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Using the Ritus eingenfunction method we compute corrections to the electron mass m0 in the
presence of a moderate magnetic field eB ∼ m2

0. From this we obtain an expression for the anomalous
magnetic moment near the critic field. For this we solved numerically the Schwinger-Dyson equations
in the rainbow approximation including all Landau levels without make any assumption respect to
the field strength.

PACS numbers:

I. INTRODUCTION

Radiative corrections to the electron self-energy due to
its interaction with an external magnetic field have been
widely considered in the literature [1, 2, 3, 4, 5, 6, 7, 8].
The exact form of how the ground state energy of an
electron may be shifted from E0 in the presence of an
magnetic field was a source of misleading conclusions [3,
9, 10]. Assuming that this effects can be calculated by
adding to the Dirac Hamiltonian a term ∆µσ ·B, where
∆µ is the Schwinger anomalous magnetic moment, it was
founded that the ground-state energy of an electron is [3,
11, 12]

E0 = m0c
2|1− α

4π
e~B
m2

0c
3
|, (1)

where m0 is the electron mass without magnetic fields.
For B ∼ 1016Gauss this formula implies that the ground-
state energy of an electron is close to zero, a fact that
could have dramatical astrophysical and cosmological
consequences [9]. However, it was soon realized that this
result can only be true for magnetic field intensities that
are weak compared with Bc = m2

0/e ∼ 1013Gauss, be-
cause Eq (1) only represents the linear term in the power
expansion in eB [3], which is not the dominant one for
strong magnetic fields. In recent publications [8, 13] dy-
namical effects of a strong magnetic field B >> m2

0/e
were calculated. These approaches, show an enhance-
ment of the dynamical contribution to the dynamical
mass. They claim that this is a new effect that could
have important consequences. We confirmed this result
with an independent calculation and show that this effect
is well described by previous calculations which are based
on the constant mass approximation [6]. Furthermore, we
carry out an analogous calculation for a weak magnetic
field eB . m2

0, from this we obtain an expression for the
anomalous magnetic moment near the critic field Bc. Re-
cently this issue has been revived from a non-perturbative
point of view for strong fields [14]. In our approach
we have included higher Landau levels to allow magnetic
field intensities of the same order or less than the electron
mass using similar techniques to those used in the con-
text of the magnetic catalysis [15, 16, 17, 18, 19, 20, 21],

particularly we follow the last reference.

II. THE MASS FUNCTION

It has been shown [22] that the mass operator in the
presence of an electromagnetic field can be written as a
combination of the structures

γµΠµ , σ
µνFµν , (FµνΠν)2 , γ5Fµν F̃

µν (2)

which commute with the operator (γ · Π)2, where
Πµ = i∂µ − eAext

µ , Fµν = ∂µA
ext
ν − ∂νA

ext
µ , F̃µν =

1
2ε
µνλτFλτ , σµν = i

2 [γµ, γν ] and Aext is the external vec-
tor potential. We take Aext

µ = B(0,−y/2, x/2, 0), such
that the magnetic field is B = Bẑ.

The equation relating the two-point fermion Green’s
function G(x, y) and the mass operator M(x, y) in coor-
dinate space reads

γ ·Π(x)G(x, y)−
∫
d4x′M(x, x′)G(x′, y) = δ4(x− y), (3)

where the mass function in the rainbow approximation
in coordinate space is [23]

M(x, x′) =m0δ
4(x− x′)11×1

− ie2γµG(x, x′)γνD(0)
µν (x− x′) , (4)

where 14×4 is the 4 × 4 spinorial identity matrix. In
this work, we are interested in exploring the behavior of
the mass function for arbitrary values of the magnetic
field strength, thus we work near the Landau gauge [24]
(ξ ∼ 0) to compare with the well known results in the
weak and strong magnetic field limit.

