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Dynamical mass generation in QED with magnetic fields: arbitrary field strength and

coupling constant
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We study the dynamical generation of masses for fundamental fermions in quenched quantum
electrodynamics, in the presence of magnetic fields of arbitrary strength, by solving the Schwinger-
Dyson equation (SDE) for the fermion self-energy in the rainbow approximation. We employ the
Ritus eigenfunction formalism which provides a neat solution to the technical problem of summing
over all Landau levels. It is well known that magnetic fields catalyze the generation of fermion mass
m for arbitrarily small values of electromagnetic coupling α. For intense fields it is also well known
that m ∝

√
eB. Our approach allows us to span all regimes of parameters α and eB. We find

that m ∝
√
eB provided α is small. However, when α increases beyond the critical value αc which

marks the onslaught of dynamical fermion masses in vacuum, we find m ∝ Λ, the cut-off required
to regularize the ultraviolet divergences. Our method permits us to verify the results available in
literature for the limiting cases of eB and α. We also point out the relevance of our work for possible
physical applications.
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It is well known that fermions can acquire mass dy-
namically, i.e., through self interactions by means of non
perturbative effects without the need of a non zero bare
mass. This phenomenon is called the dynamical mass
generation (DMG) and can be studied in the contin-
uum through the Schwinger-Dyson equations (SDEs). In
quantum electrodynamics (QED), DMG takes place only
if the electromagnetic coupling α exceeds a critical value
αc. However, the presence of magnetic fields brings about
a drastic change and it is possible to generate fermion
masses for any value of the coupling. This phenomenon,
named magnetic catalysis [1, 2, 3, 4] has been extensively
studied in the situation where the field is strong. In this
case, only the lowest Landau level (LLL) is enough to
describe it and the analysis simplifies considerably.

Physically, for strong fields, Landau levels are widely
spaced making it energetically less favorable for virtual
particles to populate levels other than the LLL. More-
over, for weak coupling, the dynamics describing the for-
mation of a condensate is dominated by the LLL. The
essence of the effect is a dimensional reduction brought
about by the presence of the magnetic field that produces
an effectively stronger interaction among virtual particles
and antiparticles in the vacuum. This interaction is even
stronger in the LLL since the only component of the mo-
mentum contributing to the energy is the longitudinal
one and this makes it more easy for virtual pairs to meet
each other and condense.

Nevertheless, one can envision a situation where the
magnetic field is not so strong and therefore that low en-
ergy levels are close to the LLL in such a way that virtual
particles in those levels also contribute to the dynamics
of condensate formation. Furthermore one could study
the phenomenon as a function of the coupling constant

to interpolate between the small coupling domain where
the dynamics is magnetic field driven to the strong cou-
pling domain where the dominance should switch to the
description of dynamical symmetry breaking in vacuum.
To the best of our knowledge, calculations aiming to

describe magnetic catalysis have non been performed
considering the contribution of all Landau levels, for ar-
bitrary field strength and coupling constant, perhaps be-
cause such calculations involve the technical challenge of
carrying out a seemingly prohibitive sum over these lev-
els. In this work, we undertake the study of DMG in
QED in the rainbow approximation in the presence of
magnetic fields of arbitrary intensity. We present a solu-
tion to the above technical difficulty and use it to carry
out a detailed quantitative analysis of the dynamically
generated fermion mass for arbitrary values of the cou-
pling constant and magnetic field intensities.
It has been shown [5] (see also Ref. [6]) that the mass

operator in the presence of an electromagnetic field can
be written as a combination of the structures γµΠµ,

σµνFµν , (FµνΠ
ν)2, γ5Fµν F̃

µν which commute with the
operator (γµΠ

µ)2, where Πµ = i∂µ − eAext
µ , Fµν =

∂µA
ext
ν − ∂νA

ext
µ , F̃µν = 1

2ǫ
µνλτFλτ , σµν = i

2 [γµ, γν ] and
Aext is the external vector potential. We take Aµ

ext
=

B(0,−y/2, x/2, 0) in such a way that it gives rise to a
constant magnetic field B = Bẑ. The two-point fermion
Green’s function G(x, y) is found through the equation

