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Abstract
We are going to study the non-abelian scalar electrodynamics (SQED4) on the null-plane formalism. We follow

the Dirac’s technique for constrained systems to perform a detailed analysis of the constraint structure and late we
give the generalized Dirac brackets for the physical variables.

Introduction
To quantize the theory on the null-plane, initial conditions on the hyperplane x+ = cte and equal x+

commutation relations must be given and the hamiltonian describe the time evolution from an initial
value surface to other parallel surface that intersect the x+ axis at some later time. Although the
prescription has a lot of similarities with the conventional approach, there are significant difference
in the quantization. The null-plane framework is a constrained dynamical theory where second class
constraints arise. These can be eliminated by constructing Dirac brackets (DB) and the theory can be
quantized canonically by the correspondence principle in terms of a reduced number of independent
fields. Thus, if the Dirac’s method [1] is employed, it allows identify the independent fields and the
null plane hamiltonian and the commutation relations will be constructed in terms of them.

The quantization of relativistic field theory at the null plane time, which was proposed by Dirac
[2], has found important applications [3] in both gauge theories and string theory [4]. It has been
conventional to apply the null-plane quantization to gauge theory in the null-plane gauge A−, since
the transverse degrees of freedom on the gauge field can be immediately identified as the dynamical
degrees of freedom, and ghost fields can be ignored in the quantum action of the non-abelian gauge
theory [5].

In this paper we will discuss the null-plane quantization of the Yang-Mills gauge field and the Non-
abelian scalar electrodynamics following the Dirac’s formalism to constrained systems.

NON-ABELIAN SQED4

In the adjoint representation, the theory is describe by the following lagrangian density

L = ηµν
(
Dµ

)ab
Φ
†
b (Dν)

acΦc −m2Φ
†
aΦa −

1

4
F
µν
a F a

µν, (1)

where the field strength F a
µν and the covariant derivative

(
Dµ

)ab are defined, respectively, by

F a
µν = ∂µA

a
ν − ∂νA

a
µ + gεabcA

b
µA

c
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)ab ≡ δba∂
x
µ − gεabcA

c
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and where Φc is a field scalar which has three components in an ”internal” space and the gauge trans-
formation are rotations in this space. This will give a ”vector” quantity which is conserved, it will be
like isospin.

The field equations are given for
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where J
β
h is the current density defined by

J
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The canonical conjugate momenta to the fields
(
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)
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π
µ
a ≡ ∂L

∂
(
∂+Aa

µ

) = −F
+µ
a , Π

†
a ≡

∂L
∂ (∂+Φa)

=
(
Dx
−
)ab

Φ
†
b , Πa ≡

∂L

∂
(
∂+Φ

†
a

) =
(
Dx
−
)ab

Φb

(5)
respectively. From (5) we get the following set of primary constraints:
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The primary hamiltonian of the theory is
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where
(
ub, λbl

)
are the lagrange multipliers associated to the vector constraints and

(
U
†
b , Ub

)
are

the multipliers associated with the scalar ones.
Following the Dirac’s procedure, we determine the consistence conditions on the primary con-

straints, thus, such requirement on the scalar constraints yield:
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This relations determine conditions on the multipliers
(
U
†
b , Ub

)
, respectively, and there are not more

constraints associated with the scalar sector. In the vector sector, the consistence conditions on ϕka
give

ϕ̇ka =
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)ab
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abF b

ik − Jka − 2
(
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an equation for its associated multiplier λbk. Finally, the consistence condition on π+a give a secondary
constraint

ϕ̇a =
(
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−
)ab

π−b + (Dx
i )

ab πib − J+a ≡ Ga ≈ 0, (10)

which it is the Gauss’ law. It is possible, after a laborious work, to verify that not more further con-
straints are generated from the consistence condition of the Gauss’ law because it is automatically
conserved
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Then, the constraints (6), (??) and (10) constitute the full set of constraints of the theory.

CONSTRAINTS CLASSIFICATION
The non null PB’s among the constraints of the theory are{
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thus, we can observe that π+a has vanishing PB with all the other constraints, therefore, it is a first
class constraint. The remaining set,

(
ϕka, Θa, Θ

†
a, Ga

)
, is apparently a second class set, however, it

is possible to show that the matrix formed with these set of constraints is singular, it is because the
matrix has a zero mode whose eigenvector gives a linear combination of constraints which is one first
class constraint[6], such eigenvector is
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Then, the theory has the following set of second class constraints
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and the set of first class constraints
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We can sure that (15) is the maximal number of first class constraints of the theory, since, the
consistence condition on
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multipliers.

DIRAC BRACKETS
We have the following set of second class constraints:
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with these, we define the following constraint matrix Dab (x, y) ≡ {Σa (x) ,Σb (y)}, from where the
DB for the dynamical variables are determined if a explicit evaluation of the inverse of this matrix is
does. If we consider the appropriate boundary conditions on the fields,[6][?], a unique inverse of the
constraint matrix is obtained and after a laborious work we obtain, the aim of this paper, the DB for
the independent dynamical variables of non-abelian SQED4.{
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Conclusions
We have careful performed the constraint analysis of the non-abelian SQED4 where we have shown
that: the the Gauss’ law constraints is automatically conserved and the full set of constraints were
determine. We observed that the non-abelian SQED4 has a first class constraint, similar what happen
with the abelian SQED4 case [6], which result of a linear combination of constraints and it is the
eigenvector of the constraints matrix with zero mode. It fact is a consequence of the existence of a
set of constraints associated with the scalar sector. Finally, choosing the null-plane gauge we fix the
first class constraints and by construction we obtained generalized Dirac brackets of the canonical
variables. Our results are equivalents, after quantization, with these reported in the literature [6] [7]
when the abelian case is considered.
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