Z' SEARCHES: FROM TEVATRON TO LHC

J. ERLER^{*a*}, P. LANGACKER^{*b*}, S. MUNIR^{*a*}, E. ROJAS^{*a*}

^aDepartamento de Física Teórica, Instituto de Física,

Universidad Nacional Autónoma de México, 04510 México D.F., México

^bSchool of Natural Sciences, Institute for Advanced Study, Einstein Drive, Princeton, NJ 08540, USA

The CDF collaboration has set lower limits on the masses of the Z' bosons occurring in a range of E_6 GUT based models. We revisit their analysis and extend it to certain other E_6 scenarios as well as to some general classes of models satisfying the anomaly cancellation conditions, which are not included in the CDF analysis. We also suggest a Bayesian statistical method for finding avaluation limits on the Z' mass which allows one to avalare a wide range

method for finding exclusion limits on the Z' mass, which allows one to explore a wide range of the U(1)' gauge coupling parameter. This method also takes into account the effects of interference between the Z' and the SM gauge bosons.

1 Introduction

A neutral Z' gauge boson appears in numerous models containing the SM gauge symmetry group along with an additional U(1) symmetry (for a review, see¹). Grand Unified Theories (GUTs) larger than the original SU(5) model, such as $SO(10)^2$ or $E_6^{-3,4}$, break down to the SM as: $E_6 \rightarrow SO(10) \times U(1)_{\psi}$, with in turn $SO(10) \rightarrow SU(5) \times U(1)_{\chi} \rightarrow SM \times U(1)_{\chi}^{-5}$. The Z' thus surviving at the electroweak (EW) scale can be written as the linear combination,

$$Z' = \cos\alpha \cos\beta Z_{\chi} + \sin\alpha \cos\beta Z_{Y} + \sin\beta Z_{\psi}.$$
 (1)

If kinetic mixing 6,7,8 with the hypercharge group $U(1)_Y$ is neglected by setting $\alpha = 0$ in eq. (1), one obtains some well-known Z' bosons by adjusting β . These include Z_{χ} ($\beta = 0^{\circ}$), Z_{ψ} ($\beta = 90^{\circ}$), Z_{η} ($\beta \approx -52.2^{\circ}$)⁹, Z_I ($\beta \approx 37.8^{\circ}$)³, Z_S ($\beta \approx 23.3^{\circ}$)^{10,11} and Z_N ($\beta \approx 75.5^{\circ}$)¹². The inclusion of kinetic mixing results in certain other phenomenologically interesting cases, such as Z_{dph} ($\alpha, \beta \approx -78.5^{\circ}, 37.8^{\circ}$) which does not couple to the *d*-type quarks, Z_R ($\alpha, \beta \approx 50.8^{\circ}, 0^{\circ}$)¹³ which couples to the right-handed fermions only and Z_{B-L} ($\alpha, \beta \approx -39.2^{\circ}, 0^{\circ}$)¹⁴, where *B* is the baryon number and *L* the lepton number of an ordinary fermion. The Z_{LR} which exists in models with left-right symmetry ¹⁵ is equivalent to the linear combination: $\sqrt{3/5}$ ($\bar{\alpha} Z_R - Z_{B-L}/2\bar{\alpha}$), where $\bar{\alpha} \equiv \sqrt{g_R^2/g_L^2 \cot^2 \theta_W - 1}$, with θ_W being the weak mixing angle and $g_{L,R}$ being the $SU(2)_{L,R}$ coupling strengths, respectively. The Z_{LR} studied here corresponds to the specific case of $g_L = g_R$. In addition to these E_6 based models, a Z_{string} from a specific superstring model ¹⁶ and a sequential Z_{SM} are also included in this analysis.

A number of other classes of one or more–parameter models have been discussed 17,18,1 . Without the assumption of unification at the GUT scale, but assuming nullification of anomalies using three families of exotics (which is not the case in some supersymmetric models), there are

	q + xu	$10 + x\overline{5}$	d-xu
ϵ_{f}	$\frac{3}{2\sqrt{7-2x+x^2}}z_f$	$-rac{3}{2\sqrt{4+x+x^2}}z_f$	$\frac{3}{2\sqrt{1-x+x^2}}z_f$
aneta	0	$-\sqrt{\frac{3}{5}}\left(\frac{3+x}{1-x}\right)$	$\frac{\sqrt{3}(1-x)sign(5-x)}{\sqrt{5-2x+5x^2}}$
$\tan \alpha$	$\sqrt{\frac{3}{2}}\left(\frac{1+x}{x-4}\right)$	0	$2\sqrt{6}(\frac{x}{5-x})$