γ · Π(x)G(x, y)−
∫

d4x′M(x, x′)G(x′, y) = δ4(x− y) , (1)

where the mass operator M(x, y) is described by its SDE
in the rainbow approximation as

M(x, x′) = −ie2γµG(x, x′)γνD(0)
µν (x− x′). (2)
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In the presence of a constant external field, the fermion
asymptotic states are no longer free particle states, but
instead are described by eigenfunctions of the operator
(γµΠµ)

2. Therefore, it is convenient to work in the repre-

sentation spanned by these eigenfunctions, rendering the
mass operator diagonal and allowing to write the equa-
tion for the mass function as [7],

M(p‖, np) = −ie2
∑

σk,σp=±1

∑

nk,sk

sk!(np − (σp+1)
2 )!

sp!(nk − (σk+1)
2 )!

∫

d4q

(2π)4
e−q2⊥/2γ

q2 + iǫ

M((p− q)‖, nk)

(p− q)2‖ − 2eBnk −M2((p− q)‖, nk)

×
(

q2⊥
4γ

)lk−lp− (σk−σp)

2
[

2 +
(1− ξ)

q2

(

q2⊥(1 − δσpσk
)− q2‖δσpσk

)

][

L
nk−np− (σk−σp)

2

np− (σp+1)

2

(

q2⊥
4γ

)]2[

Lsp−sk
sk

(

q2⊥
4γ

)]2

, (3)

where q⊥ = (0, q1, q2, 0), q‖ = (q0, 0, 0, q3), and thus,

in Minkowski space, q2 = q2‖ − q2⊥. Also, γ = eB/2,

p2 = E2
p − p2z − 2eBn, ξ is the covariant gauge param-

eter and Lm
n are Laguerre functions. We shall assume

that the wave function renormalization equals one. Af-
ter the structures upon which the mass operator M de-
pends have been accounted for, the mass function should
be a scalar matrix whose components can in principle
be different in the transverse and longitudinal directions
due to the presence of the field. Here, let us work with
the ansatz that M is proportional to the unit matrix.
The assumption is good when considering small momen-
tum [2].

We expect that M((p−q)‖, nk) should be independent
of sk since the energy only depends on the principal quan-
tum number nk. We also assume that M((p − q)‖, nk)
is a slowly varying function of nk and thus make the ap-
proximation M((p− q)‖, nk) ∼ M((p− q)‖, nk = 0). For
consistency we consider the case np = 0. Hereafter, we
employ the more convenient notation M(k‖, nk = 0) ≡
M(k‖) for generic arguments of the mass function. With
these considerations the sum over sk can be performed

M(p‖) =− ie2
∑

σp,σk

∞
∑

k=0

∫

d4q

(2π)4
e−

q2⊥
4γ

q2 + iε

×
M((p− q)‖)

{

(q − p)2‖ − 2eB(k + (σk + 1)/2)
}

−M2
(

(p− q)‖
)

×
{

2 + (1− ξ)(1 − δσpσk
)
q2⊥
q2

− (1− ξ)δσpσk

q2‖
q2

}

× (−1)k−mLk−m
m

(

q2⊥
4γ

)

L
−(k−m)
k

(

q2⊥
4γ

)

, (4)

where k = nk − σk+1
2 . It is worth mentioning that after

summing over sk, the resulting equation is the same as
Eq. (50) in Ref. [2] when considering nk = 0. It corre-

sponds to the strong field limit. Using the identity

1

(p− q)2‖ − 2eB(k + σk+1
2 )−M2((p− q)‖)

=

−i

∫ ∞

0

dseis[(p−q)2‖−2eB(k+
σk+1

2 )−M2((p−q)‖)+iǫ] , (5)

and carrying out the sums over k, σk and σp, we get

M(p‖) =− e2
∫

d4Q

(2π)4

M
(

( p
4γ −Q)‖

)

Q2 + iε

∫ ∞

0

dτ

× e−Q2
⊥[1−exp(−iτ)]ei[(2

√
γQ−p)2‖−M2(( p

4γ −Q)‖)+iǫ] τ
4γ

×
[{

2− (1 − ξ)
Q2

‖
Q2

}

+

{

2 + (1 − ξ)
Q2

⊥
Q2

}

e−iτ

]

