p2,µ2), is independent of the renormalization point µ . In order to make quantitative matching with



pQCD, another renormalization condition,

S−1(p)
∣∣

p2=µ2 = i γ · p +m(µ) , (7)

is imposed, where m(µ) is the renormalized running quark mass.
Before discussing Bethe-Salpeter amplitudes, we turn our attention to the quark-gluon vertex Γµ(p1, p2, p3),

which is one of QCD’s three-point functions and satisfies its own BSE. In perturbation theory, that is for momenta
p2

1 = p2
2 = p2

3 & µ2, quark dressing effects are suppressed and Γµ(p1, p2, p3)→ γµ . However, since the tremendous
impact of DCSB on Z(p2) and M(p2) is nowadays well established, it is natural to accept that this also be true for the
corresponding three-point functions.

In applications to hadron physics, practical models for the fermion-gauge boson vertex ought to satisfy funda-
mental symmetries of QCD. General ansätze to the nonperturbative vertex impose constraints of quantum field the-
ory; as just mentioned, one insists that the vertex must reduce to the bare vertex γµ in the large-momentum limit
(when dressed propagators can be replaced by bare propagators); it must have the same transformation properties
as the bare vertex under charge conjugation C, parity transformation P and time reversal T ; it must ensure gauge
covariance and invariance; and one demands that the vertex must be free of kinematic singularities. Finally, the
full nonperturbative vertex can always be decomposed into a longitudinal and a transverse part, Γµ(p1, p2, p3) =

ΓL
µ(p1, p2, p3)+ΓT

µ(p1, p2, p3) [55]. Clearly, gauge invariance is not satisfied for a bare vertex since it does not satisfy
the Ward-Green-Takahashi identity (WGTI),

iγ · p3 6= −iγ ·p1 A(p2
1)+B(p2

1)− iγ ·p2 A(p2
2)−B(p2

2) . (8)

Models that are largely consistent with the field theoretical constraints just mentioned have also been used to represent
the dressed quark-gluon vertex, the most prominent amongst which is the Ball-Chiu ansatz for the longitudinal
vertex [55]. However, while employed in studies of hadronic observables, the Ball-Chiu vertex satisfies a WGTI
whereas the true quark-gluon vertex satisfies a Slavnov-Taylor identity (STI). The form of the latter, see Eq. (11),
makes it plausible that within certain approximations a solution of

p3µ iΓµ(p1, p2, p3) = B(p2
3)
[
S−1(−p1)−S−1(p2)

]
(9)

can provide a reasonable approximation to the correct vertex.
In view of the scarce information on the quark-gluon vertex from first principle calculations, the strategy to combine

different nonperturbative approaches to QCD was explored in Ref. [56]. Therein, lattice-QCD data for the dressed-
quark functions, A(p2) and B(p2) [57, 58], as well as for the gluon and ghost propagators, ∆(q2) and F(q2) [59, 60],
were employed to numerically extract a momentum-dependent effective function X̃0(q2) from the quark gap equation
via an inversion procedure. In order to apply this inversion, one defines a "ghost-improved" Ball-Chiu vertex [61, 62],

Γ̃
BC
µ (p1, p2, p3) = X̃0(p2

3)F(p2
3)Γ

BC
µ (p1, p2, p3) , (10)

which can be derived from the constraints of the STI,

p3µ iΓµ(p1, p2, p3) = F(p2
3)
[
S−1(−p1)H(p1, p2, p3)−H(p2, p1, p3)S−1(p2)

]
, (11)

where F(q2) is the ghost-dressing function and the quark-ghost scattering kernel is parameterized in terms of the
matrix-valued function, H(p1, p2, p3), and its conjugate, H(p1, p2, p3) [63]. The decomposition of these two functions
in terms of Lorentz covariants requires eight form factors,

H(p1, p2, p3) = X0 ID + iX1 γ · p1 + iX2 γ · p2 + iX3 σαβ pα
1 pβ

2 , (12)

H(p2, p1, p3) = X0 ID− iX2 γ · p1− iX1 γ · p2 + iX3 σαβ pα
1 pβ

2 . (13)

Perturbative expressions for the form factors Xi have been computed to one-loop order [63] and yield X0 = 1+O(g2)
and Xi = O(g2), i = 1,2,3. Thus, X0 is the dominant form factor at large momenta and using the approximations
X1,2,3 ' 0 and X0 = X0 = X̃0(q2) the dressed quark-gluon vertex reduces to the expression in Eq. (10) which satisfies
the identity (9) with B(q2) = X̃0(q2)F(q2).