Table 1: E_6 fermion charges, ϵ_f , in terms of z_f , their values in the corresponding *x*-parameter models. Also given are the angles α and β yielding these models.

four 'one-parameter' models ¹⁸, with fermion charges B - xL, d - xu, q + xu and $10 + x\overline{5}$, with x arbitrary. The last three of these correspond to the generalized E_6 charges in eq. (1). (q + xu) corresponds to arbitrary superpositions of Y and B - L, while $10 + x\overline{5}$ corresponds to the E_6 models without kinetic mixing.) We have, therefore, normalized the fermions charges, z_f , in the x-parameter models to their E_6 values, ϵ_f . These charges are given in Table 1.

2 Z' production at CDF and limits on its mass

The total cross–section for the Drell–Yan (DY) process at a hadron collider, with a neutral gauge boson B as the mediator and $\mu^+\mu^-$ as the outgoing particles, is given as ²⁰

$$\sigma = \frac{2}{s} \int_0^{\sqrt{s}} M dM \sigma_{diff},\tag{2}$$

where M is the invariant mass of the muon pair, \sqrt{s} is the center-of-mass (CM) energy, and

$$\sigma_{diff} = \int_{M^2/s}^{1} dx_1 \frac{1}{x_1} \sum_{q} \hat{\sigma}(M^2) \frac{K}{N_c} \Big\{ f_q^A(x_1, M^2) f_{\bar{q}}^B(x_2, M^2) + f_{\bar{q}}^A(x_1, M^2) f_q^B(x_2, M^2) \Big\}, \quad (3)$$

where $N_c = 3$ is the quark color factor. x_1 and $x_2 (\equiv \frac{M^2}{x_1 s})$ above are the momentum fractions of the ingoing partons having parton distribution functions (PDFs) $f_{q/\bar{q}}^{A/B}$ for hadrons A and B. α_s is the strong coupling constant and $K = K_C + K_E$, with K_C being the QCD K-factor and K_E being the multiplicative factor due to QED corrections. $\hat{\sigma}(M^2)$ is equal to

$$\int_{-1}^{1} d\cos\theta^* \frac{1}{128\pi M^2} \Big[\left(|A_{LL}|^2 + |A_{RR}|^2 \right) (1 + \cos\theta^*)^2 + \left(|A_{LR}|^2 + |A_{RL}|^2 \right) (1 - \cos\theta^*)^2 \Big], \quad (4)$$

with θ^* being the polar angle defined in the CM frame and the individual amplitudes given as

$$A_{ij} = -Qe^2 + \frac{M^2}{M^2 - M_Z^2 + iM_Z\Gamma_Z}C_i^Z(q)C_j^Z(l) + \frac{M^2}{M^2 - M_{Z'}^2 + iM_{Z'}\Gamma_{Z'}}C_i^{Z'}(q)C_j^{Z'}(l), \quad (5)$$

where i, j are run over L, R. Q and e are the electric charges of the contributing quark and the muon, respectively. $C_{L,R}^{Z,Z'}(f) \equiv g_{1,2}\epsilon_{L,R}^{Z,Z'}(f)$, with $g_1 = e/\sin\theta_w\cos\theta_w$ being the gauge coupling strength of the Z boson, g_2 the Z' coupling and $\epsilon_{L,R}^{Z,Z'}$ the EW and U(1)' charges of the fermion f. $\Gamma_{Z,Z'}$ are the total decay widths of the Z and Z' bosons having masses $M_{Z,Z'}$.

We first follow the CDF analysis ²¹ and use the LO expression given in eq. (2) to calculate the cross–section due to the Z' alone, neglecting the γ and Z contributions to the amplitudes in eq. (5). We employ LO CTEQ6L PDFs ²² and mass–dependent NNLO K_C ¹⁸ and NLO K_E ²³ values, and assume that the Z' decays into SM fermions only, which are taken to be massless. We achieve up to 99.8% agreement on the 95% confidence level (C.L.) $M_{Z'}$ lower limits with

Figure 1: Contours in $M_{Z'}$ limits mentioned on/beside them. x shows the location of a particular E_6 model within a contour. The dotted, dashed and dot-dashed lines correspond to the three x-parameter models. Z_{η^*} is a leptophobic boson which will not be observable in the di-lepton channels.