, (6)

where Q = q
2
√
γ and τ = 4γs. This is the integral equa-

tion for the mass function in Minkowski space. To per-
form the integral in the variable τ we notice that the in-
tegrand dies out sufficiently rapidly for large imaginary
values of τ . We can thus close the contour of integration
on a path whose first leg is a horizontal line along the
real τ -axis, continued along the quarter-circle at infinity
in the right-lower quadrant and finally along the negative
imaginary τ -axis. Using Cauchy’s theorem, we can thus
write Eq. (6) as

M(p‖) =e2
∫

d4Q

(2π)4

M(( p
4γ −Q)‖)

Q2

∫ ∞

0

dτ

× e−Q2
⊥[1−exp(−τ)]e−[(2

√
γQ−p)2‖+M2(( p

4γ −Q)‖)] τ
4γ

×
[{

2− (1− ξ)
Q2

‖
Q2

}

+

{

2− (1− ξ)
Q2

⊥
Q2

}

e−τ

]

. (7)

To guaranty convergence of the integral over τ , we need
to consider momenta Q and p in Euclidian space and
accordingly, a Wick rotation on Q has already been per-
formed in Eq. (7). We now perform the change of variable
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FIG. 1: (Color online) Relative strength of the magnetic field√
eB/m0, m0 is the dynamical mass in the vacuum, as a func-

tion of the coupling α and the parameter 2eB/Λ2. Studying
this dependence is possible only for α > αc = π/4 where
m0 6= 0. Towards yellow and blue, magnetic field becomes
strong and towards red, it becomes weak. Note that for
higher couplings, it is easier to access weak fields. On the
other hand, lower couplings imply strong magnetic fields un-
less eB << Λ2.

x = e−τ to get

M(p‖) =e2
∫

d4Q

(2π)4

M(( p
4γ −Q)‖)

Q2

∫ 1

0

dxe−Q2
⊥(1−x)

× x

h

(Q−p)2‖+
M2

2eB−1
i

×
[{

2− (1− ξ)
Q2

‖
Q2

}

+

{

2− (1− ξ)
Q2

⊥
Q2

}

x

]

, (8)

where we have not shown the argument of M2 to avoid
cumbersome notation.

To illustrate the calculation of the mass function, we
work in the Feynman gauge, ξ = 1. It is well known that
in the ladder approximation, the most preferable gauge
is the Landau gauge ξ = 0 because it comes the closest to
satisfying the Ward-Takahashi identity. However, within
the ladder approximation, working with a different value
of ξ gets reflected in the fact that–in the free field case–
the coefficient of the coupling constant changes from 1 to
(1 + ξ/3). Therefore, in the ladder approximation, the
physical picture of dynamical mass generation should be
similar in all gauges close to the Landau gauge, includ-
ing ξ = 1. For example, the critical coupling changes
from approximately 1.04 for Landau gauge to 0.78 for
the Feynman gauge (see fig. 4). The implicit assumption
is that the same happens in the presence of the field. This
can be entirely justified for the weak field limit since one
always keeps close to vacuum. In the strong field case it
is also justified, since our results reproduce this very well
studied case (see for instance Ref. [2] where the analysis
was also carried out in the Feynman gauge).

Upon the change of variables Q → Q+ p‖/
√
4γ,

M
(

p‖/
√

4γ
)

= e2
∫

d4Q

(2π)4
M(Q‖)

(Q+ p‖)2

×
∫ 1

0

dxxλe−Q2
⊥(1−x) 2(1 + x), (9)

where λ = Q2
‖ +

M2(Q‖)

4γ − 1. To perform the angular

integration, we write d4Q = d2Q⊥d2Q‖ = π
2 dQ

2
⊥dQ

2
‖dθ,

where θ is the angle between Q‖ and p‖. Hereafter, we
assume that the mass function depends only on the mag-
nitude of its argument. The angular integration is now
easily carried out and the result can be expressed as