Schwinger [23] was the first to obtain an exact ana-
lytical expression for the fermion Green’s function in the
presence of a constant electromagnetic field of arbitrary
strength. However, in the presence of a constant external
field, the fermion asymptotic states are no longer free par-
ticle states, but instead are described by eigenfunctions of
the operator (γµΠµ)2. Thus, the alternative representa-
tion of G(x, y) proposed by Ritus [22] is more convenient
for our purposes, since there the mass operator is diago-
nal. A matrix constructed out of these eigenfunctions is
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used to rotate the SDE (4) to momentum space, yielding [20]

tr[Π(np)]
(
M[p‖, np]−m0

)
=− 2ie2

∑
σk,σp=±1

∞∑
nk,sk=0

sk!(np − (σp+1)
2 )!

sp!(nk − (σk+1)
2 )!

×
∫

d4q

(2π)4

e−q
2
⊥/2γ

q2 + iε

M[(p− q)‖, nk]
(p− q)2

‖ − 2eBnk −M2[(p− q)‖, nk]

×
(
q2
⊥

4γ

)lk−lp− (σk−σp)
2
[
2 +

(1− ξ)
q2

(
q2
⊥(1− δσpσk)− q2

‖δσpσk

)][
L
nk−np−

(σk−σp)
2

np−
(σp+1)

2

(q2
⊥/4γ)

]2[
Lsp−sksk

(q2
⊥/4γ)

]2
(5)

where q⊥ = (0, q1, q2, 0), q‖ = (q0, 0, 0, q3), γ = eB/2,
p2 = E2

p −p2
z−2eBn and Lmn are Laguerre functions and

Π(np) =

{
1, if np 6= 0
∆(σ = 1), if np = 0,

,

with ∆(σ) = 1
2 (1 + iσγ1γ2). This factor comes from the

normalization [17]∫
d4xΨ̄p(x)Ψp′(x) = δnpnp′ δspsp′ δ

2(p‖ − p′‖)Π(np), (6)

and bring out a factor of two in the left-hand side of
Eq. (5) for np = 0. In vacuum, working near the Landau
gauge, we know that the wave function renormalization
equals one. We assume that this is the case also in the
presence of a magnetic field of arbitrary strength. Ac-
cordingly, to get Eq. (5) we have worked with the ansatz
Σ(p̄) ∼M(p̄)14×4, where Σ(p̄) is defined by∫

d4xd4x′Ψ̄p(x)M(x, x′)Ψp′(x′)

=δnpnp′ δspsp′ δ
2(p‖ − p′‖)Π(np)Σ(p̄). (7)

This assumption is good when considering a small exter-
nal momentum and np = 0 [14, 16, 20, 21]. Since the
energy only depends on the principal quantum number
nk, we expect thatM((p−q)‖, nk) should be independent
of sk. We also assume that M((p − q)‖, nk) is a slowly
varying function of nk and thus make the approximation

M((p− q)‖, nk) ∼M((p− q)‖, nk = 0). (8)

Hereafter, we employ the more convenient notation
M(k‖, nk = 0) ≡ M(k‖) for generic arguments of the
mass function. With these considerations, the sum over
sk can be computed by using the identity

Lls = (−1)lx−l
(s+ l)!
s!

L−ls+l, (9)

and the Eq 5.11.5.1 in Ref. [25], namely

∞∑
k=0

AkLm−kk (x)Lk−nn (y) =Am
(

1 +A

A

)m−n
e−xA

×L0
m−n(x+ y + xA+

y

A
),

(10)

yielding

tr[Π(np)] (M(p)−m0) = −2ie2
∑

σp,σk=±1

∞∑
k=0

∫
d4q

(2π)4

× e−
q2⊥
4γ

q2 + iε

M((p− q)‖){
(q − p)2

‖ − 2eB(k + (σk + 1)/2)
}
−M2

×

{
2 + (1− ξ)(1− δσpσk)

q2
⊥
q2
− (1− ξ)δσpσk

q2
‖

q2

}

×(−1)−m(−1)kLk−mm (
q2
⊥

4γ
)L−(k−m)

k (
q2
⊥

4γ
), (11)

where k = nk− σk+1
2 and m = np− σp+1

2 . It is worth men-
tioning that after summing over sk, the resulting equa-
tion is the same as Eq. (50) in Ref. [16] when considering
the case nk = 0, which corresponds to the strong field
limit. Under a Wick rotation we have