The quark-gluon vertex built from the resulting X̃0 is enhanced in the infrared region and recovers the perturbative
behavior as one approaches larger momenta. The two different inversion methods employed in Ref. [56], linear
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FIGURE 1. Left panel: the effective quark-gluon vertex function, X̃MEM
0 , from a nonlinear inversion based on MEM; see Ref. [56]

for details. Note that the functional form of X̃MEM
0 differs from that in Ref. [56] where X̃MEM

0 (q2 → 0)→ 1. Here it is clearly
enhanced in the infrared due to the requirement that q2X̃0(q2) be finite in the MEM inversion. However, considering the case of
maximal correlation of the MEM fit parameters, represented by the maximum error (yellow) band, the solution for X̃0 in Ref. [56]
is compatible with the present one. Owing to the lack of lattice-QCD data on A(p2) and B(p2), the inversion procedure is simply
not constrained below 0.14 GeV. Nonetheless, either solution yields the mass functions in the left-hand plot of Fig. 2 since the DSE
kernel is vanishing for q . 0.2 GeV and the functional form of X̃0 thus becomes irrelevant in this momentum range. Right panel:
the effective charge defined in Eq. (10) with X̃0 ≡ X̃MEM

0 .

regularization and the maximum entropy method (MEM), produce X̃0 form factors compatible with each other for
the range of momenta where lattice-simulation data is available, i.e. in the domain ' 0.3− 4 GeV. For momenta in
the range 0.3− 1 GeV, both regularizations feature a strong yet somewhat different enhancement of the generalized
Ball-Chiu vertex, as depicted in Fig. 1 for the MEM case, which generates the DCSB observed in the lattice-QCD mass
functions [57, 58]. As can be read from the figure, for momentum values above 4 GeV, the extraction of X̃0(q2) becomes
less reliable owing to the lack of lattice-data constraints. Similarly, the steep increase of X̃0(q2) below' 0.1 GeV2 is to
be taken with caution. Nonetheless, the functional form of X̃0 above q2 & 0.1 GeV2 bears strong similarities with that
of the ghost-dressing function [59, 60], F(q2), which a posteriori justifies the prescription F(q2)→ F2(q2) employed
in Ref. [61]. We thus, in analogy with Ref. [64], define an effective charge via the combination,

αeff(q2) = αs X̃0(q2)F(q2)∆(q2)
[
q2 +m2

g(q
2)
]

; m2
g(q

2) =
M4

g

q2 +M2
g
, (14)

plotted in Fig. 1, where αs(4.3GeV) = 0.295 and M2
g typically of the order 500−600 MeV.
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FIGURE 2. Flavor dependence of the solutions for the mass function M(p2) = B(p2)/A(p2); left panel: using the effective
interaction model of Eq. (14); right panel: DSE with interaction model and given parameter set of Ref. [65].
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FIGURE 3. Contour levels of the real and imaginary parts of the DSE solutions, A(p2) and B(p2), for complex momenta using
the interaction model of Ref. [65].

The flavor dependence of the solutions for the mass function is depicted in the left panel of Fig. 2. For the light
quarks, u and d, the DCSB leads to M(0) ' 220 MeV in accordance with lattice results [57, 58]. Yet, in comparison
with the best available phenomenological interaction model [65] whose functional behavior accords qualitatively with
results of modern DSE and lattice studies, the effect of the DCSB is much weaker: as seen in the right panel of
Fig. 2, the model of Ref. [65] yields M(0) ' 600 MeV. Although the consequences of DCSB are less marked for the
heavy quarks’ mass functions, which remain almost constant over a large momentum domain, we do note a difference
∆Mb(0) ' 600 MeV between both models. It is thus expected that the interaction defined by Eq. (14) is too weak
for applications to hadron phenomenology. This shortcoming may be remedied by the inclusion of the transverse
quark-gluon vertex component which describes the quark’s anomalous chromomagnetic moment [66].