M(p‖/
√

4γ) =
e2

2(2π)2

∫ 1

0

dx[1 + x]

∫

dQ2
‖x

λM(Q‖)

×
∫ ∞

0

dQ2
⊥ e−Q2

⊥(1−x)

√

[

Q2
‖ −

p2
‖

4γ

]2

+ 2Q2
⊥

[

p2
‖

4γ +Q2
‖

]

+Q4
⊥

. (10)

We now approximate the argument of the square root
in the denominator by intervals. For p2‖/4γ ≥ Q2

‖ we

take
p2
‖

4γ +Q2
‖ ∼ p2

‖

4γ . Conversely, for Q
2
‖ ≥ p2‖/4γ we take

p2
‖

4γ + Q2
‖ ∼ Q2

‖. With this approximation, the integral

over Q⊥ can be analytically performed and the result is

M(p‖/
√

4γ) =
e2

2(2π)2

∫ 1

0

dx[1 + x]xλM(Q‖)

×
{

∫
p2

4γ

0

dQ2
‖ exp

[

(1− x)
p2

4γ

]

Γ

[

0, (1− x)
p2

4γ

]

+

∫ ∞

p2/4γ

dQ2
‖ exp

[

(1− x)Q2
‖

]

Γ
[

0, (1− x)Q2
‖

]

}

, (11)

where Γ(x, y) is the incomplete gamma function. Notice
that the approximations leading to Eq. (11) make no ref-
erence to the strength of the magnetic field. Therefore,
this equation is valid for arbitrary magnetic field inten-
sities. In the following, we use the result in Eq. (11)
to numerically explore the behavior of the mass func-
tion when varying either the magnetic field strength or
the value of the coupling constant. The validity of our
approximations gets a numerical affirmation when in cer-
tain limiting parametric regime of α and eB, we retrieve
the results already known in the literature.
For α > αc(= π/4), we determine the strength of the

magnetic field by comparing it with the dynamically gen-
erated mass m0 in the vacuum.

√
eB/m0 >> 1 is the

strong field limit whereas
√
eB/m0 << 1 corresponds to

the weak field limit. In the Feynman gauge, this ratio has
been depicted in fig. 1. For α < αc, m0 = 0. Therefore,
the strength of the magnetic field can only be compared
with the ultraviolet cut-off Λ.
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FIG. 2: (Color online) Dynamical mass as a function of the
magnetic field in units of ultraviolet cut-off in the weak cou-
pling regime. Blue dots correspond to summing over all Lan-
dau levels whereas red dots correspond to the LLL approxima-
tion. We have used α = 0.1. Furthermore, a1 = 0.00176653
and a2 = 0.00174613. As α < αc, we get m ∝

√
eB, no

matter the strength of the magnetic field.
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FIG. 3: (Color online) Dynamical mass as a function of the
magnetic field in units of ultraviolet cut-off in the strong cou-
pling regime. Blue dots correspond to summing over all Lan-
dau levels whereas red dots correspond to the LLL approx-
imation. We have used α = 2. As we practically get a flat
line, we conclude that m ∝ Λ.

Therefore, we first study the dependence of the mass
function on the magnetic field strength for α < αc. We
concentrate on the dependence of the dynamically gen-
erated mass m, defined as the mass function evaluated
at zero momentum. In fig. 2, we plot the solution to
Eq. (11) containing the sum over all Landau levels for a
very small value of the coupling, α = 0.1, as a function of
the magnetic field strength, ranging from eB/Λ2 as large
as 1 to as low as 10−9. Our results are virtually the same
as obtained from the LLL approximation [2] as expected.
We now turn our attention to the study of the mass

function for α > αc. Corresponding results are shown in
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LLL BΛ=1.0

ALL BΛ=10-9

ALL BΛ=0.1
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FIG. 4: (Color online) Dynamical mass as a function of the
coupling constant for different values of the magnetic field.
We have used the notation BΛ = 2eB/Λ2. For comparison, we
show the behavior of the dynamical mass in the absence of a
magnetic field. Note that for large values of BΛ the dynamical
mass obtained by considering just the contribution of the LLL
is practically the same as the one obtained by considering the
contribution of all Landau levels. The situation changes for
small values of BΛ where it can be seen that other levels than
just the LLL contribute to the dynamical mass.

fig. 3. Note that considering all Landau levels changes the
results considerably in comparison with the predictions of
the LLL. The dynamically generated mass m ∝ Λ. Note
how the proportionality of the mass function switches
from

√
eB to Λ when we move from α < αc to α > αc.