1
(p− q)2

‖ − 2eB(k + σk+1
2 )−M2

−→

−1
(p− q)2

‖ + 2eB(k + σk+1
2 ) +M2

=
−1
2eB

∫ 1

0

dxx

“
(p−q)2

‖+2eB(k+
σk+1

2 )+M2−2eB
”
/2eB

. (12)

With this result the sum over k can be performed also
by resorting to Eq. (10) yielding, after carrying out the



3

sums over σk and σp,

tr[Π(np)] (M(p)−m0) = +2e2

∫
d4Q

(2π)4

M( p
4γ −Q)‖
Q2∫ 1

0

dxe−Q
2
⊥[1−x]x[(2√γQ−p)2

‖+M
2] 1

4γ

×

[{
2− (1− ξ)

Q2
‖

Q2

}(
xnpL0

np + xnpL0
np−1

)
+
{

2− (1− ξ)Q
2
⊥

Q2

}(
x(np+1)L0

np + x(np−1)L0
np−1

)]
.

(13)

where Q = q
2
√
γ and the argument of the Laguerre func-

tions is 4Q2
⊥ sin Ln( 1

x ). For consistency with the assump-
tion that the mass function is a slowly varying function of
the principal quantum number Eq. (8), we take np = 0.
In this case, Eq. (13) gets simplified since L0

0 = 1 and
L0
−1 = 0, so we get

M(p) =m0 + e2

∫
d4Q

(2π)4

M( p
4γ −Q)‖
Q2

∫ 1

0

dxe−Q
2
⊥(1−x) x

h
(Q−p)2

‖+
M2
2eB−1

i[{
2− (1− ξ)

Q2
‖

Q2

}
+
{

2− (1− ξ)Q
2
⊥

Q2

}
x

]
.

(14)

This result corresponds with the Eq.(8) in the reference
[21]. Following [21] we get for arbitrary gauge fixing pa-

rameter the Eq. (15),

M(y) = m0 +
e2

4

∫ Λ2
4γ

0

dz

(2π)2
M[z]

∫ 1

0

dxxλ
{

×
[{

2(1 + x)− (1− ξ)
(
x+ (1− x)2z − y(1− x)2 +

1
2
yz(1− x)3

)}
× ey(1−x)Γ[0, y(1− x)] + (1− ξ)(1− x)

(
z

2y
− 1 +

1
2
z(1− x)

)]
θ (y − z) +[{

2(1 + x)− (1− ξ)
(
x+

1
2
z2(1− x)3

)}
× ez(1−x)Γ[0, z(1− x)] + (1− ξ)(1− x)

(
−1

2
+

1
2
z(1− x)

)]
θ (z − y)

}
, (15)

where z = Q2, y = p2/4γ and λ = z + M2[~Q‖]−iε
2eB −

1 and Γ(x, y) is the incomplete gamma function. The
set of approximations leading to Eq. (15) are the same
that in [21] which make no reference to the strength of
the magnetic field, therefore this equation is valid for
arbitrary magnetic field intensities. If we take, ξ = 1,
in Eq. (15) it reproduces Eq. (11) in [21] with m0 = 0.
For strong magnetic fields it will be useful to compare
the solutions to this equation with the solutions tho the

corresponding equation for the lowest Landau level (LLL)

M(p‖) =
e2

2(2π)2

{∫ p2

0

dq2
‖
MA(q‖)

q2
‖ +M2(q‖)

e
p2
‖

4γ Γ[0,
p2
‖

4γ
]