Table 2: Numerical limits in GeV on the mass of the Z' boson in various models.

Z_{χ}	Z_{ψ}	Z_{η}	Z_N	Z_S	Z_I	Z_{B-L}	Z_R	Z_{LR}	Z_{dph}	Z_{string}	Z_{SM}
895	883	910	865	823	790	1012	1006	959	1079	710	1030

$\mathcal{L} (\mathrm{fb}^{-1})/\sqrt{s} (\mathrm{TeV})$	3.5	7	14	28
3	1.0	1.85	3.0	4.65
30	1.5	2.5	4.1	6.7
300	2.2	3.3	5.4	9.7
3000	3.9	5.55	7.9	12.2

Table 3: Limits on $M_{Z'}$ in the Z_{χ} model from the LHC.

the CDF analysis, for the E_6 models included therein, and obtain new limits for the rest of the models. The numerical values of the limits are given in Table 2 and the α, β parametrization of the models with contours in $M_{Z'}$ is plotted in Fig. 1. In Table 3 we give limits obtained for the LHC with a similar approach for some expected integrated luminosity and CM energy values.

3 Bayesian statistical method

The CDF analysis uses signal templates generated with a fixed resonance pole width, $\Gamma = 2.8\% \times M_{Z'}$. However, there is no fundamental reason to only look for such a narrow Z'. A wide Z' resonance, implying a strongly coupling boson, could well be scattered over a few bins and no significant enhancement above the background will be visible. Besides, the effects of interference between the various bosonic contributions to the propagator, i.e., between γ , Z and Z' (see eq. (5)), are lost in their approach. These effects could in principle cause a considerable enhancement or dip in the number of events in several accompanying low M^{-1} bins, e.g., in the case of a strongly interacting Z' boson with mass just beyond the kinematic reach of the CDF. Finally, the CDF limits assume a fixed GUT-based g_2 and it is not straightforward to extend the limits to other g_2 values, particularly in the strong coupling regime (see, however 2^4).

Therefore, we propose a Bayesian statistical method which allows one to vary g_2 in order to

obtain the corresponding limit on $M_{Z'}$. It is based on the likelihood function L, written as

$$\mathcal{L}(\vec{\mu}|\vec{n}) = \Pi_i^B P(n_i|\mu_i),\tag{6}$$

where P is the Poisson probability of finding n_i events given μ_i expected events in the *i*th bin with B total bins. L in eq. (6) is then evaluated using two hypotheses: the null hypothesis, $L(\vec{\mu^b}|\vec{n})$, assumes that the DY process occurs only via γ and Z, and the signal hypothesis, $L(\vec{\mu^t}|\vec{n})$, with $\vec{\mu^t} = \vec{\mu^b} + \vec{\mu'}$, wherein the Z' boson also contributes to the cross-section along with the SM gauge bosons. The SM events, μ^b , expected in an invariant mass bin are calculated as

$$\mu^{b} = \mathcal{L}\sigma_{SM} = \frac{2E\mathcal{L}}{s} \int_{bin} AdM_{p}^{-1} \int_{0}^{\sqrt{s}} MdM \mathbf{p}(M_{p}^{-1}|M^{-1})\sigma_{diff} + n_{\mathrm{BG}},\tag{7}$$

where $\mathcal{L} = 2.3 \text{ fb}^{-1}$ is the integrated luminosity at the CDF, E = 0.982 is the detector *efficiency* and A is the CDF *acceptance*, which is a mass–dependent multiplicative factor. M_p in the above equation is the muon–pair mass measured by the detector, n_{BG} refers to the non–DY events and the probability density is given as

$$\mathbf{p}(M_p^{-1}|M^{-1}) = M_p b^a e^{-b} / \Gamma(a), \tag{8}$$

with $a = (M^{-1}/\Delta)^2$, $b = M^{-1}M_p^{-1}/\Delta^2$, where $\Delta = 0.17 \text{ TeV}^{-1}$ is the variance. The purpose of the above probability function is to smear over the DY background before distributing it into bins, hence accounting for the mis-identification of an event in a bin where it does not actually belong. For μ' , a χ^2 function is constructed as

