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Abstract
Half a century ago Dirac has proposed three different forms of relativistic dynamics depending on the types of

surfaces where independent modes were initiated. The first possibility when a space-like surface is chosen ( instant
form) has been used most frequently so far and is usually called equal-time quantization. The second choice is to
the a surface of a single light wave (front form or null-plane ). The third possibility is to take a branch of hyperbolic
surface (point form). In this paper we are going to study QED2 on the null-plane and we will show that one of
the first class constraints of the theory has a contribution provided by the scalar sector and in addition the theory
have a second class constraint in the scalar sector which is manifest in the free case. It is not natural in the instant
form. The Faddeev-Jackiw procedure for constrained system is applied to calculate the commutation relations of
the theory.

Introduction
In 1949 Dirac pointed out that in a relativistic quantum theory the choice of the time variable is not
unique [1]. In his ”front form” (or null-plane as we call) of dynamics he suggested the use light
front x+ ≡ x0 + x3 as surfaces of equal time. The initial conditions are give in this hyperplane and
correspondingly, the commutation relations are prescribed on a plane x+ = cte. Already in the early
seventies it was noted that quantizing on the null-plane means quantizing on the characteristic surface
of the classical field equations [2]. The conclusion was that one is dealing with a characteristic value
problem when one wants to solve these equations .

A general characteristic of a relativistic theory on null-plane is what it describes a dynamical systems
with constraints, thus, the Faddeev-Jackiw procedure for constrained system [3] is used to quantize
the theory. In this work we are going to derive the commutation relations among the fundamental
dynamical variables of the theory.

QED2 on the null-plane coordinates
The U(1) gauge theory we are considering is defined by the following Lagrangian density in 2-
dimensional space-time

L(0) = −1

4
FαβF

αβ +
i

2
φ̄γ+∂+φ− i

2
∂+φ̄γ

+φ +
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2
φ̄γ−∂−φ− i

2
∂−φ̄γ−φ

−mφ̄φ− gAµφ̄γ
µφ. (1)

From (1) it is easy to write the first-order Lagrangian by introducing the canonical momentum
(Πν, π̄, π) with respect to the fields (Aν, φ, φ̄) Aµ and θ, respectively. The initial set of symplec-

tic variables defining the extended space is given by the set ξ(0)k =
(
φa, φ̄a, A+, A−,Π−), and so the

starting Lagrangian density is written in first order as follow:

L(0) = Π−∂+A− +
i

2
φ̄γ+∂+φ− i

2
∂+φ̄γ

+φ−H(0), (2)

where the zero iterated symplectic potential has the following form:
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1
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Π−Π− + Π−∂−A+ − i
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φ̄γ−∂−φ +
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∂−φ̄γ−φ +mφ̄φ + gAµφ̄γ

µφ. (3)

Classically the fields are described by Grassmann variables [5], thus, the zero iterated symplectic
two-form matrix is defined by [6]:

M
(0)
AB (x,y) =

δK
(0)
B (y)

δξ
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A (x)

− (−1)nAnB
δK

(0)
A (x)

δξ
(0)
B (y)
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where nA specify the parity of the field ξ
(0)
A (x). From (4) it is possible determine the following the

components:

M
(0)
AB (x,y) = −i
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δ3 (x− y) . (5)

In the null-plane coordinates the γ+ matrix is singular, then M (0) (x,y) is singular too. It is possible
to show that the matrix (5) has three zero modes associated with the following set of Lagrangian
constraints:

Ω
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[
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]
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Ω
(0)
3 = ∂x−Π

− (x)− gφ̄ (x) γ+φ (x) = 0.

where the projectors ∆+ and ∆− [7] have been used. According to the symplectic algorithm, the
constraint (6) are introduced in the Lagrangian density by using Lagrangian multipliers, thus, the first
iterated Lagrangian density is written as:
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where the first iterated symplectic potential is
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Now, we enlarged the space with the first iterated set of symplectic variables defined by ξ
(1)
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)
. The first iterated symplectic matrix is written as:
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which can be as:
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: It is possible to show that the matriz is singular, however, the zero mode will not give rise to a
new Lagrangian constraint, then the symmetric matrix continues being singular what characterizes
that quantum electrodynamics in null plane coordinates it is still a gauge theory. In order to obtain a
regular symplectic matrix a gauge fixing term must be added to the symplectic potential. We choose
the Coulomb gauge Θ = A− (x) = 0. Using the consistency condition by Lagrange multiplier η (x),
which will increase the size of the configuration space, we obtain the second iterative Lagrangian,
i.e.:
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where
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As before, we set the symplectic variable ξ
(2)
k =

(
φa, φ̄a, A−,Π−, λ, λ̄, β, η

)
. Now, from (8) we

obtain the second-iterated symplectic two-form matrix,

M
(2)
AB (x,y) =

δK
(2)
B (y)

δξ
(2)
A (x)

− (−1)nAnB
δK

(2)
A (x)

δξ
(2)
B (y)

.

Since this matrix is not singular, we finally have the inverse matrix after a laborious calculation. Then,
we determine the following generalized bracket:

{φa (x) , φ̄b (y)} = −im2
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4
ϵ
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i
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(
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where I is the identity matrix. IN the similar way is possible determine:{
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∫
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The relations (10) and (11) are consistent with the brackets derived with the Dirac method to the
QED2 on the null plane coordinates in the null-plane gauge condition.

Conclusions
In this paper we have studies QED2 with the symplectic quantization method. The results give us
the Dirac brackets of the theory, which is an alternative to the orthodox Dirac method on constrained
dynamics [?]. At the same time, we have shown that the symplectic approach is more intuitive in the
sense that the constraints are related to the generalized canonical momenta and the Lagrange multipli-
ers to the symplectic variables in the enlarged symplectic structure of the constrained manifold. For
the QED2 we have shown that the number of the constraints is fewer and the structure of these con-
straints is very simple because we do not need to distinguish first or second class constraints, primary
or secondary constraints, etc. We have easily obtained the generalized brackets by reading directly

from the inverse matrix
[
fAB(2)

]−1
of the symplectic two form matrix. Finally, we can observe that

the potential symplectic obtained at the final stage of iterations is exactly the Hamiltonian which is
obtained through several steps with the usual Dirac formulation of the constrained systems.
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