+
∫ ∞
p2

dq2
‖
M(q‖)

q2
‖ +M2(q‖)

e
q2‖
4γ Γ[0,

q2
‖

4γ
]

}
(16)

to calculate this expression we have used the same as-
sumptions of the kernel softness respect to the momen-
tum variables that in Eq. (15). We can find numeri-
cal solutions to the integral equation Eq. (15) for several
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magnetic field intensities making an appropriate choice
of the cutoff in every range. For weak magnetic fields,
eB < m2

0, we take as cutoff the electron mass given that
it corresponds to the highest momentum scale and make
ξ = 0. For weak magnetic fields the dimensional re-
duction is missing and thus it is important to take into
account the ultraviolet divergences since we are in a simi-
lar regime to the vacuum. This fact makes the numerical
work harder and conceptually some care should be taken.
There, contrary to the strong magnetic field case, the dif-
ference between the mass function and the bare electron
mass m0 is meaningless because it does not tend to zero
when the magnetic field is turn off, leading to to a ficti-
tious dynamical mass. We can make an rough estimate
of this contribution by consider the QED one loop con-
tribution to the self-energy in the perturbative case. In
the Landau gauge we get

δm = mphys −m0 ∼
3αm0

4π
ln

Λ2 +m2
0

m2
0

|Λ=m0∼ 10−3m0,

(17)
which is at least two magnitude orders higher than the
magnetic field contribution. To remove this additive con-
stant is sufficient consider only differences between the
mass function. Numerical results are shown in the fig. 1.

0.001 0.01 0.1 1

eB

m0
2

1 ´ 10-7

5 ´ 10-7
1 ´ 10-6

5 ´ 10-6
1 ´ 10-5

5 ´ 10-5
1 ´ 10-4

5 ´ 10-4

-Hm-mrefL
m0

FIG. 1: Dynamical electron mass as a function of the mag-
netic field in units of m2

0. The continuous line corresponds
to the linear contribution Eq. (1). Dots correspond to the
numerical solution including ALL Eq. (15). Here mref =
m(eB = 10−5m2

0) ∼ 2.4× 10−3m0

It is noticeable that the relation, Eq. (1), remains as the
leading term even for field intensities close to Bc = m2

0/e.
This is an important result because, despite that the
old formula Eq. (1) is very well established, to the best
of our knowledge no validation of this result including
higher Landau levels is known. Besides fig. 1 shows that
the assumption eB << m2 is no too restrictive. It is
very well known that the anomalous magnetic moment
of the electron ∆µ = αe0~

4πm0c
can be obtained from the real

part of the mass operator which depends of the magnetic
field [5, 14, 23, 26, 27, 28, 29]. In our approach we can

read it from fig. 1 by use the formula ∆µ = |δm(B)/B|,
where δm(B) is the magnetic correction to the electron
mass. We can see in fig. 2 that the anomalous magnetic
moment is independent with the magnetic field up to
magnetic fields intensities near 0.1Bc in agreement with
previous calculations which only include lowest Landau
levels [5]. For magnetic fields near Bc the anomalous
magnetic field is highly suppressed and the same concept
of magnetic moment in this range should be revisited.
In the fig. 2 there is an small gap between the analyt-
ical value and our numerical solution, this should only
be a numerical error. For the strong regime we take

0.001 0.01 0.1 1

eB

m0
2

0.00100

0.00050

0.00030

0.00070

H2m0c�eÑL � DΜ

FIG. 2: Anomalous magnetic moment ∆µ as a function of the
magnetic field in units of m2

0. Dots correspond to the anoma-
lous magnetic moment ∆µ taking into account all Landau
levels. Horizontal dashed line corresponds to Schwinger clas-
sical result 2m0c∆µ

e0~ = α
2π

Λ =
√
eB and calculate the solutions to Eq. (15) for

the interval, m2
0 < eB < 104m2

0, which corresponds to
magnetic fields in the phenomenological range . In this

10 100 1000 104

eB

m0
2

1 ´ 10-4

5 ´ 10-4

0.050

0.010

0.005

0.001

m-mref

m0

FIG. 3: Dynamical electron mass as a function of the mag-
netic field in units of m2