$$\chi_{\mu'}^2 = -2LLR = -2\ln(\frac{\mathbf{L}(\vec{\mu^t}|\vec{n})}{\mathbf{L}(\vec{\mu^b}|\vec{n})}) = -2\sum_i^B (\mu_i^b - \mu_i^t + n_i\ln(\frac{\mu_i^t}{\mu_i^b}),$$
(9)

and is minimized to obtain the best-fit values in the given range of g_2 and $M_{Z'}$, which correspond to a Z' boson with cross-section μ' best favored by the data. The contours in g_2 and $M_{Z'}$, for a certain C.L. value specified by the allowed number of standard deviations, $\Delta \chi^2$, from the minimum, can then also be drawn, giving the exclusion limits on these parameters. Our preliminary contours are given in Fig. 2 for Z_{χ} as a representative model. The numerical value of the 95% C.L. limit is 913 GeV for $g_2 = 0.461$, which is about 21 GeV higher than the CDF value. We next plan to undertake a global analysis including constraints from electroweak precision data¹³. Eventually, a similar statistical analysis of the LHC data, as soon as it is released, will also be performed.

Acknowledgments

The work at IF-UNAM is supported by CONACyT project 82291–F. The work of P.L. is supported by an IBM Einstein Fellowship and by NSF grant PHY–0969448.

Figure 2: Exclusion contours for the Z_{χ} boson. The dotted, dot–dashed and double–dot–dashed curves correspond to the C.L. values given and the solid curve represents the CDF limits generalized to other g_2 values.

References

- 1. P. Langacker, Rev. Mod. Phys. 81, 1199 (2009).
- 2. R.W. Robinett and J.L. Rosner, *Phys. Rev.* D 26, 2396 (1982).
- 3. P. Langacker, R.W. Robinett and J.L. Rosner, Phys. Rev. D 30, 1470 (1984).
- 4. J.L. Hewett and T.G. Rizzo, Phys. Rept. 183, 193 (1989).
- 5. H. Georgi and S.L. Glashow, *Phys. Lett.* B **32**, 438 (1974).
- 6. B. Holdom, Phys. Lett. B 166, 196 (1986).
- 7. F. del Aguila, M. Masip and M. Perez-Victoria, Nucl. Phys. B 456, 531 (1995).
- K.S. Babu, C.F. Kolda and J. March-Russell, *Phys. Rev.* D 54, 4635 (1996) and *Phys. Rev.* D 57, 6788 (1998).
- 9. P. Candelas, G.T. Horowitz, A. Strominger, and E. Witten, Nucl. Phys. B 258, 46 (1985).
- 10. J. Erler, P. Langacker and T. Li, Phys. Rev. D 66, 015002 (2002).
- 11. J. Kang, P. Langacker, T. Li and T. Liu, Phys. Rev. Lett. 94, 061801 (2005).
- 12. E. Ma, *Phys. Lett.* B **380**, 286 (1996).
- 13. J. Erler, P. Langacker, S. Munir and E. Rojas, JHEP 06, 017 (2009).
- 14. T. Appelquist, B.A. Dobrescu and A.R. Hopper, Phys. Rev. D 68, 035012 (2003).
- 15. R.N. Mohapatra in Unification And Supersymmetry (Springer-Verlag, Berlin, 1986).
- 16. S. Chaudhuri, S.W. Chung, G. Hockney and J.D. Lykken, Nucl. Phys. B 456, 89 (1995).
- 17. J. Erler, Nucl. Phys. B 586, 73 (2000).
- 18. M.S. Carena, A. Daleo, B.A. Dobrescu and T.M.P. Tait, *Phys. Rev.* D 70, 093009 (2004).
- 19. J. Erler, P. Langacker, E. Rojas and S. Munir, work in progress.
- R.K. Ellis, W.J. Stirling and B.R. Webber, Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol. 8, 1 (1996).
- 21. CDF collaboration, T. Aaltonen et al., Phys. Rev. Lett. 102, 091805 (2009).
- J. Pumplin, D.R. Stump, J. Huston, H.L. Lai, P.M. Nadolsky and W.K. Tung, *JHEP* 07, 012 (2002).
- 23. U. Baur, S. Keller and W.K. Sakumoto, Phys. Rev. D 57, 199 (1998).
- 24. CDF Collaboration: D. Whiteson *et al.*, conference note CDF/PHYS/EXO/PUBLIC/ 10165.