Mass functions are not physical observables and to test the validity and efficacy of an interaction model it must stand
the comparison with experimental data. To this end, bound state equations must be solved and while the propagator
satisfies the gap equation, the vertices are determined by an inhomogeneous BSE. Consider, for instance, the exact
inhomogeneous axialvector BSE [67] which is valid when the quark-gluon vertex is fully dressed, i.e. for an ansatz
beyond the rainbow-ladder truncation:

Γ
f g
5µ
(k;P) = Z2 γ5γµ −g2

∫
Λ

q
Dαβ (k−q)

λ a

2
γα S f (q+)Γ

f g
5µ
(q;P)Sg(q−)

λ a

2
Γ

g
β
(q−,k−)

+ g2
∫

Λ

q
Dαβ (k−q)

λ a

2
γα S f (q+)

λ a

2
Λ

f g
5µβ

(k,q;P) , (15)

where P is the total meson momentum, q± = q±P/2,k± = k±P/2 and f ,g denote the flavor indices of a light-light
or heavy-light bound state. The 4-point Schwinger function Λ

f g
5µβ

is entirely defined via the quark self energy. This
comes about that a WGTI can be derived for the Bethe-Salpeter kernel whose solution provides a symmetry-preserving
closed system of gap and vertex equations [67, 68]. The pseudoscalar vertex, Γ

f g
5 (k;P), satisfies an analogous equation

to Eq. (15) and it is a well known feature of QCD that both the axialvector and pseudoscalar vertices exhibit poles



whenever P2 =−m2
Mn

, where mMn is the mass of the meson M or any of its radial excitations [69, 70] :

Γ5µ(k;P)
∣∣
P2+m2

Mn'0 =
fMn Pµ

P2 +m2
Mn

ΓMn(k;P) + Γ
reg.
5µ

(k;P) , (16)

Here, ΓMn(k;P) is the pseudoscalar bound state’s BSA. The solutions of the BSE for P2 = −m2
Mn

in Euclidean
momentum space requires the knowledge of the quark propagator at complex momenta whose squares lie inside a
parabola and which in the past presented a considerable numerical challenge at large quark masses, mq >mc. Improved
numerical methods which facilitate the treatment of the quark’s DSE are now available [71] and in Fig. 3 we present
the real and imaginary parts of the complex solutions A(p2) and B(p2), where P2 ' −1 GeV2. Solutions for heavier
quarks are currently being investigated and in conjunction with Eq. (15) first results for the heavy meson’s BSA using
Eq. (10) will soon be available.

3. EPILOGUE

We have summarized recent progress towards computing the DSE and BSE for heavy-light systems beyond the
rainbow-ladder truncation based on an ansatz for the quark-gluon vertex which correlates the tensor structure of the
Ball-Chiu vertex with a nonperturbative vertex function. The functional form of the latter is extracted from lattice-
regulated QCD data on the quark’s dressed propagator via an inversion of the DSE [56]. When the vertex model
is re-inserted in the quark’s DSE, its solutions yield mass functions which are qualitatively comparable with those
obtained with a recent interaction model [66] but whose magnitude of DCSB is considerably smaller. Computations
of the BSA for heavy-light systems which make use of the exact form of the BSE, valid for the fully dressed quark-
gluon vertex, and either interaction models are underway. The first test any beyond the rainbow-ladder ansatz for the
quark-gluon vertex must pass is the numerical value one obtains for one of the most elementary observable, i.e. the
weak decay constant which is more sensitive to the BSA normalization. We shall report results of its computation for
D(s) and B(s) mesons in a future communication. This will be the first in a series of steps to obtain their form factors
and parton distribution amplitudes that are our original motivation (see Section 1) and for which the well known
rainbow-ladder ansätze [69, 70] are not phenomenologically valuable.
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