0. The continuous line corresponds
to the analytical solution of Gusynin and Smilga. Gray and
Black dots correspond to the numerical solution including
ALL and the LLL respectively. Here mref = m(B = m2

0/e)
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regime we make the calculation including higher Landau
levels and compare with the LLL solution. The solutions
for eB/m2

0 = 1 for ALL and LLL are mref = 2.2×10−3m0

and mref = 1.4 × 10−3m0 respectively, shown that high
Landau levels represent an important contributions at
this field intensities. However if, as in the weak mag-
netic case, we only consider mass differences the results
are indistinguishable as is shown in fig. 3. This lead us
to conclude that for this regime of coupling, the main
effect of higher Landau levels is to include vacuum con-
tributions without changing significantly the dependence
of the mass with the magnetic field. For higher magnetic

104 108 1012 1016 1020

eB

m0
2

1.000
0.500

5.000

0.100
0.050

0.010
0.005

0.001

m-mref

m0

FIG. 4: Dynamical electron mass as a function of the mag-
netic field in units of m2

0. The continuous line corresponds
to the non-perturbative analytical solution of Gusynin and
Smilga. Black dots correspond to the numerical solution to
Eq. (16) and the dashed line corresponds to perturbative so-
lution in the Ref. [3]. Here mref = m(B = m2

0/e)

fields we recover the agreement between the lowest Lan-
dau level solution and the complete solution. Given that
there are not important contributions by including higher
Landau levels for strong magnetic field, we calculate the
enhancement of the electron mass and compare the so-
lutions with the previous solutions founded in the litera-
ture [6]. From the fig. 4 we can conclude that the dynami-
cal effects are well described by the perturbative solutions
which does not take into account the mass dependence

with the momenta. We note the excellent agreement be-
tween the analytical solution in reference [6] and our nu-
merical solution. This result should not be surprising,
since despite that in reference [6] they begin calculat-
ing perturbative corrections, at the end they get a self-
consistent equation for the dynamical mass and hence
non-perturbative effects are expected in their approach.
In summary: we have shown that the Eq. (15) can repro-
duce perturbative as non-perturbative results for differ-
ent ranges in the magnetic field intensity. This equation
is easily solved with lower computational power, allow-
ing to carry out calculations for magnetic fields relevant
for the typical astrophysical conditions. To avoid mis-
leading conclusions when dealing numerically with higher
Landau levels, we have shown the importance of distin-
guishing vacuum contributions from magnetic field con-
tributions. Numerically this can be easily implemented
by only consider differences between the mass function
for different magnetic field intensities. Furthermore, in
this work we have shown that the magnetic independence
of the anomalous magnetic moment is consistent up to
magnetic field intensities near 1012Gauss. At same time,
our technique allows to make a precise description of the
way in which this assumption is broken in the magnetic
field interval 1012 − 1013Gauss. A natural extension of
this work is to consider magnetic field intensities in the
interval 100 − 108Gauss. For this an improvement of
our numerical techniques is needed. Due to highly pre-
cise measurements of the anomalous magnetic moment
non-perturbative effects are strongly bounded. If we ex-
trapolate our calculations to magnetic field intensities of
105Gauss, where some experiments currently take place,
it is not completely clear that this contributions become
less than one part in 1012 which represents the nowadays
precision in the anomalous magnetic moment. This de-
serves a future investigation and can be an excellent test
for non-perturbative techniques.
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la Incera, G. Toledo and W. F. Cuervo for useful com-
ments and suggestions, and A. Ayala, A. Bashir and A.
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port for this work has been received of DGEP-UNAM.
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