Finally, we present the explicit dependence of m on
the coupling constant in fig. 4 both for the LLL and all
Landau levels contributing. For comparison, we show
the corresponding dynamically generated mass in vac-
uum. Notice that, as is known, magnetic field of ar-

bitrary strengths, however small (eB << Λ2) catalyze
the appearance of a dynamically generated mass for any
value of α. For large values of BΛ = 2eB/Λ2, the dynam-
ical mass obtained by considering just the contribution
of the LLL matches onto the one obtained by consid-
ering the contribution of all Landau levels. Going to-
wards decreasing α, this matching gets triggered early
on if eB ≈ Λ2. However, one has to go to very small
values of α to achieve the same if eB << Λ2 as we might
expect on physical grounds. The situation changes for
small values of BΛ where it can be seen that other levels
than just the LLL contribute to the dynamical mass. In
this last case, the transition region is around the critical
value of the coupling constant in vacuum, αc. For α > αc

the dynamics is dominated by the strength of the cou-
pling constant, as the largest contribution to the mass
comes from the intensity of self-interactions rather than
from the magnetic field contribution.

Notice how the results depicted in fig. 4 are harmo-
niously consistent with those in figs. 2 and 3. Let us first
focus on fig. 2. It has been drawn for α = 0.1. This
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value of α corresponds to the far left of fig. 4 where our
results including all the Landau levels are practically the
same as the LLL results, i.e., the dynamically generated
mass is proportional to

√
eB. Let us now compare fig. 4

with fig. 3. Figure 3 has been obtained by setting α = 2,
which corresponds to the far right of fig. 4. Note that at
that end, our results including all Landau levels match
onto each other for all values of the parameter BΛ rang-
ing from 10−9 to 1.0. This implies that for large values
of α, m/Λ is in fact independent of BΛ. Therefore, we
conclude that m ∝ Λ, the result we earlier deduced from
fig. 3. This shows how, fig. 4 is consistent both with figs. 2
and 3. In fact, it is complimentary. It clearly shows that
for intermediate regions of α, we must take into account
all Landau levels for a quantitatively correct description
of magnetic catalysis.
In conclusion, we have studied the phenomenon of

magnetic catalysis for arbitrary values of the coupling
constant and magnetic field strength by taking into ac-
count the contribution from all the energy levels in the
system. We have also shown that the phenomenon is not
always restricted to the contribution of the LLL. This
is especially evident for low and moderate values of the
magnetic field. In the special case of the strong field limit
and for small values of the coupling constant, studied ex-
tensively in the literature, our analysis confirms the well
known behavior of the dynamically generated mass.
Our general results can have interesting cosmological

consequences, as is exemplified for instance, in the study
of the electroweak phase transition. Recall that this tran-

sition took place during the early universe for tempera-
tures around T = 100 GeV. It has been recently shown
that within the standard model, if a primordial mag-
netic field was present at this epoch, the phase transition
becomes stronger first order [9]. The analysis is based
on the study of the effective potential whose develop-
ment with temperature is driven by the Higgs conden-
sate. However a fermion mass generated by the mag-
netic field is tantamount of a fermion condensate whose
contribution to the development of the phase transition,
and in particular, to the true vacuum expectation value
of the Higgs field could further modify the nature of the
transition and influence the baryogenesis scenario.
Another interesting question concerns the study of

higher order effects. It is well known that such effects
change the behavior of the dynamically generated mass
as a function of the coupling constant for strong fields and
weak coupling (see the second to the last of Refs. [1]). In
the context of the present work it is possible to study how
this change evolves as the magnetic field and coupling
constant take on arbitrary values. These issues deserve
further investigation that we are currently pursuing and
will be reported elsewhere.
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